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The Reynolds analogy for the mixed convection
over a vertical surface with prescribed heat flux
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Abstract. The steady mixed convection boundary layer flow over a vertical surface with pre-
scribed heat flux is revisited in this Note. The subset of solutions which can be obtained with the
aid of the Reynolds analogy is discussed in a close relationship with the dual solutions reported by
Merkin and Mahmood [1] for impermeable, and more recently by Ishak et al. [2], for permeable
surfaces.
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1. Introduction

The steady mixed convection boundary layer flow of an incompressible fluid over
an impermeable or permeable vertical surface with prescribed temperature, or with
prescribed heat flux is governed in the Boussinesq approximation by the continuity,
momentum and energy equations, [1], [2],

ux + vy = 0 (1)
uux + vuy = υuyy + UUx + gβ(T − T∞) (2)
uTx + vTy = αTyy (3)

where the subscripts denote partial derivatives with respect to the coordinates x
and y, and U(x) = U0·(x/L)m is the free stream velocity. The boundary conditions
adopted are [1], [2],
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With the aid of the stream function ψ (u = ψy, v = −ψx) and the similarity
transformations,

ψ =
√

υLU0

( x

L

)m+1
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f(η), η =

√
U0

υL

( x

L

)m−1
2

y (5)

T = T∞ + ∆T
( x

L

)2m−1

θ(η). (6)

Eqs. (1)–(4) reduce to the system of ordinary differential equations

f ′′′ +
m + 1

2
ff ′′ + m(1− f ′2) + λθ = 0 (7)

θ′′

Pr
+

m + 1
2

fθ′ + (1− 2m)f ′θ = 0 (8)

subject to the boundary conditions

f(0) = f0, f ′(0) = 0, f ′(∞) = 1 (9)
θ′(0) = −1, θ(∞) = 0. (10)

In the above equations L, ∆T = (q0/k)(υL/U0)1/2 and U0 specify the length,
temperature and velocity scales, respectively, the primes denote differentiations
with respect to the similarity variable η, and λ = Gr/Re2 is the mixed convection
parameter with Gr = gβ∆TL3/υ2, and Re = U0L/υ the Grashof and Reynolds
numbers, respectively. The other notations, as well as the choice of the coordinate
system coincide with those of [1] and [2].

In References [1] and [2], the structure of solution space of the boundary value
problem (7)–(10) has been investigated for impermeable (f0 = 0) and both im-
permeable and permeable (f0 6= 0) surfaces, respectively. The main issue of the
present Note is to discuss the subset of solutions of this boundary value problem
which can be obtained with the aid of the Reynolds analogy.

2. The Reynolds analogy

The Reynolds analogy of the momentum and energy balance equations is based
on the simple observation that for a uniform free stream (m = 0, i.e., Ux = 0)
and in the absence of buoyancy forces, Eqs. (2) and (3) possess for Pr = 1 (i.e.,
for υ = α) the same form for u and T , i.e. Eqs. (2) and (3) reduce in fact to a
single equation only. Consequently, for certain velocity and temperature boundary
conditions, there always exists a temperature solution which is a linear function
of streamwise velocity u.

This idea can also be extended for the case of the full Eqs. (2) and (3), with the
distinction that the coefficients of the linear function mentioned should firstly be
taken as functions of the streamwise coordinate x. Indeed, writing T = A(x)u +
B(x), the asymptotic conditions u

∣∣
y→∞ = U(x) and T

∣∣
y→∞ = T∞ immediately
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imply
T = T∞ + A(x)(u− U). (11)

Substituting Eq. (11) in Eqs. (2) and (3) (with α = υ), one easily sees that the
resulting equations become identical when A = const. ≡ A0, and (Ux−gβA0)(U−
u) = 0. Having in mind that U = U0 · (x/L)m, the latter condition requires m = 1
and implies further A0 = U0/(gβL). Accordingly, Eq. (11) becomes

T = T∞ +
U2

0

gβL

(
u

U0
− x

L

)
= T∞ +

∆T

λ

(
u

U0
− x

L

)
(12)

and, as a consequence of this relationship, Eqs. (2) and (3) reduce to the same
form

uux + vuy = υuyy +
U0

L
u. (13)

Furthermore, Eqs. (5) and (6) give for m = 1

u = U0
x

L
f ′(η), v = −

√
U0υ

L
f(η), T = T∞ + ∆T

x

L
θ(η) (14)

and thus equations (12) and (13) become

T = T∞ + ∆T
x

L

f ′(η)− 1
λ

, (15)

and
f ′′′ + ff ′′ + f ′(1− f ′) = 0 (16)

respectively. Comparing the third Eq. (14) to Eq. (15), one obtains that (within
the Reynolds analogy) the similar temperature and velocity fields θ and f ′ corre-
sponding to m = 1 and Pr = 1 are related to each other by the simple relationship

θ(η) =
f ′(η)− 1

λ
(Reynolds analogy). (17)

3. Solution and discussion

As shown above, for the subset of solutions {f ′, θ} = {f ′, (f ′ − 1)/λ} given by
the Reynolds analogy only the single Eq. (16) has to be solved, instead of the
system of coupled Eqs. (7) and (8). The corresponding solutions describe the
mixed convection stagnation point flow (m = 1 ) of a fluid with Prandtl number
Pr = 1. The goal of the present Section is the investigation of the corresponding
boundary value problem (16), (9) in detail.

We first notice that Eqs. (17) and (10) yield for the dimensionless wall temper-
ature θ(0) and skin friction f ′′(0) the simple relationships

θ(0) = − 1
λ

and f ′′(0) = −λ. (18)
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Figure 1. Plot of f ′(∞) ' f ′(10) as a function of λ = −f ′′(0) for f0 = 0. The two intersection
points of the curve f ′(10) with the horizontal line 1 (marked by dots) correspond to the
λ-values λ1 = −0.7314105 and λ2 = +0.3026979, respectively. The associated similar velocity
profiles f ′(η) are plotted in Figure 2.

Therefore, the task is to find the values of the mixed convection parameter λ, for
which the solution of the initial value problem

f ′′′ + ff ′′ + f ′(1− f) = 0,

f(0) = f0, f ′(0) = 0, f ′′(0) = −λ
(19)

satisfies (for a specified value of f0) the asymptotic condition f ′(−∞) = 1.
Being faced here with an initial value problem with an additional condition, the

solution is easily found. The procedure is illustrated in Figure 1 where f ′(∞) ∼=
f ′(10) has been plotted as a function of λ for f0 = 0 (impermeable surface), and
this curve has been intersected with the straight line f ′(10) = 1 according to
the asymptotic condition. Two intersection points of the curve f ′(10) with the
horizontal line 1 were found, namely at λ1 = −0.7314105 and λ2 = +0.3026979,
respectively. The procedure has then to be repeated subsequently for f ′(12),
f ′(15), etc. until the values of λ1 and λ2 do not change within the desired precision.
These solutions, corresponding to (f0, λ) = (0, λ1) and (f0, λ) = (0, λ2) are plotted
in Figure 2. The results of similar calculations performed for f0 = −0.1 (injection)
and f0 = +0.1 (suction) are collected (together with the case f0 = 0) in Table 1.

We see that the left and right intersection points of the curve f ′(∞) with the
straight line f ′(∞) = 1, having for a given f0 the respective abscisses λLeft(f0) < 0
and λRight(f0) > 0, specify two solution branches of the boundary value problem
(16), (9). In the asymptotic limit f0 → ∞ of large suction velocities, the de-
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λ f ′′(0) θ(0) Branch

f0 Left/Right Left/Right Left/Right f ′′(0); θ(0)

−0.1
−0.664197 +0.664197 +1.505577 U ; L

+0.2504476 −0.2504476 −3.9928512 L; L

0
−0.7314105 +0.7314105 +1.3672212 U ; L

+0.3026979 −0.3026979 −3.3036238 L; L

+0.1
−0.8006085 +0.8006085 +1.2490499 U ; L

+0.3619513 −0.3619513 −2.7628026 L; L

Table 1. The left and right values of λ, f ′′(0) and θ(0) corresponding to three specified values
of the suction/injection parameter f0. The symbols U and L refer to the upper and lower

branch of solutions according to Figures 1 and 3 of Reference [2], respectively.

Figure 2. Plot of similar velocity profiles f ′(η) corresponding to the skin frictions
f ′′(0) = −λ1 = 0.7314105 and f ′′(0) = −λ2 = −0.3026979, respectively, associated with the
same value f0 = 0 of the suction/injection parameter.
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Figure 3. Plot of f ′(∞) ' f ′(13) as a function of λ for f0 = −0.65. The six points of the curve
f ′(13) with the horizontal line 1 (marked by dots) correspond to the λ-values λ1 = −0.3369764,
λ2 = −0.1056770, λ3 = −0.0393022, λ4 = +0.0098145, λ5 = +0.0370746 and λ6 = +0.0676765
respectively. The associated similar velocity profiles f ′(η) are plotted in Figure 4.

pendence of the corresponding skin friction coefficients f ′′(0) = −λ on f0 can be
estimated as follows:

In the case of the left branch we first substitute in Eqs. (16) and (9)

η =
ξ

f0
, f(η) = f0 +

F (ξ)
f0

(Left branch). (20)

This substitution transforms Eqs. (16) and (9) in

...
F +

(
1 +

F

f2
0

)
F̈ +

Ḟ (1− Ḟ )
f2
0

= 0,

F (0) = 0, Ḟ (0) = 0, Ḟ (∞) = 1
(21)

where the dot denotes differentiation with respect to the scaled variable ξ.
The transformed Eqs. (21) suggest the power series expansion of the form

F (ξ) = F0(ξ) +
F1(ξ)
f2
0

+ . . . (22)

In this way, we obtain to the zeroth and the first order approximations in 1/f2
0

the linear boundary value problems
...
F 0 + F̈0 = 0,

F0(0) = 0, Ḟ0(0) = 0, Ḟ0(∞) = 1
(23)
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and ...
F 0 + F̈1 = −F0F̈0 − Ḟ0(1− Ḟ0),

F0(0) = 0, Ḟ0(0) = 0, Ḟ0(∞) = 0.
(24)

As expected, the zeroth order approximation (23) yields the asymptotic suction
profile

Ḟ0 = 1− e−ξ, F0 = ξ − 1 + e−ξ. (25)

For the solution of the first order correction (24) we obtain by elementary calcu-
lations

F1 = 2−
(

2 + 2ξ +
1
2
ξ2

)
e−ξ (26)

such that

F (ξ) = ξ − 1 + e−ξ +
1
f2
0

[
2−

(
2 + 2ξ +

1
2
ξ2

)
e−ξ

]
. (27)

Accordingly, the skin friction coefficient f ′′(0) = f0F̈ (0) of the left solution branch
results as

f ′′(0) = f0 +
1
f0

+ . . . (Left branch, f0 →∞). (28)

In the case of the right branch, it is convenient to substitute in Eqs. (16) and (9)

η =
ξ

f0
, f(η) = f0φ(ξ) (Right branch). (29)

This substitution transforms Eqs. (16) and (9) in
...
φ + φφ̈− φ̇2 +

1
f2
0

φ̇ = 0,

φ(0) = 1, φ̇(0) = 0, φ̇(∞) =
1
f2
0

.

(30)

The transformed Eqs. (30) suggest again a power series expansion of the form

φ(ξ) = φ0(ξ) +
φ1(ξ)
f2
0

+ . . . (31)

However, in contrast to the left branch, in the leading order approximation the
problem (30) is still non-linear

...
φ0 + φ0φ̈0 − φ̇2

0 = 0,

φ0(0) = 1, φ̇0(0) = 0, φ̇0(∞) = 0.
(f0 →∞) (32)

This problem could be solved only numerically, yielding for the scaled skin friction
coefficient the value φ̈0(0) = −0.06. Consequently, we arrive at the result that, to
the leading order, the skin friction coefficient f ′′(0) = f3

0 φ̈(0) of the right solution
branch scales for large suction velocities as

f ′′(0) = −0.04f3
0 + . . . (Right branch, f0 →∞). (33)
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The higher order approximations can also be determined only numerically in this
case. It is worth mentioning here that for the left branch the leading order ap-
proximation f ′′(0) ∼= f0 obtained from Eq. (28), gives a quite accurate result
already for f0 = 10, namely f ′′(0) = 10, compared to the “exact” numerical result
f ′′(0) ∼= 10.0976. For the right branch by contrast, the leading order approxima-
tion (33) gives an accurate result only around f0 = 104, namely f ′′(0) = −4 · 1010,
compared to the “exact” numerical result f ′′(0) = −4.0779 · 1010.

The left and right branches discussed above can be continued also for negative
values of f0, corresponding to a lateral injection of the fluid. A qualitative analy-
sis of the boundary value problem (16), (9) shows that the skin friction coefficient
f ′′(0) goes to zero smoothly for both solution branches as f0 → ∞. However,
the decrease of f ′′(0) is very fast, so that it can be followed by numerical calcu-
lations to limited values of f0 < 0 only. Namely, one obtains f ′′Left(0) = 0.001636
and f ′′Right(0) = −0.000024 already at f0 < −1.8. At f0 < −1.9, the left value
reduces to f ′′Left(0) = 0.000076 and the right one is not viewable any more. This
behaviour, however, is not the only peculiarity of the injection case. In con-
trast to the increasing suction, with increasing lateral injection, also the shape
of the curve f ′(∞) shown in Figure 1 changes dramatically, becoming more and
more complex. A cascade of bifurcations, leading to further solution branches
of the boundary value problem (16), (9) with both positive and negative values
of the skin friction coefficient f ′′(0) occur. This feature is illustrated in Figure
3 where f ′(∞) ∼= f ′(13) has been plotted as function of λ for f0 = −0.65. In
this case six intersection points of the curve f ′(13) with the horizontal line 1
were found, namely at λ1 = −0.3369764, λ2 = −0.1056770, λ3 = −0.0393022,
λ4 = +0.0098145, λ5 = +0.0370746 and λ6 = +0.0676765, respectively. These
solutions, corresponding to (f0, λ) = (−0.65, λn), n = 1, 2, . . . , 6 are plotted in
Figure 4.

A remarkable property of the subset of solutions resulting from the Reynolds
analogy is that, according to Eqs. (18), the product of the dimensionless wall
temperature θ(0) and the skin friction f ′′(0) always equals unity,

θ(0)f ′′(0) = 1. (34)

As a consequence, the representative points of the solutions in the characteris-
tic parameter plane {θ(0), f ′′(0)} of the present prescribed-flux boundary value
problem are all located on the branches of an equilateral hyperbola. This fea-
ture is illustrated in Figure 5, where the points {θ(0), f ′′(0)} corresponding to the
6 + 6 = 12 solutions collected in Table 1 and Figure 3 are shown.

4. Summary and conclusions

The subset of solutions of the title problem which can be obtained with the aid
of the Reynolds analogy for the stagnation flow (m = 1) of a fluid with Pr = 1,
has been investigated in a close relationship with the solutions reported by Merkin
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Figure 4. Plot of similar velocity profiles f ′(η) corresponding to the skin frictions f ′′(0) = −λn,
n = 1, 2, . . . , 6, associated with the six λ-values specified in Figure 3 and the same value
f0 = −0.65 of the injection parameter.

Figure 5. The representative points corresponding to the 6 + 6 = 12 solutions collected in Table
1 and Figure 3 are all located on the branches of an equilateral hyperbola θ(0)f ′′(0) = 1.
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and Mahmood [1] and more recently by Ishak et al. [2]. Our main result shows
that the representative points of this subset of solutions in the parameter plane
{θ(0), f ′′(0)} are always located on the branches of an equilateral hyperbola. The
Reynolds analogy-approach applies both to the assisting and opposing mixed flow
regimes. Among the solutions gained in this way, flow profiles with and without
backflow regions were found. The mathematical advantage of the Reynolds analogy
consists of the fact that it decouples the mixed convection momentum and energy
balance equations by a linear relationship between the temperature field T and
the streamwise velocity component u of the flow.
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Switzerland
e-mails: magyari@hbt.arch.ethz.ch and magyari@bluewin.ch

I. Pop
Faculty of Mathematics
University of Cluj
R-3400 Cluj, CP 253
Romania

(Received: November 1, 2007; revised: February 29, 2008)

Published Online First: October 10, 2008

To access this journal online:
www.birkhauser.ch/zamp


