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Abstract

In his splendid article “Can a biologist fix a radio? — or,
what I learned while studying apoptosis,” Y. Lazebnik
argues that when one uses the right tools, similarity
between a biological system, like a signal transduction
pathway, and an engineered system, like a radio, may
not seem so superficial. Here I advance this idea by
focusing on the notion of robustness as a unifying lens
through which to view complexity in biological and
engineered systems. I show that electronic amplifiers
and gene expression circuits share remarkable
similarities in their dynamics and robustness properties.
I explore robustness features and limitations in biology
and engineering and highlight the role of negative
feedback in shaping both.

In broad terms, robustness of a system refers to its ability
to withstand adverse conditions. But a deeper understand-
ing of this notion requires a more nuanced definition.
When is a system considered robust? How is robustness
assessed?What system features or qualities lead to robust-
ness? I shall attempt to provide answers to these questions
by drawing comparisons between robustness in engineer-
ing and biology. In the process, I hope to demonstrate
that, in line with Lazebnik’s suggestion [1], the similarities
between a biological system and an engineered one are
indeed not so superficial.
In engineering, as in biology, system robustness is of

paramount importance. The presence of model uncer-
tainty, coupled with system perturbations and environ-
mental disturbances, means that an engineered system
that lacks robustness has little chance in delivering reli-
able functionality. Hence, robustness is often an explicit
design requirement — one that is essential for a success-
ful engineering design. Biological robustness, like that in
engineering, is required for achieving biological function
under different conditions and in uncertain environments.
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It is a property that has been observed across many bio-
logical scales. Research is beginning to address robustness
in biology explicitly (see, e.g., [2–5]). Unlike in engineer-
ing, however, a theory for biological robustness remains
largely lacking. Such a theory can be expected to shed
light on endogenous biological systems, explaining their
resistance to certain disturbances and uncovering their
vulnerability to others. It also promises to guide the design
of novel circuits in synthetic biology by showing how
desired phenotypes can reliably emerge from certain cir-
cuit topologies using uncertain components.

Robust or fragile? A tale of two circuits
What exactly is to be understood by the term robustness in
the context of a given system?A definition that is narrower
in scope than the one given earlier is more useful. Indeed
a more functional interpretation must include explicitly
or implicitly the particular system property or phenotype
whose robustness is being investigated, together with the
specific adverse conditions or disturbances that it must
withstand. In this sense, robustness is not so much an
attribute of an entire system, as it is a property of some of
its facets. It is instructive to explore this and other robust-
ness issues using concrete examples, and so I shall inves-
tigate the robustness of two systems from very different
disciplines: electrical engineering and biology.
In the early history of electronic technology, at no time

was the need to achieve robustness more urgent than
in the 1920s. At that time, transcontinental telephony
required electronic amplifiers with high gain (amount
of amplification) to boost telephone signals sufficiently
for transmission over long distances. The use of vacuum
tubes in the design provided the necessary high gain, but
there was a problem. The vacuum tubes had uncertain and
variable characteristics that introduced distortions and
prevented the reliable prediction of the gain of the ampli-
fier, which needed constant calibration. Harold Black, a
Bell Labs engineer who worked on the problem, described
it thus: “every hour on the hour — for 24 hours — some-
body had to adjust the filament current to its correct
value. In doing this, they were permitting plus or minus
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1/2-to-1 decibel variation in amplifier gain, whereas for
my purpose the gain had to be absolutely perfect.” In other
words, the amplifier gain was not robust to the inevitable
variations of the vacuum tube amplifier parameters. The
problem resisted many attempts at its solution until 1927,
when in a stroke of great insight, Black found a brilliant
and simple solution. He realized that if he fed back a
portion of the output of the amplifier into its input in a
negative phase, the gain of the amplifier and its output
should be reliably stabilized. Prototypes indeed demon-
strated dramatic robustness of the amplifier output, noise
attenuation, and far better overall performance. At the
time, Black’s idea ran counter to accepted theory, and it
took a full nine years for the patent office to award him
a patent for his invention. Thus, the negative feedback
amplifier was born — an invention that is considered by
some to be the most important breakthrough of the 20th
century in electronics.
Meanwhile, several billion years earlier, nature’s evo-

lutionary explorations led to the discovery of negative
feedback as a central strategy for regulating the internal
cellular environment. The prevalence of negative feed-
back at every level of biological organization is a testament
to this strategy’s effectiveness in achieving robust regula-
tion of cellular processes and in successfully counteracting
disturbances that act to push the system into disequilib-
rium. While biological systems and engineered ones may
seem to be worlds apart due to their vastly different sub-
strates, time-scales, and mechanistic implementation, I
will show that they in fact have much in common. To
make this point, I shall look more closely at two systems:
the negative feedback amplifier and the autoregulatory
gene expression circuit. Not only do they exhibit simi-
lar robustness and fragility properties, but the dynamic
equations that describe them are nearly the same. I start
by examining the robustness properties of the amplifier
which will then help us understand those of the gene
expression circuit. Prior knowledge of electronics is not
required; readers unfamiliar with circuits can simply think
of an amplifier as a dynamical system whose input-ouput
behavior depends on a set of parameters.

Robustness analysis of a feedback amplifier
An amplifier is an electronic device that receives as its
input an electric signal (typically voltage), and delivers as
its output an electric signal that is ideally a scaled replica
of the input signal. This scaling is called the gain of the
amplifier. If the gain is larger than one, the input will
be amplified, which gives the device its name. Ampli-
fiers are ubiquitous and can be found in our cell phones,
computers, TV sets, radios, cameras, etc.
Let me start, as Black did, with a high gain amplifier

which does not employ negative feedback. I will denote
its input voltage as v and its output voltage as y. During

Black’s time, building such an amplifier required cumber-
some vacuum tubes, but today such a device can be made
with modern transistors. An electric circuit implement-
ing one such amplifier is shown inside the rectangular box
in Fig. 1a. One need not be concerned with the details
of the internal circuitry (most users of the amplifier don’t
know them anyway; they don’t need to!). Instead, I will
focus on the relation between the input v and output y,
which is particularly simple. Indeed, for slow time-scales
the relation is a direct scaling of the input: y = Av, where
A is the gain of amplifier. For faster time scales, a better
model consists of a single first-order differential equation
that more accurately captures the dynamics (see dynamic
model in Fig. 1a). This equation is characterised by two
parameters: c, the reciprocal of the time constant, which
measures the amplifier’s speed of response, and a, which
when divided by c gives the gain of amplifier, A.
The amplifier just described will suffer frommany of the

problems that faced Black in the 1920s, that is, high vari-
ability of the gain A. By adopting Black’s idea of including
a version of the output in the input signal, one ends up
with a negative feedback amplifier. This is straightforward
to do: simply arrange that v = u − βy, where β is a con-
stant parameter and u is a voltage signal that serves as
the input to the feedback amplifier. This scenario is shown
in the diagram shown Fig. 1a where the two resistors, R1
and R2, connecting the output to the input act to enforce
v = u − βy. This is all that is needed to proceed with the
robustness analysis of the negative feedback amplifier.
With negative feedback in place there are four model

parameters, a and c for the amplifier (as explained above)
and R1, R2 for the two resistors, i.e., θ = (a, c,R1,R2),
which are all positive. For simplicity, I shall take the input
u to be constant (one) over time, and for a performance
measure, I shall focus exclusively on the steady-state value
of the output, y∗. Clearly, y∗ depends on the parameters θ ,
so I can write y∗ = f (θ) for some function f (·). With a per-
formance measure at hand, one can ask when the system
described by the above function may be considered to be
‘robust’. One possible answer is to equate system robust-
ness with the ability of the output to withstand variations
in all the model parameters. For example, onemay want to
insist that the property of interest, y∗ = f (θ), is insensitive
to variations in the four model parameters θ1, . . . , θ4 men-
tioned above. At this point, a quantitative measure of the
sensitivity of f (θ) to each parameter θi is needed. I will use
the following measure: the ratio of the relative change in
the output f (θ) to the relative change in the parameter θi
that caused it. I will refer to this (dimensionless) quantity
as the relative sensitivity of the output to θi, and I denote
it by Sθi(θ). Mathematically,

Sθi(θ) = ∂f (θ)

∂θi
· θ i
f (θ)

.
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Fig. 1. Robustness of two electronic operational amplifiers (with and without negative feedback). a A common model of a negative feedback
amplifier with typical parameters. y is the output to input u(t), which I take to be unity. Shown also is the unregulated amplifier (circuit inside the
rectangle) with input v and output y. This high gain amplifier is manufactured as an integrated transistor circuit. a and c are internal parameters such
that c−1 is the time constant and A = a/c is the amplifier gain. Negative feedback is introduced by adding the two resistors R1 and R2 in the
configuration shown. The circuit is quite complex, but the simple first order model shown is a good representation of its behavior under typical
operating conditions. The feedback resistors R1 and R2 are supplied by the user and are selected to tune the gain. b The robustness/fragility
properties of the two amplifier circuits. For proper comparison, the input to the unregulated amplifier, v(t) ≡ v, is chosen so that the corresponding
output y∗ matches that of the negative feedback amplifier. For the feedback amplifier, y∗ is extremely robust to variations in the parameters a and c,
in contrast to the unregulated amplifier. At the same time, y∗ is quite sensitive to the values of the two resistors, underscoring its robust yet fragile
character. c Graphical explanation of the difference in robustness properties of the two amplifiers. For both amplifiers, the abscissa of the point of
intersection of the black line and the blue line gives y∗ . In the case of the feedback amplifier, the slope of the blue line is −Aβ . As Aβ >> 1, one can
see that y∗ will be almost independent of A. Indeed, y∗ depends almost exclusively on the ratio R2/R1, resulting in extreme robustness to A = a/c

While this expression of relative sensitivity evaluates the
effect of small relative parameter changes, one could also
evaluate the effect of larger parameter changes (such as
a 100% change or larger from the nominal value). This
doesn’t alter any of the conclusions, however, so I will just
use the above sensitivity expression.
Assigning typical values to the parameters θ (Fig. 1a), I

can proceed with examining the relative sensitivity of y∗

to these four model parameters. Computing the relative
sensitivity to parameter a in our example, one finds that
Sa(θ) ≈ 0. Similarly, for the parameter c, Sc(θ) is neg-
ligibly small. However, when one computes the relative
sensitivities with respect to the remaining two parame-
ters, one finds that SR1(θ) ≈ −0.91 and SR2(θ) ≈ 0.91. In
other words, a relative change in R1 or R2 results in a rel-
ative change in y∗ of almost the same magnitude (Fig. 1b).
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Sensitivity analysis thus informs us that while the vari-
able of interest is insensitive to two of the parameters, it is
quite sensitive to the remaining two. A similar conclusion
can be reached were I to assess sensitivity to much larger
changes in these parameters. Given this sensitivity, could
one consider y∗ as a robust output of the system? More
specifically, if these were the sensitivity properties of a sys-
tem designed to keep y∗ constant, would one assess the
performance of the system to be acceptable? As it turns
out, the above circuit is that of a model 741 electronic
operational amplifier [6] with typical parameter values
(Fig. 1a). It is quite likely the most versatile electronic
building block ever created! Every major integrated circuit
manufacturer offers a version of it, and it can be found in a
very large number of functioning electronic circuits. The
success of this circuit is precisely due to the robustness of
the output y to variations in parameters a and c, and one
would be ill-advised to characterize the performance of
the system as ‘non-robust’, even if the output is sensitively
dependent on the parameters R1 and R2.
To get a deeper understanding of the issue, I will go

back to the parameters of the model. The parameter a is
directly related to the ‘open-loop gain’ of the amplifier,
i.e., the ratio of the output to the input before any nega-
tive feedback is introduced. Such gain varies considerably,
and could fluctuate up to several orders of magnitude. The
introduction of negative feedback regulation introduces
a dramatic improvement. This regulation is achieved by
the two resistors R1 and R2. With these resistors in place,
the amplifier gain (equal to y∗ here) is virtually insensitive
to variations in a or c. Indeed, it can be shown (Fig. 1c)
that y∗ ≈ 1 + R2/R1, and is hence effectively indepen-
dent of a and c. Instead, the gain is now heavily dependent
on the values of the two resistors. It would appear that at
the same time the feedback brought about robustness to
parameters a and c, it introduced new fragilities, as can
be seen in the strong dependence on the parameters R1
and R2. This is not a problem, however, as it is much eas-
ier to make precision resistors than precision unregulated
high-gain amplifiers. Once the resistor values are selected,
their values will remain virtually unchanged throughout
their operation. In this way, the overall system is robust
to variations in parameters that are expected to vary (e.g.,
a), but sensitive to parameters that can be expected to
remain unchanged. This remarkably versatile system is
thus both robust and fragile. It is robust to certain param-
eters but fragile in its strong dependence on others. Nor
would one want the system to be robust to all parameters,
as this would result in an amplifier whose gain cannot be
tuned. The choice of resistors offers a simple and effective
way to set the gain of the amplifier, a feature that can-
not be realized had the output y∗ been insensitive to all
the parameters. Such tradeoffs between robustness and
fragility are common to virtually all complex engineered

systems. Before I explain how negative feedback achieves
this impressive feat, I will first bring in our biological
example and compare it to the amplifier.

Gene expression circuit
Here I explore the robustness properties of a simple gene
expression circuit with autoregulation achieved through
negative feedback. Negative autoregulation has been
established as a network motif — one that appears, for
instance, in the Escherichia coli transcriptional network
far more frequently than would be expected in a random
network [7]. Remarkably, the dynamics of an autoregu-
lated gene expression circuit are very similar to those
of the operational amplifier I discussed in the previous
section, and many of the issues pertaining to robustness
apply in a similar manner here as well. Figure 2a shows
a simple circuit for gene expression and a corresponding
dynamic model, describing the evolution of the expressed
protein p. When the rate of gene expression, v, is inde-
pendent of the protein level, this model corresponds to
constitutive gene expression. On the other hand, when
v(t) is dependent on p through a repression Hill function
as shown in Fig. 2a, then the expression circuit is subject
to negative feedback. It is interesting to note that if one
were to linearize the nonlinear feedback term v(t) at the
steady state value p∗, the dynamic equations for the gene
expression circuit will be identical to those describing the
operational amplifier. In fact, as can be seen in Fig. 2c,
approximating the blue Hill function with a line near the
intersection point will make the gene expression model
identical to the amplifier model.
I shall now explore the sensitivity of the steady-state

protein level, p∗, with respect to model parameters, both
for the constitutive expression model and the model with
negative feedback. In the constitutive expression case, the
parameters are simply the expression rate a and the degra-
dation rate c. In the feedback case, there are two additional
parameters n and b that define the feedback repression
Hill function (Fig. 2a). Specifically, n is the Hill coefficient,
which determines the steepness of the Hill function, and b
combines the association constant of protein P to form the
Pn complex with the association constant of the resulting
complex to DNA. One can get analytical expressions for
the relative sensitivities of p∗ with respect to these param-
eters, and use them to study the robustness of the gene
circuit. As can be seen in Fig. 2b, the constitutive expres-
sion model (no feedback) is quite sensitive to both a and
c. For the typical nominal parameters θ shown in Fig. 2,
the relative sensitivities to a and c are 1 and -1 respec-
tively. In contrast, in the case of negative feedback, the
relative sensitivity of p∗ to these two parameters is much
smaller, namely Sa(θ) ≈ 0.22 and Sc(θ) ≈ − 0.22. Sim-
ilarly, p∗ shows small sensitivity to b, as can be seen from
Sb(θ) ≈ −0.2. At the same time, p∗ can be considerably
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Fig. 2. Robustness properties of two gene expression circuits (auto-regulated with negative feedback versus constitutively expressed without
feedback). a The model of the auto-regulated gene expression circuit. Negative feedback is achieved by a Hill-type function resulting from the
multimerization of the protein P into an n-mer Pn , which in turn binds to the active gene G and represses it. Constitutive expression is modeled by
an expression rate av that is independent of p. b The relative sensitivities of p∗ , the steady-state concentration of the protein, to the model
parameters in both circuits. The auto-regulated circuit is robust to parameters a and c, in contrast to the constitutively expressed circuit, which is
sensitive to both parameters. The auto-regulated gene circuit is, however, sensitive to parameter n. c A graphical explanation of the differences in
robustness between both circuits. The intersection of the line and the graph of h(·) in the left figure (auto-regulated circuit) gives p∗ . Robustness in
this circuit is achieved through high-gain and feedback, just as it is in the amplifier circuit. The higher the gain n the more robust the value of p∗ will
be to variations in the parameters a, c, and b. Indeed it can be shown that Sa(θ) ≈ 1

n+1 , Sc(θ) ≈ −1
n+1 , Sb(θ) ≈ −1

n+1 , and Sn(θ) ≈ −n log p∗
n+1 . In

contrast, the constitutively expressed gene circuit lacks robustness to parameters a and c, even though it shares the same protein level p∗ as the
auto-regulated circuit. See also [20] for a general discussion of sensitivity of biochemical reactions and the effect of feedback

sensitive to n. Indeed, it can be shown that Sn(θ) ≈ 2.
A similar sensitivity dichotomy can also be seen in a
stochastic model of this gene expression circuit.
How could one make sense of such robustness/fragility?

We can begin to see the analogy with the negative feed-
back amplifier. Feedback of protein concentrations has
ensured that the protein concentration output of the
gene expression circuit will be relatively insensitive to
the changing transcription and translation parameters.
These parameters depend on many factors such as RNA
polymerase levels, ribosome levels, etc., which in turn

may depend on what other genes are active. These lev-
els are also expected to be quite different from cell-to-cell.
The robustness in these parameters comes at the cost
of a new fragility manifested in the sensitive dependence
of p∗ on n. However, this tradeoff appears well worth
making, as n depends on the multimerization reaction
of the protein P and is therefore not expected to vary
much over time or among cells experiencing the same
environment.
I should also point out that the robustness exhib-

ited by both engineering and biological circuits is not
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restricted to variations in the parameters, but also applies
to disturbances or stresses in the environment. Any extra-
neous voltage (or a load) at the output of the amplifier
will be rejected, and the performance of the circuit will
be unchanged. Similarly, an extra source of protein or a
sink (e.g., loading due to nonspecific protein binding) will
result in little change in the protein concentration, as the
circuit acts to correct for such disturbances, particularly
for high gain. The main message here is that both the
operational amplifier circuit from electrical engineering
and the gene expression circuit from biology share some
key features, in spite of their vastly different substrates
and time-scales. The output of interest in both circuits is
robust to parameters that are expected to vary during the
system’s operation, and sensitive to ones that experience
little change. These features are characteristic of highly
engineered (evolved) systems.

Negative feedback: a robustness strategy with
tradeoffs
Negative feedback is a key strategy for achieving robust-
ness. For this reason, it has been studied extensively in
the field of control engineering where the area of robust
control has thrived since the late 70s. The effectiveness of
this strategy can be seen in both the engineering and bio-
logical circuits considered thus far. Indeed, one can study
the robustness of an unregulated operational amplifier
(R1 = 0, R2 = ∞) or a constitutively expressed gene
where negative feedback is absent. In each of these cases,
even when the variable of interest is chosen to be identi-
cal to that observed when feedback is used, this variable
will be vulnerable to variations in system parameters.
Such parameters include the open-loop gain of the ampli-
fier A or the transcription/translation rates for the gene
expression circuit. In both instances, the robustness was
brought about by the introduction of feedback. By trad-
ing off some gain, robustness to varying parameters is
attained.

How negative feedback brings about robustness
One can develop a clear understanding of how nega-
tive feedback brings about robustness by looking at the
negative feedback amplifier in Fig. 1. For this circuit,
one can compute the variable of interest explicitly. In
particular, using the simple feedback amplifier model in
Fig. 1a:

y∗ = A
1 + Aβ

≈ 1
β
,

where the last approximation is due to the high gain
of the amplifier (Aβ is typically much larger than one).
This shows clearly how negative feedback resulted in y∗
that is virtually independent of A = a/c and hence
robust to variations in both a and c. Compare this to the

unregulated open-loop amplifier (no feedback resistors,
β = 0) where:

y∗ = Av.

Even when v is selected so that y∗ is the same for both
amplifier configurations, the output y∗ (of the open-loop
amplifier) will be far less robust to variations in A, and
hence to variations in a and c. For robust operation, A
must be very finely tuned. This is much more difficult to
achieve in an amplifier than with resistors. Therefore, the
feedback amplifier provides far superior robustness prop-
erties than the unregulated open-loop amplifier. In a very
similar way, the regulated gene expression circuit offers
better robustness properties than the constitutive gene
circuit, especially when it comes to maintaining a steady
value of p∗. Intriguingly, gene expressionmay be viewed as
an amplifier that yields a large number of copies of a pro-
tein from a single copy of DNA. Autoregulation exchanges
some of this high gain to achieve robustness to parame-
ter variations. These parameters include transcription and
translation rates and degradation rates. As in the electric
amplifier, the autoregulated circuit is not without fragility.
Indeed, as Fig. 2 shows, p∗ will be sensitive to variations
in the Hill coefficient, n. However, n is not expected to
change over the lifetime of the cell.
In both the amplifier and the gene expression circuit,

the effect of high gain was considered only as far as it
affects the steady-state performance of the two systems,
both of which exhibited a constant equilibrium at steady-
state. However, as we will see in what follows, the same
idea applies in other regimes where external signals (e.g.,
disturbances) are time-varying and the system dynam-
ics never reach a constant steady-state value. To see this,
it is useful to understand how feedback attenuates dis-
turbances. In feedback systems, the impact an external
disturbance will have on an output of interest is often cap-
tured by the quantity |S| = |(1 + L)−1|, where L is the
so called ‘loop-gain’, i.e., the amplification a signal experi-
ences after going once around the feedback loop. For the
autoregulatory gene expression circuit, for example, L is
the gain of the circuit if it were to be driven by an orthog-
onal transcription factor acting on a promotor of the same
strength, but one which does not respond to the protein
product. For the amplifier, L = Aβ .
With no feedback, L is zero, and the disturbance will not

be attenuated; with high gain feedback, L is large, and the
disturbance will be attenuated (small |S|). In practice Lwill
not be the same for all signals. In particular, slowly vary-
ing signals will experience a different amplification going
through the feedback loop than fast varying ones. The way
one can study how a system responds to fast and slow sig-
nals is by evaluating its response to sinusoidal signals of
different frequencies (number of cycles per second). This
is because a slowly varying disturbance signal is made up
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of sinusoidal signals of low frequencies, while fast signals
will also contain high frequency sinusoids. This makes L a
frequency-dependent function, and for good disturbance
rejection, it is only necessary that L be large at the frequen-
cies of the disturbance. So if the system is to be immune
to slowly varying disturbances, L needs to be large at low
frequencies.
Based on the above discussion, achieving good attenua-

tion of constant disturbances requires only that L be large
at frequency zero (i.e., for constant signals). This is fortu-
nate since achieving high gain at large frequencies is both
difficult and fraught with other side effects. Intriguingly,
achieving high gain at the zero frequency is not only pos-
sible, but it can be achieved perfectly, i.e., infinite gain
is possible. This leads to perfect adaptation to constant
disturbances. But what feedback dynamics can possibly
offer infinite gain at zero frequency? The answer is inte-
gral feedback. This means that the signal that is fed back
is first passed through an integrator, which integrates the
signal with respect to time, thereby incorporating a mea-
sure of its past history into the feedback. Accordingly, the
output of an integrator when the input (the integrand) is
cos(ωt) is given by ω−1 sin(ωt), where ω is the frequency.
This shows that the gain of the integrator is ω−1, which is
indeed infinite at zero frequency. For this reason, integral
feedback is a strategy that is very common in engineering
and, as is becoming increasingly appreciated, also in biol-
ogy. One well-studied example in biology where integral
feedback has been implicated in robust perfect adaptation
is bacterial chemotaxis [8, 9], in which the tumbling rate of
a bacterium perfectly adapts to a change in nutrient con-
centration. This strategy allows bacteria to respond to a
change in concentration of the nutrient regardless of the
absolute concentration level. Other examples are calcium
homeostasis [10] and yeast stress response [11].

Robustness to environmental disturbances
I have argued that one way to maintain good perfor-
mance in systems where some parameters are difficult
to keep constant is to use negative feedback to trade off
high gain with robustness to these parameters. Such a
strategy can also be applied to achieve adaptation to time-
varying environmental disturbances, whereby high gain
at certain frequencies can be translated to rejection of
disturbances at these frequencies. This could be demon-
strated by introducing an external disturbance for our
gene expression circuit — for example, another source for
protein production (or degradation) — and then, depend-
ing on the disturbance frequency (e.g., if it is slowly or
rapidly varying), showing that adaptation to this distur-
bance is achieved by the negative feedback circuit. Instead,
however, I will look at another system: renewal control in
stem cells [12]. Figure 3 shows the renewal control of a
stem cell (type 1). The stem cell’s progeny can either be

a stem cell (regeneration) or it could differentiate into a
terminal, post-mitotic (type 2) cell. Feedback acts upon
the stem cell to affect its probability of regeneration. A
very simple model for this system can be written as:

ẋ1 = (2pr(x2) − 1)vx1
ẋ2 = 2pd(x2)vx1 − dx2,

(1)

where x1 and x2 denote the concentration of stem cells
and terminal cells, respectively, v is the cell-division rate,
pd is the probability that a daughter cell differentiates
in a given division, pr is the probability that a daughter
remains a stem cell after division, and d is the probability
that the terminal cell dies in a unit time. Negative feed-
back achieves renewal control due to the fact that pr and
pd depend on x2 in such a way that pr(x2)+pd(x2) = 1. For
constant values of pr and pd (i.e., no feedback regulation),
the trajectory of x1 blows up for pr > 0.5 and tends to
zero for pr < 0.5, indicating that a robust nonzero steady
state requires negative feedback. Not only does negative
feedback bring about a stable nonzero steady-state value
for x1 and x2, but it also achieves some robustness, as the
concentration of terminal cells at steady state becomes
dependent only on the relationship between x2 and pr (the
feedback term), and not on other system parameters [13].
This is reminiscent of both the feedback amplifier and the
gene expression circuit.
To understand the response to dynamic external per-

turbations, it is necessary to specify a form for the
feedback function pr(·). Following [12] I take pr(x2) =
1/

( 3
2 + 1

2
( x2
a

)n). Here n reflects the strength of the feed-
back (feedback gain) and a is the value of x2 at which
a balance of regeneration and differentiation is achieved.
I can now evaluate how fluctuations of d, the rate of
loss of terminally differentiated stem cell progeny, affect
the terminal cell population x2. Such fluctuations occur
because of injury, disease, or patterns of organ use [12].
A change in d that keeps it constant over time will have
no effect on the steady-state population of the terminal
cells. Moreover, the effect of slow fluctuations in d on
the terminal cells population will be attenuated, and the
higher the gain, n, the larger the attenuation. However,
this robustness comes at a cost: the effect of fast changing
fluctuations in d will not be attenuated, and may in fact
be amplified. This is the fragility introduced by the same
feedback that achieves robustness to slowly varying d.
The tradeoffs can be better appreciated by examining

the effect of sinusoidal fluctuations in d on the size of
the corresponding fluctuations in x2. This is captured in
Fig. 3b. The horizontal axis measures the frequency ω

of the sinusoidal fluctuations in d, while the vertical axis
shows |S(ω)|, a quantity that is related to the effect of
these fluctuations on the terminal cell concentration, x2.
Note that lower frequency (slow) fluctuations are well
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Fig. 3. Renewal control. a A stem cell (type 1) can either regenerate or differentiate into a terminal post-mitotic cell (type 2). Negative feedback acts
to affect the probability of regeneration. b The effect of sinusoidal variation in d (the disturbance) on |S|, the so-called ‘sensitivity function’, as a
function of disturbance frequency. |S| is in turn related to the size of the corresponding fluctuation of the population of terminal cells (type 2). n
reflects the strength of feedback, with stronger feedback resulting in better disturbance rejection (better robustness) at lower frequencies, at the
price of amplifying the effect of disturbances at mid-frequencies (fragility)

attenuated, unlike those at higher frequencies. At mid-
frequencies, the fluctuations are actually amplified. The
stronger the feedback (higher n), the better the attenu-
ation of lower frequency sinusoidal fluctuations, but the
higher the amplification of mid-frequency fluctuations in
d. This shows a robustness/fragility tradeoff that cannot
be overcome with higher gain feedback. This also demon-
strates a ‘conservation of robustness’. Themore robustness
is achieved at lower frequencies, the less robustness and
more fragility is available at other frequencies. This con-
servation law has been studied extensively in the control
literature [14, 15], and is characterized by a class of Bode
sensitivity integral formulae of the form

∫ ∞
0 log |S(ω)| ·

f (ω)dω = constant, where the constant and f (·) are
independent of n. In our particular example, it can be
encapsulated as follows: no matter the feedback gain n,
the area below the gray line |S| = 1 is approximately
equal to that above it (Fig. 3b). In other words, whenever
robustness is realized (area below gray line), fragility is
created elsewhere (area above gray line). Of course, as in
the previous examples, a good system design ensures that
the necessary fragility is arranged such that its effect is
only seen when unexpected or unnatural disturbances are
encountered, while robustness is achieved exactly when
natural or common disturbances are encountered.
The frequency-dependent fragility that I just described

appears routinely in man-made systems, but it has also
been observed and reported in models of biological sys-
tems such as glycolysis [16] and cell lineage [12]. A
recent research study [17] explored how yeast cells inter-
pret environmental information that varies over time.
The researchers examined cellular growth under various
frequencies of oscillating osmotic stress and found that
growth was in fact severely inhibited at a particular res-
onance frequency. They wrote “although this feature is
critical for coping with natural challenges — like contin-
ually increasing osmolarity — it results in a tradeoff of
fragility to non-natural oscillatory inputs...”. The authors

aptly refer to this hyper-sensitivity as the Achilles’ heel of
the yeast’s MAPK signaling network.

Effect of topology on robustness-fragility tradeoffs
In the previous example, I showed that different feedback
strengths lead to different tradeoffs of a conserved quan-
tity (available robustness), but did not increase the
amount of that quantity. An intriguing question is whether
one can enhance overall robustness by changing the
topology of the network being regulated. In this case,
robustness may still be conserved for different feedback
strengths, but the total amount that is conserved may
possibly be increased. It turns out that this is indeed
possible, and that some topologies are inherently more
capable of delivering robustness than others. One exam-
ple from engineering demonstrates this point clearly. It is
well known that vehicle steering can be achieved either by
turning the front wheels or the rear wheels of a vehicle.
However, with the exception of slow vehicles like mobile
cranes and forklift trucks, vehicles are almost universally
steered using their front wheels. Why? The main reason
is that vehicles that use rear-wheel steering exhibit what
is called ‘non-minimum phase’ dynamics [18]. Systems
with such dynamics respond to inputs in a non-intuitive
way: they first respond in the opposite direction of the
input before responding back in the expected direction.
The reader would have noticed that when driving a car
in reverse (analogous to rear-wheel steering in forward
driving), turning the steering wheel in one direction leads
the car to initially move slightly in the opposite direc-
tion before moving in the intended direction once its
orientation has changed. A passenger sitting near the cen-
ter of mass will feel an acceleration force that quickly
switches direction after the initiation of a turn. The non-
minimum phase dynamics make the car very difficult
to steer at higher speeds, necessitating very slow move-
ments (low bandwidth control) for stability. In contrast,
when relegating the steering to the front wheels, the
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non-minimumphase dynamics disappear, and robust con-
trol of the vehicle is much easier to achieve. Before I show
biological examples where these very same dynamics limit
robustness, I will give one other engineering example
where topological choices of a different nature place limits
on achievable robustness.
The X-29 experimental airplane shown in Fig. 4 was

designed to have peculiar forward-swept wings and large
canard surfaces for increased maneuvrability and aero-
dynamic efficiency. The designers knew that this con-
figuration made the airplane dynamically unstable with
no control, and that computer feedback regulation would
therefore be essential for its operation. While the X-29
was indeed flyable using negative feedback regulation,
it turned out (quite unexpectedly) that its robustness
margins were too small to meet specifications. In con-
trol theory jargon, the available bandwidth was too small
given the unstable dynamics [19]. The aircraft also exhib-
ited non-minimum phase dynamics which conspired with
the unstable dynamics to place substantial limitations on
the achievable robustness. The problem could not be
overcome with better feedback control systems. Indeed
while engineers could select feedback controllers that
increase robustness where it was needed at the expense
of fragility elsewhere, the total available robustness to be
eked out was limited. The limitations were severe enough
that no acceptable control system was ever found, even
though several design teams from different companies
worked on the problem. The airplane was only allowed
to fly due to special specification relief that was granted
because it was an experimental airplane [19]. In retro-
spect, the choice of topology imposed a fundamental
performance limitation that could not be overcome by
feedback regulation. By choosing a different topology (e.g.,
less severe instability or even a stable airframe with tradi-
tional backward-swept wings), feedback designs that meet

robustness specifications might easily be found. Though
the robustness-fragility tradeoffs would still exist, good
designs are much easier to achieve, and the best designs
are far more robust than those achievable in the forward-
swept aircraft like the X-29. In essence, the improved
topology ensures that there is more overall robustness to
be traded-off.
In biology, the effect of topology on the robustness avail-

ability can be used to assess different candidate models,
and to favor some over others. It was exactly such con-
siderations that led to a re-evaluation of the plausibility
of the renewal control topology in Fig. 3. Indeed compu-
tational analysis of this topology showed poor robustness
properties, including unfavorable disturbance rejection
of periodic disturbances over certain frequency ranges.
Dynamical analysis of this topology revealed the pres-
ence of non-minimum phase dynamics similar to those
exhibited by a rear-wheel steered vehicle or the X-29.
To see this, let us revisit the renewal dynamics modeled
by Eq. 1 and consider the effect of a sudden increase
in the renewal rate pr on the concentration of termi-
nal cells x2. Such an increase in the probability of stem
cell renewal will immediately result in a reduction in the
probability of differentiation of stem cells into terminal
cells, causing x2 to start decreasing. However, the sub-
sequent buildup in stem cell populations will lead to a
gradual increase in the rate of differentiation, reversing
the decreasing trend and leading to an ultimate increase
in x2 — exactly the type of response reminiscent of non-
minimum phase dynamics. As in the rear-wheel steering
vehicle example, the unavoidable implication is that the
topology has structural properties that can be expected to
reduce achievable robustness.
Since such non-minimum phase dynamics are

attributable to the direct coupling between the prob-
abilities of renewal and differentiation, one can alter

Fig. 4. X-29 experimental aircraft. The forward-swept wings configuration of the X-29 makes the design of robust feedback control systems more
difficult compared to more conventional aircraft. (Courtesy of NASA)
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Fig. 5. Fate control. a A stem cell (type 1) can either regenerate, or differentiate into a terminal post-mitotic cell (type 2), or have a third alternative
fate that leads to a new branch. Negative feedback of the population of terminal cells acts on the probability of regeneration and differentiation,
which necessarily leads to a positive feedback on the alternative fate as the three probabilities must sum to 1. b The effect of sinusoidal variation in d
(the disturbance) on |S|, the ‘sensitivity function’, as a function of disturbance frequency. |S| is related to the size of the corresponding fluctuation of
the population of terminal cells. n reflects the strength of feedback. For this fate control model pr(x2) is the same as in the renewal control case,
while pd(x2) is taken to be pr(x2)/2. As in renewal control, stronger feedback results in better disturbance rejection (better robustness) at lower
frequencies, at the price of poor disturbances rejection at mid-frequencies. Unlike renewal control, however, the system has significantly more
capacity for disturbance rejection (more overall robustness), as indicated by the much larger area below the gray line

the topology to rid it of these dynamics, leading to far
superior robustness properties. One such topology, cor-
responding to a so-called fate control strategy, is realized
by simply allowing lineage branching (Fig. 5), whereby
stem cells can differentiate along a third trajectory, such
as producing a different cell type, dying, or simply becom-
ing quiescent. Examples of such branching exist during
development and regeneration in various tissues. See [12]
and the references therein.
In the fate control topology, the dynamics of the system

reflect the fact that descendants of cell type 1, in addition
to regulating the probability of stem cell regeneration and
differentiation, also regulate the probability of production
of a differentiated cell of a new type (Fig. 5). The dynamics
of this new topology is given by:

ẋ1 = (2pr(x2) − 1)vx1
ẋ2 = 2pd(x2)vx1 − dx2
ẋ3 = 2pa(x2)vx1 − d3x3

where pa(x2) is the probability of choosing the new cell
type fate. In this case, pr(x2) + pd(x2) + pa(x2) = 1
holds. This means that negative regulation of pr(x2) need
not imply a positive regulation of pd(x2), as their sum
is no longer restricted to one. Instead simultaneous neg-
ative regulation of pr(x2) and pd(x2) is possible and in
fact has superior robustness properties, as can be seen in
Fig. 5. Indeed, using the same realization of pr(x2) as in
renewal control, the fate control topology is much better
at rejecting disturbances as well as other perturbations.
This is reflected in the fact that the area under the grey
line is considerably smaller than that for the renewal con-
trol in Fig. 3, and has a much smaller resonant peak,

where fragility, and hence disturbance amplification, is at
its maximum.
Another biological example that demonstrates a simi-

lar role of topology in enhancing the overall achievable
robustness can be found in glycolysis [16]. In this autocat-
alyzed process, ATP feedback inhibits phosphofructoki-
nase (PFK) reactions. Pyruvate kinase (PK) reactions are
also known to be inhibited by ATP. Simple models of gly-
colysis that include only the PFK feedback but neglect
the PK feedback can exhibit unstable as well as non-
minimumphase dynamics. Just like in the X-29, this places
severe limitations on the achievable robustness. Regard-
less of the PFK feedback strategy used, the system will
have too much fragility. By simply bringing in PK feed-
back, these unfavorable robustness tradeoffs disappear,
and the resulting topology will have far better dynamic
performance.

Concluding remarks
In advanced engineering systems as well as in biological
systems, robustness is a property of a specific function-
ality or performance measure. When present, it indicates
that the relevant function is relatively immune to certain
perturbations, such as variations of system parameters or
external disturbances that are expected to occur during
the system’s lifetime. While this robustness is desirable,
it is often not possible for a function or a performance
measure to be robust to variations in all possible system
parameters or to all perturbations. To be sure, opti-
mized systems, whether engineered or evolved, are often
sensitive to specific perturbations. But this typically does
not pose any severe drawbacks, as these perturbations are
not expected to be encountered frequently in the life of the
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system. This robust yet fragile character of such systems
has implications for modeling and parameter inference.
Naturally, when a measured variable is robust to some
parameters, one expects that inferring the parameter from
measurements of the variable is challenging, leading to
practical lack of identifiability of these parameters.
I have argued that one way to achieve robustness to a

set of parameters or disturbances is to use negative feed-
back. This allows the tradeoff of high gain with robustness
to parameter variations or external disturbances. I have
demonstrated these tradeoffs for constant disturbances at
steady-state values of the output of interest, as well as
for time varying disturbances, where rejection of distur-
bances at some frequencies can be effectively achieved at
the expense of poor disturbance rejection at other fre-
quencies. Such are the robustness tradeoffs of feedback,
which can be encapsulated in quantitative conservation
laws. The compelling aspect of such tradeoffs is their uni-
versality. As we have seen in this article, they apply to
feedback systems regardless of their substrate and specific
implementation details. They are the conservation laws of
robustness that natural and man-made systems alike must
obey.
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