
Diss. ETH No. 22916

High precision determination of the Higgs
production cross section in gluon fusion at

N3LO

A dissertation submitted to attain the degree

Doctor of Sciences of ETH Zurich

(Dr. sc. ETH)

presented by

Falko Dulat

Msc. Physics, ETH Zurich
born on 13.06.1987
citizen of Germany

accepted on the recommendation of:

Prof. Charalampos Anastasiou, examiner

Prof. David Kosower, co-examiner

Prof. Zoltan Kunszt, co-examiner

2015





Abstract

Higgs physics at the LHC has entered the precision era after the discovery
of the Higgs boson in 2012. One of the most important goals of LHC in the
coming years is to determine whether the Higgs boson is the Higgs boson
of the standard model, or whether it is a Higgs boson of some extension of
the standard model. This requires high precision measurements of the proper-
ties of the Higgs boson. These measurements rely on accurate predictions of
the Higgs cross section in the standard model. As such, the inclusive Higgs
production cross section in the standard model is one of the most important
theoretical inputs for Higgs physics at the LHC.

In this dissertation we present the calculation of the inclusive Higgs boson
production cross section in gluon fusion at next-to-next-to-next-to-leading or-
der in QCD. We describe the methods that have been developed in order to
make this calculation possible. A lot of progress in recent perturbative calcula-
tions is due to an improved understanding of the multiple polylogarithms, the
elementary functions that appear in the calculation of many cross sections. We
outline several algorithms based on the modern understanding of the algebraic
structure of multiple polylogarithms that are indispensable for the calculation
of the integrals appearing in the Higgs cross section.

We show that using the method of di�erential equations, we are able to
reduce the problem of calculating the Higgs cross section to the calculation
of combined loop and phase space integrals in the soft limit. We describe
our method for obtaining representations of integrals in the soft limit that
are feasible for direct integration. In order to perform these integrals, we
have developed an algorithm that allows us to perform integrals in the soft
limit in a canonical way, by exploiting the algebraic structure of the multiple
polylogarithms.

We apply these methods to calculate the contributions to the cross section
that are due to the emission of three real partons into the final state as well
as due to the emission of a single parton at two loops. We obtain thirty or-
ders in the threshold expansion of gluon-fusion cross section. We discuss the
phenomenology of this new result and show that this calculation leads to a
dramatic reduction of the scale dependence down to 3%. We also compute
the threshold resummation of our result to improve the behavior of potentially
large threshold logarithms and show the phenomenological impact.
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Zusammenfassung

Die Higgs Physik am LHC befindet sich nach der Entdeckung des Higgs Teil-
chens im Jahre 2012 in einer Ära der Präzision. Eines der wichtigsten Ziele
des LHC Programms in den kommenden Jahren ist es zu Bestimmen ob das
entdeckte Higgs Boson das Higgs Boson des Standard Modells ist, oder ob
es sich dabei um ein Higgs Boson einer Erweiterung des Standard Modells
handelt. Dies erfordert hochpräzise Messungen der Eigenschaften des Higgs
Bosons. Vorraussetzung für diese Messungen sind akkurate Vorhersagen der
Eigenschaften des Higgs Bosons im Standard Modell. Folglich ist der inklusi-
ve Streuquerschnitt für die Produktion von Higgs Bosonen am LHC eine der
wichtigsten theoretischen Vorhersagen für die Higgs Physik am LHC.

In dieser Dissertation präsentieren wir die Berechnung des inklusiven Streu-
querschnitts für die Produktion von Higgs Bosonen via Gluonen-Fusion in
nächst-nächst-nächst-führender Ordnung in QCD. Wir beschreiben die Me-
thoden, welche entwickelt wurden um diese Rechnung zu ermöglichen. Ein
grosser Teil des Fortschrittes in perturbativen Rechnungen der letzten Jahre
ist auf ein besseres Verständniss der multiplen Polylogarithmen, der elemen-
taren Funktionenklasse, welche viele Wirkungsquerschnitte beschreibt, zurück-
zuführen. Wir beschreiben mehrere Algorithmen, welche auf dem modernen
Verständniss der algebraischen Strukturen, die den multiplen Polylogarithmen
zugrunde liegen, basieren und für die Berechnung der im Streuquerschnitt auf-
tretenden Integrale unersetzlich sind.

Wir zeigen mithilfe der Methode der Di�erentialgleichungen, wie das Pro-
blem der Berechnung des Wirkungsquerschnitts für die Produktion von Higgs
Bosonen auf die Berechnung von Schleifenintegralen und Phasenraumintera-
len im niederenergetischen Grenzbereich reduziert werden kann. Wir beschrei-
ben unsere Methode um Darstellungen für Integrale im niederenergetischen
Grenzbereich herzuleiten welche sich direkt integrieren lassen. Des Weiteren,
haben wir haben einen Algorithmus entwickelt, welcher uns erlaubt diese In-
tegrale im niederenergetischen Grenzwert durch Ausnutzung der algebraische
Struktur der multiplen Polylogarithmen, kanonisch zu integrieren.

Wir wenden diese Methoden an, um die Beiträge zum Streuquerschnitt
auszurechnen, welche durch die Emission von drei reellen Partonen in den
Endzustand, sowie durch die Emission eines reellen Partons durch zwei Schlei-
fen, hervorgerufen werden. Nachdem wir alle Resultate zusammenfügen erhal-
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ten wir den Wirkungsquerschnitt für die Produktion von Higgs Bosonen als
Entwicklung um den Schwellenwert zu mehr als dreissig Ordnungen. Wir dis-
kutieren die Phänomenologie dieses neuen Resultats und zeigen, dass diese
Rechnung die Skalenabhängigkeit des Wirkungsquerschnitts auf etwa 3% re-
duziert. Weiterhin berechnen wir die Schwellenwertresummation unseres Re-
sultats um das Verhalten von potentiell grossen Logarithmen zu verbesseren
und demonstrieren den phänomenologischen Einfluss davon.
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1
Introduction

The experiments at the Large Hadron Collider (LHC) have been tremendously
successful in the exploration of physics at the TeV scale. This remarkable
achievement is the result of a strong interplay of experiments and theory. On
one hand amazing experimental and technological advances were made, while
on the other hand, there was extraordinary progress in perturbative QCD. In
particular, the discovery of the Higgs boson [8, 9] is an incredible experimental
success that has initiated an era of precision studies of the properties of the
Higgs boson, where precise theory predictions for Higgs observables play an
indispensable role. The increasing demand for precision predictions for the
LHC has lead to a swift progress in theoretical calculations. Indeed, while
next-to-leading order (NLO) computations have been completely automated,
see e.g. [10, 11], including the matching to parton showers [12], progress in next-
to-next-to-leading order (NNLO) is equally fast and impressive, with several
important milestones for key processes at hadron colliders having recently been
reached, see e.g. [13–15].

One of the most important goals of the Higgs physics program at the LHC
in the coming years, is to determine whether the Higgs boson that has been
observed is the Higgs boson of the standard model, or whether it is a Higgs
boson of some extension of the standard model. The LHC can shed light
on this question through precision measurements of the Higgs boson proper-
ties. By searching for deviations of the Higgs couplings from their predicted
standard model values, the experiments at the LHC will be able to constrain
the range of possible new physics models. Such studies require high precision
predictions of the properties of the Higgs boson in the standard model. One
ubiquitous ingredient of such predictions is the production cross section for
the Higgs boson in the standard model. Unfortunately, the theory predictions
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1. Introduction

for the inclusive cross section su�er from significant theoretical uncertainties.
Scale variations at NNLO indicate that missing higher order e�ects are of the
order of ±9% at LHC energies [16, 17]. The size of this uncertainty is com-
parable to the experimental uncertainty from LHC Run 1 [18, 19]. With the
expected reduction of experimental uncertainty during the LHC Run 2, the
theoretical uncertainty will be the dominant source of error on the extraction
of Higgs observables. An update of the theoretical predictions is therefore
imperative. It was therefore a logical next step to undertake e�orts to com-
pute the Higgs cross section at next-to-next-to-next-to-leading order (N3LO)
in perturbative QCD. The cross section at N3LO receives contributions from
many di�erent building blocks, all of which have been computed at least par-
tially over the last years. The three-loop corrections to Higgs production in
gluon-fusion have been obtained in ref. [20, 21], and the corrections from the
emission of an additional parton at one or two loops were computed in ref. [2,
22–25]. In order to obtain a finite result, appropriate ultraviolet and infrared
counterterms need to be included [26–34]. While all of these contributions
had been computed in full generality, contributions from the emission of two
partons at one loop and three partons at tree-level had only been computed
as an expansion. In particular, for these contributions the first two terms in
the expansion around threshold were obtained [1, 3, 35, 36], confirming pre-
vious results for terms of the cross section [37, 38] that are logarithmically
enhanced in the threshold limit and resulting in the complete computation of
the inclusive gluon-fusion cross section at N3LO in the soft-virtual [3, 36, 39]
and next-to-soft approximations [4]. Thanks to the universality of soft gluon
emissions, these results have inspired a flurry of new results for QCD processes
at N3LO in the soft-virtual approximation [40–45].

Despite this progress and the exhaustive study of the soft-virtual approxima-
tion at N3LO, predictions derived from soft-virtual and next-to-soft approxima-
tions are unreliable at the current LHC energies, due to the slow convergence
of the threshold expansion [4].

In ref. [6] we remedied this by presenting the inclusive Higgs production
cross section in gluon-fusion at N3LO in perturbative QCD. This constitutes
the first ever complete calculation of a cross section at N3LO at a hadron
collider.

Many of the calculations contributing to the Higgs production cross sec-
tion have been made possible by the rapid developments in the mathematics
of scattering amplitudes in recent years, fueled in particular by the bustling
field of amplitudes. One of the most important advances has been the sys-
tematic study of the so-called multiple polylogarithms, generalizations of the
classical polylogarithms that were introduced by Goncharov [46]. These func-
tions have been intensively studied both from the mathematical side [46–53]
as well as from the perspective of physicists [54–60]. This has made many im-
portant mathematical advances available to the physics community leading to
breakthroughs in the computation and study of scattering amplitudes [49, 54,
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61–73].
Simultaneously, in recent years the study of di�erential equations has moved

back into the focus of the amplitudes community [2, 5, 74–78] after they had
first been introduced over fifteen years ago [79, 80] and used successfully for
a variety of calculations [81–84]. New developments in recent years have lead
to a flurry of new results being obtained using di�erential equations [2, 5, 13,
25, 85–96].

This thesis is organized as follows: in chapter 2 we review multiple polylog-
arithms in the context of general iterated integrals. We discuss the algebraic
structures underlying these functions culminating in an analysis of the Hopf
algebra structure. We then discuss several algorithms for the treatment of multi-
ple polylogarithms, furnishing what we call the “coproduct calculus”, based on
the Hopf algebra structure of the multiple polylogarithms. These algorithms
are crucial for the calculations presented in this thesis. In particular, we discuss
the method of canonical integration and the iterative integration of parame-
ter integrals in terms of multiple polylogarithms which has been developed by
us in [1]. In chapter 3 we discuss our setup for calculating the integrals ap-
pearing in the di�erent components of the cross section. We briefly describe
the method of integration-by-parts reduction which allows us to express all
integrals appearing an amplitude or cross section in terms of a small set of so-
called master integrals. Afterwards, we discuss the derivation of di�erential
equations for master integrals as well as the solution of these systems in terms
of multiple polylogarithms. Finally, we analyze the boundary conditions re-
quired for the solution of the di�erential equations. This connects to chapter 4
where we discuss extensively the explicit calculation of boundary conditions.
We derive the required loop integral and phase space integral parametriza-
tions and discuss calculational tools like the Mellin-Barnes integrals that are
required to evaluate the integrals explicitly. Furthermore, we introduce dimen-
sional recurrence relations for combined loop and phase space integrals which
provide important cross checks for the results of the explicit calculations. This
chapter concludes the first part of the thesis which is concerned with calcula-
tional methods that are generally applicable. In the remainder of the thesis
we discuss the application of these methods to the concrete example of the
inclusive Higgs cross section in gluon-fusion at N3LO. In chapter 5 we discuss
the calculation of the first two terms in the threshold expansion of the so-called
triple-real contributions, processes with three partons in the final state in addi-
tion to the Higgs boson. We explicitly calculate the soft integrals appearing in
this contribution. In chapter 6 we present the calculation of the contributions
with one parton in the final state, which are due to the square of one loop
amplitudes. We calculate this part of the cross section using di�erent methods
in order to provide cross checks for the methods which will be used in the re-
maining contributions. In chapter 7 we calculate the parts of the cross section
with one parton in the final state which are due to genuine two-loop amplitudes
interfered with the corresponding tree level amplitudes. Here, we explicitly use
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1. Introduction

the methods for solving di�erential equations discussed in chapter 3. Finally,
in chapter 8 we combine all the di�erent pieces and present the final result for
the inclusive Higgs cross section at N3LO. We show some phenomenological
studies performed using our result and discuss its impact. We wrap up the
thesis with our conclusions and future prospects in chapter 9.

1.1 Setup of the calculation

The gluon-fusion cross section is by far the most important production mode
for Higgs bosons at the LHC. In the standard model the Higgs boson does not
couple directly to gluons. As such gluon-fusion is a loop-induced process that
is mediated by a virtual loop of fermions. The leading order cross section is
shown in figure 1.1.

Figure 1.1: Leading order diagram for gluon-fusion

For Higgs bosons that are relatively light compared to the threshold of
twice the mass of the quark running around the loop, the limit of infinitely
heavy quarks yields a good approximation to the cross section [97, 98]. This
approximation can be formalized in the language of an e�ective field theory.
In this framework the heavy quarks are integrated out from the underlying
field theory. In the Standard Model, this means that we integrate out the top
quark, and obtain the e�ective Lagrangian,

Le� = Ln f

QCD − 1

4v
C1HGa,µνGa

µν, (1.1)

where Ga
µν denotes the gluonic field-strength tensor and Ln f

QCD denotes the
standard Lagrangian of quantum chromodynamics (QCD) with n f light quarks.
The Wilson coe�cient matches the e�ective theory to the Standard Model and
has been computed in [99–101]. Higher-dimensional operators in the e�ective
theory are suppressed by powers of 1/mt and can be used to calculate finite-
quark-mass e�ects of the cross section in an 1/mt expansion [102–107].

In this thesis we will only concern ourselves with the leading term in the
e�ective theory. The hadronic Higgs production cross section then takes the
form

σ = ∑
ij

∫
dx1dx2 fi(x1) f j(x2)σ̂ij(m

2
H, x1x2S), (1.2)
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1.1. Setup of the calculation

where σ̂ij is the partonic cross section for producing a Higgs boson from par-
tons i and j. fi(x1) and f j(x2) are the corresponding parton density functions
(pdfs) and S denotes the center of mass energy of the colliding protons. The
partonic cross section can be expanded in the strong coupling constant αs,
starting at order α2

s . The NLO corrections, proportional to α3
s , to the partonic

cross section can be found in refs. [98, 108–113]. The NNLO corrections have
been calculated in refs. [83, 114–116]. The goal of this thesis is to describe the
calculation of the N3LO corrections, i.e. the contribution to the cross section
proportional to α5

s .
Before we discuss the actual calculation we will review some of the tech-

nologies that were required and in part developed for this calculation.
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2
Multiple polylogarithms

The calculation of Feynman integrals is closely to the analysis of integrals over
rational functions and of the transcendental functions that arise. Even the
most basic Feynman integral evaluates to simple transcendental functions, the
logarithms. Already at the one-loop level, in the computation of the box inte-
gral, one encounters the first generalization of the logarithm, the dilogarithm
Li2.

Moving to more loops or more legs, Feynman diagrams yield more com-
plicated generalizations, harmonic polylogarithms (HPLs), their two variable
versions, the 2d-HPLs and so on. These classes of functions have been stud-
ied and complicated functional identities have been derived in order to enable
computations involving them [59, 117, 118].

From the mathematical side, these functions have been studied extensively
in the field of number theory and it has been long known [47] that the di�erent
generalizations of the logarithms are all subsets of a much larger class of func-
tions. However it was only recently [49, 55, 56] that the results of the systematic
study of the general class of functions, the multiple polylogarithms, have been
exploited by the physics community. The multiple polylogarithms (MPLs) of-
fer a plethora of beautiful structure that has aided remarkable advances in the
study of scattering amplitudes [54, 62–72].

In the following we will describe the structure of the multiple polyloga-
rithms, laying the groundwork for the methods that we employ in the calcula-
tions that are presented in later chapters of this thesis. The discussion of iter-
ated integrals and of the multiple polylogarithms is based on reviews present
in refs. [50, 56, 119, 120].
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2. Multiple polylogarithms

2.1 Iterated integrals

The multiple polylogarithms are a special case of the very general class of
functions that form the so-called iterated integrals. Iterated integrals can be
defined in terms of K-valued 1-forms ω1, . . . , ωm on some smooth manifold M
over K, where K is in practice usually R or C. Writing

∫

γ
ωi =

∫ 1

0
dt ωi(t), (2.1)

for the integral over ωi along a piecewise smooth path γ : [0, 1] → M,
parametrized by t, we can define the m-fold iterated integral as

∫

γ
ω1 . . . ωm =

∫ 1

0
dt1ω1(t1)

∫ t1

0
dt2ω2(t2) . . .

∫ tm−1

0
dtmωm(tm). (2.2)

Equivalently, we also allow for K-linear combinations of the ω. The empty
iterated integral

∫
γ is just constant 1.

Already this very general definition of the iterated integrals allows for some
useful properties. Any iterated integral

∫
γ ω is invariant under reparametriza-

tions of γ. Under reversal of the path of integration γ → γ−1 = γ(1 − t), the
iterated integrals transform as

∫

γ
ω1 . . . ωm = (−1)m

∫

γ−1
ωm . . . ω1. (2.3)

Two paths γ1, γ2 : [0, 1] → M with γ2(0) = γ1(1) can be concatenated such
that the iterated integral obtained by first integrating along γ1 and then along
γ2 is ∫

γ1γ2

ω1 . . . ωm =
m

∑
i=0

∫

ω1

ω1 . . . ωi

∫

γ2

ωi+1 . . . ωm. (2.4)

The most notable property, which is used extensively, is the shu�e product
∫

γ
ω1 . . . ωr

∫

γ
ωr+1 . . . ωr+s = ∑

σ∈Σ(r,s)

∫

γ
ωσ(1) . . . ωσ(r+s). (2.5)

Here Σ(r, s) is the set of all (r, s) shu�es, i.e. permutations of r + s ele-
ments which leave the ordering of the ω1 . . . ωr among each other and of the
ωr+1 . . . ωr+s among each other invariant. These permutations form a subset
of the symmetric group Sr+s given by

Σ(r, s) =
{

σ ∈ Sr+s : σ−1(1) < · · · < σ−1(r) ∧ σ−1(r + 1) < · · · < σ−1(r + s)
}

.

(2.6)
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2.2. Multiple polylogarithms

Example.

∫

γ
ω1ω2

∫

γ
ω3 =

∫

γ
ω1ω2ω3 +

∫

γ
ω1ω3ω2 +

∫

γ
ω3ω1ω2. (2.7)

In general such iterated integrals will depend on the exact shape of the
path γ, however it is possible to construct functions that only depend on the
endpoints γ(0) and γ(1) of the path and on its homotopy class.

If ω is a single 1-form then the integral
∫

γ ω does not depend on the shape
of the path γ if and only if ω is closed, i.e. dω = 0. Such a function is referred
to as a homotopy functional or as homotopy invariant.

Example.
Let ω be a 1-form on R2 given by

ω = f (x, y)dx + g(x, y)dy. (2.8)

Then in order for ω to be closed we need to have

dω = d f ∧ dx + dg ∧ dy

=

(
∂ f

∂x
dx +

∂ f

∂y
dy

)
∧ dx +

(
∂g

∂x
dx +

∂g

∂y
dy

)
∧ dy

=

(
∂ f

∂y
− ∂g

∂x

)
dx ∧ dy = 0,

(2.9)

i.e. ∂y f = ∂xg.

Homotopy invariant iterated integrals
∫

γ ω with ω = ω1 . . . ωm need to
fulfill

m

∑
k=1

ω1 . . . (dωk) . . . ωm −
m−1

∑
k=1

ω1 . . . (ωk ∧ ωk+1) . . . ωm = 0. (2.10)

2.2 Multiple polylogarithms

Having discussed the properties of general iterated integrals, we can now spe-
cialize to the multiple polylogarithms. These are obtained by letting

M = {(σ1, . . . , σn) ∈ Cn : σi 6= σj, σi 6= 0, 1}. (2.11)

The di�erential forms ωi on M are taken from the set

Ω =

{
dσi − dσj

σi − σj
,
dσi

σi
,

dσi

1 − σi

}
. (2.12)

9



2. Multiple polylogarithms

For practical purposes it often su�ces to consider n− 1 of the σi to be constant.
In that case multiple polylogarithms degenerate to the so-called hyperlogarithms
and we have the simpler di�erential forms

ωi = dlog(z − σi) =
dz

z − σi
, (2.13)

where we have written z for the non-constant σi for clarity. For the remain-
der of this thesis this distinction is not relevant and we will usually refer to
the functions as (multiple) polylogarithms even though technically we could
restrict ourselves to hyperlogarithms.

The iterated integral is then written as

I(z0, σ1, . . . , σn, z) =
∫

γ
ωn . . . ω1, (2.14)

for γ(0) = z0 and γ(1) = z. The multiple polylogarithms are defined for
γ(0) = 0 and one introduces the common notation

G(σn, . . . , σ1; z) =
∫

γ
ωn . . . ω1, (2.15)

for γ(0) = 0 and γ(1) = z. Note the reversal of the arguments between the
two notations. The σi are also referred to as indices. The length n of the indices
is called the weight of the multiple polylogarithm (MPL), corresponding to the
number of integrations. The multiple polylogarithms are sometimes referred
to as Goncharov polylogarithms, especially in the physics literature. For brevity
we will often write the integrals directly in terms of the endpoints of the path

∫ γ(1)

γ(0)
ω =

∫ 1

0
dt ω(t). (2.16)

The I notation for generic basepoints (2.14) and the G notation for the
MPLs in eq. (2.15) can be related recursively using the path reversal and con-
catenation properties of the iterated integral. At weight 1, the result is simply

I(z0, σ1, z) = I(0, σ1, z)− I(0, σ1, z0) = G(σ1, z)− G(σ1, z0). (2.17)

At higher weights one proceeds by iteration and obtains for example at weight
2,

I(z0, σ1, σ2, z) =
∫ z

z0

dt

t − σ2
I(z0, σ1, t)

(2.17)
=

∫ z

z0

dt

t − σ2
(I(0, σ1, t)− I(0, σ1, z0))

= G(σ2, σ1, z) + G(σ1, z0) (G(σ2, z0)− G(σ2, z))− G(σ2, σ1, z0).
(2.18)

10



2.2. Multiple polylogarithms

At weight 3, we find

I(z0, a1, a2, a3, z) =
∫ z

z0

dt

t − σ3
I(z0, σ1, σ2, t)

(2.18)
= G(σ3, σ2, σ1, z) + G(σ3, z)G(σ1, σ2, z0)

− G(σ1, z0)G(σ3, σ2, z)− G(σ3, z0)G(σ1, σ2, z0)

+ G(σ1, z0)G(σ3, σ2, z0)− G(σ3, σ2, σ1, z0).

(2.19)

For higher weights we obtain corresponding, unwieldier expressions in a simi-
lar fashion that can be used to freely translate between the I and G notation.
For the most part we will restrict ourselves to the G notation, which is prevalent
in the physics literature. However, in the later discussion of the Hopf algebra
structure of the MPLs the I notation is particularly useful.

Note the special case where all σi are zero. In this case we use the vector
notation~0n = (0, . . . , 0)︸ ︷︷ ︸

n times

for brevity and define,

G(~0n, z) =
1

n!
logn(z). (2.20)

For a 6= 0 we have the following closed representations of certain MPLs,

G(~an, z) =
1

n!
logn

(
1 − z

a

)

G(~0n−1, a, z) = −Lin
(z

a

)
,

(2.21)

where the Lin are the classical polylogarithms. MPLs of the form G(~σ, σn, z)
with σn 6= 0 are invariant under rescaling of all arguments,

G(~σ, σn, z) = G(~σk, σnk, zk) k ∈ C∗. (2.22)

Convergent MPLs permit a representation in terms of multiple nested sums,

Lim1,...,mk
(x1, . . . , xk) = ∑

n1<n2<···<nk

xn1
1 xn2

2 . . . x
nk
k

nm1
1 nm2

2 . . . n
mk
k

=
∞

∑
nk=1

x
nk
k

n
mk
k

nk−1

∑
nk−1=1

· · ·
n2−1

∑
n1=1

xn1
1

nm1
1

.

(2.23)

The Li functions are yet another notation for the same class of functions and
are related to the G notation through,

Lim1,...,mk
(x1, . . . , xk) = (−1)kG

(
~0mk−1,

1

xk
, . . . ,~0m1−1

1

x1 . . . xk
, 1

)
. (2.24)
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2. Multiple polylogarithms

The number of summations k is referred to as the depth of the multiple polylog-
arithm. The weight w is compatible with the definition of the MPLs in terms
of iterated integrals and can be computed as,

w =
k

∑
i=1

mi. (2.25)

A certain specialization of the multiple polylogarithms deserves some at-
tention due to its significance in many physical calculations. Letting M =
C \ {−1, 0, 1} and K = C as before, we obtain the so called harmonic poly-
logarithms (HPLs) [117] which are written as,

H(~σ, z) = (−1)pG(~σ, z), (2.26)

where p is the number of elements of~σ equal to +1. From the sum representa-
tion of the MPLs in eq. (6.77) it is apparent that the HPLs with indices 0 and
1 evaluated at 1 will yield multiple zeta values (MZVs),

ζ(n1, . . . , nr) = Lin1,...,nr(1) = ∑
0<k1<···<kr

1

kn1
1 . . . knr

r
. (2.27)

If we allow for all indices −1, 0 and 1 to be present we obtain the so called
colored multiple zeta values (cMZVs),

ζ̃(n1, . . . , nr) = Lin1,...,nr(1) = ∑
0<k1<···<kr

sign(n1)
k1 . . . sign(nr)kr

k
|n1|
1 . . . k

|nr|
r

. (2.28)

MZVs and cMZVs have been studied extensively in mathematics and are of
interest in di�erent areas of physics, e.g. refs. [52, 60, 119, 121–126]. It can
be shown that up to weight 7, all MZVs can be decomposed into the classical
ζ values. For the applications presented in this thesis we can therefore restrict
ourselves to classical ζ values. The cMZVs can also be decomposed so that,
e.g. at weight one we obtain this way excatly one cMZV ζ̃(−1) = − log(2).
We have observed that cMZVs can appear in intermediate results of the Higgs
cross section, while the final result is expressible in terms of MZVs.

Shu�e regularization

The definition of the iterated integral over punctured manifolds immediately
begs one question: What happens when the endpoint of integration approaches
a point that is not in M?

In the case where the endpoint of the path of integration approaches a
singularity, i.e., limz→σn I(z0, σ1, . . . , σn, z) we need a regularization prescrip-
tion. In principle such a regularization introduces a dependence on the path,
through the tangent of the path at the singular point [50]. However, it can be

12



2.2. Multiple polylogarithms

shown that this path dependence cancels in finite quantities, even if individual
pieces need to be regulated in order to cancel spurious divergences, provided
that the regularization prescription ensures that all pieces are regulated in the
same way.

In practice we can always decompose the path of integration into piecewise
straight lines such that we can define the regularization prescription explicitly
by moving the endpoints of the path

I(z0, σ1, . . . , σn, z) → Regz I(z0, σ1, . . . , σn, z)

=

{
I(z0(1 + ε), σ1, . . . , σn, z(1 − ε)), if z0 6= 0,
I(ε, σ1, . . . , σn, z(1 − ε)), if z0 = 0.

(2.29)

This regularization prescription leaves convergent integrals invariant. Further-
more it preserves the shu�e product, so that we can use the shu�e identities
to extract all divergences in terms of powers of logarithms. The idea is to use
the shu�e product, to write the divergent parts of the iterated integral as a
product of a power of a divergent logarithm and a finite MPL as well as less-
divergent terms generated by the shu�e product. These less-divergent terms
are then recursively also written in terms of lower powers of divergent loga-
rithms. This way we arrive at a polynomial in log(ε) with finite coe�cients.
The regularized value of the MPL is then defined as the constant term of this
polynomial.

Example.
Consider the multiple polylogarithm,

I(z0(1 + ε), σ1, σ2, σ3, σ3, σ3(1 − ε)), (2.30)

exhibiting an endpoint divergence that is regulated by the prescription.
First we would like to extract the divergent piece I(z0(1+ ε), σ3, σ3, σ3(1−
ε)). For brevity we write z′0 for z0(1 + ε) and σ′

3 for σ3(1 − ε) and obtain

I(z′0, σ1, σ2, σ3, σ3, σ′
3) = I(z′0, σ1, σ2, σ′

3)I(z′0, σ3, σ3, σ′
3)

− I(z′0, σ1, σ3, σ3, σ2, σ′
3)− I(z′0, σ3, σ1, σ3, σ2, σ′

3)− I(z′0, σ3, σ3, σ1, σ2, σ′
3)

− I(z′0, σ1, σ3, σ2, σ3, σ′
3)− I(z′0, σ3, σ1, σ2, σ3, σ′

3).
(2.31)

Having shu�ed out the explicitly divergent piece I(z′0, σ3, σ3, σ′
3), we can

see that the last two MPLs still end in σ3 and thus need to be regulated as
well. They are regulated by shu�ing out the explicit divergence I(z′0, σ3, σ′

3)

13



2. Multiple polylogarithms

so that we obtain

I(z′0, σ1, σ2, σ3, σ3, σ′
3) = I(z′0, σ1, σ2, σ′

3)I(z′0, σ3, σ3, σ′
3)

− I(z′0, σ1, σ3, σ2, σ′
3)I(z′0, σ3, σ′

3)− I(z′0, σ3, σ1, σ2, σ′
3)I(z′0, σ3, σ′

3)

+ I(z′0, σ1, σ3, σ3, σ2, σ′
3) + I(z′0, σ3, σ1, σ3, σ2, σ′

3) + I(z′0, σ3, σ3, σ1, σ2, σ′
3).

(2.32)

In this expression only the terms I(z′0, σ3, σ3, σ′
3) and I(z′0, σ3, σ′

3) are diver-
gent and we can rewrite the regulated MPL as a polynomial in log(ε),

I(z′0, σ1, σ2, σ3, σ3, σ′
3) =

1

2
log2(ε)I(z0, σ1, σ2, σ3)

− log(ε)
[

I(z0, σ1, σ3, σ2, σ3) + I(z0, σ3, σ1, σ2, σ3)
]

+ I(z0, σ1, σ3, σ3, σ2, σ3) + I(z0, σ3, σ1, σ3, σ2, σ3) + I(z0, σ3, σ3, σ1, σ2, σ3).
(2.33)

We therefore obtain the regulated value of the MPL as

Regσ3
I(z0, σ1, σ2, σ3, σ3, σ3) =

I(z0, σ1, σ3, σ3, σ2, σ3) + I(z0, σ3, σ1, σ3, σ2, σ3) + I(z0, σ3, σ3, σ1, σ2, σ3).
(2.34)

2.3 Algebraic structures of multiple

polylogarithms

The multiple polylogarithms fulfill a plethora of complicated functional iden-
tities. A very well known one is the dilogarithm identity

Li2(1 − z) + Li2(z) = ζ2 − log(z) log(1 − z). (2.35)

For simple polylogarithms of low weight some of these identities are known,
however in general the functional identities of multiple polylogarithms are un-
known. The derivation of these identities from the integral representation of
multiple polylogarithms is not straightforward. Fortunately, there has been a
considerable e�ort to study the relations between the multiple polylogarithms
on a more abstract algebraic level. We have already encountered one sim-
pler way to obtain functional identities. Recall the shu�e product defined in
eq. (2.5). This is in fact the multiplication of a graded algebra, the so called
shu�e algebra.
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2.3. Algebraic structures of multiple polylogarithms

The shu�e algebra of multiple polylogarithms

To understand the shu�e algebra, let us consider a set A with an ordering
relation <, as well as the free monoid A generated by A, i.e. the set of all
strings of zero or more elements in A. We refer to A as alphabet, to its elements
as letters and to the elements of A consequently as words. A is equipped with a
map µ which concatenates two words µ(a, b) = ab. We denote the empty word
of length zero as ε, so that εw = wε = w. A is equipped with a lexicographical
ordering relation, induced by the relation < on A. We can then obtain the
shu�e algebra ShK(A) by endowing the space K[A], i.e. the space spanned
by polynomials of the letters in A with coe�cients in K, with a shu�e product,
defined recursively by

xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v) ∀x, y ∈ A, ∀u, v ∈ A

ε ⊔⊔ w = w ⊔⊔ ε = w ∀w ∈ A.
(2.36)

This can also be written in terms of permutations, analogous to the formulation
used in eq. (2.5),

w1 . . . wr ⊔⊔ wr+1 . . . wr+s = ∑
σ∈Σ(r,s)

wσ(1) . . . wσ(r+s), (2.37)

where Σ(r, s) is defined in eq. (2.6). As we can see the shu�e product in
eq. (2.36) preserves the length of the words and as such the shu�e algebra
ShK(A) is graded by the length of the words [50, 120],

ShK(A) =
∞⊕

n=0

Shn
K(A) (2.38)

We can see that this abstract definition of the shu�e algebra is compatible
with the shu�e product given for the iterated integrals. Applied to the MPLs,
the letters become the indices of the G functions and the shu�e algebra can
be used to rewrite the product of two or more G functions with the same
argument, e.g.

G(a, b, 1)G(c, d, 1) = G(a, b, c, d, 1) + G(a, c, b, d, 1) + G(a, c, d, b, 1)

G(c, a, b, d, 1) + G(c, a, d, b, 1) + G(c, d, a, b, 1).
(2.39)

So far we have not gained anything new compared to the original definition
of the iterated integrals. However, equipped with these formal definitions, we
can define so-called Lyndon words. A Lyndon word is a non-empty word in A

that is smaller, with respect to the lexicographical ordering induced by the
ordering operation < on A, than any of its proper right factors,

ℓ is a Lyndon word i� ∀u, v ∈ A ℓ = uv and v 6= ε ⇒ ℓ < v. (2.40)
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2. Multiple polylogarithms

Or to say it di�erently, a Lyndon word ℓ is a word that cannot be factored into
a product of two non-empty words, where the right factor is lexicographically
smaller than ℓ. We denote the set of all Lyndon words for a given alphabet
A by L(A). It can be shown that Lyndon words form a basis for the shu�e
algebra

ShK(A) ≃ K[L(A)], (2.41)

which means that we can compose any given word in A modulo shu�es into
a polynomial of Lyndon words with coe�cients in K [50, 120]. For a given
alphabet, the Lyndon words up to a definite length can be obtained using the
Duval algorithm [127].

Example.
Suppose we have A = {w0, w1} with w0 < w1. The Lyndon words up to
length four are then

L4(A) = {w0, w1, w0w1, w0w0w1, w0w1w1, w0w1w1w1, w0w0w1w1, w0w0w0w1},
(2.42)

and we can decompose for example the multiple polylogarithm G(0, 1, 1, 0, z)
into a polynomial over L4(A) as,

G(0, 1, 1, 0, z) = G(0, z)G(0, 1, 1, z)− 1

2
G(0, 1, z)2. (2.43)

Such decompositions can be very useful as they reduce the number of functions
that need to be studied at a given weight and provide a purely algebraic way of
reducing certain functions of a higher weight in terms of functions of a lower
weight.

The stu�e algebra of multiple polylogarithms

The MPLs carry another algebraic structure, the so-called stu�e algebra, that
is independent of the shu�e algebra. The stu�e algebra originates from the
sum representation, eq. (6.77), of the multiple polylogarithms. To study the
action of the stu�e product we define tuples,

σi = (mi, xi) (2.44)

and a map µ between two tuples that acts as,

µ(σi, σj) = σi+j = (mi + mj, xixj), (2.45)

so that we have
Liσ1,...,σn = Lim1,...,mn(x1, . . . , xn). (2.46)

Then we can define the action of the stu�e algebra [50] as,

Li~σLi~σ = Li~σ′′ , (2.47)
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2.3. Algebraic structures of multiple polylogarithms

where ~σ′′ is obtained recursively as

µ(σ~σ, σ′
~σ′) = σµ(~σ, σ′

~σ′) + σ′µ(σ~σ,~σ′) + µ(σ, σ′)µ(~σ,~σ′)
µ(σ, 1) = σ µ(1, σ) = σ.

(2.48)

This stu�e product is generated by the products of nested sums, in the simplest
case its origin can be understood easily from,

Lim(x)Lin(y) = ∑
k≥1

xk

km ∑
k≥1

xl

ln
=

(

∑
k<l

+ ∑
l<k

+ ∑
k=l

)
xkyl

kmln
, (2.49)

which is simply the decomposition of a two dimensional summation over N ×
N into two triangular regions k < l, l < k and the boundary k = l between
them. For the simplest case of two polylogarithms of depth 1 we have e.g.,

Li1(x)Li2(y) = Li1,2(x, y) + Li2,1(y, x) + Li3(xy). (2.50)

This stu�e product can be seen as the action of a generalization of the
shu�e algebra, a so-called quasi-shu�e algebra [128–130]. Starting from the set
of tuples A equipped with an ordering relation < that compares two elements
of A as

σ < σ′ = m < m′, ∀σ = (m, x), σ′ = (m′, x′) ∈ A, (2.51)

we have the free monoid A generated by A. Then we can obtain the quasi-
shu�e algebra QK(A) by endowing K[A] with a product

xu ◦ yv = x(u ◦ yv) + y(xu ◦ v) + [x, y](u ◦ v) ∀x, y ∈ A, u, v ∈ A. (2.52)

We can see that this algebra is a deformation of the shu�e algebra as defined
in eq. (2.36), as such we obtain for

[x, y] = 0 ∀x, y ∈ A, (2.53)

the shu�e product. The stu�e algebra can be described by

[x, y] = µ(x, y) ∀x, y ∈ A. (2.54)

Algebras, coalgebras and Hopf algebras

Before we introduce the Hopf algebra of multiple polylogarithms, we should
briefly remind ourselves of some basic algebraic structures. An algebra over
a field K is a vector space A over K that is equipped with an associative
binary operation · : A × A → A. This operation needs to be left and right
distributive,

(u + v) · w = u · w + v · w ∀u, v, w ∈ A,

u · (v + w) = u · v + u · w ∀u, v, w ∈ A;
(2.55)
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2. Multiple polylogarithms

furthermore, it needs to be compatible with scalar multiplication,

(ru) · (sv) = (rs)(u · v) ∀u, v ∈ A, r, s ∈ K. (2.56)

In addition the algebra has a unit operation ε

ε · u = u · ε = u ∀u ∈ A. (2.57)

The unit element in A can be identified with the unit element in K, such that
the unit operation is ε : K → A. We have already encountered a concrete
example of an algebra, the shu�e algebra. In the case of the shu�e algebra,
the binary operation is the shu�e product and the unit operation is simply
the shu�e product with an empty word. We can see from the definition in
eq. (2.36) that the operations fulfill the required properties.

The next structure that we require is the coalgebra. A coalgebra over a field
K is a vector space A over K equipped with a coassociative coaction, or co-
product, ∆ : A → A ⊗ A, and a unary map ε : A → K, the counit. Very
loosely speaking, we can obtain a coalgebra from an algebra by reversing the
maps that define the algebra. While the action of an algebra combines two ele-
ments in the vector space into one, the coaction of the coalgebra decomposes
one element in the vector space into two. Of course we are free two iterate
the decomposition of an object in A by applying the coaction mutliple times.
Coassociativity requires that the coaction fulfill,

(id⊗ ∆)∆ = (∆ ⊗ id)∆, (2.58)

stating that the order in which we iterate the decomposition does not mat-
ter.

Example.
Let us assume that K = Q and A = A is the free monoid generated by
some alphabet, such that the coproduct ∆ is simply the ordered deconcate-
nation, with the unit element 1 being the empty word, i.e.

∆(w1w2) = (w1w2)⊗ 1 + w1 ⊗ w2 + 1 ⊗ (w1w2) ∀w1, w2 ∈ A. (2.59)

We iterate the comultiplication of e.g. a three letter word w1w2w3 starting
from

∆(w1w2w3) = w1w2w3 ⊗ 1 + 1 ⊗ w1w2w3 + w1w2 ⊗ w3 + w1 ⊗ w2w3.
(2.60)

In the next step of the iteration we can either act with the coproduct on
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the first slot of the tensor product,

(∆ ⊗ id)∆(w1w2w3) = w1w2w3 ⊗ 1 ⊗ 1 + 1 ⊗ w1w2w2 ⊗ 1 + w1w2 ⊗ w3 ⊗ 1

+ w1 ⊗ w2w3 ⊗ 1 + 1 ⊗ 1 ⊗ w1w2w3 + 1 ⊗ w1w2 ⊗ w3

+ w1w2 ⊗ 1 ⊗ w3 + w1 ⊗ w2 ⊗ w3 + 1 ⊗ w1 ⊗ w2w3

+ w1 ⊗ 1 ⊗ w2w3,

(2.61)

or alternatively on the second slot of the tensor product,

(id⊗ ∆)∆(w1w2w3) = w1w2w3 ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ w1w2w3 + 1 ⊗ w1w2w3 ⊗ 1

+ 1 ⊗ w1w2 ⊗ w3 + 1 ⊗ w1 ⊗ w2w3 + w1w2 ⊗ 1 ⊗ w3

+ w1w2 ⊗ w3 ⊗ 1 + w1 ⊗ 1 ⊗ w2w3 + w1 ⊗ w2w3 ⊗ 1

+ w1 ⊗ w2 ⊗ w3.

(2.62)

We have colored the expressions to mark the origin of each term. As we
can see, in both orderings we obtain the same result, as the coassociativity
of the coaction demands.

Next we can combine the features of an algebra and a coalgebra into a
single structure called a bialgebra. A bialgebra is consequently a vector space
A over K that is equipped with two maps, the associative multiplication ·
and the coassociative comultiplication ∆. In general the multiplication and
comultiplication will not be each others’ inverse, however they are compatible
with each other,

∆(u · v) = ∆(u) · ∆(v) ∀u, v ∈ A. (2.63)

The multiplication of the two coproduct terms is taken term by term in the
tensor product, i.e.

(u1 ⊗ u2) · (v1 ⊗ v2) = (u1 · v1)⊗ (u2 · v2). (2.64)

We can turn a bialgebra into a Hopf algebra H by grading it by some weight
n such that

H =
∞⊕

n=0

Hn. (2.65)

The multiplication preserves the weight,

Hm ·Hn ⊂ Hn+m, (2.66)

as does the comultiplication,

∆(Hn) ⊂
⊕

p+q=n

Hp ⊗Hq. (2.67)
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2. Multiple polylogarithms

In addition a Hopf algebra is equipped with a so called antipode, a map H →
H, which however does not seem to have any practical significance, so we will
not elaborate any further on it.

The action of the coproduct can be written as,

∆(x) = 1 ⊗ x + x ⊗ 1 + ∆′(x) ∀x ∈ H, (2.68)

where the reduced coproduct ∆′ is defined as,

∆′(x) = ∑
p+q=n
1≤p,q

∆p,q(x) ∀x ∈ Hn, (2.69)

∆p,q is defined to be the part of the coproduct that yields elements in Hp ⊗Hq.

The Hopf algebra of multiple polylogarithms

We are now in a position to introduce the Hopf algebra of multiple polyloga-
rithms [48, 56]. The multiple polylogarithms equipped with the shu�e product
form a Hopf algebra over C graded by their weight. The coproduct is defined
as,

∆I(σ0, σ1, . . . , σn, z) =

∑
0≤i1<i2<...ik+1≤n

I(σ0, σi1 , . . . , σik , z)⊗
(

k

∏
p=0

I(σip
, σip+1, . . . σip+1−1, σip+1

)

)
,

(2.70)

with 0 ≤ k ≤ n. In this form the definition is valid only for generic σi and in
particular for z not equal to any of the σi. In the non-generic case, when z can
approach any of the singular points the MPLs resulting from the coproduct
need to be shu�e-regulated according to the prescription given in eq. (2.29).

In practice, the coproduct of a givenMPL I(σ0, σ1, . . . , σn, σn+1) is obtained
by arranging the points σi along a semi-circle. By connecting any subset of the
points labeled σ1 . . . σn in all possible ways with polygons, together with the
points σ0 and σn+1 one obtains the first entry of the coproduct. The second
entry is obtained from the points that are not corners of the polygon.

Example.
Consider the multiple polylogarithm I(σ0, σ1, σ2, σ3, σ4). We arrange the
points σ0 to σ4 on a semi-circle

σ0

σ1

σ2

σ3

σ4
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2.3. Algebraic structures of multiple polylogarithms

Now we draw all possible polygons that connect zero or more points from
the set {σ1, σ2, σ3} with the base points σ0 and σ4 (solid black lines). The
points on these polygons determine the first entry of the coproduct. The
remaining points are also connected by polygons (dashed blue lines) and
determine the second entry of the coproduct. Note that in the case of the
second entry, disjoint polygons, in the sense that they are only joined by a
vertex that belongs to the polygon for the first entry, can appear. In that
case the coproduct contains a product of MPLs in the second entry.

σ0

σ1

σ2

σ3

σ4
1 ⊗ I(σ0, σ1, σ2, σ3, σ4)

σ0

σ1

σ2

σ3

σ4
I(σ0, σ1, σ4)⊗ I(σ1, σ2, σ3, σ4)

σ0

σ1

σ2

σ3

σ4
I(σ0, σ2, σ4)⊗ [I(σ0, σ1, σ2)I(σ2, σ3, σ4)]

σ0

σ1

σ2

σ3

σ4
I(σ0, σ3, σ4)⊗ I(σ0, σ1, σ2, σ3)

σ0

σ1

σ2

σ3

σ4
I(σ0, σ1, σ2, σ4)⊗ I(σ2, σ3, σ4)

σ0

σ1

σ2

σ3

σ4
I(σ0, σ1, σ3, σ4)⊗ I(σ1, σ2, σ3)

σ0

σ1

σ2

σ3

σ4
I(σ0, σ2, σ3, σ4)⊗ I(σ0, σ1, σ2)

σ0

σ1

σ2

σ3

σ4
I(σ0, σ1, σ2, σ3, σ4)⊗ 1
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2. Multiple polylogarithms

Using this procedure we can determine the coproduct and find

∆(I(σ0, σ1, σ2, σ3, σ4)) = I(σ0, σ1, σ2, σ3, σ4)⊗ 1 + 1 ⊗ I(σ0, σ1, σ2, σ3, σ4)

+ I(σ0, σ1, σ4)⊗ I(σ1, σ2, σ3, σ4) + I(σ0, σ2, σ4)⊗ [I(σ0, σ1, σ2)I(σ2, σ3, σ4)]

+ I(σ0, σ3, σ4)⊗ I(σ0, σ1, σ2, σ3) + I(σ0, σ1, σ2, σ4)⊗ I(σ2, σ3, σ4)

+ I(σ0, σ1, σ3, σ4)⊗ I(σ1, σ2, σ3) + I(σ0, σ2, σ3, σ4)⊗ I(σ0, σ1, σ2).
(2.71)

Using this semi-circle method the coproduct for any MPL can be deter-
mined. For the logarithm and the classical polylogarithms it is possible to
write down the coproduct in a closed form

∆(logn(x)) =
n

∑
k=0

(
n

k

)
logk(x)⊗ logn−k(x)

∆(Lin(x)) = 1 ⊗ Lin(x) + Lin(x)⊗ 1 +
n−1

∑
k=1

Lin−k(x)⊗ logk(x)

k!

(2.72)

We observe that we obtain di�erent entries of di�erent components of the
Hopf algebra after we act with the coproduct. In the example of the weight
3 MPL we found entries from the H3 ⊗H0, H0 ⊗H3, H2 ⊗H1 and H1 ⊗H2

components of H. In fact a multiple polyogarithm of weight n will be split
into components of weight p and q with p + q = n, i.e. (p, q) are all integer
compositions of length 2 of n. It is therefore clear that the repeated application
of the coproduct to a weight n MPL stabilizes after n− 1 iterations, or in other
words, the coproduct will not produce new terms after n − 1 iterations. After
n − 1 iterations we have reached the H1 ⊗ · · · ⊗H1 component of the Hopf
algebra which is irreducible as

∆(x) = x ⊗ 1 + 1 ⊗ x ∀x ∈ H1. (2.73)

We refer to these irreducible elements of H1 ⊗ · · · ⊗H1 as elementary tensors.
For practical purposes it is useful to look at subcomponents of the coprod-

uct. We define the operator ∆w1,...,wk
,

∆w1,...,wk
(H) ⊂ Hw1

⊗ · · · ⊗Hwk
(2.74)

i.e. the operator that picks out the k-fold tensor product terms from the (k− 1)-
fold application of the coproduct that lie inside the Hw1

⊗ · · · ⊗Hwk
compo-

nent of the Hopf algebra.
Note that these definitions rely on the coassociativity of the coproduct. For

example if we want to go to H1 ⊗H1 ⊗H1 starting from H3 it does not matter
whether we use the path H3 → H1 ⊗H2 → H1 ⊗H1 ⊗H1 or if we calculate
H3 → H2 ⊗H1 → H1 ⊗H1 ⊗H1, the result is the same. In practice we
choose the latter, for reasons that will become clear later.
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2.3. Algebraic structures of multiple polylogarithms

The maximal iteration of the coproduct ∆1,...,1 is related to the so-called
symbol map S that was introduced in refs. [49, 55]. One can see that

S = ∆1,...,1 mod π, (2.75)

i.e. one can obtain the symbol from the maximal coproduct by dropping any
terms proportional to any power of π. The literature on symbols uses a slightly
di�erent notation than the one introduced for the coproduct. We can compare
the two notations using an example. Suppose we compute the coproduct of
Li3(z) and look at the ∆1,1,1 component,

∆1,1,1(Li3(z)) = −G(1, z)⊗ G(0, z)⊗ G(0, z), (2.76)

the corresponding symbol is,

S(Li3(z)) = −(1 − z)⊗ z ⊗ z. (2.77)

Recalling that G(1, z) = log(1 − z) and G(0, z) = log(z), it becomes clear
that we just drop the log and only write the argument in the tensor product
when using the symbol notation. Since the maximal component of the co-
product can only contain logarithms in the slots of the tensor product, we will
often also adopt the symbol notation for ∆1,...,1. Note however, that while the
symbol calculus only provides an equivalent expression for ∆1,...,1, it does not
provide equivalent objects for the other components of the coproduct. Using
the coproduct we cannot only investigate ∆1,1,1(Li3(z)) in the above example,
but we can also look at other components,

∆2,1(Li3(z)) = Li2(z)⊗ log(z),

∆1,2(Li3(z)) = −1

2
log(1 − z)⊗ log2(z),

(2.78)

that might provide us with additional information about the function under
investigation.

Not every element ofH1 ⊗ · · · ⊗H1 lies in the image of the coaction, mean-
ing that it is possible to write down a symbol that cannot be obtained by ap-
plying the symbol map to a linear combination of multiple polylogarithms of
the appropriate weight. Conversely, that means that it is not possible to find a
function corresponding to an arbitrary symbol. We therefore need to a crite-
rion to decide whether a symbol has an associated function. This integrability
criterion takes the following form. For a given symbol of weight n

S = ∑
i1,...,in

ci1,...,in ωi1 ⊗ · · · ⊗ ωin ci1...,in ∈ K, (2.79)

to be integrable we have to demand that

∑
i1,...,in

ci1,...,in

(
dlog ωij

∧ dlog ωij+1

)
ωi1 ⊗ . . . ωij−1

⊗ωij+2
⊗ωij+3

· · ·⊗ωin = 0,

(2.80)
which is nothing else than the requirement that the iterated integral generated
by these dlog-forms be homotopy invariant, cf. eq. (2.10).
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2. Multiple polylogarithms

Example.
Let us consider the symbol of G(x, y, z),

S = ∆1,1(G(x, y, z)) = −y ⊗ (x − z) + (x − z)⊗ (x − y)− (x − z)⊗ y

− (y − z)⊗ (x − y) + (y − z)⊗ (x − z)− x ⊗ (x − y)

+ x ⊗ y + y ⊗ (x − y).
(2.81)

This needs to satisfy

− dlog(y) ∧ dlog(x − z) + dlog(x − z) ∧ dlog(x − y)

− dlog(x − z) ∧ dlog(y)− dlog(y − z) ∧ dlog(x − y)

+ dlog(y − z) ∧ dlog(x − z)− dlog(x) ∧ dlog(x − y)

+ dlog(x) ∧ dlog(y) + dlog(y) ∧ dlog(x − y) = 0.

(2.82)

We can bring the dlog-forms into a more manageable form by using,

dlog( f (x, y, z)) = ∑
χ∈{x,y,z}

∂ log( f (x, y, z))

∂χ
dχ. (2.83)

When we insert that relation and additionally exploit the antisymmetry of
the wedge product we find,

dx ∧ dy

(
− 1

(x − z)(y − z)
− 1

(x − y)(x − z)
+

1

(x − y)(y − z)
+

1

xy

+
1

x(x − y)
− 1

y(x − y)

)
+ dx ∧ dz

(
− 1

(x − y)(y − z)
+

1

(x − y)(x − z)

+
1

(x − z)(y − z)

)
+ dy ∧ dz

(
1

(x − y)(y − z)
− 1

(x − y)(x − z)

− 1

(x − z)(y − z)

)
= 0,

(2.84)

where the coe�cient of each wedge product needs to vanish separately.
Simplifying the expression we find that this is indeed the case. Therefore
the symbol S is in fact integrable, which should not be surprising consid-
ering that we obtained it from a multiple polylogarithm in the first place.

The integrability criterion provides a very powerful tool to build functions
from symbols. It has been used extensively in many impressive calculations
in particular for scattering amplitudes in N = 4 super Yang-Mills [65–67,
72, 73]. There it is often possible to determine the alphabet of the symbol
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2.3. Algebraic structures of multiple polylogarithms

that describes a scattering amplitude from first principles as well as certain
conjectures, without actually computing the scattering amplitude. By writing
down all possible linear combinations of elementary tensors of a given weight
that can be built from the given symbol alphabet and demanding that the
resulting symbol should satisfy the integrability condition as well as certain
physical criterions it is often possible to uniquely determine the symbol of the
amplitude.

At this point we should mention two more useful properties of the coprod-
uct. At least conjecturally we have,

∆

(
∂

∂x
F(x)

)
=

(
id⊗ ∂

∂x

)
∆(F(x)),

∆(Mx=aF(x)) = (Mx=a ⊗ id)∆(F(x)).

(2.85)

Here Mx=a computes the monodromy around x = a,

Mx=a log ω =

{
2πi, if ω|x=a = 0,
0, otherwise.

(2.86)

This means that di�erential operators only act on the last component of the
coproduct while monodromy operators only act on the first component. This
also holds for the iterated coproduct. In particular, at the symbol level, the first
entry of the elementary tensor encodes the information about the monodromy
of the function, while the last entry encodes information about the derivatives.

This has profound implications for the structure of the symbol of a physical
scattering amplitude. Physical amplitudes are only allowed to have branch cuts
in certain variables, which is often discussed under the concept of unitarity.
For example, a planar four-point integral cannot have a branch cut for u →
0. Knowing how monodromy operators act on the symbol we can therefore
conclude that u will not appear in the first entry of the symbol of such an
amplitude.

The coproduct of multiple zeta values

Before we are ready to use the coproduct in actual computations we first have
to investigate the coproduct of multiple zeta values. As we have seen before,
cMZVs are HPLs evaluated at unit argument, cf. eq. (2.28). As such we should
expect to be able to compute their coproduct. We can for example look at the
coproduct of Li2(z),

∆(Li2)(z) = 1 ⊗ Li2(z) + Li2(z)⊗ 1 − log(1 − z)⊗ log(z); (2.87)

taking the limit z → 1 we obtain the coproduct of ζ2,

∆(ζ2) = 1 ⊗ ζ2 + ζ2 ⊗ 1. (2.88)
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Considering the closed form of the coproduct of Lin in eq. (2.72) we should
conclude that

∆(ζn) = 1 ⊗ ζn + ζn ⊗ 1. (2.89)

At this point we can observe that the classical zeta values, i.e. MZVs of depth
1, are primitives of the coproduct, i.e. they cannot be split into objects of lower
weight.

Another observation however hints at a problem in our defintion of the
Hopf algebra. For example for ζ4 we have,

∆(ζ4) = ζ4 ⊗ 1 + 1 ⊗ ζ4. (2.90)

However, the even ζ values are not algebraically independent, as a matter of
fact,

ζ4 =
2

5
ζ2

2. (2.91)

This relation should of course also be respected by the coproduct,

∆(ζ4) =
2

5
∆(ζ2

2) =
2

5
(ζ2 ⊗ 1 + 1 ⊗ ζ2)

2 =
2

5
(1 ⊗ ζ2

2 + ζ2
2 ⊗ 1 + 2ζ2 ⊗ ζ2).

(2.92)
This is a clear contradiction with eq. (2.90) due to the ζ2 ⊗ ζ2 term, which
furthermore would suggest that ζ4 is not a primitive of the coproduct.

One obvious way to avoid this inconsistency would be to only compute ∆

mod ζ2. However, in that case the coproduct would lose all information about
terms proportional to ζ2, which might be too big a price to pay.

Another, less destructive way to fix the inconsistency was suggested by
Brown [51]. It consists of defining the coproduct of all even ζ values as

∆(ζ2n) = ζ2n ⊗ 1. (2.93)

With this definition the problem is solved,

∆(ζ4) =
2

5
∆(ζ2

2) =
2

5
(ζ2 ⊗ 1)2 =

2

5
ζ2

2 ⊗ 1 = ζ4 ⊗ 1. (2.94)

As suggested by Duhr [56], this definition can also be extended to include
π into coproduct,

∆(π) = π ⊗ 1. (2.95)

This is compatible with the definition of the even ζ values,

∆(ζ2) =
1

6
∆(π2) =

1

6
(π ⊗ 1)2 =

1

6
π2 ⊗ 1 = ζ2 ⊗ 1. (2.96)

The inclusion of terms proportional to π into the Hopf algebra is important
as it allows us to keep terms proportional to iπ which appear in the analytic
continuation of logarithms.
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These modifications also lead to a modification of the coalgebra structure
of H, the coproduct is changed from a map ∆ : H → H⊗H to a map

∆ : H → H⊗Hπ, (2.97)

where Hπ is the Hopf algebra modulo powers of π, meaning that when com-
puting the coproduct, we drop all terms proportional to π in all slots of the
tensor except for the first one.

Coproduct calculus

With the algebraic foundation in place, we can now proceed to the core of
the coproduct calculus that makes the coproduct useful for actual calculations
involving multiple polylogarithms. Suppose that we have two functions Uw

and Vw of equal weight w that are equal modulo functional identities of the
multiple polylogarithms, i.e. both expressions describe the same function but
due to the complicated functional identities of the MPLs this equality is not
manifest. It follows that their coproducts must be equal,

∆(Uw) = ∆(Vw), (2.98)

and in particular
∆′(Uw) = ∆′(Vw). (2.99)

As we have seen, the reduced coproduct ∆′ of a weight w MPL only involves
MPLs of weight w′ < w. This means that, while the functional identities to
relate Uw and Vw are unknown, the identities at lower weight might be known,
so that it will be possible to prove the equality of the coproducts in eq. (2.99).
However, we should note that the equality (2.99) does not imply the equal-
ity (2.98) since we lose all information about the primitives of the coproduct
at weight w. However, at least conjecturally we can state that, starting from a
function Uw of weight w, if we can find a function Fw, such that

∆′(Fw) = ∆′(Uw), (2.100)

then it follows that
Uw = Fw + ∑

ρ

cρP
(w)
ρ , (2.101)

where the P
(w)
ρ are the primitives of Hw with some coe�cients cρ ∈ Q.

In practice the primitives of Hw need to be determined for the given prob-
lem and usually turn out to be powers of π, ζ values as well as the Clausen
function evaluated at roots of unity. The cρ can then be determined by de-
manding that the functions Uw and Fw be equal in certain limits [53, 120].
Another, very powerful and flexible method for determining the cρ, which we
use in practice, is to evaluate Uw − Fw numerically at a few points. By cal-
culating this di�erence numerically to su�ciently many digits (several tens of
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digits), we can use the PSLQ algorithm [131]. This algorithm can be used to
decompose a number that is known with finite precision into a basis of tran-
scendental numbers with rational coe�cients. Of course this basis needs to
be determined a priori, however the transcendental numbers that make up the
basis are exactly the primitives of Hw.

Example.
As an example we can try to reproduce the well known dilogarithm iden-
tity in eq. (2.35) using the coproduct. Or to phrase it di�erently, let us
assume we would like to rewrite Li2(1 − z) in terms of Li2(z). We start by
computing the maximal coproduct, or symbol, of Li2(1 − z),

∆1,1(Li2(1 − z)) = − log(z)⊗ log(1 − z). (2.102)

Next, we would like to find a function f (z) that has the same symbol.
Knowing that,

∆1,1(Li2(z)) = − log(1 − z)⊗ log(z),

∆1,1(log(z) log(1 − z)) = log(z)⊗ log(1 − z) + log(1 − z)⊗ log(z),
(2.103)

it is not hard to guess an ansatz for f (z),

f (z) = −Li2(z)− log(z) log(1 − z) + cζ2. (2.104)

By evaluating the di�erence Li2(1 − z) − f (z) at z = 1 we can easily
determine the unknown coe�cient c of the primitive ζ2 and find,

Liz(1 − z) = −Li2(z)− log(z) log(1 − z) + ζ2. (2.105)

Example.

In the same way we can try to determine whether we can write Li2
(

1 − 1
z

)

in terms of functions with simpler arguments. First we compute the symbol

∆1,1

(
Li2

(
1 − 1

z

))
= z ⊗ (1 − z)− z ⊗ z, (2.106)

guessing an ansatz as before we can determine f (z) so that,

∆1,1( f (z)) = ∆1,1

(
Li2

(
1 − 1

z

))
, (2.107)
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to be

f (z) = Li2(z)−
1

2
log2(z) + log(1 − z) log(z) + cζ2 (2.108)

Evaluating Li2
(

1 − 1
z

)
− f (z) in the limit z → 1 we find that,

Li2

(
1 − 1

z

)
= Li2(z)−

1

2
log2(z) + log(1 − z) log(z)− ζ2. (2.109)

Example.
Equipped with this knowledge we can look at higher weights, where the
coproduct calculus really starts to shine. Suppose we would like to rewrite
Li3(1 − z), in terms of Li3(z). Again we start by computing the symbol

∆1,1,1(Li3(1 − z)) = −z ⊗ (1 − z)⊗ (1 − z). (2.110)

Once again we would like to find a function f (z) such that,

∆1,1,1(Li3(1 − z)) = ∆1,1,1( f (z)). (2.111)

Knowing that

∆1,1,1(Li3(z)) = −(1 − z)⊗ z ⊗ z

∆1,1,1(Li3(1 −
1

z
)) = z ⊗ (1 − z)⊗ (1 − z)− z ⊗ (1 − z)⊗ z

− z ⊗ z ⊗ (1 − z) + z ⊗ z ⊗ z

∆1,1,1(log3(z)) = 6z ⊗ z ⊗ z

∆1,1,1(log2(z) log(1 − z)) = 2 (z ⊗ z ⊗ (1 − z) + z ⊗ (1 − z)z + (1 − z)⊗ z ⊗ z) ,

(2.112)

we can make an educated guess for f (z)

f (z) = −Li3(z)− Li3

(
1 − 1

z

)
+

1

6
log3(z)− 1

2
log2(z) log(1 − z).

(2.113)
Now that we have found a function f (z) that yields the same symbol as
Li3(1− z), we should remind ourselves that this does not mean that the two
functions are the same, it does not even mean that the other components
of the coproduct are in general the same, due to the existence of primitives
of the Hopf algebra. Looking at the H1 ⊗H2 component

∆1,2 (Li3(1 − z)− f (z)) = 0, (2.114)
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we see that two functions have the same image under action of ∆1,2. This
is however not surprising, considering that the most important primitives
of H, the ζ values, only appear in the first slot of the coproduct, as it was
defined in eqs. (2.93) and (2.95).

That means we have to look at the H2 ⊗H1 component in order to
learn something about the terms proportional to primitives of H2. Indeed,
we see that

∆2,1 (Li3(1 − z)− f (z))

=

(
log(1 − z) log(z)− 1

2
log2(z)− Li2

(
1 − 1

z

)
+ Li2(z)

)
⊗ log(z)

+

(
1

2
log2(z) + Li2

(
1 − 1

z

)
+ Li2(1 − z)

)
⊗ log(1 − z).

(2.115)

Here we see the beauty of the coproduct calculus. The terms proportional
to primitives ofH can be determined using the identities for MPLs of lower
weight. In this case we see that we need the identities for Li2(1 − z) and

Li2
(

1 − 1
z

)
that we determined analytically before. Plugging in eq. (2.105)

and eq. (2.109) we find

∆2,1 (Li3(1 − z)− f (z)) = ζ2 ⊗ log(z). (2.116)

Since ζ values can only appear in the first slot of the coproduct, it is easy
to see that the term ζ2 ⊗ log z can only originate from a product term

∆2,1(ζ2 log(z)) = ζ2 ⊗ log(z). (2.117)

We can therefore improve our ansatz

f̃ (z) = −Li3(z)− Li3

(
1 − 1

z

)
+

1

6
log3(z)− 1

2
log2(z) log(1 − z)

+ ζ2 log(z) + cζ3.

(2.118)

The only thing left to determine is the terms coming from primitives of
H3, which at this point can only be a multiple of ζ3. We can determine
the coe�cient c of ζ3 by evaluating the di�erence Li3(1 − z)− f̃ (z) in the
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limit z → 1 and find c = 1, so that we have

Li3(1 − z) = −Li3(z)− Li3

(
1 − 1

z

)
+

1

6
log3(z)

− 1

2
log2(z) log(1 − z) + ζ2 log(z) + ζ3.

(2.119)

In this way it is possible to successively derive functional identities for
multiple polylogarithms.

While the example outlines the beauty of the coproduct calculus that en-
ables us to derive functional identities as they are needed, on-the-fly, it should
also hint at a few problems that can arise when using the method as above.
The first and foremost problem with this approach is of course that it requires
us to guess a function that produces the required symbol. While this is still
rather trivial in the case of the classical polylogarithms, it gets significantly
more complicated when dealing with “true” multiple polylogarithms, i.e. if
we allow for multiple variables. It would therefore be preferable to have an
algorithmic way to find a function that corresponds to a given symbol. The
process of finding a function that reproduces a given symbol is also referred
to as integrating the symbol. In the sections 2.4 and 2.5 we will outline two
algorithms that enable us to integrate a given symbol.

Another problem is that we need to determine the primitives of Hn that
can appear when we try to integrate a symbol of weight n. Which primitives
appear at a given weight depends in general on the alphabet of the symbol that
we are trying to integrate, i.e. on the set of entries of the di�erent slots of the
symbol. In the example above the symbol alphabet was {z, 1− z}, correspond-
ing to the dlog-forms dlog(z) and dlog(1 − z), i.e. potential singularities in
the integration kernel at z = 0 and at z = 1. In this case, the only possible
primitives turn out to be the ζ values1 as well as π. This is not too surprising,
when we recall that the MZVs are obtained from HPLs with indices 0 and 1
evaluated at unity. These HPLs however, are the MPLs with singularities at 0
and at 1, i.e. they are the functions with symbol alphabet {z, 1 − z}.

Consequently, when we try to integrate a symbol with entries drawn from
the alphabet {1 + z, z, 1 − z}, we should expect to find cMZVs as primitives,
as the HPLs with indices {−1, 0, 1}, which yield cMZVs when evaluated at
unity, are the functions corresponding to that symbol alphabet.

In these simple cases it is still possible to easily survey the primitives; how-
ever for larger and more complicated alphabets, determining the primitives
requires greater care and e�ort2.

1Classical ζ values up to weight 7, the first irreducible MZV appears at weight 8.
2and often also numerical experimentation with the PSQL algorithm.

31



2. Multiple polylogarithms

2.4 Canonical integration

In this section we describe the method of canonical integration, which was first
presented by us in ref. [1]. The algorithm was developed in order to bring
MPLs to a canonical form, i.e. to find a transformation that takes a MPL of
the form

G( f1(x), f2(x), . . . , fn(x), fn+1(x)), (2.120)

where the fi are linearly factorizeable rational functions, to a canonical form,
so that the variable x only appears in the last argument,

G( f̃1, f̃2, . . . , f̃n, x), (2.121)

where the f̃i are independent of x but in general will still depend on other
variables.

The algorithm starts by calculating the symbol of the given MPL,

T = ∆1,...,1 (G( f1(xi), f2(xi), . . . , fn(xi), fn+1(xi))) (2.122)

depending on a set of variables {xi}. In the first step it determines a function
G(xi) such that,

∆1,...,1(G(xi)) = T. (2.123)

This function G will be expressed in terms of MPLs that are in a canonical
form with respect to the xi, i.e. the first variable x1 will only appear in last
argument of the MPLs. MPLs which are independent of x1, will be put in
a form where x2 only appears in the last argument and so on. As such G is
inherently not unique, but depends strongly on the ordering of the xi.

We start by making the following observation about the symbol of a multi-
ple polylogarithm: if the ai are independent of x, then the symbol of
G(a1, . . . , an; x) has exactly one term that contains x in all its entries, and this
term can be chosen to be of the form,

S(G(a1, . . . , an; x)) = (an − x)⊗ . . . ⊗ (a1 − x) + . . . . (2.124)

In order to prove this statement, we focus on the term in the total di�erential
of G(a1, . . . , an; x) proportional to dx,

dG(a1, . . . , an; x) = G(a2, . . . , an; x)
dx

x − a1
+ . . .

= G(a2, . . . , an; x) d log(a1 − x) + . . . ,

(2.125)

where the last step follows from

d log(a1 − x) =
dx − da1

x − a1
, (2.126)
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2.4. Canonical integration

and where the dots indicate terms in the total di�erential that are independent
of dx. The statement then follows recursively. Note that this statement is
independent of whether the ai are zero or not.

Assume now that we are given an integrable symbol T (which will corre-
spond later to the symbol of the multiple polylogarithm we want to bring into
canonical form) which is of uniform weight w and has rational coe�cients. If T
does not satisfy this last condition, we deal separately with the contributions of
di�erent weight and / or di�erent rational-function prefactors. Let us suppose
that the entries are drawn from a set S. Without loss of generality, we may
assume S to consist of irreducible polynomials in some variables xi, 1 ≤ i ≤ n,
and for simplicity we assume for now that the polynomials are linear in all the
xi. Furthermore, we assume that we have fixed an ordering on the variables,
which we will take in the following to be (x1, . . . , xn). For each variable xi, we
define a linear map φxi

which acts on elementary tensors s by

φxi
(s) =

{
G
(
− b1

a1
, . . . ,− bw

aw
; xi

)
, if s = (awxi + bw)⊗ . . . ⊗ (a1xi + b1) ,

0 , otherwise .
(2.127)

Morally speaking, the map φxi
assigns to T the combination of multiple poly-

logarithms which will give the same terms that have xi in all entries through
eq. (2.124).

Using the maps φxi
, we can now formulate an algorithm that assigns to T

a multiple polylogarithm in the canonical form associated to the ordering of
the variables (x1, . . . , xn). We start by defining a new symbol by subtracting
o� the contribution from φx1

(T),

T1 = T − S [φx1
(T)] . (2.128)

By construction, each term in the symbol T1 has at least one entry that is
independent of x1. Next, concentrate on the terms of the form,

∑
(i1,...,iw)

ci1,...,iw bi1 ⊗ (ai2 x1 + bi2)⊗ . . . ⊗ (aiw x1 + biw)) , (2.129)

where by hypothesis the bik are independent of x1. As we have subtracted
of the contribution from φx1

(T), these terms cannot come from a multiple
polylogarithm of the form G(. . . ; x1) of weight w, but it can only arise from
the product

log bi1 G

(
−biw

aiw

, . . . ,−bi2

ai2

; x1

)
→

φx2(bi1) φx1

(
(ai2 x1 + bi2)⊗ . . . ⊗ (aiw x1 + biw)

)
.

(2.130)

It is easy to convince oneself that the di�erence

T2 = T1 − ∑
(i1,...,iw)

ci1,...,iw S
(

φx2(bi1) φx1

(
(ai2 x1 + bi2)⊗ . . . ⊗ (aiw x1 + biw))

))

(2.131)
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2. Multiple polylogarithms

contains only terms for which at most (w − 2) entries depend on x1. We can
now go on and recursively subtract contributions with di�erent multiplicities
of x1. Assume for example that we have subtracted all contributions where x1

appears in more than (w − r) entries, and that the resulting symbol is Tr. We
can then concentrate on the terms

∑
(i1,...,iw)

ci1,...,iw bi1 ⊗ . . .⊗ bir ⊗ (air+1
x1 + bir+1

)⊗ . . .⊗ (aiw x1 + biw)) . (2.132)

It is easy to convince oneself that in the di�erence,

Tr+1 = Tr − ∑
(i1,...,iw)

ci1,...,iw S
[
φx2

(
bi1 ⊗ . . . ⊗ bir

)

×φx1

(
(air+1

x1 + bir+1
)⊗ . . . ⊗ (aiw x1 + biw))

)]
,

(2.133)

x1 appears in at most (w − r − 1) entries. We continue this procedure until
we reach Tw, which is independent of x1, and we restart the algorithm with
Tw and φx2 . We then repeat this procedure until we have exhausted all the
integration variables, and the algorithm stops. The result of this algorithm is,
by construction, a function of the form,

∑
(i1,...,in)

ci1,...,in G(~ain ; xn) . . . G(~ai1 ; x1) , (2.134)

whose symbol is T and such that the ~aik are sequences of rational functions
that are in the variables xk, k > ik, i.e., the sought-for canonical form for T.

At this point we have constructed a function G that agrees with the given
function at the symbol level, i.e. the symbol,

S (δ) = 0 (2.135)

of the di�erence,

δ = G( f1(xi), . . . , fn(xi), fn+1(xi))− G(xi), (2.136)

vanishes. However, as we have seen before, it would be wrong to conclude
that the two functions are equal, due to the fact that we are still missing terms
proportional to primitive elements of H.

In the following we assume for simplicity that the function δ is real3, so we
do not need to worry about imaginary parts proportional to iπ. Next we act
with ∆2,1,...,1 on the di�erence, where ∆2,1,...,1 is the component of the iterated
coproduct where the first component has weight two and all other components
have weight one. Without loss of generality we can write,

∆2,1,...,1 (δ) = ∑
(i1,...,iw−1)

ci1,...,iw−1
Ai1 ⊗ log ai2 ⊗ . . . ⊗ log aiw−1

, (2.137)

3There is no obstacle to consider complex-valued functions. Imaginary parts can be ex-
tracted in exactly the same way using ∆1,...,1.
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2.4. Canonical integration

where the aik are irreducible polynomials and Ai1 is a combination of multiple
polylogarithms of weight two. Without loss of generality we can assume that
we have collected all terms that have the same ‘tail’ log ai2 ⊗ . . . ⊗ log aiw−1

,
i.e., we can assume,

log ai2 ⊗ . . .⊗ log aiw−1
6= log aj2 ⊗ . . .⊗ log ajw−1

if (i2, . . . , iw−1) 6= (j2, . . . , jw−1) .
(2.138)

As we know that the symbol of the function vanishes, eq. (2.135), we neces-
sarily conclude that Ai1 is proportional to a primitive of H2, usually ζ2, i.e.,
Ai1 = ki1ζ2, for some rational number ki1 . This rational number can easily be
determined by evaluating Ai1 numerically at a single point using any of the
standard libraries to evaluate multiple polylogarithms [132–138], and running
for example the PSLQ algorithm [131]. Equation (2.137) then takes the form,

∆2,1,...,1(δ) = ∑
(i1,...,iw−1)

ci1,...,iw−1
ki1 ζ2 ⊗ log ai2 ⊗ . . . ⊗ log aiw−1

. (2.139)

Next we drop ζ2, i.e., we only keep the tail of each elementary tensor. If we also
drop the log signs, we obtain a symbol associated with the terms proportional
to ζ2,

∆2,1,...,1(δ) → ∑
(i1,...,iw−1)

ci1,...,iw−1
ki1 ai2 ⊗ . . . ⊗ aiw−1

. (2.140)

Running the algorithm described at the beginning of this section on the symbol
in eq. (2.140) we obtain a function G2(x̄a, xb, . . .) of weight w − 2 in canonical
form such that,

∆2,1,...,1 (δ − ζ2 G2(x̄a, xb, . . .)) = 0 . (2.141)

We have in this way determined all the contributions proportional to ζ2, and
the result is by construction in canonical form. We then repeat exactly the
same exercise by acting with ∆3,1,...,1 to determine the terms proportional to
ζ3, and we continue in this way until we have exhausted all possibilities and
the algorithms stops. As a result we obtain the expression of
G ( f1(xi), . . . , fn(xi), fn+1(xi)) in canonical form at function level.

This terminates the algorithm to bring multiple polylogarithms into the
canonical form corresponding to a certain ordering of the variables.

Example.
Suppose we would like to rewrite the multiple polylogarithm

G

(
(1 − x)(1 + y)

1 − y
, 1, x

)
(2.142)

in terms of multiple polylogarithms that depend on x only in the last argu-
ment, i.e. we would like to bring it to a canonical form with respect to the
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2. Multiple polylogarithms

ordering {x, y} of the variables. We start by computing the symbol

T = ∆1,1

(
G

(
(1 − x)(1 + y)

1 − y
, 1, x

))

= (1 − x)⊗ (1 − y) + (1 − x)⊗ (1 + y − 2x)

− 2(1 − x)⊗ (−2y + (1 + y)x)

+ (1 + y)⊗ (1 − y)− (1 + y)⊗ (−2y + (1 + y)x)

− (1 + y − 2x)⊗ (1 − y) + (1 + y − 2x)⊗ (−2y + (1 + y)x).

(2.143)

Now we can use the map φx to find MPLs corresponding to the elementary
tensors with x in every slot. The map φx will operate operate on the terms,

T|φx
= (1 − x)⊗ (1 + y − 2x)− 2(1 − x)⊗ (−2y + (1 + y)x)

+ (1 + y − 2x)⊗ (−2y + (1 + y)x),
(2.144)

yielding the MPLs,

φx(T) = G

(
1 + y

2
, 1, x

)
− 2G

(
2y

1 + y
, 1, x

)
+ G

(
2y

1 + y
,

1 + y

2
, x

)
.

(2.145)
Next we need to compute

T1 = T − S (φx (T)) = 0, (2.146)

which already happens to vanish, meaning that we have found a function

G = φx(T) = G

(
1 + y

2
, 1, x

)
− 2G

(
2y

1 + y
, 1, x

)
+G

(
2y

1 + y
,

1 + y

2
, x

)
,

(2.147)

that is equal to G
(
(1−x)(1+y)

1−y , 1, x
)
at the symbol level. If we demand

that x, y ∈ (0, 1) we can convince ourselves that they in fact agree at the
function level, by evaluating the di�erence

G

(
(1 − x)(1 + y)

1 − y
, 1, x

)
− G (2.148)

numerically. This means that we have found a representation for the orig-
inal MPL in terms of MPLs that only depend on x in the last argument.

To underline the fact that this representation depends on the ordering
of the variables, let us find a representation for the reverse ordering {y, x}.
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2.4. Canonical integration

We now start by applying the map φy to T. This map will act on the terms,

T|φy
= (1 + y)⊗ 1 − y − (1 + y)⊗ (x − (2 − x)y)

− (1 − 2x + y)⊗ (1 − y) + (1 − 2x + y)⊗ x − (2 − x)y,
(2.149)

producing the MPLs,

φy(T) = G(1,−1, y)− G

(
x

2 − x
,−1, y

)
− G(1, 2x − 1, y)

+ G

(
x

2 − x
, 2x − 1, y

)
.

(2.150)

Next we compute,

T1 = T − S(φy(T)) = −(1 − 2x)⊗ (1 − x)− (1 − 2x)⊗ 1 − y

+ (1 − 2x)⊗ (x − (2 − x)y) + (1 − x)⊗ (1 − y) + (1 − x)⊗ (1 − 2x + y)

− 2(1 − x)⊗ x − (2 − x)y − x ⊗ (1 − 2x) + 2x ⊗ (1 − x)

− (1 − y)⊗ (1 − 2x) + (1 − y)⊗ (1 − x) + (1 − 2x + y)⊗ (1 − x)

+ (x − (2 − x)y)⊗ (1 − 2x)− 2(x − (2 − x)y)⊗ (1 − x),
(2.151)

here we focus on elementary tensors of the form,

b1 ⊗ (a2y + b2), (2.152)

where the ai and bi are independent of y, so that we can act on the second
slot with φy to obtain the functions,

φy(T1) = − log(1 − 2x)G(1, y) + log(1 − 2x)G

(
x

2 − x
, y

)

+ log(1 − x)G(1, y) + log(1 − x)G(2x − 1, y)

− log(1 − x)G

(
x

2 − x
, y

)
.

(2.153)

Computing

T2 = T1 − S(φy(T1)) =

(1 − 2x)⊗ x + (1 − x)⊗ (1 − 2x)− 2(1 − x)⊗ x,
(2.154)
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we observe that we have taken care of all y dependent functions. The final
step is therefore to apply φx to T2, which yields,

φx(T2) = G

(
0,

1

2
, x

)
+ G

(
1

2
, 1, x

)
− 2G(0, 1, x). (2.155)

We observe that
T3 = T2 − S(φx(T2)) = 0, (2.156)

vanishes, indicating that we have found a function,

G = G(1,−1, y)− G(1, 2x − 1, y)− G

(
x

2 − x
,−1, y

)

+ G

(
x

2 − x
, 2x − 1, y

)

+ G

(
0,

1

2
, x

)
− 2G(0, 1, x) + G

(
1

2
, 1, x

)

+ G(1, x)G(2x − 1, y) + G(1, y)

(
G(1, x)− G

(
1

2
, x

))

+ G

(
x

2 − x
, y

)(
G

(
1

2
, x

)
− 2G(1, x)

)
,

(2.157)

that agrees with the original MPL at the symbol level. As before we de-
mand that x, y ∈ (0, 1) and convince ourselves numerically that they do
in fact also agree at the function level.

2.5 Building polylogarithmic functions with a

speci�c alphabet

For symbol alphabets that fulfill the linear reducibility criterion canonical inte-
gration provides an automatic way to associate a basis of functions to a given
symbol. This basis is very useful if one intends to integrate a polylogarithmic
expression over one of the variables appearing in the arguments of the poly-
logarithms, which we will exploit in section 2.6. However, often one would
prefer to find a di�erent basis, in particular one that expresses a given polylog-
arithmic function through a fixed basis of polylogarithms. Furthermore, one
might be interested in finding a basis for the function space generated by an
alphabet that is not linearly reducible. In this section we discuss an algorithm
first presented in ref. [55] that enables us to build such bases.

The method is based on the observation that due to the plethora of func-
tional identities the multiple polylogarithms up to a given weight can be ex-
pressed through a finite set of independent functions. A possible choice for
these functions is given in table 2.1, which is of course by no means unique.

38



2.5. Building polylogarithmic functions with a specific alphabet

Weight Independent functions

1 log(x)
2 Li2(x)
3 Li3(x)
4 Li4(x),Li2,2(x, y)
5 Li5(x),Li2,3(x, y)
6 Li6(x),Li2,4(x, y),Li3,3(x, y),Li2,2,2(x, y, z)

Table 2.1: Independent functions of pure weight.

It should therefore be possible e.g. to express any linear combination of ar-
bitrarily complicated multiple polylogarithms at weight 3 in terms of a linear
combination of just Li3s with complicated arguments as well as products of
lower weight functions. One motivation why it might be interesting to express
multiple polylogarithms this way is the need for fast and easy numerical evalu-
ation. By expressing MPLs through classical Lis, only a small set of functions,
which furthermore have well known series expansions, need to be implemented
e�ciently to yield numerical results.

The goal of the algorithms is therefore to determine arguments for the
functions given in table 2.1 so that we can find a linear combination of these
functions with the determined arguments that will reproduce a given symbol.

Let us assume that we are given a symbol of weight w,

S = ∑
i1,...,iw

ci1,...,iw fi1(x1, . . . , xm)⊗ · · · ⊗ fiw(x1, . . . , xm), (2.158)

where the sum runs over all elementary tensors that make up the symbol. The
fi are rational functions of some the variables xj. Then we can factor the fi

over Q into multiplicatively independent polynomials πi = πi(x1, . . . , xm) and
use the distributivity of the symbol to write S as,

S = ∑
i1,...,iw

c̃i1,...,iw πi1 ⊗ · · · ⊗ πiw . (2.159)

Let there be K such irreducible factors πi and let us denote their set as P =
{π1, . . . , πK}. Then we can define the set,

P = P ∪P ′, (2.160)

where P ′ is the set of all irreducible factors that appear when factoring πi ±πj,
1 ± πi over Q ∀πi, πj ∈ P . Let us denote the elements of P as πi.

We can now define functions,

fn1,...,nK
(x1, . . . , xm) = ± ∏

π∈P
πnπ(x1, . . . , xm), (2.161)
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with nπ ∈ Z and denote the set of these functions as F .
If we assume for a moment that the given symbol S is of weight w = 1, then

it is of course completely trivial to find a function to reproduce this symbol.
We could just write the ansatz,

T = ∑
f∈F

c f log( f ) (2.162)

Since the πi are multiplicatively independent, we can just compute S − S(T)
and demand that the coe�cients of all elementary tensors of the π̄is vanish
separately, which will yield a linear system of equations that can be solve to
determine the c f . This way we would obtain a function T that has the symbol
S. Of course it is no great feat to reproduce a weight 1 symbol, so let us
consider higher weights and let us focus first on building the subset of functions
that can be described in terms of classical polylogarithms, which is enough to
completely determine functions of weight 2 and 3.

Building classical polylogarithms

Recall that the symbol of a classical polylogarithm is

S(Lin(x)) = −(1 − x)⊗ x ⊗ · · · ⊗ x. (2.163)

If we were to ignore the first entry for a second, we could conclude that by
writing down a linear combination of classical polylogarithms of the form

∑
f∈F

c fLin( f ), (2.164)

we should be able to reproduce the given symbol S, after appropriately choos-
ing the ci. And while this may be true for the last w − 1 entries of the elemen-
tary tensor, we can of course not forget about the first entry.

Therefore we have to refine the set of functions that can appear in the
arguments. We need to require that the functions be drawn from the set,

F = { f ∈ F | (1 − f ) ∈ F} ⊂ F . (2.165)

In other words, we only allow such functions f ∈ F for which 1 − f can be
factored into elements of F .

This way we ensure that all entries of the symbol of Lin( f ) factor into
elements of P ∀ f ∈ F . We therefore only need to take a linear combination
of the possible Lis

T̃w = ∑
f∈F

c fLiw ( f ) . (2.166)

At this point we should note that a symbol of weight w is of course not nec-
essarily due only to functions of maximum weight w, but in general we also

40



2.5. Building polylogarithmic functions with a specific alphabet

expect to see products of functions of lower weight. However, we can always
proceed successively and build up the functions weight by weight, so that we
can assume that we know all required functions at lower weights. It is possi-
ble to eliminate terms generated by products from the symbol by defining the
operator Πw recursively in the weight w,

Πw(a1 ⊗ . . . aw) =

w − 1

w
([Πw−1(a1 ⊗ · · · ⊗ aw−1)]⊗ aw − [Πw−1(a2 ⊗ · · · ⊗ aw)]⊗ a1) ,

(2.167)

with Π1 = id, which eliminates all shu�es from a given symbol,

Πw

(
S( fpgq)

)
= 0, (2.168)

where fp, gq are linear combinations of multiple polylogarithms of weight p
and q respectively with p + q = w. See ref. [55] for a more detailed discussion.

To determine the coe�cients c f we then compute,

δ = Πw

(
S − S(T̃w)

)
, (2.169)

after factoring the entries of the tensors in δ into the irreducible factors π,
we can demand that the coe�cient of each elementary tensor in the π vanish
separately, which will yield a system of linear equations for the c f that can be

solved with computational algebra methods in order to uniquely determine T̃w.
Thus we have a function

Tw = T̃w + products of lower weight, (2.170)

that reproduces the symbol S.

Building polylogarithms of higher depth

Starting from weight 4 we need to include multiple polylogarithms of depth
> 1, e.g. Li2,2,Li2,3, into the algorithm since they are independent of the
classical polylogarithms. We therefore need to find k-tuples of arguments for a
multiple polylogarithm of depth k. In order to simplify the discussion we first
introduce yet another notation for multiple polylogarithms, defining

Gm1,...,mk
(t1, . . . , tk) = G(~0m1−1, t1, . . . ,~0mk−1, tk, 1), (2.171)

so that,

Lim1,...,mk
(x1, . . . , xk) = (−1)kGmk,...,m1

(
1

xk
, . . . ,

1

x1 . . . xk
, 1

)
(2.172)
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which is essentially just a rearrangement of the arguments of the Lis. Since the
arguments that we consider are all multiplicatively independent we are free to
use these functions to simplify the discussion.

When we compute the symbol of a depth 2 MPL S(G2,2(x, y)) we find that
the only terms appearing in the slots of the elementary tensors after factoring
over Q are

{x, 1 − x, y, 1 − y, x − y}. (2.173)

From this we learn that, whatever functions we plug in for the arguments x
and y, needs to fulfill at least the same criteria as in the depth-1 case. Conse-
quently, we need to choose a tuple (x, y) from F × F , as we see that x and
y, as well as 1 − x and 1 − y need to factor again into irreducible factors π̄.
However, we see another term appearing in the symbol that did not exist at
depth 1, x − y, meaning that we also need to require that the di�erence of both
arguments factors into π̄. We can therefore define a new class of functions for
the arguments of MPLs of depth 2,

F2 =
{
( f1, f2) ∈ F ×F | ( f1 − f2) ∈ F

}
⊂ F ×F . (2.174)

If we consider the symbols of MPLs of depth > 2 and analyze the factors ap-
pearing in the elementary tensors, we notice that there are no new constraints
beyond depth 2, i.e. the only constraint is that the pairwise di�erences of two
arguments need to factor. E.g. at depth 3 we see that the factors appearing in
the symbol S(G2,2,2(x, y, z)) are,

{x, y, z, 1 − x, 1 − y, 1 − z, x − y, x − z, y − z}. (2.175)

We can therefore, at least conjecturally, write down the set of functions for
the arguments of MPLs of depth d,

Fd =
{
( f1, . . . , fd) ∈ F × · · · ×F |

(
fi − f j

)
∈ F ∀ 1 ≤ i < j ≤ d

}

⊂ F × · · · ×F .
(2.176)

At this point we should mention a small complication: The set F is of
course infinite. However, it turns out that, at least conjecturally, the sets F
and Fd are finite. One can therefore successively enumerate members of F
and test whether they also lie in F . In practice this can be done by grouping
the members fn1,...,nK

of F according to r = |n1|+ · · ·+ |nk|. Next, we test
all functions with r = 1 and successively increase r. We will observe that
after a few iterations no new functions in F will be found. At this point the
iteration can be terminated and we have obtained the finite subset F . Since
the functions that make up the tuples in Fd must all be taken from F it is
trivial to find these sets once F is known.

Of course this does not prove that there cannot be any new functions for
large values of r even if the algorithm has seemed to stabilize before. How-
ever, in practice this does not seem to happen. Furthermore, a non-exhaustive
ansatz would not permit a solution for the coe�cients in Q. This way missing
functions can easily be detected.
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2.6 Iteratively integrating parametric integrals

Using the identities and algorithms for multiple polylogarithms discussed be-
fore, we can now state an algorithm that allows us to integrate certain classes
of parametric integrals in terms of iterated integrals over multiple polyloga-
rithms. This algorithm has been applied, in some variant or another, to the
computation of Feynman integrals [69, 139–143] and we present an example
of a very simple Feynman integral calculation using this algorithm as well in
chapter 4.1. The algorithm has been extended and implemented in the Maple
package HyperInt by Erik Panzer [144] in combination with an algorithm to
regulate divergent parametric integrals.

Let us consider a generic parametric integral of the form,

I({yj}; ǫ) =
∫ ∞

0

(
n

∏
i=1

dxi

)
m

∏
k=1

Pk({xi}; {yj})ak+ǫ bk , (2.177)

where ak and bk are integers and the Pk({xi}; {yj}) are polynomials with in-
teger coe�cients, which we assume irreducible over Z, i.e., they cannot be
factorized into a product of non-constant polynomials of lower degree. We
assume that the integration range is [0, ∞] for each integration variable xi.
While many statements remain true for generic integration boundaries, in cer-
tain cases the algorithm we are going to describe breaks down, due to the
appearance of boundary contributions. We can however always map a generic
integration region xi ∈ [a, b] to yi ∈ [0, ∞] by the change of variable

yi =
xi − b

xi − a
. (2.178)

We furthermore assume that the integral is convergent for ǫ = 0, and so
we can expand in ǫ under the integration sign. Note that in the simplest
divergent cases where the singularities in the integrand factorize we can reduce
the problem to a convergent integral by subtracting the divergencies.

Our goal is to compute the coe�cients of the Taylor expansion of I({yj}; ǫ)
by integrating out the integration variables recursively one-by-one in terms of
multiple polylogarithms.

Obviously, not every integral can be performed in this way. We will there-
fore first describe a su�cient condition, first obtained in ref. [139], to be sat-
isfied by the integrand of I({yj}; ǫ) so that it can be integrated in terms of
multiple polylogarithms.

Denominator reduction

In this section we review (a variant of) the su�cient condition of ref. [139] to
determine whether an integral can be performed recursively in terms of multi-
ple polylogarithms. The main idea is that we need to determine an ordering of
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the integration variables such that at each step during the integration all the
denominators are linear in the next integration variable. We start by defining
the set S of all the polynomials that are not monomials and that appear inside
the integrand of eq. (2.177),

S =
{

Pk({xi}; {yj})
}

. (2.179)

To start the integration, we have to assume that there is one integration vari-
able, say xa such that all the element of S are linear in xa. In that case we may
write,

Pk({xi}; {yj}) = Qa
k({xi}; {yj}) xa + Ra

k({xi}; {yj}) , (2.180)

where Qa
k({xi}; {yj}) and Ra

k({xi}; {yj}) are polynomials that are indepen-
dent of xa. Note that, after expansion in ǫ, the integrand may also contain
logarithms of the Pk({xi}; {yj}), which can be rewritten in terms of multiple
polylogarithms,

log Pk = log
(

Qa
k xa + Ra

k

)
= log Ra

k + log

(
1 +

Qa
k

Ra
k

xa

)

= log Ra
k + G

(
− Ra

k

Qa
k

; xa

)
,

(2.181)

where for clarity we have suppressed the arguments of the polynomials. Fur-
thermore, we can use the shu�e algebra of multiple polylogarithms to replace
every product of multiple polylogarithms by a sum. Thus we can assume with-
out loss generality that the integration over xa takes the form,

∫ ∞

0

dxa

(Qa
1xa + Ra

1)
−a1 . . . (Qa

mxa + Ra
m)

−am
G(~a; xa) . (2.182)

Partial fractioning the factors in the denominator, e.g.,

1

(Qa
kxa + Ra

k)(Q
a
l xa + Ra

l )
=

1

Qa
kRa

l − Qa
l Ra

k

(
1

xa + Ra
k/Qa

k

− 1

xa + Ra
l /Qa

l

)
,

(2.183)
we obtain a sum of integrals that can be reduced to the recursive definition of
multiple polylogarithms, eq. (2.15). We can thus easily compute a primitive
with respect to xa, and then take the limits xa → 0 and xa → ∞. We will
address the issue of limits in the next subsection.

We would like to iterate this procedure and integrate over the next vari-
able. This is however only possible if inside the new integrand we can still find
an integration variable in which all polynomials are linear. The polynomials
appearing inside the integrand are Qa

k and Ra
k, which have been introduced

through eq. (2.181) and (2.183), as well as the combinations Qa
kRa

l − Qa
l Ra

k
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introduced by partial fractioning. This last polynomial however need not nec-
essarily be linear, even if the Qa

k and Ra
k are. In order to proceed, it is therefore

mandatory that all the Qa
kRa

l − Qa
l Ra

k factor into polynomials that are linear in
a certain variable.

In ref. [139] a criterion was given that allows one to determine a priori
whether the above procedure terminates, i.e., whether there is an ordering of
the integration variables such that all the denominators stay linear at each
integration step. We start by defining the set S(xa) as the set of irreducible
factors that appear inside the polynomials Qa

k, Ra
k and Qa

kRa
l − Qa

l Ra
k. Then,

if we can find an integration variable xb such that all the elements of S(xa)
are linear in xb, we can restart the above procedure and integrate over xb.
If we iterate this procedure and are able to construct a sequence of sets of
polynomials,

S(xa), S(xa,xb)
, S(xa,xb,xc), . . . (2.184)

such that in each set all the polynomials are linear in at least one integration
variable, then we have found an ordering of the integration variables such
that we can recursively integrate out all the integration variables in terms of
multiple polylogarithms. We stress that this condition is su�cient, but not
necessary: even if we fail to find a suitable sequence (2.184), the integral might
still be expressible in terms of multiple polylogarithms (e.g., after a suitable
change of variables). In addition, note that for the last integration step it is not
necessary for the polynomials to be linear: we can then factor the polynomials
into linear factors, whose roots involve algebraic expressions of the parameters
{yj}.

Symbolic integration and denominator reduction

We now have a criterion to determine whether an integral of type (2.177) can
be integrated in terms of multiple polylogarithm and we have already seen how
to perform the first integration step. After we have taken the primitive with
respect to some integration variable xa we still need to take the limits xa → 0
and xa → ∞ of the primitive. The limit xa → 0 can easily be computed
because of the fact that,

lim
x→0

G(~ω; x) = 0, for ~ω 6=~0. (2.185)

Of course it is possible that the primitive has spurious poles or logarithmic
singularities at xa → 0. To deal with poles at xa = 0, we expand the multi-
ple polylogarithms around xa = 0 using their series representation given in
eq. (6.77). Logarithmic singularities at xa = 0 can be easily extracted using
shu�e regularization as described in section 2.2.

In order to obtain the limit xa → ∞ we define x̄a =
1
xa
. Then we use canon-

ical integration to rewrite the multiple polyloarithms appearing the primitive
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with respect to xa as multiple polylogarithms with argument x̄a. This reduces
the problem to taking the limit x̄ → 0.

The use of canonical integration to rewrite the multiple polylogarithms also
guarantees that we can bring the integrand,

Ib = lim
xa→∞

Pa − lim
xa→0

Pa, (2.186)

with Pa being the primitive with respect to xa, into a form where we can use
once again the iterative definition of the multiple polylogarithms, eq. (2.15), in
order to obtain the primitive Pb with respect to the second integration variable
xb. At this point we proceed iteratively until all integration variables have been
integrated out.

The only caveat to this procedure is that we need to be able to use canonical
integration in order to bring the intermediate polylogarithms into a form that
is suitable for taking the required limits or performing the next integration step.
We will therefore argue now that the criterion of denominator reducibility is
su�cient to guarantee that rewriting the intermediate multiple polylogarithms
is always possible and that the above algorithm always converges if we can find
a suitable order of integration variables. From now on we assume that we have
found an ordering of the integration variables, which we take as (x1, . . . , xn)
and we can find a sequence

S, S(x1)
, S(x1,x2), S(x1,x2,x3), . . . (2.187)

such that all the elements of S(x1,...xk)
are linear in xk+1. We start by showing

that under these hypotheses and after having integrated out (x1, . . . , xk−1),

1. the symbol of the primitive with respect to xk has all its entries drawn
from the set S(x1,...xk−1)

= {xk, . . . , xn} ∪ S(x1,...xk−1)
.

2. the symbol of the function after integration over xk, i.e., after taking the
limits xk → 0, ∞ of the primitive, has all its entries drawn from
S̃(x1,...xk)

= {xk+1, . . . , xn} ∪ S(x1,...xk)
.

We start by proving the first statement, the second then immediately follows by
taking the appropriate limits. As in the following we constantly switch between
polynomials of the sets we just defined, and polynomials as entries of symbols,
we introduce the notation [P] to refer to P as an entry of a symbol. Note that
we then have the identities,

[P Q] = [P] + [Q] ,

[P/Q] = [P]− [Q] ,

[±1] = 0 ,

etc.

(2.188)
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We proceed by iteration in the number k of variables we have already in-
tegrated out. We start by analyzing what happens after the first integration.
It is obvious from eqs. (2.181) and (2.183) that after the first integration the
primitive only involves multiple polylogarithms G(a1, . . . , aw; x1) with,

ai ∈
{

0,−R1
k/Q1

k

}
. (2.189)

It is then easy to see (e.g., from the polygon approach to the symbol of ref. [145],
or our description of the maximal coproduct in section 2.3) that the symbol
can only have the following entries:

[xk], [R
1
k] ,

[
−R1

k/Q1
k

]
= [R1

k]− [Q1
l ] ,

[
1 +

x1 Q1
k

R1
k

]
= [R1

k + Q1
k x1]− [R1

k] = [Pk]− [R1
k] ,

[
1 +

Q1
k R1

l

R1
k Q1

l

]
= [Q1

k R1
l − R1

k Q1
l ]− [R1

k]− [Q1
l ] .

(2.190)

The polynomials that appear inside the symbol are precisely those that ap-
pear in S and S(x1)

, which finishes the proof of the first statement for the first
integration.

Next consider taking the limits x1 → 0 and x1 → ∞. By definition, R1
k and

Q1
k are independent of the limit, so we only need to consider the limits of [x1]

and [Pk]. [x1] will give rise to logarithmic singularities in the limit, and these
terms must cancel if the integral is convergent. For [Pk] we have,

lim
x1→0

[Pk] = [R1
k] ,

lim
x1→∞

[Pk] = lim
x̄1→0

{[x̄1 R1
k + Q1

k ]− [x̄1]} = [Q1
k ] + lim

x̄1→0
[x1] .

(2.191)

The logarithmic singularity in the last line must again cancel for convergent
integrals, and so we see that the only polynomials that appear in the limit
are those in S(x1)

. This finishes the proof of the second statement for the
first integration. We stress that it is important that the integration region is
[0, ∞], because otherwise we have to take into account e�ects coming from the
integration boundaries.

Let us now suppose that the two statements are true for the first r − 1
integrations. The set S(x1,...,xr−1)

then consists of polynomials of the form P̃k =

Q̃r
k xr + R̃r

k. Let us now compute the primitive with respect to xr. We start by
running the algorithm to bring the multiple polylogarithms in the integrand
into canonical form. As this involves the application of the map φxr , we obtain
multiple polylogarithms of the form G(a1, . . . , aw; xr) with,

ai ∈
{

0,−R̃r
k/Q̃r

k

}
. (2.192)
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If we compute the primitive, we integrate over linear functions in xr from
the set S(x1,...,xr−1)

, and it is easy to see that this does not change eq. (2.192).
Using exactly the same argument as for the first integration, we see that these
multiple polylogarithms only contribute terms to the symbols whose entries
are drawn from S(x1,...xr−1)

. In addition we have multiple polylogarithms that

are independent of xr, whose symbols involve those elements of S̃(x1,...xr−1)
that are independent of xr. As these functions do not change if we take the
primitive with respect to xr, we see that they do not alter the conclusion. So
the symbol of the primitive with respect to xr must have all its entries drawn
from S(x1,...xr−1)

. Taking the limits xr → 0 and xr → ∞ just as for the first
integration then finishes the proof.

Having proved the two statements, we can show that our algorithm always
terminates for the class of integrals we consider. More precisely, we have to
show that our algorithm can always produce the canonical form for the next
integration step. This is done by applying the map φxr , which requires all
the entries in the symbol to be either independent of xr or linear in xr. By
construction, this condition is always fulfilled for the elements of S̃(x1,...xr−1)

.
It is easy to check that the same argument shows that the map φxr+1

, which is
called recursively by φxr is well-defined, and so we can always find a canonical
form for the integrand.
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3
Differential equations for

master integrals

3.1 Reverse unitarity and integral reductions

Integrals over particle momenta are ubiquitous in the computation of multi-
loop scattering amplitudes. They arise directly from internal loops in Feynman
diagrams, which require the integration over the momentum of the internal
virtual particle, as such they are referred to as loop integrals. Loop integrals
su�er from infrared and ultraviolet divergences. These can be regulated using
the framework of dimensional regularization, which promotes the internal loop
momenta from four-dimensional Minkowski space to d-dimensional Minkowski
space. With this in mind, we can write a general n-point ℓ-loop integral with
m propagators as,

Iν1,...,νm(p1, . . . , pn) =
∫ ℓ

∏
i=1

ddki

(2π)d
Iν1,...,νm(k1, . . . , kℓ, p1, . . . , pn), (3.1)

with the corresponding integrand,

Iν1,...,νm(k1, . . . , kℓ, p1, . . . , pn) =
m

∏
i



(

∑
j

αijk j + ∑
j

βij pj

)2

− m2
i − i0



−νi

.

(3.2)
Here the pi are the external momenta, which are all assumed to be incoming,
furthermore mi is the mass of the particle in the internal propagator i. The
i0 denotes the Feynman prescription for the propagator. The αij and βij can
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be determined by e.g. reading o� the propagators from the corresponding
Feynman diagram.

Integral reductions

One of the most powerful techniques for the computation of multiloop scat-
tering amplitudes is integral reduction. The basic idea of integral reduction
techniques is to exploit relations that exist at the integral level in order to
express the amplitude through a small set of integrals.

The most widely used integral reduction method [146–149] is known as
integration-by-parts (IBP) reduction. The method builds on the observation that
in dimensional regularization the integral of the total derivative, with respect
to the loop momentum, vanishes, e.g.,

∫
ddk

(2π)d

∂

∂kµ

1

k2(k + p1)2(k + p1 + p2)2(k + p1 + p2 + p3)2
= 0. (3.3)

In the following we shall consider a set of denominator factors Di with,

Di = (∑
j

αijk j + ∑
j

βij pj)
2, (3.4)

where αij, βij ∈ Z can be read o� from the propagators that appear in the
associated loop integral. Then,

I(ν1, . . . , νm) =
∫ ℓ

∏
i=1

ddki

(2π)d

m

∏
j=1

D−νj

j , (3.5)

is an ℓ-loop integral with propagators Di. Note that the νi are arbitrary, in
particular some of the νi can vanish, signaling that the corresponding propa-
gator is pinched. Conventionally, we write the integrand corresponding to the
integral I(ν1, . . . , νm) as,

I(~ν) = I(ν1, . . . , νm) =
m

∏
j=1

D−νj

j , (3.6)

so that we have,

I(ν1, . . . , νm) =
∫ ℓ

∏
i=1

ddki

(2π)d
I(ν1, . . . , νm). (3.7)

Example.
As an example we consider the scalar massless box at one loop. This
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integral can be written by choosing the denominator factors Di as,

Tbox = {Di}i=1...4 = {k2, (k + p1)
2, (k + p1 + p2)

2, (k + p1 + p2 + p3)
2},

(3.8)
so that Ibox = I(1, 1, 1, 1).

Likewise, the triangle that is obtained by pinching the propagator (k +
p1 + p2 + p3)

2 from the box can be written as I(1, 1, 1, 0).

Equipped with this notation, we can now further examine the statement that
the integral of the total derivative with respect to a loop momentum vanishes,

∫ ℓ

∏
i=1

ddki

(2π)d

∂

∂kl
I(ν1, . . . , νm) = 0 ∀ l ∈ {1, . . . , ℓ} (3.9)

We can act with the derivative under the integral sign and express the vanishing
of the derivative with respect to k

µ
l as,

∫ ℓ

∏
i=1

ddki

(2π)d

m

∑
j=1

(
−νj

)
(

∂

∂kl,µ
Dj

)
⊕j I(ν1, . . . , νm) = 0. (3.10)

Here we have defined the operator⊕j which acts on the integrand by increasing
the exponent νj by one, e.g.

⊕4 I(1, 1, 1, 0) = I(1, 1, 1, 1). (3.11)

Equation (3.10) of course also holds true after contracting both sides with one
of the external vectors p

µ
a . If we contract both sides with the loop momentum

kl we pick up an additional term proportional to

∂kl,µ
k

µ
l = d. (3.12)

The scalar product pa,µ

(
∂

∂kl,µ
Dj

)
will then contain two types of terms, products

that involve loop momenta and products between two external momenta. The
latter are constants with respect to the loop integration over the kl and can be
ignored. The former require some more consideration.

By choosing the set of denominator factors {Di} such that every possible
scalar product k

µ
l paµ and k

µ
l kl′µ can be uniquely expressed in terms of denom-

inator factors and constants, the product pa,µ

(
∂

∂kl,µ
Dj

)
can be written as a

linear combination ratios of denominator factors with constant coe�cients. Be-
yond one loop, this potentially requires the introducing of so-called irreducible
numerators, referring to factors Di, required for completeness, that only appear
in the numerator. Such a complete set of denominators is referred to as topol-
ogy. Multiplying or dividing I(~ν) by a denominator Di is of course expressible
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through the action of the operator ⊕i or its inverse ⊖i, which decreases νi by
one, so that we find,

∫ ℓ

∏
i=1

ddki

(2π)d

m

∑
j=1

(
−νj

)
(

∑
a

ca,b ∏
b

⊕pa,b

b ⊖ma,b

b

)
I(ν1, . . . , νm) = 0. (3.13)

Here the sum over a enumerates the di�erent terms obtained in decomposing
the derivative in terms of denominator factors, ca,b captures constants with
respect to the integration, such as the dimension d, scalar products between
external momenta pi · pj as well as masses. Taking a step back we have there-
fore a relation between di�erent integrals,

∑
i

Ci I (~νi) = 0, (3.14)

where the Ci and the ~νi can be determined from the above steps depending on
the exact form of the denominators and the derivative being calculated.

Example.
Returning to the example of the one-loop massless box, we can first con-
vince ourselves that Tbox defined in eq. (3.8) does indeed fashion a topol-
ogy. In the one-loop case it is straightforward to note that the only scalar
products with the loop momentum that can appear in the derivative term
are,

k · k, k · p1, k · p2 and k · p3. (3.15)

By solving the system of equations given by the denominator factors Tbox
we can find the relations,

k · k = D1 (3.16)

k · p1 =
1

2
(D2 −D1) (3.17)

k · p2 =
1

2
(D3 −D2 − s12) (3.18)

k · p3 =
1

2
(D4 −D3 − s13 − s23) , (3.19)

(3.20)

where we let (pi + pj)
2 = sij. Because all scalar products have been ex-

pressed through denominators and constants, Tbox is indeed a topology.
We can therefore find relations between di�erent integrals. Writing Tbox(~ν)
for the integrand I(~ν) with the Di taken from the set Tbox and Tbox for the
corresponding integral we can for example look at the relations generated

52



3.1. Reverse unitarity and integral reductions

by
∫

ddk

(2π)d

∂

∂kµ
kµTbox(1, 1, 1, 0) = 0. (3.21)

Going through the algebra we find,

∫
ddk

(2π)d

∂

∂kµ
kµTbox(1, 1, 1, 0)

=
∫

ddk

(2π)d
(d − 4 − s12 ⊕3 −⊕2 ⊖1 −⊕3⊖1) Tbox(1, 1, 1, 0)

=(d − 4)Tbox(1, 1, 1, 0)− s12Tbox(1, 1, 2, 0)

− Tbox(0, 2, 1, 0)− Tbox(0, 1, 2, 0) = 0.

(3.22)

By contracting the starting equation with di�erent external vectors or loop
momenta and considering di�erent values for the ~ν, one can obtain large sets
of these relations. They form an overconstrained system of equations for the
integrals I(~νi). Such systems can be solved using di�erent techniques, mostly
commonly using the Laporta algorithm [146], a variation of Gauss elimination.
There are a number of public codes that can automatically derive the above
relations and solve the resulting systems [150–152]. As a result of this pro-
cess one finds that the integrals I(~νi) in a specific topology can be expressed
through a small set of integrals, which are referred to as master integrals.

Example.
Let us return to the example of the box topology. By deriving more rela-
tions such as in eq. (3.22) and solving the resulting system, we find that
all integrals Tbox(νi) can be written in terms of only three master integrals,
for example

Tbox(0, 1, 0, 1), Tbox(1, 0, 1, 0) and Tbox(1, 1, 1, 1). (3.23)

In particular, the triangle integral Tbox(1, 1, 1, 0) can be expressed as

Tbox(1, 1, 1, 0) =
2(d − 3)

(d − 4)s12
Tbox(1, 0, 1, 0). (3.24)

The master integrals for a specific topology form a basis for the integrals ap-
pearing in that topology. We note that the choice of a basis and with that
the choice of master integrals is of course not unique. Di�erent programs can
sometimes produce di�erent bases of master integrals and one usually strives
to choose the simplest integrals possible as master integrals. However, the
criterion ‘simple’ is often not su�ciently constraining and while the method of
IBP reduction has been known for almost thirty years [147, 153], the choice
of an optimal basis is a topic of active research [76–78].

53



3. Differential equations for master integrals

Looking at the result obtained in our example in eq. (3.24), we can observe
one advantage of reducing integrals to master integrals, the triangle integral
Tbox(1, 1, 1, 0) has been reduced to a bubble integral, Tbox(1, 0, 1, 0), which
by virtue of having one less propagator, is simpler than the original integral.
This shows one of the guiding principles of successfully using IBP reductions,
by performing a reduction of complicated integrals to simpler integrals and
furthermore by expressing many integrals through a small set of master inte-
grals, the computation of the master integrals is drastically simpler than the
computation of the original integrals.

Equipped with this powerful reduction technique, we will concern ourselves
exclusively with the calculation of master integrals for the remainder of this
thesis. Any multiloop amplitude that we might be interested in computing will
be expressed in terms of a large number of integrals, however we can always
reduce these integrals to a relatively small set of master integrals and need only
to compute these master integrals. In fact we will from now on often drop the
label “master” and refer to them generically as “integrals” knowing that they
capture all information required.

Reverse unitarity

The calculation of multiloop scattering amplitudes is dramatically simplified
by using IBP reductions. However scattering amplitudes are but one ingredient
in the calculation of cross sections. In particular, the calculation of inclusive
cross section requires the integration over the phase-space of any unresolved
external momenta,

σinclusive ∝

∫
dΦ |A|2 . (3.25)

Having simplified the calculation of the scattering amplitude A, we shall now
turn to the phase-space integral dΦ using reverse unitarity.

While the method of reverse unitarity is completely general, only relying on
the unitarity of the S-matrix of quantum field theory, it is instructive to consider
a concrete set of phase-spaces. Therefore, we will consider phase-spaces for the
scattering of two massless particles to one massive particle, which we denote
suggestively as H, and j = 3 . . . N massless particles,

1 + 2 → H + 3 + · · ·+ N. (3.26)

The cross section for a process in this class is written in terms of an integration
over the momenta pj of the final state particles of the process specific scattering
amplitude1 A,

σ =
∫

dΦN−1(p3, . . . , pN)
∣∣A(p1, p2, {pj}, d)

∣∣2 . (3.27)

1We shall assume here, that |A|2 has been multiplied by the physical flux factor, as well
as any required symmetry factors. However these are irrelevant for the following discussion.
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3.1. Reverse unitarity and integral reductions

The d-dimensional phase-space measure is here

dΦN−1(p3, . . . , pN)

=(2π)dδ(d)(p12 − pH − p3...N)
dd pH

(2π)d
δ+(p2

H − m2)
N

∏
j=3

dd pj

(2π)d
δ+(p2

j ),
(3.28)

where δ+(p2 − m2) = δ(p2 − m2)θ(p0) is the usual on-shell constraint for
physical particles and we have used the abbreviations

pij... = pi + pj + . . . . (3.29)

If we compare the integral measures for the external momenta pj to loop in-
tegrals we realize that the only di�erence is the on-shell constraint that leads
to a potentially complicated integration contour. This can be alleviated using
the Cutkosky cutting rules [154].

Using the Cutkosky rule in reverse, the method of reverse unitarity [83]
exploits the duality between on-shell constraints and cut propagators,

δ+(p2 − m2) →
[

1

p2 − m2

]

c

≡ 1

2πi
Disc

1

p2 − m2

=
1

2πi

(
1

p2 − m2 + i0
− 1

p2 − m2 − i0

)
.

(3.30)

Using reverse unitarity we can therefore rephrase the phase-space integration
in eq. (3.27) as an (N − 2)-fold cut of the corresponding forward scattering
amplitude,

σ =
∫

dd pH

(2π)d

N

∏
j=3

dd pj

(2π)d
(2π)d

× δ(d)(p12 − pH − p3...N)

[
1

p2
H − m2

]

c

N

∏
j=3

[
1

p2
j

]

c

|A|2.

(3.31)

Because the cut propagators can be di�erentiated in exactly the same way as
regular (uncut) propagators with respect to their momenta,

∂

∂pµ

([
1

p2

]

c

)ν

= −ν

([
1

p2

]

c

)ν+1

2pµ, (3.32)

we can obtain the same IBP identities for phase-space integrals as for loop inte-
grals. The systems of IBP identities for the phase-space integrals can be solved
in the same way as for loop integrals, with the exception that cut propagators
come with a simplifying constraint,

([
1

p2

]

c

)−ν

→ 0 ∀ ν = 0, 1, 2, . . . , (3.33)
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3. Differential equations for master integrals

because the integral will of course only develop a branch cut whose disconti-
nuity we can take, if the integrand has the appropriate pole.

Combining the power of integration-by-parts reductions and reverse uni-
tarity [83, 84, 155–157] we can therefore reduce not only loop integrals to
a master integral basis but also reduce phase-space integrals to the respective
phase-space master integrals. Once again, as in the loop-integral case, this will
significantly reduce the complexity of the calculation as only the phase-space
masters need to be determined.

3.2 Obtaining di�erential equations for master

integrals

Let us consider an n-point ℓ-loop integral with m propagators, as we defined
it in eq. (3.1),

Iν1,...,νm(p1, . . . , pn, m1, . . . , mm) =
∫ ℓ

∏
i=1

ddki

(2π)d
Iν1,...,νm(k1, . . . , kℓ, p1, . . . , pn, m1, . . . , mm),

(3.34)

with the integrand defined as before,

Iν1,...,νm(k1, . . . , kℓ, p1, . . . , pn, m1, . . . , mm)

=
m

∏
i



(

∑
j

αijk j + ∑
j

βij pj

)2

− m2
i − i0



−νi

=
m

∏
i

D−νi
i .

(3.35)

Here we have taken care to write out explicitly the dependence on all physical
parameters p

µ
i and mi. We can employ Lorentz invariance of the integral to

rephrase the dependence on momenta in terms of the Mandelstam invariants

sij = (pi + pj)
2, sii = p2

i . (3.36)

Note that because of momentum conservation,
n

∑
i=1

p
µ
i = 0, (3.37)

these Mandelstam invariants will in general not be independent, but we will
have

∑
i<j

sij = ∑
i

sii. (3.38)

We can thus view the integrals as functions of the Mandelstam invariants
sij and masses mi. This makes it only natural to consider derivatives of an
integral with respect to any of these parameters.

56



3.2. Obtaining di�erential equations for master integrals

Di�erential equations with respect to internal masses

We start by considering derivatives with respect to internal masses. These
are particularly simple and we can write down a closed expression for the
derivative with respect to some mass m as,

∂

∂m2
Iν1,...,νn(p1, . . . , pn, m1, . . . , mm)

=
m

∑
j=1

∫ ℓ

∏
i=1

ddki

(2π)d

∂Dj

∂m2

∂

∂Dj
Iν1,...,νm(k1, . . . , kℓ, p1, . . . , pn, m1, . . . , mm),

(3.39)

in terms of the increment⊕i operators, defined in eq. (3.11), this can be written
as,

∂

∂m2
Iν1,...,νn(p1, . . . , pn, m1, . . . , mm)

=
m

∑
j=1

∫ ℓ

∏
i=1

ddki

(2π)d

∂Dj

∂m2
(−νj)⊕j Iν1,...,νm(k1, . . . , kℓ, p1, . . . , pn, m1, . . . , mm).

(3.40)

We can see that the action of derivatives with respect to external masses is
similar to the action of the derivatives used to derive the integration-by-parts
identities. As such it is not surprising that we can employ IBP reductions to
reduce the integrals produced by the action of the derivative. For a set of
master integrals {Mi}, we will, obtain after reduction, for the derivative with
respect to some internal mass m,

∂

∂m2
Mα = ∑

β

Cαβ(sij, mi, ǫ)Mβ, (3.41)

where the Cαβ are coe�cients that are constant with respect to the loop mo-
menta and the sum on the right runs over all master integrals. In particular
there will be a term proportional toMα on the right-hand-side, in other words,
we obtain a di�erential equation for Mα.

Example.
Let us consider as an example the triangle integral family defined by,

Ttri = {Di}i=1...3 = {k2 − m2, (k + p1)
2 − m2, (k + p1 + p2)

2 − m2}.
(3.42)

By using integration-by-parts reductions on integrals within this topology,
we find that there are three master integrals in the basis for this family.
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3. Differential equations for master integrals

One possible choice of basis is,

Ttri ≃ F(s, m, ǫ)
[
{Mi}

]
, (3.43)

where s = (p1 + p2)
2, with the master integrals

{Mi}i=1...3 = {I(1, 0, 0), I(1, 0, 1), I(1, 1, 1)}, (3.44)

and where F is the field of rational functions, i.e. all integrals in the Ttri

topology can be expressed as linear combinations of the three master in-
tegrals with coe�cients that are rational functions of the dimensional reg-
ulator ǫ and of the scales of the problem s and m. Equipped with this, we
can derive the di�erential equations for the master integrals with respect
to m2. For the tadpole M1 = I(1, 0, 0) we find

∂m2 I(1, 0, 0) =
∂D1

∂m2

∂I(1, 0, 0)

∂D1
= I(2, 0, 0). (3.45)

We observe that the resulting integral I(2, 0, 0) is no longer an element of
the basis of master integrals. Consequently, we can find an IBP reduction
for it

I(2, 0, 0) =
1 − ǫ

m2
I(1, 0, 0), (3.46)

so that we have the di�erential equation

∂m2M1(m) =
1 − ǫ

m2
M1(m). (3.47)

For the bubble integral M2 = I(1, 0, 1) we find

∂m2 I(1, 0, 1) =
∂D1

∂m2

∂I(1, 0, 1)

∂D1
+

∂D2

∂m2

∂I(1, 0, 1)

∂D2
= I(2, 0, 1) + I(1, 0, 2).

(3.48)
Once again we can IBP-reduce the integrals appearing on the right hand
side,

I(2, 0, 1) = − 1 − ǫ

m2(4m2 − s)
I(1, 0, 0) +

1 − 2ǫ

4m2 − s
I(1, 0, 1),

I(1, 0, 2) = − 1 − ǫ

m2(4m2 − s)
I(1, 0, 0) +

1 − 2ǫ

4m2 − s
I(1, 0, 1),

(3.49)

and obtain the di�erential equation

∂m2M2(m) = − 2(1 − ǫ)

m2(4m2 − s)
M1(m) +

2 − 4ǫ

4m2 − s
M2(m). (3.50)
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3.2. Obtaining di�erential equations for master integrals

Here we observe a general feature of the di�erential equations that we
obtain for master integrals: The di�erential equations for di�erent master
integrals are in general not independent but coupled among each other, i.e.
in general for a topology with n master integrals we will obtain a coupled
system system of n di�erential equations.

For the triangle integral M3 = I(1, 1, 1) we have then similarly,

∂m2 I(1, 1, 1) =
∂D1

∂m2

∂I(1, 1, 1)

∂D1
+

∂D2

∂m2

∂I(1, 1, 1)

∂D2
+

∂D3

∂m2

∂I(1, 1, 1)

∂D3

= I(2, 1, 1) + I(1, 2, 1) + I(1, 1, 2).
(3.51)

The integrals obtained need to be IBP-reduced,

I(2, 1, 1) =
(ǫ − 1)

(
(4ǫ − 2)m2 − ǫs

)

m4s(4m2 − s)
I(1, 0, 0) +

4ǫ − 2

s(4m2 − s)
I(1, 0, 1),

I(1, 2, 1) =
(3 − 2ǫ)ǫ − 1

m4s
I(1, 0, 0) +

1 − 2ǫ

m2s
I(1, 0, 1)− ǫ

m2
I(1, 1, 1),

I(1, 1, 2) =
(ǫ − 1)

(
(4ǫ − 2)m2 − ǫs

)

m4s(4m2 − s)
I(1, 0, 0) +

4ǫ − 2

s(4m2 − s)
I(1, 0, 1),

(3.52)

and we find the di�erential equation,

∂m2M3(m) =
ǫ − 1

m4(s − 4m2)
M1(m) +

1 − 2ǫ

m2(s − 4m2)
M2(m)− ǫ

m2
M3(m).

(3.53)
We observe that the di�erential equation for M3 is coupled to the other
two master integrals. We can make a more specific observation, master
integrals seem to be coupled only to master integrals with the same number
or fewer propagators. In general there can be of course multiple integrals
with the same number of propagators and such couplings can be very
complicated, however at least conjecturally this structure seems to hold in
general.

A useful sanity check for the di�erential equations is to simply consider
their mass dimensions. The triangle integral has mass dimension,

[I(1, 1, 1)] = 4 − 2ǫ − 6, (3.54)

the derivative with respect to m2 has consequently,

[∂m2 I(1, 1, 1)] = (4 − 2ǫ − 6)− 2. (3.55)
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3. Differential equations for master integrals

Considering the right-hand-side of the di�erential equation we see that the
mass dimensions do indeed match,

[
I(1, 0, 0)

m4(s − 4m2)

]
= (4 − 2ǫ − 2)− 6,

[
I(1, 0, 1)

m2(s − 4m2)

]
= (4 − 2ǫ − 4)− 4,

[
I(1, 1, 1)

m2

]
= (4 − 2ǫ − 6)− 2.

(3.56)

Since the di�erential equations are coupled it makes sense to view them
as a system of di�erential equations and write the system as

∂m2Mi = Aij(s, m, ǫ)Mj, (3.57)

where summation over j is implied. This is the general structure of the
di�erential equations for a given set of master integrals. In this specific
case we can specialize the structure some more and write

∂m2Mi =




A(0)
ij

4m2 − s
+

A(1)
ij

m2
+

A(2)
ij

m4


Mj (3.58)

with the coe�cient matrices

A(0) =




0 0 0
8(ǫ−1)

s 2 − 4ǫ 0
16(1−ǫ)

s2
4(2ǫ−1)

s 0


 ,

A(1) =




1 − ǫ 0 0
2(1−ǫ)

s 0 0

− 4(1−ǫ)
s2

1−2ǫ
s −ǫ


 ,

A(2) =




0 0 0
0 0 0

− 1−ǫ
s 0 0


 .

(3.59)

Di�erential equations with respect to external invariants

Next we can consider di�erential equations with respect to external kinematic
data, i.e. Mandelstam invariants. Deriving such di�erential equations is less
straightforward since the integrands do not depend directly on them but rather
are functions of the external momenta. Note that while one could argue that
a propagator like

(k + p1 + p2)
2 = k2 + 2k · (p1 + p2) + s12, (3.60)
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3.2. Obtaining di�erential equations for master integrals

does indeed depend on s12 directly, this manifest dependence on s12 is not the
complete dependence of the integral on s12. When integrating a loop integral
over such a propagator, the result will develop additional dependence on s12

through the scalar products k · p1 and k · p2. Therefore, it is not possible to
derive di�erential equations by simply taking derivatives of the integrand with
respect to Mandelstam invariants.

Instead, di�erential equations with respect to external kinematics need to
be constructed from derivatives with respect to external momenta as the de-
pendence on them is manifest at the integrand level. To build a di�erential
operator that takes the derivative with respect to a certain kinematic invariant
of an n-point integral, we therefore begin with the general ansatz,

∂sij
=

n−1

∑
k,l=1

αkl p
µ
l ∂p

µ
k
. (3.61)

Note that we are implementing total momentum conservation from the begin-
ning by taking derivatives only with respect to n− 1 momenta, eliminating the
last momentum. The coe�cients αkl then need to be determined by demand-
ing that ∂sij

commutes with all constraints on the external kinematics. For sij

with i 6= j one type of constraints arises from the demand that ∂sij
should

commute with all on-shell constraints of the external momenta

∂sij
skk = 0 ∀ k, (3.62)

this yields n equations that can be solved to determine n of the αkl. Addition-
ally, we demand that ∂sij

be compatible with the definition of the Mandelstam
invariants,

∂sij
skl = 0 for (i, j) 6= (k, l) and (k, l) 6= (n − 1, n). (3.63)

Finally we have two normalization constraints. The first one is simply the defi-
nition of the Mandelstam invariant with respect to which we are di�erentiating,

∂sij
sij = 1. (3.64)

The last constraint arises from the fact that we can of course eliminate one
of the Mandelstam invariants using momentum conservation. In this case we
choose,

sn−1,n = ∑
i

sii − ∑
i<j and (i,j) 6=(n−1,n)

sij. (3.65)

We can easily see that from this we get the additional constraint,

∂sij
sn−1,n = −1. (3.66)

Analogously, we can also derive di�erential operators with respect to non-
vanishing squares of external momenta,

∂sii
=

n−1

∑
k,l=1

αkl p
µ
l ∂p

µ
k
. (3.67)
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3. Differential equations for master integrals

Here we find the constraints

∂sii
skk = δik, (3.68)

∂sii
skl = 0 for (k, l) 6= (n − 1, n), (3.69)

as well as
∂sii

sn−1,n = 1. (3.70)

We can solve these constraints to determine the remaining αkl. Note that these
constraints are not necessarily independent, depending on n it is therefore
possible that some of the αkl remain undetermined after all constraints have
been fulfilled. This is however not a problem as the undetermined coe�cients
will drop out of the di�erential equations after reduction to master integrals.
Therefore, the di�erential equations obtained using this method are unique
even though the di�erential operators are not.

In order to verify the di�erential operators as well as the di�erential equa-
tions obtained with them, one considers the so called dilatation operator D.
The operator is defined as a weighted sum of all di�erential operators with
respect to kinematic invariants and masses,

D = ∑
i

m2
i ∂m2

i
+ ∑

i<j

sij∂sij
+ ∑

i

sii∂sii
, (3.71)

where the sums run over all internal masses mi, all Mandelstam invariants sij as
well as all o�-shell external momentum squares sii respectively. Applying this
operator to an integral yields the mass dimension of that integral by construc-
tion. Since the mass dimension of a given integral is known from dimensional
analysis, this can be used as an important sanity check of the derivation of the
di�erential operators.

Example.
Let us return now to our previous example of the triangle integral family
that we defined in eq. (3.42). The master integrals of this topology are
functions of m as well as s. So far we have determined the di�erential
equations with respect to m2, c.f. eq. (3.58) and eq. (3.59). Now we are in
a position to also determine the di�erential equations with respect to s.

For that we first need to derive a di�erential operator ∂s. In three-point
kinematics we can begin with the general ansatz,

∂s = α11 p
µ
1 ∂p

µ
1
+ α12p

µ
2 ∂p

µ
1
+ α21p

µ
1 ∂p

µ
2
+ α22p

µ
2 ∂p

µ
2
. (3.72)

Next we need to determine the coe�cients α. We start by demanding that
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3.2. Obtaining di�erential equations for master integrals

p1 and p2 be on-shell. This yields the equations,

∂s p2
1 = α12s = 0,

∂s p2
2 = α21s = 0.

(3.73)

Furthermore, we use the definition of s,

∂ss = ∂s(p1 + p2)
2 = s(α11 + α12 + α21 + α22) = 1. (3.74)

Solving these three constraints for e.g. α11, α12 and α21, we find,

α11 =
1 − α22s

s
, α12 = 0, α21 = 0, (3.75)

which yields the di�erential operator,

∂s =
1 − α22s

s
p

µ
1 ∂p

µ
1
+ α22p

µ
2 ∂p

µ
2
. (3.76)

As we can see this di�erential operator still depends on α22, which we
left undetermined since the external kinematics did not yield enough con-
straints to fix all coe�cients. As such this di�erential operator is not
unique. However, as we will see α22 will drop out from the di�erential
equations that we obtain with this operator, so they are unique.

Now we can apply our di�erential operator to the master integrals
in the triangle topology, eq. (3.44). We start with the tadpole integral
I(1, 0, 0),

∂sM1 = 0, (3.77)

which is independent of s as we would expect, as tadpole integrals are
of course independent of the external kinematics due to the translation
symmetry of the loop momentum. The bubble integral I(1, 0, 1) is more
interesting, applying the di�erential operator we find a variety of integrals
with denominators raised to higher powers as well as numerator insertions,

∂s I(1, 0, 1) =

(
1

s
− α22

)
I(2, 0, 0) +

(
2α22 −

1

s

)
I(1,−1, 2)

+ (sα22 − 1) I(1, 0, 2)− α22 I(1, 0, 1).

(3.78)

Not all integrals produced by the di�erentiation are elements of our basis
of master integrals, consequently we need to find reduction identities for
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them,

I(2, 0, 0) =
1 − ǫ

m2
I(1, 0, 0)

I(1,−1, 2) =

(
s(2ǫ − 1)

2(4m2 − s)
+

1

2

)
I(1, 0, 1) +

2(ǫ − 1)

4m2 − s
I(1, 0, 0)

I(1, 0, 2) =
1 − 2ǫ

4m2 − s
I(1, 0, 1) +

(
1 − ǫ

m2s
+

4(ǫ − 1)

s(4m2 − s)

)
I(1, 0, 0).

(3.79)

Using these relations we obtain the di�erential equation with respect to s
for the bubble integral,

∂sM2 = − 2(ǫ − 1)

s(4m2 − s)
M1 +

(
2ǫ − 1

2(4m2 − s)
− 1

2s

)
M2. (3.80)

Analogously, we can also di�erentiate the triangle integral I(1, 1, 1),

∂s I(1, 1, 1) =

(
1

s
− α22

)
I(0, 1, 2) +

(
1

s
− α22

)
I(0, 2, 1)

+

(
2α22 −

1

s

)
I(1, 0, 2) + (sα22 − 1) I(1, 1, 2)− 1

s
I(1, 1, 1).

(3.81)

After IBP reduction this yields the di�erential equation for the triangle
integral,

∂sM3 =

(
1 − ǫ

m2s2
+

4(ǫ − 1)

s2(4m2 − s)

)
M1 +

1 − 2ǫ

s(4m2 − s)
M2 −

1

s
M3. (3.82)

We can observe that the di�erential equations are independent of the un-
determined parameter α22. As such we have obtained a unique system of
di�erential equations for the master integrals of the triangle topology.

Example.
Moving to a slightly more interesting example, we can consider the integral
family of one-loop 4-point integrals, which we defined in eq. (3.8). Recall
that,

Tbox = {Di}i=1...4 = {k2, (k + p1)
2, (k + p1 + p2)

2, (k + p1 + p2 + p3)
2},

(3.83)
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with p2
i = 0 and the usual Mandelstam invariants,

s = (p1 + p2)
2, t = (p2 + p3)

2 and u = (p1 + p3)
2. (3.84)

The Mandelstam invariants are not independent because of momentum
conservation and we have,

s + t + u = 0. (3.85)

We can therefore consider for example s and t as the two independent
variables and derive systems of di�erential equations with respect to them.
One choice of master integrals for the system is

M1 = I(1, 0, 1, 0),

M2 = I(0, 1, 0, 1),

M3 = I(1, 1, 1, 1).

(3.86)

To build the di�erential operator ∂s we start from the general ansatz,

∂s =
3

∑
i,j=1

αij p
µ
j ∂p

µ
i
. (3.87)

After we demand that it respects p2
i = 0 we find,

∂s =

(
2α13 + α22 +

t (α13 + α23)

s
+

s (α22 − α23 + α32 − α33)

t
+

sα32

s + t

)
p

µ
1 ∂p

µ
1

+

(
t

s
+ 1

)
α13p

µ
2 ∂p

µ
1
+ α13 p

µ
3 ∂p

µ
1
− t

s
α23p

µ
1 ∂p

µ
2
+ α22 p

µ
2 ∂p

µ
2
+ α23p

µ
3 ∂p

µ
2

+
t

s + t
α32 p

µ
1 ∂p

µ
3
+ α32p

µ
2 ∂p

µ
3
+ α33p

µ
3 ∂p

µ
3
.

(3.88)

Using the remaining constraints ∂ss = 1 and ∂st = 0 we have exhausted
all independent constraints coming from the external kinematics and find
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the di�erential operator,

∂s =
2
(
s2 (α23 + α32) + 2stα23 + t2α23 + s

)
+ t

2s(s + t)
p

µ
1 ∂p

µ
1

+

(
2α23 + α33 +

tα23 +
1
2

s
+

s (α23 + α33)

t

)
p

µ
2 ∂p

µ
1

+
2s2α23 + 2sα33(s + t) + 2tα23(2s + t) + t

2t(s + t)
p

µ
3 ∂p

µ
1
− t

s
α23 p

µ
1 ∂p

µ
2

− s2 (α23 + α3,2 + α33) + st (2α23 + α33) + t2α23

s(s + t)
p

µ
2 ∂p

µ
2
+ α23p

µ
3 ∂p

µ
2

+
t

s + t
α32p

µ
1 ∂p

µ
3
+ α32p

µ
2 ∂p

µ
3
+ α33p

µ
3 ∂p

µ
3
.

(3.89)

While this di�erential operator may seem a bit unwieldy, we can easily ap-
ply it to the three master integrals in the topology and find the di�erential
equations with respect to s,

∂sMi = As
ijMj, (3.90)

with the system matrix As,

As =




− ǫ
s 0 0

0 0 0
2−4ǫ

s2(s+t)
4ǫ−2

st(s+t)
− s+ǫt+t

s(s+t)


 . (3.91)

We observe that the di�erential equations are independent of the undeter-
mined coe�cients α23, α32 and α33. We could therefore also simply set the
undetermined α to some values in order to simplify the form of the dif-
ferential operator, which would leave the di�erential equations invariant.
Setting α23 = α32 = α33 = 0, we obtain a simpler form for the di�erential
operator,

∂s =
2s + t

2s(s + t)
p

µ
1 ∂p

µ
1
+

1

2s
p

µ
2 ∂p

µ
1
+

1

2(s + t)
p

µ
3 ∂p

µ
1
. (3.92)

In order to find the di�erential equations with respect to t we need
to determine the operator ∂t analogously to the determination of ∂s. ∂t

should also respect the on-shellness of the external particles, so that we
can start from eq. (3.88) and demand that ∂ts = 0 and ∂tt = 1. With that
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3.2. Obtaining di�erential equations for master integrals

we find the di�erential operator

∂t =
s2 (2t (α23 + α32)− 1) + 4st2α23 + 2t3α23

2st(s + t)
p

µ
1 ∂p

µ
1

+

(
2α23 + α33 +

s (2t (α23 + α33)− 1)

2t2
+

tα23

s
− 1

t
)

)
p

µ
2 ∂p

µ
1

+
s2 (2t (α23 + α33)− 1) + 2st (t (2α23 + α33)− 1) + 2t3α23

2t2(s + t)
p

µ
3 ∂p

µ
1

− s2 (t (α23 + α32 + α33)− 1) + st (t (2α23 + α33)− 1) + t3α23

st(s + t)
p

µ
2 ∂p

µ
2

− t

s
α23p

µ
1 ∂p

µ
2
+ α23 p

µ
3 ∂p

µ
2
+

t

s + t
α32 p

µ
1 ∂p

µ
3
+ α32p

µ
2 ∂p

µ
3
+ α33p

µ
3 ∂p

µ
3
.

(3.93)

If we set α23 = α32 = α33 = 0 we find a more compact form,

∂t = − s

2t(s + t)
p

µ
1 ∂p

µ
1
− s + 2t

2t2
p

µ
2 ∂p

µ
1
− s(s + 2t)

2t2(s + t)
p

µ
3 ∂p

µ
1
+

1

t
p

µ
2 ∂p

µ
2
.

(3.94)
Using either form of the operator we obtain the system of di�erential equa-
tions with respect to t,

∂tMi = At
ijMj, (3.95)

with the system matrix At defined as,

At =




0 0 0
0 − ep

t 0
4ǫ−2

st(s+t)
2−4ǫ

t2(s+t)
− ǫs+s+t

t(s+t)


 . (3.96)

To verify the systems of di�erential equations, we consider the dilatation
operator,

D = Ass +Att =




−ǫ 0 0
0 −ǫ 0
0 0 −2 − ǫ


 . (3.97)

As required the dilatation operator is diagonal and its eigenvalues corre-
spond to the mass dimensions of the integrals. We can always simplify such
systems of di�erential equations by making a variable transformation that
rescales all invariants by one particular invariant. In our case for example
we can go from the variables s and t to s and x = t/s. The di�erential
equations in s will become trivial as ∂s is just proportional to the dilatation
operator D and we only need to solve the new di�erential equations for x
which can be obtained using the chain rule. We should also note that the
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3. Differential equations for master integrals

system matrices that we encounter in the calculation of master integrals
are rational functions of ǫ and the kinematic invariants, as we can see
explicitly in this example.

Equipped with tools to obtain any needed di�erential operator, we can now
turn to the process of actually solving di�erential equations.

3.3 Solving di�erential equations

Finding an analytic solution in terms of useful functions is the main problem
of the method of di�erential equations. For a generic system of di�erential
equations,

∂x fi(x) = Aij f j(x), (3.98)

the solution is formally simply

fi(x) =
(
Pe
∫
dxA(x)

)
ij

f j(x0), (3.99)

where P is the path ordering operator and x0 is the point at which we fix the
boundary conditions f j(x0) to specialize the general solutions of the di�eren-
tial equations.

This formal solution displays the two main problems in calculating master
integrals with di�erential equations. One component of the solution is the set
of boundary conditions fi(x0), which need to be determined. This translates
to calculating the master integrals in a certain limit for the kinematic invari-
ant under consideration. For the moment we will not concern ourselves with
boundary conditions, but we will come back to this problem in chapter 4. In-
stead we will focus on solving the actual di�erential equation, this is connected
to the path-ordered exponential that appears in the formal solution e.q. (3.99).
For general system matrices A it is not possible to calculate the path-ordered
exponential. Solving the di�erential equations therefore boils down to bringing
A into a form such that we can actually calculate the path-ordered exponential
as an expansion in the dimensional regular ǫ. Finding such a transformation
of A is of course nothing else then finding a basis transformation,

fi(x) → gi(x) = Tij(x) f j(x). (3.100)

Under this transformation the system matrix A transforms as,

Aij → Ãij =
(

T−1
ik AklTl j − T−1

ik ∂xTkj

)
. (3.101)

The requirements for a transformed system matrix Ã have been formalized by
Henn [77] in his proposition for a so-called canonical form. In the canonical
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3.3. Solving di�erential equations

form the system takes the form,

∂x fi(x) = ǫ ∑
k

A
(k)
ij

x − xk
f j(x). (3.102)

The first advantage of this form is that the dependence of the system matrix
on the dimensional regulator ǫ is drastically simplified. While generic system
matrices can be arbitrary functions of ǫ, in the canonical form ǫ factorizes
completely from the system matrix, i.e. the right hand side of the di�erential
equations is proportional to ǫ, and the coe�cient matrices A(k) in eq. (3.102)
are independent of ǫ. The benefit of this is that the system completely de-
couples in the limit ǫ → 0. This means that the path-ordered exponential in
eq. (3.99) can be trivially solved as an expansion in ǫ,

(
Pe

ǫ
∫
dx ∑k

Ak

x−xk

)

ij

= δij + ǫ
∫ x

x0

dx′ ∑
k

Ak
ij

x′ − xk

+
ǫ2

2

∫ x

x0

dx′ ∑
k

A
(k)
il

x′ − xk

∫ x′

x0

dx′′ ∑
k′

A
(k′)
l j

x′′ − xk′
+ . . . .

(3.103)

The second advantage of the canonical form is the simplification of the depen-
dence on x. A general system matrix can be an arbitrary rational function of
x, while in canonical form, the dependence on x is only in the form of simple
poles at the singular points xk with residue matrices A(k) that are indepen-
dent of x. The integrals that appear in the expansion of the path ordered
exponential are therefore always integrals over dlog forms,

dx

x − xk
= dlog(x − xk), (3.104)

for constant xk. This immediately connects to the definition of the multiple
polylogarithms in eqs. (2.2), (2.12) and (2.14).

It is therefore clear that the solution of a system that has been brought into
canonical form as in eq. (3.102) will be a linear combination of multiple poly-
logarithms of x with alphabet {xk}. Finding the solution of a system of di�er-
ential equations therefore boils down to finding the canonical form, as finding
the actual solution is trivial at this point. Finding the canonical form is less
trivial however. It is clear that not every system can be brought to canonical
form. Unfortunately, it is not necessarily clear a priori whether a given system
can be brought to canonical form or not. Several partial algorithms [76, 77,
158] have been proposed that allow the transformation of certain systems into
canonical form.
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3. Differential equations for master integrals

In particular in the calculation of multiloop amplitudes involving internal
massive lines one finds systems that can not be brought into a canonical form.
Often such systems can only be brought into a form

∂x fi(x) =
(

Aij(x) + ǫBij(x)
)

f j(x). (3.105)

These systems do not decouple in the limit ǫ → 0 for non-vanishing A(x).
Depending on the size of the coupled system the solution lies outside of the
function space of the multiple polylogarithms. For coupled 2 × 2 systems one
expects to find elliptic generalizations of the multiple polylogarithms, i.e. in-
tegrals over punctured surfaces of genus 1. For bigger coupled systems one
expects generalizations on manifolds of higher genus.

3.4 Boundary decomposition

After the functional dependence of the master integrals on the kinematic in-
variants has been obtained by solving the corresponding di�erential equations
one proceeds with the determination of the relevant boundary conditions. The
kinematical solutions are general functions that solve the di�erential equations.
The unknown constants f j(x0) in eq. (3.99) need to be determined to specialize
the general solutions to the concrete physics problem by specifying boundary
conditions.

To analyze these boundary conditions in more detail we consider a system,

fi(x) = ǫ ∑
σ

Aσ
ij

x − xσ
f j(x), (3.106)

with the solution,

fi(x) = Peǫ ∑σ

∫
dx

Aσ
ij

x−xσ f j(x0). (3.107)

We assume that the system has been brought to canonical form to simplify
the discussion. It should be noted however that the analysis of the boundary
conditions also applies to non-canonical systems.

We can freely choose one of the singular points xσ to fix the boundary
conditions. Without loss of generality we choose x0 = 0. We can then expand
the di�erential equations in eq. (3.106) in a Laurent series around x = 0 and
find,

∂x fi(x) = ǫ
A0

ij

x
f j(x) +O(x). (3.108)

In the limit x → 0 the solution of the system is consequently,

fi(x) = x
ǫA0

ij f j(0). (3.109)

The matrix exponential appearing in this solution can be evaluated trivially if
A0 is diagonalizable. This will not be the case in general. It is however possible
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3.4. Boundary decomposition

to compute the Jordan decomposition of A0. The Jordan decomposition of any
matrix A yields two matrices R and J, such that

A = RJR−1. (3.110)

The matrix J is block diagonal with m blocks. Each block corresponds to an
eigenvalue of A. The ith Jordan block J(i) corresponding to an eigenvalue λi

has the dimension ni × ni, so that the ni diagonal entries each contain the
eigenvalue. The elements on the first superdiagonal in each Jordan block are
equal to 1. The diagonal of J contains the eigenvalues of A, as it is the case
for a diagonalized matrix,

J =




J(1) . . . 0

0
. . . 0

0 . . . J(m)


 , J(i) =




λi 1 0 . . . 0

0 λi 1
. . . 0

...
0 . . . λi


 . (3.111)

The transformation matrix R consists of the generalized eigenvectors of A. In
the case that A is diagonalizable, all Jordan Ji blocks have dimension ni = 1
and R consists of the eigenvectors of A, i.e. the Jordan decomposition diago-
nalizes the matrix.

To simplify the di�erential equations in the limit x → 0 we therefore de-
compose A0 into R and J. This yields the system,

∂x fi(x) = ǫ
Rik JklR

−1
l j

x
f j(x). (3.112)

We can now use R to rotate the vector of master integrals fi, defining,

gi(x) = Rij f j(x), (3.113)

to obtain the simplified di�erential equations,

∂xgi(x) = ǫ
Jij

x
gj(x). (3.114)

These di�erential equations permit the simple solution,

~g(x) = exp


ǫ




J(1) . . . 0

0
. . . 0

0 . . . J(m)


 log(x


~g0

=




eǫJ(1) log(x) . . . 0

0
. . . 0

0 . . . eǫJ(m) log(x)


~g0,

(3.115)
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with

eǫJ(i) log(x) = xǫλi




1
log(x)

1! . . .
logni−1(x)
(ni−1)!

0 1
. . . logni−1(x)

(ni−2)!
...

0 . . . 1




. (3.116)

We find therefore that the factors of xǫλi , commonly referred to as integrating
factors [81], appear together with log(x) raised to a power of maximally ni − 1.
Note that these logarithms appear even though the solution is exact in ǫ. Every
constant g0,i is associated with exactly one eigenvalue λi. Conversely, multiple
g0,i can be associated with the same λi.

These constants g0,i can then be used to express the limiting solution of
the original functions fi(x) as

fi(x) = R−1
ij gj(x) = R−1

ik eǫJkj log(x)g0,j. (3.117)

Compared to the starting point in eq. (3.107) we have gained, in that the
limiting solution is now expressed in terms of constants g0,i that are associated
to a single integrating factor xǫλi . Therefore the scaling of each unknown
constant is manifest. This decomposition of the boundary conditions facilitates
the explicit calculation of the unknown boundary constants.

One way of determining the boundary conditions to fix the unknown con-
stants is to analyze the analytic structure dictated by the external kinematics
of a given integral. In practice, the external kinematic configuration often pro-
hibits the presence of certain branch cuts. One famous example is the absence
of branch cuts in the u-channel of planar four-point integrals.

In particular in the presence of phase-space cuts however it becomes nec-
essary to calculate boundary conditions explicitly by evaluating the integral
for a particular kinematic configuration. We will therefore dedicate the next
chapter to the explicit calculation of boundary conditions.
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Computing boundary

conditions for master

integrals

Using the method of di�erential equations the kinematic dependence of a mas-
ter integral can be determined without any explicit reference to the integral
representation. However, for the determination of the boundary conditions
which specialize the general solutions obtained from the di�erential equations
an explicit evaluation of integrals is usually required.

4.1 Feynman integrals

The elementary constituents of multiloop cross sections are multiloop Feyn-
man integrals. After IBP reduction to master integrals we can assume without
loss of generality that all integrals that need to be computed are scalar integrals
of the form

F =
∫ L

∏
ℓ=1

ddkℓ
(2π)d

N

∏
i=1

1

P
νi
i ({k}, {p}, m2

i )
, (4.1)

where L is the number of loops and N the number of propagators. We are
employing conventional dimensional regularization computing in d = 4 − 2ǫ
dimensions in order to regulate the singularities of the integral. Each propaga-
tor Pi can be raised to a power νi. We can see that this integral is over RL

d−1,1
punctured by the Landau singularities of the integrand. One way to map the
integration region to a more manageable manifold is to employ the so-called
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“Schwinger trick”,
1

Aν
=

1

Γ(ν)

∫ ∞

0
dxxν−1e−xA, (4.2)

which holds for ℜ(A) > 0. Applying this replacement to every propagator in
the integrand the integral can be expressed as

F =
N

∏
n=1

1

Γ(νn)

∫ N

∏
j=1

dxjx
νj−1

L

∏
ℓ=1

dkℓ exp

(
−

N

∑
i=1

xiPi({k}, {p}, m2
i )

)
. (4.3)

Wick rotating to Euclidian space by letting,

l0 = ik0, li = ki, (4.4)

we obtain,

F =
N

∏
n=1

1

Γ(νn)
iL
∫ N

∏
j=1

dxjx
νj−1

L

∏
ℓ=1

dlℓ exp

(
N

∑
i=1

xiPi({l}, {p}, m2
i )

)
. (4.5)

The exponential is in general of the form,

exp

(
N

∑
i=1

xiPi({l}, {p}, m2
i )

)
= exp

(
−

L

∑
ij

li Aijlj + 2
L

∑
i

qili + J
)

, (4.6)

where the L× L matrix A, J and the qi can be read o� by rearranging the sum
of the propagators in eq. (4.5). After completing the square in the exponential,
we can use the d dimensional generalization of the Gaussian integral,

∫
ddk

(2π)d
e−αk2

=

[∫
dk

2π
e−αk2

]d

= α−
d
2 (4π)−

d
2 , (4.7)

to perform the integral over the loop momenta and obtain the Schwinger repre-
sentation of the Feynman integral,

F = (4π)−
dL
2 iLeiπ(ν+L) 1

∏
N
i=1 Γ(νi)

∫ ∞

0

N

∏
i=1

dxix
νi−1
i U− d

2 e−
F

U , (4.8)

with ν = ∑
N
i=1 νi. The functions U and F are the well-known Symanzik poly-

nomials [159] defined as,

U = det(A),

F = det(A)

(
L

∑
i,j=1

qi Aijqj −
N

∑
i=1

xim
2
i

)
.

(4.9)
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4.1. Feynman integrals

From here we can obtain the so called Feynman parametrization by selecting
an arbitrary non-empty subset X of the xi and introducing unity as,

∫ ∞

0
dη δ

(

∑
x∈X

x − η

)
. (4.10)

After rescaling all xi by η and performing the integral over η we obtain the
conventional Feynman parametrization,

F = (4π)−
dL
2 (−1)νiL

Γ
(

ν − Ld
2

)

∏
N
i=1 Γ(νi)

∫ ∞

0

N

∏
i=1

dxix
νi−1
i δ

(
1 − ∑

x∈X
x

)
Uν− 1

2 (L+1)d

Fν− 1
2 Ld

.

(4.11)
The fact that the Feynman parameterizations that we obtain this way di�er
only in the argument of the δ-function depending on which subset of the xi we
select to introduce the unity is commonly referred to as the Cheng-Wu theorem.

We can of course also arrive at the Feynman parametrization using the
Feynman trick,

1

AB
=
∫ 1

0
dx

1

(xA + (1 − x)B)2
, (4.12)

which can be generalized to an arbitrary number of propagators,

1

Aν1
1 . . . Aνn

n
=

Γ(ν)

∏
n
i=1 Γ(νi)

∫ 1

0

n

∏
i=1

dxix
νi−1
i

δ (1 − ∑
n
i=1 xi)

(∑n
i=1 xi Ai)

ν

, (4.13)

with ν = ∑
n
i=1 νi. The Cheng-Wu theorem states then that we can replace

the sum over the Feynman parameters xi in the δ-function by an arbitrary
non-empty subset of the xi, provided that we integrate all xi from 0 to ∞. In
practice one almost always uses the Feynman representation to perform calcu-
lations and it is often very useful to place only a single Feynman parameter
in the argument of the δ-function, such that the corresponding integration be-
comes fully localized. The integrals over the remaining Feynman parameters
become then unrestricted, yielding a projective parametrization of the Feyn-
man integral.

The Symanzik polynomials U and F can be read o� from the momentum
representation of the Feynman integral or alternatively can be obtained by
graph-theoretical methods [159–161].

Example.
The canonical example of a Feynman parametrization is the simple one-
loop bubble integral,

F =
∫

ddk

(2π)d

1

(k2)ν1((k + p)2)ν2
. (4.14)
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Using the above procedure we arrive at the Feynman representation,

F = i(−1)ν1+ν2(4π)ǫ−2
(
−p2

)−ν1−ν2−ǫ+2 Γ(ǫ + ν1 + ν2 − 2)

Γ(ν1)Γ(ν2)

×
∫ ∞

0
dx1dx2xν1−1

1 xν2−1
2 (x1 + x2)

ν1+ν2+2ǫ−4δ(1 − x1 − x2).

(4.15)

Using the Cheng-Wu theorem to replace the δ-function with δ(1− x2), the
integration over x2 localizes and we obtain,

F = i(−1)ν1+ν2(4π)ǫ−2
(
−p2

)−ν1−ν2−ǫ+2 Γ(ǫ + ν1 + ν2 − 2)

Γ(ν1)Γ(ν2)

×
∫ ∞

0
dx1xν1−1

1 (1 + x1)
ν1+ν2+2ǫ−4.

(4.16)

The integral over x1 is now just the integral representation of the beta
function,

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
=
∫ ∞

0
dxxa−1(1 + x)−a−b. (4.17)

With that we obtain the result,

F = I(−1)ν1+ν2(4π)ǫ−2
(
−p2

)−ν1−ν2−ǫ+2

× Γ(−ǫ − ν1 + 2)Γ(−ǫ − ν2 + 2)Γ(ǫ + ν1 + ν2 − 2)

Γ(ν1)Γ(ν2)Γ(−2ǫ − ν1 − ν2 + 4)
.

(4.18)

This example illustrates the main principle of projective Feynman integrals,
that one always tries to perform integrals over Feynman parameters in terms
of beta functions. Of course, in practice bringing the integrand to a form that
permits such an integration is not always trivial and we will dedicate a later
chapter to a technique which allows us to always bring integrands into such
forms at the price of introducing auxiliary integrations.

Example.
Another more interesting example is the case of the one-loop triangle with
one o�-shell leg and massive propagators,

F =
∫

ddk

(2π)d

1

(k2 − m2)((k + p1)2 − m2)((k + p1 + p2)2 − m2)
, (4.19)

with p2
i = 0 and (p1 + p2)

2 = s. The Feynman parametrization for this
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integral is,

F = −i(4π)ǫ−2Γ(ǫ + 1)

×
∫ ∞

0
dx1dx2dx3δ(1 − x1 − x2 − x3)

(x1 + x2 + x3)
2ǫ−1

(m2(x1 + x2 + x3)2 − sx1x3)
1+ǫ

.

(4.20)

Here we should note that we are computing in the Euclidian region, where
all scalar products of external momenta are negative. In particular s is
negative, consequently the F polynomial does not have zeroes in the inte-
gration region. Because of the massive propagators, this integral is finite
in dimensional regularization and we can expand in ǫ before performing
the integration. Expanding up to O(ǫ1) we obtain for example,

N F =
∫ ∞

0
dx1dx2dx3

δ(1 − x1 − x2 − x3)

(x1 + x2 + x3)(m2(x1 + x2 + x3)2 − sx1x3)

×
(

1 + ǫ log

(
(x1 + x2 + x3)

2

m2(x1 + x2 + x3)2 − sx1x3

))
,

(4.21)

with
N = ieγǫ(4π)2−ǫ, (4.22)

where γ = −ψ(1) is the Euler-Mascheroni constant. We can simplify
this expression by integrating over the simplex given by δ(1 − x1 − x2 −
x3) rather than integrating projectively. We can furthermore simplify the
expressions by setting m = ms and s = 1. Since we can always restore the
mass dimension of the integral using dimensional analysis we do not lose
any information. Integrating out x3 using the δ-function we find,

N F =
∫ ∞

0
dx1dx2Θ(1 − x1 − x2)

1

m2 − x1(1 − x1 − x2)

×
(

1 + ǫ log(m2 − x1(1 − x1 − x2))
)

.

(4.23)

Next we would like to integrate x2 between 0 and 1− x1 to satisfy the con-
straint. We can perform this integral using our knowledge of the multiple
polylogarithms. Writing

log(m2 − x1(1 − x1 − x2)) = G(0; m − x1(1 − x1))

+ G

(
−m2 − x1(1 − x1)

x1
; x2

)
,

(4.24)
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4. Computing boundary conditions for master integrals

we can see that the integral over x2 can be performed in terms of the
definition of the multiple polylogarithms as iterated integrals over dlog
forms, eq. (2.15). Indeed the primitive with respect to x2 is,

Px2 =
∫

dx2
1

m2 − x1(1 − x1 − x2)

(
1 + ǫ log(m2 − x1(1 − x1 − x2))

)

= G

(
−m2 − x1(1 − x1)

x1
; x2

)
1

x1

(
1 − ǫG

(
0, m2 − x1(1 − x1)

))

− ǫ

x1
G

(
−m2 − x1(1 − x1)

x1
,−m2 − x1(1 − x1)

x1
; x2

)

(4.25)

Next we need to take the appropriate limits of the primitive Px2 . Since P
does not contain any MPLs of the form G(0, . . . , 0; x2) the limit

lim
x2→0

Px2 = 0, (4.26)

vanishes. The interesting limit is the upper bound of the integration, where
we obtain

lim
x2→1−x1

Px2 = −
G
(

1−t
2 ; x1

)
+ G

(
1+t

2 ; x1

)

x1

+ ǫ
1

x1

[
(G (1; t)− 2G (0; 2)) G

(
1 − t

2
; x1

)

− 2G (0; 2) G

(
t + 1

2
; x1

)
+ G (1; t) G

(
t + 1

2
; x1

)

+ G (−1; t)

(
G

(
1 − t

2
; x1

)
+ G

(
1 + t

2
; x1

))

+ G

(
1 − t

2
,

1 − t

2
; x1

)
+ G

(
1 − t

2
,

1 + t

2
; x1

)

+ G

(
1 + t

2
,

1 − t

2
; x1

)
+ G

(
1 + t

2
,

1 + t

2
; x1

)]
.

(4.27)

Here we have defined,

m2 =
1

4
(1 − t2), (4.28)

to factor the square root appearing, and used the coproduct calculus to
bring all MPLs into canonical form with respect to x1. This enables us to
perform the remaining integration over x1. Once again we first determine

78



4.1. Feynman integrals

the primitive and find,

Px1
=
∫

dx1

(
lim

x2→1−x1

Px2 − lim
x2→0

Px2

)
= −G

(
0,

1 − t

2
; x1

)

− G

(
0,

1 + t

2
; x1

)
+ ǫ

[
(G (1; t)− 2G (0; 2)) G

(
0,

1 − t

2
; x1

)

− 2G (0; 2) G

(
0,

1 + t

2
; x1

)
+ G (1; t) G

(
0,

1 + t

2
; x1

)

+ G (−1; t)

(
G

(
0,

1 − t

2
; x1

)
+ G

(
0,

1 + t

2
; x1

))

+ G

(
1 − t

2
,

1 − t

2
; x1

)
+ G

(
1 − t

2
,

1 + t

2
; x1

)

+ G

(
1 + t

2
,

1 − t

2
; x1

)
+ G

(
1 + t

2
,

1 + t

2
; x1

)]
.

(4.29)

The limit,
lim

x1→0
Px1

= 0, (4.30)

vanishes simply, so that the upper limit immediately yields the final result
of our calculation,

N F =
1

2
(iH−1 + iH1 + π)2 + ǫ

[
− H1

(
2H0,−1 + 2H1,−1 − 2H1,0

+ H1

(
2H0 − 2 log(2)

)
− 9ζ2

)
− 1

3
H1

(
6H0,−1 + 6H1,−1 − 6H1,0

+ H1

(
H1 + 3 log(2)

)
+ 9ζ2

)
+

1

3
H3
−1 − log(2)H2

−1 + 6 log(2)ζ2 + 7ζ3

− 4
(

H0,−1,−1 + H1,−1,−1 − H1,0,−1 − H1,1,−1 + H1,1,0

)

+
1

2
iπ
(

H2
1 − H2

−1 − 2
(
2H0 + H1

)
H−1 + 4

(
H0,−1 + H1,−1 − H1,0

))
]

.

(4.31)

The result can be written in terms of HPLs of t; we have suppressed the
arguments of the HPLs, writing e.g. H1,−1 for H(1,−1; t).
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4. Computing boundary conditions for master integrals

4.2 Phase-space integrals

Apart from loop integrals, the determination of boundary conditions for the
master integrals appearing in a cross section calculation also involves phase-
space integrals.

Phase-space integrals are integrals over the unresolved degrees of freedom
of the real physical particles in the final-state. As such they are inherently
more complicated then loop integrals since the integrals need to preserve the
fact that the particles in the final state are on-shell and physical. Ignoring
total momentum conservation for the moment, the integral over the physical
degrees of freedom of a single real particle in the final-state can be written as

∫
dd p

(2π)d−1
δ+(p2 − m2) =

∫
dd p

(2π)d−1
δ(p2 − m2)Θ(p0). (4.32)

The δ-function guarantees here that the particle is on-shell, while the Θ-function
selects the physical positive energy solution. In addition to the constraints for
a single particle to be physical, the integral over the phase-space also needs to
respect the conservation of total momentum.

We will focus here on a specific set of phase-space integrals, namely phase
space integrals with one massive particle and N − 2 massless particles in the
final-state that are produced by 2 massless particles in the initial-state. We de-
note the momenta of the initial-state particles by q1 and q2 and the momenta
of the massless final-state particles by q3, . . . qN. The massive particle is sugges-
tively denoted by qH. Just as in the case of loop integrals, we use dimensional
regularization to regulate any divergences. Consequently, all momenta qi are
d-dimensional. The phase-space integration measure can then be written as,

dΦN−1(qH, q3, . . . , qN, m2, s, d)

= (2π)dδ(d)(q12 − qH − q3...N)
ddqH

(2π)d−1
δ+(q2

H − m2)
N

∏
j=3

ddqj

(2π)d−1
δ+(q2

j ).

(4.33)

Here δ(d) is a d-component delta function, which implements total momentum
conservation. We can see that after integration the phase integral only depends
on s and m2. We can therefore define one ratio

z =
m2

s
z̄ = 1 − z, (4.34)

that parametrizes the kinematic dependence of the phase-space integrals. We
also use the notation,

qi...k = qi + · · ·+ qj. (4.35)

The momenta qi are rescaled momenta, so that,

qi =

{ √
spi, if i = 1, 2,√
sz̄pi, if i = 3, . . . , N.

(4.36)
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4.2. Phase-space integrals

We can employ total momentum conservation to localize one of the integra-
tions. We will use this to eliminate the integration over the massive momentum
at this stage. This has the benefit that all remaining integrations, which will re-
quire a parametrization of the integration domain, are over massless momenta.
Performing the integral over qH we obtain,

dΦN−1(qH, q3, . . . , qN, m2, s, d)

= (2π)
N

∏
j=3

ddqj

(2π)d−1
δ+(q2

j )δ
+
(
(q3...N − q12)

2 − m2
)

.
(4.37)

Here we can see that the N − 2 integrations over the massless momenta are not
independent. Instead the phase-space integral is an integral over the algebraic
variety given by,

q2
j = 0 ∀j ∈ {3, . . . , N}

(q2
3...N − q12)

2 = m2.
(4.38)

In order to perform this integral, we thus need to find some parametrization
of these constraints. One way of parametrizing is to go from integrals over the
components of the momenta to integrals over the Lorentz invariants,

sij = (qi + qj)
2. (4.39)

To arrive at such a parametrization, we start by splitting the momenta into
longitudinal and transverse components qi = (qi,0, qi,z, qi,⊥), so that qi,⊥ is the
(d− 2)-dimensional transverse component of the momentum. This separation
is defined by Lorentz-boosting to a frame in which the longitudinal axis is
defined by the initial state momenta,

q1 =
1

2
(1, 1, 0, . . . , 0) and q2 =

1

2
(1,−1, 0, . . . , 0). (4.40)

The integration measure for a single momentum then becomes

ddqiδ
+(q2

i ) = dqi,0dqi,zd
d−2qi,⊥Θ(qi,0)δ(q

2
i,0 − q2

i,z − q2
i,⊥). (4.41)

In this frame the t-channel (i ≥ 3) invariants take a particularly simple form

s1i = (q1 − qi)
2 = −2q1qi = −(qi,0 − qi,z),

s2i = (q2 − qi)
2 = −2q1qi = −(qi,0 + qi,z).

(4.42)

We can invert this relation and express the components of the momentum in
terms of the invariants as

qi,0 = −1

2
(s1i + s2i)

qi,z = −1

2
(s1i − s2i).

(4.43)
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4. Computing boundary conditions for master integrals

Because of q2
i = 0 we also have,

q2
i,⊥ = s1is2i. (4.44)

The s-channel invariants (i, j ≥ 3) can be written as,

sij = q2
ij = 2qi · qj = 2

(
qi,0qj,0 − qi,zqj,z − qi,⊥ · qj,⊥

)

= (s1is2j + s1js2i)− 2qi,⊥ · qj,⊥.
(4.45)

In this parametrization we can write the measure for a single particle as,

d2qiδ
+(q2

i ) =
1

2
dd−2qi,⊥ds1ids2iΘ(−s1i)Θ(−s2i)δ(s1is2i − q2

i,⊥), (4.46)

so that the phase-space measure becomes,

dΦN−1 = 23−Nπ

N

∏
i=3

dd−2qi,⊥
(2π)d−1

ds1ids2iΘ(−s1i)Θ(−s2i)δ(s1is2i − q2
i,⊥)δ

+
(
(q2

3...N − q12)
2 − m2

)
.

(4.47)

Next we would like to rewrite the integral over the transverse components of
the momenta. Here, we note that any matrix element that will be integrated
over the phase-space is only a function of the Lorentz invariants sij. As such,
the integrand, as well as the measure above, are invariant under rotation in
the (d − 2)-dimensional transverse space. We can therefore exploit the fact
that rotationally invariant integrals of the form,

I =
∫ N

∏
i

ddqi f (qi · qj), (4.48)

can be rewritten, making the integration over the scalar products manifest,

I = 2−N
∫ N

∏
i=1

Ωd+1−i

i

∏
j=1

d(qi · qj)G(q1, . . . , qN)
d−N−1

2 Θ(G(q1, . . . , qN)) f (qi · qj).

(4.49)
Here we have use the Gram determinant G of the vectors qi which is defined
as,

G(q1, . . . , qN) = det(qi · qj)i≤i,j≤N . (4.50)

Furthermore, we have the d-dimensional volume,

Ωd =
2π

d
2

Γ
(

d
2

) . (4.51)
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4.2. Phase-space integrals

We can use this relation to rewrite the integral over the (d − 2) transverse
components of the momenta in terms of scalar products,

N

∏
i=3

dd−2qi,⊥ = 22−N
N

∏
i=3

Ωd+1−i

×
i

∏
j=3

d(qi,⊥ · qj,⊥)G(q3,⊥, . . . , qN,⊥)
d−N−1

2 Θ(G(q3,⊥, . . . , qN,⊥))

(4.52)

The integration over the scalar products qi,⊥ · qj,⊥ can be related to the s-
channel invariants using eq. (4.45),

N

∏
i=3

i

∏
j=3

d(qi,⊥ · qj,⊥) = (−2)
(N−2)(N−3)

2

[
N

∏
i=3

dq2
i,⊥

] [

∏
3≤i<j≤N

dsij.

]
(4.53)

Here we can perform the integral over the modulus of the transverse compo-
nents using the on-shell delta functions, eq. (4.46), to arrive at

N

∏
i=3

ddqiδ
+(q2

i ) = (−1)
(N−2)(N−3)

2 26−3N− (N−2)(N−3)
2

×
[

N

∏
i=3

Ωd+1−i

]

 ∏

1<i,j,N
i 6=j,(i,j) 6=(1,2)

dsij


G(q1, . . . , qN)

d−N−1
2 Θ(G(q1, . . . , qN)).

(4.54)

By definition, as the gram determinant only depends on scalar products, we
can make the parametrization manifestly a function of the Mandelstam invari-
ants by writing,

GN({sij}) = G(q1, . . . , qN) = det(s1is2j + s1js2i − sij)3≤i,j≤N . (4.55)

With this we finally arrive at the phase-space measure,

dΦN−1 = NN−2


 ∏

1<i,j,N
i 6=j,(i,j) 6=(1,2)

dsij


 δ(m2 −

N

∑
i=3

(s1i + s2i) +
N

∑
i=3

i

∑
j=3

sij)

×GN({sij})
d−N−1

2 Θ(GN({sij})),

(4.56)

with

NN−2 = (−1)
(N−2)(N−3)

2 2−(N−2) d
2 (2π)(N−1)−(N−2)d

N

∏
i=3

Ωd−i+1. (4.57)
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4. Computing boundary conditions for master integrals

The goal is to use this expression for the phase-space measure to compute
boundary conditions for the solutions obtained from solving from di�erential
equations. This means that we actually only need to perform the phase-space
integral in a certain kinematic limit. We want to fix the boundary conditions in
the soft limit z̄ → 0. In this limit all radiation is soft. We can adapt our phase-
space parametrization to make this limit manifest by rescaling the momenta
as

qi → qi z̄ ∀i ∈ {3, . . . , N}. (4.58)

This implements the fact that the massless particles in the final-state will be
suppressed in the soft limit. In this parametrization the phase-space measure
becomes,

dΦN−1 = NN−2z̄(N−2)(d−2)−1


 ∏

1<i,j,N
i 6=j,(i,j) 6=(1,2)

dsij




× δ(1 −
N

∑
i=3

(s1i + s2i) + z̄
N

∑
i=3

i

∑
j=3

sij)GN({sij})
d−N−1

2 Θ(GN({sij})).

(4.59)

Note that we have not yet taken any limit at this point. However, we can see
how the phase-space will be simplified if we do actually take the limit z̄ → 0.
The momentum conservation δ-function which couples the s-channel and t-
channel invariants to each other will be simplified in the limit z̄ → 0.

4.3 Mellin-Barnes techniques

Using Feynman parametrization and the phase-space measure derived before,
we can obtain integral representations for any required combination of loop
and phase space integrals. However, we realize that it quickly becomes tedious
if not impossible to actually perform the required integrals. We would therefore
like to have a systematic way of simplifying the integrands so that we are able
to perform the integrals.

The most powerful technique for achieving this are the so-called Mellin-
Barnes (MB) integrals. Mellin-Barnes integral representations can be intro-
duced using the basic identity,

(x + y)λ =
∫ c+i∞

c−i∞

dω

2πi
xωyλ−ω Γ(−ω)Γ(ω − λ)

Γ(−λ)
. (4.60)

The integral over the Mellin-Barnes variable ω is defined as a contour integral
along a contour parallel to the imaginary axis which separates the poles of
Γ(−ω) from the poles of Γ(ω − λ). Using Cauchy’s theorem the integral can
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4.3. Mellin-Barnes techniques

be performed by taking either series of residues and summing them. Γ(−ω)
has poles at ω = n ∀ n ∈ N0, while Γ(ω −λ) has poles at ω = −n+λ ∀ n ∈
N0. We can therefore take, for example, the residues of Γ(−ω) and obtain,

∫ c+i∞

c−i∞

dω

2πi
xωyλ−ω Γ(−ω)Γ(ω − λ)

Γ(−λ)
=

∞

∑
n=0

(−1)nxnyλ−n Γ(n − λ)

n!Γ(λ)
. (4.61)

This sum over the residues is nothing but a generalization of the binomial sum.
The power of the Mellin-Barnes representation lies in the fact that it enables
us to split polynomials of integration variables into monomials at the cost of
introducing additional integrations over the Mellin-Barnes variables.

One important identity that can be used to performMellin-Barnes integrals
is called Barnes’ first lemma. It states that

∫ c+i∞

c−i∞

dω

2πi
Γ(α + ω)Γ(β + ω)Γ(γ − ω)Γ(δ − ω)

=
Γ(α + γ)Γ(α + δ)Γ(β + γ)Γ(β + δ)

Γ(α + β + γ + δ)
,

(4.62)

for a contour that separates the poles of the Γ-functions with argument (. . . −
ω) from the ones of the Γ-functions with argument (. . . + ω). This can be
used to perform Mellin-Barnes integrals without having to explicitly sum over
residues. This lemma as well as corollaries thereof have been implemented
in the Mathematica package barnesroutines [162], which enables their auto-
matic detection and application.

Mellin-Barnes representations can also be used to obtain series expansions
by only summing over finitely many residues.

Example.
Consider

(1 + ξ)−2 =
∫

dω

2πi
ξ−ω−2Γ(−ω)Γ(ω + 2). (4.63)

Γ(−ω) has poles at ω = 0, 1, . . . , while Γ(ω + 2) has poles at ω =
−2,−3, . . . . We can obtain a series in ξ by taking the residues of Γ(ω + 2)
and summing up to finite order, e.g.

(1 + ξ)−2 =
2

∑
n=0

(−1)−nξn Γ(n + 2)

n!
+O(ξ3) = 1 − 2ξ + 3ξ2 +O(ξ3).

(4.64)
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Alternatively, we can obtain a series in ξ−1 by taking the residues of Γ(−ω)

(1+ ξ)−2 =
2

∑
n=0

(−1)−nξ−2−n Γ(n + 2)

n!
+O

(
ξ−5
)
=

1

ξ2
− 2

ξ3
+

3

ξ4
+O

(
ξ−5
)

.

(4.65)

Example.
As an example of the usefulness of the Mellin-Barnes integral, we can
revisit the one-loop triangle with one o�-shell leg and massive propagators,
eq. (4.19). Recall that we had the Feynman parametrization,

F = −i(4π)ǫ−2Γ(ǫ + 1)

×
∫ ∞

0
dx1dx2dx3δ(1 − x1 − x2 − x3)×

(x1 + x2 + x3)
2ǫ−1

(m2(x1 + x2 + x3)2 − sx1x3)
1+ǫ

.

(4.66)

We can simplify this by introducing a Mellin-Barnes integral as,

(
m2(x1 + x2 + x3)

2 − sx1x3

)−1−ǫ
=
∫ c+i∞

c−i∞

dω

2πi

Γ(−ω)Γ(ω + 1 + ǫ)

Γ(1 + ǫ)

× (−s)−ω−1−ǫ(m2)ωx−ω−1−ǫ
1 x−ω−1−ǫ

3 (x1 + x2 + x3)
2ω.

(4.67)

Using the Cheng-Wu theorem to localize the integration over x2 we arrive
at,

F = −i(4π)ǫ−2
∫ c+i∞

c−i∞

dω

2πi

∫ ∞

0
dx1dx2Γ(−ω)Γ(ω + 1 + ǫ)

× (−s)−ω−1−ǫ(m2)ωx−ω−1−ǫ
1 x−ω−1−ǫ

3 (1 + x1 + x3)
2ω+2ǫ−1.

(4.68)

As the integration over the remaining Feynman parameters is projective,
we can rescale x1 → x1(1 + x3) and find,

F = −i(4π)ǫ−2
∫ c+i∞

c−i∞

dω

2πi

∫ ∞

0
dx1dx2

Γ(−ω)Γ(ω + 1 + ǫ)

Γ(1 + ǫ)

× (−s)−ω−1−ǫ(m2)ωx−ω−1−ǫ
1 x−ω−1−ǫ

3 (1 + x1)
2ω+2ǫ−1(1 + x3)

ω+ǫ−1.

(4.69)

We recognize that the integrals over x1 and x3 are now just beta functions
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and obtain the Mellin-Barnes representation of the triangle integral,

F = −i(4π)ǫ−2
∫ c+i∞

c−i∞

dω

2πi
(−s)−ω−1−ǫ(m2)ω

× Γ(−ω)Γ(−ω − ǫ)2Γ(ω + 1 + ǫ)

Γ(−2ω + 1 − 2ǫ)
.

(4.70)

What remains to be done is to perform the integral over the Mellin-Barnes
variable ω. We should therefore inspect the pole structure of the Γ func-
tions. Γ(−ω) has poles at ω = 0, 1, . . . , while Γ(−ω − ǫ) has poles at
ω = 0 − ǫ, 1 − ǫ . . . . On the other side we have the poles of Γ(ω + 1 + ǫ)
at ω = −1 − ǫ,−2 − ǫ, . . . . A contour somewhere in the interval (−1, 0)
will therefore separate the poles of the Γ-functions with −ω in the argu-
ment from the poles of the Γ-functions with +ω in the argument. The sim-
plest way to evaluate the integral is therefore to take and sum the residues
of Γ(ω + 1 + ǫ),

F = −i(4π)ǫ−2
∞

∑
n=0

(−1)n(−s)n(m2)−n−1−ǫ Γ(n + 1)2Γ(n + 1 + ǫ)

n!Γ(2n + 3)
.

(4.71)

We recognize this sum to be similar to the sum representation of the hy-
pergeometric function 3F2,

3F2

[
a1 a2 a3

b1 b2
; z

]
=

∞

∑
n=0

(a1)n(a2)n(a3)n

(b1)n(b2)n

zn

n!
, (4.72)

with

(a)n =
Γ(a + n)

Γ(a)
. (4.73)

Using this representation we find,

F = − i

2
(4π)ǫ−2(m2)−1−ǫΓ(1 + ǫ)3F2

[
1 1 1 + ǫ

3
2 2

;
s

4m

]
. (4.74)

While the calculation of the triangle with Mellin-Barnes techniques arrives
at a very compact result, it also illustrates two problems with using Mellin-
Barnes integrals in this way. For one, the sums appearing when taking the
residues will quickly become very complicated so that bringing them into a
form where one can recognize a generalized hypergeometric function can be
very involved. Furthermore, after one has obtained such a hypergeometric
function, the work is not really done yet. Ultimately, we are interested in
solutions for ǫ → 0 and not in solutions for arbitrary ǫ. We need to therefore
expand the result into a Laurent series in ǫ. Simple hypergeometric functions
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like 2F1 or the 3F2 in the example can be easily expanded and algorithms to
obtain the series are implemented e.g. in the package HypExp [163]. However,
for more complicated functions there is often no direct way of obtaining a
series expansion.

It would therefore be very beneficial if we could immediately obtain a Lau-
rent series in ǫ from the Mellin-Barnes integral without having to find hyperge-
ometric function first. In this particular example, we could have just expanded
the integrand in ǫ at any stage, since the integral is finite in d = 4, and we did
so in our first calculation of the triangle. However, in general, we would also
like to be able to obtain Laurent series in ǫ for integrals that are divergent in
d = 4. Mellin-Barnes integrals provide a canonical way of finding the Laurent
series of such integrals. This requires however that we take some care when
trying to find the contour that defines the Mellin-Barnes integral.

The problem of finding a valid contour that allows us to expand the inte-
gral in ǫ can be illustrated when computing a divergent integral using Mellin-
Barnes techniques.

Example.
Consider the one-loop massless scalar box integral,

F =
∫

ddk

(2π)d

1

k2(k + p1)2(k + p1 + p2)2(k + p1 + p2 + p3)2
, (4.75)

with

p2
i = 0, (p1 + p2)

2 = s, (p1 + p3)
2 = u, (p2 + p3)

2 = t, s+ t+u = 0.
(4.76)

We can easily obtain the Feynman parametrization,

F = i(4π)ǫ−2Γ(2 + ǫ)
∫ ∞

0
dx1dx2dx3(1 + x1 + x2 + x3)

2ǫ

× ((−s)x1x3 + (−t)x2)
−2−ǫ,

(4.77)

where we have already used the δ-function to localize the integral over x4.
Rescaling x1 → x1x2 and afterwards x2 → x2

1+x3
1+x1

, the integration over x2

factorizes,

F = i(4π)ǫ−2Γ(2 + ǫ)

×
∫ ∞

0
dx1dx2dx3x−1−ǫ

2 (1 + x1)
ǫ(1 + x2)

2ǫ(1 + x3)
ǫ((−s)x1x3 − t)−2−ǫ,

(4.78)
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and can be performed in terms of a beta function,

F = i(4π)ǫ−2 Γ(−ǫ)2Γ(2 + ǫ)

Γ(−2ǫ)

×
∫ ∞

0
dx1dx3(1 + x1)

ǫ(1 + x3)
ǫ((−s)x1x3 − t)−2−ǫ.

(4.79)

Here we can introduce a Mellin-Barnes integral,

((−s)x1x3 − t)−2−ǫ =
∫ c+i∞

c−i∞

dω

2πi

× Γ(−ω)Γ(ω + 2 + ǫ)

Γ(2 + ǫ)
(−s)ω(−t)−ω−2−ǫxω

1 xω
3 ,

(4.80)

which will allow us to perform the integrations over x1 and x3 in terms of
beta functions,

F = i(4π)ǫ−2
∫ c+i∞

c−i∞

dω

2πi
(−s)ω(−t)−ω−2−ǫ

× Γ(−ω)
Γ(ω + 1)2Γ(−ω − 1 − ǫ)2Γ(ω + 2 + ǫ)

Γ(−2ǫ)
.

(4.81)

When we try to find a straight line contour that will allow us to separate
the poles of the Γ-functions with −ω in the argument from the poles of the
ones with +ω in the argument we notice that the contour will now depend
on ǫ because the arguments of the Γ-functions depend on ǫ. What is more
surprising at first sight is that we have to choose a contour where ǫ is finite.
For ǫ = −1 for example, we will be able to separate the poles by choosing
c = − 1

2 . For ǫ = 0 we will not be able to separate the poles, as the poles
of Γ(1 + ω) and Γ(−1 − ω − ǫ) will coincide for ǫ → 0. This is of course
a slight problem since we would like to know the value of the integral for
ǫ → 0 rather then ǫ = −1. However, this is nothing but ǫ regulating
divergences of the integral. All this means is that we have found a value
of ǫ that makes the integral finite, and we can now analytically continue
to ǫ → 0 which will yield the result we want.

We would therefore like to have a way to analytically continueMellin-Barnes
integrals. This problem has been studied extensively in the literature [164–166],
and there are several algorithms to perform the analytic continuation that have
been automated in the Mathematica packages MB [167] and MBresolve [168].
The goal of the procedure is to find a straight line contour parallel to the
imaginary axis that separates the poles as required for ǫ → 0. The starting
point is a contour that separates the poles for finite ǫ. When we now gradually
take ǫ → 0 some poles will move towards the contour and at some point a
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4. Computing boundary conditions for master integrals

pole will cross the contour. Since we need the pole to be on the correct side
of the contour we would have to deform the contour at this stage to prevent
the pole from crossing. Alternatively, we can keep a straight line contour by
taking the residue of the pole rather than deforming the contour. This way
we will take the residues of several poles that are about to cross the contour
when we take ǫ to zero. When all critical poles have been treated this way we
obtain a Mellin-Barnes representation which is valid for ǫ → 0. At this stage
we are allowed to expand in ǫ and obtain a Mellin-Barnes representation for
the Laurent series in ǫ of the integral.

Example.
Returning to our previous example, the critical Γ-function in eq. (4.81) is

Γ(−ω − 1 − ǫ), (4.82)

with our starting contour of c = − 1
2 for ǫ = −1 the pole of this Γ-function

at ω = −ǫ − 1 will cross the contour when we take ǫ to zero. We therefore
need to take the residue at this pole. No further poles will cross the contour,
which means that we obtain the analytic continuation of the Mellin-Barnes
integral which is valid for ǫ → 0,

F = −i(4π)ǫ−2 (F1 +F2) , (4.83)

with

F1 =
2(−s)−1−ǫΓ(1 − ǫ)2Γ(1 + ǫ)

tΓ(1 − 2ǫ)ǫ

×
(

log(−s)− log(−t) + 2ψ0(1 − ǫ)− ψ0(1 + ǫ) + γ +
2

ǫ

)
,

(4.84)

with the digamma function ψ0(z) = ∂z log(Γ(z)) and,

F2 = − 1

Γ(−2ǫ)

∫ 1/2+i∞

−1/2+i∞

dω

2πi

× Γ(−ω)Γ(1 + ω)2Γ(−ω − 1 − ǫ)2Γ(ω + 2 + ǫ)(−s)ω(−t)−ω−2−ǫ.

(4.85)

F1 is the residue at ω = −ǫ − 1 that fully localizes the integration over
the Mellin-Barnes variable. Consequently, we can easily expand F1 into a
Laurent series in ǫ. F2 is the same integral as before, however, now we
have chosen a definite contour for the ω integration. We can therefore now
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expand in ǫ under the integration. Expanding up to order ǫ we find,

F2eγǫ = 2ǫ
∫ 1/2+i∞

−1/2−i∞

dω

2πi

ω3

1 + ω
(−s)ω(−t)−ω−2Γ(−ω)3Γ(ω)3. (4.86)

Here we can easily take the residues of Γ(−ω) at ω = −n and sum them,

F2eγǫ = ǫ
∞

∑
n=0

(−1)−n (−s)n(−t)−2−n

(n + 1)3

× (−2(1 + n) log(−s)((1 + n) log(−t) + 1)

+(1 + n)2 log2(−s) + (1 + n)2 log2(−t)

+2(1 + n) log(−t) + (1 + n)2π2 + 2
)

.

(4.87)

Using the method outlined above we can expand Mellin-Barnes integrals
into Laurent series in ǫ and obtain sum representations for the coe�cients.
The remaining task is then to perform the sums in terms of useful functions.
The types of sums that appear when summing over residues of Mellin-Barnes
integrals that have been expanded in ǫ are Euler-Zagier sums as well as general-
izations thereof [169, 170]. Euler-Zagier sums can be defined as generalizations
of harmonic sums

Zi1,...,ik(x1, . . . , xk; n) = ∑
n1>···>nk≥1

xn1
1

ni1
1

. . .
x

nk
k

n
ik
k

. (4.88)

These sums have a rich mathematical structure, e.g. they carry a quasi-shu�e
algebra structure. From the definition it is obvious that the Z sums satisfy the
recursion,

Z
i~j
(x,~y; n) =

n

∑
k=1

xk

ki
Z~j(~y; n − 1), (4.89)

where the vector notation abbreviates a (possibly empty) set of indices and
arguments. As starting point of the recursion one defines,

Z(; n) = 1. (4.90)

Using the recursive definition it is possible to iteratively sum over sets of
residues obtained from Mellin-Barnes integrals.

If the upper limit of summation tends to infinity the Z sums degenerate
to the sum representation of the multiple polylogarithms, eq. (6.77), or for
xi = ±1 to the colored multiple zeta values, eq. (2.28). This can be used to
express the result of summing over the residues of a Mellin-Barnes integral in
terms of well-known functions and constants.
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Example.
Returning to our example, we can now perform the sums appearing in
eq. (4.87) and obtain the final result,

Fi(4π)2−ǫeγǫst =
4

ǫ2
− 2

ǫ
(log(−s) + log(−t))− 2 log(−s) log(−t)

+
ǫ

6

[
− 12H0,0,1 − 12 (log(−s)− log(−t)) H0,1

− 2 log2(−s) (log(−s)− 3 log(−t))− 6ζ2(7 log(−s) + log(−t))

− 6
(
(log(−s)− log(−t))2 + 6ζ2

)
H1 + 68ζ3

]
,

(4.91)

where the argument
(
−−s

−t

)
of the HPLs H has been suppressed, i.e. H0,1 =

H
(
0, 1;−−s

−t

)
.

From Mellin-Barnes integrals to parametric integrals

Mellin-Barnes techniques in the form presented above transform the problem
of calculating integrals to the problem of evaluating nested sums. While these
sums can be easily performed in many simple cases, the e�ort required for
more interesting integrals is impractical. It would therefore be preferable if
the problem could be formulated in terms of the more familiar language of
integrals. One way to achieve this is to map the Mellin-Barnes integrals back
to certain parametric integrals, which is possible for balanced Mellin-Barnes
integrals.

Roughly speaking, a MB integral is said to be balanced if for each Mellin-
Barnes variable zi the number of Γ functions of the form Γ(. . .− zi) is equal to
the number of Γ functions of the form Γ(. . . + zi). More precisely, the integral,

∫ +i∞

−i∞

dzi

2πi

n+

∏
k1=1

Γ(ak1
+ zi)

αk1

n−

∏
k2=1

Γ(bk2
− zi)

βk2 , αki
, βki

∈ Z, (4.92)

is said to be balanced if ∑
n+
k1

αk1
= ∑

n−
k2

βk2
, where n+ (n−) is the number

Γ-functions with argument . . . + zi (. . . − zi). We assume in the following that
the contours are straight vertical lines such that the real parts of the arguments
of all the Γ-functions are positive1.

In that case we can always derive an Euler-type integral representation for
the MB integral. We start by noting that if an integral is balanced, then we

1Note that in dimensional regularization we might need to require ǫ to be finite for such
a contour to exist.
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can always express its integrand as a product of Beta functions,

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
=
∫ ∞

0
dttx−1(1 + t)−x−y. (4.93)

The integral (4.93) is convergent whenever Re(x), Re(y) > 0. It is easy to
convince oneself that this condition is satisfied whenever the real parts of all
arguments of the Γ-functions are positive in the original MB integral. We can
therefore replace each Beta function by its integral representation (4.93) in the
integrand of the MB integral and, because all the integrals are convergent, we
can exchange the MB integrations and the integrations coming from the Beta
functions. This leaves us with an integral of the form

∫ ∞

0

(
N

∏
n=1

dti

)
R0(~t)Rǫ(~t)

ǫ
∫ +i∞

−i∞

M

∏
m=1

dzi

2πi
Ri(~t)

zi , (4.94)

where ~t = (t1, . . . , tN) and the Rk are ratios of products of the ti and 1 + ti.
Next, we would like to perform the MB integrations. This can be done using
the formula, ∫ z0+i∞

z0−i∞

dz

2πi
az = δ(1 − a), a > 0. (4.95)

Indeed, parametrizing the contour as z = z0 + it, we obtain,

∫ z0+i∞

z0−i∞

dz

2πi
az = az0

∫ +∞

−∞

dt

2π
eit ln a = az0δ(ln a) = δ(1 − a). (4.96)

Equation (4.94) can thus be written in the form,

∫ ∞

0

(
N

∏
n=1

dti

)
R0(~t)Rǫ(~t)

ǫ
M

∏
m=1

δ
(
1 − Ri(~t)

)
. (4.97)

We can solve the δ constraints, and the result is the desired parametric integral.

Example.
Consider Barnes’ first lemma, i.e., we consider the integral,

I =
∫ +i∞

−i∞

dz

2πi
Γ(a + z)Γ(b + z)Γ(c − z)Γ(d − z). (4.98)

We assume that the integration contour and a, b, c and d are such that the
real parts of all Γ functions are positive. We rewrite the integrand in terms
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of Beta functions,

I
Γ(a + c)Γ(b + d)

=
∫ +i∞

−i∞

dz

2πi
B(a + z, c − z)B(b + z, d − z)

=
∫ +i∞

−i∞

dz

2πi

∫ ∞

0
dt1dt2ta+z−1

1 (1 + t1)
−a−ctb+z−1

2 (1 + t2)
−b−d

=
∫ ∞

0
dt1dt2ta−1

1 (1 + t1)
−a−ctb−1

2 (1 + t2)
−b−dδ(1 − t1t2),

(4.99)

where the last step follows from eq. (4.95). Solving the δ-function constraint
leads to a one-fold integral that can immediately be recognized as a Beta
function, and we recover the usual form of Barnes’ first lemma,

I = Γ(a + c)Γ(b + d)
∫ ∞

0
dt1ta+d−1

1 (1 + t1)
−a−b−c−d

=
Γ(a + c)Γ(a + d)Γ(b + c)Γ(b + d)

Γ(a + b + c + d)
.

(4.100)

Example.
As a second example we consider is Gauss’ hypergeometric function 2F1.
We consider the integral

J =
∫ +i∞

−i∞

dz

2πi
Γ(−z)

Γ(a + z)Γ(b + z)

Γ(c + z)
xz. (4.101)

We again assume that all conditions for convergence are satisfied. Rewrit-
ing the integrand in terms of Beta functions, we obtain

J =
Γ(b)

Γ(c − a)

∫ +i∞

−i∞

dz

2πi
B(b + z,−z)B(a + z, c − a)xz

=
Γ(b)

Γ(c − a)

∫ ∞

0
dt1dt2ta−1

1 (1 + t1)
−ctb−1

2 (1 + t2)
−bδ

(
1 − xt1t2

1 + t1

)
.

(4.102)

Solving the δ-function constraint with respect to t2 and performing the
change of variables t1 → ξ/(1 − ξ), we immediately arrive at the usual
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integral representation for the 2F1 function,

J =
Γ(b)

Γ(c − a)

∫ ∞

0
dt1ta−1

1 (1 + t1)
b−c(1 + t1 + xt1)

−b

=
Γ(b)

Γ(c − a)

∫ 1

0
dξξa−1(1 − ξ)c−a−1(1 + xξ)−b

=
Γ(a)Γ(b)

Γ(c) 2F1

[
a b

c
;−x

]
.

(4.103)

Computing the phase-space volume with Mellin-Barnes

integrals

We have previously parametrized the measure for the phase-space for 2 → H +
(N − 2) processes, i.e. the production of one massive particle together with
(N − 2) massless particles. If we integrate this measure we obtain the phase-
space volume, which is the simplest master integral we can obtain for a given
phase-space. It also serves as an important reference point and normalization
for other phase-space integrals. We will therefore study the phase space volume
in some detail, and derive a general expression for the 2 → H +(N − 2) phase-
space volume. We start by recalling the general phase-space factorization:

dΦk+1(m
2, s) =

∫ s

m2

dµ2

2π
dΦl+1(µ

2, s)dΦk−l+1(m
2, µ2) (4.104)

If we assume that we know the phase-space volume at NkLO, i.e. for 2 →
H + k,

Φk+1(m
2, s) =

∫
dΦk+1(m

2, s), (4.105)

this relation allows us to rewrite the phase-space volume at Nk+lLO as,

Φk+l+1(m
2, s) =

∫ ∫ s

m2

dµ2

2π
dΦl+1(µ

2, s)dΦk+1(m
2, µ2). (4.106)

We are specifically interested in rewriting the phase-space volume at Nk+1LO
as a convolution of the NkLO phase-space with a two-particle phase-space.
Specializing to l = 1, we can use this formula to inductively derive the phase-
space volume for arbitrary orders. We have,

Φk+2(m
2, s) =

∫ ∫ s

m2

dµ2

2π
dΦ2(µ

2, s)dΦk+1(m
2, µ2)

=
∫ s

m2

dµ2

2π
dΦ2(µ

2, s)Φk+1(m
2, µ2).

(4.107)
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From eq. (4.59) we obtain an explicit parametrization of the two-article phase-
space and we find,

Φk+2(m
2, s) =

1

4
(2π)−2+2ǫs−ǫΩ2−2ǫ

∫ s

m2

dµ2

2π

∫ ∞

0
dx1,k+3dx2,k+3

(
1 − µ2

s

)1−2ǫ

× (x1,k+3x2,k+3)
−ǫδ(1 − x1,k+3 − x2,k+3)Φk+1(m

2, µ2).
(4.108)

We can perform the integral over x1,k+3 and x2,k+3 in terms of beta functions
and make the transformation µ2 = sx, m2 = sz to obtain,

Φk+2(z, s) = (4π)−2+ǫs1−ǫ Γ(1 − ǫ)

Γ(2 − 2ǫ)

∫ 1

z
dx (1 − x)1−2ǫΦk+1(zs, xs).

(4.109)
In the following we use eq. (4.109) to prove inductively the following result:

Φn+1(m
2, s) =

1

2
(4π)1−2n+nǫ Γ(1 − ǫ)n

Γ(2n(1 − ǫ))
sn−1−nǫ(1 − z)2n−1−2nǫ

× 2F1

[
(n − 1)(1 − ǫ) n(1 − ǫ)

2n(1 − ǫ)
; 1 − z

]
,

(4.110)

First, eq. (4.110) correctly describes the phase-space volume for n = 1 and
n = 2. In order to derive Φn+2 iteratively from Φn+1 we use eq. (4.110) and
find,

Φn+2(z, s) =
1

2
(4π)1−2(n+1)+(n+1)ǫ Γ(1 − ǫ)n+1

Γ(2n(1 − ǫ))Γ(2 − 2ǫ)
sn−(n+1)ǫ

×
∫ 1

z
dx(1 − x)1−2ǫxn−1−nǫ

(
1 − z

x

)2n−1−2nǫ

× 2F1

[
(n − 1)(1 − ǫ) n(1 − ǫ)

2n(1 − ǫ)
; 1 − z

x

]
.

(4.111)

To solve the integral, we make the transformation x = 1 − (1 − z)y and find

Φn+2(z, s) = C
∫ 1

0
dy y1−2ǫ(1 − y)2n−1−2nǫ(1 − (1 − z)y)−n+nǫ

× 2F1

[
(n − 1)(1 − ǫ) n(1 − ǫ)

2n(1 − ǫ)
; (1 − z)

1 − y

1 − (1 − z)y

]
,

(4.112)

where we have factored out

C =
1

2
(4π)1−2(n+1)+(n+1)ǫ Γ(1 − ǫ)n+1

Γ(2n(1 − ǫ))Γ(2 − 2ǫ)

× sn−(n+1)ǫ(1 − z)2(n+1)−1−2(n+1)ǫ.

(4.113)
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Next, we introduce a Mellin-Barnes representation for the 2F1 and exchange
the MB integration with the parametric integration. This allows us to perform
the integration over y in terms of another 2F1. Then we find,

Φn+2(z, s) = C Γ(2n(1 − ǫ))Γ(2 − 2ǫ)

Γ((n − 1)(1 − ǫ))Γ(n(1 − ǫ))

∫ +i∞

−i∞

dξ

2πi
(z − 1)ξΓ(−ξ)

× Γ((n − 1)(1 − ǫ) + ξ)

Γ(2(n + 1)(1 − ǫ) + ξ)

× Γ(n(1 − ǫ) + ξ)2F1

[
n(1 − ǫ) + ξ 2 − 2ǫ

2(1 + n)(1 − ǫ) + ξ
; 1 − z

]
.

(4.114)

Introducing another MB integral for the 2F1, we arrive at

Φn+2(z, s)

= C Γ(2n(1 − ǫ))

Γ((n − 1)(1 − ǫ))Γ(n(1 − ǫ))

∫ +i∞

−i∞

dξdχ

(2πi)2
(z − 1)ξ+χΓ(−ξ)Γ(−χ)

× Γ((n − 1)(1 − ǫ) + ξ)Γ(n(1 − ǫ) + ξ + χ)Γ(2 − 2ǫ + χ)

Γ(2(n + 1)(1 − ǫ) + ξ + χ)
.

(4.115)

In the next step we perform the change of variables ξ → ξ + χ, so that

Φn+2(z, s)

= C Γ(2n(1 − ǫ))

Γ((n − 1)(1 − ǫ))Γ(n(1 − ǫ))

∫ +i∞

−i∞

dξdχ

(2πi)2
(z − 1)ξΓ(χ − ξ)Γ(−χ)

× Γ((n − 1)(1 − ǫ) + ξ − χ)Γ(n(1 − ǫ) + ξ)Γ(2 − 2ǫ + χ)

Γ(2(n + 1)(1 − ǫ) + ξ)
.

(4.116)

The integral over χ can now be performed using Barnes’ first lemma, and we
find

Φn+2(z, s) = C Γ(2n(1 − ǫ))

Γ((n − 1)(1 − ǫ))Γ(n(1 − ǫ))

∫ +i∞

−i∞

dξ

2πi
Γ(−ξ)(z − 1)ξ

× Γ(n(1 − ǫ) + ξ)Γ((n + 1)(1 − ǫ) + ξ)

Γ(2(n + 1)(1 − ǫ) + ξ)
.

(4.117)

The integral over ξ is just the MB representation of a 2F1 so that we finally
find,

Φn+2(z, s) =
1

2
(4π)1−2(n+1)+(n+1)ǫsn−(n+1)ǫ(1 − z)2(n+1)−1−2(n+1)ǫ

× Γ(1 − ǫ)n+1

Γ(2(n + 1)(1 − ǫ))2F1

[
n(1 − ǫ) (n + 1)(1 − ǫ)

2(1 + n)(1 − ǫ)
; 1 − z

]
.

(4.118)
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We have therefore inductively shown the validity of (4.110) for all n.

4.4 From soft phase-space integrals to

Mellin-Barnes integrals

In this section we show that there is a canonical way to derive a Mellin-Barnes
representation for the soft phase-space integrals that appear in the calculation
of boundary conditions for combined loop and phase-space integrals. The soft
integrals we need to consider have the form,

F(ǫ) =
∫

dΦS
N−1 f ({pj}; p1, p2) , (4.119)

where f ({pj}; p1, p2) is a ratio of products of multi-particle invariants that is
homogeneous under a simultaneous rescaling of the final-state momenta, i.e.,

f ({λ pj}; p1, p2) = f ({pj}; p1, p2) λa , (4.120)

for some a. Note that f can contain the result of a loop-integral computation.
As such this is not automatically true. However, we can always introduce a
suitable Mellin-Barnes representation that takes f to this form.

Next, we note that there is a subclass of soft integrals that have an addi-
tional property: they are homogeneous with respect to individual rescalings of
the final-state momenta, i.e.,

f ({λj pj}; p1, p2) = f ({pj}; p1, p2)
N

∏
j=3

λ
aj

j , (4.121)

for some aj. This subclass of soft integrals is precisely the one where the
integrand consists of products of powers of two-particle invariants,

f ({pj}; p1, p2) =
m

∏
k=1

s
−αk
ik jk

=
m

∏
k=1

(2pik · pjk)
−αk , (4.122)

where the index k runs over all the two-particle invariants appearing in f .
Every soft integral can be converted into an integral of this type, at the price
of introducing additional MB integrations. Indeed, if we write every multi-
particle invariant as a sum of two-particle invariants, then we can convert sums
into products by using the usual Mellin-Barnes identity eq. (4.60). Without loss
of generality we can thus assume that our soft integral is homogeneous with
respect to individual rescalings of the final-state momenta.

If we concentrate on soft integrals that satisfy eq. (4.121), it is natural
to choose a parametrization of the soft phase-space that makes the homo-
geneity explicit. One possible parametrization with this property is the so-
called ‘energies and angles’ parametrization, where the final-state momenta
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4.4. From soft phase-space integrals to Mellin-Barnes integrals

are parametrized as,

p1 =
1

2
(1, 1, 0, . . .) ,

p2 =
1

2
(1,−1, 0, . . .) ,

pi =
1

2
Ei βi , 3 ≤ i ≤ N .

(4.123)

The Ei parametrize the energies of the final-state partons and βi is the d-
velocity in the direction pi. In this parametrization the phase-space measure
for each final-state parton takes the form,

dd pi δ+(p2
i ) = 2−(d−1) Θ(Ei) ED−3

i dEi dΩ
(D−1)
i , (4.124)

where dΩ
(D−1)
i is the measure on the unit sphere parametrizing the solid angle

of particle i. Furthermore we have seen in eq. (4.59) that the on-shell δ-function
simplifies in the soft limit z̄ → 0. Thus, we obtain the soft phase-space measure,
i.e. the soft limit of eq. (4.59), as

dΦS
N−1 = (2π)N−1−(N−2)d 2−(N−2)(d−1) δ

(
1 −

N

∑
i=3

Ei

)
N

∏
i=3

Ed−3
i dEi dΩ

(d−1)
i .

(4.125)
Using this parametrization, we see that every soft integral with an integrand
of the form (4.122) can be written as,

F(ǫ) =
∫

dΦS
N−1

m

∏
k=1

s
−αk
ik jk

= 2α
∫

dΦS
N−1

m

∏
k=1

(Eik Ejk)
−αk (βik · β jk)

αk , (4.126)

with α = ∑
m
k=1 αk. Both the measure and the integrand can be written in

a factorized form, and so we can integrate out the energies in terms of a
generalized Beta function,

∫ 1

0

(
N

∏
k=3

dEk E
ak−1
k

)
δ

(
1 −

N

∑
k=3

Ek

)
=

Γ(a1) . . . Γ(am)

Γ(a1 + . . . + am)
. (4.127)

Hence, the only non-trivial integration is a multiple angular integration over
the solid angles of the final-state partons. Angular integrals can be written in
the general form,

Ω
(α1,...,αm)
d−1

(
{β ja · β jb}

)
=
∫ dΩ

(d−1)
i

(β j1 · βi)α1 . . . (β jm · βi)αm
. (4.128)

In ref. [171] it was shown that such integrals fall into a class of generalized
hypergeometric functions known as H functions, and an MB representation
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4. Computing boundary conditions for master integrals

for the most general angular integral of this type was derived. We have thus a
general recipe to derive MB representations for generic soft integrals.

Although the previous technique allows us to derive a multifold MB rep-
resentation for every soft integral we need to consider, it can sometimes be
useful to insert, if available, explicit closed expressions for the angular inte-
grals. Indeed, for small values of m the integrals (4.128) are very simple and
can be evaluated in closed form. In the following we briefly review some results
for angular integrals which will be useful in our case.

The case m = 0 corresponds to the volume of the solid angle,

Ωd−1 =
∫

dΩ
(d−1)
i =

2π(d−1)/2

Γ
(

d−1
2

) . (4.129)

Note that this integral is su�cient to compute the soft phase-space volume,
which corresponds to putting m = 0 in eq. (4.126): we simply obtain a factor
Ωd−1 for each final-state parton. Thus we obtain,

ΦS
N−1(ǫ) = (2π)−2N+5+(N−2)ǫ 2−(N−2)(2−ǫ) Γ(1 − ǫ)N−2

Γ(2(N − 2)(1 − ǫ))
, (4.130)

in agreement with the results of section 4.3.
As we are only interested in massless momenta, β2

j = 0, Lorentz invari-
ance implies that the angular integral with one propagator must evaluate to a
constant. Indeed, we have,

Ω
(α)
d−1 =

∫ dΩ
(d−1)
i

(β j · βi)α
= 22−α−2ǫ π1−ǫ Γ(1 − ǫ − α)

Γ(2 − 2ǫ − α)
. (4.131)

For angular integrals with two massless propagators one obtains [172],

Ω
(αj1

,αj2
)

d−1 (β j1 · β j2) =
∫ dΩ

(d−1)
i

(β j1 · βi)α1 (β j2 · βi)α2

= 22−α1−α2−2ǫ π1−ǫ Γ(1 − ǫ − α1)Γ(1 − ǫ − α2)

Γ(1 − ǫ)Γ(2 − 2ǫ − α1 − α2)

× 2F1

[
α1 α2

1 − ǫ
; 1 − β j1 · β j2

2

]
.

(4.132)

To our knowledge, there are no closed formulas for angular integrals with three
or more massless propagators. The boundary conditions for phase-space inte-
grals with three massless particles in the final-state however require the angular
integral with three massless propagators, which admits the MB representa-
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tion [171],

Ω
(αj1

,αj2
,αj3

)

d−1 (β j1 · β j2 , β j2 · β j3 , β j1 · β j3)

=
22−α1−α2−α3−2ǫ π1−ǫ

Γ(α1)Γ(α2)Γ(α3)Γ(2 − α1 − α2 − α3 − 2ǫ)

×
∫ +i∞

−i∞

dz12dz13dz23

(2πi)3
Γ(−z12)Γ(−z13)Γ(−z23)Γ(α1 + z12 + z13)Γ(α2 + z12 + z23)

× Γ(α3 + z13 + z23)Γ(1 − α1 − α2 − α3 − ǫ − z12 − z13 − z23)

×
(

β j1 · β j2

2

)z12
(

β j1 · β j3

2

)z13
(

β j2 · β j3

2

)z23

,

(4.133)

with zij = zi + zj, and where the contours separate the poles coming from Γ

functions of the form Γ(. . . − zij) from those coming from Γ(. . . + zij).
Using these relations we can obtain a Mellin-Barnes representation for any

combination of loop and phase-space integrals that appears in the calculation
of boundary conditions.

4.5 Dimensional recurrence relations

It is well known that loop integrals in di�erent space-time dimensions are
related by so-called dimensional shift identities [149]. After reduction to master
integrals, the dimensional shift identities reduce to recurrence relations in the
space-time dimension d for the master integrals themselves [173–177].

Dimensional shift identities for loop integrals can be understood easily by
considering the Schwinger parametrization of a generic loop integral as given
in eq. (4.8),

F(d) = (4π)−
dL
2 iLeiπ(ν+L) 1

∏
N
i=1 Γ(νi)

∫ ∞

0

N

∏
i=1

dxix
νi−1
i U− d

2 e−
F

U . (4.134)

We observe that the only term in the integrand that depends on the dimension
is the exponent of the U polynomial. We can therefore express the loop integral
in d − 2 dimensions as

F(d − 2) = (4π)−
(d−2)L

2 iLeiπ(ν+L) 1

∏
N
i=1 Γ(νi)

∫ ∞

0

N

∏
i=1

dxix
νi−1
i U− d

2Ue−
F

U .

(4.135)
Shifting the dimension from d to (d − 2) just yields an additional factor of
the U polynomial in the integrand. The goal is now to express the integral
in (d − 2) dimensions in terms of the integral in d dimensions. Recall the
definitions of the Symanzik polynomials, eq. (4.9). The U polynomial is a
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polynomial of rank L that is linear in each integration variable xi. The F
polynomial contains terms of the form Uxim

2
i . If we therefore assume that the

masses mi are independent we can write,

∂m2
i
e−

F

U = xie
−F

U . (4.136)

We can now invert this relation and rewrite every xi that appears in the addi-
tional factor of U in eq. (4.135) as the corresponding derivative ∂m2

i
,

F(d − 2) = (4π)−
(d−2)L

2 iLeiπ(ν+L) 1

∏
N
i=1 Γ(νi)

×
∫ ∞

0

N

∏
i=1

dxix
νi−1
i U− d

2U({xi → ∂m2
i
})e−F

U .

(4.137)

Since the derivatives with respect to the masses commute with the loop inte-
gration we can take the factor U({xi = ∂m2

i
}) out of the integration. Recalling

how the derivatives with respect to masses act on general loop integrals we can
use the definition eq. (3.11) of the ⊕i operators in order to write the relation
between the loop integrals in (d − 2) and d dimensions as,

F(d − 2) = (4π)−LU({xi → ⊕i})F(d). (4.138)

We have therefore a way to obtain a loop integral in (d − 2) dimensions by
taking a certain linear combination of d dimensional integrals with modified
exponents. Of course we can use IBP reductions to reduce this relation to
master integrals. We can also invert this relation to obtain the integral in
(d + 2) dimensions.

Reverse unitarity rules show that similar dimensional shift identities should
hold for dual phase-space integrals (see also ref. [178]).

In the following we present an easy way to derive the dimensional shift
identities for phase-space integrals. To start, let us consider a phase-space
integral in d dimensions,

F(d; ν1, . . . , νn) =
∫

dΦN−1(d) f (ν1, . . . , νn) , (4.139)

where we explicitly indicate the dependence on the space-time dimension d.
The integrand f can be written as a product,

f (ν1, . . . , νN) =
N

∏
l=1

P
−νl
l , (4.140)

where the Pl are polynomials in the rescaled kinematic invariants sij, raised
to some power νl. In section 4.2 we showed that the phase-space measure
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dΦN−1(d) for parton+ parton → H + (N − 2) partons can be parametrized
solely in terms of kinematic invariants, see eq. (4.59).

Obviously, the d-dependent constants factor out of the integral, and so the
actual integral depends on d only through the exponent of the Gram determi-
nant. It is then easy to see that the phase-space measures in shifted dimensions
are related by,

dΦN−1(d + 2) =
NN−2(d + 2)

NN−2(d)
z̄2(N−2) dΦN−1(d)GN({sij}) . (4.141)

We can thus express a phase-space integral in d + 2 dimensions as,

F(d + 2; ν1, . . . , νn)

=
NN−2(d + 2)

NN−2(d)
z̄2(N−2)

∫
dΦN−1(d)GN({sij}) f (ν1, . . . , νn) .

(4.142)

For a given set of polynomials {Pl}, the form of the integrand f depends
only on the exponents {νi}. If we assume that the {Pl} are linearly indepen-
dent, we can express the invariants sij as linear combinations of the ⊕i and ⊖i

operators. This allows us to rewrite the extra power of the Gram determinant
in eq. (4.141) as a polynomial of degree N in the ⊖i

GN({sij}) f (ν1, . . . , νn) = GN({⊖i}) f (ν1, . . . , νn) . (4.143)

We thus obtain the following compact formula relating phase-space integrals
in di�erent dimensions,

F(d + 2; ν1, . . . , νn) =
NN−2(d + 2)

NN−2(d)
z̄2(N−2)

GN({⊖i}) F(d; ν1, . . . , νn) .

(4.144)
Every term in the polynomial can be evaluated according to the action of the
⊖i operators, yielding a linear combination of modified integrals in d dimen-
sions. By applying this method to a master integral, we can express the master
integral in d + 2 dimensions as a linear combination of integrals in d dimen-
sions. Using IBP identities, we can reduce the integrals in d dimensions to
master integrals and thus we find a relation between the master integral in
d + 2 dimensions and in d dimensions. This dimensional recurrence relation
can formally be written as,

Fi(d + 2) = ∑
j

cij(d)Fj(d) , (4.145)

with coe�cients cij(d) that are determined from the IBP reduction.
The dimensional shift identities for loop and phase-space integrals provide

a very useful check for the boundary conditions computed using the methods
described before. If one was able to obtain a result that is valid for all d it is
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4. Computing boundary conditions for master integrals

very straightforward to test that the result fulfills the dimensional recurrence
relation. Often it is only possible to calculate a boundary condition as a Lau-
rent series in ǫ around d = 4. In that case one cannot simply shift the result to
d + 2 dimensions as the expansion is only valid around d = 4. However, it is
usually possible to obtain a Mellin-Barnes representation that is valid around
e.g. d = 6, by simply shifting ǫ → ǫ − 1 before expanding. The Mellin-Barnes
integral can then be performed e.g. numerically using the package MB [167],
which is usually su�cient to check the result in d = 4 using dimensional shift
identities.

Dimensional shift identities also play an important role in a the so-called
dimensional recurrence and analyticity (DRA) method by Lee [177] providing
a completely orthogonal method for calculating boundary conditions. The
method is based on the fact that dimensional shifts like in eq. (4.145) can also
be viewed as di�erence equations in d. Consequently, Fi can be determined by
solving these di�erence equations.

104



C
h
a
p
t
e
r

5
Soft triple real corrections

5.1 Reverse unitarity, threshold expansion and

soft integrals

We consider the production of a Higgs boson in association with j = 3 . . . N
massless partons in the final state from two massless partons i = 1, 2 in the
initial state,

1 + 2 → H + 3 + . . . + N. (5.1)

The inclusive cross section for this process in dimensional regularization is
given by a phase-space integral over the momenta qj of the final-state partons,

σ =
∫

dΦN−1(qH, q3, . . . , qN; M2; s; d) |A|2 ({qj}, q1, q2; d). (5.2)

We work in d = 4 − 2ǫ dimensions and denote by q1, q2 the momenta of the
initial-state partons and we also use the shorthand notation

q12 = q1 + q2, q345 = q3 + q4 + q5, etc.

In the following we will often drop the functional dependence on the dimension
d for clarity. The mass of the Higgs boson is denoted by M, and we denote
the (squared) center-of-mass energy by s = (q1 + q2)

2. |A|2 represents the
squared matrix-element multiplied with the appropriate flux and symmetry
factors. The d-dimensional phase-space measure is given by,

dΦN−1(qH, q3, . . . , qN; M2; s; d)

= (2π)d δ(d)(q12 − qH − q3...N)
dDqH

(2π)d−1
δ+(q

2
H − M2)

N

∏
j=3

dDqj

(2π)d−1
δ+(q

2
j ) ,

(5.3)
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with δ+(q2 − m2) = δ(q2 − m2)Θ(q0). Integrating out the momentum of the
Higgs boson, we can rewrite eq. (5.2) as

σ =
1

2π

∫ [ N

∏
j=3

dDqj

(2π)d−1
δ+(q

2
j )

]
δ+
(
[q3...N − q12]

2 − M2
)
|A|2 ({qj}, q1, q2).

(5.4)
In this, we restrict ourselves to the case of real-radiation matrix-elements

without virtual corrections. We introduce the variables

z =
M2

s
and z̄ = 1 − z . (5.5)

We now rescale the momenta of all the partons,

qi =

{ √
s pi , if i = 1, 2 ,√
s z̄ pi , if i = 3 . . . N ,

(5.6)

which captures the scaling of the partonic momenta in the final state. We
emphasize that this is not, as yet, an approximation, but rather a convenient
change of integration variables which captures the correct asymptotic behavior
at threshold as z̄ → 0. In the following we assume s = 1, and we find,

σ = z̄(d−2)(N−2)−1 1

2π

∫ [ N

∏
j=3

dD pj

(2π)d−1
δ+(p2

j )

]
δ+
(
[p3...N − p12]

2 − z p2
3...N

)

× |A|2 ({z̄ pj}, p1, p2).

(5.7)

Note that the full s-dependence can easily be recovered from dimensional anal-
ysis.

The squared matrix-element |A|2 consists of a rapidly growing number of
terms with N, yielding a correspondingly large number of phase-space inte-
grals. The method of reverse unitarity, developed in refs. [83, 84, 155–157],
see section 3.1, allows the reduction of phase-space integrals to a basis of
fewer master integrals by establishing a duality of phase-space and loop inte-
grals, where the latter are amenable to algebraic methods [81, 146] based on
integration by parts [147, 148], see section 3.1.

According to the reverse unitarity method, we find a dual forward scatter-
ing loop-amplitude with N − 1 cut-propagators for the real radiation contribu-
tion of eq. (5.7), namely,

σ = z̄(d−2)(N−2)−1 1

2π

∫ [ N

∏
j=3

dD pj

(2π)d−1

(
1

p2
j

)

c

] [
1

[p3...N − p12]
2 − z p2

3...N

]

c

× |A|2 ({z̄pj}, p1, p2) .

(5.8)
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In this chapter, we take one further step and expand cut-propagators and
the squared matrix-elements around z = 1,

|A|2 ({z̄ pj}, p1, p2) = z̄−2(N−2)
∞

∑
k=0

|A|2k ({pj}, p1, p2)z̄
k, (5.9)

and

1

[p3...N − p12]
2 − z p2

3...N

=
∞

∑
k=0

z̄k

(
−p2

3...N

)k

[p12 · (p12 − 2p3...N)]
k+1

. (5.10)

In this approximation, the cross section can be expanded in a power series in
z̄,

σ = z̄(d−4)(N−2)−1
∞

∑
k=0

z̄k σS(k) . (5.11)

The coe�cients of the power series are given by,

σS(k) =
k

∑
l=0

(−1)l
∫

dΦS
N−1

[
1

p12 · (p12 − 2p3...N)

]l

c

(
p2

3...N

)l

× |A|2k−l ({pj}, p1, p2) ,

(5.12)

where dΦS
N−1 denotes the “soft” phase-space measure,

dΦS
N−1 ≡ 1

2π

[
1

p12 · (p12 − 2p3...N)

]

c

N

∏
j=3

dD pj

(2π)d−1

(
1

p2
j

)

c

=
1

2π
δ+(p2

12 − 2p12 · p3...N)
N

∏
j=3

dD pj

(2π)d−1
δ+(p2

j ) .

(5.13)

The integrals which emerge after the z̄ expansion depend trivially on one di-
mensionful parameter p2

12 = s. If we put s = 1, the integrals are numerical
integrals whose only functional dependence is through the space-time dimen-
sion d = 4 − 2ǫ. We will refer to such integrals as soft (phase-space) integrals,
and they are the main subject of this chapter. We note that, apart from the
cut Higgs-boson propagator, the integrands of soft phase-space integrals are
homogeneous functions under a simultaneous rescaling of the final-state mo-
menta. In addition, a soft integral can be reduced to a set of “soft” master
integrals using IBP identities by exploiting the duality to loop integrals via
reverse unitarity. We will illustrate this property in the next section where we
check our method on several examples.
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5.2 Validation of the method and examples

In this section, we study the validity of the method described in the previous
section at NLO and NNLO – two perturbative orders that are well studied in
the literature, so we can compare our results readily with known results. In par-
ticular, we show that our method reproduces the correct results for the leading
behavior of NLO and NNLO real-emission amplitudes in the soft limit, as well
as for the subleading terms in the expansion of the phase-space volume up to
N3LO and for a non-trivial double real emission master integral at NNLO.

At NLO, all phase-space integrals that contribute to the real emission am-
plitude in general kinematics can be reduced to the phase-space volume for
H + 1 parton,

Φ2(z̄; ǫ) =
1

2(4π)1−ǫ

Γ(1 − ǫ)

Γ(2 − 2ǫ)
z̄1−2ǫ . (5.14)

As there is only one master integral which is a monomial in z̄, our method
trivially gives the correct answer at NLO.

At NNLO all double real-emission phase-space integral can be reduced in
general kinematics to a linear combination of 18 master integrals [83]. The
leading contribution of all master integrals in the soft limit to all orders in
ǫ was computed in ref. [34], and it was observed that in this limit 17 master
integrals are proportional to the soft limit of the phase-space volume for H + 2
partons,

Φ3(z̄; ǫ) =
1

2(4π)3−2ǫ
z̄3−4ǫ Γ(1 − ǫ)2

Γ(4 − 4ǫ)2F1(1 − ǫ, 2 − 2ǫ; 4 − 4ǫ; z̄)

= z̄3−4ǫ ΦS
3(ǫ) +O(z̄4) ,

(5.15)

where we define

ΦS
3(ǫ) =

1

2(4π)3−2ǫ

Γ(1 − ǫ)2

Γ(4 − 4ǫ)
. (5.16)

More precisely, it was shown in ref. [34] that if X
S
i (z̄; ǫ) denotes the leading

term in the soft limit of the double real-emission master integrals, then we can
write1,

X
S
i (z̄; ǫ) = Si(z̄; ǫ)ΦS

3(ǫ) , 1 ≤ i ≤ 17 ,

X
S
18(z̄; ǫ) = −4 z̄−1−4ǫ (1 − 2ǫ)(3 − 4ǫ)(1 − 4ǫ)

ǫ3

× 3F2(1, 1,−ǫ; 1 − ǫ, 1 − 2ǫ; 1)ΦS
3(ǫ) ,

(5.17)

where Si(z̄; ǫ) are monomials in z̄ and rational functions of ǫ. Using the
method described in the previous section, we can easily explain the structure

1Note that the normalization di�ers slightly from the normalization of ref. [34].
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of eq. (5.17). Indeed, we observe that in the soft limit all the double real-
emission phase-space integrals can be reduced to only two master integrals.
In particular, the IBP identities in the soft limit allow us to express all but one
of the X

S
i in terms of the phase-space volume, and the coe�cients appearing

in the reduction are precisely the functions Si. In other words, in the soft
limit all double real emission phase-space integrals can be reduced to linear
combinations of the following two soft master integrals

1
2

1
2 =

∫
dΦS

3 , (5.18)

1

2

1

2
=

∫
dΦS

3

s14s23s34
. (5.19)

Our method thus provides the correct leading soft behavior of the double real-
emission contribution at NNLO. We emphasize that all the diagrams in this
chapter represent soft phase-space integrals, i.e., all the diagrams represent
integrals with respect to the soft phase-space measure of eq. (5.13). In addition,
the invariants appearing in the integrands of the soft integrals are defined with
respect to the rescaled momenta defined in eq. (5.6),

sij = (τi pi + τj pj)
2 , τi =

{ −1 , if i = 1, 2 ,
+1 , if i = 3 . . . N .

(5.20)

Our method allow us to compute not only the leading soft behavior, but to
consistently expand around the soft limit z̄ = 0. In the following we show that
we can correctly reproduce the first few terms in the soft expansion of double-
and triple-emission phase-space volumes, as well as of the NNLO master inte-
gral X18 of refs. [34, 83, 179].

Let us start with the phase-space volume for H + 2 partons in the limit
where the two partons are soft. On the one hand, from eq. (5.15) we immedi-
ately see that Φ3 admits the expansion,

Φ3(z̄; ǫ) = z̄3−4ǫ ΦS
3(ǫ)

∞

∑
n=0

(1 − ǫ)n(2 − 2ǫ)n

(4 − 4ǫ)n
z̄n

= z̄3−4ǫ ΦS
3(ǫ)

[
1 +

1 − ǫ

2
z̄ +

(1 − ǫ)(2 − ǫ)(3 − 2ǫ)

4(5 − 4ǫ)
z̄2 +O(z̄3)

]
.

(5.21)

On the other hand, using eq. (5.10) we obtain the diagrammatic expansion,
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Φ3(z̄; ǫ) = z̄3−4ǫ

[
− z̄ + z̄2 +O(z̄3)

]
,

(5.22)

where the dashed lines indicate numerator factors and dots represent addi-
tional powers of the propagators or the numerators. The diagrams appearing
in eq. (5.22) are in one-to-one correspondence with the terms in the expan-
sion (5.21). Indeed, IBP reduction of the integrals in eq. (5.22) reveals that,

= −1 − ǫ

2
, (5.23)

=
(1 − ǫ)(2 − ǫ)(3 − 2ǫ)

4(5 − 4ǫ)
, (5.24)

in perfect agreement with eq. (5.21). We checked explicitly that our method
correctly reproduces the first ten terms of the soft expansion of the phase-space
volume for H + 2 partons.

As a second example we derive the subleading terms in the soft expansion
of the double real-emission master integral X18. Unlike the phase-space vol-
ume, no result is known for X18 valid to all orders in ǫ in general kinematics,
but the integral was evaluated explicitly up to O(ǫ) in terms of harmonic poly-
logarithms [180] in ref. [34, 83, 179]. We can thus compare the result of our
method order by order in ǫ to the expansion of the harmonic polylogarithms
around z = 1. Using eq. (5.10) we obtain,

∫
dΦ3

q2
14q2

23q2
34

= z̄−1−4ǫ

[
− z̄ + z̄2 +O(z̄3)

]
,

(5.25)

IBP reduction of the diagrams appearing in the subleading terms gives,

= −2(1 − 4ǫ)(3 − 4ǫ)(1 − 2ǫ)

ǫ2
, (5.26)

=
(3 − 4ǫ)(1 − 2ǫ)

(
2ǫ2 − 2ǫ + 1

)

ǫ2
. (5.27)
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We checked that using these identities we can correctly reproduce the first five
terms in the soft expansion of X18.

The aim of this chapter is to compute the leading terms in the soft expan-
sion of the triple real-emission amplitude for inclusive Higgs production. In
order to test our method at N3LO, we verified that we can reproduce the correct
soft expansion of the phase-space volume for H + 3 partons. The phase-space
volume for H + 3 partons in general kinematics can be written in the form (see
section 4.3),

Φ4(z̄; ǫ) =
1

2(4π)5−3ǫ
z̄5−6ǫ Γ(1 − ǫ)3

Γ(6 − 6ǫ)2F1(2 − 2ǫ, 3 − 3ǫ; 6 − 6ǫ; z̄)

= z̄5−6ǫ ΦS
4(ǫ)

[
1 + (1 − ǫ) z̄ +

(1 − ǫ)(3 − 2ǫ)(4 − 3ǫ)

2(7 − 6ǫ)
z̄2 +O(z̄3)

]
,

(5.28)

where we define,

ΦS
4(ǫ) =

1

2(4π)5−3ǫ

Γ(1 − ǫ)3

Γ(6 − 6ǫ)
. (5.29)

Using our method, we obtain the following diagrammatic expansion,

Φ4(z̄; ǫ) = z̄5−6ǫ

[
− z̄ + z̄2 +O(z̄3)

]
.

(5.30)

All the diagrams in the expansion can be reduced to the soft phase-space
volume, as expected,

= −(1 − ǫ) , (5.31)

=
(1 − ǫ)(3 − 2ǫ)(4 − 3ǫ)

2(7 − 6ǫ)
. (5.32)

To summarize, our method provides a systematic way to perform the thresh-
old expansion of phase-space integrals for the production of a heavy colorless
state. Every term in the expansion corresponds to a soft integral, as defined
in Section 5.1, which can be reduced to a small set of soft master integrals
using IBP reduction. In the next two sections we study some additional prop-
erties of soft integrals in general, before applying our method to compute the
threshold expansion of the triple real-emission contribution to inclusive Higgs
production.
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5. Soft triple real corrections

5.3 Triple real-emission phase-space integrals in

the soft limit

Triple-real soft master integrals for Higgs production

We will use the technology developed in the previous chapters to compute
the threshold expansion of the leading-order cross sections for H plus five
partons. More details about the construction of the amplitude in this limit
will be given in Section 5.4. Here it su�ces to say that we have computed the
squared amplitude and we have checked that in the limit where we only keep
the first two terms in the threshold expansion, all the phase-space integrals can
be reduced to linear combinations of the following ten soft master integrals,

1
2

1
2

=
∫

dΦS
4 = ΦS

4(ǫ) , (5.33)

1

2

1
2

=
∫

dΦS
4

(s13 + s15)s34
= ΦS

4(ǫ)F2(ǫ) , (5.34)

2

1

2

1

=
∫

dΦS
4

s14s23s34
= ΦS

4(ǫ)F3(ǫ) , (5.35)

1

2

1

2

=
∫

dΦS
4

s13s15s34s45
= ΦS

4(ǫ)F4(ǫ) , (5.36)

2
1

2

1

=
∫

dΦS
4

(s14 + s15)s23s345
= ΦS

4(ǫ)F5(ǫ) , (5.37)

1

21

2

=
∫

dΦS
4

(s13 + s14)(s14 + s15)s23s34
= ΦS

4(ǫ)F6(ǫ) ,(5.38)

112
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1

2 2

1

=
∫

dΦS
4

s15s24s34s35
= ΦS

4(ǫ)F7(ǫ) , (5.39)

2

11

2

=
∫

dΦS
4

(s13 + s15)(s23 + s24)s34s35
= ΦS

4(ǫ)F8(ǫ) ,(5.40)

1

2

1
2

=
∫

dΦS
4

s15(s14 + s15)s23s34s345
= ΦS

4(ǫ)F9(ǫ) , (5.41)

1

2

1

2

=
∫

dΦS
4

(s23 + s24)(s24 + s25)s34s45
= ΦS

4(ǫ)F10(ǫ) .(5.42)

We have normalized all the integrals to the soft phase-space volume for
H + 3g defined in eq. (5.29). In the remainder of this section we give the
dimensional recurrence relations satisfied by the master integrals and present
the analytic results for each master integral as a Laurent expansion in the
dimensional regulator ǫ. Technical details about how to compute the master
integrals analytically will be given in Section 5.5.

Dimensional recurrence relations

Using the technique described in Section 4.5, we can derive dimensional recur-
rence relations for all the master integrals defined in the previous section. The
knowledge of these recurrence relations provides us with a strong check on
our results. In addition, it turns out that the master integral F9(d) is easier to
compute in d = 6 − 2ǫ dimensions, where it is finite, and the dimensional re-
currence relations allow us to relate the six-dimensional and four-dimensional
results in an easy way.

The recurrence relation for the soft phase-space volume is trivial to obtain
from the recurrence relation for the Γ function,

ΦS
4(d+ 2) =

(d − 4)(d − 3)(d − 2)3

72(d − 1)(3d − 5)(3d − 4)(3d − 2)(3d − 1)

Γ(d − 4)

64π3Γ(d − 1)
ΦS

4(d) .

(5.43)
As we have defined all our master integrals relative to the phase-space volume
ΦS

4 , we can simplify their recurrence relations by factoring out the above result.
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We therefore define the ratio

R =
N d

3

N d+2
3

ΦS
4(d + 2)

ΦS
4(d)

=
(d − 4)(d − 3)(d − 2)3

72(d − 1)(3d − 5)(3d − 4)(3d − 2)(3d − 1)
,

(5.44)
whereN was defined in eq. (4.57). We give the results for the remaining master
integrals relative toR. The dimensional recurrence relations for the non-trivial
master integrals are

F2(d + 2)R = − (d − 4)(7d − 18)

3(3d − 5)(3d − 4)

− (d − 4)2(3d − 10)

24(3d − 7)(3d − 5)(3d − 4)
F2(d) , (5.45)

F3(d + 2)R =

(
38 − 28d + 5d2

)

3(d − 4)(3d − 5)

− (d − 4)3(d − 3)

18(3d − 10)(3d − 8)(3d − 7)(3d − 5)
F3(d) , (5.46)

F4(d + 2)R = −4
(
386 − 387d + 128d2 − 14d3

)

(d − 4)2(d − 3)

− (d − 4)2(3d − 14)

24(3d − 11)(3d − 8)(3d − 7)
F4(d) , (5.47)

F5(d + 2)R = − (d − 4)
(
4752 − 9636d + 6706d2 − 1962d3 + 207d4

)

72(d − 3)(d − 1)(3d − 10)(3d − 8)(3d − 5)

+
(d − 4)2(d − 2)

96(d − 1)(3d − 7)(3d − 5)
F5(d) , (5.48)

F6(d + 2)R =

(
4256 − 6684d + 4224d2 − 1345d3 + 216d4 − 14d5

)

3(d − 4)2(d − 3)(d − 2)2

+
(d − 4)(3d − 10)

9(d − 2)2(3d − 7)
F2(d) (5.49)

− (d − 4)3

24(d − 2)(3d − 11)(3d − 7)
F6(d) ,

F7(d + 2)R = − 4(2d − 7)

(d − 4)(d − 3)

+
(d − 4)4

72(3d − 11)(3d − 10)(3d − 8)(3d − 7)
F7(d) , (5.50)
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F8(d + 2)R =
2
(
231 − 114d + 14d2

)

3(d − 4)(d − 3)
+

2(d − 4)2(7d − 24)

9(d − 3)(3d − 8)(3d − 7)
F2(d)

+
(d − 4)4

72(3d − 11)(3d − 10)(3d − 8)(3d − 7)
F8(d) , (5.51)

F9(d + 2)R =
2(3d − 7)

(
6672 − 7824d + 3460d2 − 684d3 + 51d4

)

3(d − 4)2(d − 3)2(3d − 10)

+
(d − 4)(3d − 10)(5d − 17)

12(d − 3)2(3d − 8)
F2(d) +

(d − 4)

6(d − 3)(3d − 8)
F5(d)

+
(d − 4)3(3d − 14)

96(d − 3)(3d − 13)(3d − 11)(3d − 8)
F9(d) , (5.52)

F10(d + 2)R = −4
(
26 − 39d + 16d2 − 2d3

)

(d − 4)2(d − 3)
− (d − 4)2(3d − 10)

3(d − 3)(3d − 8)(3d − 7)
F2(d)

− (d − 4)2(3d − 14)

24(3d − 11)(3d − 8)(3d − 7)
F10(d) . (5.53)

Analytic results for the soft master integrals

In this section we present the analytical results for the master integrals con-
tributing to hadronic Higgs production in the leading and next-to-leading soft
approximation. As the explicit evaluation of the master integrals is rather long
and technical, we defer all details about the computation to Section 5.5 and
only summarize the results at this point. The first master integral, the soft
phase-space volume, was already given in eq. (5.29) and will not be repeated
here. All the remaining master integrals have been evaluated as a Laurent
series in the dimensional regulator up to terms involving zeta values of weight
at most six. We have checked that our results agree numerically with the MB
integral representation for soft integrals derived in Section 4.4. In addition,
the results satisfy the dimensional recurrence relations for the master integrals
given in the previous section (integrals in the shifted dimension have been
evaluated numerically using the MB representation). Finally, we make an in-
triguing observation in our results: if we express all the zeta values up to weight
six in the basis {ζ2, ζ3, ζ4, ζ2 ζ3, ζ5, ζ2

3, ζ6}, the coe�cients in front of the val-
ues are integers in all cases. We note that this statement is only true in the
specific basis of zeta values that we chose. The results for the master integrals
are listed in the rest of this section.
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F2(ǫ) =
1

ΦS
4(ǫ)

∫
dΦS

4

(s13 + s15)s34

=
Γ(6 − 6ǫ)Γ(1 − 2ǫ)2

ǫ Γ(3 − 6ǫ)Γ(2 − 2ǫ)2 3F2

[
1 1 1 − ǫ

2 − 2ǫ 2 − 2ǫ
; 1

]

=
60

ǫ
ζ2 + 420 ζ3 − 282 ζ2 + ǫ

(
1800 ζ4 − 1974 ζ3 + 432 ζ2

)

+ ǫ2
(

5580 ζ5 + 480 ζ2 ζ3 − 8460 ζ4 + 3024 ζ3 − 216 ζ2

)

+ ǫ3
(

19260 ζ6 + 1680 ζ2
3 − 26226 ζ5 − 2256 ζ2 ζ3 + 12960 ζ4 − 1512 ζ3

)

+O(ǫ4) .

(5.54)

F3(ǫ) =
1

ΦS
4(ǫ)

∫
dΦS

4

s14s23s34

=
90

ǫ4
− 693

ǫ3
+

1

ǫ2

(
− 60 ζ2 + 1917

)
+

1

ǫ

(
− 300 ζ3 + 462 ζ2 − 2268

)

− 930 ζ4 + 2310 ζ3 − 1278 ζ2 + 972 + ǫ
(
− 2220 ζ5 − 120 ζ2 ζ3 + 7161 ζ4

− 6390 ζ3 + 1512 ζ2

)
+ ǫ2

(
− 5555 ζ6 − 300 ζ2

3 + 17094 ζ5 + 924 ζ2 ζ3

− 19809 ζ4 + 7560 ζ3 − 648 ζ2

)
+O(ǫ3) .

(5.55)

F4(ǫ) =
1

ΦS
4(ǫ)

∫
dΦS

4

s13s15s34s45

= −3 Γ(6 − 6ǫ)Γ(1 − 2ǫ)

2ǫ4Γ(1 − 6ǫ)

×
[

3 Γ(1 − 2ǫ)Γ(ǫ + 1)

(1 + 3ǫ)Γ(1 − 3ǫ) 3F2

[−3ǫ − 1 − 2ǫ − ǫ

−3ǫ − 3ǫ
; 1

]

+
1

(1 + ǫ)Γ(1 − 2ǫ) 4F3

[
1 1 1 − ǫ − 2ǫ

1 − 2ǫ 1 − 2ǫ 2 + ǫ
; 1

]]

= −600

ǫ4
+

10020

ǫ3
− 70560

ǫ2
− 1

ǫ

(
480 ζ3 − 303480

)
− 3600 ζ4 + 8016 ζ3

− 1007640 − ǫ
(

17280 ζ5 − 60120 ζ4 + 56448 ζ3 − 3061800
)
− ǫ2

(
66000 ζ6

+ 1920 ζ2
3 − 288576 ζ5 + 423360 ζ4 − 242784 ζ3 + 9185400

)
+O(ǫ3) .

(5.56)
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F5(ǫ) =
1

ΦS
4(ǫ)

∫
dΦS

4

(s14 + s15)s23s345

= −120

ǫ
ζ2 − 960 ζ3 + 684 ζ2 + ǫ

(
− 4620 ζ4 + 5472 ζ3 − 1188 ζ2

)

+ ǫ2
(
− 17160 ζ5 − 720 ζ2 ζ3 + 26334 ζ4 − 9504 ζ3 + 648 ζ2

)

+ ǫ3
(
− 64110 ζ6 − 2880 ζ2

3 + 97812 ζ5 + 4104 ζ2 ζ3 − 45738 ζ4 + 5184 ζ3

)

+O(ǫ4) .

(5.57)

F6(ǫ) =
1

ΦS
4(ǫ)

∫
dΦS

4

(s13 + s14)(s14 + s15)s23s34

=
10

ǫ5
− 137

ǫ4
+

1

ǫ3

(
40 ζ2 + 675

)
+

1

ǫ2

(
320 ζ3 − 548 ζ2 − 1530

)

+
1

ǫ

(
1500 ζ4 − 4384 ζ3 + 2700 ζ2 + 1620

)
+ 5160 ζ5 + 320 ζ2 ζ3 − 20550 ζ4

+ 21600 ζ3 − 6120 ζ2 − 648 + ǫ
(

18340 ζ6 + 1280 ζ2
3 − 70692 ζ5 − 4384 ζ2 ζ3

+ 101250 ζ4 − 48960 ζ3 + 6480 ζ2

)
+O(ǫ2) .

(5.58)

F7(ǫ) =
1

ΦS
4(ǫ)

∫
dΦS

4

s15s24s34s35

= −3

2

Γ(6 − 6ǫ)

ǫ5 Γ(1 − 6ǫ)
3F2

[
1 1 − 2ǫ

1 − 2ǫ 1 − 2ǫ
; 1

]

= −360

ǫ5
+

4932

ǫ4
+

1

ǫ3

(
720 ζ2 − 24300

)
+

1

ǫ2

(
4320 ζ3 − 9864 ζ2 + 55080

)

+
1

ǫ

(
15120 ζ4 − 59184 ζ3 + 48600 ζ2 − 58320

)
+ 43200 ζ5 − 207144 ζ4

+ 291600 ζ3 − 110160 ζ2 + 23328 + ǫ
(

111600 ζ6 − 591840 ζ5 + 1020600 ζ4

− 660960 ζ3 + 116640 ζ2

)
+O(ǫ2) .

(5.59)
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F8(ǫ) =
1

ΦS
4(ǫ)

∫
dΦS

4

(s13 + s15)(s23 + s24)s34s35

= −60

ǫ5
+

822

ǫ4
+

1

ǫ3

(
240 ζ2 − 4050

)
+

1

ǫ2

(
2400 ζ3 − 3288 ζ2 + 9180

)

+
1

ǫ

(
13320 ζ4 − 32880 ζ3 + 16200 ζ2 − 9720

)
+ 51840 ζ5 + 3360 ζ2 ζ3

− 182484 ζ4 + 162000 ζ3 − 36720 ζ2 + 3888 + ǫ
(

207600 ζ6 + 11760 ζ2
3

− 710208 ζ5 − 46032 ζ2 ζ3 + 899100 ζ4 − 367200 ζ3 + 38880 ζ2

)
+O(ǫ2) .

(5.60)

F9(ǫ) =
1

ΦS
4(ǫ)

∫
dΦS

4

s15(s14 + s15)s23s34s345

=
160

ǫ5
− 1712

ǫ4
+

1

ǫ3

(
− 120 ζ2 + 2784

)
+

1

ǫ2

(
− 120 ζ3 + 1284 ζ2 + 31968

)

+
1

ǫ

(
2520 ζ4 + 1284 ζ3 − 2088 ζ2 − 216864

)
+ 15720 ζ5 + 1920 ζ2 ζ3

− 26964 ζ4 − 2088 ζ3 − 23976 ζ2 + 795744 + ǫ
(

82520 ζ6 + 9600 ζ2
3

− 168204 ζ5 − 20544 ζ2 ζ3 + 43848 ζ4 − 23976 ζ3 + 162648 ζ2 − 2449440
)

+O(ǫ2) .

(5.61)

F10(ǫ) =
1

ΦS
4(ǫ)

∫
dΦS

4

(s23 + s24)(s24 + s25)s34s45

= −120

ǫ4
+

2004

ǫ3
− 14112

ǫ2
+

1

ǫ

(
240 ζ3 + 60696

)
+ 1980 ζ4 − 4008 ζ3

− 201528 + ǫ
(

6960 ζ5 + 1680 ζ2 ζ3 − 33066 ζ4 + 28224 ζ3 + 612360
)

+ ǫ2
(

32700 ζ6 + 6840 ζ2
3 − 116232 ζ5 − 28056 ζ2 ζ3 + 232848 ζ4 − 121392 ζ3

− 1837080
)
+O(ǫ3) .

(5.62)

5.4 Setup of the calculation

The production of a Higgs boson in the collision of two hadrons h1, h2 is
dominated by QCD processes. The hadronic cross section is related to the
partonic cross section by the general factorization formula

σh1+h2→H+X = ∑
i,j

1∫

0

dx1dx2 f h1
i (x1) f h2

j (x2)σi+j→H(M2, x1x2S). (5.63)
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Here f h
i (x) are the parton-distribution functions for the parton i inside of

the hadron h, σi+j→H is the partonic cross section and S is the square of
the total centre-of-mass energy of the hadronic system. The centre-of-mass
energy squared of the partonic system is consequently given by s = xixjS.
The partonic cross section is expanded perturbatively in the strong coupling
constant αS. The leading QCD contribution arises in the SM via a top-quark
loop at O(α2

S).
We consider the Higgs boson to be relatively light compared to the top

quark. This justifies working in the limit of infinite top-quark mass and con-
sidering N f light quarks. We describe the interaction of the Higgs boson with
gluons by introducing the e�ective Lagrangian,

Le f f = −1

4
cHGa

µνGaµνH. (5.64)

Here Ga
µν denotes the gluon field strength tensor and H is the Higgs field. The

Wilson coe�cient cH can be found, e.g. in ref. [100, 101, 181]. The next-to-
next-to-leading (NNLO) order correction to the inclusive Higgs cross section
was computed in the past by employing this e�ective theory. In this work we
present a part of the next term in in the perturbative series (N3LO) in the
e�ective theory.

At every order in perturbative QCD, the cross section receives contribu-
tions from various real- and virtual-radiation processes. We consider only tree-
level processes with three real-emission partons in the final state. A direct
integration over the phase-space of the corresponding matrix elements is chal-
lenging. As we have discussed in the introduction, we pave the way towards
the full computation by performing an expansion of the phase-space integrals
around the kinematic limit where the Higgs boson is produced at threshold,
s ∼ M2. In this limit, all partons emitted in the final state are soft and their
momenta vanish as z̄ → 0. We expand the cross section in the small parameter
z̄ defined in (5.5). In the following, we shall present the leading and subleading
terms in the threshold expansion,

σi j→H+X(s, z̄) = z̄−1−6ǫs3ǫ
∞

∑
k=0

z̄kσ
S(k)
i j→H+X. (5.65)

Although we considered in our calculation the Higgs boson H as a final state,
we would like to stress the universality of our result for the leading term in
the soft expansion for any other colorless final state produced by gluons in
the initial state [182]. The subleading term in the soft expansion is no longer
universal.

Calculation

To obtain the real-emission cross section we generate Feynman diagrams using
QGRAF [183] and compute squared matrix-elements using programs based on
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GiNaC [137] or FORM [184] and our own C++ code for color and spin alge-
bra. We perform our calculation in Feynman gauge with d gluon polarizations
in order to maintain a simple structure for the denominators of the squared
amplitudes. To recover the result for physical gluon polarizations, we add
matrix-elements with Faddeev-Popov ghosts as external states. We compare
our results with a set of numeric cross sections for di�erent phase-space points
obtained with MadGraph [185] and find perfect agreement.

In a next step we use reverse unitarity, interpret the phase-space integrals as
three-loop integrals as described in Section 5.1, and expand them in a Laurent
series in z̄. The leading and next-to-leading terms in this series are then re-
ferred to as the soft and next-to-soft limit of the real-emission cross section. We
then derive integration-by-parts (IBP) identities for the scalar soft phase-space
integrals. We reduce all integrals to a set of 10 master integrals by employing
the Laporta algorithm [146]. We implemented this algorithm in a C++ code
that was developed by us specifically for this project, as well as with the pro-
gram AIR [150]. The calculation of the remaining 10 integrals is discussed in
Section 5.5. The explicit expressions for the amplitude can be found in ref. [1].

5.5 Analytic computation of the master

integrals

In this section we present some details on how to evaluate analytically all the
master integralsFi defined in Section 5.3. The analytic result for the soft phase-
space volume can easily be obtained from the expression for the phase-space
volume in general kinematics and will not be discussed here (see section 4.3
for the derivation).

In general, our strategy is to follow the steps outlined in Section 4.4: we
use the ‘energies and angles’ parametrization to obtain a representation for
the integral where the energies and angles appear in a factorized form. This
may require the introduction of MB integrations in order to factorize sums of
invariants in a denominator. We then integrate out the energies and angles
to obtain a multifold MB representation for each master integral. Whenever
we are able to do so, we evaluate the remaining MB integrals to all orders
in ǫ in terms of hypergeometric functions that can easily be expanded into a
Laurent series ǫ using the HypExp package [163]. In those cases where we did
no manage to perform the MB integral in closed form for finite values of ǫ,
we only compute the Laurent expansion of the integral around ǫ = 0, e.g., by
resolving singularities in ǫ and summing up harmonic sums or by converting
the MB integral to a parametric integral which can be computed more easily.
Details on how to perform these steps for the di�erent master integrals will be
given in the rest of this section.
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5.5. Analytic computation of the master integrals

The master integral F3

In this section we compute the master integral F3 defined by,

ΦS
4(ǫ)F3(ǫ) =

∫
dΦS

4

s14s23s34
. (5.66)

The integrand only involves two-particle invariants, so following the discussion
in Section 4.4 we can immediately insert the energies and angles parametriza-
tion and integrate out the energies in terms of Γ functions. The remaining
angular integrations can easily be carried out using the formulas given in Sec-
tion 4.4. Note that in the present case all the angular integrals can be per-
formed in closed form, so there is no need to introduce MB representations
for the angular integrals. We obtain,

F3(ǫ) = 26ǫ−7π3ǫ−3 Γ(6 − 6ǫ)Γ(2 − 2ǫ)Γ(1 − 2ǫ)2

ǫ2 Γ(2 − 6ǫ)Γ(1 − ǫ)3

∫
dΩ

(d−1)
3 dΩ

(d−1)
4 dΩ

(d−1)
5

(β1 · β4) (β2 · β3) (β3 · β4)

= 26ǫ−7π3ǫ−3 Γ(6 − 6ǫ)Γ(2 − 2ǫ)Γ(1 − 2ǫ)2

ǫ2 Γ(2 − 6ǫ)Γ(1 − ǫ)3
Ω3−2ǫ

∫
dΩ

(d−1)
3

(β2 · β3)
Ω

(1,1)
d−1 (β1 · β3)

= −22ǫ−1 Γ(6 − 6ǫ)Γ(1 − 2ǫ)

ǫ3 Γ(2 − 6ǫ)Γ(1 − ǫ)2

∫ 1

−1

d cos θ3

(1 + cos θ3)1+ǫ(1 − cos θ3)ǫ

× 2F1

(
1, 1; 1 − ǫ;

1 + cos θ3

2

)
.

(5.67)

The remaining integral can be brought into a more standard form by the
change of variable cos θ3 = 2y − 1,

∫ 1

−1

d cos θ3

(1 + cos θ3)1+ǫ(1 − cos θ3)ǫ 2F1

(
1, 1; 1 − ǫ;

1 + cos θ3

2

)

= 2−2ǫ
∫ 1

0
dy y−1−ǫ (1 − y)−ǫ

2F1(1, 1; 1 − ǫ; y) .

(5.68)

The integral over y is now easily performed using the recursive definition of
the hypergeometric function,

p+1Fp(a1, . . . , ap+1; b1, . . . , bp; z) =
Γ(bp)

Γ(ap+1)Γ(bp − ap+1)

×
∫ 1

0
dt tap+1−1 (1 − t)bp−ap+1−1

pFp−1(a1, . . . , ap; b1, . . . , bp−1; zt) .

(5.69)

We immediately get,

F3(ǫ) =
Γ(6 − 6ǫ)

2ǫ4Γ(2 − 6ǫ)
3F2(1, 1,−ǫ; 1 − 2ǫ, 1 − ǫ; 1) . (5.70)

The 3F2 function can be expanded to the desired order in ǫ using the HypExp
package [163], and we arrive immediately at the Laurent series of eq. (5.55).
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5. Soft triple real corrections

The master integral F2

The integrand of the master integral F2 involves a sum of two-particle invari-
ants in the denominator. We replace the sum by a product, at the price of
introducing an MB integration via eq. (4.60),

ΦS
4(ǫ)F2(ǫ) =

∫
dΦS

4

(s13 + s15)s34

=
∫ +i∞

−i∞

dz1

2πi
Γ (−z1) Γ (z1 + 1)

∫
dΦS

4

sz1+1
13 s−z1

15 s34

.

(5.71)

The phase-space integral is now in the form (4.126), and so we can introduce
the energies and angles parametrization and integrate out all the energy and
the angular variables. This results in the following two-fold integral represen-
tation for F2, which is of mixed MB- and Euler-type,

F2(ǫ) =
Γ(6 − 6ǫ)Γ(1 − 2ǫ)

ǫ Γ(3 − 6ǫ)Γ(1 − ǫ)4

∫ +i∞

−i∞

dz1

2πi
Γ (−z1) Γ (z1 + 1) Γ (−ǫ − z1)

× Γ (1 − ǫ + z1)
∫ 1

0
dy y−ǫ (1 − y)−ǫ

2F1 (1, z1 + 1; 1 − ǫ; y) .

(5.72)

The Euler integral over y can be performed immediately in terms of a 3F2

function, but after that we still need to integrate over the MB parameter z1.
We therefore prefer not to perform the integration over y, but rather insert the
MB representation for the hypergeometric function in the integrand,

pFq(a1, . . . , ap; b1, . . . , bq; x)

=
∫ +i∞

−i∞

dz

2πi
(−x)z Γ(−z)

[
p

∏
i=1

Γ(ai + z)

Γ(ai)

] [
q

∏
i=1

Γ(bi)

Γ(bi + z)

]
.

(5.73)

The integral over y evaluates to a Beta function, and we are left with the
following two-dimensional MB integral,

F2(ǫ) =
Γ(6 − 6ǫ)Γ(1 − 2ǫ)

ǫ Γ(3 − 6ǫ)Γ(1 − ǫ)2

∫ +i∞

−i∞

dz1dz2

(2πi)2
(−1)z2 Γ (−z1) Γ (−z2)

× Γ (z2 + 1) Γ (z1 + z2 + 1) Γ (−ǫ − z1) Γ (1 − ǫ + z1)

Γ (2 − 2ǫ + z2)
.

(5.74)

The integral over z1 is easily performed using Barnes’ first lemma, and the re-
maining one-fold MB integral can immediately be recognized as a 3F2 function
(see eq. (5.73)). We finally obtain the following result for the master integral
F2, in agreement with eq. (5.54),

F2(ǫ) =
Γ(6 − 6ǫ)Γ(1 − 2ǫ)2

ǫ Γ(3 − 6ǫ)Γ(2 − 2ǫ)2 3F2(1, 1, 1 − ǫ; 2 − 2ǫ, 2 − 2ǫ; 1) . (5.75)
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5.5. Analytic computation of the master integrals

The master integral F7

The integrand of F7 only contains two-particle invariants,

ΦS
4(ǫ)F7(ǫ) =

∫
dΦS

4

s15s24s34s35
. (5.76)

We can therefore immediately integrate out the energy and the angular vari-
ables. We obtain,

F7(ǫ) = 3
Γ(6 − 6ǫ)Γ(1 − 2ǫ)

ǫ4 Γ(1 − ǫ)2Γ(1 − 6ǫ)

∫ 1

0
dy y−ǫ (1 − y)−ǫ

× 2F1(1, 1; 1 − ǫ; 1 − y) 2F1(1, 1; 1 − ǫ; y) .

(5.77)

In order to perform the integral over y, we introduce an MB representation for
each 2F1 function in the integrand and perform the y integration. This leaves
us with the following two-fold MB representation for F7,

F7(ǫ) = 3
Γ(6 − 6ǫ)Γ(1 − 2ǫ)

ǫ4 Γ(1 − ǫ)2Γ(1 − 6ǫ)

×
∫ +i∞

−i∞

dz1dz2

(2πi)2
(−1)z1+z2

Γ (−z1) Γ (z1 + 1)2
Γ (−z2) Γ (z2 + 1)2

Γ (−2ǫ + z1 + z2 + 2)
.

(5.78)

To proceed, we notice that one of the two integrations evaluates to a 2F1, which
can be reduced to Γ functions using Gauss’s identity,

∫ +i∞

−i∞

dz1

2πi
(−1)z1

Γ (−z1) Γ (z1 + 1)2

Γ (−2ǫ + z1 + z2 + 2)
=

1

Γ(2 − 2ǫ + z2)
2F1(1, 1; 2 − 2ǫ + z2; 1)

=
Γ(−2ǫ + z2)

Γ(1 − 2ǫ + z2)2
.

(5.79)

Inserting this result into the two-fold MB integral, we immediately see that the
remaining MB integral evaluates to a 3F2 function, and we get,

F7(ǫ) = −3

2

Γ(6 − 6ǫ)

ǫ5 Γ(1 − 6ǫ)
3F2(1, 1,−2ǫ; 1 − 2ǫ, 1 − 2ǫ; 1) . (5.80)

The master integral F4

The integral F4 is defined by,

ΦS
4(ǫ)F4(ǫ) =

∫
dΦS

4

s13s15s34s45
. (5.81)
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5. Soft triple real corrections

The integrand contains only two-particle invariants, and we can immediately
integrate out the energy and angular variables in the usual way. We obtain a
one-fold MB representation,

F4(ǫ) =
Γ(6 − 6ǫ)Γ(−2ǫ)

ǫ4Γ(−6ǫ)Γ(−ǫ)2

∫ +i∞

−i∞

dz1

2πi
Γ (−z1)

× Γ (z1 + 1)2
Γ (z1 − 2ǫ) Γ (−z1 − ǫ − 1) Γ (z1 − ǫ + 1)

Γ (z1 − 2ǫ + 1)2
.

(5.82)

Closing the integration contour to the right and summing up residues at z1 = n
and z1 = −1 − ǫ + n, n ∈ N×, we immediately see that F4 can be expressed
as a combination of hypergeometric functions,

F4(ǫ) = −3 Γ(6 − 6ǫ)Γ(1 − 2ǫ)

2ǫ4Γ(1 − 6ǫ)

×
[

3 Γ(1 − 2ǫ)Γ(ǫ + 1)

(1 + 3ǫ)Γ(1 − 3ǫ) 3F2(−3ǫ − 1,−2ǫ,−ǫ;−3ǫ,−3ǫ; 1)

+
1

(1 + ǫ)Γ(1 − 2ǫ) 4F3(1, 1, 1 − ǫ,−2ǫ; 1 − 2ǫ, 1 − 2ǫ, 2 + ǫ; 1)

]
.

(5.83)

The master integral F6

The integral F6 contains two sums in the denominator, which we can replace
by products to the price at introducing two MB integrations,

ΦS
4(ǫ)F6(ǫ) =

∫
dΦS

4

(s13 + s14)(s14 + s15)s23s34

=
∫ +i∞

−i∞

dz1dz2

(2πi)2
Γ (−z1) Γ (z1 + 1) Γ (−z2) Γ (z2 + 1)

×
∫

dΦS
4

s−z1
13 sz1+z2+2

14 s−z2
15 s23s34

.

(5.84)

We then proceed in the by-now familiar way, integrate out the energies and the
angles, and arrive at the following two-fold MB representation for F6,

F6(ǫ) =
Γ(6 − 6ǫ)

ǫ Γ(1 − 6ǫ)Γ(1 − ǫ)2

×
∫ +i∞

−i∞

dz1dz2

(2πi)2
Γ (−z1) Γ (z1 + 1) Γ (−z2) Γ (z2 + 1)

× Γ (−ǫ + z1 − z2) Γ (z2 − ǫ) Γ (−2ǫ − z1 + z2) Γ (−ǫ − z1 + z2)

Γ (−ǫ + z2 + 1) Γ (−2ǫ − z1 + z2 + 1)
.

(5.85)
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Unlike in the previous cases, we were not able to reduce this integral for generic
ǫ to simple hypergeometric functions. We therefore only compute the Laurent
expansion of the integral. We proceed in the standard way: we apply the
packages MB [167], MBresolve [168] and barnesroutines [162] to resolve sin-
gularities in ǫ and to expand the resulting integrals under the integration sign
and apply Barnes’ lemmas in an automated way. The resulting MB integrals
are at most two-fold, and all of them can easily be done by closing the con-
tours to the right and summing up residues in terms of nested harmonic sums
defined recursively by ref. [170],

Si(n) =
n

∑
k=1

1

ki
and Si~(n) =

n

∑
k=1

S~(k)

ki
. (5.86)

Note that in the limit n → ∞ harmonic sums immediately reduce to combina-
tions of multiple zeta values. The result for F6 reads,

F6(ǫ) =
10

ǫ5
− 137

ǫ4
+

1

ǫ3

(
40 ζ2 + 675

)
+

1

ǫ2

(
320 ζ3 − 548 ζ2 − 1530

)

+
1

ǫ

(
1500 ζ4 − 4384 ζ3 + 2700 ζ2 + 1620

)
+ 5160 ζ5 + 320 ζ2 ζ3

− 20550 ζ4 + 21600 ζ3 − 6120 ζ2 − 648

+ ǫ
(

18340 ζ6 + 1280 ζ2
3 − 70692 ζ5 − 4384 ζ2 ζ3

+ 101250 ζ4 − 48960 ζ3 + 6480 ζ2

)
+O(ǫ2) .

(5.87)

The master integral F10

The integrand of F10 involves two sums in the denominator, so we start by
introducing two MB representations,

ΦS
4(ǫ)F10(ǫ) =

∫
dΦS

4

(s23 + s24)(s24 + s25)s34s45

=
∫ +i∞

−i∞

dz1dz2

(2πi)2
Γ (−z1) Γ (z1 + 1) Γ (−z2) Γ (z2 + 1)

×
∫

dΦS
4

s−z1
23 s2+z1+z2

24 s−z2
25 s34s45

.

(5.88)

Integrating over the angles of particles 3 and 4 yields two hypergeometric func-
tions, and we introduce an MB representation for each of them. Performing
the integration over the last angle, we obtain a four-fold MB representation for
F10. Two integrations can immediately be performed using Barnes’ lemmas,
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5. Soft triple real corrections

and we obtain,

F10(ǫ) = 6
Γ(6 − 6ǫ)

Γ(1 − ǫ)3Γ(1 − 6ǫ)

∫ +i∞

−i∞

dz2dz3

(2πi)2
Γ (−z2) Γ (−z3) Γ (z2 + 1)

× Γ (−2ǫ − z2 − 1) Γ (−ǫ + z2 + 1) Γ (−2ǫ − z3 − 1)

Γ (−2ǫ − z2) Γ (−2ǫ − z3)

× Γ (z3 + 1) Γ (−ǫ − z2 − z3 − 1) Γ (z3 − ǫ) .

(5.89)

After resolving the singularities in ǫ and expanding under the integration sign,
all the twofold integrals can be reduced to one-fold integrals using Barnes’
lemmas and their corollaries. The remaining one-fold integrals are trivial to
compute by closing the contour and summing up residues. We find,

F10(ǫ) = −120

ǫ4
+

2004

ǫ3
− 14112

ǫ2
+

1

ǫ

(
240 ζ3 + 60696

)
+ 1980 ζ4 − 4008 ζ3

− 201528 + ǫ
(

6960 ζ5 + 1680 ζ2 ζ3 − 33066 ζ4 + 28224 ζ3 + 612360
)

+ ǫ2
(

32700 ζ6 + 6840 ζ2
3 − 116232 ζ5 − 28056 ζ2 ζ3 + 232848 ζ4

− 121392 ζ3 − 1837080
)
+O(ǫ3) .

(5.90)

The master integral F5

We start by replacing the sums in the denominator of the integrand of F5 by
three MB integrals,

ΦS
4(ǫ)F5(ǫ) =

∫
dΦS

4

(s14 + s15)s23s345

=
∫ +i∞

−i∞

dz1dz2dz3

(2πi)3
Γ(−z1)Γ(−z2)Γ(−z3)Γ(1 + z1 + z2)Γ(1 + z3)

×
∫

dΦS
4

s1+z1
14 s−z1

15 s23s1+z1+z2
34 s−z1

45 s−z2
35

.

(5.91)

We insert the energies and angles parametrization for the final-state particles
and introduce MB integrations for the angular integrals. Note that the first
angular integral necessarily involves three massless propagators and can thus
not be done in closed form as an 2F1, so we insert the three-fold MB repre-
sentation (4.133) for it. We then arrive at a representation for F5 as a six-fold
MB integral convoluted with two angular integrations. It turns out that after
performing the change of variables z3 → z3 + z5 and z6 → z6 + z1 + z2, the in-
tegrals over z1, z2 and z5 can be done in closed form using Barnes’ first lemma.
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5.5. Analytic computation of the master integrals

The remaining two angular integrations can easily be performed in terms of
hypergeometric functions, and all but one MB integration can be performed
using Barnes’ lemmas. We thus arrive at a one-fold MB representation for F5,

F5(ǫ) = − Γ(6 − 6ǫ)Γ(1 − 3ǫ)

ǫ Γ(2 − 6ǫ)Γ(2 − 2ǫ)Γ(1 − ǫ)

×
∫ +i∞

−i∞

dz1

2πi

Γ (−z1) Γ (z1 + 1)2
Γ (−z1 − 2ǫ) Γ (z1 − ǫ + 1)

Γ (z1 − 3ǫ + 2)
.

(5.92)

One might be tempted to sum up the residues at z1 = n and z1 = −2ǫ+ n, n ∈
N×, for finite values of ǫ to obtain an expression forF5 as a combination of two
hypergeometric functions at 1 valid to all orders in ǫ. The two hypergeometric
functions are however separately divergent (even for finite values of ǫ) and
only their sum is finite. We therefore only compute a Laurent series for F5.
Resolving singularities in ǫ and summing up residues in terms of harmonic
sums we obtain,

F5(ǫ) = −120

ǫ
ζ2 − 960 ζ3 + 684 ζ2 + ǫ

(
− 4620 ζ4 + 5472 ζ3 − 1188 ζ2

)

+ ǫ2
(
− 17160 ζ5 − 720 ζ2 ζ3 + 26334 ζ4 − 9504 ζ3 + 648 ζ2

)

+ ǫ3
(
− 64110 ζ6 − 2880 ζ2

3 + 97812 ζ5 + 4104 ζ2 ζ3 − 45738 ζ4

+ 5184 ζ3

)
+O(ǫ4) .

(5.93)

The master integral F8

The master integral F8 is defined by,

ΦS
4(ǫ)F8(ǫ) =

∫
dΦS

4

(s13 + s15)(s23 + s24)s34s35
. (5.94)

We start by introducing two MB integrations in order to remove the sums in
the denominator of the integral F8. The energies are integrated out in terms of
Γ functions, and the angular integrations over particles 4 and 5 are performed
using eq. (4.132). At this stage we have three integrations left to do: the two
MB integrations and the integral over cos θ3 = 2y − 1,

F8(ǫ) = − 6Γ(6 − 6ǫ)

ǫ Γ(1 − ǫ)4Γ(1 − 6ǫ)

∫ +i∞

−i∞

dz1dz2

(2πi)2

∫ 1

0
dy yz2−ǫ (1 − y)z1−ǫ

× Γ (z1 + 1) Γ (−z2) Γ (z2 + 1) Γ (−ǫ − z1) Γ (−ǫ − z2)

× 2F1 (1, z1 + 1; 1 − ǫ; y) 2F1 (1, z2 + 1; 1 − ǫ; 1 − y)

× Γ (−z1) Γ (−2ǫ + z1 + z2) .

(5.95)
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In order to proceed, we first apply the identity,

2F1(a, b; c; x) = (1 − x)−b
2F1

(
c − a, b; c;

x

x − 1

)
, (5.96)

and then insert an MB representation for each hypergeometric function in
the integrand of eq. (5.95). The reason to apply eq. (5.96) before inserting
the MB integrations comes from the fact that in this way one of the four MB
integrations can be performed using Barnes’ first lemma. We then arrive at
the following three-fold MB representation for F8,

F8(ǫ) = − 6ǫ Γ(6 − 6ǫ)

Γ(1 − ǫ)4Γ(1 − 6ǫ)

∫ +i∞

−i∞

dz2dz3dz4

(2πi)3
Γ (−z2) Γ (−z3) Γ (−z4)

× Γ (z3 + 1) Γ (z2 − 2ǫ) Γ (−z2 − z4) Γ (z2 + z4 + 1) Γ (−ǫ − z3)

× Γ (z3 − ǫ)
Γ (−2ǫ + z2 − z3) Γ (−ǫ − z4) Γ (z4 − ǫ)

Γ (−2ǫ + z2 + 1) Γ (−2ǫ − z3 − z4)
.

(5.97)

In the rest of this section we show how we can compute a Laurent expansion
for this integral. We proceed in the standard way and resolve singularities
in ǫ. At the end of this procedure, we have a collection of MB integrals of
dimensionality at most three with integration contours that are straight vertical
lines. These integrals can then be safely expanded in ǫ under the integration
sign. In the following we discuss the computation of the two and three-fold
integrals.

Three-fold MB integrals. There is one three-fold integral contributing to
F8,

F8,3 =
∫ +i∞

−i∞

dz2dz3dz4

(2πi)3
Γ (−z2) Γ (z2) Γ (−z4)

2
Γ (z4)

× Γ (1 − z3 − z4) Γ (z2 + z4 + 1) Γ (z3 + z4)
2

Γ (z2 + z3 + z4)

Γ (z2 + 1) Γ (z3)

× Γ (−z2 − z4) Γ (−z3 − z4) .

(5.98)

where we omit all Γ function prefactors and where the integration contours are
straight vertical lines defined by,

ℜ(z3) = 0.28 and ℜ(z4) = 0.97 and ℜ(z5) = −0.36 . (5.99)

We start by closing the z3 contour to the right and take residues,
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∫ +i∞

−i∞

dz2dz4

(2πi)2

Γ (−z2) Γ (z2) Γ (−z2 − z4) Γ (−z4)
2

Γ (z4) Γ (z2 + z4 + 1)

Γ (z2 + 1)

×
∞

∑
n=1

{
Γ (n + z2)

n Γ (n − z4)
ψ (n + z2)−

Γ (n + z2)

n Γ (n − z4)
ψ (n − z4)

− Γ (n + z2)

n2 Γ (n − z4)

}
.

(5.100)

The first two sums can be performed in terms of Γ functions and their
derivatives. We illustrate this on the first term (the second term is similar),

∞

∑
n=1

Γ (n + z2)

n Γ (n − z4)
ψ (n + z2) = lim

η→0

∂

∂η

∞

∑
n=1

Γ (n + z2 + η)

n Γ (n − z4)

= lim
η→0

∂

∂η

{
Γ (η + z2)

Γ (−z4)
[ψ (−z4)− ψ (−η − z2 − z4)]

}

= − Γ (z2)

Γ (−z4)

[
ψ (z2 + 1)ψ (−z2 − z4)−

1

z2
ψ (−z2 − z4)

− z2ψ (z2 + 1)ψ (−z4) +
1

z2
ψ (−z4)− ψ′ (−z2 − z4)

]
.

(5.101)

In this way, the first two terms can e�ectively be reduced to the computation
of two-fold integrals, and we will therefore not discuss them any further in this
section.

The third term can also be summed up in closed form. However, unlike
the first two terms, the sum cannot be expressed in terms of Γ functions and
their derivatives alone, but evaluates to a 4F3 function. We therefore arrive at
the following single three-fold MB integral,

F8,3 = −
∫ +i∞

−i∞

dz2dz4

(2πi)2

Γ (−z2) Γ (z2) Γ (−z2 − z4) Γ (−z4)
2

Γ (z4)

Γ (1 − z4)

× Γ (z2 + z4 + 1) 4F3 (1, 1, 1, z2 + 1; 2, 2, 1 − z4; 1) .

(5.102)

Although it looks as though we have managed to reduce the three-fold integral
to a two-fold integral, it is still secretly three-fold, except that we have ‘hidden’
one integration inside the 4F3 function. The advantage of this representation
is that we can change the representation for the 4F3 function in the integrand.
More precisely, we perform the change of variables z4 → −z4 − z2 and chose
the contours to be straight vertical lines given by,

ℜ(z2) =
1

3
and ℜ(z4) =

1

5
. (5.103)
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We then insert an Euler integral representation for the 4F3 function as an
integral over a 3F2. The 3F2 function turns out to be reducible,

3F2 (1, 1, 1; 2, 2; t) =
Li2(t)

t
, (5.104)

and so we finally arrive at,

F8,3 = −
∫ +i∞

−i∞

dz2dz4

(2πi)2

∫ 1

0
dt tz2−1 (1 − t)z4−1 Li2(t)

× Γ (−z2) Γ (z2) Γ (1 − z4) Γ (−z2 − z4) Γ (z2 + z4)
2

Γ (z2 + 1)
,

(5.105)

Next, we would like to exchange the MB and the Euler integration and sum
up the residues of the poles of the Γ functions in the integrand. However, we
are only allowed to do so if the Euler integration does not produce any new
poles whose residues need to be taken into account. It is easy to see that in
our case the Euler integral converges whenever ℜ(z2) and ℜ(z4) are positive.
We can thus close both contours to the right and exchange the Euler and MB
integrations and then sum up the residues coming from the Γ functions.

We start by taking residues in z2 and then the residues in z4. There are
several cases to be considered separately:

1. The poles at z2 = n2 ∈ N× give rise to poles in z4 at n4 ∈ N×. Hence,
we obtain double sums of the form

∞

∑
n2,n4=1

(
n2 + n4

n2

)
S~ı1(n2)

n
j1
2

S~ı2(n4)

n
j2
4

S~ı3(n2 + n4)

(n2 + n4)j3
tn2 (1 − t)n4 . (5.106)

Sums of this type can be performed using XSummer [186, 187], and
give rise to complicated multiple polylogarithms whose arguments are
rational functions of t and (1 − t). Using the coproduct calculus all
these complicated multiple polylogarithms can be reduced to harmonic
polylogarithms with indices 0 and 1 in t.

2. Taking the residues at the poles at z2 = −z4 + n2, n2 ∈ N× gives rise
to the expression,

−
∫ 1

0
dtLi2(t)

∞

∑
n2=1

∫ +i∞

−i∞

dz4

2πi

z2
4 n2! Γ (−z4)

2
Γ (z4)

n2
2 (n2 − z4)

2
Γ (n2 − z4)

× tn2−z4−1 (1 − t)z4−1 .

(5.107)

Next we want to close the z4 contour and sum up the corresponding
residues. From the previous discussion, we are forced to close the contour
to the right, and the summand obviously only has poles at z4 = n4 ∈
N× inside the integration contour. There is however a subtlety, and we
cannot just sum up the residues. Indeed, it is easy to see that
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5.5. Analytic computation of the master integrals

• for n4 < n2, there are double poles. Shifting the summation vari-
able n2 → n2 + n4, these residues give rise to double sums similar to
eq. (5.106) and can again be performed using XSummer. We obtain
complicated multiple polylogarithms with rational functions of t as
argument. Using symbols, they can again be simplified to harmonic
polylogarithms with indices 0 and 1 in t.

• for n4 = n2, there is a simple pole. This gives rise to a simple sum
which is trivial to perform in terms of harmonic polylogarithms in
t.

• for n4 > n2, there is a simple pole. Shifting the summation variable
n4 → n2 + n4 this gives rise to a single double sum S(1− t, 1− 1/t),
with

S(x, y) = −
∞

∑
n2,n4=0

n2! n4!

(n2 + n4 + 1)!

xn2

n2 + 1

yn4

n4 + 1
. (5.108)

This sum is not of the type (5.106), and we therefore need a di�erent
way to sum up the series. This procedure will be discussed in the
rest of this section.

One way to sum the series S(x, y) is to recognize that it is related to an
integral over an Appell F3 function. More precisely we can write,

S(x, y) = − 1

xy

∞

∑
n2,n4=0

n2! n4!

(n2 + n4 + 1)!

xn2+1

n2 + 1

yn4+1

n4 + 1

= − 1

xy

∫ x

0
dξ
∫ y

0
dχ

∞

∑
n2,n4=0

(n2!)2 (n4!)2

(n2 + n4 + 1)!

ξn2

n2!

χn4

n4!

= − 1

xy

∫ x

0
dξ
∫ y

0
dχ F3(1, 1, 1, 1; 2; ξ, χ) .

(5.109)

The particular Appell F3 function we obtain turns out to be reducible,

F3(α, γ − α, β, γ − β; γ; ξ, χ) = (1 − χ)α+β−γ
2F1(α, β; γ; ξ + χ − ξχ) ,

(5.110)
and so we obtain a simple two-fold integral representation for S,

S(x, y) = − 1

xy

∫ x

0
dξ
∫ y

0
dχ 2F1(1, 1; 2; ξ + χ − ξχ)

=
1

xy

∫ x

0
dξ
∫ y

0
dχ

log(1 − ξ) + log(1 − χ)

ξ + χ − ξχ
.

(5.111)

This integral is trivial to perform in terms of multiple polylogarithms with
rational functions in x and y as arguments using the algorithm described in
section 2.6. It then follows that S(1 − t, 1 − 1/t) can be expressed in terms
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of multiple polylogarithms with rational functions in t as arguments. Using
symbols, we arrive at the following simple expression,

S

(
1 − t, 1 − 1

t

)
=

t

(1 − t)2

[
− 4Li3(t) + 2Li2(t) log t

+
1

6
log3 t +

π2

3
log t + 4ζ3

]
.

(5.112)

Putting everything together, we arrive at a representation for F8,3 as a one-fold
integral over harmonic polylogarithms. This integral is trivial to perform, and
we obtain,

F8,3 =
23π6

22680
− 2ζ2

3 . (5.113)

Two-fold MB integrals. There is only one two-fold MB integral contributing
to F8 that cannot be reduced to simpler integrals by Barnes’ lemmas and their
corollaries. This integral reads

F8,2(ǫ) =
∫ +i∞

−i∞

dz3dz4

(2πi)2

Γ (−z3)
3

Γ (z3) Γ (z3 + 1) Γ (−z4)
3

Γ (z4) Γ (z4 + 1)

2ǫΓ (−z3 − z4)

×
[
3ǫψ (−z3) + ǫψ (z3)− 2ǫψ (−z3 − z4)

+ ǫψ (−z4) + ǫψ (z4)− 1
]

,

(5.114)

where the integration contours are straight vertical lines defined by,

ℜ(z3) = −0.64 and ℜ(z4) = −0.22 . (5.115)

The integral could in principle be done by closing contours to the left and sum-
ming up residues. This leads to double sums of the form (5.106) – thousands
of them due to the presence of multiple poles – but without any parametric
dependence. We therefore took a di�erent route, which we present in the fol-
lowing.

We start by noting that the integrand of eq. (5.114) agrees, up to higher
order terms of O(ǫ), with the function

− Γ (z3 + 1) Γ (−z4)
2

Γ (z4 + 1) Γ (−ǫ − z3)
3

Γ (z3 − ǫ) Γ (−ǫ − z4) Γ (z4 − ǫ)

2ǫΓ (−2ǫ − z3 − z4)
.

(5.116)
It would however be wrong to conclude that then necessarily the integrals, seen
as a Laurent expansion in ǫ, are also equal to the same accuracy, because the
Laurent expansion of eq. (5.116) around ǫ = 0 might require shifting the
integration contours to avoid pinch singularities in the limit ǫ → 0. It is
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5.5. Analytic computation of the master integrals

however easy to see that, for the contours given in eq. (5.115), no new pinch
singularity is created for ǫ → 0 in eq. (5.116). We therefore consider from now
on ǫ to be infinitesimal but finite: it is large enough to separate poles at, e.g.,
z2 = 0 from z2 = ǫ, but small enough to ensure that no poles change their
nature, i.e., poles that were left (right) of the contour (5.115) in eq. (5.114)
remain left (right) of the contour in eq. (5.116). If we chose ǫ in this way, we
conclude that

F8,2(ǫ) = F̃8,2(ǫ) +O(ǫ) , (5.117)

where F̃8,2 is given by eq. (5.116) integrated over the straight vertical lines
defined by eq. (5.115). Our aim will be to find an ǫ expansion for F̃8,2.

We perform the change of variables (z3, z4) → (−1 − z3,−z4), and we
close the z3 contour to the right and take residues. There are two towers of
poles we need to take into account:

z3 = n3 ∈ N and z3 = −1 − ǫ + n3, n3 ∈ N× . (5.118)

Two comments are in order:

1. At this stage our assumption that ǫ is infinitesimal but finite is vital,
because otherwise the two towers of poles would merge and thus give
rise to double poles.

2. The second tower of poles runs over the set {−ǫ,−ǫ + 1, . . .}. For tech-
nical reasons that will become clear below, it is easier to explicitly take
into account the residue at z3 = −1 − ǫ, and to compensate for this by
adding it back,

F̃8,2(ǫ) = R8,2(ǫ) + F8,2(ǫ) , (5.119)

where F8,2 is the integral obtained from F̃8,2 by deforming the z3 contour
such that the pole at z3 = −1− ǫ is now to the right of the contour. The
residue at z3 = −1 − ǫ can be computed in closed form and gives rise
to,

R8,2(ǫ) = −Γ(1 − ǫ)2Γ(1 + ǫ)Γ(1 − 2ǫ)3

16ǫ5 (1 + ǫ) Γ(1 − 3ǫ)
3F2(1, 1, 1 − ǫ; 1 − 3ǫ, ǫ + 2; 1)

+
Γ(1 − 2ǫ)4Γ(1 − ǫ)2Γ(1 + ǫ)2

8ǫ6 Γ(1 − 4ǫ)

− 3Γ(1 − 2ǫ)3Γ(1 − ǫ)3Γ(1 + ǫ)2

16ǫ6 Γ(1 − 3ǫ)
.

(5.120)

Next we compute F8,2 by closing the z3 contour to the right and summing up
residues. The resulting sums can easily be performed in terms of hypergeo-
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metric functions, and we get,

F8,2(ǫ) = −
∫ +i∞

−i∞

dz4

2πi

Γ (1 − z4) Γ (z4)
2

Γ (−ǫ − z4) Γ (z4 − ǫ)

2ǫΓ (z4 − 3ǫ) Γ (−2ǫ + z4 + 1)

×
[
Γ(−ǫ − 1)Γ(1 − ǫ)3Γ (z4 − 3ǫ)

×3 F2 (1 − ǫ, 1 − ǫ, 1 − ǫ; ǫ + 2,−2ǫ + z4 + 1; 1)

+ Γ(−2ǫ)3Γ(ǫ + 1)Γ (−2ǫ + z4 + 1)

×3 F2 (−2ǫ,−2ǫ,−2ǫ;−ǫ, z4 − 3ǫ; 1)
]

.

(5.121)

In order to proceed, we insert an Euler integral representation for each of the

3F2 functions. It is then easy to see that the Euler integrals are convergent
for ℜ(z4) > 0 and ǫ infinitesimal but finite, and so we can exchange the
Euler and MB integrations provided that we close the integration contour to
the right. The important point is that the 2F1 functions appearing inside the
Euler integrals are independent of z4, and so they can be pulled out of the
MB integral. Summing up the residues in z4, we then arrive at the following
integral representation for F8,2,

F8,2(ǫ) =
Γ(1 − ǫ)

2ǫ3

∫ 1

0
dt t−ǫ(1 − t)−ǫ (5.122)

×
{
(1 − t)−ǫ Γ(1 − ǫ)4Γ(1 + ǫ)

ǫ2(1 + ǫ)(1 − t)
2F1(1 − ǫ, 1 − ǫ; ǫ + 2; t)

+ t−ǫ−1 (1 − t)−1−ǫ Γ(1 − 2ǫ)2Γ(1 − ǫ)Γ(1 + ǫ)2

4ǫ3 2F1(−2ǫ,−2ǫ;−ǫ; t)

− (1 − t)−1−ǫ Γ(1 − 2ǫ)2Γ(1 − ǫ)Γ(1 + ǫ)2

4ǫ3 t
2F1(−2ǫ,−2ǫ;−ǫ; t)

− Γ(1 − 2ǫ)2Γ(1 + ǫ)

4ǫ(1 + ǫ) t
2F1(−2ǫ,−2ǫ;−ǫ; t) 2F1(ǫ + 1, ǫ + 1; ǫ + 2; 1 − t)

− tǫ (1 − t)−ǫ Γ(1 − ǫ)4Γ(1 + ǫ)

ǫ2(1 + ǫ) (1 − t)
2F1(1 − ǫ, 1 − ǫ; ǫ + 2; t)

− tǫ Γ(1 − ǫ)3

(1 + ǫ)2 2F1(1 − ǫ, 1 − ǫ; ǫ + 2; t) 2F1(ǫ + 1, ǫ + 1; ǫ + 2; 1 − t)

}
.

The terms involving a single 2F1 function in the integrand immediately evalu-
ate to 3F2 functions, which can be expanded in ǫ using HypExp. In addition,
the fourth term can be done in closed form as follows: We insert an MB rep-
resentation for each 2F1 and perform the Euler integration as a Beta function.
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5.5. Analytic computation of the master integrals

One of the two remaining MB integrals evaluates to a 2F1 evaluated at 1, which
reduces to Γ functions through Gauss’s identity. The remaining one-fold MB
integral then immediately evaluates to a 4F3 function, which can be expanded
in ǫ using HypExp. We were not able to find a closed form for the last remain-
ing Euler integral. We therefore insert an Euler integration for each 2F1, and
we obtain the expression,

− Γ(1 − ǫ)3Γ(1 + ǫ)

2ǫ3 Γ(1 + 2ǫ)
I(ǫ) , (5.123)

where I denotes the integral

I(ǫ) =
∫ 1

0
dt du dv (1 − t)−ǫ(1 − u)2ǫu−ǫvǫ(1 − tu)ǫ−1(1 − (1 − t)v)−ǫ−1 .

(5.124)
It is easy to see that I is finite as ǫ → 0, and so we can expand in ǫ under the
integration sign and perform the integration over t, u and v recursively using
the algorithm described in section 2.6. This is a trivial exercise that leads to,

I(ǫ) = 2ζ3 −
7π4

180
ǫ +

(
25ζ5 −

π2

2
ζ3

)
ǫ2 +

(
−6ζ2

3 −
809π6

22680

)
ǫ3 +O(ǫ4) .

(5.125)
We have thus obtained the ǫ expansion of F8,2, and thus of F8,2. We find,

F8,2(ǫ) =

(
π2

6
ζ3 −

9

2
ζ5

)
1

ǫ
− 18γEζ5 + 4ζ2

3 +
2

3
γEπ2ζ3 −

817π6

45360
+O(ǫ) ,

(5.126)
where γE = Γ′(1) denotes the Euler-Mascheroni constant.

The result forF8. We have now computed all the two and three-fold integrals
contributing to F8. The remaining one-fold integrals are trivial to compute and
we obtain

F8(ǫ) = −60

ǫ5
+

822

ǫ4
+

1

ǫ3

(
240 ζ2 − 4050

)
+

1

ǫ2

(
2400 ζ3 − 3288 ζ2 + 9180

)

+
1

ǫ

(
13320 ζ4 − 32880 ζ3 + 16200 ζ2 − 9720

)
+ 51840 ζ5 + 3360 ζ2 ζ3

− 182484 ζ4 + 162000 ζ3 − 36720 ζ2 + 3888 + ǫ
(

207600 ζ6 + 11760 ζ2
3

− 710208 ζ5 − 46032 ζ2 ζ3 + 899100 ζ4 − 367200 ζ3 + 38880 ζ2

)
+O(ǫ2) .

(5.127)

The master integral F9

In this section we describe the computation of the most complicated master
integral,

ΦS
4(ǫ)F9(ǫ) =

∫
dΦS

4

s15(s14 + s15)s23s34s345
. (5.128)
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We start in the usual way and derive an MB representation for F9 by inserting
the energies and angles parametrization and inserting MB integrations for the
angular integrals. After applying Barnes’ lemmas and their corollaries several
times, we arrive at the following MB representation for F9,

F9(ǫ) = F9,1(ǫ) +F9,2(ǫ) , (5.129)

where,

F9,1 =
3(1 + 6ǫ)Γ(6 − 6ǫ)Γ(1 − 4ǫ)

2ǫ(1 + 4ǫ)Γ(1 − 6ǫ)Γ(1 − ǫ)3

∫ +i∞

−i∞

dz1dz2dz3dz4

(2πi)4
Γ (−z2) Γ (−z3)

× Γ (1 − z1 − z2) Γ (1 − z1 − z3) Γ (z1 + z2 + z3) Γ (−z1 − z2 − z3 − z4)

× Γ (z1 + z2 + z4 + 1) Γ (z1 + z3 + z4 + 1) Γ (−z1 − z2 − 2ǫ)

× Γ (z1 − ǫ − 1) Γ (−z1 − z4 − ǫ − 1) Γ (z4 − ǫ + 1)

Γ (1 − z2) Γ (1 − z3) Γ (−z1 − z2 − 4ǫ) Γ (z4 − 2ǫ + 1)
,

(5.130)

F9,2 = − 3(1 + 6ǫ)Γ(6 − 6ǫ)Γ(1 − 4ǫ)

2ǫ(1 + 4ǫ)Γ(1 − 6ǫ)Γ(1 − ǫ)3

∫ +i∞

−i∞

dz1dz2dz3dz4

(2πi)4
Γ (1 − z1) Γ (−z2)

× Γ (−z3) Γ (−z1 − z3 + 1) Γ (z1 + z2 + z3) Γ (−z1 − z2 − z3 − z4)

× Γ (z1 + z2 + z4 + 1) Γ (z1 + z3 + z4 + 1) Γ (−z1 − z2 − 2ǫ)

× Γ (z1 − ǫ − 1) Γ (−z1 − z4 − ǫ − 1) Γ (z4 − ǫ + 1)

Γ (1 − z2) Γ (1 − z3) Γ (−z1 − 4ǫ) Γ (z4 − 2ǫ + 1)
.

(5.131)

We can resolve singularities for F9,1 and F9,2 and expand in ǫ up to and includ-
ing O(ǫ). The result is a collection of high-dimensional MB integrals which,
after closing the contour and taking residues, result in multi-fold harmonic
sums. While we were able to perform all the harmonic sums in terms of zeta
values for all MB integrals up to O(ǫ0), at O(ǫ) new polygamma functions
appear in the integrand which make the combinatorics of the sums rather in-
tricate. We therefore chose a di�erent method to evaluate the integral F9,
which we describe in the rest of this section.

We start by noting that the F9 is finite in d = 6 dimensions. This can
easily be checked by replacing ǫ by ǫ − 1 in the MB representations (5.130)
and (5.131) and resolving singularities. Our goal is to find a parametric inte-
gral representation for F9 in d = 6 − 2ǫ dimensions and to expand under the
integration and perform the parametric integrations recursively. The result in
d = 6 − 2ǫ can then be related to the (divergent) result in d = 4 − 2ǫ using
the dimensional recurrence relation for F9 of Section 5.3.

It is easy to derive a parametric representation for F9 using the technique
described in section 4.3. We find,

F9(d = 6− 2ǫ) =
Γ(12 − 6ǫ)Γ(3 − 3ǫ)Γ(1 − ǫ)

Γ(5 − 6ǫ)Γ(2 − ǫ)4

[
I9,1(ǫ) + I9,2(ǫ)

]
, (5.132)
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with

I9,1(ǫ) = −
∫ ∞

0
dt1 dt2

∫ 1

0
dx1 dx2 dx3 t2−4ǫ

1 (1 + t1)
ǫ−1 t1−2ǫ

2

× x−ǫ
1 (1 − x1)

2−4ǫ x1−3ǫ
2 (1 − x2)

−ǫ x−ǫ
3 (1 + t2x3)

1−3ǫ (1 + t2x2x3)
ǫ (5.133)

×
(

t1t2
2x1x2x3 + t2

2x2x3 + t1t2x1x2 + t1t2x3 + t2x2x3 + t2 + t1 + 1
)3ǫ−3

,

I9,2(ǫ) =
∫ ∞

0
dt1 dt2

∫ 1

0
dx1 dx2 dx3 t2−4ǫ

1 (1 + t1)
ǫ−1 t1−2ǫ

2

× x1−ǫ
1 (1 − x1)

2−4ǫ x1−3ǫ
2 (1 − x2)

−ǫ x−ǫ
3 (1 + t2x3)

1−3ǫ (1 + t2x2x3)
ǫ (5.134)

×
(

t1t2
2x1x2x3 + t2

2x1x2x3 + t2x1 + t1t2x1x2 + t1t2x3 + t2x1x2x3 + t1 + x1

)3ǫ−3
,

Several comments are in order about the parametric integrals we just defined.
First, one can easily check that both I9,1 and I9,2 are individually finite as
ǫ → 0. Second, at first glance our goal to integrate out the integration vari-
ables one-by-one seems rather hopeless due to the appearance of the huge poly-
nomial factor. However, the criterion of denominator reducibility, outlined in
section 2.6, is satisfied for both I9,1 and I9,2. We have

S(1) = {1 + t1, 1 − x1, 1 − x2, 1 + t2x3, 1 + t2x2x3, (5.135)

t1t2
2x1x2x3 + t2

2x2x3 + t1t2x1x2 + t1t2x3 + t2x2x3 + t2 + t1 + 1} ,

S(2) = {1 + t1, 1 − x1, 1 − x2, 1 + t2x3, 1 + t2x2x3, (5.136)

t1t2
2x1x2x3 + t2

2x1x2x3 + t2x1 + t1t2x1x2 + t1t2x3 + t2x1x2x3 + t1 + x1}
S
(1)
(t1)

= {1 − x1, 1 − x2, 1 + t2x1x2, 1 + t2x3, 1 + t2x2x3, (5.137)

− t2x3x2 + t2x1x3x2 + x1x2 − x3x2 + x3 − 1} ,

S
(2)
(t1)

= {1 − x1, 1 − x2, 1 + t2x1x2, 1 + t2x3, 1 + t2x2x3, (5.138)

t2x1 − t2x2x1 + t2x2x3x1 − t2x3 + x1 − 1} ,

S
(1)
(t1,x1)

= {1 − x2, 1 + t2x2, 1 − x3, 1 + t2x3, 1 + t2x2x3, (5.139)

t2x2x3 + x2x3 − x3 + 1} ,

S
(2)
(t1,x1)

= {1 − x2, 1 + t2x2, 1 − x3, 1 + t2x3, 1 + t2x2x3, (5.140)

− t2x2 + t2x2x3 + t2 + 1} ,

S
(1)
(t1,x1,x2)

= {1 − x3, 1 + t2x3, 2t2x3 − t2 + x3} , (5.141)

S
(2)
(t1,x1,x2)

= {2 + t2 − x3, 1 − x3, 1 + t2x3} , (5.142)

S
(1)
(t1,x1,x2,x3)

= {1 + t2, 1 + 2t2} , (5.143)

S
(2)
(t1,x1,x2,x3)

= {1 + t2, 2 + t2} . (5.144)

137



5. Soft triple real corrections

We see that if we perform the integration in the order (t1, x1, x2, x3, t2) then at
each step all the polynomials are linear in the next integration variable. The
actual integration can be carried out in an algorithmic way as described in
section 2.6. The result is,

F9(d = 6 − 2ǫ) = 1663200ζ3 − 554400π2 + 3326400

+ 120ǫ

(
+ 1309π4 − 244203ζ3 + 2861π2 + 135294

)

− 2ǫ2

(
− 25779600ζ5 − 970200π2ζ3 + 838657π4 − 8149392ζ3 − 201756π2

− 31378284

)
+

4

15
ǫ3

(
960575π6 + 180873000ζ2

3 − 1978358850ζ5

− 33612075π2ζ3 + 56663280ζ3 + 3240501π4 + 6836130π2 + 810381510

)

+O(ǫ4) .

(5.145)

Using the dimensional recurrence relations for F9 derived in Section 5.3 we
then finally find the value of F9 in d = 4 − 2ǫ dimensions,

F9(ǫ) =
160

ǫ5
− 1712

ǫ4
+

1

ǫ3

(
− 120 ζ2 + 2784

)
+

1

ǫ2

(
− 120 ζ3 + 1284 ζ2 + 31968

)

+
1

ǫ

(
2520 ζ4 + 1284 ζ3 − 2088 ζ2 − 216864

)
+ 15720 ζ5 + 1920 ζ2 ζ3

− 26964 ζ4 − 2088 ζ3 − 23976 ζ2 + 795744 + ǫ
(

82520 ζ6 + 9600 ζ2
3

− 168204 ζ5 − 20544 ζ2 ζ3 + 43848 ζ4 − 23976 ζ3 + 162648 ζ2 − 2449440
)

+O(ǫ2) .

(5.146)
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6
Real-virtual corrections

6.1 Setup of the calculation

We consider the partonic-processes for associated Higgs production,

g(p1) + g(p2) → g(p3) + H(p4)

q(p1) + g(p2) → q(p3) + H(p4)

q(p1) + q̄(p2) → g(p3) + H(p4)

(6.1)

where g, q, q̄ are symbols for gluon, quark and anti-quark partons correspond-
ingly and H for the Higgs boson. The brackets refer to the momenta of the
particles. We define the kinematic invariants,

s ≡ 2p1 · p2 + i0, t ≡ 2p2 · p3 − i0, u ≡ 2p1 · p3 − i0,

p2
4 = (p1 + p2 − p3)

2 = s − t − u = M2
h + i0 ,

(6.2)

where we indicated explicitly the small imaginary parts carried by them. The
partonic cross sections for these processes are given by,

σX =
NX

2s

∫
dΦ2 ∑ |AX|2 , (6.3)

where X ∈ {gg → Hg, gq → Hq, qq̄ → Hg} labels the di�erent subprocesses1
and the sum symbol denotes a summation over colors and polarizations of the
initial- and final-state particles. We work in conventional regularization in d =

1In the following we will suppress the dependence on the final state as it can always be
inferred from the initial state for the processes we consider.
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6. Real-virtual corrections

4 − 2ǫ for both the phase space and the matrix element. The d-dimensional
phase-space measure is given by,

dΦ2 = (2π)d δ(d)
(

p1 + p2 − p3 − p4)
dd p3

(2π)d−1
δ+(p2

3)
dd p4

(2π)d−1
δ+(p2

4 − M2
h) .

(6.4)
The NX denote the averaging over initial-state spins and colors in d dimen-
sions,

Ngg =
1

4V2(1 − ǫ)2
, Ngq =

1

4VN(1 − ǫ)2
, Nqq̄ =

1

4N2
, (6.5)

with N and V ≡ N2 − 1 the number of quark and gluon colors respectively.
In the following it will be convenient to parametrize the invariants as,

s =
M2

h

z
, t = s δ λ, u = s δ (1 − λ) , (6.6)

with δ = 1 − z. Note that a physical scattering process corresponds to s > 0
and 0 < z, λ < 1, and the limit δ → 1 corresponds to the threshold region
where the additional final state parton is soft. Using the parametrization (6.6)
we can specialize the previously derived phase-space measure to the case of
one massless particle and eq. (4.59) becomes,

dΦ2 =
(4π)ǫ s−ǫ δ1−2ǫ

8π Γ(1 − ǫ)
dλ [λ (1 − λ)]−ǫ Θ(λ)Θ(1 − λ) . (6.7)

Equation (6.3) then reads

σX = s−1−ǫ NX (4π)ǫ

16π Γ(1 − ǫ)
δ1−2ǫ

∫ 1

0
dλ [λ (1 − λ)]−ǫ ∑ |AX|2 . (6.8)

In the rest of this chapter we compute in an e�ective theory of the Standard
Model where the top quark is integrated out. The e�ective unrenormalized
Lagrangian reads:

L = L e�
QCD − 1

4
C H Ga

µνGa,µν, (6.9)

where the first term corresponds to an e�ective QCD Lagrangian with N f =
5 flavors. The Wilson coe�cient C can be cast as a function of the QCD
coupling, the bare heavy-quark masses and the Higgs field vacuum expectation
value [181, 188–191].

Performing a loop-expansion of the amplitudes AX = ∑
∞
j=0 A

(j)
X in the

e�ective theory with j being the number of loops, we have:

|AX|2 =
∣∣∣A(0)

X

∣∣∣
2
+ 2ℜ

(
A(0)

X A(1)
X

∗)
+

[∣∣∣A(1)
X

∣∣∣
2
+ 2ℜ

(
A(0)

X A(2)
X

∗)]
+ . . .

(6.10)
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6.2. Results

The first two terms of the above expansion enter the already-known inclusive
Higgs boson cross section through NNLO [83, 98, 108, 109, 115, 116, 192].
The third term in square brackets contributes to the N3LO coe�cient. In this
chapter, we compute the part of the partonic cross section due to the square
of the one-loop amplitudes, namely,

σ1⊗1
X = s−1−ǫ NX (4π)ǫ

16π Γ(1 − ǫ)
δ1−2ǫ

∫ 1

0
dλ [λ (1 − λ)]−ǫ ∑

∣∣∣A(1)
X

∣∣∣
2

. (6.11)

6.2 Results

The computation of the cross sections (6.11) for the di�erent subprocesses
is the main subject of this chapter. We evaluated the phase-space and loop
integrals in di�erent ways that are detailed in Section 6.3. In this section, we
summarize first our main findings.

We find for the partonic cross sections:

σ1⊗1
X =

π ωΓ |C|2
256 s

(
4π

s

)3ǫ (αs

π

)3
CX ΣX(z; ǫ) , (6.12)

where g2
s ≡ 4παs, and we have,

Cgg =
N

V (1 − ǫ)2
, Cqg =

1

N (1 − ǫ)
, Cqq̄ =

V

N2
. (6.13)

In eq. (6.12) we have introduced the quantity,

ωΓ ≡ c3
Γ

Γ(1 + ǫ) Γ(1 − ǫ)
=

Γ2(1 + ǫ) Γ5(1 − ǫ)

Γ3(1 − 2ǫ)
, cΓ =

Γ(1 + ǫ) Γ2(1 − ǫ)

Γ(1 − 2ǫ)
.

(6.14)
The function Σgg(z; ǫ) has a pole as z → 1. This pole constitutes the

soft singularity of the gluon initiated cross section; it will only be remedied by
integrating the partonic cross section with parton distribution functions. We
separate this singular part manifestly from the remainder and write:

Σgg(z; ǫ) = Σ
sing

gg (z; ǫ) + Σ
reg

gg (z; ǫ) (6.15)

where the z → 1 singular part is given by

Σ
sing

gg (z; ǫ) = −(1 − z)−1−2ǫ 8N2
(
ǫ3 + 2ǫ2 − 3ǫ + 1

)2

(1 − 2ǫ)2(1 − ǫ)ǫ5

− (1 − z)−1−4ǫ 4N2
(
ǫ3 + 2ǫ2 − 3ǫ + 1

)
Γ(ǫ + 1)Γ(2ǫ + 1)Γ(1 − 2ǫ)4

(1 − 2ǫ)ǫ5Γ(1 − 4ǫ)2Γ(1 − ǫ)Γ(4ǫ + 1)

− (1 − z)−1−6ǫ 2N2(1 − ǫ)Γ(1 − 3ǫ)2Γ(ǫ + 1)2Γ(1 − 2ǫ)

3ǫ5Γ(1 − 6ǫ)
.

(6.16)
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6. Real-virtual corrections

The cross sections of the qq̄ and qg channels are regular in the limit z → 1:

Σqg(z; ǫ) = Σ
reg

gq (z; ǫ) ,

Σqq̄(z; ǫ) = Σ
reg

qq̄ (z; ǫ) .
(6.17)

We have calculated the regular functions Σ
reg

X (x; ǫ) as an expansion in
the dimensional regulator ǫ through O(ǫ0). The expressions are composed of
multiple polylogarithms up to weight five.

Due to the magnitude of the expressions obtained for the functions Σ
reg

X (x; ǫ)
we refrain from stating them here explicitly but rather refer to ref. [2].

Given that the triple-real contributions to the inclusive Higgs boson cross
section at N3LO in chapter 5 have only been computed as an expansion around
z = 1− δ → 1, we also provide the same expansion for the (RV)2 cross section
functions ΣX(z, ǫ). We have discovered a characteristic structure for ΣX(z, ǫ)
in the δ → 0 limit; all logarithmic contributions of the form log δ exponentiate
into factors of δ−aǫ, where a is an integer in the interval [2, 6]. Namely,

ΣX(z, ǫ) =
6

∑
a=2

δ−aǫ η
(a)
X (δ; ǫ) , (6.18)

where the functions η
(a)
X (δ; ǫ) are meromorphic functions of δ. We further

decompose η
(a)
X ,

η
(a)
X (δ; ǫ) = φ

(a;1)
Γ (ǫ) η̂

(a;1)
X (δ; ǫ) , (6.19)

for a 6= 4, while for a = 4 we write,

η
(4)
X (δ; ǫ) =

3

∑
j=1

φ
(4;j)
Γ (ǫ) η̂

(4;j)
X (δ; ǫ) , (6.20)

with

φ
(2;1)
Γ (ǫ) = 1 ,

φ
(3;1)
Γ (ǫ) =

cos(πǫ)Γ(1 − 2ǫ)2

Γ(1 − 3ǫ)Γ(1 − ǫ)
,

φ
(4;1)
Γ (ǫ) =

Γ3 (1 − 2ǫ)

Γ (1 − 4ǫ) Γ2 (1 − ǫ)
,

φ
(4;2)
Γ (ǫ) =

cos(2πǫ)Γ(1 − 2ǫ)3Γ(ǫ + 1)

Γ(1 − 4ǫ)Γ(1 − ǫ)
,

φ
(4;3)
Γ (ǫ) =

Γ (1 − 2ǫ) Γ (1 − 3ǫ)

Γ (1 − 4ǫ) Γ (1 − ǫ)
,

φ
(5;1)
Γ (ǫ) =

cos(πǫ)Γ(1 − 3ǫ)Γ(1 − 2ǫ)2Γ(ǫ + 1)

Γ(1 − 5ǫ)Γ(1 − ǫ)
,

φ
(6;1)
Γ (ǫ) =

Γ (1 − 2ǫ) Γ2 (1 + ǫ) Γ2 (1 − 3ǫ)

Γ (1 − 6ǫ)
.

(6.21)
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6.2. Results

The structure of Eqs. (6.18)–(6.20) originates from loop integrations over dis-
tinct kinematic configurations, where the loop momentum can be either soft
(s), or collinear to the first incoming parton (c1), or collinear to the second
incoming parton (c2), or, otherwise, hard (h). Every term in the squared am-
plitude may be thought of as associated to a product of two regions r1 and r2,
ri ∈ {s, c1, c2, h}, one from the amplitude itself and the other from its complex
conjugate. In the following we denote the contribution from such a product of

regions by (r1, r2). The coe�cients φ
(i;j)
Γ (ǫ) η̂

(i;j)
X (δ; ǫ) are in one-to-one corre-

spondence with these regions. The correspondence is explicitly given by,

φ
(2;1)
Γ (ǫ) η̂

(2;1)
X (δ; ǫ) ↔ (h, h) ,

φ
(3;1)
Γ (ǫ) η̂

(3;1)
X (δ; ǫ) ↔ (c1 + c2, h) + (h, c1 + c2) ,

φ
(4;1)
Γ (ǫ) η̂

(4;1)
X (δ; ǫ) ↔ (c1, c2) + (c2, c1) ,

φ
(4;2)
Γ (ǫ) η̂

(4;2)
X (δ; ǫ) ↔ (s, h) + (h, s) ,

φ
(4;3)
Γ (ǫ) η̂

(4;3)
X (δ; ǫ) ↔ (c1, c1) + (c2, c2) ,

φ
(5;1)
Γ (ǫ) η̂

(5;1)
X (δ; ǫ) ↔ (c1 + c2, s) + (s, c1 + c2) ,

φ
(6;1)
Γ (ǫ) η̂

(6;1)
X (δ; ǫ) ↔ (s, s) .

(6.22)

A derivation of the above decomposition will be given in Section 6.3. The

analytic form of the double soft (s, s) terms η̂
(6;1)
X (δ; ǫ) is rather simple. We

find:

η̂
(6;1)
qq̄ (δ; ǫ) =

1

N2

[
δ

24ǫ2 − 16ǫ + 2
+

δ2
(
−2ǫ2 − 2ǫ + 1

)

24ǫ4 − 16ǫ3 + 2ǫ2

+
δ3
(
3ǫ4 + 6ǫ3 − 3ǫ + 1

)

72ǫ6 − 48ǫ5 + 6ǫ4

]
, (6.23)

η̂
(6;1)
qg (δ; ǫ) = N2

[
ǫ − 1

12ǫ5
+

δ

6ǫ4(6ǫ − 1)
− δ2(ǫ + 1)

(
3ǫ3 + 12ǫ2 − 11ǫ + 2

)

24ǫ5 (12ǫ2 − 8ǫ + 1)

+
δ3(ǫ − 1)

4ǫ2 (12ǫ2 − 8ǫ + 1)
− δ4(ǫ − 1)

8ǫ2 (12ǫ2 − 8ǫ + 1)

]
, (6.24)
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6. Real-virtual corrections

η̂
(6;1)
gg (δ; ǫ) = N2

[
+

2(ǫ − 1)

3δǫ5
− 4(ǫ − 1)

3ǫ5
+

2δ
(
8ǫ2 − 7ǫ + 1

)

ǫ5(6ǫ − 1)

−4δ2
(
9ǫ2 − 7ǫ + 1

)

3ǫ5(6ǫ − 1)
− δ3(3ǫ − 1)

(
ǫ4 − 20ǫ3 + 35ǫ2 − 21ǫ + 4

)

6(1 − 2ǫ)2ǫ5(6ǫ − 1)

+
δ4(ǫ − 2)(3ǫ − 1)

3(1 − 2ǫ)2ǫ2(6ǫ − 1)
− δ5(ǫ − 2)(3ǫ − 1)

6(1 − 2ǫ)2ǫ2(6ǫ − 1)

]
. (6.25)

The remaining η̂a;i
X terms are more complicated combinations of generalized

hypergeometric functions, which can be readily cast as a Laurent series in δ,

∞

∑
n=−1

cn(ǫ)δ
n .

Due to the size and complexity of the expression in terms of hypergeometric
functions we refer to ref. [189] for the terms in the δ expansion up to O

(
δ4
)
.

With our computer programs, we have explicitly generated the terms of the
series up to orderO

(
δ10
)
. In addition, as explained earlier, we have computed

the η̂
(a;j)
X functions for arbitrary values of δ as an expansion in ǫ through order

O
(
ǫ0
)
.

6.3 Methods

In this section, we discuss how we evaluated the loop and phase-space inte-
grals that contribute to the real-virtual squared cross sections (6.12). We em-
ployed various methods that each have their own strengths and weaknesses.
We checked that we obtain consistent results when comparing the di�erent
approaches. These methods are:

1. Threshold expansion of the cross section: In this approach, we derive
a representation of the cross section as an expansion close to threshold
where δ → 0. We first expand the loop amplitude in the limit where the
final state parton is soft, and then perform the phase-space integration
order-by-order in the expansion. The threshold expansion of the loop
amplitude is obtained in two di�erent ways: first by finding a suitable
representation in terms of convergent hypergeometric functions within
the entire phase-space, and, second, by expanding around the relevant
soft, collinear and hard regions of the loop momentum.

2. Di�erential equations for master integrals: Using a duality of loop
and phase-space integrals we reduce them simultaneously to a minimal
set of master integrals. The master integrals satisfy di�erential equa-
tions that can be solved in two ways: either order-by-order in dimen-
sional regularization in terms of harmonic polylogarithms, or in terms
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6.3. Methods

of generalized hypergeometric functions. The boundary conditions for
the di�erential equations are obtained by matching to the leading term
of the threshold expansion, which we compute with one of our threshold
expansion methods mentioned above.

3. Direct integration using multiple polylogarithms: It is possible to
derive analytic results for the loop integrals entering our amplitudes in
terms of polylogarithmic functions. These expressions are singular in
soft and collinear limits of the phase-space and we render all integrals
convergent by constructing appropriate counterterms. Then we perform
the two-body phase-space integration by embedding the polylogarithmic
functions into a larger class of multiple polylogarithms for which the
integration is trivial. In the end, we recast the final result in terms of
harmonic polylogarithms only.

Expansion of the cross section around threshold

We start by computing the one-loop amplitudes A1
X with X ∈ {gg → Hg, qq̄ →

Hg, qg → Hq} in dimensional regularization and for arbitrary values of the
regulator ǫ. We generate the Feynman diagrams with QGRAF [183] and per-
form the spin and color algebra using FORM [184]. Using the methods of
refs. [174, 175] for tensor integrals and well established reduction techniques
for scalar integrals [146, 150], the amplitudes are reduced to the one-loop scalar
bubble and box master integrals,

Bub(s12) =
∫

ddk

iπ
d
2

1

k2 (k + q1 + q2)2
,

Box(s12, s23, s31) =
∫

ddk

iπ
d
2

1

k2 (k + q1)2 (k + q1 + q2)2 (k + q1 + q2 + q3)2
,

(6.26)

where the qi are considered light-like and ingoing and sij = (qi + qj)
2.

In the next step, we construct the squared one-loop amplitudes and cast
them in terms of three functions, in the form:

∑
∣∣∣A(1)

gg→Hg

∣∣∣
2
=

N V |C|2 g6
s

(4π)d s t u

{
∣∣Aggg(s,−t,−u)

∣∣2

+ (1 − ǫ)
[∣∣Bggg(s,−t,−u)

∣∣2 +
∣∣Bggg(−t,−u, s)

∣∣2 +
∣∣Bggg(−u, s,−t)

∣∣2
] }

,

(6.27)
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∑
∣∣∣A(1)

qg→Hq

∣∣∣
2
=

V |C|2 g6
s u

2 (4π)d

{
(1 − ǫ)

[∣∣Aqq̄g(−u,−t, s)
∣∣2 +

∣∣Aqq̄g(−u, s,−t)
∣∣2
]

− 2ǫℜ
[

Aqq̄g(−u,−t, s) A∗
qq̄g(−u, s,−t)

]}
, (6.28)

∑
∣∣∣A(1)

qq̄→Hg

∣∣∣
2
=

V |C|2 g6
s s

2 (4π)d

{
(1 − ǫ)

[∣∣Aqq̄g(s,−t,−u)
∣∣2 +

∣∣Aqq̄g(s,−u,−t)
∣∣2
]

− 2ǫℜ
[

Aqq̄g(s,−t,−u) A∗
qq̄g(s,−u,−t)

]}
. (6.29)

For explicit expressions for the functions Aqq̄g, Aggg, Bggg we refer to ref. [189].
Threshold expansion using hypergeometric functions. Loop integrals

in dimensional regularization can be expressed, to all orders in the dimensional
regulator, as (generalized) hypergeometric functions. For example, the box
integral2 defined in eq. (6.26) admits the representation (see, e.g., ref. [193]),

Box(s12, s23, s31) =
2cΓ

ǫ2

1

s12s23

{
(−s23)

−ǫ
2F1

(
1,−ǫ; 1 − ǫ;− s31

s12

)

+ (−s12)
−ǫ

2F1

(
1,−ǫ; 1 − ǫ;− s31

s23

)
−
(
−M2

h

)−ǫ

2F1

(
1,−ǫ; 1 − ǫ;−M2

hs31

s12s23

)}
.

(6.30)

Our goal is to insert the parametrization (6.6) and then to perform the inte-
gration over λ term-by-term in the series representation of the hypergeometric
functions. The result is a power series in δ, i.e., the desired expansion of the
cross section close to threshold.

While all the hypergeometric series in eq. (6.30) are convergent in the Eu-
clidean region where sij < 0, the one-loop amplitude in the physical region
involves the functions Box(−t,−u, s), Box(s,−t,−u) and Box(s,−u,−t).
It is easy to check that the corresponding hypergeometric series are no longer
convergent in the physical scattering region. It is, however, always possible
to analytically continue the 2F1 function such that arguments lie inside the
unit disc, yielding another representation in terms of 2F1 functions. While
this approach is adequate to find a meaningful expansion around ǫ in terms
of polylogarithms, it does not allow one to find (convergent) hypergeometric
series expansions around δ = 0. Instead, one needs at least a double sum
representation to achieve this task. It turns out that such a representation is

2The bubble integral is trivial, and will not be discussed any further.
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known in the literature [193],

Box(−t,−u, s) =
2cΓ

ǫ2
Γ(1 + ǫ)Γ(1 − ǫ) e−iπǫ

(
tu
s

)−ǫ

tu

− 2cΓ

ǫ(1 + ǫ)

t−ǫ−1

s
2F1

(
1, 1 + ǫ; 2 + ǫ;

u

s

)

− 2cΓ

ǫ(1 + ǫ)

u−ǫ−1

s
2F1

(
1, 1 + ǫ; 2 + ǫ;

t

s

)

− 2cΓ

ǫ(1 + ǫ)
eiπǫ s−2−ǫ F2

(
2 + ǫ; 1 + ǫ, 1 + ǫ; 2 + ǫ, 2 + ǫ;

u

s
,

t

s

)
,

Box(s,−t,−u) =
2cΓ

ǫ2

t−ǫ

s(−t)2F1

(
1,−ǫ; 1 − ǫ;

u

s

)

+
2cΓ

ǫ
s−2−ǫ eiπǫ S1

(
2 + ǫ; 1, 1 + ǫ; 2, 2 + ǫ,

t

s
,

u

s

)
.

(6.31)

The corresponding result for Box(s,−u,−t) is obtained from Box(s,−t,−u)
by exchanging t and u. The generalized Kampé de Fériet function S1 is defined
as,

S1(a1; a2, b1; a3, b2; x1, x2) =
∞

∑
n,m=0

(a1)m+n (a2)m+n (b1)m

(a3)m+n (b2)m

xm
1 xn

2

m! n!
, (6.32)

and the Appel function F2 is defined as,

F2(a; b1, b2; c1, c2; x1, x2) =
∞

∑
n,m=0

(a)m+n (b1)m (b2)n

(c1)m (c2)n

xm
1 xn

2

m! n!
. (6.33)

Using these expressions for the box functions, we can easily exchange the
phase-space integration and the infinite summations, and all the integrals can
be performed in terms of Euler’s Beta function,

B(α, β) =
∫ 1

0
dλ λα−1 (1 − λ)β−1 =

Γ(α) Γ(β)

Γ(α + β)
. (6.34)

Threshold expansion of hard, soft and collinear regions. It is possible
to derive representations such as the ones of eq. (6.31) with a more phys-
ical method, performing Taylor expansions around soft, collinear and hard
regions of the integrand of loop integrals in momentum space. The method
of expansions by regions [194] promises to hold in general, although its gener-
ality has only been stated as a conjecture and a verification of the validity of
the approach is necessary in specific cases3.

3Full proofs of the validity of asymptotic expansions by regions are hard to derive or
unknown. For e�orts in this direction we refer the reader to refs. [195, 196] and references
therein.
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For the production of the Higgs boson near threshold, the partonic center
of mass energy is close in value to the Higgs boson mass, and thus we have a
kinematic variable which is small, δ = 1 − z ∼ 0. From eq. (6.6) we infer that
the external momenta scale as,

p1 ∼ p2 ∼
√

s, p3 ∼
√

s δ . (6.35)

For a particle propagating in the loop, we find four types of non-trivial scalings
of its momentum k:

• Hard (h)
kµ ∼

√
s ,

where all propagators in the loop are o�-shell,

• Soft (s)
kµ ∼

√
s δ ,

where the loop integrand is singular at the point kµ = 0,

• Collinear to p1 (c1)

2k · p1

s
∼ δ,

2k · p2

s
∼ 1, k⊥ ∼

√
s δ ,

where the integrand has a singular surface as kµ ∝ p
µ
1 ,

• Collinear to p2 (c2)

2k · p2

s
∼ δ,

2k · p1

s
∼ 1, k⊥ ∼

√
s δ ,

where the integrand has a singular surface as kµ ∝ p
µ
2 .

In the above, the transverse momentum k⊥ of the particle is defined via:

k = p1
2k · p2

s
+ p2

2k · p1

s
+ k⊥ . (6.36)

A scaling of the loop momentum is called a region. In a given region, we
can perform a systematic expansion of the integrand around δ = 0. This
yields multiple new integrals which are simpler than the unexpanded integral.
For some regions, we are able to compute analytically all ( infinite number of)
terms of the expansion. For the remaining regions, we limit ourselves to a finite
number of terms in the expansion and perform an algebraic reduction [146,
150] (after expansion) to master integrals. The soft and collinear regions of
our loop integrals correspond to the singular surfaces which solve the Landau
equations [197] while the loop-momentum scalings can be identified with the
scalings of the coordinates which are normal to the singular surfaces [198]. In
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the following we discuss how we can reproduce the hypergeometric function
representations given in eq. (6.31).

We start by discussing the asymptotic expansion of Box(s,−t,−u), which
we find convenient to parametrize as,

Box(s,−t,−u) =
∫

ddk

iπ
d
2

1

A1A2A3A4
, (6.37)

with

A1 = (k − p12)
2 ,

A2 = (k − p2)
2 ,

A3 = k2 ,

A4 = (k − p3)
2 .

(6.38)

We find that the full integral is reconstructed from two regions:

1. (c2)−region, where k is collinear to p2.

2. (h)−region, where k is hard.

After Taylor-expanding the loop integrand in every region in the small variable
δ, we can use integration-by-parts identities to reduce the coe�cients of the
Taylor expansion to a small set of master integrals. In the (c2)-region we
find that all the coe�cients are proportional to the one-loop bubble integral
Bub (−t), and this region reconstructs, order by order in δ, the first term of
the hypergeometric representation for Box(s,−t,−u) given eq. (6.31), and
we have verified this statement explicitly up to O

(
δ10
)
. The (h)-region yields

the second and last term of eq. (6.31). In this region, we have been able to
calculate all terms in the expansion around δ = 0 via analytic integration. We
see that the sum of the (h) and (c2) regions is equal to the correct expression
for the one-loop box. All other soft and collinear regions are zero, as we can
readily verify.

Next, we turn to the asymptotic expansion of the Box(−t,−u, s), given
by,

Box(−t,−u, s) =
∫

ddk

iπ
d
2

1

A1A2A3A4
, (6.39)

with

A1 = (k − p1)
2 ,

A2 = (k)2 ,

A3 = (k − p3)
2 ,

A4 = (k − p3 + p2)
2 .

(6.40)

We find that the expression for Box(−t,−u, s) given in eq. (6.31) is recon-
structed entirely from the following regions:
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6. Real-virtual corrections

1. (s)−region, where the k ∼ δ, yielding the first term of eq. (6.31). It
is interesting that the (s)−region consists of a single term without any
subleading terms in the expansion in δ.

2. (c1)−region where the momentum k is collinear to p1. This region re-
constructs the second term of eq. (6.31) as we have verified explicitly up
to O

(
δ10
)
.

3. (c2)−region where the momentum k − p3 is collinear to p2. This region
reconstructs the third term of eq. (6.31) as we have verified explicitly up
to O

(
δ10
)
.

4. (h)−region, where k is hard. This region reconstructs the last term of
eq. (6.31) as we have verified explicitly up to O

(
δ10
)
.

All other soft and collinear regions are zero.
We have seen that an expansion in hard, soft and collinear regions yields

series representations for the one-loop master integrals of the required ampli-
tudes which converge in the entire phase-space, and thus we can immediately
perform the phase-space integration in terms of Beta functions order-by-order
in the expansion. While in our case the strategy of expansion by regions is
only an alternative method for deriving the threshold expansion, it can be the
method of choice for the phase-space integration of more complicated one-
loop amplitudes. Here we have presented expansions by regions at the level
of master integrals. We would like to remark that such expansions can also be
performed in the integrand of loop-amplitudes before any reduction to master
integrals has taken place. Combined with the method of reverse unitarity [1] we
have a powerful algebraic technique for the simultaneous threshold expansion
of integrals over loop and external momenta.

Reverse unitarity and di�erential equations

In this section we evaluate the real-virtual squared cross sections using the
reverse-unitarity approach [83, 84, 155, 157]. Reverse unitarity establishes a
duality between phase-space integrals and loop integrals. Specifically, on-shell
and other phase-space constraints are dual to “cut” propagators,

δ+(q
2) →

[
1

q2

]

c

=
1

2πi
Disc

1

q2
=

1

2πi

[
1

q2 + i0
− 1

q2 − i0

]
. (6.41)

A cut propagator can be di�erentiated similarly to an ordinary propagator with
respect to its momenta. It is therefore possible to derive integration-by-parts
(IBP) identities [147, 148] for phase-space integrals in the same way as for loop
integrals. The only di�erence is an additional simplifying constraint that a cut
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propagator raised to a negative power vanishes:

[
1

q2

]−ν

c

= 0, ν ≥ 0 . (6.42)

In this approach, we are not obliged to perform a strictly sequential evaluation
of the loop integrals in the amplitude followed by the nested phase-space inte-
grals. Rather, we combine the two types of integrals into a single multiloop-like
type of integration by introducing cut propagators and then derive and solve
IBP identities for the combined integrals. We solve the large system of IBP
identities which are relevant for our calculation with the Gauss elimination
algorithm of Laporta [146]. We have made an independent implementation of
the algorithm in C++ using also the GiNaC library [137]. In comparison to
AIR [150], which is a second reduction program used in this work, the C++

implementation is faster and more powerful, storing all identities in virtual
memory rather than in the file system. All integrals that appear in the real-
virtual squared cross section are reduced to linear combinations of 19 master
integrals, which we choose as follows:

M1 =

1

2

2

1

=
∫

dΦ2 Bub(s23)Bub
∗(s13). (6.43)

M2 =
1

2

1

2
=
∫

dΦ2 Bub(s12)Bub
∗(s12). (6.44)

M3 =

1

2

1

2
=
∫

dΦ2 Bub(s13)Bub
∗(s12). (6.45)

M4 =

1

2

1

2

=
∫

dΦ2 Bub(s13)Bub
∗(s13). (6.46)

M5 =

2

12

1

=
∫

dΦ2 Tri(s12 + s23)Bub
∗(s23). (6.47)
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M6 =

2

1

2

1

=
∫

dΦ2 Tri(s12 + s13)Bub
∗(s23). (6.48)

M7 =

1

2

1

2
=
∫

dΦ2 Tri(s12 + s23)Bub
∗(s12). (6.49)

M8 =

1

2 1

2

=
∫

dΦ2 Bub(s23)Box
∗(s12, s23, s13). (6.50)

M9 =
1

2

1

2

=
∫

dΦ2 Bub(s12)Box
∗(s13, s23, s12). (6.51)

M10 =

2

1

2

1

=
∫

dΦ2 Bub(s23)Box
∗(s12, s13, s23).

(6.52)

M11 =

1

2

2

1

=
∫

dΦ2 Bub(s13)Box
∗(s13, s23, s12).

(6.53)

M12 =

1

2

2

1

=
∫

dΦ2 Tri(s12 + s13)Box
∗(s13, s23, s12).

(6.54)

M13 =

2

1

2

1

=
∫

dΦ2 Tri(s12 + s13)Box
∗(s12, s13, s23).

(6.55)

152



6.3. Methods

M14 =

2

1

1

2

=
∫

dΦ2 Tri(s12 + s13)Box
∗(s12, s23, s13).

(6.56)

M15 =

2

1

1

2

=
∫

dΦ2 Box(s12, s13, s23)Box
∗(s12, s23, s13).

(6.57)

M16 =

2

1

2

1

=
∫

dΦ2 Box(s12, s13, s23)Box
∗(s13, s23, s12).

(6.58)

M17 =

1

2

1

2

=
∫

dΦ2 Box(s12, s23, s13)Box
∗(s12, s23, s13).

(6.59)

M18 =

2

1

2

1

=
∫

dΦ2 Box(s13, s23, s12)Box
∗(s13, s23, s12).

(6.60)

M19 =

2

1

1

2

=
∫

dΦ2 Bub(M2
h)Box

∗(s12, s23, s13)
1

s23
.

(6.61)

Single solid lines represent scalar massless propagators. The phase-space
integration is represented by the dashed line and the cut propagators are the
lines cut by the dashed line. The cut propagator of the Higgs boson is depicted
by the double line. Every master integral has a one-loop integral on the left-
and a complex-conjugated one-loop integral on the right-hand side of the cut.
In each side of the cut, we find scalar bubble, box or triangle integrals, where
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6. Real-virtual corrections

the latter is defined by

Tri(s12) =
∫

dDk

i(π)D/2

1

k2(k + q1)2(k + q1 + q2)2
,

Tri(p2
1, p2

2) =
∫

dDk

i(π)D/2

1

k2(k + p1)2(k + p1 + p2)2
,

(6.62)

with q2
i = 0, p2

i 6= 0 and (p1 + p2)
2 = 0. The scalar bubble and box integrals

have been defined in (6.26). A comment is in order about the appearance of
the triangle integrals in this approach, which seems to be at odds with the fact
that in the expression of the one-loop amplitude presented Section 6.3 only
bubble and box integrals appeared. Indeed, it is well-known that eq. (6.62)
can be expressed as a linear combination of bubble integrals,

Tri(s12) =
1 − 2ǫ

ǫ s12
Bub(s12) ,

Tri(p2
1, p2

2) =
1 − 2ǫ

ǫ (p2
1 − p2

2)
[Bub(p2

1)− Bub(p2
1)] .

(6.63)

These relations however introduce new denominators which need to be taken
into account in the reduction of the phase-space integrals. We therefore prefer
not to use eq. (6.63), but work directly with the triangle integrals instead.

To evaluate the master integrals we employ the method of di�erential equa-
tions [81, 83, 199] as described in sections 3.2 and 3.3. Di�erentiating the
corresponding cut propagator with respect to the square of the Higgs mass,

∂

∂M2
h

(
1

p2
h − M2

h

)

c

=

(
1

p2
H − M2

h

)2

c

, (6.64)

results in another phase-space integral. This new integral can again be reduced
by IBP identities to our basis of master integrals. Proceeding in this way we
obtain a system of linear first order di�erential equations for the master inte-
grals,

∂

∂δ
Mi(δ) = Aij(δ)Mj(δ) . (6.65)

The system is triangular

∂

∂δ
Mi(δ) = Aii(δ)Mi(δ) + yi(δ) , (6.66)

where yi(δ) depends only on master integrals that can be solved for indepen-
dently of Mi(δ). In other words, the system can be solved hierarchically, start-
ing from the di�erential equations with vanishing or known functions y. Every
time we solve such an equation, its solution serves to determine the y function
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of a next equation. In this way, at any stage of this procedure the y function is
a linear combination of already evaluated master integrals

yi(δ) = ∑
j 6=i

Aij(δ)Mj(δ) , (6.67)

that can be integrated in order to determine the integral Mj(δ). The coe�-
cients Aij(δ) are rational functions in δ and ǫ and have isolated singularities
in δ only at δ = 0, 1, 2. The first step to solving this type of di�erential equa-
tion is to find a solution for the homogeneous part. The general homogeneous
solution associated to the di�erential equation (6.66) is given by

Mh
i (δ) = Mi(0) exp




δ∫

0

dδ′Aii(δ
′)


 . (6.68)

and is determined up to an integration constant Mi(0). We determine this
integration constant by calculating the soft limit of the master integral explic-
itly following the methods discussed in Section 6.3. We find that only 7 of our
19 master integrals have non-trivial boundary conditions. Interestingly, with
our choice of basis of master integrals, the non-trivial boundary conditions
are in one-to-one correspondence to the leading terms of the 7 regions of the
soft expansion of the squared amplitude of eqs. (6.19)-(6.20). The non-trivial
boundary conditions are:

MS
1 = (4π)−1+ǫ ωΓ δ1−4ǫ φ

(4;1)
Γ

2ǫ2(1 − 2ǫ)2(1 − 4ǫ)
,

MS
2 = (4π)−1+ǫ ωΓ δ1−2ǫ φ

(2;1)
Γ

2ǫ2(1 − 2ǫ)3
,

MS
3 = (4π)−1+ǫ ωΓ δ1−3ǫ φ

(3;1)
Γ

2ǫ2(1 − 2ǫ)2(1 − 3ǫ)
,

MS
4 = (4π)−1+ǫ ωΓδ1−4ǫ φ

(4;3)
Γ

2ǫ2(1 − 2ǫ)2(1 − 4ǫ)
, (6.69)

MS
9 = −(4π)−1+ǫ ωΓ δ−1−4ǫ φ

(4;2)
Γ

ǫ4(1 − 2ǫ)
,

MS
11 = −(4π)−1+ǫ ωΓ δ−1−5ǫ 5φ

(5;1)
Γ

6ǫ4(1 − 2ǫ)
,

MS
18 = −(4π)−1+ǫ ωΓ δ−3−6ǫ 8(1 + 6ǫ)φ

(6;1)
Γ

3ǫ5(1 + 3ǫ)
.

Only the real part of the boundary conditions is presented here, given that the
imaginary part does not contribute to the cross section.
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Once the homogeneous solution is found we can compute a particular so-
lution to the inhomogeneous equation by

Mp
i (δ) = Mh

i (δ)

δ∫

0

dδ′
y(δ′)

Mh
i (δ

′)
, (6.70)

The full solution for the master integral is then given by

Mi(δ) = Mh
i (δ) +Mp

i (δ). (6.71)

We perform the integration in the equation above with two di�erent approaches.
Solving di�erential equations in an expansion in ǫ. One well estab-

lished strategy is to expand the di�erential equations in powers of the dimen-
sional regulator [81, 199]. After expanding the integral of (6.70) a solution
is naturally given by iterated integrals leading to multiple polylogarithms [46]
of the form G(a1, . . . , an; δ), with ai ∈ {0, 1, 2}. Expressing the functions in
terms of the variable z = 1 − δ recasts the solutions in terms of more familiar
harmonic polylogarithms [81].

Solving di�erential equations in terms of hypergeometric functions.
The integrand of eq. (6.70) takes the form

Ms
i (δ) ∼

∫ δ

0
dδ′(δ′)c1(1 − δ′)c2(2 − δ′)c3Mj 6=i(δ

′), (6.72)

where c1, c2 and c3 are linear polynomials in ǫ. This structure is reminiscent of
the Euler-type integral representation of hypergeometric functions. Inspired by
the large variety of techniques available for the solution of iterated integrals
in terms of multiple polylogarithms [46] we define an iterated integral with
integration kernel δa−1(1− xδ)−b. The nth iterated integral is then recursively
defined by,

F~an,...,~a1
(xn, . . . , x1; δ) =

∫ δ

0
dδ′(δ′)an−1(1− xnδ′)−bnF~an−1,...,~a1

(xn−1, . . . , x1; δ′) .

(6.73)

where we have abbreviated ~ai =
(

ai

bi

)
.

We find that these iterated integrals interpolate between multiple polylog-
arithms and hypergeometric functions. For example, in this framework the
multiple polylogarithm is given by,

Lim1,...,mk
(x1, . . . , xk)

=

(
k

∏
i=1

xk−i+1
i

)
F~0, . . . ,~0︸ ︷︷ ︸

m1−1

,~1,...,~0, . . . ,~0︸ ︷︷ ︸
mk−1

,~1(0, . . . , 0︸ ︷︷ ︸
m1−1

, x1, . . . , 0, . . . , 0︸ ︷︷ ︸
mk−1

, xk . . . x1; 1) .

(6.74)
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where~0 =
(

0
0

)
and~1 =

(
1
1

)
. The Gauss hypergeometric function is given

by,

2F1(a2, a1; b1; z) = a1
Γ(b1)

Γ(a2)Γ(b1 − a2)
F~v~u(1, z; 1), (6.75)

with ~v =
(

a2 − a1

1 − a2 − b1

)
and ~u =

(
a1

a1 + 1

)
. A large variety of hypergeometric

functions can be expressed in terms of these iterated integrals. With the defi-
nition

An =
n

∑
i=1

ai, Kn =
n

∑
i=1

ki , (6.76)

we find an explicit sum representation for this type of iterated integrals.

F~an,...,~a1
(xn, . . . , x1; δ) =

δAn

n

∏
i=1

Ai

∞

∑
k1,...,kn=0

n

∏
i=1

(
(Ai)Ki

(Ai + 1)Ki

(bi)ki

(xiδ)
ki

ki!

)
.(6.77)

Equation (6.77) is valid whenever the sums are convergent. Further properties
and derivations are discussed in more detail in section 6.4. The solution of
di�erential equations using iterated integrals is illustrated with an example in
section 6.4.

The iterated integrals defined in this section are a powerful tool and enable
us to solve all 19 master integrals in terms of hypergeometric functions. The
results is valid to all orders in ǫ. The iterated integrals can be written as
multiple sums eq. (6.77) from which it is very convenient to extract a threshold
expansion in δ.

Results for the master integrals. The master integrals that we have com-
puted in this section are useful for the evaluation of any cross section for a
2 → 1 process at N3LO. For explicit expressions in terms of harmonic poly-
logarithms up to weight five we refer to ref. [189]. We have computed all 19
master integrals to all orders in ǫ in terms of hypergeometric functions and in
an expansion in ǫ in terms of harmonic polylogarithms as described above.

Direct integration using multiple polylogarithms

We present here an alternate method to compute the (RV)2 Higgs boson cross
section, based on subtraction terms. The phase-space integral over the squared
amplitude can be written schematically as,

∫
dΦ2 |A|2 =

∫
dΦ2 ∑

i,j

Mi(s12, s23, s13) Mj(s12, s23, s13) Ni,j(s12, s23, s13).

(6.78)
In this expression Mi denote the one-loop master integrals and Ni,j are rational
functions, all of which depend on the invariants s12, s23 and s13. As the results
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for the required one-loop master integrals are known to all orders in ǫ [193], the
integrals are well defined in dimensional regularization. Our goal is to expand
the integrals in ǫ under the integration sign and to perform the integration
order by order in ǫ. After expansion, however, the integrals may develop soft
and collinear divergencies. The strategy is to subtract the singular limits of the
integrand before expansion, and to perform the remaining (finite) integration
in terms of multiple polylogarithms.

The construction of the counterterms that render the integration finite pro-
ceeds in two steps. First, we analytically continue all the hypergeometric func-
tions that appear in the all order expressions of the one-loop master integrals
such that they are convergent over the whole phase-space. This is achieved by
using the well-known identities,

2F1(a, b; c; z) = (1 − z)−b
2F1

(
b, c − a; c;

z

z − 1

)
,

2F1(a, b; c; z) =
Γ(b − a)Γ(c)

Γ(b)Γ(c − a)
(−z)−a

2F1(a, a − c + 1; a − b + 1; z−1)

+
Γ(a − b)Γ(c)

Γ(a)Γ(c − b)
(−z)−b

2F1(b, b − c + 1; b − a + 1; z−1) .

(6.79)

Second, the soft and collinear counterterms are easily constructed by expand-
ing the integrand around the collinear limits, i.e., s13 → 0 or s23 → 0. The
counterterms can be trivially integrated to all orders in the dimensional regu-
lator in terms of Γ functions.

At the end of this procedure we are left with finite one-dimensional inte-
grals. We expand the hypergeometric functions appearing in the integrand in
ǫ using HypExp [200], resulting in a representation for the integrand in terms
of classical polylogarithms up to weight four. More specifically, we are left with
integrals of the form,

∫ 1

0
dλ ∑

i

Pi(λ, z)

λ(1 − λ)
Lin (Ri,1(λ, z)) Lim (Ri,2(λ, z)) , (6.80)

with n + m ≤ 4 and where Pi is a polynomial and Ri,k are rational functions.
Note that, while individual terms in the sum are singular for λ → 0, 1, the
sum is finite by construction, and so the integral is well defined. In order to
perform the integration over λ, we rewrite the classical polylogarithms in terms
of multiple polylogarithms of the form G(a1(z), . . . , an(z); λ), where ai(z) are
rational functions of z using the coproduct calculus. All the integrals can then
easily be performed using the algorithm described in section 2.6. Finally, we
observe that the results of the integration can also be expressed in terms of
harmonic polylogarithms of weight up to five, and we checked that the results
are in agreement with the di�erential equation approach.
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6.4 Hypergeometric functions through iterated

integrals

In this section we define a class of iterated integrals as also introduced in
Section 6.3. First let us define the integral,

F~a(c; δ) =

δ∫

0

dt ta−1 (1 − ct)−b

=
δa

a
2F1(a, b; a + 1; cz̄)

=
δa

a

∞

∑
n=0

(a)n(b)n

(a + 1)n

(cz̄)n

n!
, (6.81)

where we have abbreviated for later convenience ~a =
(

a
b

)
. We have made

use of Gauss’s hypergeometric function with the third argument being the
first argument increased by one. Next, we define recursively the nth iterated
integral,

F~an,...,~a1
(xn, . . . , x1; δ) =

∫ δ

0
dt tan−1 (1 − xnt)−bn F~an−1,...,~a1

(xn−1, . . . , x1; t) .

(6.82)
The integration kernel ta−1(1− ct)−b has the same form for every iteration step
with indices a, b and argument c changing. Next, we derive a hypergeometric
series representation for these iterated integrals. To simplify the expressions
we rewrite eq. (6.81) and introduce a function f that is implicitly given by,

F~a(c; δ) =
∞

∑
n=0

f (a, b, c, n)δa+n. (6.83)

In the next step we integrate over the integration kernel and the F~a(c; t),

F~a2,~a1
(c2, c1; δ) =

δ∫

0

dt ta2−1 (1 − c2t)−b2 F~a(c; t)

=
∞

∑
n=0

δ∫

0

dt ta2+a1+n−1 (1 − c2t)−b2 f (a1, b1, c1, n)

=
∞

∑
n,m=0

δa1+a2+n+m

a1 + a2 + n

(a1 + a2 + n)m(b2)m

(a1 + a2 + n + 1)m

cm
2

m!
f (a1, b1, c1, n) .

Using the identity,

(a + n)m = (a)n+m
Γ(a)

Γ(a + n)
, (6.84)
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6. Real-virtual corrections

we can write,

F~a2,~a1
(c2, c1; δ) =

δa1+a2

(a1 + a2)a1

∞

∑
n,m=0

(a1 + a2)m+n

(a1 + a2 + 1)m+n

(a1)n

(a1 + 1)n

× (b2)m(b1)n
(c2δ)m

m!

(c1δ)n

n!
.

(6.85)

We now proceed iteratively, and find the following series representation for the
iterated integrals,

F~an,~an−1,...,~a1
(cn, . . . , c1; δ) =

δAn

n

∏
i=1

Ai

∞

∑
k1,...,kn=0

n

∏
i=1

(Ai)Ki

(Ai + 1)Ki

(bi)ki

(ciδ)
ki

ki!
,

(6.86)
with the abbreviations,

Ai =
i

∑
n=1

an and Ki =
i

∑
n=1

kn . (6.87)

Following the same procedure as for the sum representation we can derive
a general Mellin-Barnes representation for our iterated integrals by utilizing
the Mellin-Barnes representation of the Gauss Hypergeometric function

2F1(a, b; c; δ) =
1

2πi

Γ(c)

Γ(a)Γ(b)

∫ i∞

−i∞
ds

Γ(a + s)Γ(b + s)

Γ(c + s)
Γ(−s)(−δ)s. (6.88)

This leads to

F~an,~an−1,...,~a1
(cn, . . . , c1; δ) = δAn

∫ i∞

−i∞

n

∏
i=1

dki

2πi

× Γ(Ai + Ki)

Γ(Ai + Ki + 1)

Γ(bi + ki)

Γ(bi)
Γ(−ki)(−ciδ)

ki .

(6.89)

These iterated integrals interpolate between multiple polylogarithms [46] and
hypergeometric functions. In the framework of the above definitions the mul-
tiple polylogarithm is given by

Lim1,...,mk
(x1, . . . , xk)

= F~0, . . . ,~0︸ ︷︷ ︸
m1−1

,~1,...,~0, . . . ,~0︸ ︷︷ ︸
mk−1

,~1(0, . . . , 0︸ ︷︷ ︸
m1−1

, x1, . . . , 0, . . . , 0︸ ︷︷ ︸
mk−1

; xk . . . x1)
k

∏
i=1

xk−i+1
i . (6.90)

Here the indices of the iterated integrals only take the form ~0 =
(

0
0

)
and

~1 =
(

1
1

)
. Even for general indices we discover further similarities of these
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6.4. Hypergeometric functions through iterated integrals

iterated integrals to multiple polylogarithms. As in the case of polylogarithms,
this class of hypergeometric functions may be written as multiple nested sums

F~an,~an−1,...,~a1
(cn, . . . , c1; δ) =

∞

∑
kn≥···≥k1=0

δAn+kn

n

∏
i=1

1

Ai + ki

(bi)ki−ki−1
(ci)

ki−ki−1

(ki − ki−1)!
,

(6.91)

where k0 = 0. The representation (6.91) may be useful for expanding the
iterated integrals in terms of the dimensional regulator (see, e.g., ref. [186]).

The definition of these function as iterated integrals implies that they form
a shu�e algebra,

F~ai,...,~a1
(ci, . . . , c1; δ)F~an,...,~ai+1

(cn, . . . , ci+1; δ) = ∑
σ∈Σ(i,n−i)

F~aσ(n),...,~aσ(1)
(cσ(n), . . . , cσ(1); δ),

(6.92)
where Σ(i, n − i) denotes the set of all shu�es of n elements, i.e., the subset of
the symmetric group Sn defined in eq. (2.6). To illustrate an application of the
shu�e-product for generalized iterated integrals, let us look at the following
example. We would like to integrate an iterated integral over a non-standard
integration kernel,

I =
∫ δ

0
dt ta2−1 (1 − c2t)−b2 (1 − c3t)−b3 F~a1

(c1; t). (6.93)

To simplify the integral we make use of,

F( a
a + 1

)(1; δ) =
δa

a
(1 − cδ)−a (6.94)

and find,

I = b3

∫ δ

0
dt ta2−b3−1 (1 − c2t)−b2 F( b3

b3 + 1

)(c3; t)F( a1

b1

)(c1; t). (6.95)

Next, we apply the shu�e product and find,

I = b3

∫ δ

0
dt ta2−b3−1 (1 − c2t)−b2

×

F( b3 a1

b3 + 1 b1

)(c3, c1; t) +F( a1 b3

b1 b3 + 1

)(c1, c3; t)




= b3 F( a2 − b3 b3 a1

b2 b3 + 1 b1

)(c2, c3, c1; δ)

+ b3 F( a2 − b3 a1 b3

b2 b1 b3 + 1

)(c2, c1, c3; δ).
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6. Real-virtual corrections

Further identities among iterated integrals can be derived using integration-
by-parts or by partial fractioning products of integration kernels. Further
properties and parallels of generalized iterated integrals and generalized poly-
logarithms are under investigation.

NNLO RV Master Integrals as hypergeometric functions

In this section we demonstrate how certain di�erential equations for master
integrals appearing in physical cross sections can be solved using iterated inte-
grals introduced previously. We consider the example of the master integrals
contributing to the RV Higgs boson cross section at NNLO. The master in-
tegrals were introduced and evaluated as an expansion in the dimensional
regulator ǫ in ref. [83] and evaluated to even higher order in ref. [34]. Here we
solve them to all orders in ǫ in terms of hypergeometric functions.

The master integrals and the corresponding di�erential equations are given
by,

Y1 =

1

2

2

1 =
∫

dΦ2Bub
∗(s13), (6.96)

∂δY1 =
(1 − 3ǫ)

δ
Y1, (6.97)

Y5 = 1

2

2

1
=
∫

dΦ2Bub
∗(s12), (6.98)

∂δY5 =
(1 − 2ǫ)

δ
Y5, (6.99)

Y3 =

1

2

2

1 =
∫

dΦ2Tri
∗(s12 + s23), (6.100)

∂δY3 =
2ǫδ

1 − δ
Y3 −

(1 − 3ǫ)(1 − 2ǫ)

(1 − δ)δǫ
Y1 +

(1 − 2ǫ)2(1 − δ)−1−ǫ

δǫ
Y5, (6.101)

Y4 =

1

21

2

=
∫

dΦ2Box
∗(s12, s23, s13)

1

s23
, (6.102)
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6.4. Hypergeometric functions through iterated integrals

∂δY4 = − (1 + 2ǫ)

δ
Y4 −

(2δ − 3)(1 − 3ǫ)(1 − 2ǫ)

(1 − δ)δ3ǫ
Y1

+
2(1 − 2ǫ)2

(1 − δ)1+ǫδ2ǫ
Y5 −

2ǫ

(1 − δ)δ
Y3.

(6.103)

Y6 =

1

2

2

1 =
∫

dΦ2Box
∗(s13, s23, s12), (6.104)

∂δY6 = − (1 + 4ǫ)

δ
Y6 +

2(1 − 3ǫ)(1 − 2ǫ)

(1 − δ)δ2ǫ
Y1 −

4ǫ

(1 − δ)δ
Y3. (6.105)

We have abbreviated ∂δ = ∂
∂δ . Solid lines represent scalar propagators. The

phase-space integral is represented by the dashed line and the cut propagators
are the lines cut by the dashed line. The cut propagator of the Higgs boson
is depicted by the double line. The complex conjugated one-loop integral is
on the right-hand side of the phase-space cut. The di�erential equations were
obtained using the methods described before.

The system of di�erential equations is decoupled and can be solved as
described in Section 6.3. To solve the di�erential equations we require the
following boundary conditions, which can be obtained from ref. [34],

YS
1 =

(4π)ǫ−1s−2ǫΓ(1 − 2ǫ)Γ(1 − ǫ)2Γ(ǫ + 1)

ǫΓ(2 − 3ǫ)Γ(2 − 2ǫ)
, (6.106)

YS
5 =

(4π)ǫ−1(−s)−ǫs−ǫΓ(1 − ǫ)3Γ(ǫ + 1)

2ǫΓ(2 − 2ǫ)2
, (6.107)

YS
6 = − (4π)ǫ−1(−s)−ǫs−2−ǫΓ(1 − 2ǫ)Γ(1 − ǫ)2Γ(ǫ + 1)2

ǫ3Γ(1 − 4ǫ)
, (6.108)

and all other cases vanish. These boundary conditions are given by the leading
(soft) term of three master integrals in the limit of δ → 0. They are obtained
using the methods described in Section 6.3. For convenience we will from now
on set s = 1.

The first two di�erential equations are homogeneous and can be easily
solved to give

Y1(δ) = δ1−3ǫYS
1 . (6.109)

Y5(δ) = δ1−2ǫYS
5 . (6.110)

163



6. Real-virtual corrections

We find that the homogeneous solution to the di�erential equation of master Y3

is vanishing and the inhomogeneous solution is according to eq. (6.70) given
by,

Y3(δ) = (1 − δ)−2ǫ (1 − 2ǫ)

ǫ

×
δ∫

0

dδ′
(
(1 − 2ǫ)(1 − δ′)ǫ−1δ′−2ǫYS

5 − (1 − 3ǫ)(1 − δ′)2ǫ−1δ′−3ǫYS
1

)

=
(2ǫ − 1)2(1 − δ)−2ǫ

ǫ
F( 1 − 2ǫ

1 − ǫ

)(1; δ)YS
5

− (2ǫ − 1)(3ǫ − 1)(1 − δ)−2ǫ

ǫ
F( 1 − 3ǫ

1 − 2ǫ

)(1; δ)YS
1 ,

(6.111)

with

F( a
b

)(1; δ) =
δa

a
2F1(a, b; a + 1; δ). (6.112)

To obtain this result we made use of eq. (6.81). As we proceed to solve the
remaining two master integrals we find that the inhomogeneous solution to
their di�erential equation is in turn dependent on Y3. We are able to find
solutions to the inhomogeneous equation making use of the definition of our
iterated integrals in eq. (6.82),

Y4(δ) = δ−1−2ǫ

δ∫

0

dδ′2(1 − 3ǫ)(1 − 2ǫ)δ′2ǫ
(1 − δ′)−2ǫ−1F( 1 − 3ǫ

1 − 2ǫ

)(1; δ′)YS
1

− δ−1−2ǫ

δ∫

0

dδ′2(1 − 2ǫ)2δ′2ǫ
(1 − δ′)−2ǫ−1F( 1 − 2ǫ

1 − ǫ

)(1; δ′)YS
5

− δ−1−2ǫ

δ∫

0

dδ′
(2δ′ − 3)(1 − 3ǫ)(1 − 2ǫ)δ′−ǫ−1

(1 − δ′)ǫ
YS

1

+ δ−1−2ǫ

δ∫

0

dδ′
2(1 − 2ǫ)2(1 − δ′)−ǫ−1

ǫ
YS

5 .

(6.113)

Now we can use the definitions of the iterated integrals eqs. (6.81) and (6.82)
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6.4. Hypergeometric functions through iterated integrals

to obtain,

Y4(δ) = 2
(

6ǫ2 − 5ǫ + 1
)

δ−2ǫ−1F( 1 + 2ǫ 1 − 3ǫ
1 + 2ǫ 1 − 2ǫ

)(1, 1; δ)YS
1

− 2(1 − 2ǫ)2δ−2ǫ−1F( 1 + 2ǫ 1 − 2ǫ
1 + 2ǫ 1 − ǫ

)(1, 1; δ)YS
5

+

(
6ǫ2 − 5ǫ + 1

)
δ−2ǫ−1

ǫ
F( 1 − ǫ

1

)(1; δ)YS
1

− 3
(
6ǫ2 − 5ǫ + 1

)
δ−3ǫ−1

ǫ2
YS

1

+
2(1 − 2ǫ)2 ((1 − δ)−ǫ − 1) δ−2ǫ−1

ǫ2
YS

5 , (6.114)

Y6(δ) = δ−1−4ǫ4(1 − 3ǫ)(1 − 2ǫ)

δ∫

0

dδ′δ′4ǫ
(1 − δ′)−2ǫ−1F( 1 − 3ǫ

1 − 2ǫ

)(1; δ′)YS
1

− δ−1−4ǫ4(1 − 2ǫ)2

δ∫

0

dδ′δ′4ǫ
(1 − δ′)−2ǫ−1F( 1 − 2ǫ

1 − ǫ

)(1; δ′)YS
5

+ δ−1−4ǫ 2
(
6ǫ2 − 5ǫ + 1

)

ǫ

δ∫

0

dδ′
δ′ǫ

(1 − δ′)
YS

1

+ δ−1−4ǫYS
6

= 4
(

6ǫ2 − 5ǫ + 1
)

δ−4ǫ−1F( 1 + 4ǫ 1 − 3ǫ
1 + 2ǫ 1 − 2ǫ

)(1, 1; δ)YS
1

− 4(1 − 2ǫ)2δ−4ǫ−1F( 1 + 4ǫ 1 − 2ǫ
1 + 2ǫ 1 − ǫ

)(1, 1; δ)YS
5

+
2
(
6ǫ2 − 5ǫ + 1

)
δ−4ǫ−1

ǫ
F( 1 + ǫ

1

)(1; δ)YS
1

+ δ−1−4ǫYS
6 . (6.115)

The iterated integrals with two indices contributing to Y4 and Y6 can be written
as,

F( a2 a1

b2 b1

)(1, 1, δ) =
δa1+a2

(a1 + a2)a1
F1,2

1,1

(
a2 + a1

a2 + a1 + 1

∣∣∣∣
a1 1 b1 b2

a1 + 1 1 − −

∣∣∣∣ δ, δ

)

=
δa1+a2

(a1 + a2)a1

∞

∑
n,m=0

(a2 + a1)n+m

(a2 + a1 + 1)n+m

(a1)n(b1)n

(a1 + 1)n
(b2)m

δn

n!

δm

m!
,
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where we introduced the Kampé de Fériet function,

F
p,q
p′,q′

(
αi

α′i

∣∣∣∣
βi γi

β′
i γ′

i

∣∣∣∣ x, y

)
=

∞

∑
n,m=0

∏
p
i=1(αi)n+m ∏

q
i=1(βi)n (γi)m

∏
p′
i=1(α

′
i)n+m ∏

q′
i=1(β′

i)n (γ′
i)m

xn

n!

ym

m!
.

(6.116)
Note that the generalized Kampé de Fériet function S1 of Section 6.3 is a
special case of eq. (6.116),

S1(a1; a2, b1; a3, b2; x1, x2) = F2,1
1,1

(
a1 a2 b1 1
a3 − b2 1

x, y

)
. (6.117)
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7
Double-virtual real

corrections

7.1 The double-virtual real cross section

We consider the partonic QCD amplitudes for the production of a Higgs bo-
son in association with one additional parton. We distinguish three di�erent
channels by their initial state,

g(p1) + g(p2) → g(p3) + H(ph)

q(p1) + g(p2) → q(p3) + H(ph)

q(p1) + q̄(p2) → g(p3) + H(ph)

(7.1)

where q, q̄, g and H denote a quark, anti-quark, gluon or Higgs boson respec-
tively with their associated momenta p1 . . . p3, ph. This allows to define the
following kinematic invariants,

s = 2p1 · p2, p2
h = M2

h ≡ sz,

sz̄λ = 2p1 · p3, sz̄λ̄ = 2p2 · p3, (7.2)

where z =
M2

h
s , z̄ = 1 − z, λ̄ = 1 − λ. The partonic cross section for these

processes is then given by,

σX =
NX

2s

∫
dΦ2 ∑

X

|MX|2, (7.3)

where X ∈ {g g → H g, q q̄ → H g, g q → H q}. The summation sign indicates
summation over final- and initial-state particle polarizations and colors. As
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7. Double-virtual real corrections

before, we work in conventional dimensional regularization with d = 4 − 2ǫ
space-time dimensions. The process dependent factors NX containing the
averaging of initial state parton colors and polarizations are given by

Ng g→H g =
1

4(N2
c − 1)2(1 − ǫ)2

Ng,q→H q =
1

4Nc(N2
c − 1)(1 − ǫ)

(7.4)

Nq q̄→H g =
1

4N2
c

.

Nc and (N2
c − 1) are the number of quark and gluon colors respectively. The

phase-space measure for the production of a massive Higgs boson in associa-
tion with a massless parton is given by,

dΦ2 =
dd p3

(2π)d
δ+(p2

3)
dd ph

(2π)d
δ+(p2

h − M2
h)(2π)dδ(d)(p1 + p2 − p3 − ph), (7.5)

where δ+(p2) = (2π)δ(p2)θ(p0). Using the definitions of eq. (7.1) we can
parametrize the phase-space measure and specialize eq. (4.59) to

dΦ2 =
(4π)−1+ǫs−ǫz̄1−2ǫ

2Γ(1 − ǫ)
dλ(λλ̄)−ǫθ(λ)θ(λ̄). (7.6)

We consider the mass of the top quark to be large enough for the top quark
to be integrated out. This description can be formulated using the e�ective
Lagrangian

Le� = LQCD − 1

4
CHGa

µνGa,µν. (7.7)

LQCD is the QCD Lagrangian with N f light quark flavors, H the Higgs boson
field and Ga

µν the gluon field strength tensor. The Wilson coe�cient C can be
explicitly calculated taking into account the interactions of the top quark [181,
188–191].

We perform an expansion of the partonic scattering matrix-elements in the
number of loops

|MX|2 =

∣∣∣∣∣
∞

∑
i=1

M
(i)
X

∣∣∣∣∣

2

, (7.8)

where i runs over the number of loops. The main result of this chapter is
the partonic scattering cross section arising due to the interference of two-
loop matrix-elements with the corresponding tree-level matrix elements and
we refer to it as the double-virtual-real (RVV) cross section.

σRVV
X =

NX

2s

∫
dΦ2 ∑ 2ℜ

(
M

(2)
X M

(0)∗
X

)
(7.9)
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The cross section can be separated into five di�erent contributions.

σRVV
X (z) =

6

∑
i=2

(1 − z)−iǫσ
(i) RVV
X (z). (7.10)

The individual terms σ
(i) RVV
X (z) no longer contain logarithms with argument

(1 − z), i.e. they are meromorphic functions of z with at most a single pole at
z = 1. They contain infrared and ultraviolet divergences that appear as poles

in ǫ. The σ
(i) RVV
X (z) can be written as a Laurent series in the dimensional

regulator. Each term in the series can be expressed as a linear combination of
multiple polylogarithms with rational coe�cients.

7.2 Results

We obtained the RVV cross section for all partonic sub-channels completing
the calculation of all two-loop contributions to the N3LO Higgs boson cross
section. Parts of the result of this chapter were essential ingredients of thresh-
old expansion of the Higgs boson production cross section at N3LO published
in ref. [4]. In ref. [4] we also produced the coe�cients of the leading three
threshold logarithms of the N3LO Higgs boson cross section. The result of
this chapter and specifically the possibility of decomposing the RVV cross
section as in eq. (7.10) were key ingredients used in the derivation of the co-
e�cients of these logarithms. The first threshold-expansion coe�cient of the
RVV cross section was obtained in refs. [24, 201] and agrees with the corre-
sponding expansion coe�cient of our result.

Due to the length of the expressions we refrain from displaying the formulae
for the RVV cross section explicitly. Instead we refer to ref. [5] where we give
the bare cross sections σRVV

X ,

σRVV
X =

NX

2s

∫
dΦ2 ∑ 2R

(
M

(2)
X M

(0)∗
X

)
, (7.11)

as a Laurent expansion in the dimensional regulator. NX is given in eq. (7.4).
The cross section can furthermore be separated into contributions with a single
pole at z = 1 and remaining contributions that are analytic as z → 1,

σRVV
X (z) = ∑

i∈{2,4,6}
(1 − z)−1−iǫσ

(i) sing
X +

6

∑
i=2

(1 − z)−iǫσ
(i) reg
X (z). (7.12)

For the singular terms we only expand the σ
(i) sing
X in the dimensional regulator

up to order ǫ, leaving the prefactor unexpanded, while for the regular pieces

we expand the product (1 − z)−iǫσ
(i) reg
X (z) up to order ǫ0. We observe that

the coe�cients of the Laurent expansion of our cross section can be expressed
as linear combinations of harmonic polylogarithms with indices ai ∈ {0, 1}.
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7.3 Calculation

To obtain all channels contributing to the RVV cross section we compute the
required two-loop and tree-level Feynman diagrams generated by qgraf [183].
We perform the contraction of spinor and color traces with custom C++ code
based on the expression library GiNaC [202]. We work in Feynman gauge and
restore gauge invariance by combining our matrix elements with the necessary
Fadeev-Popov ghost matrix elements.

Having performed all algebraic manipulations of the Feynman diagrams we
arrive at our matrix-elements in terms of scalar products of loop and external
momenta. Rather than carrying out the integration over the loop and phase-
space momenta in a sequential way, we treat all integrations on equal footing
and combine them into a single integration measure,

dΦ =
ddk1

(2π)d

ddk2

(2π)d
dΦ2. (7.13)

This combination allows us to apply the framework of reverse unitary [84, 155,
157] and to use IBP reductions. The large system of IBP identities for the
integrals appearing in our calculation is solved using the Gauss elimination
algorithm [146], which we implemented in a private C++ code using the GiNaC
library [202] . All integrals appearing in the cross section can be related to
linear combinations of 72 master integrals. We now discuss the methods used
to solve our master integrals.

7.4 Calculating Master Integrals

In this section we describe the setup we used to solve our master integrals via
first-order di�erential equations. We start by deriving the required di�erential
equations. Their general solution has to be constrained by fixing one boundary
condition per integral. We rely on our method of boundary decomposition,
described in section 3.4, to facilitate the calculation of the required boundary
conditions. Next, we discuss how the general solution of these di�erential
equations can be computed. Finally, we illustrate the procedure using a simple
example and demonstrate an explicit calculation of an actual RVV boundary
condition.

Setup of the system of di�erential equations.

After integration over the final-state and loop momenta eq. (7.13), the integrals
are functions of the Higgs mass Mh and the partonic center of mass energy s.
It is therefore convenient to define a single dimensionless ratio,

z =
M2

h

s
, z̄ = 1 − z =

s − M2
h

s
, (7.14)
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and write all master integrals as functions of this ratio,

fi = fi(z̄). (7.15)

For brevity, we set s = 1 as the exact s dependence can be reconstructed using
dimensional analysis.

In order to evaluate the master integrals we use the method of di�erential
equations [81, 118]. Because the master integrals are functions of a single ratio
z̄, we can di�erentiate with respect to the square of the Higgs mass, which only
appears in the cut propagator corresponding to the Higgs on shell condition.
As outlined in section 7.3 using the framework of reverse unitarity we find,

∂

∂z̄

[
1

p2
h − M2

h

]

c

= − ∂

∂M2
h

[
1

p2
h − M2

h

]

c

=

[
1

p2
h − M2

h

]2

c

. (7.16)

By applying this di�erential to our master integrals, we obtain a set of new
phase space integrals. Using IBP identities these integrals can again be ex-
pressed through our basis of master integrals. This way we are able to express
the di�erential of each master integral through the master integral itself as well
as other integrals, obtaining a coupled system of linear first order di�erential
equations for the master integrals,

∂z̄ fi(z̄) = Aij(z̄, ǫ) f j(z̄). (7.17)

The Einstein summation convention is implied. The entries of the system
matrix A are in general rational functions in z̄ as well as in ǫ. The choice of
basis is of course not unique and may be related to another one via a z̄- and
ǫ-dependent transformation. We observe that the system matrix for the RVV
master integrals can be written as,

Aij(z̄, ǫ) =
A
(0)
ij (z̄, ǫ)

z̄
+

A
(1)
ij (z̄, ǫ)

z̄ − 1
, (7.18)

i.e. only poles at z̄ = 0 and z̄ = 1 appear and A
(0)
ij (z̄, ǫ) and A

(1)
ij (z̄, ǫ) are

holomorphic functions of z̄.

Boundary conditions

The solution to the above system of di�erential equations will require the speci-
fication of one boundary condition per integral. As was pointed out in ref. [74]
a connection to the eigenvalues of the system of di�erential equations can be
used to facilitate this step. Using the boundary decomposition discussed in
section 3.4 we can make this connection manifest as in eq. (3.117),

fi(x) = R−1
ij gj(x) = R−1

ik eǫJkj log(x)g0,j. (7.19)
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It is possible to arrive at the g0,i from a completely orthogonal point of view.
Using the method of expansion by regions, the limiting solution of a master
integral as z̄ → 0 can be computed. Specifically, expansion by regions sepa-
rates the limiting solution into di�erent regions each associated with a specific
integrating factor z̄λ. Having identified the constants g0,i contributing to a spe-
cific integral from the boundary decomposition, we can therefore match the
constants g0,i to the regions. Any boundary condition g0,i associated with an
integrating factor that does not correspond to a region vanishes and therefore
does not even require the explicit calculation of a Feynman integral.

For example, analyzing the RVV cross section using expansion by regions,
we find only regions with integrating factors z̄ai−biǫ, with ai ∈ Z and bi ∈
{2, 3, 4, 5, 6}. Therefore, only boundary conditions f0,i corresponding to λi =
ai − biǫ can be non-vanishing. All other boundary constants appearing in the
system are zero. Applying this boundary decomposition dramatically reduces
the number of boundary conditions that we needed to compute for the RVV
master integrals from 72 to a mere 19.

The remaining boundary conditions can be computed explicitly using ex-
pansion by regions. This step is also facilitated by the boundary decomposi-
tion, as one constant g0,i may appear in the limiting solution of more than
one master integral. It is therefore reasonable to pick the simplest integrals to
calculate the remaining constants.

The actual computation is performed by deriving the integral representa-
tions of regions associated to the remaining boundary constants. This step is
made especially viable by an algorithm exploiting a geometric interpretation
of the parametric representation of Feynman integrals as implemented in the
code asy [195, 203]. For a given integral and limit, asy provides a parametriza-
tion for each region, which allows the direct expansion of the Feynman integral
to obtain integral representation of the regions.

In the case of the N3LO Higgs production cross section a threshold expan-
sion was performed and the “soft” master integrals appearing in these calcula-
tions may serve as boundary conditions for full kinematic integrals. Specifically
the first term of the RVV cross section was obtained in refs. [24, 201]; in order
to complete the full kinematic calculation we could compare and confirm three
of the boundary conditions given explicitly. However, we calculated 16 addi-
tional boundary conditions as described above. We observe that all explicit
logarithms arising from eigenvalues with non-trivial Jordan blocks vanish in the
final result. We provide an explicit example of how we calculate our boundary
conditions later in this chapter.

We want to stress that our algorithm of boundary decomposition can be
based around any singular point in the di�erential equation. For example, we
could have also calculated the limiting solutions for z̄ → 1. Repeating the
procedure with further singular points may also lead to additional constraints
on the boundary conditions and therefore further reduce the number of inte-
grals that actually have to be calculated. Furthermore, we would like to point
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out that constraints on allowed eigenvalues, leading to non-vanishing g0,i can
also be obtained from analyticity requirements and physical considerations [81,
118].

Solving the di�erential equations

In this section we discuss the method for solving di�erential equations of the
type given in eq.(7.17). In general a system of di�erential equations can be
written as,

∂z̄Mi(z̄) = Ah
ij(z̄, ǫ)Mj(z̄, ǫ) + yi(z̄), (7.20)

where Ah
ij(z̄, ǫ)Mj(z̄, ǫ) is the homogeneous part and yi(z̄) is the inhomogene-

ity that is zero unless a subset of master integrals has already been computed.
In general, the homogeneous solution is given by,

Mh
i (z̄) =

(
e
∫

dz̄Ah(z̄,ǫ)
)

ij
Mj,0 = Hij(z̄, ǫ)Mj,0, (7.21)

where Mi,0 is the boundary condition for master Mi. Next, we need to find a
particular solution, which can depend on other master integrals. As yi(z̄) is
known we find simply,

M
p
i (z̄) = Hij(z̄, ǫ)

∫
dz̄H−1

jk (z̄, ǫ)yk(z̄), (7.22)

such that the full solution can be written as,

Mi(z̄) = Mh
i (z̄) + M

p
i (z̄). (7.23)

However, in general the di�erential equations are coupled and it is impossible
to compute the matrix exponential in eq. (7.21). The desired result for our
master integrals is a Laurent expansion in the dimensional regulator. A com-
monly used strategy to calculate the above matrix exponential is therefore to
expand the di�erential equations in ǫ and decouple them order by order.

One particularly interesting version of this strategy has been proposed in
ref. [77], which suggests that it is possible for Feynman integrals to find a
transformation to a canonical basis such that the system takes the form,

∂z̄Mc
i (z̄) = ǫAc

ij(z̄)Mc
j (z̄). (7.24)

In this basis the ǫ dependence factorizes completely from the system matrix.
In this scenario the inhomogeneity is zero. Furthermore, the system matrix
takes the simple form,

Ac
ij(z̄) = ∑

k

A
c (k)
ij

z̄ − z̄k
, (7.25)
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where the matrices Ac (k) have constant entries. The canonical form of the
system matrix (eq. (7.25)) makes the connection to multiple polylogarithms as
defined in eq. (2.15) manifest. The formal solution of the canonical di�erential
equations (eq. (7.24)) can be written as,

Mc
i (z̄) =

(
Peǫ

∫
dz̄Ac(z̄)

)
ij

Mc
j,0, (7.26)

where P symbolizes the path-ordered exponential and Mc
0 is a vector of bound-

ary conditions. Expanding the exponential in ǫ we obtain,

Mc
i (z̄) =

(
1 + ǫ

∫
dz̄Ac

ij(z̄) + ǫ2
∫

dz̄

(
Ac

ik(z̄)
∫

dz̄Ac
kj(z̄)

)
+ . . .

)
Mc

j,0.

(7.27)
At the time of our computation, no general algorithmic way to construct

the transformation that takes the master integrals to the canonical basis, was
available1. Obtaining the canonical form is therefore a non trivial task. A
method, based on analyzing the leading singularities of the Feynman integrals
was outlined in ref. [77], further insights are e.g. discussed in refs. [74, 76, 81,
86, 118, 204, 205].

To find a solution for di�erential equations the only necessary requirement
is that the system can be su�ciently decoupled order by order in ǫ such that the
matrix exponential in eq. (7.21) can be computed. While obtaining a canoni-
cal basis ensures this decoupling, this is not the only basis that decouples the
system. We choose to transform only a subsystem of 56 integrals of the com-
plete system of 72 master integrals to the canonical basis. The remaining 16
integrals can be easily computed using the general method.

In this manner we obtain a solution for the full system depending on 72
constants of integration. By imposing the boundary decomposition of the
limiting solution obtained in the previous section, i.e. demanding that the full
solution has the correct limit, we are able to uniquely fix all constants. We
thereby calculated all 72 master integrals required for the RVV Higgs boson
cross section at N3LO.

A pedagogical example

We discuss a short pedagogical example. While this integral can also easily
be calculated using various other techniques, it serves well to illustrate how
the methods described above proceed. Recall the triangle topology defined in
eq. (3.42),

T(a1, a2, a3) =
∫

ddk

(2π)d

1

(k2 − m2)a1((k + p1)2 − m2)a2((k + p1 + p2)2 − m2)a3
,

(7.28)
1After our computation was finished, an algorithm for finding a transformation to the

canonical basis for certain systems was published in ref. [158]. This algorithm would have
been applicable to our situation.
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with p2
1 = p2

2 = 0 and p1 · p2 = s/2. We choose as a basis of master integrals

M1 = T(2, 0, 0), M2 = xT(2, 0, 1), M3 = ǫT(1, 1, 1), (7.29)

with x =
√

1 − 4m2

s and setting s = 1 for simplicity. With this we find the
system of di�erential equations,

∂

∂x
~M(x) = ǫ

×





0 0 0
0 −2 0
0 0 0


 1

x
+




1 0 0
1 0 0
0 1 1


 1

1 − x
+




−1 0 0
1 0 0
0 1 −1


 1

1 + x


 ~M(x).

(7.30)

Next we analyze the system in the limit x → 1. This limit corresponds to the
situation when the internal mass m is small compared to s,

∂

∂x
~̃M(x) = ǫ






1 0 0
1 0 0
0 1 1


 1

1 − x


 ~̃M(x). (7.31)

Calculating the Jordan form J and the associated transformation matrix R of
the system matrix yields,

J =




0 0 0
0 −ǫ 1
0 0 −ǫ


 , R =




1 −1 0
−1 1 1
−ǫ 0 0


 . (7.32)

The limiting solution in the Jordan basis and the original master integral basis
is thus,

~f (x) = eJ log(1−x)~f0 =




f
(1)
0

(1 − x)−ǫ f
(2)
0 + (1 − x)−ǫ log(1 − x) f

(3)
0

(1 − x)−ǫ f
(3)
0


 ,

(7.33)

~̃M(x) =




− f
(3)
0 (1−x)−ǫ

ǫ

− f
(3)
0 (1−x)−ǫ

ǫ − f
(1)
0

f
(2)
0 (1 − x)−ǫ + f

(3)
0 (1 − x)−ǫ log(1 − x) + f

(1)
0


 . (7.34)

The next step is to determine the f
(i)
0 from expansion by regions. We start

by determining f
(3)
0 . The easiest integral to compute for f

(3)
0 is M1. This

integral, being a simple tadpole, is a one scale integral and as such has only
one region. Fortunately, it is trivial to obtain the full solution from the integral
representation,

M1 =
∫

ddk

(2π)d

1

k2 − m2
, (7.35)
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and we obtain,

M1 = i(4π)−2+ǫΓ(ǫ)(1 − x)−ǫ(1 + x)−ǫ. (7.36)

The boundary condition is then obtained by comparing the leading term in
the expansion around x = 1 to eq. (7.34) and we have,

f
(3)
0 = −i(4π)−2+ǫǫΓ(ǫ). (7.37)

The next constant to be determined is f
(1)
0 . Here we choose the integral M2.

This integral is a massive bubble and contains the scales s and m. Analyzing
this integral using the method of expansion by regions explicitly or using the

code asy [195, 203] for guidance, one finds three regions R
(1)
2 , R

(3)
2 and R

(3)
2

with the following scalings,

R
(1)
2 ∝ (1 − x)0, R

(2)
2 ∝ (1 − x)−ǫ and R

(3)
2 ∝ (1 − x)1−ǫ. (7.38)

We see immediately that we do not need to compute R
(3)
2 as it is suppressed

by one power of (1 − x) in comparison to the boundary conditions required.
Furthermore, we know from the boundary decomposition, eq. (7.34), that the

region R
(2)
2 , proportional to (1− x)−ǫ corresponds to the boundary condition

f
(3)
0 that we determined before. We therefore only need to compute R

(1)
2 in

order to obtain g
(1)
0 . The parametric representation of this region is,

R
(1)
2 = −i(4π)−2+ǫΓ(1+ ǫ)

∫ ∞

0
dx1dx2δ(1− x1 − x2)x−ǫ

1 x−1−ǫ
2 (x1 + x2)

−1+2ǫ.

(7.39)
This integral can easily be solved in terms of beta functions and we obtain the

boundary condition f
(1)
0 from comparison with eq. (7.34),

f
(1)
0 = −i(4π)−2+ǫ Γ(1 − ǫ)2Γ(1 + ǫ)

ǫΓ(1 − 2ǫ)
. (7.40)

The final boundary condition f
(2)
0 is obtained from integral M3, which has

three regions R
(1)
3 , R

(3)
3 and R

(3)
3 with the scalings,

R
(1)
3 ∝ (1 − x)0, R

(2)
3 ∝ (1 − x)−ǫ and R

(3)
3 ∝ (1 − x)−ǫ. (7.41)

Here we observe a small subtlety in the computation. This integral has two
regions with the same scaling that are not suppressed relative to one another.
It will therefore be necessary to compute both of them. Furthermore, the log-
arithm that appears in the boundary decomposition eq. (7.34), suggests that
these regions will have a divergence that is not regulated by dimensional regu-
larization when they are computed separately. This is immediately confirmed
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when we derive the integral representation for R
(2)
3 or R

(3)
3 . We therefore in-

troduce an analytic regulator ν so that the Feynman integral for M3 becomes

M′
3 =

∫
ddk

(2π)d

1

(k2 − m2)((k + p1)2 − m2)((k + p1 + p2)2 − m2)1+ν
. (7.42)

Starting from this regulated integral we can perform expansion by regions as

before and we obtain the parametric representation for R
(2)
3 as function of ν,

R
(2)
3 (ν) = (−1)1+νi(4π)−2+ǫ2−1−ǫ+νǫ(1 − x)−ǫ−ν Γ(1 + ǫ + ν)

Γ(1 + ν)

∫ ∞

0
dx1dx2dx3

× δ(1 − x1 − x2 − x3)xν
3(x2 + x3)

−1+2ǫ+ν
(

2x1x3 + (x2 + x3)
2
)−1−ǫ−ν

.

(7.43)

Performing the integrals over the parameters xi as beta functions we find,

R
(2)
3 (ν) = (−1)1+νi(4π)−2+ǫ2−ǫ+νǫ(1 − x)−ǫ−ν Γ(ǫ + ν)

νΓ(1 + ν)
. (7.44)

Here we see how the ν regulates the divergence, and we cannot take the limit

ν → 0 for this region separately. However we also need to compute R
(3)
3 with

the regulator. This region has the parametric representation,

R
(3)
3 (ν) = (−1)1+νi(4π)−2+ǫ2−1−ǫ+νǫ(1 − x)−ǫ Γ(1 + ǫ + ν)

Γ(1 + ν)

∫ ∞

0
dx1dx2dx3

× δ(1 − x1 − x2 − x3)(x1 + x2)
−1+2ǫ+νxν

3

(
(x1 + x2)

2 + 2x1x3

)−1−ǫ−ν
.

(7.45)

Once again we can perform the parametric integrals in terms of beta functions
and find,

R
(3)
3 (ν) = (−1)νi(4π)−2+ǫ2−ǫǫ(1 − x)−ǫ Γ(ǫ)

ν
. (7.46)

Also here we can see the singularity being regulated by ν. We can however
combine both regions and take the limit ν → 0, obtaining the finite result,

lim
ν→0

(
R
(2)
3 + R

(3)
3

)
= −i(4π)−2+ǫ2−ǫǫ(1 − x)−ǫΓ(ǫ)

× (γE + log(2) + ψ(ǫ)− log(1 − x)) ,
(7.47)

with ψ(x) =
d log(Γ(x))

dx and γE = −ψ(1). Here we can see the explicit log(1−
x) that was predicted by the boundary decomposition. If we compare the
term proportional to log(1 − x) with eq. (7.34) we can confirm that it in fact
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corresponds to f
(3)
0 as predicted. The remaining boundary condition f

(2)
0 is

then obtained as,

f
(2)
0 = lim

ν→0

(
R
(2)
3 + R

(3)
3

)∣∣∣∣
log(1−x)0
= −i(4π)−2+ǫ2−ǫǫΓ(ǫ) (γE + log(2) + ψ(ǫ)) .

(7.48)
With this we have determined the last remaining boundary condition. The
complete system can now be obtained trivially by solving eq. (7.30) and de-
manding consistency with the above boundary conditions.

Exemplary calculation of an actual boundary condition

To outline our method of calculating the actual boundary conditions, we show
the example of the double cut of the tennis court diagram, depicted in fig-
ure 7.1, which serves as a boundary condition to our system of di�erential
equations. This integral was first calculated in refs. [24, 201]. The momentum

2 1

1 2

Figure 7.1: The two particle cut of the three-loop tennis court diagram which
serves as a boundary condition.

space representation of the integral is,

∫
dΦ

1

k2l2(k + p1)2(l − p3)2(l + p23)2(k + p123)2(k + l + p123)2

1

−s13
,

(7.49)
with p23 = p2 − p3 and p123 = p1 + p2 − p3, where p3 is the momentum of
the massless cut propagator. The invariants are defined as s12 = (p1 + p2)

2,
s13 = (p1 − p3)

2 and s23 = (p2 − p3)
2. For the purpose of calculating the

loop integral we work in the so-called euclidean region where all invariants
are negative. The analytic continuation to the physical region is then obtained
by taking,

− sij − i0 → e−iπsij, (7.50)

By using our method for decomposing the boundary conditions as outlined
before, we obtain the di�erent boundary conditions contributing to this inte-
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gral,

− 12(4ǫ + 1)(5ǫ + 2)B1z̄−2−4ǫ

ǫ2(2ǫ + 1)2(3ǫ + 1)
+

4(4ǫ + 1)B2z̄−2−4ǫ

3ǫ2(2ǫ + 1)(3ǫ + 1)
+

8(6ǫ + 1)B3z̄−2−6ǫ

9ǫ2(3ǫ + 1)

+
12B4z̄−2−3ǫ

ǫ2(3ǫ + 1)
+

9B5z̄−2−3ǫ

ǫ2(3ǫ + 1)
+

4(6ǫ + 1)B6z̄−2−6ǫ

3ǫ2
+

(5ǫ + 1)B7z̄−2−5ǫ

ǫ2(ǫ + 1)(3ǫ + 1)

− 4(4ǫ + 1)B8z̄−2−4ǫ

ǫ2(2ǫ + 1)(3ǫ + 1)
− 24(4ǫ + 1)B9z̄−2−4ǫ

ǫ2(2ǫ + 1)2
+

B10z̄−2−3ǫ

8ǫ2(3ǫ + 1)

+ B11z̄−3−6ǫ

(
6ǫ + 1

4ǫ3(3ǫ + 1)
− z̄

6ǫ + 1

12ǫ2(3ǫ + 1)

)
.

(7.51)

The boundary condition that we want to determine here is B11, all other bound-
ary conditions can be determined independently from other integrals. To lead-
ing power in z̄, B11 is the only boundary condition contributing. Therefore,
we need to compute the region proportional to z̄−3−6ǫ of this integral. Using
expansion by regions we can derive a momentum space representation or use
the code asy [195, 203] to obtain a parametric representation of the required
region:

I ≡ (4π)4−2ǫ ((1 + 6ǫ)B11

(4ǫ3(1 + 3ǫ))

= (4π)4−2ǫ
∫

dΦ2
ddk

(2π)d

ddl

(2π)d

× 1

k2l2(k − l)2(2kp2 − 2p2p3)(2lp2 − 2p2p3)(2lp2)(k − p3)2

1

s13
.

Introducing Feynman parameters and transforming to projective space we ob-
tain,

I =
∫

dΦ2

∫ ∞

0
dx1dx2dx3dx4dx5dx6Γ(3 + 2ǫ) (x4 + x6 + x2 (1 + x4 + x6))

1+3ǫ

×
(

s23 ((x3 + x5) x6 + x2 (x3 + x3x4 + x5 + x3x6 + x5x6))

+ x1 (s13x4 + s12 (x5 + x3 (1 + x4 + x6)))
)−3−2ǫ 1

s13
.

(7.52)

The integration over x1 can be performed immediately. Using the projective
transformation x5 → x5x3, the integral over x3 can be computed as well and
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we obtain,

I =
∫

dΦ2

∫
dx2dx4dx5dx6Γ(1 − 2ǫ)Γ(2ǫ)Γ(2 + 2ǫ)z̄−1−ǫs2ǫ

12s−2−2ǫ
13 s−2−2ǫ

23

× x−1−2ǫ
4 (1 + x4 + x5 + x6)

2ǫ (x4 + x6 + x2(1 + x4 + x6))
1+3ǫ

× (x2(1 + x4 + x5) + (1 + x2)(1 + x5)x6)
−2−2ǫ .

(7.53)

Next we split the second polynomial into,

Γ(−z1)Γ(−1 + z1 − 3ǫ)

Γ(−1 − 3ǫ)
x1+3ǫ−z1

2 (x4 + x6)
z1(1 + x4 + x6)

1−z1+3ǫ, (7.54)

by introducing a Mellin-Barnes integral over z1, such that we can perform the
integral over x2. After performing the projective transformations x6 → x6x4

and x4 → x4
1+x6

we obtain,

I =
∫

γ
dz1

Γ(−2ǫ)Γ(1 + 2ǫ)

Γ(−1 − 3ǫ)
Γ(2 + 3ǫ − z1)Γ(−z1)Γ(−1 − 3ǫ + z1)Γ(−ǫ + z1)

×
∫

dΦ2

∫
dx4dx5dx6s2ǫ

12s−2−2ǫ
13 s−2−2ǫ

23 x−ǫ
4 (1 + x4)

1+3ǫ−z1(1 + x5)
ǫ−z1 xǫ−z1

6

× (1 + x4 + x5)
2ǫ(1 + x6)

1+4ǫ (1 + x4 + x5 + (1 + x4)(1 + x5)x6)
−2−3ǫ+z1 ,

(7.55)

where the contour γ is such that the poles of gamma functions with −zi in
the argument (left poles) and the poles of gamma functions with +zi in the
argument (right poles) are separated. Next, we introduce a second Mellin-
Barnes integration to split the last polynomial into,

Γ(−z2)Γ(2 + z2 + 3ǫ − z1)

Γ(2 + 3ǫ − z1)
x−2−z2−3ǫ+z1

6 (1 + x4)
−2−z2−3ǫ+z1

× (1 + x5)
−2−z2−3ǫ+z1(1 + x4 + x5)

z2 .

(7.56)

Now we can perform the integral over x6, x5 and x4 in that order and obtain

I =
∫

dΦ2s2ǫ
12s−2−2ǫ

13 s−2−2ǫ
23

Γ(−ǫ)Γ(1 + 2ǫ)

Γ(−1 − 4ǫ)Γ(−1 − 3ǫ)

∫

γ

dz1

2πi

dz2

2πi
Γ(−z1)Γ(−z2)

× Γ(−1 − 3ǫ + z1)Γ(−ǫ + z1)Γ(−1 − 2ǫ − z2)Γ(−2ǫ + z2)

(1 + 2ǫ + z2)Γ(1 + z2)

× Γ(2 + 3ǫ − z1 + z2)
(

Γ(−ǫ)Γ(1 + z2)− Γ(−2ǫ)Γ(1 + ǫ + z2)
)

,

(7.57)

as the final Mellin-Barnes representation. Next, we need to perform the phase
space integral. At this stage we perform the analytic continuation into the
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physical region, using the prescription indicated above. Next, we insert the
appropriate parametrization,

s12 = 1, s13 = λ, s23 = 1 − λ, (7.58)

with λ ∈ [0, 1]. Afterwards, we can perform the phase space integral as a
simple beta function.

The contour of the Mellin-Barnes integration is defined by the requirement
that it should separate the left and right poles of the integrand. At this point,
this is only satisfied for the integral if ǫ is finite. Therefore, in order to be able
to expand the integral in ǫ, before the Mellin-Barnes integration is performed,
we need to analytically continue the integral to infinitesimal ǫ. This is achieved
using the residue theorem, by taking the residues of poles that end up on the
wrong side of the contour when ǫ is gradually taken to zero. This is automated
in codes like MB [167] and MBresolve [168]. After the analytic continuation,
the integral can be expanded in ǫ. We refrain from printing the unwieldy ex-
pansion that is obtained in this step. Afterwards, we can apply Barnes’ lemma
and corollaries thereof to eliminate one of the two integrations and we are left
with a one-dimensional Mellin-Barnes integral. This one-dimensional integral
can be easily computed by taking the residues of, e.g. the left poles of the
integrand, which yields a sum representation. These sums can be performed
in terms of harmonic sums [170, 206], which yield multiple zeta-values when
evaluated at infinity. This way we find the final result,

ℜ(I)e3ǫγE =
1

3ǫ5
− 19

3ǫ3
ζ2 −

39

2ǫ2
ζ3 +

257

16ǫ
ζ4

+

(
1481

4
ζ2ζ3 −

4967

10
ζ5

)
+ ǫ

(
560ζ2

3 −
8719

48
ζ6

)
+O(ǫ2).(7.59)

Our method of solving the integrals in the Mellin-Barnes representation also
provides a way to cross-check the result as the Mellin-Barnes integrals can also
be evaluated numerically. A large fraction of the required boundary conditions
for the RVV cross section can be obtained in a simpler fashion. For other
integrals we proceed similarly to the above example.
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The Higgs cross section at

N3LO

8.1 The �xed order cross section at N3LO

Having at our disposal the complete set of master integrals as expansions
around the threshold limit, we can easily obtain the cross sections at N3LO for
all partonic channels contributing to Higgs production via gluon fusion. The
partonic cross sections are related to the hadronic cross section at the LHC
through the integral

σ = ∑
i,j

∫
dx1dx2 fi(x1, µ f ) f j(x2, µ f )σ̂ij(z, µr, µ f ) , (8.1)

where the summation indices i, j run over the parton flavors in the proton, fi

are parton densities and σ̂ij are partonic cross sections. Furthermore, we define

z =
m2

H
s and τ =

m2
H

S as usual, where mH is the mass of the Higgs boson and√
s is the partonic center-of-mass energy, related to the hadronic center-of-mass

energy
√

S through s = x1 x2 S. The renormalization and factorization scales
are denoted by µr and µ f respectively.

We expand the partonic cross sections into a perturbative series in the
strong coupling constant evaluated at the scale µr,

σ̂ij

z
=

πC2

8(N2
c − 1) ∑

k=0

∞

(
αs(µr)

π

)k

η
(k)
ij (z). (8.2)

In this expression C denotes the Wilson coe�cient and the terms through
NNLO in the above expansion have been computed in refs. [83, 98, 108–113,
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8. The Higgs cross section at N3LO

115, 116, 192, 207]. The main result of this dissertation is the result for the
N3LO coe�cient, corresponding to ℓ = 3 in eq. (8.2), for all possible parton
flavors in the initial state. The contributions to the cross section at N3LO can
formally be written as,

η
(3)
ij = 〈M3,0|M3,0〉+ 2ℜ〈M2,1|M2,0〉

+ 〈M1,1|M1,1〉+ 2ℜ〈M1,2|M1,0〉+ 2ℜ〈M0,3|M0,0〉,
(8.3)

where Mn,m is the n-loop matrix element with m real partons in the final state.
The N3LO coe�cient therefore receives contributions from the three loop-

corrections to inclusive Higgs production that are related to the QCD form
factor computed in [20, 21]. Additionally, the two-loop corrections to Higgs
production in association with an additional gluon in the final state need to be
taken into account. These corrections can be divided into two categories. On
one hand the corrections due to the square of one-loop corrections, discussed
in chapter 6, published in ref. [2] and confirmed by ref. [22], and on the other
hand the corrections due to genuine two-loop amplitudes interfered with the
corresponding tree-level amplitudes discussed in chapter 7, which were pub-
lished first in the soft limit in refs. [23, 24, 201] and later in general kinematics
in refs. [5, 25]. Additionally, we need to take into account the one-loop correc-
tions to the emission of two gluons, which were computed in refs. [7, 36] and
the tree-level emission of three gluons in the final state that was discussed in
chapter 5 and published in ref. [1].

Each of these contributions is ultraviolet (UV) and infrared (IR) divergent.
The divergences manifest themselves as poles of up to sixth order in the di-
mensional regulator ǫ. While the three leading poles cancel when summing
over all contributions, the coe�cients of the lower poles starting with 1/ǫ3

are non-vanishing. The remaining divergences can only be cancelled when
suitable UV and IR counterterms are included. These counterterms can be
completely determined from the lower order cross cross sections [32–34], the
QCD β-function [26–29] as well as the three-loop splitting functions [30, 31].

The contributions to the partonic cross section at N3LO can be decom-
posed as,

σ̂
(3)
ij = σ

(3,0)
ij δ(1 − z) +

6

∑
m=2

(1 − z)−mǫσ
(3,m)
ij (z, ǫ). (8.4)

The σ
(3,m)
ij are meromorphic functions with at most a single pole at z = 1.

When the partonic cross sections are convoluted with the pdfs, c.f. eq. (8.1),
the pole at z = 1 introduces a divergence into this integral as z → 1. In
dimensional regularization this divergences can be regulated by expanding
the factors (1 − z)−1−mǫ in terms of delta functions and plus distributions,

(1 − z)−1−mǫ = − 1

mǫ
δ(1 − z) +

∞

∑
n=0

(−mǫ)n

n!

[
logn(1 − z)

1 − z

]

+

, (8.5)
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8.1. The fixed order cross section at N3LO

where the plus distribution is defined by its action on a test function φ(z),

∫ 1

0
dz

[
logn(1 − z)

1 − z

]

+

φ(z) =
∫ 1

0
dz

logn(1 − z)

1 − z
(φ(z)− φ(1)). (8.6)

After this expansion, we can cast the N3LO coe�cients in the form,

η
(3)
ij = δig δjg η

(3)
SV + η

(3,reg)
ij (8.7)

Here, σ̂
(3)
SV denotes the soft-virtual cross section at N3LO of refs. [3, 39] that

contains all terms proportional to delta functions and plus distributions. For
µr = µ f = mH it can be explicitly given as,

σ̂
(3)
SV (z) = δ(1 − z)

{
C3

A

(
−2003

48
ζ6 +

413

6
ζ2

3 −
7579

144
ζ5 +

979

24
ζ2 ζ3 −

15257

864
ζ4

−819

16
ζ3 +

16151

1296
ζ2 +

215131

5184

)
+ NF

[
C2

A

(
869

72
ζ5 −

125

12
ζ3 ζ2 +

2629

432
ζ4

+
1231

216
ζ3 −

70

81
ζ2 −

98059

5184

)
+ CA CF

(
5

2
ζ5 + 3ζ3ζ2 +

11

72
ζ4 +

13

2
ζ3

−71

36
ζ2 −

63991

5184

)
+ C2

F

(
−5ζ5 +

37

12
ζ3 +

19

18

)]
+ N2

F

[
CA

(
−19

36
ζ4 +

43

108
ζ3

−133

324
ζ2 +

2515

1728

)
+ CF

(
− 1

36
ζ4 −

7

6
ζ3 −

23

72
ζ2 +

4481

2592

)]}
(8.8)

+

[
1

1 − z

]

+

{
C3

A

(
186 ζ5 −

725

6
ζ3 ζ2 +

253

24
ζ4 +

8941

108
ζ3 +

8563

324
ζ2 −

297029

23328

)

+ N2
F CA

(
5

27
ζ3 +

10

27
ζ2 −

58

729

)
+ NF

[
C2

A

(
−17

12
ζ4 −

475

36
ζ3

−2173

324
ζ2 +

31313

11664

)
+ CA CF

(
−1

2
ζ4 −

19

18
ζ3 −

1

2
ζ2 +

1711

864

)]}

+

[
log(1 − z)

1 − z

]

+

{
C3

A

(
−77ζ4 −

352

3
ζ3 −

152

3
ζ2 +

30569

648

)
+ N2

F CA

(
−4

9
ζ2

+
25

81

)
+ NF

[
C2

A

(
46

3
ζ3 +

94

9
ζ2 −

4211

324

)
+ CA CF

(
6 ζ3 −

63

8

)]}

+

[
log2(1 − z)

1 − z

]

+

{
C3

A

(
181 ζ3 +

187

3
ζ2 −

1051

27

)
+ NF

[
C2

A

(
−34

3
ζ2 +

457

54

)
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+
1

2
CA CF

]
− 10

27
N2

F CA

}

+

[
log3(1 − z)

1 − z

]

+

{
C3

A

(
−56 ζ2 +

925

27

)
− 164

27
NF C2

A +
4

27
N2

F CA

}

+

[
log4(1 − z)

1 − z

]

+

(
20

9
NF C2

A − 110

9
C3

A

)
+

[
log5(1 − z)

1 − z

]

+

8 C3
A .

Here NF is the number of light fermions and CA and CF are the Casimirs
of SU(NC). The terms proportional to plus distributions were determined
previously from lower orders in ref. [37] and are confirmed by our result.

The regular contributions η
(3,reg)
ij (z) take the form of a polynomial in

log(1 − z),

η
(3,reg)
ij =

5

∑
m=0

logm(1 − z)η
(3,m)
ij (z), (8.9)

where the η
(3,m)
ij are holomorphic around z = 1. The functions η

(3,m)
ij for

m = 5, 4, 3 have been given in a closed analytic from in [4]. The functions

η
(3,m)
ij for m = 2, 1, 0 have been computed as a series expansion in z̄ = (1− z)

so that we can introduce the series representation

η
(3,m)
ij = lim

N→∞
η
(3,m,N)
ij , (8.10)

with

η
(3,m,N)
ij =

N

∑
n=0

c
(m,n)
ij z̄n. (8.11)

If we truncate the sum in eq. (8.11) at N = 0, we obtain the next-to-soft
approximation of ref. [4].

Using our method for the threshold expansion of the master integrals, we

were able to determine the c
(m,n)
ij of eq. (8.11) analytically up to at least n = 30.

The analytic expressions for the coe�cients of the threshold expansion are

rather unwieldy. However, the c
(m,n)
ij only consist of powers of Nc and n f as

well as ζ-values. By setting Nc = and n f = 5 we can give the η
(3,m)
ij numerically

in section 8.3. While this approach does not put the partonic cross sections
in a closed analytic form, we argue that it yields the complete result for the
value of the hadronic cross section. In Fig. 8.1 we show the contribution of
the partonic cross section coe�cients N3LO to the hadronic cross section for
a proton-proton collider with 13TeV center-of-mass energy as a function of the
truncation order N. We use the NNLO MSTW2008 [208] parton densities and
a value for the strong coupling at the mass of the Z-boson of αs(mZ) = 0.117 as
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8.1. The fixed order cross section at N3LO

initial value for the evolution, and we set the factorization scale to µ f = mH =
125GeV. We observe that the threshold expansion stabilizes starting from N =
4, leaving a negligible truncation uncertainty for the hadronic cross section
thereafter. We note, though, that we observe a very small, but systematic,
increase of the expansion in the range N ∈ [15, 37], as illustrated in Fig. 8.1.
We have observed similar behavior for the threshold expansion at NNLOwhich
we illustrate in figure 8.2.

The systematic increase originates from values of the partonic cross section
at very small z. Indeed, this increase appears only in the contributions to the
hadronic cross section integral for values z < 0.1. It is natural that the terms of
the threshold expansion computed here do not furnish a good approximation
of the hadronic integral in the small z region due to the divergent high-energy
behavior of the partonic cross sections [209]. However, it is observed that this
region is suppressed in the total hadronic integral and for z < 0.1 contributes
less than 0.4% of the total N3LO correction. The same region at NLO and
NNLO, where analytic expressions valid for all regions are known, is similarly
suppressed. We therefore believe that the uncertainty of our computation for
the hadronic cross section due to the truncation of the threshold expansion is
negligible (less than 0.2%).
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Figure 8.1: The N3LO correction from the gg channel to the hadronic cross
section as a function of the truncation order N in the threshold expansion for
the scale choice µ = mH. The inlay shows that the convergence improves when
the high-energy tail (z < 0.1) of the hadronic integral in eq. (8.1) is removed.
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8. The Higgs cross section at N3LO

Figure 8.2: Comparison of the threshold expansion of the NNLO correction
and the N3LO correction in the gg channel to the hadronic cross section as a
function of the truncation order N for the scale choice µ = mH.

In Fig. 8.3 we present the hadronic gluon-fusion Higgs production cross
section at N3LO as a function of a common renormalisation and factorization
scale µ = µr = µ f . We use NNLO parton densities and N3LO evolution of the
strong coupling not only in the N3LO predictions, but also in the LO, NLO
and NNLO predictions. We observe a significant reduction of the sensitivity
of the cross section to the scale µ. Inside a range µ ∈

[mH
4 , mH

]
the cross sec-

tion at N3LO varies in the interval [−2.7%,+0.3%] with respect to the cross
section value at the central scale µ = mH

2 . For comparison, we note that the cor-
responding scale variation at NNLO is about ±9% [16, 17]. This improvement
in the precision of the Higgs cross section is a major accomplishment due to
our calculation and will have a strong impact on future measurements of Higgs-
boson properties. Furthermore, even though for the scale choice µ = mH

2 the
N3LO corrections change the cross section by about +2.2%, this correction is
captured by the scale variation estimate for the missing higher order e�ects of
the NNLO result at that scale. We illustrate this point in Fig. 8.5, where we
present the hadronic cross section as a function of the hadronic center-of-mass
energy

√
S at the scale µ = mH

2 . We observe that the N3LO scale uncertainty
band is included within the NNLO band, indicating that the perturbative ex-
pansion of the hadronic cross section is convergent. However, we note that for
a larger scale choice, e.g., µ = mH, the convergence of the perturbative series
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8.1. The fixed order cross section at N3LO

Figure 8.3: Scale µ = µr = µ f variation of the gluon fusion cross section
at all perturbative orders through N3LO for mH = 125GeV. We use NNLO
MSTW2008 [208] parton densities and αs(mZ) = 0.117 with N3LO evolution
for these predictions.

is slower than for µ = mH
2 .

In figure 8.4 we present the scale dependence of the hadronic gluon fusion
cross section in the gluon-gluon initiated channel in comparison with the quark-
gluon initiated channel. We observe that the quark-gluon channel becomes
important at very low scales at every order. Near the preferred scale choice of
µ = mH

2 the cross section is almost completely determined by the gluon-gluon
initiated channel.

In table 8.1 we quote the gluon-fusion cross section in e�ective theory at
N3LO for di�erent LHC energies. The perturbative uncertainty is determined
by varying the common renormalisation and factorization scale in the interval[mH

4 , mH

]
around mH

2 and in the interval
[mH

2 , 2mH

]
around mH.

Given the substantial reduction of the scale uncertainty at N3LO, the ques-
tion naturally arises whether other sources of theoretical uncertainty may con-
tribute at a similar level.

First, we note that given the small size of the N3LO corrections compared
to NNLO, we expect that an estimate for the higher-order corrections at N4LO
and beyond can be obtained from the scale variation uncertainty. Alternatively,
partial N4LO results can be obtained by means of factorization theorems for
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8. The Higgs cross section at N3LO

Figure 8.4: Scale µ = µr = µ f variation of the gluon-gluon initiated chan-
nel compared to the quark-gluon initiated channel at all perturbative orders
through N3LO for mH = 125GeV. We use NNLO MSTW2008 [208] parton
densities and αs(mZ) = 0.117 with N3LO evolution at all perturbative orders.

σ/pb 2 TeV 7 TeV 8 TeV 13 TeV 14 TeV

µ = mH
2 0.99+0.43%

−4.65% 15.31+0.31%
−3.08% 19.47+0.32%

−2.99% 44.31+0.31%
−2.64% 49.87+0.32%

−2.61%

µ = mH 0.94+4.87%
−7.35% 14.84+3.18%

−5.27% 18.90+3.08%
−5.02% 43.14+2.71%

−4.45% 48.57+2.68%
−4.24%

Table 8.1: The gluon fusion cross section in the e�ective theory as a function of
the (proton-proton) collider energy. Uncertainties are determined by varying
in the interval [mH

4 , mH] around µ = mH
2 and in the interval [mH

2 , 2mH] around
µ = mH.

threshold resummation. However, we expect that the insight from resumma-
tion on the N4LO soft contributions is only qualitative given the importance
of next-to-soft, next-to-next-to-soft and purely virtual contributions observed at
N3LO, as seen in Fig. 8.1.

Electroweak corrections to Higgs production have been calculated through
two loops in ref. [102–104], and estimated at three loops in ref. [105]. They
furnish a correction of less than +5% to the inclusive cross section. Thus,
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8.1. The fixed order cross section at N3LO

Figure 8.5: The LHC gluon fusion cross section through N3LO for a common
scale µ ∈ [mH

4 , mH] as a function of the center-of-mass energy
√

S. In the lower
panel the cross section is normalized to its value at µ = mH

2 .

they are not negligible at the level of accuracy indicated by the scale varia-
tion at N3LO and need to be combined with our result in the future. Mixed
QCD-electroweak or purely electroweak corrections of even-higher order are
expected to contribute at the sub-percent level and should be negligible.

Next, we have to comment on our assumption that the top-quark is infinitely
heavy and can be integrated out, see eq. (1.1). Moreover, we assumed that all
other quarks have a zero Yukawa coupling. Finite quark mass e�ects are im-
portant, but it is su�cient to include them through NLO or NNLO. Indeed,
finite quark-mass e�ects have been computed fully through NLO in QCD [98,
108–113, 192, 207], while subleading top-quark mass corrections have been
computed at NNLO systematically as an expansion in the inverse top-quark
mass [106, 107]. In these references it was observed that through NLO finite
quark mass e�ects amount to about 8% of the K-factor. At NNLO, the known
1/mtop corrections a�ect the cross section at the ∼ 1% level. A potentially
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8. The Higgs cross section at N3LO

significant contribution at NNLO which has not yet been computed in the
literature originates from diagrams with both top- and bottom-quark Yukawa
couplings. Assuming a similar perturbative pattern as for top-quark only di-
agrams in the e�ective theory, eq. (1.1), higher-order e�ects could be of the
order of 2%. We thus conclude that the computation of the top-bottom inter-
ference through NNLO is highly desired in the near future.

Finally, the computation of the hadronic cross section relies crucially on
the knowledge of the strong coupling constant and the parton densities. Af-
ter our calculation, the uncertainty coming from these quantities has become
dominant. Further progress in the determination of parton densities must be
anticipated in the next few years due to the inclusion of LHC data in the global
fits and the impressive advances in NNLO computations, improving the theo-
retical accuracy of many standard-candle processes.

8.2 Threshold resummation

The partonic cross section contains terms proportional to powers of threshold
logarithms log(1 − z). As z approaches the threshold limit z → 1, these log-
arithms diverge and thus lead to potentially large contributions to the cross
section at every order in the perturbative expansion in αs. One can therefore
argue that these contributions should be resummed in order to obtain par-
tial results that are valid at any order in αs, which are better behaved in the
threshold limit than the fixed-order result.

Threshold resummation is based on factorizing the Mellin transform of the
hadronic cross section,

σ(N, m2
H) =

∫ 1

0
dττN−1σ(S, m2

H). (8.12)

In Mellin-space eq. (8.1) takes the simple form,

σ(N − 1, m2
H) = ∑

ij

fi(N, µ f ) f j(N, µ f )σ̂ij(N, µr, µ f ), (8.13)

with the Mellin moments,

fi(N, µ f ) =
∫ 1

0
dx xN−1 fi(x, µ f ) (8.14)

σ̂ij(N, µr, µ f ) =
∫ 1

0
dz zN−1σ̂ij(z, µr, µ f ). (8.15)

The Mellin transformation can be inverted as,

σ(S, m2
H) = ∑

ij

∫ c+i∞

c−i∞

dN

2πi
τ1−N fi(N, µ f ) f j(N, µ f )σij(N, µr, µ f ), (8.16)
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where the contour of integration is chosen such that it lies to the right of all
possible singularities of the Mellin moments in the complex N plane. From
the definition of the Mellin transformation we can convince ourselves that the
limit z → 1 of the partonic cross section corresponds to the limit N → ∞ of
σ(N, µr, µ f ). In the limit N → ∞ the partonic cross section in Mellin space
can be written as [210],

σ(N, µr, µ f ) = σres(N, µr, µ f ) +O
(

1

N

)

= α2
s

[
1 +

∞

∑
n=1

αn
s

2n

∑
m=0

σn,m logm(N)

]
+O

(
1

N

)
.

(8.17)

The constant and logarithmically divergent contributions in the N → ∞ limit
can be expressed in terms of the all-order resummation formula [210–213],

σres(N, µr, µ f ) = αs(µr)
2Cgg(αs(µ

2
r ), µr, µ f ) exp

[
GH(αs(µ

2
r ), log(N), µr, µ f )

]
.

(8.18)

Figure 8.6: Scale variation ( µ = µr = µ f ) of the gluon-fusion cross sec-
tion at all perturbative orders through N3LO for mH = 125GeV resummed
at the corresponding logarithmic accuracy compared to the fixed-order cross
section through N3LO. We use the NNLO MSTW2008 [208] parton densities
and αs(mZ) = 0.117 with N3LO evolution for these prediction.
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8. The Higgs cross section at N3LO

Here the function Cgg contains all contributions that are constant for N → ∞.
These contributions are due to the hard virtual and singular soft contributions

in σ
(ℓ)
SV . The function GH exponentiates the large logarithmic contributions

log(N) to all orders. It is written as,

GH(αs(µ
2
r ), log(N), µr, µ f ) = log(N)g

(1)
H (b0αs(µ

2
r ) log(N))

+ g
(2)
H (b0αs(µ

2
r ) log(N), µr, µ f )

+
∞

∑
n=3

αn−2
s (µ2

r )g
(n)
H (b0αs(µ

2
r ), µr, µ f ).

(8.19)

The coe�cient functions g
(n)
H can be determined from the cusp anomalous

dimension of QCD [37, 210]. They are known exactly up to next-to-next-

to-leading logarithmic accuracy g
(3)
H , which requires knowledge of the cusp

anomalous dimension up to three loops. In order to perform resummation at

next-to-next-to-next-to-leading logarithmic (N3LL) accuracy, the function g
(4)
H

is needed. This function depends on the four loop cusp anomalous dimen-

sion which is not yet known in QCD. Consequently, g
(4)
H is only known as an

approximation.
From our fixed-order calculation we can determine the hard coe�cient Cgg

up to order α3
s . For µ = µr = µ f it can be written as,

Cgg =
3

∑
n=1

n

∑
ℓ=0

cn,ℓ logℓ

(
µ2

m2
H

)(αs

π

)n
. (8.20)

Setting Nc = 3 and n f = 5, the coe�cients cn,ℓ up to n = 3 are,

c1,1 = 6γ,

c1,0 =
11

2
+ 6γ2 + 2π2,

c2,2 =
1

4
γ(23 + 72γ),

c2,1 =
1

6

(
−81ζ(3) + 26 + 69γ2 + 216γ3 + 23π2 + γ

(
349 + 63π2

))
,

c2,0 =
137

24
log

(
µ2

m2
t

)
− 87ζ3

4
+ γ

(
233

9
− 63ζ3

2

)
+

1

6
γ2
(

349 + 63π2
)

+
23π4

16
+

349π2

18
+ 18γ4 +

23γ3

3
+

303

8
,

c3,3 =
529γ

72
+

69γ2

2
+ 36γ3,

c3,2 = γ

(
−81ζ3 +

253π2

8
+

1018

9

)
− 207ζ3

8
+ γ2

(
6529

24
+ 27π2

)
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+
529π2

72
+ 108γ4 +

207γ3

2
+

299

36
,

c3,1 = γ2

(
−270ζ3 +

161π2

4
+

3200

9

)
− 99π2ζ3

4
− 2167ζ3

8
+

135ζ5

2

+
137

4
γ log

(
µ2

m2
t

)
+ γ3

(
9529

18
+ 54π2

)
+

345π4

64
+

7235π2

108
+ 108γ5

+ 115γ4 +
7037

72
+ γ

(
−259ζ3 +

129π4

20
+

875π2

6
+

231065

432

)
,

c3,0 =
81ζ2

3

2
+ γ2

(
−259ζ3 +

129π4

20
+

875π2

6
+

231065

432

)
− 929π2ζ3

16

+ γ

(
−219

4
π2ζ3 −

17351ζ3

36
+ 162ζ5 −

307π4

720
+

4651π2

108
+

2579507

7776

)

− 7236713ζ3

13824
+

33353ζ5

144
+

3151

288
log2

(
µ2

m2
t

)
+ γ4

(
9529

36
+ 27π2

)

+

(
1927

48
+

137γ2

4
+

137π2

12

)
log

(
µ2

m2
t

)
+

121π6

240
+

1333921π4

77760
+ 36γ6

+ 46γ5 +
4154027

20736
+ γ3

(
−189ζ3 +

23π2

2
+

7330

27

)
+

24221π2

144
. (8.21)

The dependence on the top mass mt arises from the Wilson coe�cient of the
e�ective theory. With that we can use the resummation formula (8.18) to
exponentiate the leading logarithms log3,...,6(N) of the inclusive Higgs cross
section to all orders in αs. Expanding the resummation formula in αs up to
order α5

s reproduces exactly the soft-virtual part of our calculation. We can
therefore match the resummation to our fixed order calculation by subtracting
the expansion up to α5

s from the all-order resummation formula. This way we
can guarantee that the resummation contributions only start at order α6

s which
is beyond the reach of our fixed-order calculation. We use this to calculate the
N3LO + N3LL threshold resummed inclusive Higgs cross section. In figure 8.6
we show the scale dependence of the resummed cross section in comparison
to the fixed order cross section. As we can see, at lower orders in perturbation
theory the resummation drastically improves the scale dependence of the cross
section in comparison to the fixed order result. However, we can also see
that at N3LO the scale dependence of the fixed-order cross section is already
so low that the resummation no longer improves upon it. We also note that
at µ = mH

2 the e�ect of the resummation at on the N3LO cross section is
completely negligible.
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8.3 Series coe�cients of the threshold

expansion

Here we give the threshold expansion of the regular part of the cross section
in eq. 8.9 numerically for Nc = 3 and n f = 5. We have obtain the expansion
completely analytic as rational function of Nc and n f in terms of ζ-values,
however due to the size of coe�cients we choose to present them numerically.

η
(3,2),reg
gg = −11089.328

+1520.0814 z̄ + 8805.7669 z̄2 − 12506.932 z̄3 − 440.32959 z̄4

+1232.0873 z̄5 + 1646.4249 z̄6 + 1781.8637 z̄7 + 1835.6555 z̄8

+1861.3612 z̄9 + 1876.6428 z̄10 + 1888.2649 z̄11 + 1899.1749 z̄12

+1910.7995 z̄13 + 1923.8791 z̄14 + 1938.8053 z̄15 + 1955.7742 z̄16

+1974.8643 z̄17 + 1996.0810 z̄18 + 2019.3836 z̄19 + 2044.7025 z̄20

+2071.9510 z̄21 + 2101.0331 z̄22 + 2131.8486 z̄23 + 2164.2968 z̄24

+2198.2785 z̄25 + 2233.6976 z̄26 + 2270.4621 z̄27 + 2308.4845 z̄28

+2347.6819 z̄29 + 2387.9764 z̄30 + 2429.2946 z̄31 + 2471.5678 z̄32

+2514.7317 z̄33 + 2558.7261 z̄34 + 2603.4947 z̄35 + 2648.9850 z̄36

+2695.1477 z̄37 +O(z̄38) (8.22)

η
(3,1),reg
gg = 15738.441

−13580.184 z̄ + 1757.5646 z̄2 + 16078.884 z̄3 + 82.947070 z̄4

+222.78697 z̄5 + 947.71319 z̄6 + 1490.0998 z̄7 + 1869.9658 z̄8

+2145.3018 z̄9 + 2354.6608 z̄10 + 2520.8158 z̄11 + 2657.1437 z̄12

+2771.7331 z̄13 + 2869.6991 z̄14 + 2954.4505 z̄15 + 3028.3834 z̄16

+3093.2654 z̄17 + 3150.4554 z̄18 + 3201.0314 z̄19 + 3245.8702 z̄20

+3285.6978 z̄21 + 3321.1237 z̄22 + 3352.6649 z̄23 + 3380.7639 z̄24

+3405.8019 z̄25 + 3428.1091 z̄26 + 3447.9734 z̄27 + 3465.6466 z̄28

+3481.3499 z̄29 + 3495.2787 z̄30 + 3507.6057 z̄31 + 3518.4844 z̄32

+3528.0516 z̄33 + 3536.4294 z̄34 + 3543.7272 z̄35 + 3550.0434 z̄36

+3555.4664 z̄37 (8.23)

η
(3,0),reg
gg = −5872.5889

+12249.940 z̄ − 9638.4528 z̄2 − 4817.5592 z̄3 + 1526.5421 z̄4

+297.45929 z̄5 − 328.25240 z̄6 − 547.47104 z̄7 − 581.33009 z̄8

−530.54599 z̄9 − 439.61074 z̄10 − 328.65590 z̄11 − 207.13607 z̄12

−79.706814 z̄13 + 51.184085 z̄14 + 184.13649 z̄15 + 318.27084 z̄16
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+452.98499 z̄17 + 587.83913 z̄18 + 722.49864 z̄19 + 856.70352 z̄20

+990.25020 z̄21 + 1122.9794 z̄22 + 1254.7674 z̄23 + 1385.5192 z̄24

+1515.1630 z̄25 + 1643.6461 z̄26 + 1770.9307 z̄27 + 1896.9918 z̄28

+2021.8139 z̄29 + 2145.3897 z̄30 + 2267.7184 z̄31 + 2388.8041 z̄32

+2508.6552 z̄33 + 2627.2831 z̄34 + 2744.7017 z̄35 + 2860.9272 z̄36

+2975.9768 z̄37 (8.24)

η
(3,2),reg
qg = 513.56298

−754.78793 z̄ − 280.97494 z̄2 − 2.0101406 z̄3 + 503.52967 z̄4

+627.89991 z̄5 + 691.45552 z̄6 + 733.60753 z̄7 + 765.14788 z̄8

+790.66308 z̄9 + 812.57547 z̄10 + 832.30620 z̄11 + 850.73481 z̄12

+868.42184 z̄13 + 885.73010 z̄14 + 902.89588 z̄15 + 920.07262 z̄16

+937.35866 z̄17 + 954.81528 z̄18 + 972.47867 z̄19 + 990.36794 z̄20

+1008.4906 z̄21 + 1026.8464 z̄22 + 1045.4298 z̄23 + 1064.2318 z̄24

+1083.2414 z̄25 + 1102.4464 z̄26 + 1121.8338 z̄27 + 1141.3904 z̄28

+1161.1034 z̄29 + 1180.9600 z̄30 (8.25)

η
(3,1),reg
qg = −313.98523

+807.28021 z̄ + 673.01632 z̄2 + 424.92437 z̄3 − 94.523260 z̄4

−16.197667 z̄5 + 53.689920 z̄6 + 107.82115 z̄7 + 152.20191 z̄8

+190.11227 z̄9 + 223.24799 z̄10 + 252.59416 z̄11 + 278.80517 z̄12

+302.36320 z̄13 + 323.64795 z̄14 + 342.97017 z̄15 + 360.58960 z̄16

+376.72599 z̄17 + 391.56667 z̄18 + 405.27209 z̄19 + 417.98023 z̄20

+429.81014 z̄21 + 440.86488 z̄22 + 451.23389 z̄23 + 460.99506 z̄24

+470.21638 z̄25 + 478.95737 z̄26 + 487.27030 z̄27 + 495.20115 z̄28

+502.79050 z̄29 + 510.07423 z̄30 (8.26)

η
(3,0),reg
qg = 204.62079

+94.711709 z̄ − 516.31293 z̄2 − 86.222501 z̄3 + 112.69425 z̄4

+1.9010983 z̄5 − 27.130422 z̄6 − 21.392526 z̄7 + 0.27617630 z̄8

+30.304354 z̄9 + 65.175579 z̄10 + 103.01832 z̄11 + 142.72655 z̄12

+183.59437 z̄13 + 225.14662 z̄14 + 267.05174 z̄15 + 309.07290 z̄16

+351.03855 z̄17 + 392.82345 z̄18 + 434.33601 z̄19 + 475.50950 z̄20

+516.29577 z̄21 + 556.66066 z̄22 + 596.58065 z̄23 + 636.04035 z̄24

+675.03054 z̄25 + 713.54678 z̄26 + 751.58826 z̄27 + 789.15696 z̄28
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+826.25696 z̄29 + 862.89396 z̄30 (8.27)

η
(3,2),reg
qq̄ = 52.489897 z̄ + 121.14225 z̄2 + 546.26186 z̄3 + 430.10665 z̄4

+395.20262 z̄5 + 377.03244 z̄6 + 365.05682 z̄7 + 356.30539 z̄8

+349.64832 z̄9 + 344.54422 z̄10 + 340.68027 z̄11 + 337.84848 z̄12

+335.89655 z̄13 + 334.70587 z̄14 + 334.18036 z̄15 + 334.24025 z̄16

+334.81815 z̄17 + 335.85649 z̄18 + 337.30562 z̄19 + 339.12245 z̄20

+341.26935 z̄21 + 343.71330 z̄22 + 346.42520 z̄23 + 349.37931 z̄24

+352.55277 z̄25 + 355.92522 z̄26 + 359.47847 z̄27 + 363.19620 z̄28

+367.06378 z̄29 + 371.06801 z̄30 (8.28)

η
(3,1),reg
qq̄ = −13.561787 z̄ − 122.83887 z̄2 − 747.63122 z̄3 − 396.29959 z̄4

−305.88934 z̄5 − 259.42707 z̄6 − 228.03650 z̄7 − 204.06989 z̄8

−184.61437 z̄9 − 168.25305 z̄10 − 154.17060 z̄11 − 141.84193 z̄12

−130.90258 z̄13 − 121.08653 z̄14 − 112.19267 z̄15 − 104.06504 z̄16

−96.580303 z̄17 − 89.639462 z̄18 − 83.162027 z̄19 − 77.081876 z̄20

−71.344195 z̄21 − 65.903187 z̄22 − 60.720315 z̄23 − 55.762951 z̄24

−51.003310 z̄25 − 46.417609 z̄26 − 41.985393 z̄27 − 37.688995 z̄28

−33.513090 z̄29 − 29.444339 z̄30 (8.29)

η
(3,0),reg
qq̄ = −37.707516 z̄ + 53.725755 z̄2 + 144.18366 z̄3 − 69.788040 z̄4

−67.434087 z̄5 − 50.987269 z̄6 − 33.558429 z̄7 − 16.662373 z̄8

−0.44090329 z̄9 + 15.148279 z̄10 + 30.159647 z̄11 + 44.637979 z̄12

+58.619322 z̄13 + 72.133997 z̄14 + 85.208698 z̄15 + 97.867667 z̄16

+110.13333 z̄17 + 122.02662 z̄18 + 133.56717 z̄19 + 144.77338 z̄20

+155.66254 z̄21 + 166.25087 z̄22 + 176.55354 z̄23 + 186.58480 z̄24

+196.35799 z̄25 + 205.88558 z̄26 + 215.17928 z̄27 + 224.25003 z̄28

+233.10811 z̄29 + 241.76313 z̄30 (8.30)

η
(3,2),reg
qq = 52.489897 z̄ + 115.88299 z̄2 + 206.89141 z̄3 + 237.16727 z̄4

+253.85312 z̄5 + 264.50690 z̄6 + 271.88762 z̄7 + 277.47724 z̄8

+282.11036 z̄9 + 286.26594 z̄10 + 290.22209 z̄11 + 294.14093 z̄12

+298.11608 z̄13 + 302.20004 z̄14 + 306.42029 z̄15 + 310.78904 z̄16

+315.30914 z̄17 + 319.97778 z̄18 + 324.78884 z̄19 + 329.73434 z̄20

+334.80540 z̄21 + 339.99280 z̄22 + 345.28737 z̄23 + 350.68023 z̄24
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+356.16287 z̄25 + 361.72729 z̄26 + 367.36598 z̄27 + 373.07194 z̄28

+378.83869 z̄29 + 384.66021 z̄30 (8.31)

η
(3,1),reg
qq = −13.561787 z̄ − 100.44381 z̄2 − 197.02897 z̄3 − 201.49505 z̄4

−196.70233 z̄5 − 189.72948 z̄6 − 181.90181 z̄7 − 174.01305 z̄8

−166.44104 z̄9 − 159.32993 z̄10 − 152.70888 z̄11 − 146.55489 z̄12

−140.82408 z̄13 − 135.46673 z̄14 − 130.43420 z̄15 − 125.68188 z̄16

−121.17016 z̄17 − 116.86451 z̄18 − 112.73513 z̄19 − 108.75638 z̄20

−104.90636 z̄21 − 101.16628 z̄22 − 97.520078 z̄23 − 93.954009 z̄24

−90.456274 z̄25 − 87.016749 z̄26 − 83.626728 z̄27 − 80.278716 z̄28

−76.966251 z̄29 − 73.683754 z̄30 (8.32)

η
(3,0),reg
qq = −76.669104 z̄ + 1.7118927 z̄2 + 37.712253 z̄3 + 25.200784 z̄4

+23.595317 z̄5 + 27.540180 z̄6 + 34.067987 z̄7 + 42.055171 z̄8

+50.899550 z̄9 + 60.227379 z̄10 + 69.795043 z̄11 + 79.441097 z̄12

+89.058095 z̄13 + 98.574786 z̄14 + 107.94449 z̄15 + 117.13733 z̄16

+126.13506 z̄17 + 134.92745 z̄18 + 143.50985 z̄19 + 151.88147 z̄20

+160.04416 z̄21 + 168.00161 z̄22 + 175.75867 z̄23 + 183.32099 z̄24

+190.69468 z̄25 + 197.88608 z̄26 + 204.90165 z̄27 + 211.74780 z̄28

+218.43084 z̄29 + 224.95696 z̄30 (8.33)

η
(3,2),reg
qq′ = 52.489897 z̄ + 115.95707 z̄2 + 207.09717 z̄3 + 237.47076 z̄4

+254.23192 z̄5 + 264.94538 z̄6 + 272.37440 z̄7 + 278.00388 z̄8

+282.67045 z̄9 + 286.85449 z̄10 + 290.83519 z̄11 + 294.77542 z̄12

+298.76938 z̄13 + 302.87003 z̄14 + 307.10519 z̄15 + 311.48736 z̄16

+316.01959 z̄17 + 320.69926 z̄18 + 325.52041 z̄19 + 330.47516 z̄20

+335.55474 z̄21 + 340.75002 z̄22 + 346.05189 z̄23 + 351.45154 z̄24

+356.94052 z̄25 + 362.51087 z̄26 + 368.15511 z̄27 + 373.86629 z̄28

+379.63795 z̄29 + 385.46411 z̄30 (8.34)

η
(3,1),reg
qq′ = −13.561787 z̄ − 101.23393 z̄2 − 199.27314 z̄3 − 204.58988 z̄4

−200.32378 z̄5 − 193.67683 z̄6 − 186.04539 z̄7 − 178.26735 z̄8

−170.74845 z̄9 − 163.65084 z̄10 − 157.01563 z̄11 − 150.82793 z̄12

−145.04949 z̄13 − 139.63457 z̄14 − 134.53740 z̄15 − 129.71545 z̄16

−125.13066 z̄17 − 120.74964 z̄18 − 116.54344 z̄19 − 112.48710 z̄20
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−108.55918 z̄21 − 104.74128 z̄22 − 101.01763 z̄23 − 97.374684 z̄24

−93.800809 z̄25 − 90.286003 z̄26 − 86.821649 z̄27 − 83.400317 z̄28

−80.015589 z̄29 − 76.661913 z̄30 (8.35)

η
(3,0),reg
qq′ = −38.124370 z̄ + 21.925696 z̄2 + 62.593745 z̄3 + 62.740689 z̄4

+68.779415 z̄5 + 77.692571 z̄6 + 87.639674 z̄7 + 98.079383 z̄8

+108.73738 z̄9 + 119.43753 z̄10 + 130.06186 z̄11 + 140.53231 z̄12

+150.79875 z̄13 + 160.83049 z̄14 + 170.61028 z̄15 + 180.13007 z̄16

+189.38806 z̄17 + 198.38664 z̄18 + 207.13098 z̄19 + 215.62804 z̄20

+223.88584 z̄21 + 231.91300 z̄22 + 239.71843 z̄23 + 247.31108 z̄24

+254.69977 z̄25 + 261.89310 z̄26 + 268.89942 z̄27 + 275.72674 z̄28

+282.38271 z̄29 + 288.87465 z̄30 (8.36)
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Conclusion

Let us summarize the achievements of this thesis. In chapter 2 we have re-
viewed some of the progress of recent years in the study of multiple polylog-
arithms. Starting from the well known shu�e algebra, we have described the
recent advances in the algebraic description of the multiple polylogarithms
using Hopf algebras. Building upon this technology we have described several
very powerful algorithms which were instrumental in the calculation of the in-
tegrals contributing to Higgs production at N3LO. The methods for finding
a canonical form and for building a basis for a given symbol alphabet are of
prime importance for the treatment of the multiple polylogarithms allowing
us to exploit the plethora of algebraic relations that exist between these func-
tions. Finally, we described an algorithm for the iterative integration of certain
parametric integrals in terms of multiple polylogarithms which has been a key
ingredient in the computation in some of the most di�cult integrals that were
required.

In chapter 3 we briefly reviewed the methods that were used to decompose
cross sections into a basis of integrals. We described the method of reverse
unitary which enables the uniform treatment of loop as well as phase space
integrals. Using integration-by-parts reductions, identities between di�erent
integrals can be exploited in order to express all integrals appearing in a cross
section through a small set of master integrals. These master integrals can
be calculated using the method of di�erential equations. This immediately
connects to the multiple polylogarithms which are the natural functions to de-
scribe the master integrals appearing in the Higgs cross section. The solutions
of master integrals obtained from di�erential equations need to be specialized
by boundary conditions.

The determination of these boundary conditions has been one of the main
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themes of this dissertation. We discuss several technologies that we employed
to calculate all boundary conditions required for the Higgs cross section at
N3LO in chapter 4. We describe several ways of obtaining parametrizations
for loop and phase space integrals and describe how we employ Mellin-Barnes
techniques to extract the required boundary information from them.

This concluded the first part of our dissertation. In the second part we
discussed the computation of several components of the Higgs cross section
at N3LO, which relied on the techniques that were discussed in the first part.
In chapter 5 we described the contributions to Higgs production at N3LO
due to the emission of three real partons in addition to the Higgs boson. We
explicitly showed the computation of the boundary conditions required for
these contributions.

In chapter 6 we discussed contributions arising from the square of the one
loop corrections to the emission of a single parton. Here we showed several
methods for calculating the master integrals, exploring the method of di�eren-
tial equations in more detail.

In chapter 7 we calculated the genuine two-loop corrections to the emission
of a single parton in addition to the Higgs. Here we demonstrated the inter-
play between solving the di�erential equations and determining the boundary
conditions.

In chapter 8 we combined the di�erent contribution to obtain the finite
inclusive Higgs production cross section at N3LO. We showed phenomenolog-
ical studies of the scale dependence of the cross section and determined the
uncertainty of the new prediction for the Higgs cross section. We also briefly
described the method of threshold resummation and used it to resum the po-
tentially large threshold logarithms that appear in the Higgs cross section. By
studying the scale depedence of the resummed cross section we showed the
stability of the perturbative expansion of the cross section and determined that
the fixed order results at N3LO provide a reliable prediction.

The calculation that was presented in this dissertation presents a major
breakthrough in perturbative calculations. With the beginning of Run II of
the LHC the measurements of properties of the Higgs boson are expected to
improve rapidly, reducing the statistical uncertainty of the measurements to
levels lower than the uncertainties due to NNLO predictions. The calculation
of the inclusive Higgs cross section was therefore a long term goal of the parti-
cle physics community. With the completion of our calculation the uncertainty
of the Higgs production cross section in gluon fusion is reduced to less than
3% rendering it competitive with future measurements.

The methods developed to compute the Higgs cross section can easily be
applied to compute similar processes, like Drell-Yan, at N3LO. Furthermore,
an obvious way to extend our methods would be to allow for more exclusive
observables in order to determine for example the rapidity distribution for
Higgs production at N3LO.
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