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Abstract 
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AABBSSTTRRAACCTT  
To meet the need for a systematic and quick gathering of kinetic and 
thermodynamic reaction parameters in early phases of process design a small 
reaction calorimeter (25 to 45 ml) with an integrated IR-ATR probe was 
developed during this work. Such a device is of particular importance for new fine-
chemical and pharmaceutical products, where typically only small amounts of test 
substance are available and time-to-market is crucial. The new prototype reaction 
calorimeter uses a copper block as an intermediate thermostat instead of a double 
wall vessel (typically glass) with a circulation fluid. The reaction temperature is 
controlled at isothermal conditions using the Power-Compensation principle. To 
allow an online measured baseline (compensate changes of the heat transfer 
through the reactor wall during the reaction) an additional heat-flow balance using 
Peltier elements is implemented and was patented. This combination shortens the 
time required for a reaction experiment because calibration steps are not required, 
and enables the connection of several devices to the same cryostat (parallelisation). 
The new calorimeter has a very small time constant of about 4 s and is therefore 
ideally suited to measure fast and highly exothermal reactions at isothermal 
conditions. The performance and the accuracy of the new device will be 
demonstrated based on several reaction examples:  

v The neutralization of NaOH with H2SO4 (measured reaction enthalpy at 25 
°C: -134 ± 1 kJ/mol, literature reference: -139.1 kJ/mol). 

v The  hydrolysis of acetic anhydride (measured reaction enthalpy at 25 °C: -
60 ± 5 kJ/mol, measured first order rate constant: 2.9   10-3 s-1, EA = 56 kJ/mol, 
literature references:  -63 ± 2 kJ/mol,  and 2.76 ± 0.06   10-3 s-1, EA = 57 
kJ/mol.  

v Two highly exothermal industrial reactions (maximal reaction power 
of ≈ 2.5 kW/l). In both examples the advantage of an online measured 
calorimetric baseline is clearly demonstrated. 

Furthermore a new evaluation principle for the measured reaction data will be 
presented that allows the identification of the unknown reaction parameters such as 
rate constants, activation energies, reaction orders and reaction enthalpies. The 
evaluation is based on an empirical reaction model. In contrast to conventional 
evaluation procedures the infrared and calorimetric data are simultaneously 
evaluated. Therefore a new evaluation algorithm was developed, using nonlinear 
optimization, in order to estimate all unknown reaction parameters in a single step.  
Neither pure infrared spectra of the involved chemical components nor any 
calibrations are required. The performance of the new evaluation algorithm will be 
demonstrated by analyzing the following reaction examples: 

v The two step consecutive epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone  

v The hydrolysis of acetic anhydride. 
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ZZUUSSAAMMMMEENNFFAASSSSUUNNGG  
Im Rahmen dieser Arbeit wurde ein kleinvolumiges Reaktionskalorimeter (25 bis 
45 ml) mit einer integrierten IR-ATR Sonde entwickelt. In frühen Phasen der 
Prozessentwicklung soll damit dem Bedarf einer schnellen Erfassung von 
kinetischen und thermodynamischen Reaktionsparametern entsprochen werden. 
Speziell in der Feinchemikalien und pharmazeutischen Industrie ist ein solches Gerät 
von besonderer Bedeutung weil gewöhnlich nur geringe Testsubstanzmengen 
vorhanden sind und die Produkteinführungszeit möglichst kurz gehalten werden 
muss. An Stelle des üblichen doppelwandigen Reaktormantels (z.B. Glas) mit 
zirkulierender Kühlflüssigkeit, wird im neu entwickelten Reaktionskalorimeter ein 
Kupferblock als Zwischenthermostat eingesetzt. Die Reaktionstemperatur wird 
mittels Power-Compensation Prinzips isotherm geregelt. Um eine online 
Messung der Basislinie (kompensiert Veränderungen des Wärmedurchgangs an 
der Reaktorwand während einer Reaktion) zu ermöglichen, wurde eine zusätzliche 
Wärmeflussbilanz mittels Peltierelementen implementiert und patentiert. Diese 
Kombination verkürzt die benötigte Zeit für ein Reaktionsexperiment weil keine 
Kalibrationsschritte mehr notwendig sind, und ermöglicht den Anschluss mehrerer 
solcher Geräte an den selben Kryostaten (Parallelisierung). Das neue 
Reaktionskalorimeter weist eine sehr kleine Zeitkonstante von ca. 4 s auf und ist 
folglich bestens geeignet um schnelle und stark exotherme Reaktionen unter 
isothermen Bedingungen zu messen. Das Leistungsvermögen und die Genauigkeit 
des neuen Kalorimeters werden anhand von mehreren Beispielreaktionen gezeigt: 

v Die Neutralisation von NaOH mit H2SO4 (gemessene Reaktionsenthalpie bei 
25 °C: -134 ± 1 kJ/mol, Literaturreferenz: -139.1 kJ/mol). 

v Die Hydrolyse von Acetanhydrid (gemessene Reaktionsenthalpie bei 25 °C: 
-60 ± 5 kJ/mol, gemessene Geschwindigkeitskonstante erster Ordnung: 2.9   
10-3 s-1, EA = 56 kJ/mol, Literaturreferenz:  -63 ± 2 kJ/mol,  und 2.76 ± 0.06   
10-3 s-1, EA = 57 kJ/mol.  

v Zwei stark exotherme Reaktionsbeispiele aus der Industrie (maximale 
Rektionsleistung ≈ 2.5 kW/l). Bei beiden Reaktionsbeispielen konnte der 
Vorteil einer online gemessenen Basislinie klar gezeigt werden.  
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Des weiteren wird ein neues Auswertungsprinzip für die gemessenen 
Reaktionsdaten vorgestellt, welches die Identifikation unbekannter 
Reaktionsparameter (Geschwindigkeitskonstanten, Aktivierungsenergien, 
Reaktionsordnungen und Reaktionsenthalpien) erlaubt. Die Auswertung basiert auf 
einem empirischen Reaktionsmodell. Im Gegensatz zu konventionellen 
Auswertungsverfahren werden die Infrarot- und Kalorimetriedaten simultan 
ausgewertet. Dazu wurde ein neuer Auswertungsalgorithmus entwickelt, basierend 
auf nichtlinearer Optimierung, um alle unbekannten Reaktionsparameter in einem 
einzigen Schritt zu bestimmen. Weder Reininfrarotspektren der involvierten 
chemischen Komponenten noch Kalibrationen irgend einer Art sind 
erforderlich. Die Leistungsfähigkeit des neuen Auswertungsalgorithmus wird 
anhand der Analyse folgender Reaktionsbeispiele demonstriert: 

v Die Zweischritt Epoxidierung von  of 2,5-di-tert-butyl-1,4-benzochinon. 

v Die Hydrolyse von Acetanhydrid. 
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