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Abstract

The performance of modern distributed storage and computing frameworks considerably de-

pends on the IO performance of the many storage and network devices involved. Fortunately,

these IO devices have undergone a rapid transformation in the past decade and are now capable

of delivering multi-Gigabits/sec bandwidths and ultra-low IO latencies. However, in contrast

to IO devices, the performance improvements of single CPU have stalled in the same time pe-

riod. Hence, the traditional notion of a single fast CPU connected to multiple slow devices no

longer holds. Yet, IO stacks are still designed to optimize the CPU time by executing multiple

services and routines on a fast CPU while a slow IO operation is in progress. This situation

has led to a CPU-IO performance gap, where the CPU’s inability to keep up with the execu-

tion of thick software stacks and OS routines during a fast IO operation on high-performance

network and storage devices limits the performance delivered to data-crunching applications.

Multiple research efforts from industry as well as academia have been launched to improve this

situation by reducing the hardware and software overheads by providing better IO interfaces,

efficiently managing IO resources, and leveraging manycore CPUs for IO processing. However,

these efforts exclusively either target the network or the storage stack but not the combination

of both.

In this thesis, we address this performance gap and advocate to take a holistic approach to-

wards managing resources, data flows, and devices (network or storage) to form end-to-end data

flows in a distributed setting. We first quantify the software and OS overhead in IO operations

and and argue to reduce it by building upon the high-performance networking principle. The

general philosophy of the principle is to recognize and separate the slow control setup from the

fast data access path, and involve CPU/OS in the former only selectively in managerial roles. In

the thesis framework, we extend the separation philosophy from networks to storage devices by

identifying common themes in the evolution of their software stacks. After identifying common

high-performance IO properties, we make a case to unify the network and storage stacks. We

then design and build a proof of concept FlashNet, a unified software IO stack that uses high-

performance networking abstractions and semantics to access remote storage. In accordance

with the original separation philosophy, FlashNet allows the allocation and translation of both
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network and storage resources prior to a remote storage access.

We then expand the philosophy and demonstrate how to separate the resource setup from

fast data accesses in a distributed environment where resources might be spread across multiple

machines. We introduce RStore, a distributed in-memory data store that achieves distributed

separation using its unique memory-like API and storage abstractions. We quantify the effec-

tiveness of this approach by developing two distributed data-processing applications on top of

RStore, namely a distributed key-value sorter (RSort) and a distributed graph-processing en-

gine (Carafe). They both perform well; RSort, for example, outperforms Hadoop TeraSort by a

margin of 8−10× on our 12-machine cluster. At the end of the thesis, we document our experi-

ence and give recommendations for system builders on how to leverage the separation principle

to cut through the thick IO abstractions and layers to design and implement high-performance

distributed data processing applications.



Zusammenfassung

Die Leistungsfähigkeit moderner verteilter hängt in hohem Masse von der IO-Leistung der ein-

gesetzten Speichergeräte und des Netzwerkequipments ab. Diese IO-Geräte haben im letzten

Jahrzehnt eine schnelle Weiterentwicklung erfahren; sie bieten heute eine Zugriffsbandbreite

von mehreren Gigabits pro Sekunde bei sehr geringer Latenz. Im Gegensatz zu den IO-Geräten

hat sich die Leistungsfähigkeit einer CPU im genannten Zeitraum kaum erhöht. Damit ist die

bisherige Annahme einer Rechnerarchitektur mit einer einzelnen schnellen CPU, die mit meh-

reren langsamen IO-Geräten interagiert, nicht mehr gültig. Allerdings sind IO-Stacks immer

noch unter der Annahme gestaltet, die CPU-Zeit optimal auszunutzen, indem eine schnelle

CPU mehrere Dienste und Routinen abarbeitet, während eine langsame IO-Operation zeitgleich

abläuft. Diese Situation hat zu einer Disparität zwischen CPU- und IO-Performance geführt, in

der die CPU nicht in der Lage ist, komplexe Softwarehierarchien und Betriebssystem-Routinen

während einer schnellen Netzwerk- oder Speicher-IO-Operation auszuführen. Dies limitiert die

für Applikationen zur Verfügung stehende Leistungsfähigkeit. Es wurden eine Reihe von For-

schungsprojekten in industriellem und universitärem Umfeld gestartet, die diese Situation ver-

bessern wollen, indem die Hardware- und Software-Overheads durch bessere IO-Interfaces,

effizientes Management der IO-Ressourcen und die Nutzung von Vielkern-Prozessoren redu-

ziert werden sollen. Diese Aktivitäten beschränken sich jedoch auf entweder den Netzwerk-

oder den Speicherzugriff und nicht auf eine Kombination beider Dienste.

Die vorliegende Arbeit adressiert diese Disparität und plädiert für einen holistischen Ansatz,

in welchem Ressourcen, Datenströme und Geräte (sowohl Netzwerk- als auch Speichergeräte)

so verwaltet werden, dass sie in einem verteilten System zu einem Ende-zu-Ende-Datenfluss

formiert werden können. Einleitend wird der Software- und Betriebssystem-Overhead für IO-

Operationen quantifiziert und daraus der Vorschlag abgeleitet, diesen mit Designprinzipien von

Hochgeschwindigkeitsnetzen zu reduzieren. Das Grundprinzip dieses Ansatzes ist es, zeitun-

kritische Kontrolloperationen vom zeitkritischen Datenzugriff zu separieren und dabei CPU

und Betriebssystem nur bei Kontrolloperationen zu involvieren. Im Rahmen der vorliegenden

Arbeit wird dieses ursprünglich für die Einbindung von Netzwerkgeräten eingeführte Separa-

tionsprinzip auf Speichergeräte erweitert, indem gemeinsame Problemfelder bei der Evolution
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der zugehörigen Software-Stacks identifiziert werden. Aus der Identifikation gemeinsamer IO-

Eigenschaften beider Stacks wird der Vorschlag abgeleitet, diese in einer Implementierung zu

vereinen. Dieses Konzept wird anhand der FlashNet-Implementierung, die Abstraktionen und

Semantiken von Hochgeschwindigkeitsnetzen für den Zugriff auf entfernten Massenspeicher

nutzt, exemplarisch umgesetzt. FlashNet setzt die Philosophie der Trennung von Kontroll- und

Datentransferoperationen um und erlaubt damit eine Reservierung und Bereitstellung von so-

wohl Netzwerk- als auch entfernten Massenspeicherressourcen vor dem effizienten Zugriff.

Im Weiteren wird die Designphilosophie der Trennung von Daten- und Kontrolloperationen

verallgemeinert und auf ein verteiltes System angewandt, in dem die Ressourcen über mehrere

Endpunkte verteilt sind. Mit RStore wird ein verteilter, hauptspeicher-residenter Datenspeicher

eingeführt, der dieses Prinzip durch den Einsatz eines neuen Applikationsprogramm-Interfaces

und von Speicherabstraktionen realisiert. Die Effektivität dieses Ansatzes wird anhand von zwei

neu entwickelten RStore-Applikationen quantifiziert: RSort, ein verteilter Key-Value Sortieral-

gorithmus und Carafe, eine verteilte Anwendung zum Prozessieren von Graphen. Beide Anwen-

dungen erreichen ausgezeichnete Performance - zum Beispiel übertrifft RSort das bekannte Ha-

doop TeraSort um den Faktor acht bis zehn auf dem verwendeten 12-Knoten-Cluster. Die vor-

liegende Arbeit schliesst mit einem Resümee der gefundenen Erkenntnisse und mit Empfehlun-

gen für Systemarchitekten, wie mittels des Separationsprinzips aufwendige IO-Abstraktionen

und Schichten vermieden werden können, um hoch leistungsfähige verteilte Applikationen zur

Datenverarbeitung umsetzen zu können.
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1
Introduction

We live in a data-centric world where large volumes of data are generated, stored, and pro-

cessed everyday. These phenomenon, which are collectively termed as Big Data, are uniquely

defined by data volume (multiple Gigabytes (GBs), Terabytes (TBs) or more data everyday),

data velocity (constant, real-time data arrival), and data variety (data collected from multiple

sources and in a wide variety of formats). Examples of a few of these Big Data environments

that generate lots of data include social networks, web-data graphs, business process data, logs

in large infrastructures, scientific experiments (e.g., the LHC experiment at CERN), Internet of

Things (IoT) sensors, and wearable computing devices, etc.

This large amount of generated data is analyzed to make insightful and timely business

decisions [198]. To facilitate this data-driven decision-making process many distributed data

processing frameworks, such as MapReduce [1, 100], Dryad [175], Apache Spark [2, 367], and

Naiad [252], have been developed. The performance of these frameworks is under a constant

pressure to keep up with the growing demands of fast, real-time data storage and processing

requirements. For example, Facebook routinely stores 500TB+ of data everyday and processes

100TB+ of data in under 30 minutes [3, 302]. To meet such performance requirements, these

frameworks are typically deployed in parallel across thousands of servers inside a large, heav-

ily networked environment such as data centers. Consequently, the end performance of these

data-crunching frameworks strongly depends on the input/output (IO) performance of the many

storage and network devices involved.

At the same time, the performance of modern network and storage devices have also un-

dergone a rapid evolution in recent years. Ethernet, the most popular interconnect technol-

ogy, supports 10, 40, and 100 Gigabits/sec data rates with single-digit microsecond link laten-

cies. Storage technology has seen emergence of Non-Volatile Memories (NVMs) in enterprise

and commodity computing. NVM storage devices, such as NAND flash and Phase Change

Memories (PCM), now offer multi-Gigabits/sec bandwidths with access latencies as low as 15

µsec [138].

However, these advancements also put tremendous pressure on the performance of a single

19
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Figure 1.1: Comparison of data flow in three different settings. Efforts on the path-(a) focus on
storage related challenges and on the path-(b), network related. This thesis takes
an end-to-end holistic consideration (marked as the path-(c)) towards the data flow
management on both the server as well as the client side in a distributed setting.

CPU. In the past decade, CPU speed improvements have hit a plateau, and the notion of a

fast CPU and multiple slow IO devices no longer holds. Yet, modern data-processing stacks

continue to develop on the same notion where they aim to optimize the CPU time while a slow

IO operation is in progress. This way of systems building leads to adding more layers of generic

operating system (OS) functionality, abstractions and services, data orchestration logic with

copies, expensive protocol processing, multiple (de)multiplexing and scheduling points, device

drivers, etc., in the IO processing path. All of these operations and layers must be executed

by the CPU while keeping up with the high data rates. Consequently, as IO devices (and data

rates) continue to improve rapidly, the CPU’s (in)ability to execute the thick IO stacks of data-

processing frameworks turns it into a performance bottleneck [53, 68, 208, 224, 266, 289, 330].

Multiple research efforts from industry as well as academia have been launched to reduce

the hardware and software overhead by providing better IO interfaces, efficiently managing IO

resources, and leveraging manycore CPUs for IO processing. However, these efforts do not

take a holistic end-to-end approach towards eliminating overheads in data flows from multi-

ple servers and devices to application buffers. Figure 1.1 shows generic steps taken by such

approaches. For example, projects such as Moneta-Direct [71] illustrate how to bring data effi-

ciently from fast flash storage to DRAM buffers, but do not discuss how to transmit it efficiently
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on a network. Such efforts are marked as path-(a) in the figure. On the other hand, data stores

designed around high-performance networks such as FaRM [107] and fast Key-Value (KV)

stores [183, 241], etc., demonstrate how to efficiently access data stored in DRAM buffers

of remote servers, but do not consider how to stage data from fast storage devices to DRAM

buffers. These efforts are shown as path-(b) in the Figure 1.1. On a client side, data is copied

though multiple layers of storage abstractions before it arrives in a final application buffer. Ad-

ditional challenges arise when considering a distributed environment where several servers and

devices might be involved in completing an IO request.

To summarize, delivering high end-to-end performance to data access and processing frame-

works demands attention on several fronts. A design of such a system needs to consider, among

other things:

• What is a suitable interface that can be used to deliver high end-to-end IO performance

for transferring data from a network-attached storage device to application buffers?

• How to design a distributed, parallel data store with network-attached storage devices

from several servers without incurring additional software/hardware overheads?

• What is the right data abstraction for accessing and processing data stored in multiple

servers in such a distributed data store?

In this thesis I answer these question by first applying high-performance networking con-

cepts and IO interfaces to the storage domain to develop an end-to-end data flow path (shown as

the path-(c) in the Figure 1.1). Subsequently, I develop a distributed data store, its data abstrac-

tion, and associated distributed data processing applications to tackle the challenges associated

with a deployment of such a system in a distributed environment.

1.1 Thesis Statement

In this thesis work we consider the problem and challenges associated with delivering high

performance data access from high-bandwidth, low-latency network and storage devices. The

thesis statement is:
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The performance of modern high-performance network-attached storage devices

is limited by the software overhead induced by excessive operating system and

application involvements in IO flows. This overhead can be reduced (and even

eliminated) by leveraging the path separation concept and associated abstrac-

tions from the high-performance networking domain and extending them to ac-

cess network-attached storage. The new extended and unified abstractions facil-

itate building distributed data stores around a set of common, high-performance

IO properties, thus eliminating overhead even when multiple network and storage

devices are involved to complete an IO request. This holistic end-to-end approach

towards careful data flow management and orchestration in a distributed system

can deliver significant performance gains for data-processing frameworks.

1.2 Contributions

This thesis makes the following three contributions.

1. Using experimental analysis, this thesis first identifies excessive OS and application in-

volvement in data flows to be a limiting factor in delivering the full performance while

accessing data on a remote high-performance storage device. It then identifies synergies

between the concepts from the area of high-performance networking and recent efforts

for building high-performance storage stacks for non-volatile storage to eliminate this

excessive involvement. I build a case for unifying these efforts, and develop a unified de-

vice prototype that allows access to a remote flash storage using Remote Direct Memory

Access (RDMA) network operations.

2. Secondly, the thesis extends the concept of the path separation philosophy on which

RDMA operations are based to a distributed environment. The work addresses the key

challenges of setting and preparing multiple devices separately from IO accesses. RStore,

our distributed data store, achieves this separation using a set of novel interfaces and ab-

stractions. These abstractions are designed to eliminate OS and application involvement

while minimizing the synchronization and abstraction related costs in the data access

path.

3. Lastly, the thesis describes the design and implementation of two distributed data pro-

cessing applications on top of RStore, namely a distributed key-value sorter (RSort) and a

distributed graph processing engine (Carafe). Using the API of RStore, these applications

identify, pre-allocate, and pre-fetch expensive IO resources in a distributed environment
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before the data-processing phase begins, thus eliminating slow operations from the fast

data execution phase. The high performance of these applications validate the design

choices we made for developing RStore.

Parts of this thesis work are published in:

• Animesh Trivedi, Patrick Stuedi, Bernard Metzler, Clemens Lutz, Martin Schmatz,

Thomas R. Gross. RStore: A Direct-Access DRAM-based Data Store. In Proceedings of

the 35th IEEE International Conference on Distributed Computing Systems, ICDCS’15,

pages 674–685, Columbus, OH, USA, July 2015.

• Animesh Trivedi, Nikolas Ioannou, Bernard Metzler, Patrick Stuedi, Jonas Pfefferle,

Ioannis Koltsidas and Thomas R. Gross. FlashNet: A Unified High-Performance IO

Device, as IBM research report, RZ 3889, April, 2015.

• Animesh Trivedi, Bernard Metzler, Patrick Stuedi, and Thomas R. Gross. On Limitations

of Network Acceleration. In Proceedings of the Ninth ACM Conference on Emerging Net-

working EXperiments and Technologies (CoNEXT ’13), pages 121-126, Santa Barbara,

CA, USA, December 2013.

• Animesh Trivedi, Patrick Stuedi, Bernard Metzler, Roman Pletka, Blake G. Fitch, and

Thomas R. Gross. Unified High-Performance I/O: One Stack to Rule Them All. In Pro-

ceedings of the 14th USENIX Conference on Hot Topics in Operating Systems, HotOS13,

Santa Ana Pueblo, NM, USA, May 2013.

• Animesh Trivedi, Bernard Metzler, and Patrick Stuedi. A Case for RDMA in Clouds:

Turning Supercomputer Networking into Commodity. In Proceedings of the Second Asia-

Pacific Workshop on Systems, APSys 11, pages 17:1–17:5, Shanghai, China, July 2011.

1.3 Organization

This thesis is organized as follows.

In Chapter 2 we present related work by giving an overview of the evolution of high-

performance networking and storage devices. In particular, we discuss multiple network in-

terfaces, protocol stack organizations, operating system support, user-level networking, and

implementation and optimization of network protocols. For storage, we examine the recent

evolution of non-volatile memories (NVMs), such as NAND flash storage, in enterprise and

commodity computing, and the related development of new storage abstractions and interfaces.
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We also provide an overview of distributed storage solutions such as NAS and SAN, and how

high-performance networks are integrated with them.

In Chapter 3 we provide the necessary contextual and background information on the Re-

mote Direct Memory Access (RDMA) technology, its abstractions, and its implementations.

We then describe our experiences and findings related to micro-architectural features of the

host system that influence the performance of RDMA based systems.

Chapter 4 we make the case for unifying the interfaces for high-performance network and

storage devices after identifying their common evolution patterns.

FlashNet, a software IO stack that is a proof of concept for our unification idea, is presented

in Chapter 5. The stack consists of an RDMA controller, a flash controller, and a file system. To-

gether these components enable FlashNet to use high-performance RDMA operations to access

data stored on remote flash storage devices.

Chapter 6 describes the design and implementation of our distributed in-memory data store

called RStore and its two applications, namely RSort, a distributed key-value sorter, and Carafe,

a distributed graph-processing engine. RStore and its applications are developed keeping the

path separation principle in mind.

Chapter 7 reports on our experience with porting of RStore to FlashNet, and running RSort

on it.

Chapter 8 concludes the thesis by presenting our experience, a few recommendations for

future hardware and stack developers, and the closing remarks.



2
Related Work on

High-Performance Networking
and Storage

In this chapter, we first provide an overview of the evolution, capabilities, and interfaces of

modern high-performance networking devices. We subsequently focus our attention on the

recent emergence of NVM storage devices in enterprise computing, their host interfaces, stor-

age stacks, and abstractions, etc. We then discuss networked storage architectures and how

high-performance network operations such as Remote Direct Memory Access (RDMA) are in-

tegrated. At various points in this chapter we provide summaries or commentaries to put the

discussion in the context of the work presented in this thesis. Based upon the history of evolu-

tion presented in this chapter, in Chapter 4 we identify common high-performance input/output

(IO) properties and make a case for unification of networking and storage IO operations.

2.1 Evolution of High-Performance Networking

From the early days of computing, performance problems have existed, which were solved by

leveraging multiple server machines (possibly containing multiple processors) connected via

a network. The network is used for communication, data transfer, and coordination. Conse-

quently, over the past 20-30 years, a considerable amount of work has gone into the develop-

ment of a fast and efficient networking stack and associated abstractions. The focus of that work

has been on network interface designs, transport protocols, end-host software stacks, applica-

tion interfaces, and operating system support for high-performance networking. In this section,

we first have a brief look at the evolution of network IO from the 1980s to today. We provide an

overview and the rationale behind various developments that shaped the modern day networking

stacks found in modern operating systems such as GNU/Linux and Microsoft Windows.

25
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2.1.1 Network Controllers and Interfaces

One of the early issues in the design of high-performance communication systems was the

work division between the host CPU and the network interface controller (NIC). Questions

such as where to perform protocol processing, how and from where network data is copied,

how do a host CPU and a NIC communicate to start and stop network processing, what are the

application interfaces and network semantics, etc., were the key design questions that influenced

the evolution of early network controllers. Peter A. Steenkiste provides an excellent overview

of high-speed network cards and related hardware/software optimizations as are discussed in

this section [323].

The focus of the initial work in the 1980s was on the development of high-performance

transport protocols that were amenable to a fully offloaded, hardware implementation in a net-

work controller [105]. The Universal Receiver Protocol (URP) from Bell Laboratories focused

on the receiving side and designed a simplified receive-side state machine with small packet

types [127]. The Protocol Engine (PE) from Greg Chesson took a more general approach to

the implementation of transport protocols in hardware and proposed a purpose-built network

processor that was implemented in VLSI chips [83]. Kanakia and Cheriton adapted a holistic

approach and presented a communication system that encompassed the network adaptor design,

IO system architecture, and transport protocol design. They presented the VMP Network Adap-

tor Board (NAB) [184] for the VMP multiprocessor [82] system running the Versatile Message

Transaction Protocol (VMTP) [81]. NAB delivered good performance by reducing demands

on the host by grouping packet-processing notifications and leveraging a hardware implementa-

tion of a newly designed, specialized “request-response” VMTP transport protocol. The Nectar

Communication Accelerator Board (CAB) design from CMU went a step further and proposed

a network controller containing a microcontroller running a complete multi-threaded operating

system [29]. Like NAB, it offloaded much of the protocol processing onto the NIC processor,

but also considered desired host operating system support and software overheads in deliver-

ing good end-to-end performance. Along with specialized protocols, CAB also supported the

implementation of the TCP/IP protocol suit [94].

Instead of full offloading, Bruce Davie of Bellcore suggested a flexible and high-

performance end-host interface for Asynchronous Transfer Mode (ATM) networks where a

part of the transport processing was done on the host [99]. The flexibility, which was aimed

at programmability of segmentation and re-assembly of ATM cells, was achieved by having

general-purpose Intel microprocessors processing the IO queues. In their work for the Pen-

n/ATM NIC, Brendan et al. argue against the use of a general-purpose microprocessor in the

NIC, which increases the cost and the complexity of a design [319, 337]. The Penn/ATM NIC
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distilled a common denominator of per-cell functionality in ATM and implemented it in the

hardware while executing other, higher-level operations on the host processor. Data was trans-

mitted from copies that were kept in the kernel, and clocked interrupts were used to reduce the

processing overhead on the host CPU.

However, researchers also voiced doubts about the effectiveness and apparent benefits of

complex, fully offloaded implementations of transport protocols in the NIC hardware. Fore

Systems Inc. [93] and Cambridge University/Olivetti Research [146] designed ATM controllers

with minimal functionality in the hardware. The rationale behind their design was that the sim-

plicity of NIC hardware design facilitated rapid prototyping and (arguably) offered better per-

formance by taking advantage of aggressive processor technology improvements that closely

followed Moore’s Law [167]. This reasoning formed the basis of the WITLESS (Workstation

Interface That is Low-cost, Efficient, Scalable and Stupid) philosophy by Van Jacobson [177].

Watson and Mamrak remarked that various mechanisms developed in the context of special-

purpose protocols, such as collapsed layer processing, use of microcodes, light-weight task

management, data copy avoidance, efficient network buffer management, etc., were general

purpose and thus also applied to general-purpose protocols such as TCP/IP [354]. Clark et

al. [86], Kay and Pasquale [189, 190], and Van Jacobson [177] provided further evidence in

support of this hypothesis. Clark et al. did a systematic profiling of TCP performance and

found that management-related operations of a TCP/IP implementation, not the protocol pro-

cessing itself, generated the majority of performance overheads [86]. Van Jacobson’s analysis

showed that most of the TCP packets can be processed by fewer than 200 instructions [177].

Kay and Pasquale further classified the TCP protocol-processing overheads into two classes.

For small messages, which were the majority of packets in real-world LAN packet traces, non-

data-touching operations such as network buffer manipulations, protocol-specific processing

routines, operating system functions, error checks, shared data structures accesses, etc., con-

sumed the majority of the processing time. For large messages, data-touching operations, such

as data copies and checksum calculations, etc., dominated the processing cost.

As protocol processing gradually moved back onto the host processor, new bottlenecks were

exposed in the system. Consequently support from the NIC in these matters dictated the overall

communication architecture and performance. One of the critical performance issues was ex-

cessive data movement that happened during the sequential processing of the layered protocols.

This movement created a bottleneck on the memory bus which did not improve at the same rate

as the CPU and network technologies [108]. Furthermore, not only data was crossing the mem-

ory bus multiple times, but also CPU cycles were consumed in orchestrating this data move-

ment from application buffers to systems buffers and eventually to the network controller using

data copies and programmed IO (PIO). Contemporary RISC processors were not optimized for
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such heavy data movements. Other micro-architectural factors, such as complex memory-cache

organizations, ineffectiveness of large caches for protocol processing, high context-switching

costs, expensive system calls, etc., also introduced overheads for protocol processing on the

host CPU [247, 263, 268].

To address these issues, simple, stateless operations were gradually moved away from the

CPU and added back to the NIC. These operations were simple enough to facilitate rapid devel-

opment of NIC hardware, but were still effective in reducing the pressure on the host CPU and

the memory bus. The use of Direct Memory Access (DMA) mechanism was proposed to move

data directly between host memory and NIC using a special hardware module without involving

the host CPU. However, the performance implications of the interaction of a DMA operation

with the host CPU memory accesses, cache hierarchy, and virtual memory management, etc.,

were not well understood and required further analysis. Ramakrishnan discussed these issues

in detail and presented a model to analyze the performance of an application which was gov-

erned by the performance of data copies, design of memory system, NIC interface, and cache

characteristics of the host CPU [282].

NIC support for on-board packet and data buffering was proposed to further reduce the num-

ber of data crossings over the memory bus. Packet buffering facilitated the offloading of check-

sum calculation to a NIC. Large on-board data buffering helped in replacing systems buffers

(residing in the host memory) with on-board buffers (residing on the NIC). This change in the

buffering location resulted in the elimination of two memory bus transfers while copying data

from application buffers to system buffers. Furthermore, staging data for reception and trans-

mission (or re-transmission for reliable protocols like TCP) in on-board NIC buffers allowed

bursty transmission of data at the full network rate by eliminating data access over slow, inter-

nal IO buses. Nectar CAB supported on-board buffering, on-NIC protocol processing, and used

PIO for data copy [29]. Follow-up card designs such as Gigabit Nectar [322], Afterburner [98],

and Medusa [39] followed the WITLESS architecture (i.e. without offloaded protocol process-

ing), had on-board data buffers, allowed offloaded checksum calculations, and added support

for DMA operations for data transfers.

The Medusa [39] and Afterburner [98] cards from HP Labs were built on the idea of a

single-copy stack. In a conventional network stack with the ubiquitous BSD/socket network

API, data is moved as much as five times across the memory bus. The single-copy stack design

suggested to replace system buffers with on-board NIC buffers and copy data directly from

application buffers to on-board buffers, hence crossing the host memory bus twice or even

only once if DMA was used. After the copy, data logically resided in the system buffers,

but physically in on-board NIC buffers and was left there as long as possible. The idea of
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the single-copy stack was generalized enough to be applicable on both the sending and the

receiving side. However, the single-copy architecture violated the layering principle in which

part of the transport layer processing and responsibilities were shifted to the presentation layer.

For example, packetization of user data (to leave header and trailer space) was done during the

copy in the socket send/receive calls, and thus much before the transport processing takes place.

Also, parts of the transport processing on the receive path, e.g., TCP acknowledge generation,

were tied up with the application data copy, where the checksum was calculated and verified.

More recently, the demand for high and predictable performance for data-center workloads

has revived the idea of programmable NICs. To reduce tail latencies, the Chronos networking

stack moves network processing to the userspace and leverages application-driven partitioning

to load balance requests with the help of the NIC [186]. Kaufmann et al. propose the design

of FlexNIC and advocate to offload parts of the packet processing to the NIC [187]. In contrast

to FlexNIC’s approach, Han et al. argue that with recent advancements in packet processing

the performance gap between a hardware and a software NIC has shrunk. They propose a

software-augmented NIC, called SoftNIC, which presents a programmable NIC interface for

development, but can even leverage hardware support, if present [152].

2.1.2 Design and Implementation of High-Speed Networking Stacks

Concepts: Seminal works from Clark, Tennenhouse, and Feldmeier gave general initial recom-

mendations on building a high-speed communication system [87, 118, 331]. Clark and Tennen-

house considered architectural requirements and key engineering issues for the next generation

of communication protocols [87]. They suggested to decouple the protocol architecture from its

engineering concerns, such that the former should not restrict implementation choices for the

latter with inessential constraints. They propose Application Level Framing (ALF) as the key

architectural and Integrated Layer Processing (ILP) as the key engineering principles. The ALF

principle recommends the use of application-specified data units or ADUs (not network pack-

ets) as the fundamental unit of data processing in a protocol stack. ILP advocates to implement

all data-manipulation operations from multiple protocol layers in a few integrated processing

loops. For example, checksum calculation and data copy can be combined in a single operation.

This issue of a protocol design versus its implementation was revisited by Tennenhouse [331]

and Feldmeier [118]. Tennenhouse pointed out that in the absence of any design guidelines,

ad-hoc, layered multiplexing as implemented by developers introduces statistical delays and

results in QoS crosstalk between applications, which leads to poor performance. In a follow-

up work, Feldmeier systematically presented and analyzed a wide range of considerations for

multiplexing issues (physical vs. logical) in a communication system design [118].



30 CHAPTER 2. RELATED WORK ON HIGH-PERFORMANCE NETWORKING AND STORAGE

Data Copies: After the analysis of Clark et al. [86], many development efforts focused on effi-

cient and optimized implementations of transport stacks by eliminating data copies. Kleinpaste

et al. described a single-copy stack (or zero-copy from the point of view of the CPU) where data

was transferred once to the card, but was funneled symbolically through the end-host network-

ing stack to maintain the same stack and processing abstractions [193]. This single-copy stack

required support from the NIC, which provided on-board buffering and checksum calculation

facilities [322]. Other schemes that relied on the virtual memory (VM) system to avoid data

copies were also proposed. Copy-on-Write (COW) mechanism from Mach and Accent operat-

ing systems was used to avoid copying data by sharing VM pages involved in the application

buffers between the application and the networking subsystem in the read-only mode [20, 120].

For correctness, if the application attempted to write the buffers while they were used in trans-

mission, a copy was done. Virtual page remapping, as demonstrated in the V kernel and DASH

operating systems, allowed data transfers using mapping and un-mapping of DRAM pages be-

tween the application and networking protection domains or address spaces [80, 343]. However,

this mechanism required support from the NIC to split data and packet headers, and deposit data

on page-aligned buffers. Another approach was to share pre-allocated, fixed-address buffers be-

tween the application and networking domains [303]. These fixed-address network buffers re-

stricted applications to always put network data in pre-determined locations. Chu implemented

page remapping and copy-on-write techniques to achieve a Zero-copy TCP stack in the Solaris

operating system [84]. Fast buffers or fbufs proposed by Druschel and Peterson combined page

remapping with shared virtual memory mechanisms to provide an efficient cross-domain data

transfer facility [110]. Performance gains from these techniques strongly depended on the per-

formance of the host memory and caching architecture, MMU design, and application behavior.

Brustoloni and Steenkiste presented a novel taxonomy of buffer allocation (either from the sys-

tem or an application) and IO semantics (copy vs. move vs. share) between applications and an

operating system [63].

Per-Packet Overheads: Further research on the optimization of the networking performance

focused on non-data-touching or per-packet overheads [189]. Jeffery C. Mogul identified and

provided evidence of network-locality for better protocol implementations [243]. This network-

locality was analyzed at the scope of processes and suggested that incoming network packets

usually typically belong to the process that most recently sent a packet. This behavior can be

leveraged to build an efficient de-multiplexing system where the control block of the transport

protocol can be cached to eliminate inefficient lookups when a new packet arrives. McKenny

and Dove built on the idea of network-locality and showed that though it worked (even with a

single entry cache) for streamed data transfers with packet trains, certain classes of workloads

such as online transactions, did not exhibit such locality behavior [228]. They analyzed the
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performance of two proposed variants (the move to front algorithm proposed by Jon Crowcroft,

and the last-sender/last-receiver algorithm proposed by Craig Partridge and Stephen Pink) for

BSD’s TCP de-multiplexing implementation.

To reduce the number of packets that traverse the host networking stack on the transmit

side, simple segmentation offloading (e.g. TCP segmentation offloading (TSO)) was suggested.

A more complex scheme, the Large Receive Offload (LRO) was proposed for TCP on the re-

ceive side [148]. The basic idea of these approaches was to let the NIC handle segmentation

or assembly of multiple small TCP packets into a big packet to amortize the per-packet net-

work processing overheads. Menon and Zwaenepoel presented a more generalized approach

for receive-side packet aggregation in software, called Receive Aggregation [235]. They also

proposed to offload acknowledgement packet generation in a similar spirit as TCP segmenta-

tion offloading. Chan et al. [74] designed a network fastpath architecture where pure control

packets, such as TCP ACK packets, are identified and extracted early in the device driver on

the receive path. The control information of the extracted packets (e.g., sequence numbers) is

passed directly to the TCP stack without funneling the packet through the networking stack.

Various interconnects supported the use of large packet sizes to reduce the number of packets

required to carry a given amount of user data. Ethernet allows Jumbo frames which are up

to 9000 bytes (in comparison, the standard Ethernet MTU size is 1500 bytes). Interrupt co-

alescing or disabling interrupts and switching to polling [111, 248] helped to avoid a receive

livelock condition under load [282]. Chase et al. surveyed many of these techniques and quanti-

tatively evaluated their effect with empirical experiments [75]. Segmentation offloading, packet

aggregation (found as Generic Receive Offload or GRO in GNU/Linux), interrupt coalescing

with selected polling (NAPI in GNU/Linux), and Jumbo frames are part of any modern-day

commodity Ethernet/TCP/IP protocol stack.

Operating System (OS) Support: Much of the high-speed networking research was also in-

fluenced by the mechanisms and abstractions provided by the host operating system. Clark

presented upcalls as an OS mechanism to facilitate synchronous communication between mul-

tiple modules of a layered implementation of network protocol processing [85]. Fast buffers

(fbufs) provided a copy-free mechanism to share and transfer network data across multiple pro-

tection domains [110]. IO-lite extended the idea of fbufs to a general-purpose system to share

a single copy of data between multiple subsystems, including filesystem buffering and caching

for networked-storage applications [269]. Soft-timers provided a probabilistic mechanism to

efficiently schedule microsecond-granular event-handling routines of network protocols, such

as TCP, with least disruption to the rest of the system [30]. Druschel et al. identified improper

resource accounting and the lack of request shedding mechanisms as the primary reasons for

poor under-load performance of network systems [109]. They proposed Lazy Receive Process-
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ing (LRP), which combined the idea of early demultiplexing with user-triggered lazy protocol

processing to deliver high performance under load.

In traditional monolithic kernels, such as UNIX [288], network protocols were often imple-

mented as a part of the OS implementation. Although done for performance reasons, this struc-

ture made experimentation with the development of protocol difficult. On the other extreme,

micro-kernel [20] and Exo-kernel operating systems [117, 140] pushed the implementation of

these protocols out of the kernel into the userspace. The x-kernel project from the University

of Arizona integrated network protocols as first-class citizens by providing abstractions to cap-

ture their interaction and dependencies [162, 163]. These abstractions were then efficiently

compiled and mapped onto the host OS’s abstractions, minimizing overheads and maximizing

performance. In a more generalized approach, Scout OS, designed by Mosberger and Peterson,

proposed to make the execution path of an IO request a first-class abstraction from an oper-

ating system [249]. The path abstraction provides better buffer management, efficient layered

protocol execution, specialization of the common fast path, better accounting and QoS than

traditional solutions.

Prevalent micro-kernel operating system designs in contemporary operating systems such

as Mach [20], and factors such as the presence of multiple protocols, easier code maintenance

and debugging, and the possibility of customization by exploiting application-specific knowl-

edge, etc., led many groups to advocate building networking stacks in userspace. Initial work

from Forin et al. designed and implemented userlevel IO servers (networking, storage, graphics,

etc.) for Mach [125]. However, for high-speed networking devices, the userlevel IO server ap-

proach did not deliver the expected performance [216]. In the subsequent works, Thekkath

et al. [335] and Maeda et al. [217] presented TCP protocol stacks which were linked as a

user-level library with existing applications instead of putting the protocol stack into a sepa-

rate process space. Maeda and Bershad further proposed to decouple network IO interface of

an application (send/recv) from its operating system interface (for network management) for a

better protocol management while keeping the OS in charge of all services other than the core

send/recv interfaces [217]. Edwards et al. described an implementation of TCP protocol in

userspace by leveraging the hardware features of JetStream/Afterburner NIC in a UNIX-type

operating system (HP-UX) [114, 115]. Their primary challenges were the efficient handling of

asynchronous events and the processing of the TCP state-machine within the scope of a user-

process. Experienced gained with the development of these user-level protocol stacks helped

with the development of new user-level abstractions and stacks (see Section 2.1.3).

In general to improve the modularity, customization, and extension of network protocols

and more specifically in the context of userspace networking, researchers have also advocated
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leveraging programming languages support. Tschudin used Pascal to design flexible protocol

stacks [342]. Abbott and Peterson proposed Morpheus, which is a specialized object-oriented

language that was designed to capture protocol specification graphs and verify them. The actual

protocol code can then be generated from a verified graph [19]. Prolac is a statically-typed,

expression-oriented language whose aim is to improve readability, modularity, and the exten-

sion of protocol implementations [196] Biagioni implemented TCP using an extension of the

typesafe Standard ML (SML) language [49]. Fiuczynski and Bershad used a typesafe language

to ensure a safe execution of application-specific customized protocols in the operating system

kernel [122]. Naturally, running code in the kernel requires support from the operating system

for extensibility [45, 117]. In contrast to extensibility, Arpaci-Dusseau et al. proposed Infok-

ernel which exposes many key information pieces from the kernel to the userspace for better

management of OS state and algorithms [31]. Using such a mechanism, Gunawi et al. have

implemented safe userspace-level network services [150]. These services leveraged customized

TCP extensions that managed in-kernel TCP state in the userspace in an Infokernel.

Over the years, the system call interface has been the de-facto standard to request an OS

service. To reduce the overhead of a system call, Soares et al. designed and implemented

exception-less system calls called FlexSC [320]. FlexSC eliminated architectural and schedul-

ing overheads associated with the traditional system call implementations that used exceptions

to trap into the kernel. They demonstrated its efficiency with networked applications, such as

web and database servers [321].

More recently, VectorOS [344] proposed by Vasudevan et al. aims to reduce overheads

in the network software stack by organizing IO requests into collections of similar, but inde-

pendent units of work, thereby providing opportunities for amortization and elimination [345].

Arrakis [274] and IX [44] are two state-of-the-art operating systems designed to deliver high

network IO performance to data-center applications. Their designs eliminate the kernel from

the fast data path by separating the management and scheduling responsibilities of the kernel

(control plane) from network data processing (data plane). The data plane leverages device

multiplexing capabilities present in modern-day network cards (due to virtualization capabili-

ties, e.g., SR-IOV) to directly assign instances of virtualized devices to applications for zero-

copy, low-overhead, high-performance network operations. PIKA [42] is a networking stack

whose design was influenced by multi-kernel message-passing operating systems such as Bar-

relfish [41]. PIKA splits the network stack into several components that do not share data and

communicate using a low-overhead message-passing layer. In their work, Shinde et al. focus on

an operating system’s ability to leverage abundant hardware resources of modern NICs to de-

liver good networking performance to applications [316]. They propose Dragonet, a networking

stack design that models protocol processing as dataflow graphs and maps them to the available
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NIC resources [315].

Performance of TCP: Despite all this work, questions about the viability and applicability of

the TCP protocol and the BSD/socket abstraction to provide high performance remained. Ro-

drigues et al. identified shortcomings of TCP in a high-speed LAN environment, and argued

that many applications depend upon the socket interface rather than on the TCP protocol for

data transfers [290]. They decoupled the transport protocol and API abstraction, and devel-

oped fast socket, a high-performance socket implementation in a user-level library using Active

Messages [353] as the transport service. However, Gallatin et al. presented a counter position

and demonstrated that, if implemented correctly with state-of-the-art optimizations and support

from the NIC and interconnect, TCP/IP can deliver very high performance to applications [139].

By enhancing the FreeBSD network stack with large MTUs with scatter/gather IO, page-aligned

payload buffers, adaptive message pipelining, interrupt suppression, and checksum offloading,

they reported the highest TCP bandwidths on public record at that time.

Apart from software and abstractions related overheads, many researchers also investigated

the effect of micro-architectural features on the performance of TCP protocol implementations.

In his analysis, Blackwell concluded that high memory performance demands of TCP for small

messages came from a poorly organized protocol implementation code than the data copies [54].

He proposed Locality-driven Layer Processing to schedule layered protocol processing to im-

prove performance by reducing accesses to memory. Nahum et al. also analyzed the cache

behavior of network protocols to conclude that the performance of instruction/code cache has a

significant effect on the network performance [253].

Foong et al. analyzed the effect of CPU performance scaling and memory bus loads on the

TCP performance [124]. Their analysis suggested higher memory bandwidth demands for a

reference TCP implementation than previously expected. The CPU frequency scaling did not

help to bridge the performance gap due to the large number of memory stalls from compulsory

cache misses on newly arrived data. They revisited the conventional wisdom of 1GHz/Gbps and

illustrated that it may not hold true for small packets. They also pointed out the socket interface,

which is closely tied to the TCP implementation, to be a significant part of overall overheads.

Balaji et al. looked into the memory overheads generated due to socket-based network oper-

ations and confirmed multiple, excessive memory bus crossings of network data, which lead

to high memory demands [36]. Mankineni et al. also studied the processing requirements of

TCP/IP protocol on the Pentium M microprocessor to illustrate the high memory demands of

the receive-side TCP processing [221]. All this research works conclusively showed that just

faster processors would not be sufficient to handle upcoming 10, 40, and 100 Gbits/sec network

speeds, a sentiment echoed previously on similar grounds [225, 263].
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In follow-up works, Huggahalli et al. from Intel recognized that high memory latencies of

servers prevent the host CPU to process packets at the same rate as delivered by a high band-

width network such as 10 Gbits/sec Ethernet [161]. They proposed Direct Cache Access (DCA)

mechanism to inject network data and headers directly into CPU caches to avoid compulsory

cold data misses for newly arrived data. DCA also helped to reduce excessive write-back traf-

fic from dirty CPU caches that unnecessary increased the memory traffic. To further reduce the

memory overheads of NIC-CPU communication and data transfers, Binkert et al. made a case of

a closer NIC-CPU integration [51]. They proposed a simple, integrated NIC design which lets

the OS manage on-chip buffers directly (in a similar spirit to Afterburner) [52]. The key benefit

of their approach came from having a very simple NIC design that eliminates DMA descriptor

maintenance overheads (which can incur significant overheads [359]). The OS managed net-

work TX and RX data FIFO queues and copied data in and out using PIO from on-chips buffers

to the OS-internal data structures (in their case, Linux’s SKB). The Intel IXP network processor

offered a similar, tighter coupling between the core processing and networking resources such

as FIFO TX, RX queues [239]. A more recent NIC interface design from Liao et al. also fo-

cuses on efficient DMA descriptor management, but unlike the previous approach, it moves the

management from the NIC to the CPU [206]. Thus, it retains most of the modern NIC features

such as DMA transfers, direct cache data injection, and multi-queues for multi-core scalability

while simplifying the NIC-CPU interaction for DMA management.

The work on the performance of TCP/socket continues to this day. When CPU frequency

scaling stopped circa 2002-2003, TCP offload engines (TOEs) were suggested and evaluated

to cope with TCP processing requirements [128]. Others proposed TCP on-loading, where a

dedicated CPU core can be used to perform TCP processing [285]. However, with necessary

in-kernel TCP stack performance improvements and modest processor performance progress,

the effectiveness, scope, stability, and generality of these methods were questioned and their

deployment was niche [244, 317, 318].

More recent efforts have focused on the scalability and parallelization of small packet pro-

cessing on manycore systems with 10, 40, and 100 Gbit/sec Ethernet. Willmann et al. an-

alyzed the two most prevalent network parallelization strategies, namely message-based and

connection-based [360]. They concluded that neither provides a perfect speed-up and that the

overhead depends on the locking contention, cache inefficiencies, and scheduling overheads.

Shalev et al. looked into data sharing and lock contention overheads in multicore systems [310].

They proposed an isolated stack design called IsoStack where network stack processing is del-

egated to a dedicated processor core, thus eliminating any sharing, dependencies and locking

among processors. Pesterev et al. from MIT pointed out that executing multiple tasks (e.g.,

interrupt processing, system calls, top and bottom halves, application processing, etc.) related
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to a single network request on different cores leads to significant overheads due to inefficient

cache and CPU utilization [272]. They propose Affinity-Accept, a framework that localizes all

processing of a TCP connection on a single core, thus improving its locality performance. Han

et al. analyzed and identified various abstraction-related overheads from sockets, file descrip-

tors, the VFS layer, and system calls while processing small messages [153]. They proposed

Megapipe, a new channel-based, asynchronous, scalable, message-oriented network abstrac-

tion. The key abstraction in Megapipe is the concept of the IO channel, which is a per-core,

bi-directional “pipe” between the kernel and user space to exchange IO requests and completion

notifications. Jeong et al. proposed mTCP stack that eliminated all kernel-level overheads (from

shared abstractions, locking, rigid structuring, consistency, etc.) by moving the TCP stack into

the user space [178]. They leveraged modern high-performance, user-level packet IO libraries

to deliver raw packets in userspace for processing. mTCP provides the best performance and

scalability on manycore machines, and remains the state-of-art implementation of a TCP stack

on Linux.

Application-specific Networking: Multiple groups investigated developing networking stacks

and abstractions in the context of a specific application. This specialization helped with achiev-

ing a highly optimized implementation of the networking stack. Back in the 1990s, with the

emergence of high-performance networks many projects focused at low-latency networking in

the context of Remote Procedure Calls (RPCs) [50, 179, 275, 303, 309, 327, 333], and identified

overheads stemming from data copies, context switches, inefficient host interfaces, marshaling

and un-marshaling parameters, packet processing, and poor protocol composition, etc.

Today, Key-Value (KV) stores are one such very useful and widely used application. Mul-

tiple implementations of KV stores exist that leverage specialized NICs using Remote Direct

Memory Access (RDMA) [183, 241, 326], utilize raw user-space packet libraries [205, 207], or

are deployed in a specialized system-on-chip hardware [208].

Raw packet delivery and processing is another important workload that has attracted quite

a bit of attention because of its high performance requirements. Back in 1987, Mogul et al.

proposed the Packet Filter mechanism (and associated interpreted language) to efficiently de-

multiplex packets in the kernel and deliver them to userspace protocol implementations [242].

More recently, RouteBricks is a fast and programmable packet router design built using com-

modity servers [104]. It elegantly parallelizes the router processing across multiple servers,

CPU cores, and NICs to deliver high packet-forwarding rates. Netmap is an end-host software

packet delivery framework that proposes to simplify the design and implementation of a net-

working stack [289]. It delivers great performance by eliminating per-packet dynamic memory

allocations by pre-allocating resources, reducing system call overheads by batching and reduc-
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ing copies by sharing packet buffers between the userspace and the kernel. Intel’s Data Plane

Development Kit exposes device TX and RX queues to applications for raw packet process-

ing [169]. Using these frameworks, Marinos et al. presented highly-specialized networking

stacks for web and DNS servers that leverages application-specific execution and requirements

in a clean-slate networking stack implementation [224].

2.1.3 Networking in Distributed Multiprocessor Systems

Also in the 1990s, researchers had started to build distributed multiprocessor systems to run

high-performance parallel computing applications. These applications required lower laten-

cies and higher bandwidths than what was possible with the traditional networking stacks,

and led to the development of new, more user-amenable abstractions and end-system designs.

These designs explored networking support in the context of various applications and work-

loads, included messaging support in the memory controller (e.g., Cray T3E [26], Stanford

FLASH [197], etc.) or in the cache controller (e.g., the MIT Alewife [21], the Stanford DASH

multiprocessor [204], etc.), close integration of messaging with the processor architecture (e.g.,

the MIT J-Machine multicomputer [258], the CMU/Intel iWarp machine [59], the Manchester

dataflow computer [151], etc.), and the architecture of dedicated messaging co-processor for

low-latency messaging (e.g., Intel Paragon [276], Myrinet [57], etc.). Martin et al. provided an

overview of the effect this work had on the cluster architectures [227].

Active Messages proposed by Von Eicken et al. focused on reducing the communication

overhead by allowing communication to overlap computation [353]. They key idea in Active

Messages was that the header of a message contained an address of a user-level instruction se-

quence (or handler) that would be executed when the message arrived. The handler extracted

the data payload and integrated it in the current computation. Compared with the traditional

messaging models — blocking send/receive (cannot hide network latencies) and non-blocking

send/receive (requires complex buffer management, scheduling), active messages offered an

asynchronous messaging mechanism with good performance and without the complexity of

buffer management and scheduling. Brewer et al. proposed Remote Queues (RQs) as a com-

munication model, in which they decouple the message arrival from its handler invocation in

Active Messages to allow further optimizations with better programming semantics [60].

Efficient NIC-CPU Interaction: A set of efforts focused on integrating network communica-

tion into the bigger problem of application/processor coordination in a distributed environment.

Hence, these efforts required support from the system architecture for efficient NIC and CPU

interfaces for communication and coordination.

Henry and Joerg provided a general taxonomy of NIC-CPU integration mechanisms,
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namely OS-managed DMA-based interfaces, user-level memory-mapped interfaces, user-level

registered-mapped interfaces, and hardwired interfaces [155]. They proposed and analyzed a

tightly-integrated NIC-CPU architecture to significantly reduce the communication latencies.

For example, using their NIC with a register-mapped interface remote reads or writes can be ac-

complished in just two RISC instructions. Mukherjee et al. pointed out the high cost of writing

uncachable NIC resources (registers, and queues) for fine-grained communication when initiat-

ing IO by posting IO descriptors for conventional DMA-based interfaces [251]. They presented

a coherent network interface (CNI) that integrated into a CPU’s memory hierarchy and partici-

pated in the coherency events by snooping. This design allowed fast and efficient cache-assisted

communication between a NIC and a CPU.

The SHRIMP (Scalable High-Performance Really Inexpensive Multi-Processor) project

from Princeton University proposed a new application communication abstraction based upon

remote virtual memory mappings [55, 56, 112]. In remote virtual memory mapping, a sender

exported a segment of its address space as an IO buffer, which was imported and mapped by

the intended receiver as its local IO buffer. This initial step before the data transfer decoupled

the fast, low-overhead data movement from the expensive memory segment setup. When the

sender application read or wrote data on these special exported IO segments using processor

load and store instructions, the SHRMP NIC snooped the data, and network IO (called auto-

matic update) was triggered. Another variant called deliberate update required the sender to

explicitly issue a send command. In a similar spirit, Thekkath et al. argue to build distributed

systems using the tighter coupling provided by separating the segment setup and notifications

from data transfers [334].

The Stanford FLASH (FLexible Architecture for SHared memory) project efficiently fused

user-level low-overhead message passing with cache-coherent shared memory abstraction to

provide a single machine abstraction on top of nodes connected using low-latency, high-

bandwidth interconnects. It used a custom-designed node controller that integrates the mem-

ory controller, IO controller, network interface, and a programmable protocol processor [197].

Reinhardt et al. proposed the Tempest interface specification and its implementation Ty-

phoon [286] that was not restricted to one network IO abstraction, but was flexible enough

to support multiple abstractions. To develop hybrid, application-specific communication ab-

stractions (shared memory or message passing), the authors identified four basic mechanisms,

namely, low-overhead messages (similar to Active Messages), bulk node-to-node transfer, vir-

tual memory management, and fine-grained access control. Typhoon was an implementation

of the Tempest interface specification together with the proposed Stache protocol to provide a

functional, flexible, fine-grained user-level shared memory abstraction for parallel programs.



2.1. EVOLUTION OF HIGH-PERFORMANCE NETWORKING 39

More recently, Mario Flajslik and Mendel Rosenblum present a low-latency Ethernet NIC

design that is aimed for small request-response protocols [123]. It delivers good performance by

encapsulating Ethernet packets into a single PCI transaction. Scale-out NUMA (soNUMA) pro-

posed a low-latency distributed in-memory processing model to bind DRAM from multiple ma-

chines into one single memory domain [259]. It simplifies the network protocol state-machine

by specializing it for maintaining coherency and then integrated it into a custom remote memory

controller. In a follow-up work on soNUMA, Daglis et al. present a network interface design

for manycore system-on-chip (SoC) systems [97]. To keep the NIC-CPU communication over-

head low (for low latency) and to reduce data traffic on the on-chip communication fabric (to

deliver high bandwidth), they present a split network interface (NI) design. A frontend part

in the split design is put with every core and interact with the application to initiate network

operations. A backend part which is put on the SoC edges, is responsible for data movement

without overburdening the SoC fabric.

User-accessible Network Controllers: User-accessible network controllers were first intro-

duced in series of supercomputers such as Thinking Machines CM-5 [203] and Meiko’s CS-

2 [43]. The design was then also supported by other concurrent projects such as Typhoon [286],

memory-mapped NIC for SHRIMP multicomputer [56], and Stanford FLASH system [197].

Follow-up works in the field focused on commoditizing the technique commodity network

equipments such as ATM.

Application Device Channels or ADCs proposed by Druschel, Peterson, and Davie provided

a mechanism to bypass the host operating system for network IO by giving applications direct,

but restricted and safe access to the OSIRIS ATM NIC’s memory [111]. This memory, which

represented RX and TX queues, was divided into processor-addressable pages and mapped into

an application address space. Application data was, however, maintained in the host memory,

and only IO descriptors were posted into the userspace-mapped queues. Virtual circuit identi-

fier (VCI) of an incoming packet was used to de-multiplex incoming packets. Praat and Fraser

proposed Arsenic, a user-accessible NIC for Gigabit Ethernet [280]. Arsenic differed from its

predecessors in that it enabled flow-level multiplexing in the NIC on connectionless datagram

networks such as Ethernet. It achieved this by associating each flow with a virtual interface

(with its own TX and RX queues), and giving applications direct access to the interface us-

ing programmable packet filters. Support from these user-accessible network controllers was

crucial for the development of various userspace networking stacks [98, 99, 217, 319, 335].

Building upon the concepts of user-level networking, Von Eicken et al. proposed U-Net, a

communication architecture that provides direct, but secure access to virtual network interfaces

to applications [352]. In U-Net, every application had its own set of network resources consist-
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ing of message queues (send, receive, and free queues) and associated communication segments

that hold the network data. The resource setup was mediated by the operating system and sup-

ported by the NIC hardware. All buffer management and network processing were moved to

userspace, thus allowing optimized implementations of network protocols. Data was sent and

received directly from userspace communication segments (or even application buffers). The

NIC multiplexed the packets to the right message queue using network tags (e.g., VCIs on the

ATM networks). The flexible network abstraction of U-Net offered high performance for both

traditional protocols, such as TCP and UDP, and novel communication abstractions, such as

Active Messages.

The Hamlyn network interface initially proposed by John Wikes [358] and later im-

plemented by Buzzard et al. [66] from HP Labs is a sender-managed interface for high-

performance, low-overhead inter-processor communication. In Hamlyn, the sender not the re-

ceivers chose the destination buffer address where the data was received at the receiver. This

design reduced the complex buffer management, multiplexing, and control transfers at the re-

ceiving side and avoids packet losses due to receive buffer overruns. Like U-Net, both the

sender and the receiver were given direct access to the networking hardware by pre-allocating

and preparing communication buffers and resources, which were validated by the operating sys-

tem before being installed on the network card. Data movement and control notifications were

separated, and data could be moved directly between the application memory and the network

without interrupting the host.

2.1.4 High-Performance Networking APIs

In this section we provide a basic overview of key modern high-performance networking APIs.

We use the term networking API in its broadest sense as many of the following APIs are more

than just a networking API. However, all of them can be used as a basic building block that

can be utilized in developing high-performance applications in a distributed environment. An

application may choose one API over another based upon the level of control it wants to exercise

over the network IO. Although the list of APIs which are discussed below is not comprehensive,

we provide a general theme of these APIs and put them in context with the work presented in

this thesis in the Comments Subsection(2.1.4.6).

2.1.4.1 Virtual Interface Architecture (VIA)

Virtual Interface Architecture or VIA [91] was an industry effort to standardize many high-

performance networking efforts, in particular user-level networking under a common frame-

work. Before VIA, several proprietary System Area Networks (SANs) were developed that
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delivered high performance, but sacrificed the portability of applications written for them.

Commodity networks, such as Ethernet, were standardized, and supported a simple develop-

ment model, but failed to deliver performance that was needed for high performance computing

(HPC) applications. Hence, the key goal of VIA was to strike a balance between high perfor-

mance and standardization of interconnects. At the same time, several academic projects (U-

Net, Hamlyn, ADC, SHRIMP etc.) explored and established a common set of high-performance

properties which were eventually included in the VIA specification. The VIA specification pro-

vides the abstractions, semantics and principles to integrate many of the research ideas, such as

operating system bypassing, user-level networking, splitting of the data and control setup [352],

virtual-memory mapped communication [112], and explicit memory management [358], etc.,

into a viable end-host networking stack [65].

The VIA specification virtualizes the network interface and provides each client or VI con-

sumer with its own private, directly accessible virtual network interface (VI). Each VI can

be connected to a remote VI and has a set of queues for data transfers. VI consumers can

asynchronously post IO descriptors on these queues to initiate data transfers. IO completion

notifications are delivered on a separate queue. IO is performed from previously pre-registered

memory buffers. The VI architecture supports two types of data transfer models for network IO.

In a Send-Receive model, which is similar to the traditional message passing, a sender explicitly

sends a message and the receiver specifies where to receive the data. The second model is the

Remote Direct Memory Access (RDMA) model where the sender (after acquiring the necessary

credentials and capabilities) directly reads or writes buffers in remote memory locations.

VIA was also supported by the emerging and now popular, InfiniBand interconnect. The

InfiniBand specification was later standardized by InfiniBand Trade Association (IBTA). The

standard contains details of an abstract end-host interface called Verbs, which is a superset of

the VIA specification. Today, Open Fabric Alliance (OFA) [16] provides the OFA Enterprise

Distribution (OFED) stack, which is the reference implementation of the Verbs specification on

multiple platforms. We briefly discuss VIA, InfiniBand, and OFED in more detail in Chapter 3.

A more comprehensive introduction to the VIA/RDMA can be found in Philip Frey’s PhD thesis

work [129].

2.1.4.2 Portals

Portals is a low-level network API for high-performance networking IO [287]. It is developed

by Sandia National Laboratories and the University of New Mexico. The key concept in Portals

is the definition of elementary building blocks called Match Entry. Broadly speaking a match

entry contains a packet matching criteria and associated actions that can be combined to support
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arbitrary upper-level IO semantics in the network. An incoming message can be tagged and

matched against a match entry based upon source or destination id, job id, user id, 64-bits

match or ignore entries, etc. When a match entry matches, the corresponding memory descriptor

buffer is used to receive the rest of the data. Multiple match entries (in a preference order) can

be linked to make a list, called match list. A match list is then installed in a slot in a Portal

table that is attached to a NIC. A slot in a portal table corresponds to a specific high-level

protocol such as MPI. This basic mechanism allows building receiver-driven network IO where

upon receiving incoming data, a Portals implementation (either in hardware or software) de-

multiplexes incoming messages based upon their port table entries, and then walks the match

list to match the tag present in the received message to available entries to determine where to

deliver data.

The Portals API solved three significant issues associated with VIA in supporting large-

scale HPC infrastructure [61]. First, Portals API provided more expressive, higher-level events

and network operations such as triggers, counters, and event types etc., than VIA. These mech-

anisms help in developing light-weight, efficient, and fast higher-level implementations of op-

erations such as MPI collective IO. Second, Portals API simplified network receive processing

(via building blocks matching) while simultaneously providing very expressive and powerful

network operations to upper-level protocols. In contrast, VIA imposed strict FIFO ordering for

processing receive queues. The matching-based receive provided network independence and

isolation while guaranteeing progress for applications. And lastly, in order to scale to thou-

sands of systems, Portals nodes were made connectionless and required no connection-specific

establishment and resource management.

Apart from these differences, Portals also shares many of the key design choices with VIA

such as OS-bypass, zero-copy, user-space application-private networking. Like VIA, Portals

also supports two-sided and one-sided network operations with additional matching-based net-

work receives operations.

Portals is used as the lowest-level native network programming API for their custom de-

signed SeaStar network interface on the XT3 system.

2.1.4.3 Open Fabrics Interface (OFI)

Open Fabric Interface or OFI is a next generation of communication interfaces from OpenFabric

Alliance [149]. OFI focuses on meeting the performance and scalability requirements of high-

performance computing applications, and enterprise applications running in a closely coupled

setting on a high-performance interconnect. It also extends semantics of network operations to

integrate Non-Volatile Memory (NVM) storage accesses as a first class citizen. Multiple proto-
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types (such as our proposal for FlashNet, Chapter 5) and products (IBM Active Storage [119],

Mangstor NX-Series products [223]), already provide RDMA based access to remote flash stor-

age.

For a better development and analysis of key requirements, OFI breaks the full stack into

application interfaces, provider libraries, kernel services, daemons, and test applications. Also,

OFI borrows and expands on many of the key ideas from other popular interfaces such as Por-

tals, and MPI. For example, it supports tag-matching based receives for MPI as done in the

Portals interface. The implementation of OFI focuses heavily on improving performance and

scalability. For performance, it streamlines code by removing branches, eliminates unnecessary

and residual data structures from the old OFA verbs API, provides cache-aligned new structures,

etc. For scalability, it introduces an address vector interface which greatly reduces the memory

requirements per connection.

2.1.4.4 Unified Communication-X (UCX)

Unified Communication-X (UCX) is a recent proposal from multiple industry and academia

groups to unify high-performance programming models [311]. UCX designers argue that al-

though there have been multiple efforts in the field of high-performance computing to unify

networking interface, they do not provide portability, performance, openness, and generality of

UCX. Beside providing a unified framework, UCX also considers the next generation of more

heterogeneous computing platforms with massive threaded cores, hierarchical memories, and

specifically computing accelerators such as GPGPUs.

To achieve its goals, UCX breaks down networking and compute concerns into three main

pieces. These components communicate using a clearly defined public API. The first com-

ponent is a common service framework called UC-Service or UC-S. UC-S provides general

common functionality, resources (e.g., memory buffers), and common helpful routines used

by other components. UC-Transport or UCT is the unified low-level transport service that

implements communication protocols specifically to the underlying transport system such as

InfiniBand Verbs, IBM BG/Q Torus, Crays uGNI, or OFI libfabrics, etc. It defines interfaces

for immediate (short), buffered copy-and-send (bcopy), and zero-copy (zcopy) communication

operations for small, medium, and large message transfers. And lastly, UC-Protocol or UCP

implements higher-level protocols that can be used to build application-facing front-end APIs

such as MPI or PGAS. Currently, UC-P provides interfaces for initialization, Remote Memory

Access (RMA) communication, Atomic Memory Operations (AMO), Active Message, Tag-

Matching, and Collectives.
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2.1.4.5 Programming Abstractions

Parallel programming abstractions provide a higher-level programming frameworks and con-

structs than low-level networking APIs. These frameworks dictate how general high-

performance problems such as weather forecasts or particle simulations can be broken down

in to small parallel tasks, how these tasks coordinate for processing, how data is distributed and

shared across these tasks, etc.

Two fundamental models in which parallel processes can interact are message passing (or

distributed memory) and shared memory.

Shared Memory: Shared memory is a mechanism to share data between tasks. The data could

be interpreted for locking, synchronization, ordering etc. or actual program data. The data is

stored in a globally shared address space which parallel jobs can read and write asynchronously.

The GASNet (Global-Address Space Networking) project from Berkeley designed this idea

of global parallel, shared address space for multiple parallel tasks in a standardized form [5].

It decoupled language-independent abstractions from their low-level implementations over a

variety of networks. Using this model, various run-time libraries and language-extensions with

compiler supports were developed. Follow-up work in the field identified that not all memory

addresses are equal and local memory accesses are naturally faster than remote memory ac-

cesses. This observation led to development of the Partitioned Global Address Space (PGAS)

models which merged the performance of local accesses with the simplicity of global data ref-

erencing for parallel programs. The PGAS model is the basis of Unified Parallel C (UPC),

Co-Array Fortran, Fortress, Chapel, X10, Global Arrays and SHMEM programming APIs. The

PGAS model (or the shared memory model) is arguably simpler to program than explicit mes-

sage passing [23].

Message Passing: As the performance and scaling issues with early shared-memory multi-

processor systems became evident, the focus of systems design shifted on efficient message

passing interfaces. In the message passing abstraction, parallel tasks exchange data, commu-

nicate, and coordinate via passing messages to one another. These messages can be sent in an

asynchronous or synchronous ways.

A message passing framework can leverage various degrees of support from an underlying

network to deliver good performance to applications. Hence, multiple commercial and aca-

demic projects implemented their own proprietary versions of message passing frameworks

optimized for their systems. Message Passing Interface (MPI) API was born out of a necessity

to unify these fragmented efforts to provide a standard messaging interface between processes

running on a distributed multi-processor system [250]. In 1994, the first version of MPI specifi-
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cation was released. It laid out details about message semantics and a run-time environment sup-

port for MPI communication. MPI has been tremendously successful in the high-performance

computing arena [147]. Since then, two more revisions, version 2 (MPI-2) in 1997 and version

3 (MPI-3) in 2012, have been made. MPI-2 added support for dynamic resource management

and remote memory operations. MPI-3, the latest version of MPI, introduced non-blocking

collective operations and a more efficient use of one-sided operations [157]. In essence, MPI

provides various communication primitives (point-to-point, collective, one-sided, and IO oper-

ations), declarative concepts (datatypes, groups, processes, and topology) and associated tool-

chain (linking and runtime).

Summary: In comparison to other low-level networking APIs discussed so far, programming

models such as MPI or PGAS, are not native networking APIs, but are broader programming

frameworks that define communication as well as computation abstractions for parallel pro-

grams. We mention them here because these frameworks can also be used in the context of

raw networking and storage IO (e.g., MPI-IO for storage). Most of their ideas are well estab-

lished, properly documented, and evaluated. Multiple implementations of them are available

on low-level networking APIs discussed in the previous section [58, 154, 210, 214]. These

implementations hide the complexity and heterogeneity of underlying transports and NIC de-

signs. Hence, it is a responsibility of implementations to deliver performance close to the raw

networking by leveraging the right set of operations.

2.1.4.6 Comments

The aforementioned high-performance APIs provide a variable degree of control on commu-

nication and performance delivered to applications. HPC networking interfaces such as Por-

tals which are primarily developed keeping hardware support in mind (e.g., Quadrics/Elan4,

CNIC on ASCI Red supercomputer, Myrinet, etc.), offer rich network semantics and functions.

These functions include collective network communication, conditional notifications, selective

receive, arbitrary IO ordering, and programmable triggers, etc. In most cases, NICs of these in-

terfaces have advanced programming functions to provide QoS, manage memory buffers, setup

connections, and execute network logic etc. However, none of these APIs inherently depend

upon the availability of such features in the interconnects and can be implemented on top of

simpler NICs. In contrast, commodity interfaces such as VIA (and follow-up networks e.g.,

InfiniBand, iWARPs, RoCEE, etc.), were born out of commodity computing (from U-Net and

successors) and focused on providing an efficient end-host networking stack design for point-

to-point communication. This design included memory-mapped user-space IO, zero-copy data

transfers, one-sided operations, and OS-bypassing, all of which were also present in the HPC



46 CHAPTER 2. RELATED WORK ON HIGH-PERFORMANCE NETWORKING AND STORAGE

interfaces. These commodity interfaces required support from applications as well as the OS

to manage communication resources such as connection endpoints, and memory buffers, etc.

So far, in contrast to HPC interfaces, which can scale up to 10,000s and 100,000s of nodes,

commodity interfaces have been proven successful for small to moderate size clusters (100s to

1000s of nodes). In this thesis, we choose to use a low-level VIA-inspired interconnect (iWARP)

because (a) VIA being a basic point-to-point networking IO gave us maximum flexibility and

control over communication resources when developing a distributed service like RStore; and

(b) the general availability of hardware/software stacks enabled the open development without

being tied-up to a particular solution.

2.1.5 Summary

Thanks to Moore’s Law, the CPU speed doubled every 18 months in the 1990s and provided

the much required performance boost for protocol processing on the host CPU. Consequently,

outside HPC, interest in the active development of offloaded, fully-programmable network con-

troller designs for general-purpose commodity computing diminished because the host CPU

delivered competitive performance. Further research in this field (see Section 2.1.3) was driven

by the interest and performance demands of emerging parallel and distributed applications.

Commodity efforts focused on improving the performance of TCP/socket-based computing.

However, much of the research done in the 1990s is finding its way back in to data-center

computing, as the stagnant CPU speed improvements (in comparison to network and storage

devices) have again made it a potential performance bottleneck.

2.2 Evolution of Non-Volatile Memories

For many years, persistent storage as provided by spinning hard disks underwent little perfor-

mance improvements. In comparison, the processor, memory, and interconnect technologies

continued to improve on a regular basis. However, this situation changed rapidly with the intro-

duction of Non-Volatile Memories (NVM) in desktop and enterprise computing almost a decade

ago. Since then, many new system architectures, storage stacks, abstractions, and performance

enhancements have been proposed to deliver this phenomenal performance improvement in the

storage hardware to data-crunching applications.

In this section, we first give a general overview of the physical attributes and performance

of current and emerging Non-Volatile Memory technologies, focusing on the NAND flash and

related technologies in the context of performance. We then discuss various host interfaces

through which they are attached to the host and finally look at the large body of work done in
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improving the performance of software systems by developing new abstractions and optimiza-

tions on top of NVM storage.

2.2.1 Current and Emerging NVM Technologies

Flash Memory: Flash memory was invented in the 1980s at Toshiba. Early applications of

flash memory were in embedded devices, cameras, mobile phones, and electronic equipment,

etc. Flash memory stores data in memory cells made out of floating-gate transistors. These

transistors trap electrons and alter their voltage characteristics. This action is called program-

ming the cell. This change in voltage is sensed by measuring the current flow, whose absence

or presence determines weather 0 or 1 is stored in that cell bit. To increase the storage den-

sity, multi-level cell (MLC), including triple-level cell (TLC), devices were invented. These

devices can store multiple bits in a cell, and the amount of current, rather than just its presence

or absence, determines the stored bits. Before storing data again, a cell must be erased or reset.

There are two main types of flash memory, namely NAND and NOR flash, resembling

their namesake gate behavior. From a system point of view, NOR flash provides random byte-

addressability and is typically used to store BIOS and firmware routines that do not change

often. Commercial flash storage uses NAND flash, which has lower program/erase latencies

and a higher density than NOR flash. In a typical packaging, NAND flash cells are organized

into 2-8kB pages. 64 to 256 of these pages are grouped together to form a block. A page is

a basic unit of read or program, whereas a block is a basic unit of erasing. A 4kB NAND

flash page can typically be read in 60-100µsec and a block can be erased in a few millisec-

onds. However, NAND cell blocks can only be programmed/erased a finite number of times,

usually 100K times for SLC and 5K-3K times for MLC. The decay of NAND flash cells that

gradually become unable to store data or incur a very high error rate is called wear-leveling

of flash. To provide a device-wide effective and uniform wear leveling, a redirection layer be-

tween the system’s view of logical addresses and the physical page addresses on flash, called

Flash Translation layer (FTL), was introduced. During a NAND flash block erase, the FTL en-

ables a flash controller to transparently move data from the old to the new physical flash pages

without affecting the system’s view of where data is stored. However, the different sizes of

the flash pages (read granularity) and blocks (erase granularity) present some interesting design

and performance trade-offs when building a flash storage system. Agrawal et al. provide an

excellent overview of these trade-offs [22]. In their work for Gordon supercomputer, Caulfield

et al. [70] describe in detail various system designs and trade-offs when integrating flash into a

data-centric system. They also proposed an FTL design that was tailored towards the needs of

data-intensive application. Unsurprisingly, the design and implementation of an effective flash
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Read Write Endurance
DRAM 25-50ns 35-100ns 1018

STT-MRAM 29ns 95ns 1015

PCM 48ns 150ns 108

NAND SLC flash 25µs 200µs 105

Table 2.1: IO latencies and endurance summary of various storage technologies [90]. The next
generations of PCM and STT-MRAM deliver a performance very close to DRAM
while providing persistency and durability of the stored data.

controller and a FTL are very active research fields.

Phase Change Memory (PCM): Phase Change Memory (PCM) is the most viable memory

technology to succeed flash as the non-volatile storage of choice. PCM stores data bits by

changing the crystalline state of a Chalcogenide material by applying heat produced by the pas-

sage of an electric current. The crystalline state, amorphous or crystalline, has distinct resistive

properties, which can be used to determine the bit stored. Unlike NAND flash, PCM bit cells

can be manipulated individually, hence making it bit-addressable. PCM cells do not require an

explicit erase operation. Although PCM cells are 10-100× more durable than the NAND flash

cells, they still require some wear leveling. However, in the absence of different program vs.

erase size granularities, the wear leveling mechanisms of PCM cells are much simpler.

The performance and organizational characteristics of PCM memories are projected to be

close to those of DRAM. Hence, many researchers are considering it to be a viable alternative to

replace or augment DRAM as a main memory technology [200, 281]. From a system-building

perspective, researchers are treating PCM as being available on the memory bus and accessed

using the CPU load and store instructions.

Beyond PCM: Many materials and technologies, such as Spin-transfer torque magnetic

random-access memory (STT-RAM or STT-MRAM), Ferroelectric RAM (FeRAM, F-RAM

or FRAM), Magnetoresistive random-access memory (MRAM), and Memristors, etc., are cur-

rently undergoing a rapid development. These technologies offer similar structural organiza-

tions as PCM, but offer lower energy cost, higher endurance, and improved performance.

Table 2.1 summaries the performance and endurance characteristics of various non-volatile

memories. For a comprehensive treatment of the physical properties of non-volatile memories,

please refer to the Non-Volatile Memory Technology Database (NVMDB) at UCSD [328].

2.2.2 Host Interfaces

As SSDs: There are several ways in which non-volatile memory technologies can be attached

as a device to a host system. In its simplest form, NVM technology such as NAND flash can
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be packed in a disk form factor and attached to a Serial ATA (SATA) or Serially Attached

SCSI (SAS) bus. This packaging is called Solid State Disks (SSDs). These SSDs are avail-

able from a number of manufacturers such as Intel [172], Samsung [293], Segate [305], etc.

The key advantage of packing NVM storage as SSDs is that the system software (drivers, the

kernel and the block layer) can use them without modifications. Although helpful in the initial

integration, the limited capacity and high overhead of modern storage protocols become a ma-

jor performance bottleneck when accessing low-latency (in nanoseconds) and high-bandwidth

NVM storage [68]. Additional operating system involvement due to system calls, file system

caching, context switches, etc., can cause up to 50%-63% performance overhead.

On the PCIe bus: To remedy this situation and deliver better performance, flash memory can be

attached directly to a PCIe bus interface, thus eliminating slow SATA/SAS interfaces [69, 137].

Caulfield et al. proposed Moneta, which is a PCIe-attached flash device with a programmable

controller [69]. The controller implements separate queues for reads and writes, performs band-

width balancing via round-robin stripe buffer allocation to requests, and hides the access laten-

cies by exploiting the parallelism of multiple flash dies. Numerous software optimizations have

also been proposed, including bypassing the block IO scheduler, atomic request issuing, al-

lowing multiple threads to handle interrupts using atomic reaping, and using polling instead of

interrupts under heavy load. Moneta Direct (Moneta-D) is a follow-up work on Moneta in which

further overheads due to entering the kernel for system calls and performing file system permis-

sion checks on every IO request have been eliminated [71]. File system checks are offloaded

to a capable hardware, and virtualized, application-private IO channels, where DMA requested

are posted directly, are used by a userspace library for IO operations. FusionIO also developed

its own implementation of PCIe-attached flash and commercialized it for enterprise comput-

ing [137]. Their interface specification is close sourced. Unlike Moneta, FusionIO runs a part

of its controller and the FTL implementation on the host processor [181]. Onyx is a prototype

high-performance PCIe-attached Phase Change Memory with an FPGA-based controller [25].

Over the past couple of years, many vendors have developed their proprietary interfaces

to PCIe for accessing the attached flash controller. The Non-Volatile Memory Host Controller

Interface Specification (NVMHCI) (also known as NVM Express or NVMe) is an attempt to

standardize the access interface of these devices [10]. The controller is designed from scratch to

deliver high performance by having a low software overhead, and exploiting internal parallelism

of flash chips. The first NVMHCI 1.0 specification was released in 2008, and compliant devices

are available from several vendors [171, 294].

On the Memory Bus: Next-generation NVM technologies, such as PCM, will necessitate

integration on the memory bus because of their close-to-DRAM performance characteristics.
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eNVy, proposed by Wu and Zwaenepoel, was one of the early systems to experiment with

such a design [362]. Although using block-addressable flash chips, eNVy presents a byte-

addressable DRAM-like access interface to the host CPU on the front-side memory bus (FSB)

using a custom memory controller. To hide large memory write latencies, eNVy uses a battery-

backed SRAM as a write buffer for copy-on-write pages. Mogul et al. have argued for a

hybrid approach where pages can be moved between DRAM and NVM depending on their

update frequencies [245]. Qureshi et al. [281] and Lee at al. [200] explore the possibility of

replacing DRAM with PCM for better density and energy efficiency. Bailey et al. discuss the OS

implications of having a fully-persistent main memory [34]. Integrating persistent memory into

the processor’s memory hierarchy raises many questions about ordering, consistency, durability,

and failure semantics [47], etc. These questions are part of the active research done in the field

that is exploring new memory controller designs [212, 370], hardware primitives [92, 113, 254],

and programming abstractions [89, 347, 351].

2.2.3 Storage Systems, Abstractions, and Stacks

In 1994, Douglis et al. examined the possibility of using flash storage in mobile comput-

ers [106]. Their study concluded that although very helpful with improving the read perfor-

mance by an order of magnitude and decreasing the energy consumption by 90%, in absence of

the considerable software precautions, the garbage collection procedures of the flash decrease

the write performance by a factor of 10. In this section, we cover the relevant work that led to

the development of such considerate system software and application interfaces for integrating

NVM technologies.

File Systems: A file system presents a known and familiar interface to applications. Conse-

quently, many flash and NVM-aware file systems have been proposed to deliver high storage

performance to applications. Kawaguchi et al. were the first to consider the asymmetric per-

formance of flash read and writes, the absence of in-place updates, and its limited endurance

in a file-system design [188]. They leveraged the Log-structured file system designed pro-

posed by Rosenblum and Ousterhout [291] to design a flash-based file system. Many other file

systems for embedded systems that accessed NAND flash chips directly, such as JFFS [361],

YAFFS [18], Microsoft’s FFS [226], etc., were also developed. Because of the limited support

from embedded hardware, these file systems also dealt with issues of FTL management, garbage

collection, and wear-leveling, etc. The Direct File System (DFS) by Josephson et al. proposed

to virtualize flash chips at the FTL level by providing a very large storage address space [181].

The virtualization layer, which also included the responsibilities of the FTL, block allocation,

garbage collection, etc., helped in simplifying the design of a file system. However, the DFS
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design requires support from the flash device. F2FS is a more general, device-independent,

mature state-of-the-art GNU/Linux file system that was designed from scratch to handle flash

idiosyncrasies in the SSD format [201]. Other general file-system-level performance and design

optimization works include Anvil [356] and Nameless writes [368].

Other researchers have focused on non-flash-based file systems, which are better suited for

emerging PCM storage. Condit et al. propose Byte-addressable Persistent File System (BPFS)

to leverage the byte-addressability of PCM storage [92]. BPFS uses short-circuit shadow paging

(SCSP) to provide atomic, fine-grained updates (in-place write, in-place append, and partial

copy-on-write) in BPRAM. SCSP relies on two new proposed hardware primitives: atomic 8-

bytes writes and epoch barriers. The atomic 8-byte write (even in the case of a power failure)

ensures that the pointer updates are consistent and atomic. Epoch barriers are necessary to get

guarantees on the memory ordering done by modern memory controllers. These new primitives

help maintaining atomic pointer updates in internal file and directory structures of BPFS with

strict ordering guarantees. Such hardware support is also assumed by others [89]. Persistent

Memory file system (PMFS) is a light-weight, POSIX-complaint kernel-level file system that

provides direct access to persistent memory via memory-mapped IO to applications [113]. The

work also proposes a new simple hardware primitive called pm barrier to ensure durability

of writes that are flushed from CPU caches. Unlike BPFS, PMFS uses larger in-place writes,

maps storage directly into the application address space using mmap, and assumes simpler

hardware support. Storage-class memory file system (SCMFS) leverages the large and sparse

virtual memory address space to lay out files from byte-addressable persistent storage into large

contiguous virtual address chunks [363]. Aerie is a flexible file system architecture [350] that

implements most of the functionality in the user space [349]. The kernel’s role is reduced to

just multiplexing memory. To demonstrate the flexibility of using Aerie’s interface, authors have

implemented a POSIX-compliant PXFS and a simplified key-value file system called FlatFS.

Quill [329] is another file system that provides direct user-level access to file data through

memory mappings.

Memory Hierarchy and Caching: Several projects investigated the integration of NVMs in

the memory hierarchy in various capacities. FlashVM uses flash storage as a fast paging de-

vice while optimizing the performance and reliability of the device by using the knowledge

and usage pattern from the virtual memory management system [299, 300]. A key advantage

of this approach is that it does not require any modifications to applications. Badam and Pai

proposed SSDAlloc, a hybrid and integrated SSD/DRAM memory management system [33].

SSDAlloc transparently manages application objects between DRAM and SSD while preserv-

ing an application’s view of the virtual addresses of these objects. Hence, applications can

transparently extend their memory footprint to the combined capacity of SSDs and DRAM.
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Other ways of using flash SSDs include using them as logging device [78], as transparent fast

cache [48, 191, 301], or letting applications such as databases manage their own storage on

flash [202].

Persistent Data Structures: The availability of persistent byte-addressable memories facili-

tates the development of persistent data structures as the storage interface. Such an architecture

does not restrict NVM into a second-tier storage role and brings it closer to the applications. The

key challenges in building such data structures are how to ensure correctness and durability in

the presence of failures. Three concurrent projects, namely Mnemosyne [351], NV-heaps [89],

and Consistent and Durable Data Structures (CDDS) [347], provide ways to develop generic

and safe data structures in NVMs to user-applications. NV-Heaps allows applications to allo-

cate, reference, and de-allocate space in a NVM storage [89]. It uses software transactional

memory (STM) and redo logging to provide transactions. HV-heaps assumes hardware sup-

port in terms of 8-byte atomic pointers and epoch-based data flushes [92]. Like NV-heaps,

Mnemosyne also provides low-level transactional support to allocate and manage data struc-

tures in NVMs [351]. However, Mnemosyne is language independent (hence cannot provide

type-safe pointers) and assumes no modifications to processor hardware. It uses a combination

of mfence and cflush instructions to provide consistency and durability. Consistent and

Durable Data Structures (CDDS) developed by Venkataraman et al. use versioning to provide

atomic updates and rollbacks to build data structures in NVMs [347].

Instead of providing a general framework to develop any data structure, Yang et al. [365]

and Chen et al. [79] focus specifically on building B+ trees, an important data structure in

databases, in NVMs. Whole System Persistence (WSP) proposed by Naranyan and Hodson

focuses on keeping data in DRAM persistent by taking advantage of a small residual energy in

systems to flush data on fail (rather than flush data on commit) from CPU caches and registers

on a power failure [254]. Other relevant works in the field of consistent and recoverable data

include failure atomic-msync [270], Rio Vista [213], and RVM [297], which dealt with keeping

application and operating system data consistent in the case of a failure. Other work looked into

efficiently implementing transactional IO on non-volatile memories [88, 279, 298].

Performance: Many efforts focused on the design and implementation of fast storage stacks on

modern NVM hardware and computing platforms. Initial efforts by Seppanen et al. [306] and

Caulfield et al. [68] quantified the software overheads for fast NVM storage accesses. Woong

Shin et al. advocated for shortening of the IO path by merging execution contexts and elim-

inating additional context switches in IO processing [314]. Ahmad et al. suggested to use

interrupt coalescing to reduce the CPU load while processing interrupts in a virtualized envi-

ronment [24]. Yang et al. recommended to use a synchronous IO completion path with polling
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with low-latency NVM devices [364]. Dong In Shin et al. proposed dynamic polling, where

the polling interval is dynamically adjusted by monitoring the responsiveness of the NVM de-

vice [313]. Instead of using either exclusively polling (blocking the CPU) or blocking (high

cost of context switches) IO, Wei et al. use speculation as a means to optimally use the pro-

cessor for IO completion processing [355]. An application continues with its execution until

it produces an externally visible side effect. At this time, the IO stack suspends its execution

and processes IO completion. In this way, an application continues to do useful work without

being held while IO requests are completed. Bjørling et al. looked into the scalability of the

block layer of GNU/Linux [53]. They redesigned and optimized the block layer implementa-

tion in Linux for reduced contention on shared resources, increased parallelism, and scalability

on multi-processor systems. In a more comprehensive work, Yu et al. implemented several

of the aforementioned optimizations and analyzed their impact on the block IO performance

of Linux [366]. They have implemented synchronous completion with IO polling, merging

of discontinuous requests, optimization of IO scheduler, smart read-ahead logic, and avoiding

lock contention in request queues. Others have looked into modeling SSD to reason about their

performance [102, 103].

2.3 Distributed Storage

A part of this thesis deals with building a remote storage access stack using RDMA principles

and operations. In this section, we provide the necessary background on classical distributed

storage solutions, i.e., SAN based and NAS based, and comment on the RDMA usage of these

solutions, why they have seen limited success, and the recent rejuvenated interest in RDMA

networking.

2.3.1 Storage Area Network (SAN)

Storage area network (SAN) is a network that provides IO accesses to remote storage devices

at a block-level granularity. A SAN can be an isolated specialized network for storage IO or

can share an infrastructure network with other systems. The key benefit of the SAN technology

comes from consolidating storage in a logically central administration from where storage ca-

pacities can be managed and provisioned to servers distributed across a whole data center. Once

these servers get a remote storage device as a local block device over a SAN, they typically in-

stall a local client-side file system such as ext4 to storage and access files. Alternatively, in a

virtualized environment, virtual machines can be given raw remote block devices for storage IO

using SAN protocols.
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One of the most popular block-level storage protocols for local storage access is Small

Computer System Interface (SCSI). The SCSI protocol defines a set of commands to discover,

configure, and access data from local storage devices such as spinning disks or solid-state drives

(SSDs). Naturally, the popular and standardized SCSI command set can also be used for ac-

cessing remote storage. Two popular networking technologies that use the SCSI command set

to access remote storage are Fiber Channel (FC) and Internet SCSI (iSCSI). We now provide

more details about them.

Fiber Channel Protocol (FCP) was one of the early high-performance networked storage

protocols that ran over Fiber Channel (FC) networks. The key aim of FC was at the easy man-

agement and configuration of storage devices while providing good performance. To achieve

these goals, a single-purpose, low-overhead storage protocol, i.e., FCP, was designed. Remote

storage devices were connected to a server using a dedicated FC host bus adapter (HBA). The

HBA implements the fully offloaded FC network protocol in the adapter. This design ensured

good performance with reliability and isolation. Modern FC infrastructure supports throughput

speeds of 2, 4, 8 and 16-Gbits/sec. However, at the same time, FC technology is criticized for

its expensive hardware, requiring dedicated network equipments, and specialized knowledge

from administrators to manage FC networks. To relax the networking requirement, follow-

up protocols such as Fiber Channel over Internet Protocol (FCoIP) (tunneling-based), Internet

Fibre Channel Protocol (iFCP) (routing-based), and Fiber Channel over Ethernet (FCoE) are

defined. These protocols allow packing FC frames into IP or Ethernet packets for transmis-

sion over commodity IP/Ethernet-based networks without requiring any expensive or dedicated

networking equipment. However, due to network fragmentation (only 1500 bytes packets) and

the lossy nature of IP/Ethernet-based networks, the performance of these protocols was slow.

Recent developments in lossless Ethernet help in running loss-sensitive higher-level protocols

such as FCP on top of Ethernet frames.

As an inexpensive alternative to FC, Internet Small Computer System Interface or iSCSI was

developed. iSCSI is an Internet Protocol (IP) based storage networking standard that transfers

SCSI commands over IP-based networks. From the start, it was designed to be compatible with

IP/Ethernet-based networks and uses TCP to carry SCSI commands and data packets. iSCSI

can be implemented in a software or a hardware device. Initial prototypes of the protocols were

hampered by poor implementations and performance, but the gradual improvement of Ethernet

speeds (from 1 to 10 to 40 and now 100 Gbits/sec) helped to narrow the performance gap

between FC and iSCSI protocols. Apart from FC and iSCSI, other niche alternatives such as

ATA (Advanced Technology Attachment) over Ethernet (AoE), Hyper SCSI (SCSI on Ethernet),

and network block devices (NBDs) also exist. However, to date, their deployment in enterprise

environment is limited.
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Figure 2.1: Traditional Fiber Channel Protocol (FCP) and various flavours of iSCSI SAN pro-
tocols in a layered architecture.

Multiple parallel efforts have also investigated integrating RDMA network operations in

SAN protocols. Key goals for these works were to integrate transparently, reduce unnecessary

data copies, leverage protocol offloading, and deliver higher bandwidth and lower latencies

than what was possible with commodity interconnects such as Ethernet. iSCSI Enhancement

for RDMA or iSER protocol is an extension of iSCSI transport to include RDMA networks. The

iSER protocol integrates in the Data Mover (DM) architecture [73] of iSCSI which decouples

data movement concerns from the rest of the iSCSI storage management protocol. Other DM

protocols such as TCP-based, SCTP-based, or IB-based also exist. In contrast, SCSI RDMA

Protocol (SRP) is a parallel effort to iSCSI to leverage RDMA operations for accessing remote

SCSI storage devices. SRP natively packs SCSI commands (not iSCSI commands as done by

iSER) in RDMA messages. SRP is a relatively new protocol and hence lacks substantial dis-

tributed device management and discovery services enjoyed by iSCSI and iSER deployments.

Figure 2.1 shows the relations between the various flavours of iSCSI and FC protocols.

Modern NVM storage devices come with multiple host interfaces with NVMExpress

(NVMe) being a standard interface for PCIe-attached NVM storage (Section 2.2.2). NVMe

over Fabrics [240] is a recent effort to leverage RDMA for remote NVMe device accesses. It

aims to improve performance by eliminating the heavy SCSI (and iSCSI) interface and leverag-

ing light-weight, asynchronous, queue-based IO interface present in NVMe as well as in RDMA

network interfaces. Other experimental RDMA-storage prototypes such as network-block de-
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vice over Accelio messaging framework (ndbX) also exist [231]. However, Accelio’s use of

RDMA is limited to fast messaging.

2.3.2 Network-Attached Storage (NAS)

In contrast to the block-based access provided by SAN protocols, a Network-attached storage

or NAS provides a native file-based access to data stored in remote storage devices. Many of

the NAS protocol implementations integrate into the local operating system storage service to

provide an illusion of a local file system containing files. For example, in Linux this integration

takes place using its Virtual File System (VFS) layer. However, other solutions such as overlay-

based file systems, user-space file system, etc., also exist.

Andrew file system (AFS) is a pioneering distributed file system design from CMU [159,

296]. Its design was influenced by its scale requirements and performance demand for net-

worked clients. In order to reduce the network load and improve performance, AFS caches full

files on the client-side local disks. When an AFS client opens a file, the server transfers the

whole file to the client and the file is stored on the client’s local disk. Any subsequent IO opera-

tions are performed locally on the cached copy of the file without any network IO. Upon closing

the file, the content of the modified files are sent back to the server. All of these operations hap-

pen in a location transparent and independent way. The AFS server keeps track of client caches

and actively notifies them in case the content of a cached file changes due to concurrent writes.

This design was chosen on the basis that write conflicts were rare in the target deployment envi-

ronment of AFS. Apart from having a simple design, AFS also supports other features such as

multiple namespaces and administrative domains, Kerberos-based security, access-control lists,

etc. However, AFS installations are complex to setup and administer. Due to the stateful nature

of the AFS server, in an event of a crash (either on the server or a client), the recovery protocol

could be complicated and could hamper performance during recovery.

Server Message Block (SMB) and its version, which is known as Common Internet File

System (CIFS), is another NAS protocol that provides a shared file storage service [237]. SMB

was originally developed by IBM around Microsoft MS-DOS and Windows operations systems,

and the prototype was later taken over by Microsoft for further development. To let Windows

clients access UNIX files and directories using the SMB protocol, Andrew Tridgell developed

the Samba server software for UNIX servers. With the recent revision of 3.0 and the introduc-

tion of the SMB-Direct protocol, SMB can now use RDMA operations for network IO [238].

One of the most successful and popular NAS protocol is Network File System (NFS). NFS

was originally developed at SUN Microsystems in 1984 [295]. NFS follows a server-client

model where clients access data stored on a centralized NFS server using Remote Procedure
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Figure 2.2: Comparison of data flows in SAN, NAS, and FlashNet approaches.

Calls (RPCs). The key design goal for NFS was a simple and fast server recovery after a crash.

To achieve this goal, designers of NFS designed a (mostly) stateless protocol where the NFS

server kept a small amount of distributed state about a client’s file usage. The NFS protocol

is defined in a RFC and is standardized [260]. Multiple implementations of the protocol exist

with different flavours and enhancements. Client-side and server-side caching were introduced

to increase performance. However, as NFS installations were deployed on an increasing scale,

various issues with file locking, caching, ordering, and consistency semantics were discovered

and gradually fixed in various revisions of the protocol. The latest incarnation of the protocol,

v4, is influenced by the works from AFS and SMB and added support for stateful server op-

erations for providing better performance and guarantees. Version v4.1 (pNFS) extended the

protocol specification to include clustered, parallel server deployment. Due to its simplicity, the

NFS remote file access protocol is also used as an access protocol for many high-performance

commercial appliances e.g., Coho Data [96] and NetApp [256].

RDMA network IO is also used in NAS-based solutions to deliver high network perfor-

mance to clients. Since version 4.0, NFS clients and servers can use RDMA transparently

under the Sun RPC layer [67]. Other more general-purpose file systems such as PVFS, GPFS,

and Luster, etc., also use RDMA, but in a limited capacity. RDMA network IO is usually

retrofitted in these systems in the place of socket-based network IO. The general theme of this

integration is to replace socket send/recv calls with RDMA send/recv calls. Data is either car-
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ried by send/receive calls or RDMA one-sided operations. The use of RDMA send/receive

calls require explicit flow control management at the application level to ensure every received

packet has a matching pre-posted receive buffer. And to use RDMA one-sided operations, these

systems synchronize explicitly to fetch remote buffer credentials. Moreover, all these steps re-

quire applications to explicitly multiplex buffers, track IO requests, and manage connections

– responsibilities not required by the socket API. All these requirements make “transparent-

while-delivering-good-performance” integration of RDMA a tricky problem.

A more purpose-built RDMA-enabled file system is Direct Access FS (DAFS) [219, 220].

DSFA is implemented fully in user space rather than in the kernel, thus giving its applica-

tions the most benefits from by-passing the operating system. In a follow-up work, the au-

thors also propose Optimistic RDMA (ORDMA) as an alternative to using RPC for improving

performance of small messages by speculatively transferring data using one-sided RDMA op-

erations [219]. DAFS delivered superb performance and clearly illustrated the performance

benefits of RDMA-based network operations for a client-server file system design.

For comparison Figure 2.2, shows data flows in a SAN, NAS, and in a FlashNet setting.

In SAN, data flows from a remote block devices to a client-side local file system, and is then

eventually copied to application buffers. In a NAS setup, data flows from a server-side file

system to a client-side local file system proxy (e.g., NFS client), and is then eventually copied

to application buffers. FlashNet is a unified stack prototype that is presented in this thesis. In

contrast to NAS and SAN based approaches, FlashNet uses RDMA principles to deliver data

directly from remote storage devices to application buffers.

2.3.3 Commentary on the Usage of RDMA

Despite network performance being a key problem in distributed systems, the use of RDMA has

only seen limited commercial success in SAN/NAS-type deployments so far. Multiple factors

contributed to this state. This section summarizes the key observations and reasons behind why

the use of RDMA has only seen limited success so far.

2.3.3.1 The OS-bypass Design that did not Bypass OS

SAN and NAS solutions are storage solutions which provide access to data stored in remote

devices. Traditionally, storage as well as network IO are considered OS services which are

implemented inside or with the help of a kernel for managing shared resources such the buffer

cache. With the exception of DAFS, many RDMA-enabled solutions that we have presented

so far implement RDMA networking inside the OS within the framework of a storage service

(be it NAS- or SAN-based). Once data is brought into a host system using RDMA operations,
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Figure 2.3: Data deliver targets for various storage/networking protocols that are capable of
using RDMA networks.

it is processed and copied through multiple layers of abstractions inside the OS. Figure 2.3

shows this setup. For example, iSER and SRP protocols, which are SAN-based solutions that

use RDMA, only deliver data efficiently to the block layer. Similarly, NAS-based solutions

deliver data to the local client-side file system or file cache. The OS-bypassing architecture

for user-space networking was designed to avoid this layered processing architecture with the

goal of delivering data directly into the user buffer. All of these solutions fall short of this

goal. The integration of RDMA underneath an OS-level storage service rendered one of the

key principles of RDMA networking, i.e., OS-bypassing (or more generally layer-bypassing),

useless. Consequently, only limited performance gains were delivered to end applications in

such an architecture.

The FlashNet IO stack which is introduced in Chapter 5 uses native RDMA operations to

transfer data from remote devices to local buffers while maintaining the benefits of having a

file system service (similar to NAS) on the server side. The FlashNet configuration is shown in

Figure 2.2c.

2.3.3.2 Limited API and Data Copies

The second major issue with the integration of RDMA has been its API. Since the BSD socket

API for TCP was (is) the de-facto standard for networking for more than 30 years, RDMA net-

working was retrofitted in the networking layer of all applications. Consequently, many RDMA

operations of vital importance to its performance such as apriori IO buffer registration and post-

ing of receive buffers, were not possible with networking code designed for socket-based IO.

There were two options to solve this issue. First, the RDMA networking stack could register IO
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buffers during the data transfer phase, and execute a costly registration operation and enforces

additional metadata synchronization operations between a server and client. Or alternatively, it

could perform network IO on pre-registered RDMA buffers and then copy data to application

buffers in the end. Both options provide limited performance gains due to additional operations

and overheads introduced in the end-to-end data transfer operation.

2.3.3.3 Marginal Performance Benefits

The third major issue behind the limited deployment of RDMA-enabled systems was its limited

performance benefits in real world settings. Three factors contributed to this state. First, for

long, the focus of the storage industry has been on cheaper, denser, and more reliable storage

solutions. Hence, the raw storage performance improvements lagged significantly behind net-

works and CPUs. As the performance of most of the SAN/NAS-based solutions was dictated

by the performance of spinning disks and not the network, putting fast RDMA networking did

not deliver exceptional performance gains.

Second, due to the high disk IO latencies the key performance metric of any SAN/NAS

solution was aggregate bandwidth. And with enough parallelism and large buffer sizes, many

solutions, even those with an inefficient networking stack, managed to amortize networking

overheads while delivering a good aggregate bandwidth. Hence, the high engineering cost of

RDMA integration required more justification. Only recently with the availability of NVM,

storage bandwidth and latencies became comparable to network’s. Consequently, general inter-

est in RDMA operations has revived.

Lastly, RDMA was touted to deliver superior performance than sockets by offloading and

saving CPU cycles from network IO. However, the collective CPU performance (with multi

cores) kept increasing and the networking stacks of modern OSes such as Linux managed to

keep up with the network performance improvements and delivered the necessary bandwidth

improvements. Consequently, the bandwidth gap between rigidly offloaded RDMA network

and highly optimized software stacks were small.

2.3.3.4 General Complexity and Niche Hardware

A general problem with any offloaded solutions is its device API. The network offloading with

RDMA was no exception. In his work, Mogual [244] criticises TCP offloading for being com-

plex, buggy, and lacking a clear performance advantage. In a similar spirit, Magoutis [218]

points out that most of the benefits of RDMA comes from direct data placement, which can be

achieved without providing direct user-space access to networking hardware as done in user-

space networking stacks. An unsupervised direct user-space access to share NIC resources
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entails a NIC to support right IO abstractions, security, isolation, QoS, and complex resource

management — responsibilities which are traditionally done in the kernel. In essence, due to

all aforementioned reasons, RDMA enabled hosts and networks only saw limited deployment

in the early 2010s.

2.3.4 Recent Interest In RDMA

Since the late 2010s, RDMA and the prior research about high-performance networking from

the 1990s have seen a rejuvenated interest from the commodity computing community. RDMA

and related technologies were already pervasive in the high-performance computing (HPC) en-

vironment with a myriad of libraries, services, and abstractions being developed for HPC appli-

cations. As commodity computing became cheaper and more powerful, pioneering works from

multiple groups in academia (e.g. Berkeley Network-Of-Workstations (NOW) project [28],

BEOWULF cluster [324]) and commercial projects (e.g., Inktomi Corporation [126] and

Google [100, 141]) illustrated the viability of high-performance, data-intensive workloads on

commodity clusters as well. These workloads demand low latency and high bandwidth not just

for storage, but also for in-memory computing. Factors such as cheap prices of DRAM storage

and networking equipments, the emergence of Non-Volatile storage, and the relative maturity of

RDMA devices with strong demands for high-performance computing on commodity clusters,

etc., enabled a new breed of distributed systems. The seminal paper about a case to build a

RAMCloud [264] from John Ousterhout and team played a key role in putting the focus back

on networking performance [292].

Unlike previous efforts, which stopped RDMA integration too early in the stack (see Fig-

ure 2.3) and suffered performance losses, the next wave of integration efforts go deeper and

closer to applications. These efforts hide the RDMA complexity and idiosyncrasies behind

APIs of infrastructure-level services, and provide higher-level IO operations than just raw net-

work or storage IO operations. Examples of these RDMA-enabled services include key-value

stores [180, 183, 241, 326], distributed file systems [176], distributed data stores [262, 340],

replication [369], databases [131], RPC service [327], and distributed computing [107, 255].

2.4 Conclusion

This chapter has provided an overview of the developments in the architecture, design, and

implementations of modern networking and non-volatile storage devices and stacks. As evi-

dent from the discussion, there are no final words on the performance of these stacks and they

will continue to evolve and improve in the foreseeable future. Furthermore, modern network
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and storage devices do not just deliver good results, but also offer many semantically rich IO

operations. These developments force us to re-evaluate how we build distributed systems to

provide services. In the next chapter, we focus on the Remote Direct Memory Access (RDMA)

technology which provides the foundational abstraction for network and storage IO operations

discussed throughout this thesis. The evolution, usage, and recent interest in RDMA are al-

ready briefly discussed in this chapter. The next chapter provides more detail on its basic design

principles, abstractions, and supported operations. Based on that, Chapter 4 illustrates some

striking resemblances in the development of high-performance storage and networking stacks

and makes a case to unify them.



3
Remote Direct Memory Access

Remote Direct Memory Access (RDMA) technology offers high-bandwidth and low-latency

network operations for accessing data in remote memories. In this chapter we provide back-

ground information on RDMA technology, associated abstractions, networking operations, and

application programming interface. Concepts and terminology presented in this chapter are

referenced throughout the rest of the thesis.

3.1 Background

Remote Direct Memory Access or RDMA is a mechanism that enables an application to read

or write remote memory locations without requiring any active participation from a remote

application. It offers higher bandwidth and lower latencies than traditional socket-based net-

working in which both, local and remote applications, have to actively participate in network

IO. A big part of this performance is achieved by bypassing local and remote OSes and CPUs

when reading and writing remote memories. RDMA capabilities can be provided in a variety

of ways. Specialized interconnects such as Crays Aries and Gemini networks, IBM’s BlueGene

networks, Fujitsu Tofu interconnect, etc., which can be found in modern supercomputers long

supported RDMA capabilities in their end-host stack.

RDMA capabilities for commodity networks were discussed and supported by the Virtual

Interface Architecture (VIA) specification. VIA was an industry effort from Intel, Compaq

and Microsoft to standardize key ideas from extensive research done in the space of user-space

networking with commodity networks. The first VIA specification was released in 1997 and

multiple implementations followed soon, e.g., M-VIA [230], Berkeley-VIA [65], VIA on IBM

RS/6000 SP network [38], etc.

VIA in its original form is a point-to-point connection-oriented protocol, which provides

each application its own private, user-space mapped network endpoints. An endpoint (or a

virtual interface (VI)) logically contains a set of DMA descriptor queues where the application

can post prepared buffers for network operations such as send/receive-based messaging or one-

63
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sided RDMA operations. The kernel is only involved in setting up the network resources (buffer

registration, VI allocation, connection establishment steps, etc.) but not in data transfer or

network processing steps.

VIA was also supported by InfiniBand [232], an emerging standard (back then) which aimed

to provide a unified interconnect for intra- and inter-system networking to eliminate intercon-

nect bottlenecks in an end-to-end manner. The InfiniBand specification was open and hence,

multiple vendors such as Mellanox, Voltaire (merged with Mellanox in 2010), QLogic (ac-

quired by Intel), etc., implemented InfiniBand networking products where VIA thrived. With

the success of InfiniBand, other commodity interconnects such as IP-based networks [156], and

Ethernet [166], also picked up its specification. The end-host support and software stacks for

these interconnects are consolidated under the Open Fabric Alliance (OFA). OFA provides OFA

Enterprise Distribution (OFED) RDMA stack, which is the de-facto RDMA stack on Linux.

The OFED API contains many features similar to the original VIA specification.

Although multiple specialized and commodity interconnects now support RDMA opera-

tions, the notion of RDMA should not be confused with the underlying interconnect used. All

interconnects need end-host hardware and software support for implementing RDMA opera-

tions in a system. The work division between hardware and software to support RDMA for

a particular interconnect and system architecture varies, and consequently, so does the end-

host interface to applications. These are important factors in a particular implementation of an

RDMA end-host stack and play a decisive role in determining the performance delivered. The

follow-up discussion in this chapter and work presented in the rest of the thesis is set in a particu-

lar context of VIA-inspired RDMA interconnects and end-host interfaces. These VIA-inspired

end-host stacks can trace their lineage back to academic projects such as Hamlyn [66, 358],

UNet [352], SHRIMP [56], Application Device Channels [111], etc. In the following section

we provide more details about the RDMA end-host networking stack in the context of the Lin-

ux/OFED stack.

3.2 Terminology

• Traditional Networking Stack: The traditional stack refers to the non-offloaded, classi-

cal networking stack implemented as an OS service inside *NIX operating systems such as

GNU/Linux or OpenBSD. For this stack, the key application abstraction is a socket (a file

descriptor) with send/receive (or read/write) calls to send or receive data. Unless explic-

itly stated, we refer to connection-oriented network transfers using the Transmission Control

Protocol (TCP).
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• RDMA Interface: An RDMA-based interface or RDMA interface refers to the queue-based,

asynchronous, network communication interface used by applications to transfer data on

RDMA networks. The abstractions and network operations associated with this interface

are discussed in Sections 3.4 and 3.5.

• RDMA Network/Transport: An RDMA network or transport identifies one of the VIA-

inspired commodity interconnects that are supported for the RDMA/Verbs end-host specifi-

cation. The current generation of such transports includes InfiniBand [164], iWARP [156],

and RoCEE [166]. Section 3.6 provides a brief overview of these RDMA networks.

• RDMA Verbs and Verbs Interface: Verbs represents a set of abstraction operations that

define the semantics of application interaction with an RDMA-capable network controller

(RNIC). The verbs interface actualizes these abstract operations for various RDMA trans-

ports.

• RDMA or Verbs Provider: An RDMA or a Verbs provider refers to the end-host entity

that provides a complete implementation of the RDMA verbs interface. Though traditionally

implemented in an offloaded manner on a NIC (e.g., Chelsio Terminator RNICs [76, 77]),

a provider can also be implemented purely as a software entity inside an OS kernel (e.g.,

SoftiWARP [236, 339], or SoftRoCEE [15]).

• Verbs Consumer or Applications: A verbs consumer or an RDMA application refers to any

entity outside the RDMA stack that uses its verbs interface for network IO. This entity can

reside inside or outside (in the user space) of a kernel. An RDMA application within an OS

kernel is called a kernel client.

• RDMA End-Host Stack: An RDMA provider together with the rest of the necessary hard-

ware/software infrastructure is referred to as the RDMA end-host stack. RDMA end-host net-

working stack figures in this thesis are drawn for a hardware implementation of the RDMA

provider. A software implementation would naturally involve the OS kernel in data copies,

network, and API (verbs) processing as well.

• RDMA Resources: RDMA memory and communication resources that are allocated and

used for data transfer operations are collectively referenced to as RDMA resources. These

resources are discussed in detail in Section 3.4 and Section 3.7.

• Local and Remote/Peer Hosts: In this thesis, we always refer to communication within the

scope of a connection-oriented model. In this model, a connection has two end-points or end-

hosts. These two end points need to be connected explicitly with a connection establishment
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Figure 3.1: Illustration of a single-path and a separated path network architecture. The dotted
lines represent the control transfer while the solid lines represent the data path.

procedure. Depending upon the narration, one side is referred to as the local and other as the

remote or peer side.

• RDMA Active and Passive Side: The RDMA active side is the one end-point of the con-

nection that actively initiates a network IO operation. The passive side only asynchronously

waits for data or RDMA request arrival from the active side.

• Source and Sink Buffers: These buffers identify logical source and sink memory areas

where data is transferred from and received into, respectively. The locations of these buffers

change (either on local or peer host) depending upon the type of RDMA network operation

used.

• Buffer Registration or Preparation: This term refers to the process of allocating, pinning,

and registering a memory buffer (virtual or physical) with an RDMA provider. More details

about this process are given in Section 3.4.2.

• OFED Stack: Open Fabric Enterprise Distribution (OFED) stack from Open Fabric Al-

liance (OFA) is the industry-standard, de-facto end-host RDMA stack implementation which

is distributed with the GNU/Linux and Microsoft Windows operating system. For the work

covered in this thesis, we use OFED RDMA stack.

3.3 The Data and Control Path Separation Principle

The key concept in RDMA-based network communication is the path separation principle that

advocates to separate the slow control path from the fast data path of network IO operations. By
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separating these two, RDMA networks deliver high performance to applications by setting up

all control resources between applications, operating system and network before the network IO

processing starts. After the resource setup, applications communicate directly with the network

controller for fast data transfers without requiring OS mediation for resource allocation and

multiplexing. Consequently, the OS (and associated shared resource management overheads) is

eliminated from the fast data path by design.

In contrast, the traditional networking stacks and operations only offer a single data and

control intermingled IO path. Figure 3.1 illustrates this difference. In a single path architecture,

the control transfer (which is triggered via a send call and includes resource allocation, prepa-

ration, translation, scheduling, etc.) is provided with the data as well. This data is copied and

processed with the control path processing. The basic rationale behind this design lies in the ar-

chitecture of early operating systems, which were designed to maximize the resource utilization

by sharing systems resources. High resource utilization was necessary to offset the high price

of computing as hardware was expensive. However, due to the demands from applications and

general availability of cheaper commodity hardware, the idea of path separation principle and

user-space networking (see Section 2.1.3) is now being revisited in the context of data center

applications.

In a path-separated network architecture, sharing is eliminated by pre-allocating and exclu-

sively assigning resources to applications on the control path before the IO processing begins.

The slow control path entails allocation, control, and management of IO resources (e.g., connec-

tions, memory buffers, multiplexing mappings, IO channels, etc.) and extends all the way down

to the NIC. These operations are executed with the help of a middleware entity, usually an oper-

ating system kernel, which mediates the allocation of resources, does appropriate security and

limit checks, performs the necessary resource translations, and establishes the required map-

pings etc., for networking processing. In essence, the middleware creates an application-private

(i.e., without sharing) view of the networking stack. These control operations are historically

deemed slow due to their larger execution time (partially due to blocking/schedule-able nature

of operations) than the network operations of the data path. On the data path, an application

communicates directly with the network controller for network IO (e.g. sending data) by using

previously established private communication channels. Data is also fetched separately from

the control establishment after a network IO requested, is posted by the application.

3.4 Abstractions

In this section, we provide background information on the basic RDMA communication ab-

stractions and resources. These resources, which are covered in the subsequent sections, are
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illustrated in the Figure 3.2.

3.4.1 Protection Domain (PD)

The key role of a protection domain is to ensure a secure access to RDMA resources. An appli-

cation can create as many protection domains as it wants within a local RDMA provider. These

protection domains are then used for the creation of RDMA IO resources such as memory re-

gions (MRs) or RDMA queue pairs (QPs) (see the following subsections for their definitions).

During RDMA IO processing, the local RDMA provider checks the protection domains of all

involved resources. If an IO request accesses memory buffers which are not created within the

protection domain as of the RDMA connection, the provider raises an error. Hence, concep-

tually, a protection domain is analogous to a process address space abstraction within modern

operating systems.

3.4.2 Memory Regions (MRs) and Registration

Memory Regions (MRs) are application memory buffers that can be used as source or sink

buffers in any RDMA operation. Memory areas, which are allocated using any standard mem-

ory allocation mechanism such as malloc or mmap, can be used as memory regions by regis-

tering them with the local RDMA provider. The registration process involves calling an RDMA

end-host stack specific registration function with the virtual address, length, and access permis-

sions of a memory area. On success, the function returns with an opaque 32-bit buffer identifier

called steering tag or STag, generated by the local RDMA provider. The application uses this

STag in network requests to identify IO buffers. All application buffers that are intended to be

used for RDMA communication must first be registered with the local RDMA provider. How-

ever, prototypes, which relax this requirement also exist, e.g., UNet/MM [357] and Mellanox

NICs [209]. These prototypes cache virtual-to-physical translations in the NIC and manage this

cache with the help of the device driver and the OS. However, their APIs and implementations

are not standard and their usage is imited.

The purpose of this registration process is three folds. First, during the registration process,

the operating system performs the necessary access rights and limits checks about the memory

consumption of the application. Second, the other necessary resources such as DRAM pages

are allocated and installed into the page table of the process to ensure no page-faults during

the network processing. The handling of page faults, which is a slow operation because it

involves memory checks, allocation, and installation etc., is avoided on the data path. And

lastly, associated DMA-descriptors are installed into a mapping table of the RDMA provider

with a generated STag. The generated STag acts as a key into the memory buffer look-up table
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of the local RDMA provider to resolve the DMA buffers and steer data flows into/from them

during network IO operations.

3.4.3 Event Channel

The RDMA end-host architecture follows an asynchronous event-driven architecture. An

RDMA provider generates notifications for all network and connection related events. These

notifications are then delivered to appropriate applications using an application-private event

channel. In the OFED stack, these channels are implemented as a file descriptor where notifica-

tions are posted. Examples of these events include link up or down status of RDMA network,

address and route resolution related events, connection establishment and termination, asyn-

chronous error conditions, etc.

3.4.4 Queue Pairs (QPs)

A queue pair or QP represents the IO-request interface of a connection. It is equivalent to the

socket abstraction in the traditional networking stack. A QP consists of a send queue (SQ) and

a receive queue (RQ) where an application can post RX and TX IO requests (see Section 3.4.5).

Internally, a QP is typically implemented as a shared memory region between an application

and the RDMA provider. As with the other RDMA abstractions, QP is an application-private IO

channel to the RDMA provider. An application can allocate and use multiple QPs concurrently.

However, the actual number might be restricted by the security limits. Though the creation of

QP is a slow control operation, posting of an IO request is a fast data path operation.

On the client side, an application creates a QP and invokes a connect() call to establish

a connection to a server application. On the server side, the server applications creates a new

QP while processing the corresponding “connect” event. The QP creation call takes the size of

the send and receive queue as a parameter.

3.4.5 Work Requests (WRs)

A request to transmit or receive data is called a work request (WR). Send or receive WRs are

posted on a QP from where they are picked up by the RDMA provider for processing. The

representation of a posted WR in a send or receive queue is called a work queue element or a

WQE. The posting of a WQE on a QP is a non-blocking operation. The IO processing notifi-

cation for a WR is delivered asynchronously on a completion queue which will be discussed in

the next subsection. An application can post multiple linked WRs in one posting to amortize

posting overheads. The maximum number of outstanding send or receive WQEs depends upon
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Figure 3.2: RDMA resources, namely memory regions, a queue pair (QP), work requests (WR),
an scatter-gather element (SGE) array, a completion queue (CQ), and a completion
queue element (CQE).

the size of the SQ or RQ, respectively, which were specified at the QP creation time.

A WQE typically consists of an opcode identifying the type of operation (Section 3.5),

associated IO buffers and STags, the size of the operation, and the notification mechanism. The

structure of a WQE supports scatter-gather elements (SGE) to identify local memory regions.

Hence, IO buffers do not have to be contiguous in the virtual memory of an application. Having

such capabilities support zero-copy data transmission operations where header, data, and trailer

of a network operation can be built and transmitted from different buffers. Figure 3.2 shows a

graphical view of SGEs, buffers, and WRs in a QP.

3.4.6 Completion Queue (CQ) and Channel

The IO processing notification delivery mechanism of RDMA has two associated abstractions

with it. First is a notification channel, which is used by the RDMA provider to deliver “ac-

tivity” notifications to applications. An activity might refer to the completion of one or more

previously posted WRs. A completion channel is established between an application and the

RDMA provider during the control setup by the operating system. Due to the operating system

involvement in the management of completion channels, it is possible to share and aggregate IO

notifications from multiple local RDMA providers into one channel. In essence, the completion

channel is similar in the spirit to the event channels, but is for IO notifications.
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Figure 3.3: Illustration of a two-sided RDMA send/recv operation.

A second abstraction called Completion Queue (CQ) is used for delivering a complete report

about completion of individual WQEs. For every WQE processed, the RDMA provider gener-

ates a Completion Queue Element or CQE. A CQE contains a full report about the processing

of a WQE including its status, opcode, error code, vendor-specific information, QP information,

application-provided identifier, and length of the processed IO, etc.

An application can get IO completion notifications in two manners. The first is a blocking

mode where the application can block on the completion channel while waiting for a notifica-

tion. Upon receiving the notification, the application is unblocked and it can then poll and reap

CQEs from the CQ to check the status of WRs. The second mechanism is a direct, synchronous

polling on the CQ without waiting for a notification first. Consequently, synchronous polling

yields better network operational latencies at the expense of CPU cycles.

3.5 Network Operations

The traditional networking stack offers rendezvous-based network operations. In these oper-

ations, end-hosts operating system and applications of both connected hosts are involved in

network processing. In contrast, RDMA-based networks offer multiple semantically rich net-

work operations. These operations are typically classified in two categories, namely two-sided

and one-sided operations. The numbers two and one represent how many applications are in-

volved in the completion of a network operation. For example, one-sided RDMA operations

can be executed completely by one initiating (or active) end-host and the two RDMA providers

without involving the application from the remote host. RDMA providers of both end-hosts are

always involved in the completion of an RDMA network operation. Figure 3.3 and Figure 3.4

illustrate these two modes.
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Figure 3.4: Illustration of a one-sided RDMA write operation.

3.5.1 Two-Sided Operations

Two-sided message-based send and receive network operations are analogous to the traditional

stack’s BSD send and recv operations. Figure 3.3 shows a high-level, step-by-step execution

of a send and a receive operation. First, on the peer host the receiving application posts a

receive WQ on the associated QP indicating where it wants to receive data (step 1). The receive

WQ posting must happen before the transmitted data arrives at the peer host, otherwise the

RDMA provider is free to drop data and generate an error event on the completion channel.

Subsequently, the sender application posts a send WR (indicated by the operation opcode) on

its QP (step 2). The local RDMA provider processes the send WQE and resolves the local

source buffer from where the data is transmitted using a DMA operation (step 3). After send

WQE processing, a corresponding CQE element is generated indicating the status of the send

operation (step 4). When receiving the data, the peer RDMA provider extracts a receive WQE

and processes it to resolve local buffer information (step 5). The extraction and processing of

WQEs happen in a FIFO manner. Incoming data is then DMAed into the resolved buffer in a

zero-copy manner (step 6), and a corresponding receive CQE is generated indicating the status

of the receive WQE (step 7).

A typical application of two-sided send/recv operations on RDMA networks is a Remote

Procedure Call (RPC) implementation. Using these operations, it is possible to deliver low

per-request latency (10µsecs with iWARP) with a high non-pipelined aggregate throughput of

2–3 MOps/sec [327].

3.5.2 One-Sided Operations

One-sided RDMA operations only involve one active end-host in completion of an RDMA

network request. Examples of these operations include RDMA read, write, and extended atomic

operations. Figure 3.4 shows an example of an RDMA write operation from a local host to a
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buffer at a peer host without involving peer host’s operating system or application. In a one-

sided operation, the active side of the communication provides the complete information to

execute the end-to-end data transfers in the posted WQE. To post an RDMA write request, an

application not only specifies the local source data buffer (and STag), but also the remote sink

data buffer and STag (step 1). Naturally, setting up an RDMA one-sided operation requires

apriori communication (not covered by the RDMA/Verbs specification) between the local and

peer applications to exchange buffer identifiers. The local RDMA provider then resolves and

transmits data from the local buffer together with the remote/sink buffer identification STag

(step 2). After processing the write WQE, a corresponding CQE element is generated indicating

success or failure of the operation (step 3). The peer RDMA provider resolves the sink buffer for

incoming data by matching the passed STag with its local registration table (step 4). Hence, no

previously posted receive WQE is required to complete the write operation. After a successful

buffer resolution, data is DMA’ed into the application buffer (step 5). A selective form of local

notification can be generated about the processing of a one-sided RDMA operation on the peer

side, but not all RDMA transports support that. The processing order semantics (completion

order on a single QP) of these operations are the same as the two-sided operations.

One-sided RDMA operations are useful for efficient large data transfers. Due to no peer

end-host involvement in processing of the RDMA network request, the performance of one-

sided RDMA operations are generally better than the two-sided operations. However, the exact

performance gap is protocol and implementation specific.

3.6 RDMA-Network Implementations

In this section, we provide a brief overview of three standardized implementations of the

RDMA/Verbs specification. Multiple other proprietary implementations of the specification

and in general of the RDMA operation also exist.

3.6.1 InfiniBand (IB)

In the late 1990s, multiple groups were competing to design a standardized system area network

(SAN). The key requirement for such design was to be able to carry data with a very high

performance from peripherals to peripherals. These designs were considered as PCI successors

and aimed to replace the system IO bus. The InfiniBand specification emerged after the merging

of two competing standards, Future I/O by Compaq, HP, and IBM and Next Generation I/O

developed by Intel, Microsoft, and Sun Microsystems.

The InfiniBand architecture specification [165] details out the complete networking stack
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including fabric, transport, protocol, and the API to applications. It provides both two-sided

messaging and one-sided RDMA operations. InfiniBand’s API supported VIA interface and

operations. Originally developed for dedicated High-Performance Computing (HPC) environ-

ments, today InfiniBand is used in shared data center computing environments as well.

A side-effect of the complete stack design is that the InfiniBand approach is not compatible

with the popular commodity Ethernet/IP based networking infrastructure. InfiniBand has its

own network, switch, and connection management logic which differs significantly from the

IP-based networks. Despite these limitations, implementations of InfiniBand specification have

provided high bandwidths and ultra low latencies for network IO over the years.

3.6.2 Internet Wide Area RDMA Protocol (iWARP)

To bring advantages of RDMA-based data transfer operations to IP-based networking, Internet

Wide Area RDMA Protocol (iWARP) was proposed. The initial idea was seeded and prototyped

by Buonadonna and Culler who combined the InfiniBand specification with IP-based network-

ing [64]. They proposed Queue Pair IP where they implemented RDMA network operations on

top of a TCP, UDP and IPv6 protocols, and demonstrated the viability of the iWARP approach.

The iWARP protocol runs on top of any reliable IP-based network protocol such as TCP

or SCTP and is typically deployed on the TCP/IP stack. The on-wire packet format of the

protocol is the same as any normal TCP/IP packet’s. Hence, the networking infrastructure

remains unchanged and decades of networking experience with the TCP/IP stack can be used

to manage and provision networking infrastructure.

The iWARP protocol specification is covered in a series of RFCs [46, 95, 185, 195, 277,

283, 307, 308] and defines a direct data placement protocol (DDP) that can be use to encode

RDMA operations as defined in the RDMA protocol (RDMAP) and associated metadata into

the network headers. This metadata is then used to resolve source and sink buffers to perform a

zero-copy, direct data placement into application buffers.

Initial performance concerns of the iWARP protocol stemmed from the fact that it involved

integrated TCP/IP processing as well. Previous studies have already lamented the performance

and benefits of TCP offload engines [128, 244]. However, the RDMA API helped to address

the shortcomings of TCP offload engines and presented a different operational environment

and network semantics than the socket API. Consequently, later prototypes of iWARP devices

provided good performance and routinely managed to narrow the wide performance gap be-

tween them and the state-of-the-art InfiniBand performance. In his work, Recio presents a

good comparison between InfiniBand and iWARP performance in the context of server IO and

consolidation [284].
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3.6.3 RDMA over Converged-Enhanced Ethernet(RoCEE)

RDMA over Converged-Enhanced Ethernet (RoCEE, pronounced “rocky”) is the latest entry in

the list of networks that support RDMA operations. The key argument in the development of

RoCEE has been the simplicity by collapsing layers of protocols while preserving the legacy

Ethernet infrastructure. At the same time, RoCEE avoids complexity and resource require-

ments of the TCP flow and reliability control management in a large environment. RoCEE runs

RDMA operations directly over raw Ethernet frames thus avoiding complex layered process-

ing and implementation of networking and transport protocols. However, in order to cope with

the reliable, in-order packet delivery, RoCEE needs reliable Ethernet extensions defined by the

Data Center Bridging (DCB) Task Group [332]. Due to its collapsed networking stack imple-

mentation, RoCEE can deliver competitive or better performance than iWARP [234]. However,

it has been criticized for its need for new Ethernet infrastructure that supports DCB extensions,

the lack of routing infrastructure, and the absence of systems software to support it. The later

v2 specification of RoCEE added support for routing.

3.6.4 Remarks

While providing almost semantically similar RDMA network operations, the three flavours of

RDMA-networks differ in the performance delivered to applications. However, to the best of the

author’s knowledge, no peer-reviewed publications exist that can conclusively establish design

superiority of one stack over another. Performances of these stacks are highly dependent on

their implementations, physical link speeds, and switching mechanisms.

For this thesis work we use iWARP-based networking infrastructure, though the work pre-

sented in this thesis is not specific or restricted to iWARP-based networks only.

3.7 Programming with the RDMA Separation Philosophy

In this section, we give a small example of an RDMA server client to illustrate how the separa-

tion principle is put into practice. The example shows how to write a server-client RDMA pro-

gram that performs a send/recv operation. The example is developed using the OFED RDMA

stack [16]. Whereever required, we provide more detail about the programming abstraction and

interface. Comprehensive error checks are omitted for the sake of brevity. A more detailed

programming-oriented discussion about these operations and other RDMA-related resources

can be found in the RDMA-Aware Networks Programming User Manual [233].
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3.7.1 Steps on the Client

As pointed out earlier, the end-host RDMA stack is an asynchronous event-based system.

Events and requests for notifications are found everywhere in the code. And as a general rule

of thumb, all explicit (in application knowledge) and implicit (done by OFED) resource allo-

cations require corresponding free calls. A good example of an implicit resource allocation is

a connection management event notification which is passed as a struct rdma cm event

object. To deliver a notification, the OFED stack allocates a buffer to hold the event object

which must be free explicitly by acknowledging the event by calling rdma ack cm event.

An RDMA client takes the following steps in order to establish an RDMA connection on

the reliable iWARP transport.

~���1 Allocate an event channel to receive connection and network management related events.

1 struct rdma_cm_channel *cm_channel =
rdma_create_event_channel();

~���2 Create a connection management ID. A connection ID or cmid is an OFED abstrac-

tion that is used to hide connection management issues related to various underlying

transports (IB, iWARP, or RoCEE). The rdma create id() takes an event channel,

cmid, a context pointer, and a transport identifier. RDMA PS TCP identifies iWARP as

the RDMA-network/transport provider.

1 struct rdma_cm_id *client_id = NULL;
2 int ret = rdma_create_id(cm_channel, &client_id, NULL,

RDMA_PS_TCP);

~���3 Resolve address and route to a listening server IP and port. Like the traditional network-

ing stack, the OFED RDMA implementation also takes a struct sockaddr in to

provide IP and port information.

1 struct socaddr_in s_addr;
2 s_addr.sin_family = AF_INET;
3 s_addr.sin_addr.s_addr = server_addr; /* provide server IP */
4 s_addr.sin_port = server_port; /* provide serve port */
5 ret = rdma_resolve_addr(client_id, NULL, (struct sockaddr*)

&s_addr, 1000);
6 struct rdma_cm_event *cm_event = NULL;
7 ret = rdma_get_cm_event(cm_channel, &cm_event);
8 if (cm_event->status != 0 ||
9 cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {

10 printf("Failed to resolve the address, %d \n", -errno);
11 exit(-errno);
12 }
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13 ret = rdma_ack_cm_event(cm_event); /* ack the event */
14 ret = rdma_resolve_route(client_id, 1000); /* resolve route */
15 ret = rdma_get_cm_event(cm_channel, &cm_event);
16 if (cm_event->status ||
17 cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
18 printf("Failed to resolve the route, %d \n", -errno);
19 exit(-errno);
20 }
21 ret = rdma_ack_cm_event(cm_event); /* ack the event */

~���4 Create RDMA resources — a protection domain (PD), a completion queue, and a queue

pair (QP). The completion queue creation function (ibv create cq) takes a maximum

number of elements on the queue, the completion channel, and a context as its parameter.

Similarly, QP creation (rdma create qp) also takes the maximum number of send and

receive queue elements as parameters.

1 struct ibv_pd *pd = ibv_alloc_pd(client_id->verbs);
2 struct ibv_comp_channel *comp_channel = NULL;
3 comp_channel = ibv_create_comp_channel(client_id->verbs);
4 struct ibv_cq *cq = NULL
5 cq = ibv_create_cq(client_id->verbs, 1, NULL,
6 comp_channel, 0);
7 ret = ibv_req_notify_cq(cq, 0); /* request notification */
8 struct ibv_qp_init_attr qp_init_attr;
9 qp_init_attr.cap.max_recv_sge = 1; /* max recv SGE */

10 qp_init_attr.cap.max_recv_wr = 1; /* max recv WR */
11 qp_init_attr.cap.max_send_sge = 1; /* max send SGE */
12 qp_init_attr.cap.max_send_wr = 1; /* max send WR */
13 qp_init_attr.qp_type = IBV_QPT_RC; /* reliable transport */
14 qp_init_attr.recv_cq = cq; /* CQ for recv notifications */
15 qp_init_attr.send_cq = cq; /* CQ for send notifications */
16 ret = rdma_create_qp(client_id, pd, &qp_init_attr);
17 struct ibv_qp *qp = client_id->qp;

~���5 Connect to the server. This step generates a CONNECT event on the server side (see the

next section, step 4).

1 struct rdma_conn_parm conn_param;
2 conn_param.initiator_depth = 1;
3 conn_param.responder_resources = 1;
4 conn_param.retry_count = 3;
5 ret = rdma_connect(cm_conn_id, &conn_param);
6 ret = rdma_get_cm_event(cm_channel, &cm_event);
7 if (cm_event->status != 0 ||
8 cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
9 printf("Failed to connect, %d \n", -errno);

10 exit(-errno);
11 }
12 ret = rdma_ack_cm_event(cm_event); /* ack the event */
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~���6 Prepare and register a data buffer with the RDMA provider (saved in the verbs pointer).

1 struct ibv_pd *pd = ibv_alloc_pd(client_id->verbs);
2 char *buf = malloc(1024); /* 1kB buffer */
3 struct ibv_mr *mr = ibv_reg_mr(pd, buf, (1024),

IBV_ACCESS_LOCAL_WRITE);

~���7 Prepare and post a send WR on the QP. The bad send wr array is used to hold syn-

chronously (failed during the posting) failed send WR(s). A send WR can be of type,

send, read, write, or any other RDMA operation.

1 struct ibv_send_wr send_wr, *bad_send_wr = NULL;
2 struct ibv_sge send_sge;
3 send_sge.addr = mr->address; /* addr */
4 send_sge.length = mr->length; /* length */
5 send_sge.lkey = mr->lkey; /* STag */
6 /* wr */
7 send_wr.sg_list = &send_sge;
8 send_wr.num_sge = 1; /* number of SGEs */
9 ret = ibv_post_send(qp, &send_wr, &bad_send_wr);

~���8 Wait for completion of the posted send WR.

1 struct ibv_wc wc;
2 ret = ibv_get_cq_event(comp_channel, &cq, NULL);
3 ret = ibv_req_notify_cq(cq, 0);
4 ret = ibv_poll_cq(cq, 1, &wc); /* poll for 1 WC */
5 if (wc.status == IBV_WC_SUCCESS &&
6 wc.opcode == IBV_WC_SEND) {
7 /* ack the event */
8 ibv_ack_cq_events(cq, 1); /* 1 event */
9 }

~���9 Actively call disconnect from the server.

1 ret = rdma_disconnect(cm_conn_id);
2 ret = rdma_get_cm_event(cm_channel, &cm_event);
3 if (cm_event->status == 0 &&
4 cm_event->event == RDMA_CM_EVENT_DISCONNECTED) {
5 printf("Disconnect successful \n");
6 /* clean up local RDMA resources */
7 ...
8 }
9 /* ack the event */

10 ret = rdma_ack_cm_event(cm_event);

On the client side, Steps 1–6 and 9 make the control path and Steps 7 and 8 make the fast

data path.
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3.7.2 Steps on the Server

A server takes the following steps in order to receive data from an incoming RDMA connection

using the reliable iWARP RDMA transport.

~���1 In a similar manner to a client, allocate an event channel in order to receive connection

and network management related events. On this channel, create a listening connection

management ID (cmid).

1 struct rdma_cm_channel *cm_channel =
rdma_create_event_channel();

2 struct struct rdma_cm_id *server_id = NULL;
3 int ret = rdma_create_id(cm_channel, &server_id, NULL,

RDMA_PS_TCP);

~���2 Bind and listen on a given (IP, port) for any incoming connection.

1 struct sockaddr_in s_addr;
2 s_addr.sin_family = AF_INET;
3 s_addr.sin_addr.s_addr = INADDR_ANY;
4 s_addr.sin_port = server_port;
5 ret = rdma_bind_addr(server_id, (struct sockaddr*) &s_addr);
6 ret = rdma_listen(server_id, 1); /* backlog = 1 */

~���3 Wait until a new connect request arrives on the even channel, and then retrieve the new

cmid of the client. The wait is done in the rdma get cm event which is a blocking

call.

1 struct rdma_cm_event *cm_event = NULL;
2 ret = rdma_get_cm_event(cm_channel, &cm_event);
3 if (cm_event->status != 0 ||
4 cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
5 printf("Failed on incoming connect, %d \n", -errno);
6 exit(-errno);
7 }
8 struct rdma_cm_id *client_id = cm_event->id;
9 ret = rdma_ack_cm_event(cm_event); /* ACK the event */

~���4 Create a new protection domain, and allocate and register a new RDMA receive buffer

with the RDMA provider (saved in the verbs pointer).

1 struct ibv_pd *pd = ibv_alloc_pd(client_id->verbs);
2 char *buf = malloc(1024); /* 1kB buffer */
3 struct ibv_mr *mr = ibv_reg_mr(pd, buf, (1024),

IBV_ACCESS_LOCAL_WRITE);

~���5 Create a completion channel, a completion queue, and a queue pair.
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1 struct ibv_comp_channel *comp_channel =
2 ibv_create_comp_channel(client_id->verbs);
3 struct ibv_cq *cq = ibv_create_cq(client_id->verbs, 1,
4 NULL, comp_channel, 0);
5 ret = ibv_req_notify_cq(cq, 0); /* request notification */
6 struct ibv_qp_init_attr qp_init_attr;
7 qp_init_attr.cap.max_recv_sge = 1; /* max recv SGE */
8 qp_init_attr.cap.max_recv_wr = 1; /* max recv WR */
9 qp_init_attr.cap.max_send_sge = 1; /* max send SGE */

10 qp_init_attr.cap.max_send_wr = 1; /* max send WR */
11 qp_init_attr.qp_type = IBV_QPT_RC; /* reliable transport */
12 qp_init_attr.recv_cq = cq; /* CQ for recv notifications */
13 qp_init_attr.send_cq = cq; /* CQ for send notifications */
14 ret = rdma_create_qp(client_id, pd, &qp_init_attr);
15 struct ibv_qp *qp = client_id->qp; /* save QP pointer */

~���6 Prepare and post a receive WQE on the QP. This posting is done before accepting the

connection to ensure that the incoming data always finds a pre-posted receive WR on the

receive queue. The bad recv wr array is used to hold synchronously (failed during the

posting) failed WR(s).

1 struct ibv_recv_wr recv_wr, *bad_recv_wr = NULL;
2 struct ibv_sge recv_sge;
3 recv_sge.addr = mr->address; /* addr */
4 recv_sge.length = mr->length; /* length */
5 recv_sge.lkey = mr->lkey; /* STag */
6 /* wr */
7 recv_wr.sg_list = &recv_sge;
8 recv_wr.num_sge = 1; /* number of SGEs */
9 ret = ibv_post_recv(qp, &recv_wr, &bad_recv_wr);

~���7 Accept the incoming connection and wait for a connection ESTABLISH event.

1 struct rdma_conn_param conn_param;
2 conn_param.initiator_depth = 1;
3 conn_param.responder_resources = 1; /* depth of IO queue*/
4 ret = rdma_accept(client_id, &conn_param);
5 ret = rdma_get_cm_event(cm_channel, &cm_event);
6 if (cm_vent->status !=0 ||
7 cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
8 printf("Failed to accept the connection, %d \n", -errno);
9 exit(-errno);

10 }
11 /* ack event */
12 ret = rdma_ack_cm_event(cm_event);
13 }

~���8 Wait for a work completion (WC) notification for the recv WQE. A struct ibv wc

element contains all the information from a CQE.
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1 struct ibv_wc wc;
2 ret = ibv_get_cq_event(comp_channel, &cq, NULL);
3 ret = ibv_req_notify_cq(cq, 0);
4 ret = ibv_poll_cq(cq, 1, &wc); /* poll for 1 WC */
5 if (wc.status == IBV_WC_SUCCESS &&
6 wc.opcode == IBV_WC_RECV) {
7 /* ack the event */
8 ibv_ack_cq_events(cq, 1); /* 1 event */
9 }

~���9 Wait for a connection disconnect event.

1 ret = rdma_get_cm_event(cm_channel, &cm_event);
2 if (cm_event->status == 0 &&
3 cm_event->event == RDMA_CM_EVENT_DISCONNECTED) {
4 /* disconnect received, destrory all resources */
5 ...
6 /* ack the event */
7 ret = rdma_ack_cm_event(cm_event);
8 }

Steps 1–5, 7, and 9 are the control preparation steps while steps 6 (posting) and 8 (WC

retrieval) constitute the fast data path steps.

3.8 RDMA Performance Potential and Pitfalls

Despite recent wide-spread attention, translating the advantages of RDMA based network IO

into application-level performance is challenging. In this section, we describe our experience

and issues that we encountered while developing high-performance applications for RDMA ca-

pable network controllers (RNICs). Due to the offloaded nature of complete packet processing,

many (un)related factors beyond the control of the systems software (e.g., the operating system)

can significantly influence the performance gains for the end-application.

3.8.1 Motivation and Key Findings

To access the potential application-level performance gains when using RDMA, we conducted

a simple request-response experiment for data transfer in a server-client configuration. For

every client request, the server prepares a response buffer and sends it out on the network back

to the client. We use RDMA and the traditional TCP stack in Linux for data transfers and

compare their performances. Figure 3.5 shows (raw numbers in Table 3.1) the performance

gains (seen by the client as improved request completion time) on the y-axis for different sizes
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Figure 3.5: Potential performance gains of using RDMA network IO in comparison to the tra-
ditional BSD socket/TCP stack.

1kB 4kB 16kB 64kB 256kB 1MB 4MB 16MB
TCP/sockets 40 48 75 153 350 1,133 4,781 20,877

RDMA send/recv 31 39 72 173 470 1,481 5,586 22,222
Gains in % +22.5 +18.7 +4.0 -13.0 -34.2 -30.7 -16.8 -6.4

Table 3.1: Raw data for Figure 3.5. All numbers are in µsecs, representing the time it took
to transfer a test buffer. The difference is calculated with respect to the baseline
performance of TCP/socket’s performance.

of the response buffer (on the x-axis). Positive numbers on the y-axis represent performance

gains for the end-application using RDMA. Our experiment suggests:

(a) Networked applications can even lose performance when using network acceler-
ators in particular circumstances. The performance implications of complex interactions

among sophisticated CPU cores, last-level caches, and low-latency network controllers are

highly machine specific and are hard to predict. For the same application, running on differ-

ent generations of CPUs and NICs, one can observe a wide-range of performance fluctuations,

including performance loss.

(b) Modern network latencies are getting closer and become comparable to architec-
tural overheads. The overhead of coherence maintenance, cache misses, DRAM access la-

tencies, and CPU stalls significantly influence the performance of an end-application operating

in a low-latency network environment. Although the exact overhead is workload specific, it is

affected by a number of characteristics such as buffer size, access pattern, etc.
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Figure 3.6: Interaction sequence among the CPU core, LLC, DMA access, and Coherence En-
gine. Line numbers refer to the code listing in Figure 3.7.

3.8.2 Benchmark Application and Experimental Setup

To understand our counter-intuitive findings where we observe performance degradation when

using offloaded RDMA network processing, we start by designing a controlled request-response

experiment between the server and the client as outlined in the previous section. Our analysis

reveals that application-level latencies seen by the client are dominated by the buffer prepa-

ration step at the server. Hence, we further investigate the interaction among various entities

involved in the buffer preparation and transmission steps, namely CPU, last level cache (LLC),

and DMA access to DRAM. Figure 3.6 illustrates the sequence of interaction among the entities

on an IO coherent architecture such as x86.

In our benchmark, the client constantly sends a request to the server in a tight loop without

any pipelining. Upon receiving the request, the server prepares a buffer and transmits data

in the buffer back to the client. The size of the buffer is variable. In our controlled setup, the

preparation is a simple scan operation on the buffer. In a real-world application, the preparation

step can involve more complex operations such as reading data from a persistent storage and

then copying it into the buffer. Figure 3.7 shows the code which we implement within the

netperf benchmark framework [9].

We now explain the preparation step in greater detail. Different buffer preparation configu-

rations give us the flexibility to analyze cache and snoop protocols in a controlled environment
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1 char dummy_buff[BUF_SZ], tx_buff[BUF_SZ];
2 /* Until timeout, keep receiving requests */
3 while(!time_out){
4 /* Receive the request from the client */
5 recv_request();
6 for(i = 0; i < BUF_SZ; i += CACHE_LINE_SZ){
7 #if SCAN_MODE == TOUCH
8 /* scan the transmission buffer */
9 scan(tx_buff[i]);

10 #elif SCAN_MODE == NO_TOUCH
11 /* else, scan the dummy buffer */
12 scan(dummy_buff[i]);
13 #endif
14 }
15 }
16 /* always send the transmission buffer */
17 send_buffer(tx_buff, BUF_SZ);
18 }

Figure 3.7: Server-side execution logic.

NoTouch Touch
Write Scan Modified cache lines (M)

from the dummy buffer.
Modified cache lines (M)
from the transmission buffer.

Read Scan Exclusive cache lines (E)
from the dummy buffer.

Exclusive cache lines (E)
from the transmission buffer.

Table 3.2: Content of last-level cache depending on the mode and the scan type. Modified(M)
and Exclusive(E) cache line status represent the MESIF protocol states.

while keeping a uniform CPU load. On the server side, the preparation step has two modes:

Touch and NoTouch. In the Touch mode, data in a transmission buffer is scanned using a

for loop. In the NoTouch mode, a similar scan is done on a dummy buffer. The two buffers,

transmission and dummy, are identical, but only the transmission buffer is transmitted on the

network (see lines 15-16 in Figure 3.7).

Furthermore, the scan can be of two types: Read Scan or Write Scan. A Write Scan

emulates a reader-writer sharing scenario, where the CPU writes and the network controller

reads the buffer. A Read Scan represents a read-read sharing of the buffer. The scan access on

the buffers (either transmission or dummy) brings the associated cache lines into the LLC. To

maintain the IO coherence, transmission of the transmission buffer generates snoop requests for

LLC. Table 3.2 summarizes the LLC content for different combinations of the modes and the

scan types.
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Intel Xeon E7520
CPU cores 4×1.8GHz
QPI speed 4.8 GT/sec
L1 cache 64kB, 2.1nsec, 8-ways associativity
L2 cache 256kB, 5.3nsec, 8-ways associativity

LLC 18MB, 22.7nsec, 24-ways associativity
LLC type Inclusive of L1 and L2 caches

Cache line size 64 Bytes
DRAM latency 131nsec

Prefetching Next-line Prefetcher, enabled

Table 3.3: Architectural properties and configuration of Intel Nehalem-EX Xeon E7520 CPU.

3.8.2.1 Experiment Methodology and Hardware

We measure the single request completion time (the time between issuing a request and re-

ceiving the complete response buffer) at the client as the key performance metric. We use two

network transport implementations for the buffer transmission - unaccelerated Linux in-kernel

TCP/IP and an accelerated RDMA stack. The Linux stack runs on the host CPU together with

the benchmark application. We calculate performance gains by comparing the request serving

time between the two stacks. TCP performance is measured under a similar setup by using

a modified TCP RR test from the netperf test suit. The previously shown figure 3.5 com-

pares the performance of the RDMA accelerated stack and the in-kernel TCP/IP stack under the

Touch/Write Scan configuration for different response buffer sizes.

We perform our experiments on two identical IBM system x3690 X5 machines containing

the Intel X58 chipset with Intel Xeon Nehalem-EX E7520 CPUs. Table 3.3 summarizes the

architectural parameters for the CPU. Chelsio Terminator4 (T4) RDMA-capable Network In-

terface Controllers (RNIC) are used for RDMA network IO on the 10Gbps Ethernet. However,

we repeated our experiments with Intel NetEffect network accelerator adapters and found no

significant deviations in our findings. From this we concluded that our observations were not an

anomaly of a particular RNIC implementation. We used Linux perf [12] measurement frame-

work to measure the global coherence events as documented in the Intel manual [170]. Linux

kernel version 3.7.0 is used in all experiments.

All experiments last 60 seconds, and are repeated three times. We omit reporting variance

because the reported performance numbers have less than 5% standard deviation between the

three runs. To avoid any multi-core coherence interference, all cores except Core0 are switched

off. Core0 and RNIC are the only two entities in the system sharing the access to the DRAM.

However, we have verified our results in presence of other cores and found no deviations in

our findings. CPU pre-fetching is enabled for all experiments except for those presented in
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Figure 3.8: The snoop and the LLC hit rates.

Section 3.8.5.

In the next section, we present our results regarding various architectural overheads, and

attribute costs to them on our systems. All data transfers in the next section use RDMA.

3.8.3 Result: Intention Mismatch between DMA Access and Cache Coherence

We start by analyzing the large performance penalties for touching the transmission buffer (as

any real-world application would do). As shown in Table 3.4, the Touch mode access results in

a 56% and 14% drop in performance for Write and Read Scans, respectively. In our experiment,

the server always transmits the transmission buffer. To maintain coherence, snoop requests for

the transmission buffer are generated when the DMA engine on the RNIC accesses the DRAM

(see steps 3 and 4 in Figure 3.6). There are two possible outcomes of a snoop request: (a) a

snoop miss, when the LLC does not contain snooped addresses, (b) a snoop hit, when the LLC

contains snooped addresses. As the snoop requests are always generated for the transmission

buffer, the Touch access has a high snoop hit rate. In the case of a snoop hit, the coherence

engine must take appropriate actions to ensure IO coherence. Modified cache lines are evicted

and written back (WB) to the DRAM to ensure that DMA access reads the latest content. In

the case of clean Exclusive cache lines, nothing should be done. However, as we illustrate, the

exact actions are implementation specific.

The performance drop for the Write Scan can be attributed to cache lines eviction and costly
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NoTouch Touch Loss
Write 300 µsecs 470 µsecs 56.6%
Read 275 µsecs 315 µsecs 14.5%

Table 3.4: Latency numbers for a complete request-response loop, measured at the client side
for the different modes and scans on the server. The response buffer size is 256kB.

WBs to DRAM. However, the Read Scan on the transmission buffer unexpectedly also results in

a performance drop. This behavior leads to a further investigation about snoop and coherence

interaction. We measure the snoop hit rate by counting the snoop requests that hit the LLC.

Similarly, we measure the LLC hit rate for accesses by the Core0 in the subsequent scan steps.

Figure 3.8 shows our results. As expected, NoTouch access results in an LLC hit rate of almost

100%, with a negligible snoop hit rate. The Touch access results in a snoop hit rate of almost

100%. The high snoop hit rate evicts the cache lines and consequently, further access to the

transmission buffer by the Core0 misses the LLC. The LLC misses are not capacity or conflict

misses, as only cache lines in the Invalid state are filled. Further analysis reveals that the snoop

requests are of type REMOTE RFO (remote Request For cache line Ownership). This ownership

request moves Exclusive cache lines to the Invalid state and discards them. This state transition

resulted in mandatory cache line misses for the Read Scans.

The DMA-intention mismatch may be a multi-socket CPU specific behavior. The test CPU

here is a Nehalem-EX CPU, which is a multi-socket CPU. A multi-socket CPU may1 implement

a different subset of the basic MESIF protocol than dual-sockets (Nehalem-EP) and single-

socket (Nehalem-UP) CPUs. A specific implementation trades scalability (single, dual, multi

sockets) with coherence maintenance overheads in hardware. Executing the key experiment

from this subsection on a Nehalem-EP CPU resulted in the moving of the relevant cache lines

from the Exclusive state to the Shared state because the DMA read snoop request was inter-

preted correctly by the coherence engine. However, we cannot confirm if this behavior is Ne-

halem specific or EX (multi-socket) processor specific due to the lack of enough data samples

on different types of CPUs.

Summary: Write back of Modified cache lines is costly on Xeon E7520 due to high mem-

ory access latencies. However, more interestingly, E7520’s coherence engine interprets a DMA

read request during the data transmission as a REMOTE RFO. This request for ownership forces

the coherence engine to evict clean cache lines as well. The mismatch between DMA access

intentions and coherence implementation results in a performance loss for the application where

read-read sharing is expected.

1Personal discussion with an Intel employee.



88 CHAPTER 3. REMOTE DIRECT MEMORY ACCESS

20%

40%

60%

80%

100%

1kB
4kB

16kB
64kB

256kB
1MB

4MB
16MB

P
er

ce
nt

ag
e 

dr
op

with Write Scan
with Read Scan

Figure 3.9: Performance degradation due to LLC misses and coherence overhead. The percent-
age performance drop is calculated by comparing the performances of the Touch
accesses to the NoTouch accesses.

1kB 4kB 16kB 64kB 256kB 1MB 4MB 16MB
NoTouch 30 38 56 105 300 1,107 4,310 19,230

Touch 31 39 72 173 470 1,481 5,586 22,222Write
Drop in % 3.3 2.6 28.5 64.7 56.6 33.7 29.6 15.5

NoTouch 29 38 56 101 275 974 3,777 15,873
Touch 30 38 59 111 315 1128 4,385 17,543Read

Drop in % 3.4 0 5.3 9.9 14.5 15.8 16.0 10.5

Table 3.5: Raw data for Write and Read scans for Figure 3.9. All numbers are in µsecs, repre-
senting the time it took to transfer a test buffer. The difference is calculated between
NoTouch and Touch accesses.

3.8.4 Result: High LLC Misses and Coherence Overhead

In this section, we investigate the effect of the buffer size on the coherence overhead. The buffer

size is directly related to the number of cache lines that need work for coherence maintenance.

Large buffer sizes result in a large number of cache lines, and consequently add coherence

overhead. For mandatory cache misses (in the case of Write Scan), accessing a large buffer

from DRAM with a cold cache is also costly. Figure 3.9 (absolute numbers in Table 3.5) shows

the effect of collective penalties of coherence overhead and cache misses. The y-axis shows

performance degradation when Touch access is compared to NoTouch access. As shown in
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the previous section, the NoTouch access does not have any snoop-hits and maintains a high

cache-hit rate. The Touch access results in snoop-hits and additional coherence maintenance

work. For small buffer sizes, due to the small number of cache lines, the cost of coherence

maintenance is small and relatively low compared to the overall network latency. As we increase

the buffer size, this cost increases and becomes the dominant part of the overhead (4-256kB

range). Further down the x-axis, with large buffer sizes the transmission cost on the 10GbE link

becomes dominant and shadows the coherence overhead.

Summary: The shared access of the transmission buffer between the CPU core and network

accelerator brings the accelerator into the memory coherence domain. Unlike the well studied

(and optimized) behavior of memory sharing among many CPU cores, the performance impli-

cations of this shared access are not well understood. Different natures (inclusive or exclusive of

L1 and L2) and implementations (topology, on- or off-chip) of last-level caches make reasoning

about the performance a difficult problem. The architectural overheads stemming from cache

misses, CPU stalls, etc., have now become comparable to the network latencies. As illustrated,

the (potential) performance gains in a shared access environment can easily be eclipsed by high

architectural overheads.

3.8.5 Result: Pre-Fetching Sensitivity for Buffer Access Patterns

Write back and (forced) eviction of cache lines result in mandatory cache misses. Because our

benchmark is doing a sequential access (in a for loop) to the transmission buffer, the Next-

line hardware pre-fetcher can fetch subsequent cache lines to avoid the high cache-miss penalty.

However, real-world applications have complex data structure layouts in the transmission buffer,

where parts of the buffers can be transmitted and received. Further, data can be accessed based

on freshness, or urgent interest, e.g., only accessing the keys in a key-value pair. These types of

accesses are strictly non-sequential and do not activate hardware pre-fetching. To understand

the benefit of sequential access, we explicitly enabled and disabled pre-fetching in the BIOS.

Figure 3.10 (absolute numbers in Table 3.6) shows our findings. Hardware pre-fetchers can help

to accelerate the end-application performance when accessing the cold transmission buffer, but

only under restricted access patterns. The gains from the sequential access (due to hardware

fetching) can be as high as 60%.

Summary: Non-sequential access patterns that do not match any available pre-fetchers

(adjacent-line, DCU streamer, etc.) will not get any performance boost. Unaccelerated network

stacks get benefits from software pre-fetching hints (using prefetch family instructions)

passed during protocol processing and data copying in the kernel. In contrast, with RDMA,

where data is directly transmitted and received from userspace, side-effects of DMA access
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Figure 3.10: Performance gains due to Next-line hardware pre-fetching.

1kB 4kB 16kB 64kB 256kB 1MB 4MB 16MB
Disabled 32 47 93 249 869 3,367 13,333 55,555
Enabled 31 39 72 173 470 1,481 5,586 22,222Write

Gains in % 3.1 17.0 22.5 30.5 45.9 56.0 58.1 60

Disabled 30 39 60 115 330 1,189 4,629 18,518
Enabled 30 38 59 111 315 1128 4,385 17,543Read

Gains in % 0 2.5 1.6 3.4 4.5 5.1 5.2 5.2

Table 3.6: Raw data for Write and Read scans with pre-fetching enabled or disabled for Fig-
ure 3.10. All numbers are in µsecs, representing the time it took to transfer a test
buffer. The difference is calculated between pre-fetching disabled to enabled set-
tings.

(e.g., cold cache) are completely visible to the application and cannot be avoided. Hence, var-

ious cache optimization techniques and large cache sizes are of little help, and factors such as

DRAM access latencies start to dominate the performance of end-applications.

3.8.6 Analysis of Results

The distributed execution of application and network code on network accelerators is a radical

departure from the traditional model, where everything is optimized to be accessed from a

centralized host CPU. Hence, the interaction among off-chip non-CPU components becomes

an important performance factor. These components include shared last-level caches, different
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coherency engine implementations, transport links (e.g., Intel QPI) to cores, and DRAMs, etc.

We realize that our investigation is processor and architecture specific, and therefore it would

be wrong to make any final conclusions regarding the RDMA network technology. However,

our findings do highlight (potential) architectural pitfalls, which are usually hidden from high-

level applications while deploying network accelerators in large-scale environments.

Earlier works discuss network offloading specifically in the context of transparent TCP

offloading that maintains the socket interface to applications [128, 244]. Our analysis, how-

ever, is not limited to TCP/Socket interface and has wider implications. As general IO of-

floaded devices and accelerators are becoming part of mainstream computing, IO latencies are

rapidly becoming closer to architectural overheads. Our findings have further implications as

RDMA IO interface and semantics are now being investigated even for GPUs [192, 261] and

storage [341], for which we also have made a case in Chapters 4 and 5.

3.8.6.1 Impact on Networked Applications

Various high-performance NoSQL data stores [13, 121] have been proposed to serve multi-

ple clients. Efforts have been made to transfer data by leveraging the capabilities of RDMA

networks [183, 241, 326]. Such applications that reportedly enjoy performance gains with

RDMA can also experience performance loss if used with a particular CPU or chipset in a

low-latency environment. Overheads reported in Section 3.8.3 affect servers, those reported in

Section 3.8.5 affect clients, and those discussed in Section 3.8.4 affect both. Other in-memory

data stores [264, 367] are also susceptible to suffer performance losses. Also, in a shared envi-

ronment cluster where storage and compute nodes are co-located, network RDMA operations

of the storage application can potentially purge warm caches of the compute applications.

However, certain classes of applications are also less likely to be affected by reported over-

heads. Applications which have limited CPU-NIC interaction, such as media streaming where

the CPU brings video data into the memory once, and network acceleration such as done by

RDMA, which can be used to serve content repeatedly to multiple clients [132], are not ex-

posed to the overheads. Another class of applications contains those where the non-network

part of the application, either computation or disk IO, dominates the overall client latencies.

These latencies are orders of magnitude higher (in msecs) than latencies reported in our setup.

3.8.6.2 Architectural Implications

In the previous sections, we have illustrated that architectural overheads can eclipse gains from

RDMA networks in high-performance environments. The exact overhead cost is sensitive to
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a particular implementation of the coherence engine, cache-miss costs, write-back and DRAM

access latencies, etc. Hence, application developers must now be aware of costs associated

with low-level architectural events. With ever increasing complex NICs and CPUs internals,

there is a growing confusion about performance [316]. Different processor vendors implement

different variations (or even a subset) of cache coherence protocols. Implementation and cost

of architectural features can be different even between different models of the same processor

generation [32].

Intel addresses some of the issues discovered in this chapter. For a later generation of

SandyBridge CPUs, Intel introduced Data Direct I/O Technology or DDIO [168]. With DDIO,

incoming or outgoing DMA operations can access last-level CPU caches to read or write data.

This mechanism solves the basic problems of mandatory cache misses for freshly received data

and forced dirty cache eviction on DMA. However, the use of last-level cache as a data source

or sink for IO devices also opens other problems such as how to avoid cache trashing due to ex-

cessive IO, how to selectively enable or disable this feature on a per device or per access basis,

how to steer data to a particular shared last-level cache in a multi-socket setup, etc. Nonethe-

less, such an approach is definitely helpful, but requires a more generalized, configurable, or

programmable solution than a system-wide static setup as currently supported in DDIO.

With the high residual transistor count on the CPU chips, it should now be possible to

implement high-performance NICs on CPU chips [62, 173]. This NIC-CPU integration makes

the network a first class citizen of CPUs with access to all on-chip resources such as caches

and memory controllers. This access enables a better interaction between caches and network

IO. Furthermore, network access to memories (DRAMs, caches or even NVRAMs) can be

optimized (and reasoned about) using similar techniques for manycore CPUs. As there is no

final word for high-performance network interfaces (hardware and software), it is a challenging

task to design a single chip to meet all demands. However, demands for very high network

performance (100Gbits/sec with less than 1µsecond latency [292]) necessitate this integration.

Another orthogonal issue is RDMA network integration in non IO-coherent architectures,

e.g., ARM. In such architectures, understanding the interaction among non-CPU components

(caches, DMA and coherence) is even necessary for the sake of correctness. The current OFED

RDMA subsystem on Linux is broken for non IO-coherent architectures [338].

3.8.7 Summary

RDMA offers low (∼1s µsecs) data access latencies together with very high data band-

widths (10-40-100Gbps) with a zero CPU load. Due to its unique performance potential,

RDMA has (again) started to draw a lot of attention from the systems building commu-
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nity [107, 183, 241, 264, 325, 326, 339]. However, managing network resources in userspace

does expose applications to low-level hardware details which are usually hidden in the operating

system kernel. For example, to reduce cache pollution, Linux uses non-temporal copy instruc-

tions (e.g., movnti) to copy data from user buffers to SKBs. It also hides the cost of cache

misses from applications by doing pre-fetching and data copy during the network processing.

3.9 Conclusion

In this chapter, we have provided the necessary background information on the RDMA tech-

nology, its implementations, networking abstractions, network operations, and programming

interfaces. We then further documented our experience with RDMA network IO operations.

We found out that a number of (un)related parameters can significantly affect the gains of ap-

plications when using RDMA network operations.

We identify performance factors that span the whole stack, ranging from low-level architec-

tural issues (cache and DMA interaction, hardware pre-fetching) to the high-level application

parameters (buffer size, access pattern) and attribute costs to them on our systems. Unfor-

tunately, there is no silver bullet solution that guarantees performance improvements without

any drawbacks or concerns. As we move toward a heterogeneous computing environment, the

use of network offload/accelerator devices will become more common. This will change the

decade old assumption that all processing and data access happens from the central CPU. Thus,

instead of focusing on a high CPU core performance, system architects must take a holistic,

system-wide approach toward network offloading/accelerator integration to achieve application

performance boosts.

Although our findings are RDMA and CPU specific, they are illustrative of a growing con-

fusion about performance when using network offloading/accelerator devices. Reasoning about

RDMA performance requires a good understanding of CPU, NIC, and architecture internals.

Complex off-CPU components, primitive performance monitoring facilities, ambiguous docu-

mentation of hardware, and a limited software support, etc. make RDMA performance analysis

a very challenging task.

A general recommendation for RDMA practitioners is to benchmark and quantify their hard-

ware for various micro-architectural features such as DRAM latency, LLC misses, pre-fetching

misses, coherence overheads, etc. For the rest of the thesis, we use a cluster with servers

equipped with CPUs where the cost of these micro-architectural features is low.





4
A Case for Unified

High-Performance IO

Modern storage and networking devices have changed dramatically over the last decade. While

end-host networking performance and capabilities have improved gradually and consistently

over the years, Non-Volatile Memory (NVM) storage became part of today’s mainstream com-

puting in a relatively short span of time. The rapid emergence of NVM devices has also exposed

many performance inefficiencies and bottlenecks in the design of traditional storage stacks and

abstractions. To improve the situation, fragmented efforts have been made to look into light-

weight, kernel-bypassing, low-latency, asynchronous, and directly-accessible storage stacks.

Yet, there is a pressing need for a high-performance storage stack.

As discussed in Chapter 2, two decades ago when networking stacks were unable to meet

strict performance demands of emerging parallel and distributed applications, multiple high-

performance network concepts, network interfaces, operating system mechanisms, networking

stack implementations, and application abstractions, etc., were developed. In this chapter, we

now draw parallels between evolutions of storage and networking stacks to illustrate synergies

between high-performance storage requirements and concepts from the networking domain. We

identify common high-performance IO properties and recent efforts in storage to achieve those

properties. Instead of reinventing the performance wheel, we present a case for developing

a unified IO abstraction for high-performance storage and networking devices using modern,

mature networking frameworks. We then discuss the key characteristic properties, opportuni-

ties, required support, and the open issues when applying networking concepts in the storage

domain.

4.1 The Struggles of the Storage Stack

Slow storage has been the Achilles’ heel for data processing systems. Historically, disk band-

width and access latency have consistently lagged behind their capacity and packing improve-

ments [116]. However, NVM storage offers unprecedented improvements over disks with multi-
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CPU Speed Net BW Storage BW
1980-2010 1000× 3000× 50×
2010-now 1-1.5× 4-10× 10-100×

Table 4.1: The widening CPU-IO performance gap between a CPU speed and bandwidth im-
provements of IO devices. In the last couple of years, performance (both bandwidth
and latency) of IO devices continues to improve rapidly whereas a single CPU speed
improvement has only seen marginal gains.

Gigabit bandwidth and access latencies in microseconds. This performance paradigm shift has

been the most fundamental and significant change in storage since the advent of magnetic disks

in the 1970s. Unsurprisingly, not much has changed in the way operating systems manage stor-

age devices. The following factors motivate a need for reevaluation of the complete storage

stack to support high data rates.

4.1.1 Rising CPU-IO Gap

Hardware landscape has changed considerably during the last decade. Modern IO devices are

becoming significantly faster than CPUs. With stalled single CPU speed scaling, CPUs can

no longer keep up with the high data rates from devices (see Table 4.1). As a result, tradi-

tional CPU-centric storage stacks, where the CPU orchestrates data movement from relatively

slow disks to DRAM buffers, have started to show performance strains in high IO operation/sec

(IOPS) environments. This CPU-bottleneck limits deliverable performance to applications, de-

spite having orders of magnitude performance improvements in hardware. As NVM technolo-

gies continue to mature, this performance gap between CPU and devices will widen. Manycore

CPUs come to rescue, however, the overhead due to locking, synchronization, and coherency,

etc., limits the overall achievable IO performance [53]. Also, using multiple cores to satisfy

high-CPU demands of IO operations is performance inefficient. As computing gradually moves

toward Exascale, the performance efficiency [27] has direct implications for the amount of re-

sources (CPU, storage, network), energy, and cost.

4.1.2 Software and Access Overhead

NVMs packed as fast disks have been the least intrusive and most economical way of inte-

gration so far. As the performance characteristics of underlying storage media have changed

significantly, the traditional disk-based optimizations are now considered expensive, obsolete,

and intrusive. For example, IO pre-fetching, buffer caching, request reordering and merging,

etc., all require additional time and CPU cycles (which are limited) and, hence, may even lead

to performance degradation with NVMs [68, 306]. Layering and multiplexing within operating
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Sockets       Stateless       Direct Hardware      OS bypass with                RDMA 
                    Offloads         Access                    User-space networking    

1980s                                                                                                            2000s-now

Better CPU utilization       Lower Overhead       Richer Semantics

Figure 4.1: Evolution of high-performance network properties. The arrow does not represent
any casual dependency or temporal precedence in the development.

systems, and virtualized environments put further penalties on the performance. With additional

layers, the incurred overhead is non-linear which results in a rapid performance loss.

4.1.3 Restrictive APIs

Storage APIs are not designed to expose NVM capabilities to applications. Features such as ac-

cessing flash chips directly [137], virtualize storage space [181], parallel read/write ports [70],

atomic updates [267], etc., can significantly simplify storage logic while improving deliverable

IO performance. Furthermore, they also restrict passing useful information about the nature

of IO across the layers to NVM devices. Useful access information like scratch-pad access

(light-weight, single copy, no protection), log-access (write-append, random reads), or range

invalidation can help significantly with better device management, and consequently perfor-

mance.

4.2 A View from High-Performance Networks

This appetite for efficient high-bandwidth and low-latency access to data is not unique to stor-

age. The networking community has always lived with stringent application demands for high

IOPS. Over the last 30 years, various techniques and concrete implementations of networking

stacks have been developed to match the periodic interconnect bandwidth and latency improve-

ments. Simple optimizations such as checksum and segmentation offloads gradually delegated a

part of the packet generation to network controllers [193]. DMA support was added to free CPU

cycles from data movement [282]. Adaptive interrupt coalescing and device polling resulted in

better device management under load [248]. These simple techniques freed precious CPU cy-

cles and helped to close the interim CPU-network gap that arose from continuous interconnect

improvements, e.g., Megabit to Gigabit Ethernet.

Though effective and helpful for high-bandwidth data transfers, these optimizations yielded

little improvements in end-to-end application latencies. Latency requirements of high-

performance applications necessitated more radical approaches. To reduce every potential over-

head, these approaches favored a fresh redesign of the complete networking stack and devel-
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Networks Moneta-D Gordon NVHeap FusionIO
Efficient Hardware Access yes yes yes yes yes
Operating System Bypass yes yes N/A N/A proprietary

Zero Copy Data Movement yes no N/A possibly no
Asynchronous IO Model yes yes yes N/A yes
Synchronous Completion yes no no N/A no

Rich IO and API yes no no transactions proprietary

Table 4.2: Comparison of recent storage efforts to achieve high-performance properties. N/A
denotes that the property is not the primary focus of the work.

oped novel host interfaces, interconnects, networking principles, and operating system mecha-

nisms [111, 112, 352, 358].

As these high-performance stacks became popular, network architects soon identified a com-

mon requirement for rich network IO semantics from many applications. These semantics and

network operations made the development of complex applications easier. Naturally, to reflect

the gradual progress made in operating systems and networking hardware, networking API and

interfaces also evolved. The holistic approach taken by networks helped in developing many

key ideas that are now an integral part of any modern high-performance interconnect such as

InfiniBand and iWARP.

4.3 Distilling Common High-Performance IO Properties

Given the recent rejuvenated interest in high performance IO, this is a timely discussion about

the key principles and properties that enabled efficient IO for networks. Though these properties

are inspired from experiences in networks, we argue that they are equally applicable to the

storage domain as well. We discuss how recent efforts to integrate NVM are already exploring

subsets of these properties (see Table 4.2).

4.3.1 Efficient Host Interfaces and Hardware Access

In Section 2.1.3, we discussed how high-performance networks manage to keep the host over-

head minimal by directly mapping the hardware resources to applications as private channels or

queues. As the overhead from disk based storage protocols (e.g., SCSI) and host interfaces (e.g.,

AHCI) becomes unbearable [199], research projects such as Moneta [69] and multiple commer-

cial offerings [137] have started to look into directly accessible hardware with improved host

interfaces. Moneta-D offers safe user-space access to directly accessible NVM devices [71].

Though it helps reducing the overhead associated with issuing IO requests and notification de-

livery, these efforts lack the generality of user-space networking. For example, Moneta-D does
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not have a generic mechanism (similar to a completion channel for RDMA networks) for asyn-

chronous completion notification to userspace. It is not possible to batch notifications or share

resources between multiple IO channels. Other industrial efforts such as NVMe, which do pro-

vide multiple queue-based interfaces to a device, but only allow trusted kernel clients such as a

file system.

4.3.2 Operating System Bypass

By separating data from the control path and pre-allocating IO resources, high-performance

networks involve operating systems in selective managerial tasks such as resource account-

ing. Enforcement of the security policies takes place in network hardware. Recent storage

research has looked into similar techniques to avoid unnecessary operating system involve-

ment with request scheduling, batching, reordering, dynamic resource allocation, and security

enforcement. Moneta-D pre-allocates DMA buffers, directly posts requests, and offloads file

permission checks to a capable storage hardware [71]. Though the operating system is still

involved in DMA buffer management, file check offloading, and permission evictions, etc., it is

kept out of the IO loop between the application and hardware. The storage stack of the Arrakis

operating system, a recently proposed state-of-the-art system, completely eliminates the kernel

involvement in the IO path by assigning a virtualized storage interface controller (VSIC) to

applications [274].

4.3.3 Zero-Copy Data Movement

High-performance network controllers maintain sufficient contextual meta-data to multiplex

and securely DMA data directly into application buffers. They also support arbitrary application

buffer layouts, offset calculations, and scatter-gather IO. Together with directly accessible IO

hardware and operating system bypassing, the CPU is now completely decoupled from the fast

data flow. Efforts have been made to achieve zero-copy storage, but they are either limited

(small number of user accessible DMA buffers) or restricted (aligned layout of user buffers).

Zero copy storage is possible with mmap’ed files as application buffers, but not achievable using

other memory allocation methods such as malloc.

4.3.4 Asynchronous IO

High-performance storage interfaces such as epoll are based upon the readiness instead of the

asynchronous-notification model. This model does not provide sufficient concurrency to exploit

full device potential and makes optimizations such as request batching and selective notifica-

tions very difficult. In multi-stage environments, where data passes through multiple storage
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devices, asynchronous IO also gives better IO scheduling opportunities for a smooth end-to-end

data flow. Recent efforts such as Moneta-D [71] and MegaPipe [153] have advocated the use of

the asynchronous model with private channels.

4.3.5 Polling and Synchronous Completion

A synchronous completion allows posting IO requests and reaping completion notifications

without context switches. Networks support non-blocking posting of batch requests with polling

completion within the same user-context. For low-latency networks, this method delivers better

application latencies at the expense of higher CPU utilization. However, as emerging NVM de-

vice latencies will fall below context switch latencies, this approach proves to be more favorable

for storage as well [364]. Like high-performance networks, recent efforts in storage have also

looked into supporting adaptive switching between blocking and polling for completion [313].

4.3.6 Rich IO Operations and APIs

Modern interconnects support operations such as remote data read and writes, fencing, atomic

compare and swap, atomic add, scatter-gather IO, etc. Such hardware primitives make com-

plex application development simpler. Similar experiences are also reported by the storage

researchers in [181, 267]. NVHeap [89] (and other concurrent works [347, 351]) saves the

heap-state of an active application on NVM in a novel way and provides transactional support

to access it. As the NVM integration has been transparent, these approaches do not provide

much control over IO.

4.4 A Case for Unification

The current unified abstraction of files is not aimed at high performance and has plenty of

performance overhead due to the need for global synchronization, inefficient IO memory man-

agement, and the lack of useful hints in multi-core environments [153]. One potential so-

lution is to redesign the complete storage stack from scratch. However, as modern high-

performance networking stacks offer very mature and stable implementations of the desired

key high-performance properties (see Table 4.2), in this chapter we propose using them to ac-

cess and transfer data to/from NVM devices. This gives storage architects the opportunity to

reuse the developed frameworks without undergoing a similar evolution.

Similar to the networks, high-performance storage interfaces can provide directly user-space

mapped hardware IO queues or channels for request postings and completion notifications.

Operating system and user-space device libraries provide support for setting up direct NVM
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Figure 4.2: Illustration of the unified IO stack that can deal with network, local NVMs, and
remote NVMs under a common framework.

device access from the user-space. The devices implement multiple IO request opcodes and

associated completion semantics.

The access abstraction is a simple byte-addressable storage address space. Byte-addressable

abstraction does not impose any data structure and is expressive enough to support a wide

variety of higher-level storage systems such as hierarchical file-systems, databases or object

stores. These systems are responsible for the translation of higher-level storage objects, such as

a file or a database column, to a specific device address range. After the translation, the data

transfer happens directly between the device and the user-space buffers. The data transfer is

done in a manner similar to a remote memory read or write operation. The following factors –

lined out in Subsections 4.4.1-4.4.3 – further support our case for a unified stack for common

device management and data access.

4.4.1 Unified Operating System Support

The unification blurs the traditional boundary between network and storage and enables a com-

mon evolution of high-performance IO frameworks. A single stack provides uniform IO se-

mantics and guarantees across multiple kinds of devices (see Figure 4.2). This unification also

simplifies the implementation of IO mechanisms inside an operating system. Both, network

and storage, need capabilities to directly access hardware, use adaptive notifications (callbacks,

blocking, polling, etc.), share IO memory management with applications, etc. Looking beyond

the performance properties, networking stacks also have everything from device detection, con-

figuration management, capabilities discovery, to efficient memory management, etc. These

services largely simplify the device management.
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4.4.2 Ready to Use

Any modern high-performance network stack implementation can be used as a drop-in replace-

ment to access storage. The replacement allows storage to reuse interfaces, data structures,

APIs, and even (up to a certain extent) concrete implementations of a stack. Many network-

ing semantics have an immediate appeal for storage applications. Features such as remote

read/writes can be used to access data from storage. Fencing and ordering among IO opera-

tions ensure proper consistency guarantees (similar to a remote memory) for storage. Multiple

storage devices can form a multi/broadcasting group to implement replication. QoS can be

implemented by using multiple network traffic classes. Furthermore, end-to-end semantics of

the interface/API ensure light-weight data access even in multi-layer access environments, e.g.,

virtualization.

4.4.3 Favorable Advancements

Lastly, recent architecture and systems advancements also facilitate this unification. The byte-

addressability nature of NVMs (e.g., PCM) makes data access as simple as reading remote

memory. This fits nicely with remote memory access semantics of RDMA. However, an NVM

device itself does not have to natively support byte addressability as long as it understands

the RDMA access model. With the revised host-interfaces [10], NVMs can now be directly

accessed via networks, further blurring the gap between local and remote storage. Repartition-

ing storage responsibilities between application and hardware also makes it possible to reuse

standard user-space networking stacks.

4.5 Discussion

4.5.1 Operating System Support

Efficient, streamlined IO execution requires support from both operating systems and hardware.

As the key responsibilities of an operating system - abstraction, multiplexing, and layering -

seem too prohibitive for high-performance, we must revise the responsibilities between devices

and the operating system. Much of IO management complexity from within operating systems

can now be delegated to applications and hardware. Instead of micro-managing, an Exokernel-

like [140] approach for OS design is more desirable. For example, instead of performing fine-

grained IO scheduling within an operating system, as has been done traditionally, it should be

involved selectively in coarse-grained decisions such as when to schedule an IO request class

(e.g real-time, or backup) or controlling parallelism and concurrency within hardware for QoS.

Hardware does a better job in fine-grained scheduling of individual IO requests. Additionally,
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operating system developers must remove the stigma associated with IO offloading. An operat-

ing system must be able to efficiently manage, extract, and communicate necessary contextual

information about IO to the devices.

Protection in a shared environment can be provided by generating access capabilities with

the help of IO devices. For example, an RDMA device generates an access identifier tag during

the memory registration for a data buffer. This tag must be presented by an application for any

access to the data buffer to verify access rights.

4.5.2 Hardware Support

Network and storage devices must be able to allocate IO channels, generate protection identi-

fiers, install user contexts and memory mappings, etc. To be efficiently managed by the operat-

ing system, device vendors need to come up with a standard communication interface for man-

agement and configuration such as OpenFlow [229] for switches. Efforts have been made re-

cently to standardize the storage host-device interface [10, 14]. Interestingly, NVMExpress [10]

shares many key performance properties with high performance networking devices such as di-

rectly accessible hardware resources, doorbell write to issue a command, multiple request and

response queues, capability discovery, interrupt coalescing, configurable data block size, etc.

To avoid unnecessary operating system involvement, devices must be educated about logical

IO primitives with gradually increasing complexity. As we discussed earlier, high-performance

interconnects such as InfiniBand already support rudimentary forms of these operations such

as atomic fetch and add, atomic compare and swap, etc. We believe that with a minimal set

of basic integrated operations (e.g., locking, logging, atomicity, serialization, etc.), it should

be possible to build higher-level complex primitives such as transactions or replication (using

multicasting) without bloating the IO stack.

4.5.3 Open Issues

Multi-stage resource allocation: Resource allocation in the control path of high-performance

networks is a multi-stage process. Different IO resources (with associated states) are allocated

at various stages of a connection setup, e.g., open channel, route discovery, device resolution,

connect, accept, etc. However, storage has a simple single-stage (e.g., open a file) access pro-

cess. Reserving storage resources in a single step may lead to wasteful resource usage. To avoid

overcommitment, additional access pattern and range related information must be passed to the

storage. However, due to the lack of support in network interfaces to pass this information, it

requires further development of new APIs.
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Hardware multiplexing: Modern high-performance controllers can typically maintain 64K to

1M active contexts. However, high-level storage primitives such as files can be in the billions.

This will require some coarse-grained multiplexing support from the operating system such

as the one found for the virtual memory subsystem. By installing hardware contexts in the

storage page-table, the operating system can move out of the way of normal IO processing.

This mechanism maintains the operating system control over IO resources without sacrificing

the performance. However, this functionality will require support from the storage hardware,

e.g., generating storage faults for an invalid access to files.

File semantics: Files are shared more often than sockets. Depending upon the mode, file

sharing can lead to different consistency semantics. For example, accessing a shared file us-

ing a common request queue among multiple applications can potentially provide serialization

guarantees, but this may not be possible with different request queues or may require different

IO opcode. The packet oriented nature of network APIs makes development of stream-based

storage applications difficult.

IO failures: Direct-access zero-copy IO has visible side-effects in the case of a failed operation.

The byte-addressable nature of NVMs makes data corruption detection even harder. Hence, a

more sophisticated and precise error reporting and cancellation framework is required. One

possible solution is to maintain error and log data structures in DRAM, thus, if there is a failure

the operating system can still perform error diagnosis on it.

4.6 Conclusion

Storage stacks are at a familiar crossroad. Performance of IO devices are improving at a much

faster rate than the speed of a single CPU. Over the last 30 years, networks have undergone

an evolutionary transformation to support high-performance IO. In this chapter, we argue that

storage does not have to repeat the same steps as the networks had to and wait another 30 years

to undergo the same transformations. Storage developers can directly use abstractions, frame-

works, and interfaces developed by high-performance networks. This unification instantly en-

ables efficient, light-weight high-IOPS access to NVM devices. In the next chapter, we present

the design and implementation of FlashNet, a software devices that unifies flash management

with RDMA operations.
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FlashNet: A Unified

High-Performance IO Stack

Modern distributed data processing frameworks such as Apache Spark or Hadoop routinely

analyze Terabytes of data stored across hundreds of storage servers. Consequently, the perfor-

mance of these frameworks depends considerably on the IO performance of the many storage

and network devices involved. As discussed in the last chapter, modern IO devices have under-

gone a rapid evolution during the last decade. Ethernet, the most popular network technology,

supports 10, 40, and 100 Gbits/sec data rates with single-digit microsecond link latency. With

comparable advancements in Non-Volatile storage such as Flash, storage devices now also of-

fer multi-Gigabits/sec bandwidths with µsecs access latencies. This rapid evolution has also

put tremendous pressure on traditional IO stacks. Overheads stemming from maintaining IO

abstractions, scheduling, context switching, cache flushes, contention, execution of generic OS,

etc., have contributed significantly to the loss of IO efficiency. Stalling CPU speeds have only

made things worse recently, up to a point where IO stacks have become the new IO performance

bottleneck.

In response to these trends, several efforts have been put in place to improve the IO ef-

ficiency, typically by limiting or eliminating operating system (OS) involvement in the data

path [274]. However, these efforts exclusively either target the network [44, 153, 178, 224] or

the storage stack [53, 71, 314, 364], but not the combination of both. As a result, access to

storage over the network still requires the application to orchestrate the data access by engaging

the OS and the file system multiple times for every IO operation. Furthermore, the established

solutions in this space such as NFS or iSCSI do not deliver network data efficiently to client

buffers, and hence fall short of providing full performance to IO-intensive applications.

In this chapter we present FlashNet, a unified IO stack architecture that enables fast and

efficient networked data accesses from remote flash devices. FlashNet builds upon the data

and control path separation principle of Remote Direct Memory Access (RDMA) networks and

extends it to storage with the help of a file system and a flash controller. This extension es-
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tablishes an end-to-end data path which reduces the unnecessary application and OS (including

file system) involvement in network-storage IO processing. The unification of RDMA and flash

access in FlashNet is not just cosmetic. While processing IO requests, FlashNet identifies the

source/sink files of a network-storage IO request by leveraging RDMA’s buffer tagging mech-

anism and operational semantics. RDMA message fragment headers are used to pre-fetch data

from flash to hide high (w.r.t the network) storage latencies. RDMA network data access pat-

terns, frequencies, and usage are used for a better flash device management. These steps result

in a better flash management while delivering high performance for remote data accesses.

FlashNet is designed to be fully RDMA-compatible, thus enabling hybrid RNIC/FlashNet

deployments. Consequently, applications that have previously used RDMA to efficiently access

remote memory require minimum changes to access data to/from flash storage using FlashNet.

Our specific contributions in this work include (a) extending and unifying the path separa-

tion philosophy of RDMA networks for remote flash storage accesses; (b) building FlashNet, a

unified IO stack as a proof of the unification concept; (c) evaluating FlashNet in a distributed

setting, highlighting its raw performance, IO efficiency, deployment opportunities with a hybrid

FlashNet-RDMA NIC (RNIC) setup.

5.1 The Cost of High-Performance IO

Setup: In contrast to the dedicated, appliance-based approach to serve storage, in this work we

consider a setup where off-the-shelf, general-purpose machines are used to run storage servers.

Apart from running a storage server, these machines may also be involved in hosting and exe-

cuting other associated services such as web servers, distributed data processing, and resource

management frameworks, etc. Hence, due to the general applications of these servers, these

systems require full-fledged operating system support to manage, multiplex, and schedule sys-

tems resources (e.g., CPU, IO, memory, etc.). This deployment scenario is typical of modern

day data center infrastructure.

We start by quantifying the overhead associated with the constant application and OS (file

system, generic code, checks, locks, etc.) involvement in processing of net-storage requests.

Consider a client-server environment where a storage server is responsible for processing client

requests to access data from a storage device. A typical example of such a deployment is a

datanode in HDFS, or a key-value server. Hence, the peak performance of the storage server

depends upon the efficiency of both the network and the storage stack.
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(a) Socket with file IO.

(b) sendfile.

(c) FlashNet RDMA read.

Figure 5.1: IO execution paths of a single net-storage read request with (a) socket send/recv
and file read IO; (b) socket send/receive and sendfile; (c) FlashNet’s
RDMA read operation. Dotted lines represent a possibility of a context switch
during the execution.
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Figure 5.2: 4kB IOPS with one server CPU core enabled.

We therefore measured peak net-storage IO operations per second (IOPS) per core delivered

by the server. The single core configuration emphasizes the CPU cycles/IOPS requirements of

the evaluated IO configurations. We perform measurements using the netperf benchmark [9]

where we added support for reading data from a remote flash device using TCP sockets and

RDMA-based FlashNet operations. The netperf server and the clients run on a 9-machine

testbed (see Table 5.3), connected via a 40 Gbits/sec network, running Linux version 3.13.11.

The storage server runs on a dedicated machine containing a PCIe-attached enterprise-level

flash device. Clients run on the rest of the 8 machines and repeatedly request the server over

the network to read 4kB data from a large file stored on the ext4 file system on the remote flash

device.

To represent a data-dependent workload where a client cannot issue the next request until

the last one has finished, clients have only one outstanding request at a time. The netperf server

forks a new server process to handle requests for every connected client. We report performance

numbers for three IO configurations:

1. Socket with file: The server uses send/recv on a TCP socket for network IO and a read

syscall for file IO from the flash device in the direct mode (O DIRECT flag). In this approach,

the application is involved in both control and data operations. (see Figure 5.1(a)).

2. sendfile: A similar approach to the previous setup, but with the server using the sendfile

mechanism to eliminate its involvement from the data transmission. Note that the application

still remains involved in the control loop processing of the net-storage request that involves

reading a client’s request from the network buffer and instructing the kernel to initiate the

transfer by calling sendfile. (see Figure 5.1(b))
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socket + block IO sendfile FlashNet read
networking 19.3% 17.6% 20.6%
storage 7.3% 8.2% 0.8%
IO drivers 6.7% 5.9% 6.4%
scheduling 15.8% 14.3% 8.4%
architecture 22.8% 20.3% 23.9%
kernel 12.8% 15.7% 17.9%
memory management 4.5% 7.5% 4.9%
IO logic 4.7% 4.7% 11.7%
miscellaneous 6.1% 5.8% 5.4%
Total 100% 100% 100%

Table 5.1: Breakdown of the CPU cycles spent in various routines and operations. Key perfor-
mance gains of FlashNet comes from saving the cycles in scheduling, storage, and
spending more time in IO logic processing logic routines.

3. FlashNet RDMA read: Here, the server application prepares the flash-backed file ahead of

RDMA accesses. Clients use one-sided RDMA read operations to read data directly from the

flash device. This approach completely eliminates any file system and application involve-

ment from the data and the control loop processing of an IO request. (see Figure 5.1(c))

Figure 5.2 shows the peak IOPS delivered with a single core at the storage server in the

aforementioned three configurations. Both the socket with file IO and the sendfile mechanism

approach deliver 65-70K peak IOPS/core. In contrast, under similar circumstances FlashNet

is able to deliver up to 98K IOPS/core, which is 40-50% better than the other two approaches.

While delivering the peak IOPS to 128 clients, the CPU core is fully utilized at 100% in all three

configurations.

To further quantify the overhead, in Table 5.1, we break the CPU cycle usage down into the

following categories:

• network: RDMA, TCP, IP, Ethernet processing, SKB management related routines.

• storage: the file system, the generic VFS, and the block layer related routines.

• IO drivers: network and flash device drivers routines.

• scheduling: scheduling, and context switch related functions.

• architecture: spinlocks, IRQs, atomics, bitops, data copy, etc.

• kernel: kernel routines timer, workqueues, softirqs, etc.

• memory management: memory management related functions.

• IO logic: application or FlashNet related routines.
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• miscellaneous: miscellaneous routines that we cannot classify.

The three dimensions that stand out from the table are storage, scheduling, and the IO logic.

The storage column includes routines from the ext4 file system, the generic VFS layer, and

the block layer, etc. Most of these routines are executed for every network-storage request

in the configurations (a) and (b). Furthermore, the current IO stack architecture experiences

very high context switching and scheduling related overheads. This is because most of the IO

resources (e.g. network sockets, memory buffers, etc.) are tied to the process abstraction. These

resources need to be valid during the IO processing and hence require the application process to

be scheduled for IO processing and data movement orchestrations. As a result, not many CPU

cycles are left for actual application processing which can lose up-to 1/3rd of the potential peak

performance.

Multiple efforts tried to deal with the issues related to excessive OS and application in-

volvement in either network or storage IO flows in isolation. For example, the use of Remote

Direct Memory Access (RDMA) has been proposed to completely eliminate OS and applica-

tions from the network data flows. On the storage side, projects such as Moneta-Direct [71] and

FusionIO’s ioMemory SDK [135, 136] eschew the OS in the data access path in the favour of a

leaner and faster access to flash storage. The FlashNet architecture is built on similar principles

and goes a step further by building an end-to-end data path for network-storage transfers where

applications and file systems are eliminated from the data path.

5.2 Design of FlashNet

FlashNet is a unified software stack that consists of three logical components, namely a flash

controller, a file system, and an RDMA controller1. These components work together to elimi-

nate IO inefficiencies in an end-to-end manner when data flows between a remote flash device

and a client buffer. Figure 5.3 shows the setup and interaction among these components. The

design of FlashNet is guided by three principles:

1. Eliminate application involvement from IO flows: As identified before, overheads from direct

and indirect application involvement limit data flows. FlashNet leverages the path separation

philosophy of RDMA networks and extends it to storage devices to completely eliminate an

application’s involvement from data transfer orchestration in an end-to-end manner.

2. Reduce storage overheads: FlashNet eliminates the file system and much of the generic OS

and the VFS code from the extended data transfer path by designing a file system that uses
1We use separate controller names to highlight their roles in the overall FlashNet architecture.
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Figure 5.3: FlashNet stack illustrating the local network-storage control setup path and the end-
to-end data flow path between a flash device and a client buffer.

a simple file layout. Hence, the file system and associated actions (e.g., inode look ups,

checks, location translations, etc.) are eliminated from fast data paths between the network

and storage controllers.

3. Keep application interface simple and clean: FlashNet extends the basic file and mmap based

IO interfaces to provide RDMA-ready memory-mapped files as the basic IO abstraction.

Using existing standard mechanisms, FlashNet plugs storage buffers into the application

address space and lets the application manage them in a unified manner with other DRAM

buffers.

5.2.1 The Flash Controller

A key part of the FlashNet architecture is its flash controller design. A flash controller manages

the performance and packaging idiosyncrasies of flash devices. However, prevalent embedded

flash controller designs are too restrictive for the FlashNet architecture due to multiple rea-

sons. First, with high-speed networks, a flash page containing hot data may experience bursts

of concurrent small writes from the network within a small time frame (a few µsecs). Even

though the networking stack contains pertinent information, which could be useful to absorb

the bursty nature of network IO, there is no standard way to pass this information to the flash

controller for better flash management. Second, flash devices are exposed as conventional block

devices where the logical block management is tied with the flash storage management. Previ-

ous research in the field has demonstrated that decoupling these two can lead to performance

improvements with a much simpler file system layout [181]. A simpler file layout enables re-
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moving the file system from network data transfers. And lastly, the one-controller-per-device

design cannot leverage multiple flash devices present in a system.

To alleviate the above mentioned restrictions and to jointly optimize the flash controller

with the rest of the stack, we have designed and implemented a software-defined flash array

controller that builds on top of virtualized flash storage works from Weiss et al. [356] and

Josephson et al. [181]. Our controller decouples the logical block management from the flash

storage management and exports a large 64-bit block address space using a virtualized Flash

Translation Layer (FTL). The FTL dynamically maps flash logical block addresses (LBAs) to

physical block addresses (PBAs) over a virtual device array made out of one or more flash

devices. An LBA entry in the FTL contains the location of the data on a flash device and its

location in a DRAM buffer (if the data is present in the system). This design ensures that all

concurrent accesses are given the same DRAM page or PBA locations. As required for RDMA

accesses, data in the block address space is accessed through a native byte-addressable get/put

interface (Table 5.2). Furthermore, the get/put interface also provides the necessary heat and

frequency information to the flash controller for better flash management.

Dirty data is always written out-of-place while keeping track of new LBA to PBA mappings

in the FTL. Updates to the FTL are appended to the flash device asynchronously with the data

and are synced when instructed by an application or a remote RDMA access. The controller uses

a log-structured allocation strategy to allocate PBA blocks across multiple devices. It ensures

uniform wear leveling, and employs advanced data placement and efficient garbage collection

(GC) policies to reduce write-amplification. Under non-uniform (i.e., skewed) workloads, the

controller segregates data into data streams based on their update frequency to reduce data

relocation overheads [160]. Ideally, a number of data streams equal to the update frequencies

that the workload exhibits should be chosen. In practice, however, the supported number of data

streams is limited by hardware or metadata resources. Our controller performs a three-level data

segregation scheme based on (a) the logical origin of data blocks; (b) their age in the system; (c)

their frequency and heat of updates (provided with the help of the RDMA network controller).

The GC policy is a greedy policy augmented with a recurring write pattern detection that will

not evaluate a block for relocation if it is expected to see more overwrites due to sequential

writes, for example.

5.2.2 Contiguous File System (ContigFS)

Files and file systems have been the de-facto standard of saving data on storage devices since

the inception of UNIX in the 1970s. However, As storage devices get faster, the constant and

unnecessary involvement of a file system in every aspect of IO (local or networked) operations
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generates a significant amount of overhead [68, 71, 201]. In the IO path, one of the key actions

that a file system executes is the translation of a file offset to a device block location. With the

current extent-based file layouts, it is not possible to eliminate or even reduce the file system

involvement from the IO path due to their sophisticated extent management logic. However,

with the virtualized 64-bit FTL address space, we can vastly simplify the file system design by

using a range-based rather than an extent-based file layout. A range-based file layout stores a

complete file in contiguous device block addresses. This layout enables a trivial file offset to

device location translation by adding the file offset to the start location of the file on the device.

This translation can also be done by the network controller, hence removing the file system from

the networked IO. As an alternative, raw block IO can be used to remove the file system from

the IO path. However, this option also eliminates other highly desired file system properties

such as hierarchical naming and access control.

To realize our idea, we design a POSIX file system called Contiguous file system or

ContigFS that does contiguous file allocations on top of the virtualized FTL address space.

The files that are stored in a contiguous LBA address range, can grow, and shrink by manip-

ulating their mappings in the FTL address space. The design of the file system and metadata

management for hierarchical namespaces is done in a very similar spirit to the Direct File Sys-

tem [181]. A large segment (one TB) from the beginning of the virtualized FTL is reserved for

the file system metadata and directory layouts. The files are allocated after this segment in the

virtualized FTL.

Like any other file system, ContigFS provides the full file system API to applications. Con-

tigFS files are RDMA-ready and can be memory-mapped by using the familiar mmap call. The

use of the virtual memory abstraction is easier than the separate two-tier (memory and stor-

age) approach towards data management. Many in-memory applications already do their own

memory management. Acquiring memory through a file-backed memory region is an intuitive

extension to the process. For example, MongoDB manages data in a single unified virtual ad-

dress space using file-backed mmap calls [4]. Memory segments obtained from file mmap calls

can be used to provide durability as well.

In absence of flexible APIs to manage the kernel page cache, ContigFS co-manages (with

the flash controller) its own pool of DRAM pages to exert full control over data staging, sharing,

and management logic to/from flash devices. Data is staged for access and dirty data is written

out from pages in the DRAM pool. Pages from this DRAM pool are also given to serve the page

faults in mmap’ed memory regions. In a similar spirit to the IO-lite system [269], ContigFS

ensures (in a collaboration with the flash controller) that there is only a single physical and

consistent copy of data in the system that is shared between the storage controller, the network
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Figure 5.4: Stitching of the IO path abstractions from network to flash while eliminating the file
system from the data path.

controller, and applications.

5.2.3 The RDMA Controller

The RDMA controller of FlashNet extends the data and control paths [352, 358] of RDMA

networks to include the file system and the flash controller as well. Similarly to the original path

separation idea, applications, the file system and to a large extend the OS, are eliminated from

the extended data flow path. In order to achieve this, FlashNet set ups necessary abstraction

translations in advance from an RDMA access to the data location on a flash device.

A key operation on the extended control path is the RDMA buffer registration process. In

the buffer registration process, every data source or sink buffer is pre-registered with the RDMA

stack to generate a buffer identifier called Steering Tag or STag. This STag is used in subsequent

RDMA operations to identify network source or sink buffers without involving the application

to steer data flows. FlashNet uses the same mechanism to identify files and offsets to resolve

data locations which are involved in a network operation. ContigFS files, which are involved in

RDMA network operations, are registered with the FlashNet RDMA controller by passing their

mmap’ed area. At this point, with the help from the ContigFS, the RDMA controller translates

the memory area to the start LBA of the file. As files are contiguously allocated in the LBA

address space, further offset calculations during RDMA network operations are done entirely

by the RDMA controller and then passed to the flash controller for reading/writing data from/to

involved LBAs. Hence, on the fast data path, the file system is eliminated and the two device

controllers talk to each other to manage data flows. Figure 5.4 shows the end-to-end translation

process between these abstractions on the extended control and the data path.

The traditional RDMA buffer registration scheme, where pages are immediately pinned,

does not allow scaling beyond the system DRAM size. In order to support TBs of flash stor-

age [134] with GBs of DRAM, the RDMA controller of FlashNet supports lazy memory reg-

istration. During the lazy memory registration (happens only for memory segments backed

from a ContigFS file), the RDMA controller only allocates necessary metadata, locks, and data
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Figure 5.5: The life of a FlashNet net-storage operation. Steps 1–3 and 4–9 constitute the ex-
tended control and the extended data paths in the FlashNet stack, respectively.

structures to hold DRAM page pointers, but does not pin pages. The pages are populated on

demand on the extended data path when an RDMA request accesses them. These pages are

also shared concurrently (without creating copies) between an application, the network, and the

storage stack using RDMA buffer ownership rules.

The use of the RDMA API further brings byte granular, low-latency, high-bandwidth flash

accesses into the Remote Memory Access programming model [158]. As we discussed in the

last chapter, many of the key performance properties, such as userspace-mapped IO queues,

batched IO requests, asynchronous IO processing, synchronous polling for completion notifica-

tions, etc., have been explored and shown to be useful in the context of local flash accesses as

well [71, 273, 313, 364]. FlashNet provides a high-performance IO interface around these uni-

fied RDMA properties [341]. This holistic approach collapses the rigid layer structure and thus,

efficiency is gained by creating fast, non-blocking, asynchronous end-to-end data flow paths.

5.2.4 The Life of a Unified IO Operation

To demonstrate how various components come together, in Figure 5.5, we present an example

where a server process serves data to a client from a file stored on ContigFS using an RDMA

read operation. The server process starts by mmaping the file into its address space (step 1).

Upon receiving the mmap call, ContigFS does sanity and permission checks of this mapping.

The server then registers the mmap address with the FlashNet RDMA controller to prepare it
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1 /* open a file from mounted ContigFS */
2 int fd = open("/mnt/contigfs/file0", flags);
3 if (fd < 0)
4 goto open_fail;
5 /* map the file into the process AS */
6 void *faddr = mmap(NULL, len, prot, flags, fd, off);
7 if (faddr == MAP_FAILED)
8 goto mmap_fail;
9 /* register this address */

10 struct ibv_mr *flash_mr = ibv_reg_mr(pd, faddr, len, access);
11 if (flash_mr == NULL)
12 goto reg_fail;
13 /* initialize rdma_msg using flash_mr */
14 struct ibv_send_wr rdma_msg={...};
15 /* post the rdma_msg on the qp for IO */
16 ret = ibv_post_send(qp, &rdma_msg,...);
17 return ret;
18
19 /* Error handling */
20 reg_fail: munmap(faddr, len);
21 mmap_fail: close(fd);
22 open_fail: exit(-errno);

Figure 5.6: Example of RDMA code using the FlashNet stack.

for RDMA operations (step 2). The controller resolves the passed region to be a ContigFS-file

region and hence, only translates mappings and saves the LBA address of the memory region

by adding the mmap offset to the starting LBA address of the file (step 3). The controller then

generates a valid STag and returns it to the server process, which distributes the Stag to clients

(not shown). Steps 1–3 constitute the extended control path in FlashNet.

On the extended data path (steps 4–9), upon receiving an incoming RDMA read request, the

RDMA controller first resolves the target memory buffer using the STag present in the request.

The controller then calculates the LBA address of the request by adding the offset (present in

the RDMA request) to the previously saved base LBA address of the registered region (step 5).

The flash pages in the identified region are then populated with the help of the flash controller

(steps 6 and 7). Upon completion of the RDMA request processing (step 8), the involved LBA

pages are given back to the flash controller (step 9).

5.3 Implementation of FlashNet

The components of the FlashNet stack are implemented as kernel modules in Linux kernel

version 3.13.11. The implementation of the flash controller is based upon the SALSA soft-
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ware flash controller [174] which is written from scratch using the Linux kernel device map-

per framework. The SALSA controller is extended to support in-place DRAM page-sharing

among multiple entities. ContigFS is implemented as a standalone kernel module that hooks

into the VFS layer of the Linux kernel. FlashNet uses the open-sourced SoftiWARP RDMA

controller [236, 339] to provide RDMA capabilities while maintaining the compatibility with

current RDMA RNICs enabling hybrid hardware-software deployments. SoftiWARP was en-

hanced to interact with ContigFS and the flash controller to support lazy memory management.

The unified RDMA software device appears as an RDMA device within the Linux RDMA

OFED framework [16]. The whole FlashNet framework does not require any changes to exist-

ing infrastructure code including the kernel and drivers.

RDMA-ready applications require minimum changes to access data from a remote flash de-

vice using RDMA operations. To enable RDMA accesses on remote files, applications must

acquire memory from mmaping ContigFS files. The code snippet in Figure 5.6 shows how ap-

plications can obtain RDMA-ready flash buffers using mmap operation on a file from ContigFS

(lines 2–6), and register the obtained memory area with the FlashNet RDMA controller (line

10). After the registration step, there are no application-visible differences in the use of the

registered memory region (mr) (lines 13–16), represented by flash mr. A server application

can distribute the STag obtained by this method to clients for remote RDMA read and write

operations to the flash device.

In the following sections, we describe the extended control path, the page population and

RDMA processing operations on the extended data path, and the synchronization guarantees

that are given by the system.

5.3.1 The Extended Control Path

In line with the path separation philosophy, a FlashNet application must first create files (if not

already present), mmap, and register file-backed mmap addresses on the extended control path

ahead of remote accesses. The extended control path is implemented in the file system and the

RDMA controller.

5.3.1.1 Files and mmap Management

ContigFS manages all file management related operations. It splits the virtualized FTL address

space to save file system metadata and file data separately. When a newly created file is given

a valid size via a ftruncate call, ContigFS allocates a contiguous LBA range on the virtu-

alized FTL to save the file. Our file system implementation is very similar to the Direct File

System [181], however, with the current prototype we do not reserve LBA ranges to provide
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API functions Description
check vma(va, len) resolves a ContigFS mmap’ed area
get LBA(lba, len, flags, cb) gets DRAM pages
put LBA(lba, len, flags) puts pages in a LBA range
sync range(lba, len, flags) writes data and/or the FTL to flash

Table 5.2: The flash controller API for data management.

large unassigned LBA ranges to files. The size of an LBA block is configurable (default is

4kB). A file can grow and shrink by reallocing its LBA address space area. And if neces-

sary, files can be relocated in the FTL address space without physically moving the data on the

devices by updating the FTL mappings of the new LBA range to the old PBA entries. The old

LBA space is marked free and managed using the buddy memory allocation technique [194].

An mmap call from an application is relayed to ContigFS with a valid virtual memory area

(VMA) within the process address space by the Linux kernel. With this VMA, ContigFS reg-

isters itself as the page fault handler for this area to provide the same DRAM pages to the

application as seen by the network. At this stage, ContigFS does sanity and permission checks

for the mmap call. Since DRAM pages are shared, the current implementation of ContigFS only

supports the MAP SHARED flag.

5.3.1.2 RDMA Lazy Memory Registration

To generate a valid STag, the application registers the VMA provided by the mmap call to a

FlashNet RDMA device (enumerated by the rdma get devices(), a regular RDMA API

call). Upon receiving the registration request, the FlashNet RDMA controller checks if the

passed VMA range belongs to a ContigFS file. In that case, the RDMA controller trans-

lates the passed virtual address to a file start LBA address (by walking on the vm file and

f mapping structures). The mmap offset is then added to the start LBA of the file and saved

as the start LBA of the mmap’ed memory region. The RDMA controller then allocates all nec-

essary per-VMA meta-data, and generates a valid 32-bit STag, but does not pin pages by calling

get user pages().

The controller maintains its own view of memory mappings outside of the flash controller’s

FTL mappings. This design ensures that the same ContigFS file pages (or even a single byte

within the same page), which are registered with different RDMA semantics, are treated prop-

erly during concurrent RDMA accesses. Furthermore, by doing so, it reduces pressure on the

FTL management logic and the RDMA controller can use more effective data structures that

are best suited to its needs. These VMAs are populated on-demand, in a lazy manner when an

RDMA operation accesses them using the get/put API provided by the flash controller.



5.3. IMPLEMENTATION OF FLASHNET 119

  

PBA

Read-only,
In flight

Read modify
write, In flight

Clean
Page

Dirty
Page

Dirty,
In flight

RD_GET

RD_GET

WR_GET

RD_GET,
WR_GET WR_GET

RD_GET

WR_GET

RD_GET,
WR_GET

LAST_PUT

IO_DONE WR_GET

RD_GET

IO_DONE

IO_DONE

LAST_PUT

Figure 5.7: The state machine of a flash LBA page.

5.3.2 The Extended Data Path

On the extended data path, the flash and RDMA controllers interact using simple non-blocking

get LBA() and put LBA() interfaces (Table 5.2)) to lazily populate pages in ContigFS-

backed VMAs. As pages become ready for processing, callbacks are issued on per-page basis.

The same interface is also used by ContigFS to serve page faults in mmap’ed areas. With the

early identification of IO buffers via STag, FlashNet’s IO processing path has no stalls (no

context switches, or scheduling points) with run-to-completion type processing to deliver high

performance [44].

5.3.2.1 Processing of get/put LBA Requests

Although the get/put API of the flash controller is byte addressable, these requests are broken

down internally into the flash page size (typically a multiple of the system page size, default

4kB) for processing. To ensure that no two entities in the system see different data, the flash

controller implements a state machine with atomic transitions for every flash LBA page. The

state of an LBA page is stored with its FTL mapping. Figure 5.7 shows the LBA page state

machine executed by the flash controller to resolve its status.

An uninitialized flash LBA page starts in an Invalid state. At the time of the first writing,

the controller picks a PBA address, maps it to the LBA page, and updates the LBA entry in

the FTL from a Invalid to a PBA state (not shown). For any read (RD GET) and write

(WR GET) get requests for a LBA range from the RDMA controller, the flash controller checks
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the state of the LBA pages involved to determine if a page has previously been brought into the

system (i.e. contains an LBA entry in the FTL that points to a DRAM page address or a device

PBA). For flash LBA pages that are not in the system DRAM (indicated by the PBA state), the

flash controller issues DMA requests for them. This action results in moving of the pages into

a Read-only In-Flight, or Read-Modify-Write In-Flight status for read and

write requests, respectively. When the DMA is finished (IO DONE), and the data of a flash page

is brought into a system DRAM page, the DRAM page is atomically installed in the FTL and

the LBA state is changed accordingly. After this transition, asynchronous callbacks are issued

to the RDMA controller to notify the page status change. Any subsequent read or write get

requests on this page will be given the same DRAM page location while maintaining the usage

counter on a per-page basis. These counters are used by the garbage collector to identify the hot

and cold LBA pages.

For LBAs which were already in DRAM, the flash controller immediately issues callbacks

to the RDMA controller with a valid DRAM page pointer. Consequently, depending upon the

status of the pages involved in a request, callbacks can be issued in any order. These out-of-

order callbacks enable the flash controller to (1) finish a get LBA() request as soon as possible

without stalling on the first unavailable flash page; (2) leverage parallelism in the flash hardware

by issuing requests to parallel devices/ports; (3) efficiently recycle DRAM pages between get

and put calls on a page granularity.

After network processing, the RDMA controller issues put LBA to put down references on

the pages involved. Concurrent small network writes are absorbed by the same DRAM page,

and only the last put call triggers a dirty data write out. The current flash controller prototype

does not cache dirty data. A selected form of time-bounded caching is done for pre-fetching.

The pre-fetching logic is similar to the get LBA(), but without the callbacks.

5.3.2.2 Processing of RDMA Requests

The FlashNet’s RDMA controller (based upon SoftiWARP) provides complete iWARP RDMA

features, semantics, and operational ordering. Applications post RDMA TX and RX requests

and get IO completion notifications on memory-mapped RDMA queues which are maintained

in the kernel. FlashNet uses non-blocking kernel TCP sockets with per-core kernel threads

to perform asynchronous network IO on behalf of a user process. As a further optimization,

FlashNet uses RDMA fragment header information to pre-fetch flash pages to hide the high

(w.r.t. network) access latencies of flash devices.

The network processing for flash data can be stalled if a flash LBA is not ready. In that

case, a get LBA request is placed, and the connection is marked stalled. A stalled connection
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is resumed after receiving callbacks form the flash controller. As explained before, these call-

backs happen in any order. However, FlashNet’s RDMA semantics implemented on top of TCP

sockets necessitate in-order data delivery and processing. This means that data in an application

buffer is filled in a sequential increasing order from the lower bound to the upper. Since RDMA

networks do not re-order packets (when presenting to an application), the sender must also send

data in a sequential increasing order. This network IO semantic inhibits us to send flash pages

if they do not complete in order. For example, for a 3-page flash IO request, data from pages 1,

2, and 3 must be transmitted in this sequence. If pages 2 or 3 finish before 1, then the network

transfer cannot start and must wait until page 1 is done. This strict processing order introduces

unnecessary delays even when some data is ready for transmission.

As a first solution to this problem, we thought to keep track of page ordering in an additional

RDMA header. However, we quickly discovered that this approach has multiple disadvantages.

First, as the number of callbacks are variable (depend upon the number of pages involved), it

requires a memory allocation to keep track of callbacks on a per-connection basis, which goes

against the principle of path separation in RDMA. Second, the out-of-order delivery of data will

introduce a complicated tracking of the current IO status on the receiving side. Lastly, it breaks

the compatibility with the current RDMA hardware. Hence, we opted for the out-of-order

get LBA() completion with in-order network processing in FlashNet.

For in-order data processing, we take advantage of the fact that RDMA requires pre-

allocation and registration of flash VMAs. At the time of registration, FlashNet allocates an

atomic counter on a per-page basis to store the validity of the page. In a callback, this counter

is increased and before calling a put on the page, the counter is decreased. FlashNet checks the

readiness of the region by scanning for the longest sequence of non-zero atomic counters and

only processes data in that ready region.

RDMA Transmission Path: FlashNet uses non-blocking kernel sockets with per-core kernel

threads to perform asynchronous data transmission on behalf of a user process. As the trans-

mission path is synchronous (i.e. the total transmission size of an RDMA message is known at

the beginning), the thread prepares the complete flash message buffer VMA in one go. It then

scans the flash area to prepare a full message fragment (typically the tcp mss size). The ready

flash data (minimum of tcp mss size, RDMA message size remaining, and ready flash data)

is then pushed to the kernel socket.

The transmission processing can be stalled if (a) the write space of the socket is exhausted

and -EAGAIN is returned; or (b) if a not-ready flash page is encountered (indicated by zero

counter). In the first case, the Linux kernel TCP stack issues a callback (sk write space on

struct sock*) when more socket write space is available. In the latter case, the callback is
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issued from the flash controller when a flash page becomes ready. These callbacks resume the

TX processing, and the transmission loop is repeated with checking the readiness of the flash

data buffer to prepare the next RDMA message fragment.

One outstanding issue on the transmission path is when to put down the reference on a flash

page. The Linux TCP stack does not expose the point up to which data has been transmitted. In

the case when kernel sendmsg is used, involved flash pages can be freed immediately. In

the case of a zero-copy transmission using the tcp sendpage interface, FlashNet periodically

probes the state of the TCP connection, and calculates how many bytes have been transmitted

successfully based on the TCP sequence and acknowledgement numbers [133]. The involved

DRAM pages are then put back to the flash controller. However, this feature remains experi-

mental and is not evaluated in the thesis.

RDMA Receive Path: Unlike the transmission path, the receive path of FlashNet is asyn-

chronous where the total incoming RDMA message size is not known apriori. The flash buffer

preparation is done in a response while more message fragments are received. The FlashNet

receive-side processing happens in the TCP softirq context in the sk data ready upcall by

calling tcp read sock(). After receiving a message fragment header, FlashNet extracts the

STag and resolves the flash buffer area. It then proceeds to prepare the area to receive the cur-

rent fragment payload (denoted by length and offset of current SKB). After the preparation, it

checks the readiness of flash pages to receive the message fragment. It then copies the ready

data (minimum of fragment size and flash ready pages) using skb copy bits() and reduces

the reference count for the pages involved. This eager action of putting flash pages allows Flash-

Net to continue receiving data in a flash region that is bigger than the system DRAM capacity.

If all flash pages are ready, then the RX processing finishes in the TCP softirq upcall. If some

or none of the flash pages are ready, then, after copying the appropriate amount of data from the

SKB, the RX processing is marked stalled and the RX context is queued on the wait list.

The RX processing is resumed on a kernel workqueue that synchronizes with softirq upcalls

to receive data. The kernel workqueue is scheduled when more flash pages become ready. The

receive processing path of the kernel workqueue is very similar to what we have described

before for softirq upcall. Upon receiving the last fragment of an RDMA message, the receive

context is marked complete.

5.3.3 Data Synchronization

To allow a remote client to wait until data is written on a flash device, FlashNet defines semantic

STags. A semantic STag uses the current STag structure, but allows applications to use the

lower 8 bits of the 32 bit structure in a special way. These lower 8 bits are masked by the
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CPU Dual Xeon E5-2690, 2.9 GHz cores
DRAM 128 GB, DDR3 1600MHz

NIC Chelsio T5 Ethernet 40Gbits/sec

Flash
1.3 GB/sec (read), 680 MB/sec (write)

peak read IOPS: 360K, Chip latency: 50µsec
Switch IBM RackSwitch G8332, 32x40GbE ports

Table 5.3: 9-machine testbed configuration for FlashNet.

application using sync or async flags provided by FlashNet. With this extension, the sync

RX processing path of FlashNet does not process further incoming RDMA write operations

until the previously pushed data is written to the flash device. async processing continues

with the RDMA write processing as soon as DMA requests are queued. Irrespective of how the

processing of an incoming RDMA write is done, the client-side RDMA queues always remain

asynchronous.

5.3.4 On-Going Efforts

Persistent RDMA Credentials: RDMA semantics are currently defined within the scope of

a process. When a process dies, the associated RDMA resources are destroyed. However, the

FlashNet stack brings persistence to RDMA buffers. Hence, persistent storage services built

on FlashNet, such as a distributed file system or an object store, may require persistent RDMA

credentials. We are investigating how to preserve or regenerate RDMA credentials (registered

flash regions, STags, etc.) across a process or the system restart.

Current RDMA semantics: From its design choices, the current FlashNet prototype is bound

to the RDMA protocol and semantics. RDMA up to now, however, is defined for volatile

addresses only. Consequently, RDMA does not provide any global ordering, consistency, and

synchronization guarantees in presence of concurrent accesses or failures. More specifically,

ordering guarantees for writes (in case of power or software failures) while being able to exploit

the internal parallel of flash devices is a challenging problem. New hardware primitives [92]

and mechanisms [347] are being proposed for directly-attached NVM devices in presence of

caches and multicore CPUs. We envision similar facilities for remote NVM accesses. Hoefler et

al. [158] discuss many of the coherence and consistency challenges associated when accessing

remote flash storage in a remote memory access (RMA) setting. FlashNet is a first working step

in this direction and we plan to tackle these issues in our on-going work.
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Figure 5.8: mmap and buffer registration cost.

5.4 Evaluation

We evaluate FlashNet on a cluster of 9 machines connected via a 40 Gbits/sec network (Ta-

ble 5.3). On one machine that contains an enterprise-level PCIe-attached flash device, we run

the FlashNet stack. The remaining machines run networked clients that repeatedly ask the server

for data from the flash device. The clients use unmodified SoftiWARP to connect to the Flash-

Net devices at the server (except for Section 5.4.5 where the clients use real RDMA hardware).

All numbers reported here are measured on the Linux kernel 3.13.11 and are the average of 3

runs, each lasting 60 seconds. FlashNet experiments are done with the files on ContigFS while

other configurations have used the ext4 file system. We have also repeated the experiment with

a NVMe-attached flash device and found no significant deviations in our findings.

The key performance highlights are:

• FlashNet delivers up to 50% more IOPS per core than the traditional way of transferring

data, which involves a mediating application orchestrating data transfers between the IO

stacks. Peak IOPS performance of FlashNet (346K) is within 96% of the flash capacity.

• By eliminating unnecessary OS and application involvement, FlashNet helps to reduce

the network access latency of a 4kB flash page by 20–44%.

• By efficiently managing the flash device, FlashNet reduces the write amplification by

38–83% under skewed write workloads.

• In a hybrid FlashNet-RNIC setup, the flash-to-DRAM data transfer latencies are 40–45%

better than those of the traditional interfaces.
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Figure 5.9: Read latency of net-storage operations.

5.4.1 The Cost of Flash Buffer Registration

We first evaluate the cost of a flash buffer registration. The key difference between the standard

RDMA memory registration and the FlashNet registration is the lack of page allocation and

pinning costs from the latter. However, per-page metadata, locks, states, etc., are still allocated.

Figure 5.8 shows the cost of mmaping a file on ContigFS, as well as the cost of registering the

obtained mmap area with the FlashNet RDMA device. Naturally, FlashNet’s buffer registration

is faster than the corresponding DRAM buffer registration. We only show anonymous DRAM

buffer registration to exclude the cost of flash IO for ext4 file mmaps. FlashNet can register and

prepare 64GB of flash area in 85µsecond (6µsecs for mmap, and 79µsecs for registration). In

contrast, a DRAM buffer registration takes almost 20 seconds, where the majority of the time is

spent in the mmap call (zeroing the buffer by the kernel). At the moment, the cost of the buffer

preparation is proportional to the number of 4kB pages involved. We plan to support multiples

of huge pages (2MB) in the future.

5.4.2 Single Client Performance

In this section, we evaluate the bandwidth and latency of network-storage read IO operations

from the perspective of a single client in a single core setup. The client has only one outstand-

ing request at a time. Figure 5.9 shows the latency numbers for three different configurations,

namely sendfile, FlashNet read, and FlashNet read/P when it is optimized for the low la-

tency IO using polling. On our setup, the three configurations of sendfile, FlashNet, and

FlashNet with polling transferred a 4kB page in 123.4, 99.1, and 70.4 µsecs, respectively. We

could not measure the socket using the file IO configuration because the direct IO mode does

not allow reading less than the sector size (512B). But for 4kB reads, the socket with file IO
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configuration shows similar performance numbers as the sendfile.

Figure 5.10 shows the observed bandwidth number for various IO sizes. As the IO transfer

size is increased, FlashNet performs better than the other two configurations. Around a buffer

size of 32MB, FlashNet reaches the device read bandwidth limit.

5.4.3 CPU Core Scaling

In this section, we revisit our key experiment from section 5.1 and evaluate the effect of in-

creasing numbers of CPU cores. We kept the number of concurrent clients constant at 128.

Figure 5.11 shows our results. All three configurations scale between 1 and 4 cores and then

stop scaling further. FlashNet’s performance of 346K IOPS is very close to the device limit of

360K IOPS, and is achieved with using only 4 cores. However, the other two approaches do not
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scale beyond 170K IOPS despite increasing the core count to 32.

5.4.4 Write Performance

In this section, we present the write performance of FlashNet in the presence of synchronous

write operations where networked clients do not issue a next write request until the last write has

been written out to the storage. We compare the performance of FlashNet against a O DIRECT

direct write to the ext4 file on the flash device. A 4kB synchronous write took 53µsecs for a

direct write, and 56.1µsecs for a FlashNet write. We suspect this additional cost comes from

our write processing path in the interrupt context, which in case of a synchronous write requires

context switching to a kernel thread to wait for the IO completion. For 4kB asynchronous

networked writes, however, FlashNet schedules the IO writes immediately, in which case the

write completes in 38µsecs.

Figure 5.12 shows the scaling of peak write IOPS as we scale the number of concurrent

clients. Clients only have one outstanding request at a time, and the server runs on a single

core. At 128 clients, FlashNet delivers almost 3× more IOPS per core for a ContigFS file than

a synchronous direct write on the ext4 file. We also measured the performance of a fsync

syscall and observed a performance that is worse than the one of direct file writes.

Figure 5.13 shows the write bandwidth as we increase the data size. FlashNet consistently

outperforms direct writes to ext4 files by a margin of 30–70%. It reaches the device write

bandwidth limit with 64kB buffers.
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TX-side RX-side 4kB Diff.

Read FlashNet SoftiWARP 70.4µs
13.4%

FlashNet T5 RNIC 60.9µs

Write SoftiWARP FlashNet 56.1µs
4.2%

T5 RNIC FlashNet 53.7µs

Table 5.4: IO latencies of various hybrid configurations.

5.4.5 Hybrid IO Configurations

One key advantage of keeping the iWARP packet format is that FlashNet is compatible with the

current iWARP RNIC hardware. In this section, we evaluate this hybrid setup using Chelsio’s

T5 RNIC. We equip one of the clients with T5 RNIC and measure read and write latencies for

a 4kB page. For a read configuration, FlashNet transmits data from a flash page to a client

containing the T5 RNIC. For a write configuration, the T5 RNIC is used to transmit data from

the client to the FlashNet server. As shown in Table 5.4, the use of a hybrid FlashNet-T5 setup

improves IO latencies by another 4–13%.

5.4.6 Remarks about the Flash Management

The flash controller segregates data in three levels based on their heat, age, and origin during

data placement. As described earlier in Section 5.3.2.1, the get/put API of the controller enables

it to use the usage counters to extract a page heat (i.e., update frequency) information about a

page. A high get LBA count represents a hot data page. The data segregation and greedy

GC scheme of the flash controller exhibit significant reduction in write amplification in the

common case where the write access pattern exhibits skew. Under Zipfian write workloads of

80/20 (80% accesses to 20% flash area) and 95/20 (95% accesses to 20% flash area), the flash
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controller reduces write amplification by 38% and 83% and improves the flash lifetime by 1.6×
and 5.9×, respectively.

5.5 Related Work

In this section, we cover the large body of related work in the field of high-performance IO

integration. Table 5.5 summarizes our discussion here.

Inefficiencies in end-host networking stacks have first been discussed in the 1990s and

have led to the design of high-performance networking stacks such as U-Net [352] and Ham-

lyn [66, 358]. RDMA networks such as InfiniBand or iWARP are the latest incarnation of these

principles and are being used both in supercomputers as well as in data centers running cloud

workloads [107, 241, 264]. In parallel with these networking efforts, the storage community has

proposed several works to eliminate inefficiencies in end-host storage stacks. These efforts in-

clude offloading permission checks to hardware [69, 71], shortening of the IO path by merging

execution contexts [314], coalescing interrupt to reduce the CPU load [24], polling [313, 364],

and speculation [355]. The recently proposed NVMExpress [10] SSD interface and the block

layer optimizations for Linux [53] take a very network-alike approach (parallel queues, polling,

IO descriptors, etc.) towards reducing flash access overheads. In a more system-wide approach,

Exokernels [117, 182], and the recently proposed Arrakis [274] and IX [44] OSes contain high-

performance IO stacks. These OSes eliminate overheads from the kernel by limiting its role

to resource management only. Nonetheless, these isolated stack-specific efforts do not address

end-to-end data transfer issues solved by FlashNet.

The easiest way to eliminate the datapath overheads when accessing storage is to use the

sendfile interface. However, as demonstrated earlier, this interface still requires the applica-

tion to be involved for cross-stack control loop transfers and only solves the transmission-side

issue. Similar to FlashNet, BlueGene Active Storage (BGAS) [119, 304] work uses RDMA

semantics and operations for accessing a local flash storage. Network-Attached Secure Disks

(NASD) [142, 143] work from CMU eliminates many server-side CPU and the OS overheads by

connecting storage disks directly with the network controller. However, it relies on custom disk

and networking hardware, and does not reduce overheads at the client side. More traditional ap-

proaches, such as block IO in the form of SAN (e.g. QuickSAN [72]) or distributed file systems

such as Strata/NFS [96], also provide fast access to data stored on remote non-volatile storage

devices. However, their performance benefits are limited to the boundary of the provided IO

abstraction. For example, QuickSAN implements SAN block access protocol and Strata pro-

vides a file interface on top of NFSv3. Hence, the data stops short (at the block or the file level)

of being delivered in the final application buffer. FlashNet delivers data directly by establishing
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an end-to-end data flow path from application buffers to storage devices. Furthermore, none of

these systems provide other highly desired high-performance IO properties [153, 158, 341] such

as asynchronous IO with selective notifications, direct polling of userspace mapped queues for

low-latency, etc. More specifically, the FlashNet approach differs from iSCSI in its treatment

of storage hierarchies. FlashNet eliminates the traditional two-level of memory and storage

hierarchy, and brings data into a single, unified storage tier. This unification enables clients to

access remote data directly by using RMA network primitives without having to manage sepa-

rate storage operations. Further differences lie in the provided abstraction. In comparison to the

iSCSI’s block-based interface to remote storage, FlashNet provided a byte-addressable remote

memory interface to remote flash devices. Cray’s BrustBuffer (BB) [211, 271] uses flash and

NVM storage in various roles such as for temporary shared storage, for absorbing bursty IO,

for fast check-pointing, for file system cache, for swapping, etc. In this context, FlashNet can

be used to transfer data from remote flash storage for BrustBuffers. FlashNet itself does not re-

strict in what capacity a remote flash storage should be used. Rather it provides efficient means

to transfer data using RDMA network operations. Mojim [369], a recently proposed system,

takes a similar stand as FlashNet on increased software overheads in high-performance IO. It

uses RDMA for NVM data replication and can benefit from the unified DRAM/flash buffer

approach taken by FlashNet.

Many other distributed systems involving NVM storage, such as RAMCloud [265],

FaRM [107], KV stores [183, 241], etc., also leverage RDMA for networking. However, they

utilize their own server-client architecture that is very different from a file system interface pro-

vided by the FlashNet on the server-side. Distributed file systems, such as DAFS [219, 220],

DFS [101], and NFS [67], GlusterFS [6], etc., also use RDMA and present a file system inter-

face. Commercial systems such as Violin Memory, use RDMA to access flash in an appliance

setting with the SMB protocol [17]. NVMe over RDMA transports NVMe command sets to

a remote server using RDMA protocol and can even directly transfer data to a RDMA device

using peer-to-peer PCI transactions [40]. However, these efforts lack generality as they use

RDMA with the scope of a file system or the block device without delivering the benefits of

RDMA operations to client applications. For example, it is not possible to share in-kernel

RDMA transport buffers of NFS with an application to avoid data copies when performing a

file IO. DAFS presents a new user-space, file system interface to clients, where as FlashNet

presents RDMA queues with all supported RDMA operations. This design enables a unified,

single-tier storage hierarchy (e.g., Multics) encompassing storage and memory, where remote

clients make no distinction between them [158]. Though, a client-side file system interface on

FlashNet warrants a DAFS-like approach and protocol extensions [101].
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5.6 Conclusion

In this chapter, we have presented FlashNet, a unified software IO stack that provides direct,

high-performance, byte-granular access to remote flash storage. It achieves this performance

by adopting the well-known path separation principle from RDMA networks and extending

it to include a file system and a flash controller. This extension enables a single-tier storage

hierarchy in data centers where the data can be staged transparently in remote DRAM or flash

while still being accessible using high-performance RDMA operations.

On the backdrop of the recent surge in interest to leverage RDMA in distributed storage

and computing, in the next chapter, we focus our attention on extending the path separation

philosophy of RDMA in a distributed environment.



6
RStore: A Direct-Access

In-Memory Based Data Store

In this chapter, we present RStore, a DRAM-based data store that extends RDMA’s separation

philosophy to a distributed environment to deliver high-performance data accesses. It achieves

the separation at the API level by having distinct calls for allocation and access. This setup lets

applications pre-allocate and pre-fetch expensive RDMA resources in a distributed environ-

ment before the data processing phase begins. RStore is built on two design principles. First,

decouple resource allocation from its abstraction binding. This decoupling allows RStore to

manipulate and reuse expensive resources (e.g., RDMA buffer allocation and registration) inde-

pendently from the provided storage abstraction. Second, keep the IO path thin and fast. A fast

and thin IO path helps to deliver fast data access to applications with their own synchronization

logic. RStore further exploits the availability of multiple NICs by striping data across servers.

As a result, RStore delivers high performance that is very close to the RDMA-network limits.

The basic storage abstraction in RStore is a flat 64-bit distributed access namespace. Ap-

plications interact with a namespace using RStore’s API that resembles the familiar memory-

mapped IO (mmap and friends). Using the API, applications can reserve, allocate, and map

storage capacity in any namespace. To illustrate the power of the abstraction, we have devel-

oped two different applications on top of RStore’s API. Our first application is a distributed in-

memory graph processing framework called Carafe, which imports, processes, and stores graph

data, metadata, and messages in RStore. In our experiments, Carafe outperforms state-of-the-art

systems by margins of 2.6− 4.2× when calculating PageRank. Our second application is a dis-

tributed Key-Value sorter called RSort. It stores data in RStore and leverages high-bandwidth

data access to deliver high sorting performance. RSort can sort 256 GB of data in 31.7 sec,

which is 8× better than Hadoop TeraSort in a similar setting.

Our contributions include (a) design and implementation of a DRAM-based data store where

RDMA philosophy is integrated as a first-class citizen in an end-to-end manner; (b) illustration

of the system capability by developing two different types of applications using RStore’s API

133
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Figure 6.1: RDMA communication model showing the control setup and the data flow.

that allows pre-fetching and pre-allocation of resources out of the performance critical path in

a distributed setting; (c) quantification of the distributed control setup cost of RDMA at scale

(1000s of connections, TBs of DRAM).

6.1 Opportunities and Challenges with RDMA

The demands on big data analytics platforms to provide real-time performance has led to

memory-centric architectures where more and more data is kept in DRAM for fast access. In

this context, several in-memory storage systems such as RAMCloud [264], FaRM [107], key-

value stores [13, 121], etc., have been proposed. Consequently, due to the elimination of slow

disks, the network has become the new performance bottleneck.

To improve the network performance of in-memory storage systems, researchers have advo-

cated using Remote Direct Memory Access (RDMA) technology [107, 180, 183, 241, 264, 326].

As discussed in Chapter 3, RDMA networks like InfiniBand or iWARP provide high-

throughput/low-latency with very low CPU overhead by separating the control path (or setup)

from the data path (or access). The fast data path operations offer one-sided network IO seman-

tics and can be offloaded to network controllers. The philosophy of path separation, together

with rich IO semantics and hardware offloading, is what gives RDMA its performance benefits.

By deploying RDMA in a limited capacity, one still gets marginal benefits from the of-

floaded protocol processing and high link rates of specialized interconnects (such as 56Gb/s on

InfiniBand). However, the full potential of RDMA is closely tied to its separation philosophy

that sets up resources a priori to eliminate overheads from memory management, multiplexing

and data copies, etc., during fast data accesses [129]. Figure 6.1 shows the data flow and control
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flow in a server-client setup.

Extending this philosophy to a distributed environment mandates a careful network and

storage resource management, whose cost, without thoughtful consideration, can easily eclipse

any potential performance gains from using RDMA-capable networks [130]. Despite previous

efforts, leveraging the full performance of RDMA in a distributed environment still remains a

challenging task due to multiple reasons.

The first and foremost question is how to extend the separation philosophy of the RDMA

networks to a distributed data store. Traditional APIs (such as Key-Value or Files) have narrow

interfaces that do not allow resource setup requirements to be captured prior to an access. In

the absence of sufficient information, a system cannot leverage RDMA operations to deliver the

highest performing IO stack.

Second, in a distributed data store that might offer separation, how can a data-processing

application leverage it? What is the right abstraction? The right IO abstraction can help appli-

cations, which can identify, create, and pre-fetch necessary distributed objects upfront to gain

significant performance gains when performance really matters.

Lastly, distributed RDMA resource management is a complex task. It includes “when and

how” to open RDMA connections to servers, share offloaded resources, register buffers on

multiple RNICs, etc., in a distributed setting. In comparison, previous RDMA integration efforts

have only dealt in part with these challenges. For example, RAMCloud [262] delivers low-

latency IO for small objects, but does not let applications manage their resources. On the other

hand, FaRM [107] gives the possibility to pre-allocate and manage transactional objects, but

does not deliver the lowest possible latency because of object layout adjustments in the IO path.

6.2 RStore

RStore is a distributed in-memory data store that delivers high performance by extending

RDMA’s separation philosophy from a point-to-point setting to a distributed environment. In

this section, we describe its goals, design principles, and implementation details.

6.2.1 Scope and Goals

We consider a rack-scale deployment of RStore, where data is imported from a persistent stor-

age, processed by thousands of cores while the working set is held in distributed DRAMs, and

finally, results are written back to the storage. The high-level goals of the system are:

• Efficient distributed setup path: Even though the RDMA setup cost is a part of the separated
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Figure 6.2: Design and components in RStore.

control path, it should not be prohibitively high. This cost is one of the primary concerns

with RDMA deployments in distributed settings.

• Light-weight abstraction: The proposed abstraction should be intuitive, light-weight, and

general-purpose. This property is key to building applications with different consistency and

performance requirements.

• High performance: The system should be able to deliver high bandwidth and low latency to

a single client by leveraging all networking hardware.

However, in our pursuit of achieving these goals, we sacrifice a few system properties from

an implementation point of view. RStore’s fault-tolerance handling is primitive. It does not

strive for data durability in the case of arbitrary memory server failures. Memory server repli-

cation or fast recovery [262] can be used to deal with this issue, but we have not yet done so.

We have implemented a copy-on-write mode (see Section 6.2.7) to provide a strong atomicity

guarantee under concurrency and failures. This mode, however, is not evaluated in the thesis.

We first start here by discussing the abstraction and design principles, and how they help us to

achieve RStore’s goals.

6.2.2 Components

RStore has three main components: a master, a set of memory servers, and a client-side user

library. The master is a logically centralized entity that acts as the system arbiter and stores all

metadata in DRAM for fast servicing. The metadata consists of created namespaces, allocated
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memory regions and their locations, permissions, active client states, etc. Data is distributed and

stored in DRAMs of participating memory servers. Their primary responsibility is to allocate

and prepare DRAM buffers to be accessed by RStore applications. Applications interact with

RStore using a client-side API. Applications and memory servers communicate with the master

using a fast and scalable Remote Procedure Call (RPC) implementation using RDMA two-sided

send/recv operations [327]. Figure 6.2 captures the interaction among the components.

6.2.3 Abstraction and Principles

The basic access abstraction in RStore is a flat, 64-bit, byte-addressable storage address

space called namespace. RStore’s applications create, join, and allocate storage capacity

in multiple namespaces. An allocated memory segment is identified by a globally visible

<address, length> tuple, called raddress. Applications use raddress segments to store

and share distributed data structures, tables, data-blobs, etc. RStore is built on the following

two design principles:

1. Decouple resource allocation from its abstraction binding: The distributed control path in

RStore consists of setting up two types of resources: (a) systems IO resources; (b) meta-

data associated with RStore. The first involves allocating memory, registering buffers with

RNICs, opening up RDMA connections, etc. The latter involves binding these resources to

application-visible RStore namespaces and addresses. We made RStore’s distributed setup

path efficient by decoupling these two resources. Applications can manage costly system re-

source allocation separately from the performance critical path, which may encompass rela-

tively cheaper metadata manipulations in RStore. For example, by reserving TBs of DRAM

memory independently from binding them to an raddress, applications can quickly al-

locate and free raddress segments without having to allocate and pin memory buffers

repeatedly.

2. Keep the IO path thin and fast: RStore does not interpret or impose any structure on the

stored data. Consequently, it avoids the overhead of the implicit synchronization associated

with data structure accesses [23]. Distributed applications with explicit coordination logic

among workers do not require additional synchronization overheads from the storage. While

maintaining the same considerations as RDMA, RStore translates IO requests to RDMA op-

erations and avoids context switches, memory allocations, data touch operations (e.g., copies

or layout adjustments), etc., during a data access. It delivers large aggregate bandwidth by

striping data across multiple RNICs without overwhelming a single server or link.
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6.2.4 RStore API and the Path Separation

RStore achieves the separation using discrete API calls to set up and access resources in a

distributed environment. There are three explicit calls, namely, reserve(), alloc(),

and map() to manage resources within a namespace. Following the decoupling principle,

reserve() allocates DRAM buffers for RDMA accesses at the memory servers, alloc()

binds them to an raddress at the master, and map() associates the raddress to local

memory at the clients. An allocated raddress region is physically served by DRAMs from

multiple memory servers. Multiple applications can concurrently map and access the same

raddress region. These three calls collectively constitute the distributed control setup (or

resource setup) in RStore. After the control setup, fast data-path calls, i.e., read() and

write() in mapped regions, do not involve any resource allocations. Table 6.1 gives an

overview of RStore’s API and lists its main objects and associated calls.

6.2.5 Distributed Memory Management

RStore manages distributed DRAMs internally in a granularity of chunks. Applications, how-

ever, can allocate and map raddress regions of any size. A list of free chunks, allocated

chunks to raddress regions, their access permissions, mapping types, reference counts, and

active client states, etc., are maintained as system metadata at the master.

Storing and accessing data in RStore are multi-step processes. First, an application must

reserve sufficient DRAM capacity by calling reserve(). If the free chunk list at the master

has sufficient capacity, the RPC returns immediately; otherwise the master chooses a set of

memory servers to reserve the memory capacity requested. The current implementation uses a

primitive round-robin policy to distribute the load uniformly. Upon receiving a reserve()

RPC call from the master, the memory servers allocate and register chunks of DRAM to an

RDMA device and communicate RDMA credentials (STag, virtual address, and length) back to

the master. These chunks are added to the free chunk list.

Second, an alloc() call stitches together reserved memory chunks from different memory

servers (for best parallelism) under a single distributed raddress region. This globally visible

binding between an raddress region and the memory chunks is created and stored at the

master. The newly created raddress region together with the location of its chunks is returned

to the client as the result of the alloc() RPC. For a previously allocated region, a client can

initialize an raddress object by calling init() with a valid <address, length> range. The

call fetches the chunk locations from the master. The master maintains appropriate reference

counting on objects to avoid freeing them while they are still mapped and in use at clients.

When a client’s connection aborts, the master cleans up the associate states and references.
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These metadata manipulations are atomic as they are serialized by the master using appropriate

locks.

Lastly, a valid raddress object requires a local mapping before the IO operations. Simi-

larly to the POSIX mmap() call, a map() call returns a local DRAM address, which is made

RDMA-ready by the RStore’s client library. A client uses this address for staging and modi-

fying data in RStore. When a valid raddress object is destroyed, it notifies the master for

reference cleanup.

6.2.6 IO Operations and Synchronization

The fast data path in RStore consists of read() and write() calls. These calls do not

involve any data touch operations or resource allocations anywhere in the system, which is the

key to deliver high performance to applications. A read/write() call is divided at the chunk

boundary and individual chunk IO requests are then translated into one-sided RDMA operations

for zero-copy network transfers. The byte-granular nature of IO operations fits perfectly with

the message-oriented nature of RDMA operations: an RNIC understands message boundaries

and only notifies an application when the complete message has been sent or received. Hence,

the transfer time depends on the IO size, rather than on the mapped memory size.

With its key focus on separation and performance, RStore does not provide any form of

global IO synchronization. RStore’s clients must coordinate among themselves to define the

concurrency access model. We argue that this is not an unusual feature as many distributed

applications tend to have their own synchronization mechanism using external services, e.g.,

Zookeeper or DARE SMR [278]. We illustrate in Section 6.5.1 how one can achieve global

barrier coordination and develop applications using RStore.

6.2.7 Copy-on-write for Machine Failures

The zero-copy architecture of RStore modifies data in-place. Hence, a failure of a writer client

leaves data in an inconsistent state. To provide atomic updates in case of a memory server

failure, we are implementing a copy-on-write (COW) type raddress segment (indicated by a

flag in the alloc() call). In the COW-mode, a small amount of per-chunk metadata (8 bytes)

is maintained at the memory servers to communicate the chunk state to clients. This metadata

is accessed during IO operations using RNIC’s scatter-gather capability.

While mapping a COW region, a writer client synchronizes with the master to get a time-

bounded (default: 10 sec) lease for new memory locations in a multiple of chunks for every

write operation. The master enforces a policy of one writer with concurrent readers by rejecting
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new leases for an already mapped COW region to another writer. After local modifications,

the data is written out in multiples of chunks to the new chunk locations. Upon a successful

write(), the writer notifies the master to update the raddress metadata to point to the

newly written chunk locations. If any of these steps fail, the master retains the last known

chunk locations for the raddress region. When a lease expires (owing to a client’s failure

or inactivity), the master garbage collects the lease’s chunk locations. After a successful write

notification from the client, the master marks the per-chunk metadata at the old locations as

tainted.

A concurrent reader in a COW-mapped region can be in one of three states. First, it reads

clean data while a write is in progress. As the new data is written out of place, this read returns

the last known consistent value for the data. Second, the reader sees a subset of chunk locations

as tainted while the master is updating the per-chunk metadata. Third and last, the reader

sees all per-chunk metadata as tainted. Note that in the last two cases, the presence of tainted

metadata only notifies the reader about the availability of new data, but the old data locations

are not over-written or invalidated as the new data is written out of place in new locations.

If it chooses so, a reader can still work with a consistent copy of the data stored at the old

locations. Alternatively, the reader, upon detecting the tainted metadata, can proceed to obtain

the new data chunk locations from the master. When an old chunk location has no active client

mappings, the master uses it for new allocation requests.

6.2.8 Discussion on RStore API and Abstraction

RStore’s unique memory-like API has some critical advantages that differentiates it from state-

of-the-art systems:

• Explicit Distributed Resource Management: RStore’s API gives applications control over

RDMA and memory setup. Using this explicit control, applications can allocate, pre-fetch,

and prepare stateful objects associated with TBs of DRAM by calling init (or alloc for

a fresh allocation). These calls fetch chunk locations from the master and can be called

separately from the map call, which involves local memory commitment. Furthermore, ap-

plications can use this hierarchical setup of control calls (reserve, alloc, map) to

progressively distribute the resource allocation cost in a most efficient way as suited to their

workload requirements.

• Unified Network and Application Buffers: By using an explicit map call, RStore integrates

network and application buffers. As explained, the map call returns a local void* pointer

to a memory buffer, which is made RDMA-ready by the client-side library. This buffer is
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known to the network for IO and to the application for data access, thus eliminating a data

copy which is typically done to move data between network and application buffers. Hence,

RStore’s IO stack is a true zero-copy stack on both, TX and RX sides. Furthermore, due to

the data copy elimination, one-sided RDMA operations in RStore deliver data directly into

the application buffers with highest bandwidth and lowest latency.

• Expressive Memory API: The raw byte-addressable memory abstraction of RStore is the

most expressive general-purpose storage abstraction. This memory abstraction enables the

building of distributed linked data structures with pointer arithmetic for offset calculations.

The map call, which supports mapping partial address ranges, allows large memory objects

to be partially mapped and updated. Both of our applications use this facility to build and

access distributed data structures. This would not have been possible on object or Key-Value

stores that only permits full object updates with their get/set API calls. For example, it is

not possible to update a pointer at a particular offset in a value of a key in a Key-Value store.

6.3 Implementation of RStore

RStore is implemented in Linux (for 3.13.11 kernel) in about 15K LOC1 of C++ which

contains code for the master (4K), memory servers (1K), the application-side library (3.5K),

and common subsystems including RDMA (6.5K) These components are logically separated

and hence can run on a single physical box as well. The implementation follows the best

practices of RDMA resource caching and sharing as recommended in the literature [107, 327].

6.3.1 System Booting

How does the first client in RStore discover where the data has been allocated to and stored? To

facilitate this discovery process, RStore fixes the first allocation address in any namespace to

a pre-defined, globally known address called RSTORE_INIT_RADDRESS. This address can

also be queried from the master. This discovery mechanism is similar to reading the partition

table of a storage device at a fixed block address.

We now explain how this fixation also facilitates the initial synchronization between mul-

tiple clients in a distributed setting. When multiple clients boot simultaneously and want to

coordinate, they all try to map() the first allocation address with an agreed-upon, pre-defined

finite-length metadata. If the raddress region was not allocated before, a client fails to map

the region with an “Invalid Address” error. Upon receiving this error, the client proceeds to

alloc() the region. As the alloc() call is atomic, only one client succeeds and others fail,

1Generated using David A. Wheeler’s ’SLOCCount’.



6.3. IMPLEMENTATION OF RSTORE 143

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

64 M
B

128 M
B

256 M
B

512 M
B

1 GB
2 GB

4 GB
8 GB

16 GB

32 GB

64 GB

La
te

n
ci

e
s 

in
 u

se
c

mmap-4kB
mmap-2MB

unmap-4kB
unmap-2MB

Figure 6.3: mmap and unmap costs in Linux with 4 kB and 2 MB page sizes.

with an “Address in Use” error. Upon receiving this error, clients re-attempt to map the address

region and succeed. At the end of this bootstrap synchronization, each client has a metadata

region mapped to their local memory which they can read or write to get updates from other

clients. This facility is used to develop our Global Barrier Coordination service described in

Section 6.2.7.

6.3.2 RDMA Resource Caching

Although memory management and RDMA objects management are parts of the control path,

they have prohibitively high setup cost for a low-latency environment. An RDMA connection

takes 2-3 msec to connect and allocate associated connection resources. Independently from

RDMA operational costs, it takes more than one second to allocate 4 GB of DRAM (page pop-

ulation included) in Linux (see Figure 6.3). Allocating memory from huge page pool performs

a bit better due to the dedicated nature of page management done by the Linux kernel where

huge pages are reserved beforehand and are only allocated on a special request indicated by the

MAP HUGETLB flag.

RStore caches and reuses RDMA resources (memory buffers and connections) to hide the

high cost of control setup for repeated accesses. RDMA-ready memory (which includes pop-

ulating virtual memory regions and registering the pages with the RNIC) is managed using a

simple user space buddy allocator. Calling unmap on an mapped memory region in RStore

does not immediately release resources until a configured threshold is reached. As RNICs have

a limited number of offloaded on-NIC resources (e.g., number of memory regions, connections,
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Figure 6.4: Memory registration and de-registration costs with 4 kB and 2 MB page sizes. The
4 kB page size does not allow registration beyond 16 GB buffer size.

QPs, and completion queues), RStore optimizes the number of new unique resources created.

RDMA connections to a memory server are shared across multiple mappings. All connections

on an RNIC device share the same completion queue for notifications. We quantify the effec-

tiveness of resource caching in Section 6.4.2.

6.3.3 Hugepages and Memory Registration

The amount of metadata generated during a memory registration call is proportional to the

number of pages. The size of this metadata determines how much memory can be registered

as this metadata is stored on the on-chip memory of the RNIC. For 4 kB page backed memory

buffers, we can only register up to 16GB of DRAM with T4 RNICs.

To reduce per-page entry metadata overhead and increase memory registration limits,

RStore uses hugepage (2 MB on x86_64) backed memory. Hugepages allow RNICs to co-

alesce the contiguous physical pages buffer lists into a single DMA mapping. Figure 6.4 shows

the cost of memory registration for 2 MB hugepages. The memory registration costs are con-

sistently better for hugepages than 4 kB pages. But 4 kB page-backed buffers are faster to

de-register. We do not know the exact cause of this behavior from the device.
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CPU Dual Xeon E5-2690, 2.9 GHz 16 cores
DRAM 256 GB, DDR3 1600MHz

NIC 3 Dual port Chelsio T4 iWARP RNICs
Network BW 60 Gb/s (3× 2× 10 Gb/s)

Network Latency 9.6 µsec, 8B RDMA read latency

Table 6.2: 12-machine testbed configuration for RStore evaluation. All machines are connected
via two IBM BNT G8264 switches.

6.4 Performance Evaluation

The performance evaluation is done on our 12-machine iWARP/Ethernet testbed as shown in

Table 6.2. For all benchmarks, clients and memory servers (72 servers in total, 6 per machine)

are co-located on every machine. The master runs on a separate, dedicated machine. The chunk

size is set to 64 MB. The key performance evaluation highlights are:

• Efficient distributed control setup path: RStore reserves and allocates 1.15 TB of

DRAM in 22.1 sec (52.1 GB/sec). Clients need 19.9 sec to map this memory in their

local DRAM.

• High performance by maintaining the separation philosophy in a distributed setting:
RStore delivers close to bare-metal latency (12 µsec, in comparison the iWARP network

latency is 9.6 µsec) and high aggregate cluster bandwidth (705 Gb/s for 12 servers, 58.7

Gb/s per server).

• High application performance using RStore’s API: Carafe, our distributed in-memory

graph processing framework, is 2.6-4.2× faster than state-of-the-art systems in calculat-

ing PageRank on a graph containing millions of vertices. RStore sort (RSort) sorts 256

GB of data in 31.7 sec, which is 8× better than Hadoop TeraSort in a similar setting.

6.4.1 Cost of the Distributed Control Path

In this section, we quantify the cost of the distributed control setup path, which consists of

reserve(), alloc(), and map(). Figure 6.5 shows the performance for a single client.

The y-axis shows the latency of the operations in comparison to the buffer size (on the x-axis).

The reserve() and map() calls are the most expensive calls as they involve costly memory

allocation operations (see Linux mmap cost in Figure 6.5). The reserve() call benefits from

spreading the memory allocation across multiple memory servers.
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Figure 6.5: Control setup cost for a single client.
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Figure 6.6 shows the scaling of the control cost in comparison to the number of clients. A

variable number of clients (shown on the x-axis) concurrently starts to reserve, allocate, and

map 32 GB memory regions in the client’s own namespace. As shown in Figure 6.6, the setup

cost scales gracefully, and 36 clients can prepare 1.15 TB of DRAM in approximately 22.1

sec. Mapping this memory takes 19.9 sec (18.7 sec are from concurrent mmaps), and involves

opening, in total, 2,592 (72 servers × 36 clients) RDMA connections between machines.
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6.4.2 Efficiency of the Resource Caching

Memory allocation is the primary contributor to the overall control setup cost. It is heavily influ-

enced by the number of co-located clients and memory servers, the size of the allocation request,

the number of free hugepages, memory fragmentation, etc. However, a part of the memory al-

location cost is only incurred upon a cold start. For example, after the first reserve() call

to a memory server, which involves allocating new memory segments via mmap, the RDMA

credentials are used repeatedly between subsequent release() and reserve() (also be-

tween free() and alloc() calls). The master caches and maintains a configurable number

of free chunks. The memory caching is most effective once a workload has hit its peak work-

ing set size and reserved sufficient DRAM. Similarly, the caching also helps on the client side

with repeated map() and unmap() calls. Figure 6.5 and Figure 6.6 also show the cached

performance with reserve-cache and map-cache lines. In the cached mode, RStore can

reserve and map 1.15 TB of DRAM in 16.3 msec and 3.3 msec respectively — a three orders

of magnitude improvement over the cold-start performance.

RDMA connection caching at the client-side is very effective in hiding the high RDMA con-

nection setup cost (about 2.5 msec/connection). However, as the number of servers increases,

so does the cost of maintaining the connection cache (with tied-up associated offloaded network

resources). A typical RNIC can support up to 64K offloaded connections. In our setup, we have

not yet reached these limits.
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6.4.3 Performance of Data-Path Operations

Latency: As RStore’s data calls map directly to RDMA operations, their performances are

very close to the network limits. On our iWARP cluster (with network round trip latency of 9.6

µsec), it takes 12 µsec to read 8 bytes of remote data (not shown). We expect this performance

to improve further with ultra-low latency interconnects such as InfiniBand. Figure 6.7 shows

the effect on the read latency (in µsecs on the y-axis) as we increase the number of concurrent

reader clients (on the x-axis). For small requests (less than a kB), RStore is capable of delivering

constant IO latencies. As the size increases, the request becomes bandwidth bound and the

latency increases.

Bandwidth: The chunk size determines the level of network parallelism that clients can achieve

in RStore. For large buffer sizes, a client gets the peak bandwidth of 59.1 Gb/s, less than 2%

below the theoretical maximum of 60 Gb/s. Figure 6.8(a) shows the performance of a single

client with respect to the various buffer sizes. The sawtooth shape of the bandwidth curve can

be explained as follows: between 64 MB and 384 MB (which is 6 × 64 MB), the bandwidth

increases linearly in multiples of a single NIC capacity (10 Gb/s) and hits the peak at 384 MB.

Then the bandwidth falls because larger buffer sizes create an uneven distribution of chunks on

our 6 NICs/machine setup. Hence, whenever the total transfer size is a 6-multiple of 64 MB, the

client gets the full bandwidth. To confirm this hypothesis, we have also repeated the experiment

with a 4 MB chunk size (see Figure 6.8(b)). We observe a similar pattern with the client getting

the full bandwidth above a 256 MB buffer size. For sufficiently large sizes, the transfer time

dictates the overall completion time, and this unevenness no longer matters.
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Figure 6.9: Aggregate cluster IO bandwidth of RStore.

Figure 6.9 shows the aggregate system bandwidth as the number of clients increases. The

performance scales linearly and peaks at 705 Gb/s (theoretical maximum: 720 Gb/s) until we

host multiple clients per machine. We are investigating the QoS management of RDMA traffic.

Our initial analysis suggests that one reason for the drop is the co-location of memory servers

and clients on the same physical machine in our limited 12-machine testbed.

6.5 Applications

We have developed two different applications, a distributed graph processing framework called

Carafe, and a distributed Key-Value sorter called RSort. As both of these applications require

coordination among workers, we have also built a simple coordination mechanism by leverag-

ing RStore’s byte-addressability property to atomically access one-byte flags in a distributed

metadata structure.

6.5.1 Global Barrier Synchronization (GBS)

The coordination mechanism consists of a central coordinator and multiple workers. These

entities communicate through a distributed shared data structure, laid out in RStore by the co-

ordinator. This data region is mapped in the memory of every worker. The region contains

a one byte status field together with application specific data. Byte accesses in RStore are

atomic as one byte is the smallest unit of data access. The layout of the data region is shown

in Figure 6.10. It contains a coordinator-specific global field and a per-worker field. The per-
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Figure 6.10: Distributed barrier coordination.

worker field is written by both the coordinator and a client. At the start, the coordinator writes

application-specific data in the per-worker area (depends upon the application logic) and marks

their status fields as valid. It then proceeds to signal all workers by writing its status byte field

as “start”. Upon reading “start” in the coordinator field, workers then read their area to get an

assigned workload, execute it, and mark their status byte as “finished” or “error”. The coordi-

nator, upon reading that every worker has finished its assigned work, can decide to start the next

phase of work. Our simple coordination mechanism avoids write-write synchronization by tak-

ing turns to read or write byte status fields atomically. Carafe uses this mechanism for superstep

synchronization and message delivery among workers. RSort uses it for work assignment and

moving from phase one (classification) to phase two (sorting).

6.5.2 Carafe: Distributed Graph Processing

Carafe is a distributed in-memory graph processing framework, which is developed by Clemens

Lutz for his M.Sc. thesis work. Here we give necessary details about how it stores, accesses,

and manipulates the graph structure inside RStore. For more details about Carafe, please refer

to the thesis [215]. The key performance requirement for Carafe is low-latency access to the

graph structure, metadata, and messages. We have implemented an online [312] and a Pregel-

like [222] graph processing engine.

Graph Storage Format: Carafe imports edges and vertices in separate RStore namespaces.

The edges are stored in an adjacency list format. Edges are directional, and bi-directional edges

are split and stored twice. Vertices are stored as a single contiguous array. A single vertex

structure contains its internal id (array index), externally associated id given by the graph file,

offset of its adjacency list in the edge namespace, and size of the list, etc. It also contains a

graph property map, which contains associated contextual information and run-time data from
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Figure 6.11: Message delivery and Pregel execution in Carafe. Assuming k is even (1) collect
incoming messages from the even containers; (2) invoke compute on vertices
with messages; (3) write messages to odd containers; (4) synchronize the super-
step; (5) collect messages from even containers for (k+1)th superstep.

algorithms. The graph is represented by a CarafeGraph class that contains high-level per-

tinent information about the graph and the associated RStore metadata about vertex and edge

namespaces. At this moment, Carafe does not support graph mutability.

Online Graph Exploration: Carafe provides a VertexHandle and an EdgeIterator

for iterative, online graph scans. A VertexHandle is initiated by passing a vertex id to the

CarafeGraph. This action involves calculating the right offset into the vertex namespace,

mapping and reading that vertex from RStore, and then initializing an EdgeIterator to

its edge list in the edge namespace. An EdgeIterator provides a mechanism to iterate

through neighbouring vertex ids. Applications can use a neighbouring vertex id to initialize a

new VertexHandle. Once done, the application must release associated RStore resources

by calling unmap on these graph objects. We have implemented the Dijkstra shortest path

algorithm using this facility.

Graph Partitioning and Pregel Model: Carafe does weighted vertex partitioning to divide

vertices into equal weight partitions. Our initial attempt to partition the graph just using edges

resulted in uneven computation. With this partitioning scheme, some partitions ended up con-

taining too many sparsely connected vertices whose access time dominated the computation. In

the weighted vertex partitioning, Carafe assigns weight to a vertex (represents access overhead)

as well as an edge (represents access and messaging overheads). The graph is then divided into

equal weight partitions containing vertices. These partitions are then assigned to worker ma-

chines. Worker machines access vertices using a specialized SequentialEdgeIterator

that loads and reads graph data on a partition size granularity. Each partition contains a parti-
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tion worker thread to execute the Pregel logic that invokes an equivalent compute function on

vertices with messages from neighbours. After each superstep, new vertex data is written back

to RStore and every partition worker coordinates with the Pregel master for the next superstep.

We have implemented PageRank using the Pregel model.

Message Passing: Message passing represents a major overhead in the Pregel computation

model. RStore’s efficient network IO enabled us to implement a shared mailbox schema to send

and receive messages in Carafe. In the shared mailbox model, each partition worker reads and

writes messages into RStore namespaces. Messages in Carafe are delivered individually. The

Carafe mailbox is divided into as equal a number of rows and columns as there are workers.

These segments (ith row and jth column) contain messages sent from individual partitions

(from Partitioni to Partitionj). Individual segments are further divided into two areas called

even and odd containers. The size of each container is determined by the number of edges

between partitions. For the ith partition, ith row and ith column represent its Outbox and Inbox,

respectively. During the kth (assuming k is even) superstep, workers read from even Inbox

containers and write new messages to odd Outbox containers. The even and odd containers

switch their roles in the next supersteps. This setup achieves read-write coordination at the

expense of more storage. Figure 6.11 shows an example of the mailbox setup for 3 partition

workers.

Evaluation: We evaluate performance of Carafe on the LiveJournal social network graph from

the Stanford Network Analysis Project [8]. The graph contains 4.8 million vertices and 68.9

million edges. The graph is distributed and stored completely in DRAM of servers. Our first

benchmark calculates the shortest path between 100 randomly chosen vertex pairs using the

Dijkstra shortest path algorithm. Figure 6.12a shows the runtime of the algorithm in comparison

to the number of neighbours explored and the discovered path lengths. As shown, the cost

of neighbourhood exploration increases linearly with the number of vertices accessed. For

example, Carafe explored 67 million edges in 7.9 seconds for a path length of 7.

Our second benchmark consists of executing the PageRank algorithm on the LiveJour-

nal graph in Carafe’s Pregel engine. We compare the performance of Carafe against

GraphLab [144] and GraphX [145], which are two of the fastest distributed graph processing

systems in the literature, running in a similar setting. These systems use traditional TCP/socket

based infrastructure for network IO operations. Figure 6.12b shows the runtime of PageRank

for the first 32 supersteps in all three systems. Carafe outperforms GraphLab and GraphX by a

margin of 2.6× and 4.2×, respectively. Carafe also scales linearly on our 12-machine cluster as

shown in Figure 6.12c.
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6.5.3 RSort: Distributed Sorting on RStore

We have implemented a distributed key-value (KV) record sorter called RSort. We use http:

//sortbenchmark.org/ scripts to generate input KV records in the Indy mode. In the

Indy mode, the key values are uniformly distributed over the whole key space.

RSort solves two key challenges while building on top of RStore. First, how do multiple

clients coordinate among themselves? RSort leverages RStore’s byte-addressability property to

access one-byte flags in a distributed metadata structure. Byte accesses in RStore are atomic

as one byte is the smallest unit of data access. Second, how do clients discover and access

intermediate data store in discrete raddress segments? RSort solves this problem by using

multiple namespaces with meaningful names and laying out distributed link lists of raddress

segments. We explain these concepts in more detail in the following paragraphs. As RSort

does not perform any locality aware optimizations, its performance is governed by the data

access bandwidth. RSort implements a two phase bucket sorter. In the first phase, input data is

classified into range buckets, and in the second phase, individual buckets are sorted locally.

Phase One (Classification): In phase one, all workers first read and then classify the input

data into multiple bucket namespaces. A bucket, private to a worker, represents a specific

key range for which its namespace should contain records. Having private bucket names-

paces eliminates the need for write-write synchronization when multiple workers try to append

a record in a same key range bucket namespace. The names of bucket namespaces follow

a syntax of worker i bucket j, which uniquely identifies the jth bucket namespace for the

ith worker. The key range for the jth bucket for every worker is defined globally, and each

worker has the same number of buckets. Consequently, the total number of buckets in RStore is

buckets per worker × total workers. At the end of phase one, each worker writes its meta-

data field to mark finish. Upon detecting that all workers have finished with the classification,

the coordinator starts phase two by writing its status flag in the GBS service.

Phase Two (Assembly and Sorting): In phase two, a key range is exclusively assigned to

a particular worker by the coordinator. Recall that a bucket with name worker i bucket j

contains all records that a worker i has seen for the key range assigned to bucket j. Upon

getting the assigned key range, which might belong to bucket index j, a worker joins all bucket

namespaces of the name syntax

worker i bucket j, where i ∈ [0, total workers− 1].

The worker then reads and assembles all records in a final output namespace. The final names-

pace has name syntax final j, where j represents the bucket and associated key range. After

this step, each worker has all records belonging to a particular key range copied in the final

http://sortbenchmark.org/
http://sortbenchmark.org/
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Figure 6.13: Weak scaling performance of RSort.

namespace. A worker then performs a local sorting operation (GNU parallel quick sort) on

this assembled record data. After sorting, the data is written out to the final namespace and the

worker’s status is updated. When all workers have finished writing data in the final namespaces,

the sorting is over.

Evaluation: The sorting time reported is the time between the signalling of phase one until

phase two is signaled completed by all workers. The numbers reported are the average of three

runs.

We evaluate weak-scaling performance of RSort by fixing the per-worker input size to 40

million records of 100 bytes each. The total data size increases with the number of workers.

For 64 workers, the total data size is 256 GB2. Figure 6.13 shows the scaling performance of

RSort. For comparison, we also show the performance of GNU’s parallel sorting implementa-

tion marked as _gnu_parallel::sort(). The local sorting does not have any network IO

or resource allocation overheads. On a single server, 64 GB is the largest data size that we can

sort in memory. The number of sorting threads are placed first on CPU0 and then on CPU1 in

our dual socket machine. Hence, the first 8 threads all reside on CPU0 and with 16 workers, all

CPU cores are utilized. As shown in the figure, RSort exhibits very good scaling performance.

It scales linearly between 1-8 workers until we host multiple workers per machine. For data sets

larger than 8 GB, RSort is 1.9-5.4× faster than the parallel local sorting.

RSort vs. Hadoop TeraSort: We now compare the performance of RSort with that of Hadoop

TeraSort (version 2.2) under similar circumstances running on RAMDisks. We configured

2For this sorting section only, we use the benchmark’s definition of 109 Bytes = 1 GBytes.
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Figure 6.14: Performance of RSort and Hadoop TeraSort.

Property Comments/Value
dfs.block.size, dfs.replication 64 MB, 1

io.file.buffer.size 1 MB

hadoop.temp.dir on RAMDisk, 128GB

mapreduce.tasktracker.map/reduce.tasks.maximum 32 (no of CPU cores)

mapreduce.job.maps/reduces 256

mapreduce.input.fileinputformat.split.minsize 512 MB

mapreduce.reduce.shuffle.parallelcopies 32

yarn.nodemanager.resource.memory-mb 128 GB

yarn.scheduler.minimum/maximum-allocation-mb 8 GB, 128 GB

Table 6.3: Hadoop TeraSort configuration. The values are configured to give maximum cluster
resources to Hadoop.

YARN to give maximum cluster resources (cores and DRAM) to Hadoop. Table 6.3 shows

the configuration of our Hadoop cluster. Figure 6.14 compares their performances for variable-

size data sorting. As shown, RSort consistently outperforms Hadoop TeraSort by margins of

8− 10×.

6.6 Experiences with RStore

What made RStore and its applications faster? While developing Carafe and RSort, we kept

the focus on preserving the separation philosophy of RDMA. This was made possible only
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by RStore’s API that exposes this separation to our applications. Using the API, our appli-

cations successfully identified and prepared resources (but not all) upfront in a distributed set-

ting. Hence, we managed to eliminate overheads stemming from unnecessary buffer allocations,

memory registration, data touch operations, scheduling, context switches, RDMA connection

openings, metadata fetching from the master, etc., from the fast data processing iterations. For

data access, Carafe benefited from RStore’s highly optimized small IO performance for graph

data access; while RSort leveraged RStore’s high bandwidth for accessing GBs of KV data.

Was decoupling of allocation from binding effective? Following the principle of decoupling

helped us to build an efficient caching layer. The caching layer, which caches raw RDMA

resources, not RStore’s objects, helped us to amortize the control setup cost that cannot be

avoided in the fast data access path. For example, the cache hit rate in phase one of sorting was

only 10%. In phase two it was 95%, as it was able to reuse cached RDMA-ready memory from

phase one.

Is global synchronization needed on the fast data path? The thin and fast IO path of RStore

does not provide any global synchronization between IO requests. We illustrated that appli-

cations with their own explicit coordination mechanism can benefit vastly from very fast data

access. However, we realize that such a clean and implicit access ordering and path separation

is not always possible to achieve. We envision higher-level synchronization primitives, such as

transactions as illustrated by FaRM [107], can be built using IO operations from RStore.

6.7 Related Work

Modern RDMA networks are built upon a large body of work from the 1990s [56, 66, 111,

352, 358]. RStore leverages and extends these ideas to deliver high end-to-end performance

in a distributed setting. RStore’s simple master-servers architecture is inspired by the Google

filesystem [141]. RStore’s use of network striping to achieve high bandwidth is in a similar

spirit to Flat Datacenter Storage [257].

Previous attempts to integrate RDMA into distributed systems have looked into using its

offloaded technology and high link speed to compensate for the low performance of the sock-

et/TCP stack. These efforts include transparently using RDMA for socket send/recv [35], in-

tegration in traditional file systems [67, 220], and use in the MPI applications [157]. RStore’s

IO operations are similar to get/put operations in the Separate Memory Model of Partitioned

Global Address Space (PGAS) in MPI-3 [157]. RStore’s applications can separate communica-

tion and storage concerns, and use RStore to store data. Data lives in a separate storage domain

than the applications, and can outlive them. The computation and coordination between paral-
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lel jobs, which is not tied to data storage, are handled separately by application-specific logic

where MPI-3 abstractions can be used. The work from Islam et al. is one of the first to propose

the integration of InfiniBand network into the HDFS design [176]. However, their proposal

does not use one-sided RDMA operations, performs data copies, and suffers from inefficien-

cies found in HDFS/Java stack for high-performance networks [325, 327]. Recent interest in

RDMA has led to many Key-Value store implementations [180, 241, 326]. However, due to

the limitations of the API, these systems do not expose or give control of resource allocation to

applications. Furthermore, RStore, in comparison, is a more general-purpose RDMA memory

management platform on top of which these applications can be built. soNUMA provides a

transparent, distributed coherent shared memory abstraction using a restricted form of RDMA-

based protocol [259]. However, it required modifications to the host memory controller.

The recently proposed FaRM system is closest to our approach [107]. It provides a general

computing platform that leverages RDMA to provide high-performance transactions and lock-

free reads to applications. However, FaRM’s opaque object API does not let applications pre-

allocate or pre-set expensive RDMA resources to avoid their overheads in the object access.

Furthermore, FaRM’s internal representation of objects (laced with metadata at every cache

line) is different from an application’s view. Consequently, FaRM must either copy or adjust

the layout before giving access to an application. For small object requests (a few KBs), for

which FaRM delivers good performance, overheads from DRAM management, together with

layout adjustments (data touch operations), are small. For large data accesses (MBs or GBs),

however, these overheads can easily dominate any performance gains. FaRM’s transactional

object API is arguably better for storing critical system metadata.

Other general-purpose, distributed, in-memory abstractions include RAMCloud [264], Sin-

fonia [23], and Resilient Distributed Datasets [367]. RAMCloud aims to provide very-low data-

access latencies by storing entire data sets in DRAM, and aggregating main memories across

hundreds of servers. It uses InfiniBand, a high-performance interconnect for fast inter-machine

communication, which is limited to fast message passing only [262]. Sinfonia and RDD, de-

spite storing data in memory, do not leverage RDMA for data access, although they provide

more facilities such as fault-tolerance, durability, and straggler handling, etc., that RStore lacks.

Table 6.4 compares RStore to other high-performance network integration efforts over proper-

ties that are discussed throughout this chapter.

6.8 Conclusion

In this chapter, we have presented RStore, a distributed, in-memory data store that delivers

performance (12 µsec latency, 705 Gb/s aggregate bandwidth on an iWARP cluster) very close
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to the network limits. RStore adheres to the separation philosophy of RDMA networks and is

built using two design principles: (a) decouple resource allocation from its abstraction binding;

(b) keep the data access path thin and fast. RStore’s API exposes and extends these ideas

to applications which benefit from pre-allocating and pre-fetching resources in a distributed

setting. We demonstrated RStore’s capabilities by developing two types of applications on it.

Our first application, Carafe, which is a low-latency graph processing system, outperformed

state-of-the-art systems by margins of 2.6-4.2×. Our second application, RSort, is an order

of magnitude faster than Hadoop TeraSort for sorting distributed key-value tuples. The key

reasons for the high application performance are the design and abstraction choices that RStore

is based upon.



7
RStore on FlashNet

As a natural extension of the work presented so far in the thesis, in this chapter, we combine

efforts on storage and distributed system fronts by running RStore on FlashNet. RStore is a

good fit as an application for FlashNet for to multiple reasons. First, it is a fully RDMA-

enabled distributed data store that leverages the RDMA separation philosophy in every facet

of its design. Memory servers and client machines, which are involved in an IO operation,

set up IO resources in advance on the distributed control path. The data transfers happen on a

separate data transfer path using one-sided RDMA operations. By having a clean separation,

RStore’s control and data paths naturally extend to FlashNet. This extension establishes end-

to-end distributed control and data paths between application buffers and remote flash devices.

Such setup allows RStore to prepare flash buffers from multiple flash devices and access data

from them transparently using its API’s control and data operations.

Second, many other distributed storage systems such as RAMCloud or FaRM, which also

use RDMA for data transfers between DRAM buffers, distinguish between DRAM buffer loca-

tions and persistent storage data locations. This distinction and the use of the two-tier memory

hierarchy necessitate an application intervention to stage data between in-memory buffers and

storage locations for servicing a network-storage IO request. In contrast, RStore assumes a

single-tier, unified memory hierarchy. This unified view allows RStore’s clients to access data

completely transparently from remote DRAM buffers or flash devices without involving the

server application.

And lastly, RStore is designed and implemented in the same Linux OFED RDMA frame-

work as the FlashNet stack, thus facilitating a rapid integration. Other publicly available

RDMA-enabled systems, such as RAMCloud [11] and HERD Key-Value store [7], etc., do

not use the same framework and require additional efforts for porting. Other potential systems

such as RDMA-enabled file systems e.g., GlusterFS [6] and NFS [67], etc., only use RDMA

for network IO between their transport buffers. Extending the RDMA path of these file systems

to flash does not deliver the full benefit as they still require the explicit logic to flush transport

buffers to storage devices.

161
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7.1 Porting RStore to FlashNet

We have modified and ported RStore to run on FlashNet. The modified RStore now supports

storing data in remote flash devices together with the currently supported DRAM buffers. The

porting effort was straight forward and required less than 1% lines of code changes. On the

memory server side, the majority of changes focus on acquiring RDMA-ready flash buffers by

mmaping ContigFS files. A server now supports two types of storage buffers. The DRAM stor-

age buffers are allocated using anonymous mmap with huge pages as described in Section 6.3.

The flash storage buffers are allocated using a file mmap on files stored on ContigFS. Changes

on the RStore master side aim at supporting a new type of flash namespace. Resource allocation

calls (reserve() and alloc()) in a flash namespace only use flash buffers. Like DRAM

buffers pools, flash buffers are managed internally in a multiple of chunks. Client-side memory

obtained from the map() call on an raddress object is still DRAM backed.

Accordingly, the RStore API is updated to reflect these changes. Namespace creation

(create ns(string name, enum ns scope=DRAM)) now takes a scope flag that re-

quests the master to create a namespace either in the DRAM or the flash scope. The default

scope is DRAM. There are no further client-visible changes in the RStore API when extending

it to include flash namespaces. Subsequent resource allocations in a newly created namespace

use chunks from the associated flash or DRAM chunk pool. Data from these locations are al-

ways accessed transparently using one-sided RDMA operations. The client-side library is not

aware if data is accessed from a remote DRAM or flash buffer. In the subsequent subsection,

we refer to ported RStore as RStore/FlashNet.

7.2 The Cost of the Distributed Control Path

We now quantify the cost of the extended and distributed control operations, namely

reserve() and alloc() of the RStore/FlashNet system. As described in Table 6.1, the

reserve() operation allocates and prepares DRAM buffers on multiple servers for RDMA

accesses. For RStore, as presented in Chapter 6, the preparation phase includes allocation, reg-

istration, and pinning of DRAM buffers with the local RDMA provider. For RStore/FlashNet,

the reserve() call includes creating a file on ContigFS, truncating it to give it the requested

reserve size, mmaping the file, and then registering it with the FlashNet RDMA controller. How-

ever, the alloc() operation, which stitches flash or DRAM chunks within an raddress

region, is mostly unchanged. The key change includes the resolution of the right pool type from

where chunk allocations happen to the DRAM or the flash pool.

For all experiments, we use 4 machines from the 9-machine testbed (Table 5.3) used in
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Figure 7.1: Control setup cost for a single RStore/FlashNet client.

Chapter 5. 3 out of 4 machines contain Intel NVMe devices with the base-line performance of

2.2 GB/s and 1.1 GB/s for reads and writes, respectively. The one remaining machine contains

the unnamed enterprise-grade PCIe-attached flash device used for experiments in Chapter 5.

Figure 7.1 shows the performance of extended and distributed control path operations for

a single client. The x-axis shows the buffer size and the y-axis shows the operation time in

milliseconds. For reference purposes, the figure also shows the operation time for DRAM-

based buffers. There are two observations which can be made from the figure. First, the

reserve() operation in a flash-scope namespace is 1–2 orders of magnitude faster than a

DRAM-scope namespace operation. This is due to the fact that unlike a conventional RDMA

provider, the FlashNet RDMA controller does not pin pages for ContigFS-backed files during

the memory registration call (Section 5.4.1). Other operations such as the file creation and

truncation calls on ContigFS, are also fast and only involve a minimum amount of meta-data

changes. In contrast, an mmap call into Linux costs significantly more due to shared locking on

the huge page pool and zero-ing out page cost due to security reasons (Section 6.4.1). Second,

the alloc() operation cost remains unchanged between a flash-scoped and a DRAM-scoped

namespace. This behaviour is largely expected as the alloc() operation executes completely

on the master and creates new abstraction bindings for chunks (either DRAM or flash) within

an raddress region. The key performance numbers from this single client experiment are

that on our 4-machine cluster, a single RStore/FlashNet client can reserve() and alloc()

512 GB of flash capacity in 157.3 msecs and 1.1 msecs, respectively.

For our next set of experiments, we focus on the scaling of the extended and distributed

reserve() and alloc() operations in presence of multiple clients. We quantify both weak
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Figure 7.2: Scaling of distributed and extended reserve() operation.

and strong scaling performance of RStore/FlashNet. For strong scaling, we take the total ca-

pacity of 512 GB from the last single client experiment and increase the number of concurrent

clients by dividing the work (allocation of 512 GB of flash capacity) among them. For weak

scaling, we fix the reservation size per client to 16 GB. With 32 clients, the weak-scaling experi-

ment also prepares 512 GB of flash memory. Figure 7.2 shows our findings. There are two main

takeaway messages here. First, for the weak scaling, the cost of the flash buffer reserve()

call increases (so does the amount of work done) linearly with the number of clients. The strong

scaling cost remains the same because RStore/FlashNet efficiently distributes a reserve()

call among all available servers independently from the number of concurrent clients. Hence,

the reported performance numbers stay close to the 157.1 msecs mark. Second, the alloc()

cost increases gradually with the number of concurrent clients as the alloc() operations in-

volve shared locks on the master.

To summarize, the ported RStore/FlashNet system retains the efficiency of the distributed

control setup paths of the original system. The numbers reported in this section for the extended

and distributed control path operations represent a small (100s of msecs) but one time cost that

needs to be paid when setting up the control resources for the first time in a distributed setting.

For repeated executions, the performance of these operations could be further improved by the

use of RStore’s resource caching layer.
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Figure 7.3: Single-client read() and write() bandwidth for RStore/FlashNet operations.

7.3 Performance of Data-Path Operations

We now measure the performance of the extended and distributed data path operations, namely

read() and write(). These operations are split internally into chunk-sized, one-sided

RDMA operations by the RStore’s client-side library. The default allocation policy of RStore

is round-robin allocation among servers or devices. Hence, the chunks are evenly distributed

among the 4 flash devices that we have in our 4 machines. For example, for 512 GB of flash

space, each device serves 2048 64MB-sized chunks. Figure 7.3 shows the performance of IO

operations for read() and write() operations. As expected, the delivered read and write

bandwidths improve as the operation size increases due to the increased opportunity for par-

allelism. For sizes greater than 512MB, all 4 devices operate at 95% device capacity. The

aggregate cluster throughput in presence of multiple clients also exhibits a similar performance

behaviour.

7.4 Running RSort on FlashNet

We have also modified RSort, the distributed key-value sorting application of RStore, to run on

RStore/FlashNet. The modified RSort reads the input data from a flash namespace, processes

it in buckets stored in DRAM namespaces, and then writes out the sorted data back to a flash

namespace. We compare the performance of RSort to the native in-memory version of it and

Spark/TeraSort in similar configurations. The Spark configuration is set to get all memory and

CPU cores from the YARN cluster resource manager. As RSort and Spark/TeraSort are imple-

mented in different manners, we used a fixed-work per worker model for a fair comparison.
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In this model, every worker in the system (Spark or RStore) processes 4 GB raw data or 40

million key-value pairs. The number of workers varies and depends upon the data size. For

16GB, there are a total of 4 workers on 4 machines (1 worker/machine). For 128 GB, there are

a total of 32 workers, 8 workers per machine. We run Spark/TeraSort in the fixed-work model

by setting the input splitsize to 4 GB. We also show the best configuration performance

for Spark/TeraSort that we can obtain on our machines. In all its settings, Spark/TeraSort uses

Java’s NIO API for networking IO that is a socket-equivalent communication abstraction within

the Java virtual machine (JVM).

Figure 7.4 shows our performance numbers. There are three noteworthy results that can be

derived from the numbers showed in the graph. First, in comparison to the identical in-memory

execution of RSort, the RStore/FlashNet mostly adds the time of IO from the flash devices

and does not incur any additional overheads. Second, in the fix-work-per-worker mode, RSort

performs 44-77% better than Spark/TeraSort. Third, in the best configuration Spark/TeraSort

outperforms RSort by 7-13%.

We exercise caution in interpreting these performance gains (or losses) as they are results

of various design decisions made in both systems. The Spark compute engine is highly op-

timized for waves of single-threaded small tasks where IO is overlapped with a very efficient

sorting implementation. In contrast, RSort implements a strict distributed two-phase external

bucket sort, where the next wave of computation does not start until IO from the last phase is

finished. Hence, gains of RSort in the fixed-work model come from the limited compute/IO

overlap opportunities experienced by Spark/TeraSort. These opportunities are increased (hence

the improved performance) in the best configuration. Moreover, Spark/TeraSort computation is

locality-based and does negligible network IO. In contrast, RSort stripes data across multiple
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machines to leverage network and device parallelism while stressing network and storage de-

vices. Furthermore, Spark/TeraSort does asynchronous IO where writes are gradually flushed

by HDFS over a long period of time. In contrast, FlashNet writes are flushed immediately which

affects IO completion times. Hence, for 7-13% performance overheads, RStore/FlashNet offers

fully synchronous IO operations for reading and writing data. These times could be further

improved by implementing a caching and buffering layer on top of FlashNet. Currently, all IO

requests on FlashNet are direct IO requests which are served directly by a flash device.

Consequently, a direct comparison between RSort’s static and Spark/TeraSort’s dynamic

compute frameworks is beyond the scope of this thesis. Instead, the key takeaway message

that we push for is that RDMA-ready systems such as RStore can be ported and executed on

FlashNet with minimum efforts. This porting extends the scope of their benefits to data residing

in flash devices.





8
Conclusion

Systems builders traditionally assume a fast CPU with a few slow IO devices, such as network

and storage devices. This assumption has led to designs of mechanisms and abstractions in

systems software where the CPU is kept busy by executing various OS services and IO routines

from multiple processes while slow IO operations are in progress. However, in the past decade,

the raw IO performance of network and storage devices has improved significantly, while CPU

speed improvements have stalled. This role reversal concerning the performance assumption

of these components is a fundamental shift that affects the way we should think and build sys-

tems software. In this thesis we identify excessive CPU and systems software involvement as

a performance bottleneck in the IO processing path on high-performance network and storage

devices. We advocate to curtail this involvement by using the separation principle from the area

of high-performance networking. We apply the principle and its philosophy, originally devel-

oped for parallel computing, to general-purpose commodity computing systems and evaluate its

effectiveness.

In the first part of the thesis, we make a case for extending the separation philosophy and

associated interfaces and abstractions (e.g. IO queues, asynchronous IO posting, notification

channels, etc.) to access high-performance storage devices. We then develop a proof-of-concept

prototype called FlashNet that unifies high-performance network properties with flash storage

access and management, thus eliminating excessive application and OS involvement from IO

processing. The unified FlashNet device contains a software Remote Direct Memory Access

(RDMA) controller and a software flash controller. Furthermore, by designing the network

and flash controllers together, FlashNet enhances RDMA network operations and makes them

more amenable to the flash storage. FlashNet delivers up to 50− 200% better IO operations/sec

(IOPS) performance than the traditional solutions for transferring data between the storage and

networking stacks. However, being a software-only solution it focuses solely on restricting an

operating system’s involvement in a cross-stack IO processing by smartly connecting abstrac-

tions from networking to storage devices.

In the second part of the thesis, we leverage hardware capabilities to eliminate the CPU in-

169
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volvement in network IO processing and build RStore, a distributed in-memory data store. The

key challenge in building RStore was to design a system that supports end-to-end separation of

data and control paths in presence of multiple clients and servers. In such a distributed environ-

ment a single IO request can affect resources scattered across multiple servers and hence, any

system design needs to consider resource-setup and data-transfer paths in an end-to-end manner.

This challenge was addressed by developing a unique memory-like API and storage abstractions

that let an application pre-allocate and set up distributed resources prior to an access to them.

RStore further classifies resources into system- and abstraction-related resources and is built

using two design principles: (i) decouple system resource allocation from its abstraction bind-

ing, and (ii) keep the data access path thin and fast without any implicit heavy-weight global

synchronization operations. The decoupling principle helped to build a smart resource manage-

ment layer with caching to amortize the control setup cost that cannot be avoided in the fast data

access path. The thin data access path helps to deliver full network performance to applications.

We envision that applications can be provided full global ordering and synchronization through

out-of-band services built using RDMA operations, e.g., DARE SMR system [278]. We also

built a primitive version of such a service, aiming to provide global coordination for bulk syn-

chronization operations. Our two applications, a distributed Key-Value sorter and a distributed

graph processing engine, leverage RStore’s API to pre-set up storage and network resources

and then access data that is striped, distributed and stored in DRAMs of participating memory

servers. RStore delivered a high aggregate bandwidth (705 Gb/s) and close-to-hardware la-

tency on our 12-machine testbed. The graph-processing framework, which relies on RStore for

low-latency graph access, outperforms state-of-the-art systems by margins of 2.6− 4.2× when

calculating PageRank. The Key-Value sorter can sort 256 GB of data in 31.7 sec, which is 8×
better than Hadoop TeraSort in a similar setting. The porting of RStore on FlashNet requires

minimum efforts and FlashNet adds negligible overheads to RDMA operations used by RStore

for data accesses.

8.1 Experience and Outlook

From a system organization point of view, performance and flexibility typically occupy oppo-

site positions on the design spectrum. On the one side, traditional interfaces, such as UNIX file

descriptors, are flexible and simple enough to facilitate rapid application development. They

can obtain and release resources on demand and perform heavy-lifting during IO operations by

organizing IO buffers, hide the complexity of device management, adaptively choose the best

IO strategy, improve utilization of the system, etc. Since their inception in 1974 with the UNIX

system, researchers have amassed a large amount of expertise and experience with them. On the
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other extreme, approaches such as FlashNet, RStore and their applications trade flexibility for

performance. They push to identify and pre-allocate as many resources as possible, thus requir-

ing them to manage all resources and complexity in the application code. Pre-allocation also

commits resources to a particular workload, which might under-utilize them. This dichotomy

that is deeply embedded in application programming interfaces (APIs) and abstractions, forces

developers to choose one over the other at the application design time. Ideally, applications

should be able to trade off flexibility for performance gains at run-time, and a system should

make necessary adjustments by pre-allocating some resources while leaving others. However,

this would require support from devices and also across the entire application stack, including

more expressive APIs and abstractions. Recent steps towards software-defined environments

feature some necessary tools and hooks to facilitate separation even in a distributed setting, also

including switches, routers, and storage controllers as well [336]. For a more holistic envi-

ronment, we need to integrate these components into modern distributed resource management

frameworks [346, 348] to set up an end-to-end fast data path.

As discussed, the application programming interface (API) of Remote Direct Memory Ac-

cess (RDMA)-capable networks differ vastly from the BSD socket/TCP. Instead of having a

simple file descriptor where all IO operations and notifications happen, the RDMA API pro-

vides abstractions and mechanisms for memory buffers, IO posting and completion queues,

connection management logic, notification strategies (polling vs. blocking), etc. These ab-

stractions achieve separation by pre-allocating resources and eliminating overheads from IO

accesses. However, using this new IO API also necessitates re-writing much of the storage

and computing infrastructure to demonstrate its effectiveness. For example, the development of

RStore entailed designing not only the distributed store but also the relevant distributed com-

puting applications. We could not leverage already written applications because (i) they do not

use the same API, and (ii) were not designed to identify and pre-allocate resources separately

from the computation. Consequently, in the limited time frame of this thesis work, we develop

a system from scratch and focus on performance-specific optimizations while omitting other

more pertinent features that would be of relevance in a production environment. Some of these

features, which are absent from RStore and its applications, are fault tolerance, failure recovery,

generic workload management with partitioning and load-balancing, multi-tenancy, quality of

service, virtualization support, isolation, security, and access control.

Over the course of this thesis, we realized that even for a relatively small experimental sys-

tem, hardware failures and bugs are real possibilities. We have witnessed bugs that included

memory failures, RNIC bugs, PCI-compliance issues, CPU faults, and a misbehaving switch.

The RNIC bugs were the hardest to resolve because of the lack of proper documentation, a

complex driver, and the offloaded nature of IO operations. Additional challenges came from the
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fact that these bugs manifest themselves as a completely unrelated problem in the distributed

storage. For example, in one RSort run, the data verification step failed. We started with de-

bugging our implementation of distributed sorting, then the RStore IO path implementation,

and then subsequently focused to its data transfer logic. However, after days of debugging,

we identified the RNIC as the culprit: in certain circumstances, the RNIC transmitted bogus

get-location() RPC data because of a wrong offset calculation in a RPC buffer which used huge

pages instead of 4kB pages. RStore clients, oblivious of this glitch, wrote to the wrong data

locations, hence corrupting previously written data. In these circumstances, having a software

RNIC device (SoftiWARP) was immensely helpful to confidently locate these bugs in the RNIC.

Thankfully, we got tremendous support from our RNIC vendor, who readily located and fixed

these issues in the RNIC firmware. Nonetheless, the incident shows the need for a clean and

standard support to resolve such issues. Over the years, vendors have added support for per-

formance optimization and debugging on the CPU. We envision a similar support for emerging

capable and powerful network and storage devices.

8.2 Recommendations for Future Hardware and Stacks

In this section, we give some recommendations to future hardware and stack developers. Our

recommendations come from our own experience from developing RDMA applications for the

network and extending RDMA semantics for storage. The general theme goes along the lines

of separating policies from mechanisms and not enforcing arbitrary limits [246]. Part of these

recommendations aim at RNIC vendors; others at the industry consortium of the Open Fabric

Alliance (OFA), which maintains the popular OFED RDMA stack for GNU/Linux and Mi-

crosoft Windows platforms.

8.2.1 Resource Management

Memory management is one of the key operations in a distributed storage system. As we ex-

pand RDMA operations to Non-Volatile Memory (NVM) storage, we need more efficient ways

to manage physical resources for higher-level file operations. For example, truncating or ex-

panding files are common file operations supported by many file systems including ContigFS

(see Section 5.2.2). Consequently, truncation and expansion of file-backed RDMA memory re-

gions should also be supported without unreasonable overheads. Although one can de-register

the old region and re-register an area reflecting its new size, this action revokes the old RDMA

STag, which may still be in use at other clients. We expect a generic mechanism that allows the

growing or shrinking of an already registered area while preserving its RDMA credentials. Fur-

thermore, current RDMA stacks and implementations lack a way to expose RDMA resources
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beyond a single-process scope to multiple processes that might share NVM memory regions.

All IO buffers in an RDMA environment are pre-allocated and identified by a 32-bit iden-

tifier called STag. These identifiers are generated by an RNIC during a memory registration

operation without taking any inputs/hints from an application. This is analogous to a key-value

system where keys cannot be controlled by the client who uses them to index into its data struc-

tures. Hence, to simplify the development of such applications, we strongly recommend to let

applications choose their own identifier keys. An RNIC can still reject the registration if the key

already exists. Moreover, a 32-bit identifier, which is further divided in two sections of 8 bits

and 24 bits, is not sufficient to address all possible memory buffers in a system. We suggest to

increase this buffer identifier to 64 or 128 bits and possibly to include a user-specific field that

can be used by applications for message multiplexing or autonomous procedure execution in a

similar spirit as Active Messages [353].

8.2.2 IO Operations

RDMA semantics offer a direct zero-copy data-transfer mechanism from the data source to the

sink. With the recent interest in the RDMA technology, it has been applied in a variety of

systems including networked servers for applications such as Key-Value stores. To maintain

data consistency, RNIC operations must coordinate accesses with the CPU accesses for data

updates. Although it is still possible to build a working system as demonstrated by systems

such as Pilaf [241] and HERD [183], some additional support from the RNIC can immensely

simplify the design of such systems.

In this regard, we expect support for RNIC in the form of suspension and resumption of

IO operations on a particular IO region, precise and deterministic cancellation of IO operations

to rollback and maintain consistency, and in the case of concurrency, a possibility to specify

execution and notification ordering with barrier and fencing operations. Having large numbers

of unordered IOs has been shown to deliver high performance with NVM storage devices [69].

Supporting these operations will necessitate integrating RNICs more closely with the CPU ar-

chitecture, and perhaps also integrating and leveraging the same synchronization mechanisms

that are used between the many cores of a CPU.

8.3 Summary

Data-crunching application frameworks expect IO performance improvements when running

on modern high-performance network and storage devices. However, the delivered perfor-

mance is limited by the cumbersome host CPU and operating system involvement in the IO
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processing path. This thesis presents the design of an end-host storage and a distributed sys-

tem stack to bring applications closer to the IO hardware by leveraging the separation principle

from user-space networking stacks. We demonstrate that the proposed designs deliver good IO

performance and provide a solid foundation for building future network-centric, data-intensive

distributed systems. We envision that some of our findings and recommendations find their

way into popular application frameworks, such as MapReduce or Spark, and benefit their users

without requiring a complete stack rewrite.
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[107] Dragojević, A., Narayanan, D., Hodson, O., and Castro, M. (2014). FaRM: Fast Remote Memory. In
Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation, NSDI’14,
pages 401–414, Seattle, WA, USA.

[108] Druschel, P., Abbott, M. B., Pagels, M. A., and Peterson, L. L. (1993). Network Subsystem Design. IEEE
Network, 7(4):8–17.

[109] Druschel, P. and Banga, G. (1996). Lazy Receiver Processing (LRP): A Network Subsystem Architecture
for Server Systems. In Proceedings of the Second USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’96, pages 261–275, Seattle, WA, USA.

[110] Druschel, P. and Peterson, L. L. (1993). Fbufs: A High-bandwidth Cross-domain Transfer Facility. In
Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, SOSP ’93, pages 189–202,
Asheville, NC, USA.

[111] Druschel, P., Peterson, L. L., and Davie, B. S. (1994). Experiences with a High-speed Network Adaptor:
A Software Perspective. In Proceedings of the Conference on Communications Architectures, Protocols and
Applications, SIGCOMM ’94, pages 2–13, London, United Kingdom.

[112] Dubnicki, C., Iftode, L., Felten, E. W., and Li, K. (1996). Software support for virtual memory-mapped
communication. In Proceedings of the 10th International Parallel Processing Symposium, IPPS ’96, pages
372–381.

[113] Dulloor, S. R., Kumar, S., Keshavamurthy, A., Lantz, P., Reddy, D., Sankaran, R., and Jackson, J. (2014).
System Software for Persistent Memory. In Proceedings of the Ninth European Conference on Computer
Systems, EuroSys ’14, pages 15:1–15:15, Amsterdam, The Netherlands.

[114] Edwards, A. and Muir, S. (1995). Experiences Implementing a High Performance TCP in User-space.
In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’95, pages 196–205, Cambridge, MA, USA.

[115] Edwards, A., Watson, G., Lumley, J., Banks, D., Calamvokis, C., and Dalton, C. (1994). User-space Pro-
tocols Deliver High Performance to Applications on a Low-cost Gb/s LAN. In Proceedings of the Conference
on Communications Architectures, Protocols and Applications, SIGCOMM ’94, pages 14–23, London, United
Kingdom.

[116] Eleftheriou, E., Haas, R., Jelitto, J., Lantz, M., and Pozidis, H. (2010). Trends in Storage Technologies.
IEEE Data Engineering Bulletin, 33(4), 4-13, IEEE.

[117] Engler, D. R., Kaashoek, M. F., , and Jr., J. O. (1995). Exokernel: An Operating System Architecture
for Application-level Resource Management. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, SOSP ’95, pages 251–266, Copper Mountain, CO, USA.

[118] Feldmeier, C. C. (1990). Multiplexing Issues in Communication System Design. In Proceedings of the ACM



182 BIBLIOGRAPHY

Symposium on Communications Architectures & Protocols, SIGCOMM ’90, pages 209–219, Philadelphia, PA,
USA.

[119] Fitch, Blake G. and Rayshubskiy, Alex and Ward, T.J. Chris and Pitman, Mike and Metzler, Bernard and
Schick, Heiko J. and Krill, Benjamin and Morjan, Peter and Germain, Robert S. Blue Gene Active Stor-
age, http://institute.lanl.gov/hec-fsio/workshops/2010/presentations/day1/
Fitch-HECFSIO-2010-BlueGeneActiveStorage.pdf.

[120] Fitzgerald, R. and Rashid, R. F. (1986). The Integration of Virtual Memory Management and Interprocess
Communication in Accent. ACM Trans. Comput. Syst., 4(2):147–177.

[121] Fitzpatrick, B. (2004). Distributed Caching with Memcached. Linux J., 2004(124):5–.

[122] Fiuczynski, M. E. and Bershad, B. N. (1996). An Extensible Protocol Architecture for Application-specific
Networking. In Proceedings of the 1996 Annual Conference on USENIX Annual Technical Conference, ATEC
’96, pages 55–64, San Diego, CA, USA.

[123] Flajslik, M. and Rosenblum, M. (2013). Network Interface Design for Low Latency Request-response
Protocols. In Proceedings of the 2013 USENIX Conference on Annual Technical Conference, USENIX ATC’13,
pages 333–346, San Jose, CA, USA.

[124] Foong, A. P., Huff, T. R., Hum, H. H., Patwardhan, J. P., and Regnier, G. J. (2003). TCP Performance
Re-visited. In Proceedings of the 2003 IEEE International Symposium on Performance Analysis of Systems
and Software, ISPASS ’03, pages 70–79.

[125] Forin, A., Golub, D., and Bershad, B. (1991). An I/O system for Mach 3.0. In the USENIX Mach Sympo-
sium, pages 163–176.

[126] Fox, A., Gribble, S. D., Chawathe, Y., Brewer, E. A., and Gauthier, P. (1997). Cluster-based Scalable
Network Services. In Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles, SOSP
’97, pages 78–91, Saint Malo, France.

[127] Fraser, A. (1989). The Universal Receiver Protocol. In Proceedings of the 1st International Workshop on
High-Speed Networks, pages 19–25.

[128] Freimuth, D., Hu, E., LaVoie, J., Mraz, R., Nahum, E., Pradhan, P., and Tracey, J. (2005). Server Net-
work Scalability and TCP Offload. In Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ATC ’05, pages 209–222, Anaheim, CA, USA.

[129] Frey, P. W. Zero-copy network communication. an applicability study of iWARP beyond micro
benchmarks, PhD thesis, ETH Zurich, 2010. Available online http://dx.doi.org/10.3929/
ethz-a-006133695.

[130] Frey, P. W. and Alonso, G. (2009). Minimizing the Hidden Cost of RDMA. In Proceedings of the 2009
29th IEEE International Conference on Distributed Computing Systems, ICDCS ’09, pages 553–560.

[131] Frey, P. W., Goncalves, R., Kersten, M., and Teubner, J. (2010). A spinning join that does not get dizzy. In
Proceedings of the 2010 IEEE 30th International Conference on Distributed Computing Systems, ICDCS ’10,
pages 283–292, Washington, DC, USA. IEEE Computer Society.

[132] Frey, P. W., Hasler, A., Metzler, B., and Alonso, G. (2009). Server-efficient High-definition Media Dissem-
ination. In Proceedings of the 18th International Workshop on Network and Operating Systems Support for
Digital Audio and Video, NOSSDAV ’09, pages 49–54, Williamsburg, VA, USA.

[133] Frey, P. W., Metzler, B., and Neeser, F. D. (2014). Zero copy data transmission in a software based RDMA
network stack. US Patent 8,655,974.

[134] Fusion-IO. ioDrive Octal Data Sheet, at http://www.fusionio.com/data-sheets/
iodrive-octal-data-sheet/.

[135] Fusion-IO. Software Development Kit (sdk) enables native flash mem-

http://institute.lanl.gov/hec-fsio/workshops/2010/presentations/day1/Fitch-HECFSIO-2010-BlueGeneActiveStorage.pdf
http://institute.lanl.gov/hec-fsio/workshops/2010/presentations/day1/Fitch-HECFSIO-2010-BlueGeneActiveStorage.pdf
http://dx.doi.org/10.3929/ethz-a-006133695
http://dx.doi.org/10.3929/ethz-a-006133695
http://www.fusionio.com/data-sheets/iodrive-octal-data-sheet/
http://www.fusionio.com/data-sheets/iodrive-octal-data-sheet/


BIBLIOGRAPHY 183

ory access. http : / / www . fusionio . com / press-releases /
fusion-io-software-development-kit-enables-native-flash-memory-access.

[136] Fusion-IO. Under the Hood of the ioMemory SDK, at http://www.fusionio.com/blog/
under-the-hood-of-the-iomemory-sdk/.

[137] Fusion-IO. http://www.fusionio.com/products/.

[138] Fusion-IO. ioDrive2 and ioDrive2 Duo Multi Level Cell, Product Datasheet. http://www.fusionio.
com/load/-media-/2rezss/docsLibrary/FIO_DS_ioDrive2.pdf.

[139] Gallatin, A., Chase, J., and Yocum, K. (1999). Trapeze/IP: TCP/IP at Near-gigabit Speeds. In Proceedings
of the Annual Conference on USENIX Annual Technical Conference, ATC ’99, pages 109–120, Monterey, CA,
USA.

[140] Ganger, G. R., Engler, D. R., Kaashoek, M. F., Briceño, H. M., Hunt, R., and Pinckney, T. (2002). Fast and
Flexible Application-level Networking on Exokernel Systems. ACM Trans. Comput. Syst., 20(1):49–83.

[141] Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The Google File System. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages 29–43, Bolton Landing, NY,
USA.

[142] Gibson, G. A., Nagle, D. F., Amiri, K., Butler, J., Chang, F. W., Gobioff, H., Hardin, C., Riedel, E.,
Rochberg, D., and Zelenka, J. (1998). A Cost-effective, High-bandwidth Storage Architecture. In Proceedings
of the Eighth International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS VIII, pages 92–103, San Jose, CA, USA.

[143] Gibson, G. A., Nagle, D. F., Amiri, K., Chang, F. W., Feinberg, E. M., Gobioff, H., Lee, C., Ozceri, B.,
Riedel, E., Rochberg, D., and Zelenka, J. (1997). File Server Scaling with Network-attached Secure Disks.
SIGMETRICS Perform. Eval. Rev., 25(1):272–284.

[144] Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin, C. (2012). PowerGraph: Distributed Graph-
parallel Computation on Natural Graphs. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 17–30, Hollywood, CA, USA.

[145] Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., and Stoica, I. (2014). GraphX: Graph
Processing in a Distributed Dataflow Framework. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI’14, pages 599–613, Broomfield, CO, USA.

[146] Greaves, D. J., McAuley, D., French, L. J., and Hyden, E. (1994). Protocol and Interface for ATM LANs.
Journal of High Speed Networks, 3(2):147–163.

[147] Gropp, W. (2001). Learning from the Success of MPI. In Proceedings of the 8th International Conference
on High Performance Computing, HiPC ’01, pages 81–94, London, UK, UK. Springer-Verlag.

[148] Grossman, L. (2005). Large Receive Offload Implementation in Neterion 10GbE Ethernet Driver. In Ottawa
Linux Symposium.

[149] Grun, P., Hefty, S., Sur, S., Goodell, D., Russell, R. D., Pritchard, H., and Squyres, J. M. (2015). A
Brief Introduction to the OpenFabrics Interfaces - A New Network API for Maximizing High Performance
Application Efficiency. In 23rd IEEE Annual Symposium on High-Performance Interconnects (HOTI), pages
34–39.

[150] Gunawi, H. S., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. (2004). Deploying Safe User-level
Network Services with icTCP. In Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6, OSDI’04, pages 317–332.

[151] Gurd, J. R., Kirkham, C. C., and Watson, I. (1985). The Manchester Prototype Dataflow Computer. Com-
mun. ACM, 28(1):34–52.

[152] Han, S., Jang, K., Panda, A., Palkar, S., Han, D., and Ratnasamy, S. (2015). Softnic: A software nic to

http://www.fusionio.com/press-releases/fusion-io-software-development-kit-enables-native-flash-memory-access
http://www.fusionio.com/press-releases/fusion-io-software-development-kit-enables-native-flash-memory-access
http://www.fusionio.com/blog/under-the-hood-of-the-iomemory-sdk/
http://www.fusionio.com/blog/under-the-hood-of-the-iomemory-sdk/
http://www.fusionio.com/products/
http://www.fusionio.com/load/-media-/2rezss/docsLibrary/FIO_DS_ioDrive2.pdf
http://www.fusionio.com/load/-media-/2rezss/docsLibrary/FIO_DS_ioDrive2.pdf


184 BIBLIOGRAPHY

augment hardware. Technical Report UCB/EECS-2015-155, EECS Department, University of CA, Berkeley.

[153] Han, S., Marshall, S., Chun, B.-G., and Ratnasamy, S. (2012). MegaPipe: A New Programming Interface
for Scalable Network I/O. In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 135–148, Hollywood, CA, USA.

[154] Hassani, A., Skjellum, A., Brightwell, R., and Barrett, B. W. (2013). Design, Implementation, and Perfor-
mance Evaluation of MPI 3.0 on Portals 4.0. In Proceedings of the 20th European MPI Users’ Group Meeting,
EuroMPI ’13, pages 55–60, Madrid, Spain.

[155] Henry, D. S. and Joerg, C. F. (1992). A tightly-coupled processor-network interface. In Proceedings of the
Fifth International Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS V, pages 111–122.

[156] Hilland, J., Culley, P., Pinkerton, J., and Recio, R. (April, 2003). RDMA Protocol Verbs Specification (Ver-
sion 1.0). http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.
0-RDMAC.pdf.

[157] Hoefler, T., Dinan, J., Thakur, R., Barrett, B., Balaji, P., Gropp, W., and Underwood, K. (2015a). Remote
Memory Access Programming in MPI-3. ACM Trans. Parallel Comput., 2(2):9:1–9:26.

[158] Hoefler, T., Ross, R. B., and Roscoe, T. (2015b). Distributing the data plane for remote storage access. In
15th Workshop on Hot Topics in Operating Systems (HotOS XV), Kartause Ittingen, Switzerland.

[159] Howard, J. H., Kazar, M. L., Menees, S. G., Nichols, D. A., Satyanarayanan, M., Sidebotham, R. N., and
West, M. J. (1988). Scale and Performance in a Distributed File System. ACM Transactions on Computer
Systems (TOCS), 6(1):51–81.

[160] Hu, X.-Y., Haas, R., and Eleftheriou, E. (2011). Container Marking: Combining Data Placement, Garbage
Collection and Wear Levelling for Flash. In Proceedings of the 19th IEEE Annual International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, MASCOTS ’11, pages
237–247.

[161] Huggahalli, R., Iyer, R., and Tetrick, S. (2005). Direct Cache Access for High Bandwidth Network I/O. In
Proceedings of the 32Nd Annual International Symposium on Computer Architecture, ISCA ’05, pages 50–59.

[162] Hutchinson, N. C. and Peterson, L. L. (1988). Design of the X-kernel. In Symposium Proceedings on
Communications Architectures and Protocols, SIGCOMM ’88, pages 65–75, Stanford, CA, USA.

[163] Hutchinson, N. C. and Peterson, L. L. (1991). The X-Kernel: An Architecture for Implementing Network
Protocols. IEEE Transactions on Software Engineering, 17(1):64–76.

[164] Infiniband Trade Association. http://www.infinibandta.org.

[165] Infiniband Trade Association (2012). InfiniBand Architecture Volume 1 and Volume 2 http://www.
infinibandta.org/content/pages.php?pg=technology_public_specification.

[166] Infiniband Trade Association. (2015). http://www.infinibandta.org/content/pages.php?
pg=about_us_RoCE.

[167] Intel. 50 Years of Moore’s Law, http://www.intel.com/content/www/us/en/
silicon-innovations/moores-law-technology.html.

[168] Intel. Data Direct I/O Technology (Intel DDIO): A Primer, at http : / / www . intel .
co . uk / content / dam / www / public / us / en / documents / technology-briefs /
data-direct-i-o-technology-brief.pdf.

[169] Intel. Intel Data Plane Development Kit (Intel DPDK), http://www.intel.com/go/dpdk.

[170] Intel. Intel Xeon Processor 7500 Series Uncore Programming Guide http://www.intel.com/
Assets/en_US/PDF/designguide/323535.pdf.

http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
http://www.infinibandta. org
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification
http://www.infinibandta.org/content/pages.php?pg=about_us_RoCE
http://www.infinibandta.org/content/pages.php?pg=about_us_RoCE
http://www.intel.com/content/www/us/en/silicon-innovations/moores-law-technology.html
http://www.intel.com/content/www/us/en/silicon-innovations/moores-law-technology.html
http://www.intel.co.uk/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
http://www.intel.com/go/dpdk
http://www.intel.com/Assets/en_US/PDF/designguide/323535.pdf
http://www.intel.com/Assets/en_US/PDF/designguide/323535.pdf


BIBLIOGRAPHY 185

[171] Intel. SSD 750 Series, http : / / www . intel . com / content / www / us / en /
solid-state-drives/solid-state-drives-750-series.html.

[172] Intel. SSD Data Center S3610 Series, http://www.intel.com/content/www/us/en/
solid-state-drives/solid-state-drives-dc-s3610-series.html.

[173] Intel weaves strategy to put interconnect fabrics on chip. http://www.hpcwire.com/hpcwire/
2012-09-10/intel_weaves_strategy_to_put_interconnect_fabrics_on_chip.
html, 2012.

[174] Ioannou, N., Koltsidas, I., Pletka, R., Tomic, S., Stoica, R., Weigold, T., and Eleftheriou, E. SALSA:
treating the weaknesses of low-cost Flash in software. In as a poster in 6th Annual Non-Volatile Memories
Workshop 2015.

[175] Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. (2007). Dryad: Distributed Data-parallel Programs
from Sequential Building Blocks. In Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, EuroSys ’07, pages 59–72, Lisbon, Portugal.

[176] Islam, N. S., Rahman, M. W., Jose, J., Rajachandrasekar, R., Wang, H., Subramoni, H., Murthy, C., and
Panda, D. K. (2012). High Performance RDMA-based Design of HDFS over InfiniBand. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12, pages
35:1–35:35, Salt Lake City, UT, USA.

[177] Jacobson, V. (1990). Efficient Protocol Implementation. In ACM SIGCOMM Tutorial.

[178] Jeong, E. Y., Woo, S., Jamshed, M., Jeong, H., Ihm, S., Han, D., and Park, K. (2014). mTCP: A Highly
Scalable User-level TCP Stack for Multicore Systems. In Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation, NSDI’14, pages 489–502, Seattle, WA, USA.

[179] Johnson, D. B. and Zwaenepoel, W. (1993). The Peregrine High-performance RPC System. Software:
Practice and Experience, 23(2):201–221.

[180] Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J., ur Rahman, M. W., Islam, N. S., Ouyang, X., Wang,
H., Sur, S., and Panda, D. K. (2011). Memcached Design on High Performance RDMA Capable Interconnects.
In 2011 International Conference on Parallel Processing (ICPP), pages 743–752.

[181] Josephson, W. K., Bongo, L. A., Flynn, D., and Li, K. (2010). DFS: A File System for Virtualized Flash
Storage. In Proceedings of the 8th USENIX Conference on File and Storage Technologies, FAST’10, pages
85–100, San Jose, CA, USA.

[182] Kaashoek, M. F., Engler, D. R., Ganger, G. R., Briceño, H. M., Hunt, R., Mazières, D., Pinckney, T., Grimm,
R., Jannotti, J., and Mackenzie, K. (1997). Application Performance and Flexibility on Exokernel Systems. In
Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles, SOSP ’97, pages 52–65, Saint
Malo, France.

[183] Kalia, A., Kaminsky, M., and Andersen, D. G. (2014). Using RDMA Efficiently for Key-value Services. In
Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages 295–306, Chicago, IL, USA.

[184] Kanakia, H. and Cheriton, D. (1988). The VMP Network Adapter Board (NAB): High-performance Net-
work Communication for Multiprocessors. In Symposium Proceedings on Communications Architectures and
Protocols, SIGCOMM ’88, pages 175–187, Stanford, CA, USA.

[185] Kanevsky, A., Bestler, C., Sharp, R., and Wise, S. (2012). Enhanced Remote Direct Memory Access
(RDMA) Connection Establishment. RFC 6581, RFC Editor.

[186] Kapoor, R., Porter, G., Tewari, M., Voelker, G. M., and Vahdat, A. (2012). Chronos: Predictable Low
Latency for Data Center Applications. In Proceedings of the Third ACM Symposium on Cloud Computing,
SoCC ’12, pages 9:1–9:14, San Jose, CA, USA.

[187] Kaufmann, A., Peter, S., Anderson, T., and Krishnamurthy, A. (2015). Flexnic: Rethinking network dma.

http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-750-series.html
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-750-series.html
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-dc-s3610-series.html
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-dc-s3610-series.html
http://www.hpcwire.com/hpcwire/2012-09-10/intel_weaves_strategy_to_put_interconnect_fabrics_on_chip.html
http://www.hpcwire.com/hpcwire/2012-09-10/intel_weaves_strategy_to_put_interconnect_fabrics_on_chip.html
http://www.hpcwire.com/hpcwire/2012-09-10/intel_weaves_strategy_to_put_interconnect_fabrics_on_chip.html


186 BIBLIOGRAPHY

In 15th Workshop on Hot Topics in Operating Systems (HotOS XV), Kartause Ittingen, Switzerland.

[188] Kawaguchi, A., Nishioka, S., and Motoda, H. (1995). A Flash-memory Based File System. In Proceedings
of the USENIX 1995 Technical Conference Proceedings, TCON’95, pages 13–13, New Orleans, LA, USA.

[189] Kay, J. and Pasquale, J. (1993). The Importance of Non-data Touching Processing Overheads in TCP/IP.
In Conference Proceedings on Communications Architectures, Protocols and Applications, SIGCOMM ’93,
pages 259–268, San Francisco, CA, USA.

[190] Kay, J. and Pasquale, J. (1996). Profiling and reducing processing overheads in TCP/IP. IEEE/ACM Trans-
actions on Networking, 4:817–828.

[191] Kgil, T. and Mudge, T. (2006). FlashCache: A NAND Flash Memory File Cache for Low Power Web
Servers. In Proceedings of the 2006 International Conference on Compilers, Architecture and Synthesis for
Embedded Systems, CASES ’06, pages 103–112, Seoul, Korea.

[192] Kim, S., Huh, S., Hu, Y., Zhang, X., Witchel, E., Wated, A., and Silberstein, M. (2014). GPUnet: Network-
ing Abstractions for GPU Programs. In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, pages 201–216, Broomfield, CO, USA.

[193] Kleinpaste, K., Steenkiste, P., and Zill, B. (1995). Software Support for Outboard Buffering and Check-
summing. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’95, pages 87–98, Cambridge, MA, USA.

[194] Knowlton, K. C. (1965). A fast storage allocator. Commun. ACM, 8(10):623–624.

[195] Ko, M. and Black, D. (2012). IANA Registries for the Remote Direct Data Placement (RDDP) Protocols.
RFC 6580, RFC Editor.

[196] Kohler, E., Kaashoek, M. F., and Montgomery, D. R. (1999). A Readable TCP in the Prolac Protocol
Language. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’99, pages 3–13, Cambridge, Massachusetts, USA.

[197] Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni, R., Gharachorloo, K., Chapin, J., Nakahira, D.,
Baxter, J., Horowitz, M., Gupta, A., Rosenblum, M., and Hennessy, J. (1994). The Stanford FLASH Multi-
processor. In Proceedings of the 21st Annual International Symposium on Computer Architecture, ISCA ’94,
pages 302–313, Chicago, IL, USA.

[198] Labrinidis, A. and Jagadish, H. V. (2012). Challenges and Opportunities with Big Data. Proc. VLDB
Endow., 5(12):2032–2033.

[199] Landsman, D. and Walker, D. AHCI and NVMe as interfaces for SATA Express Devices), https://
www.sata-io.org/sites/default/files/images/NVMe_and_AHCI_as_SATA_Express_
Interface_Options_final.pdf.

[200] Lee, B. C., Ipek, E., Mutlu, O., and Burger, D. (2009). Architecting Phase Change Memory As a Scalable
Dram Alternative. In Proceedings of the 36th Annual International Symposium on Computer Architecture,
ISCA ’09, pages 2–13, Austin, TX, USA.

[201] Lee, C., Sim, D., Hwang, J.-Y., and Cho, S. (2015). F2FS: A New File System for Flash Storage. In
Proceedings of the 13th USENIX Conference on File and Storage Technologies, FAST’15, pages 273–286,
Santa Clara, CA, USA.

[202] Lee, S.-W., Moon, B., Park, C., Kim, J.-M., and Kim, S.-W. (2008). A Case for Flash Memory Ssd in
Enterprise Database Applications. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 1075–1086, Vancouver, Canada.

[203] Leiserson, C. E., Abuhamdeh, Z. S., Douglas, D. C., Feynman, C. R., Ganmukhi, M. N., Hill, J. V., Hillis,
D., Kuszmaul, B. C., St. Pierre, M. A., Wells, D. S., Wong, M. C., Yang, S.-W., and Zak, R. (1992). The
Network Architecture of the Connection Machine CM-5 (Extended Abstract). In Proceedings of the Fourth

https://www.sata-io.org/sites/default/files/images/NVMe_and_AHCI_as_SATA_Express_Interface_Options_final.pdf
https://www.sata-io.org/sites/default/files/images/NVMe_and_AHCI_as_SATA_Express_Interface_Options_final.pdf
https://www.sata-io.org/sites/default/files/images/NVMe_and_AHCI_as_SATA_Express_Interface_Options_final.pdf


BIBLIOGRAPHY 187

Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’92, pages 272–285, San Diego,
California, USA.

[204] Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W.-D., Gupta, A., Hennessy, J., Horowitz, M., and Lam,
M. S. (1992). The Stanford Dash Multiprocessor. Computer, 25(3):63–79.

[205] Li, S., Lim, H., Lee, V. W., Ahn, J. H., Kalia, A., Kaminsky, M., Andersen, D. G., Seongil, O., Lee, S., and
Dubey, P. (2015). Architecting to Achieve a Billion Requests Per Second Throughput on a Single Key-value
Store Server Platform. In Proceedings of the 42Nd Annual International Symposium on Computer Architecture,
ISCA ’15, pages 476–488, Portland, OR, USA.

[206] Liao, G., Znu, X., and Bnuyan, L. (2011). A New Server I/O Architecture for High Speed Networks. In
Proceedings of the 2011 IEEE 17th International Symposium on High Performance Computer Architecture,
HPCA ’11, pages 255–265.

[207] Lim, H., Han, D., Andersen, D. G., and Kaminsky, M. (2014). MICA: A Holistic Approach to Fast In-
memory Key-value Storage. In Proceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation, NSDI’14, pages 429–444, Seattle, WA.

[208] Lim, K., Meisner, D., Saidi, A. G., Ranganathan, P., and Wenisch, T. F. (2013). Thin Servers with Smart
Pipes: Designing SoC Accelerators for Memcached. In Proceedings of the 40th Annual International Sympo-
sium on Computer Architecture, ISCA ’13, pages 36–47, Tel-Aviv, Israel.

[209] Liss, L. (2013). On Demand Paging for User-level Networking, at http://downloads.
openfabrics.org/downloads/Media/Monterey_2013/2013_Workshop_Tues_0930_
liss_odp.pdf.

[210] Liu, J., Chandrasekaran, B., Wu, J., Jiang, W., Kini, S., Yu, W., Buntinas, D., Wyckoff, P., and Panda,
D. K. (2003). Performance Comparison of MPI Implementations over InfiniBand, Myrinet and Quadrics. In
Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, SC ’03, Phoenix, AZ, USA.

[211] Liu, N., Cope, J., Carns, P., Carothers, C., Ross, R., Grider, G., Crume, A., and Maltzahn, C. (2012). On
the role of burst buffers in leadership-class storage systems. In In Proceedings of the 2012 IEEE Conference
on Massive Data Storage.

[212] Liu, R.-S., Shen, D.-Y., Yang, C.-L., Yu, S.-C., and Wang, C.-Y. M. (2014). NVM Duet: Unified Working
Memory and Persistent Store Architecture. In Proceedings of the 19th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS ’14, pages 455–470, Salt Lake
City, UT, USA.

[213] Lowell, D. E. and Chen, P. M. (1997). Free Transactions with Rio Vista. In Proceedings of the Sixteenth
ACM Symposium on Operating Systems Principles, SOSP ’97, pages 92–101, Saint Malo, France.

[214] Luo, M., Seager, K., Murthy, K. S., Archer, C. J., Sur, S., and Hefty, S. (2014). Early evaluation of
scalable fabric interface for pgas programming models. In Proceedings of the 8th International Conference
on Partitioned Global Address Space Programming Models, PGAS ’14, pages 1:1–1:13, New York, NY, USA.
ACM.

[215] Lutz, C. High-Performance, In-Memory Graph Processing with RDMA, M.Sc. thesis, ETH Zurich, October
2014.

[216] Maeda, C. and Bershad, B. N. (1992). Networking performance for microkernels. In Proceedings of the
Third Workshop on Workstation Operating Systems, pages 154–159.

[217] Maeda, C. and Bershad, B. N. (1993). Protocol Service Decomposition for High-performance Networking.
In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, SOSP ’93, pages 244–255,
Asheville, NC, USA.

[218] Magoutis, K. (2004). The Case Against User-level Networking. In In Third Workshop on Novel Uses of
System Area Networks (SAN-3) (Held in conjunction with HPCA-10.

http://downloads.openfabrics.org/downloads/Media/Monterey_2013/2013_Workshop_Tues_0930_liss_odp.pdf
http://downloads.openfabrics.org/downloads/Media/Monterey_2013/2013_Workshop_Tues_0930_liss_odp.pdf
http://downloads.openfabrics.org/downloads/Media/Monterey_2013/2013_Workshop_Tues_0930_liss_odp.pdf


188 BIBLIOGRAPHY

[219] Magoutis, K., Addetia, S., Fedorova, A., and Seltzer, M. I. (2003). Making the Most Out of Direct-Access
Network Attached Storage. In Proceedings of the 2Nd USENIX Conference on File and Storage Technologies,
FAST ’03, pages 189–202, San Francisco, CA, USA.

[220] Magoutis, K., Addetia, S., Fedorova, A., Seltzer, M. I., Chase, J. S., Gallatin, A. J., Kisley, R., Wick-
remesinghe, R., and Gabber, E. (2002). Structure and Performance of the Direct Access File System. In
Proceedings of the General Track of the Annual Conference on USENIX Annual Technical Conference, ATC
’02, pages 1–14.

[221] Makineni, S. and Iyer, R. (2004). Architectural Characterization of TCP/IP Packet Processing on the Pen-
tium M Microprocessor. In Proceedings of the 10th International Symposium on High Performance Computer
Architecture, HPCA ’04, pages 152–161.

[222] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., and Czajkowski, G. (2010).
Pregel: A System for Large-scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, pages 135–146, Indianapolis, IN, USA.

[223] Mangstor. NX-Series NVMe over Fabric Flash Storage Arrays, at https://www.mangstor.com/
page/nx-series-flash-storage-arrays.

[224] Marinos, I., Watson, R. N., and Handley, M. (2014). Network Stack Specialization for Performance. In
Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages 175–186, Chicago, IL, USA.

[225] Markatos, E. P. (2002). Speeding up TCP/IP: faster processors are not enough. In Proceedings of the 21st
IEEE International on Performance, Computing, and Communications Conference, pages 341–345.

[226] Markus Levy. Interfacing Microsoft’s Flash File System In Memory Products, Intel Corp., 1993.

[227] Martin, R. P., Vahdat, A. M., Culler, D. E., and Anderson, T. E. (1997). Effects of Communication La-
tency, Overhead, and Bandwidth in a Cluster Architecture. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, ISCA ’97, pages 85–97, Denver, CO, USA.

[228] McKenney, P. E. and Dove, K. F. (1992). Efficient Demultiplexing of Incoming TCP Packets. In Conference
Proceedings on Communications Architectures &Amp; Protocols, SIGCOMM ’92, pages 269–279.

[229] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., and
Turner, J. (2008). OpenFlow: enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev.,
pages 69–74.

[230] Mehlan, T., Rehm, W., Engler, R., and Wenzel, T. (2004). Providing a High-Performance VIA-Module
for LAM/MPI. In Proceedings of the 2004 International Conference on Parallel Computing in Electrical
Engineering, PARELEC 2004, pages 277–282.

[231] Mellanox Technologies. Accelio-based network block device (NBDX), at https://github.com/
accelio/NBDX.

[232] Mellanox Technologies. Introduction to InfiniBand, White Paper at at http://www.mellanox.com/
pdf/whitepapers/IB_Intro_WP_190.pdf.

[233] Mellanox Technologies. RDMA Aware Networks Programming User Manual, version 1.7. http://
www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_
manual.pdf.

[234] Mellanox Technologies. RoCE vs. iWARP Competitive Analysis. http://www.mellanox.com/
pdf/whitepapers/WP_RoCE_vs_iWARP.pdf.

[235] Menon, A. and Zwaenepoel, W. (2008). Optimizing TCP Receive Performance. In USENIX 2008 Annual
Technical Conference, ATC’08, pages 85–98, Boston, MA, USA.

[236] Metzler, B. Software iWARP kernel driver and user library for Linux. https://github.com/zrlio/
softiwarp.

 https://www.mangstor.com/page/nx-series-flash-storage-arrays
 https://www.mangstor.com/page/nx-series-flash-storage-arrays
https://github.com/accelio/NBDX
https://github.com/accelio/NBDX
http://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf
http://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf
http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
http://www.mellanox.com/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf
http://www.mellanox.com/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf
https://github.com/zrlio/softiwarp
https://github.com/zrlio/softiwarp


BIBLIOGRAPHY 189

[237] Microsoft Corporation. Microsoft SMB Protocol and CIFS Protocol Overview, at https://msdn.
microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx, 2015.

[238] Microsoft Corporation. SMB2 Remote Direct Memory Access (RDMA) Transport Protocol, at https:
//msdn.microsoft.com/en-us/library/hh536346.aspx, 2015.

[239] Minturn, D., Regnier, G., Krueger, J., Iyer, R., and Makineni, S. (2003). Addressing TCP/IP processing
challenges using the IA and IXP processors. Intel Technology Journal, Volume 7, Issue 4.

[240] Minturn, Dave. NVM Express Over Fabrics, at http://downloads.openfabrics.org/
downloads/Media/Monterey_2015/Monday/monday_10.pdf in OpenFabrics Developers Work-
shop, 2015.

[241] Mitchell, C., Geng, Y., and Li, J. (2013). Using One-sided RDMA Reads to Build a Fast, CPU-efficient
Key-value Store. In Proceedings of the 2013 USENIX Conference on Annual Technical Conference, USENIX
ATC’13, pages 103–114, San Jose, CA, USA.

[242] Mogul, J., Rashid, R., and Accetta, M. (1987). The Packer Filter: An Efficient Mechanism for User-level
Network Code. In Proceedings of the Eleventh ACM Symposium on Operating Systems Principles, SOSP ’87,
pages 39–51, Austin, Texas, USA.

[243] Mogul, J. C. (1991). Network Locality at the Scale of Processes. In Proceedings of the Conference on
Communications Architecture &Amp; Protocols, SIGCOMM ’91, pages 273–284.

[244] Mogul, J. C. (2003). TCP Offload is a Dumb Idea Whose Time Has Come. In Proceedings of the 9th
Conference on Hot Topics in Operating Systems - Volume 9, HOTOS’03, pages 5–5, Lihue, Hawaii.

[245] Mogul, J. C., Argollo, E., Shah, M., and Faraboschi, P. (2009). Operating System Support for NVM+DRAM
Hybrid Main Memory. In Proceedings of the 12th Conference on Hot Topics in Operating Systems, HotOS’09,
pages 14–14, Monte Verita, Switzerland.

[246] Mogul, J. C., Baumann, A., Roscoe, T., and Soares, L. (2011). Mind the Gap: Reconnecting Architec-
ture and OS Research. In Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems,
HotOS’13, pages 1–1, Napa, CA, USA.

[247] Mogul, J. C. and Borg, A. (1991). The Effect of Context Switches on Cache Performance. In Proceedings
of the Fourth International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS IV, pages 75–84, Santa Clara, CA, USA.

[248] Mogul, J. C. and Ramakrishnan, K. K. (1996). Eliminating Receive Livelock in an Interrupt-driven Kernel.
In Proceedings of the 1996 Annual Conference on USENIX Annual Technical Conference, ATC ’96, pages
99–112, San Diego, CA, USA.

[249] Mosberger, D. and Peterson, L. L. (1996). Making Paths Explicit in the Scout Operating System. In
Proceedings of the Second USENIX Symposium on Operating Systems Design and Implementation, OSDI ’96,
pages 153–167, Seattle, WA, USA.

[250] MPI Forum. Message Passing Interface (MPI) Forum Home Page, http://www.mpi-forum.org/.

[251] Mukherjee, S. S., Falsafi, B., Hill, M. D., and Wood, D. A. (1996). Coherent Network Interfaces for Fine-
grain Communication. In Proceedings of the 23rd Annual International Symposium on Computer Architecture,
ISCA ’96, pages 247–258.

[252] Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P., and Abadi, M. (2013). Naiad: A Timely
Dataflow System. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 439–455, Farminton, PA, USA.

[253] Nahum, E., Yates, D., Kurose, J., and Towsley, D. (1997). Cache Behavior of Network Protocols. In Pro-
ceedings of the 1997 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’97, pages 169–180, Seattle, WA, USA.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/hh536346.aspx
https://msdn.microsoft.com/en-us/library/hh536346.aspx
http://downloads.openfabrics.org/downloads/Media/Monterey_2015/Monday/monday_10.pdf
http://downloads.openfabrics.org/downloads/Media/Monterey_2015/Monday/monday_10.pdf
http://www.mpi-forum.org/


190 BIBLIOGRAPHY

[254] Narayanan, D. and Hodson, O. (2012). Whole-system Persistence. In Proceedings of the Seventeenth Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
XVII, pages 401–410, London, England, UK.

[255] Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S., and Oskin, M. (2015). Latency-tolerant
Software Distributed Shared Memory. In Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’15, pages 291–305, Santa Clara, CA, USA.

[256] NetApp. Network Attached Storage (NAS), at http://www.netapp.com/us/products/
protocols/nas/.

[257] Nightingale, E. B., Elson, J., Fan, J., Hofmann, O., Howell, J., and Suzue, Y. (2012). Flat Datacenter
Storage. In Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, pages 1–15, Hollywood, CA, USA.

[258] Noakes, M. D., Wallach, D. A., and Dally, W. J. (1993). The J-machine Multicomputer: An Architectural
Evaluation. In Proceedings of the 20th Annual International Symposium on Computer Architecture, ISCA ’93,
pages 224–235, San Diego, CA, USA.

[259] Novakovic, S., Daglis, A., Bugnion, E., Falsafi, B., and Grot, B. (2014). Scale-out NUMA. In Proceedings
of the 19th International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’14, pages 3–18, Salt Lake City, UT, USA.

[260] Nowicki, B. (1989). Nfs: Network file system protocol specification. RFC 1094, RFC Editor.

[261] Nvidia. RDMA for GPUDirect, CUDA Toolkit Documentation. http://docs.nvidia.com/cuda/
gpudirect-rdma/index.html.

[262] Ongaro, D., Rumble, S. M., Stutsman, R., Ousterhout, J., and Rosenblum, M. (2011). Fast Crash Recovery
in RAMCloud. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP
’11, pages 29–41, Cascais, Portugal.

[263] Ousterhout, J. (1990). Why arent operating systems getting faster as fast as hardware. In In Summer
USENIX 90, pages 247–256.

[264] Ousterhout, J., Agrawal, P., Erickson, D., Kozyrakis, C., Leverich, J., Mazières, D., Mitra, S., Narayanan,
A., Parulkar, G., Rosenblum, M., Rumble, S. M., Stratmann, E., and Stutsman, R. (2010). The Case for
RAMClouds: Scalable High-performance Storage Entirely in DRAM. SIGOPS Oper. Syst. Rev., 43(4):92–105.

[265] Ousterhout, J., Gopalan, A., Gupta, A., Kejriwal, A., Lee, C., Montazeri, B., Ongaro, D., Park, S. J., Qin,
H., Rosenblum, M., Rumble, S., Stutsman, R., and Yang, S. (2015a). The ramcloud storage system. ACM
Trans. Comput. Syst., 33(3):7:1–7:55.

[266] Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., and Chun, B.-G. (2015b). Making Sense of Perfor-
mance in Data Analytics Frameworks. In Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation, NSDI’15, pages 293–307, Oakland, CA, USA.

[267] Ouyang, X., Nellans, D., Wipfel, R., Flynn, D., and Panda, D. K. (2011). Beyond Block I/O: Rethink-
ing Traditional Storage Primitives. In Proceedings of the 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, HPCA ’11, pages 301–311.

[268] Pagels, M., Druschel, P., and Peterson, L. L. (1993). Cache and TLB Effectiveness in the Processing of
Network Data. Technical Report 9408, Department of Computer Science, The University of Arizona, Tuscon,
AZ, USA.

[269] Pai, V. S., Druschel, P., and Zwaenepoel, W. (1999). IO-lite: A Unified I/O Buffering and Caching System.
In Proceedings of the Third Symposium on Operating Systems Design and Implementation, OSDI ’99, pages
15–28, New Orleans, LA, USA.

[270] Park, S., Kelly, T., and Shen, K. (2013). Failure-atomic Msync(): A Simple and Efficient Mechanism for

http://www.netapp.com/us/products/protocols/nas/
http://www.netapp.com/us/products/protocols/nas/
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html


BIBLIOGRAPHY 191

Preserving the Integrity of Durable Data. In Proceedings of the 8th ACM European Conference on Computer
Systems, EuroSys ’13, pages 225–238, Prague, Czech Republic.

[271] Pearson, R. S. (2015). Burst Buffers, http://downloads.openfabrics.org/downloads/
Media/Monterey_2015/Monday/monday_14.pdf, at OFA Developer Workshop.

[272] Pesterev, A., Strauss, J., Zeldovich, N., and Morris, R. T. (2012). Improving Network Connection Locality
on Multicore Systems. In Proceedings of the 7th ACM European Conference on Computer Systems, EuroSys
’12, pages 337–350, Bern, Switzerland.

[273] Peter, S., Li, J., Zhang, I., Ports, D. R. K., Anderson, T., Krishnamurthy, A., Zbikowski, M., and Woos, D.
(2014a). Towards High-Performance Application-Level Storage Management. In 6th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 14), Philadelphia, PA, USA.

[274] Peter, S., Li, J., Zhang, I., Ports, D. R. K., Woos, D., Krishnamurthy, A., Anderson, T., and Roscoe, T.
(2014b). Arrakis: The Operating System is the Control Plane. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, OSDI’14, pages 1–16, Broomfield, CO.

[275] Peterson, L., Hutchinson, N., O’Malley, S., and Abbott, M. (1989). RPC in the x-Kernel: Evaluating New
Design Techniques. In Proceedings of the Twelfth ACM Symposium on Operating Systems Principles, SOSP
’89, pages 91–101.

[276] Pierce, P. and Regnier, G. (1994). The Paragon implementation of the NX message passing interface. In
Proceedings of the Scalable High-Performance Computing Conference, pages 184–190.

[277] Pinkerton, J. and Deleganes, E. (2007). Direct Data Placement Protocol (DDP) / Remote Direct Memory
Access Protocol (RDMAP) Security. RFC 5042, RFC Editor.

[278] Poke, M. and Hoefler, T. (2015). DARE: High-Performance State Machine Replication on RDMA Net-
works. In Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’15, pages 107–118, Portland, Oregon, USA.

[279] Prabhakaran, V., Rodeheffer, T. L., and Zhou, L. (2008). Transactional Flash. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI’08, pages 147–160, San Diego,
CA, USA.

[280] Pratt, I. and Fraser, K. (2001). Arsenic: a user-accessible gigabit ethernet interface. In Proceedings of
the Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, volume 1 of
INFOCOMM ’01, pages 67–76.

[281] Qureshi, M. K., Srinivasan, V., and Rivers, J. A. (2009). Scalable High Performance Main Memory System
Using Phase-change Memory Technology. In Proceedings of the 36th Annual International Symposium on
Computer Architecture, ISCA ’09, pages 24–33, Austin, TX, USA.

[282] Ramakrishnan, K. (1993). Performance considerations in designing network interfaces. IEEE Journal on
Selected Areas in Communications, 11(2):203–219.

[283] Recio, R., Metzler, B., Culley, P., Hilland, J., and Garcia, D. (2007). A Remote Direct Memory Access
Protocol Specification. RFC 5040, RFC Editor.

[284] Recio, R. J. (2003). Server I/O Networks Past, Present, and Future. In Proceedings of the ACM SIGCOMM
Workshop on Network-I/O Convergence: Experience, Lessons, Implications, NICELI ’03, pages 163–178,
Karlsruhe, Germany.

[285] Regnier, G., Makineni, S., Illikkal, R., Iyer, R., Minturn, D., Huggahalli, R., Newell, D., Cline, L., and
Foong, A. (2004). TCP Onloading for Data Center Servers. IEEE Computer, 37(11):48–58.

[286] Reinhardt, S. K., Larus, J. R., and Wood, D. A. (1994). Tempest and Typhoon: User-level Shared Memory.
In Proceedings of the 21st Annual International Symposium on Computer Architecture, ISCA ’94, pages 325–
336, Chicago, IL, USA.

http://downloads.openfabrics.org/downloads/Media/Monterey_2015/Monday/monday_14.pdf
http://downloads.openfabrics.org/downloads/Media/Monterey_2015/Monday/monday_14.pdf


192 BIBLIOGRAPHY

[287] Riesen, R., Brightwell, R., Pedretti, K., Barrett, B., Underwood, K., Maccabe, A. B., and Hudson, T. (2008).
The Portals 4.0 Message Passing Interface. Technical Report SAND2008-2639, Sandia National Laboratories.

[288] Ritchie, D. M. and Thompson, K. (1974). The UNIX Time-sharing System. Commun. ACM, 17(7):365–375.

[289] Rizzo, L. (2012). Netmap: A Novel Framework for Fast Packet I/O. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, USENIX ATC’12, pages 101–112, Boston, MA, USA.

[290] Rodrigues, S. H., Anderson, T. E., and Culler, D. E. (1997). High-performance Local Area Communication
with Fast Sockets. In Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATC
’97, Anaheim, CA, USA.

[291] Rosenblum, M. and Ousterhout, J. K. (1992). The Design and Implementation of a Log-structured File
System. ACM Trans. Comput. Syst., 10(1):26–52.

[292] Rumble, S. M., Ongaro, D., Stutsman, R., Rosenblum, M., and Ousterhout, J. K. (2011). It’s Time for
Low Latency. In Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems, HotOS’13,
pages 11–11, Napa, CA, USA.

[293] Samsung. The 850 PRO SSD, http://www.samsung.com/us/computer/memory-storage/
MZ-7KE2T0BW.

[294] Samsung. XS1715 enterprise drive, http://www.samsung.com/global/business/
semiconductor/file/product/XS1715_ProdOverview_2014_1.pdf.

[295] Sandberg, R. (1986). The Sun Network File System: Design, Implementation and Experience. Technical
report, in Proceedings of the Summer 1985 USENIX Technical Conference and Exhibition.

[296] Satyanarayanan, M., Howard, J. H., Nichols, D. A., Sidebotham, R. N., Spector, A. Z., and West, M. J.
(1985). The ITC Distributed File System: Principles and Design. In Proceedings of the Tenth ACM Symposium
on Operating Systems Principles, SOSP ’85, pages 35–50, Orcas Island, WA, USA.

[297] Satyanarayanan, M., Mashburn, H. H., Kumar, P., Steere, D. C., and Kistler, J. J. (1993). Lightweight
Recoverable Virtual Memory. In Proceedings of the Fourteenth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’93, pages 146–160, Asheville, NC, USA.

[298] Saxena, M., Shah, M. A., Harizopoulos, S., Swift, M. M., and Merchant, A. (2012a). Hathi: Durable Trans-
actions for Memory Using Flash. In Proceedings of the Eighth International Workshop on Data Management
on New Hardware, DaMoN ’12, pages 33–38, Scottsdale, AZ, USA.

[299] Saxena, M. and Swift, M. M. (2009). FlashVM: Revisiting the Virtual Memory Hierarchy. In Proceedings of
the 12th Conference on Hot Topics in Operating Systems, HotOS’09, pages 13–13, Monte Verita, Switzerland.

[300] Saxena, M. and Swift, M. M. (2010). FlashVM: Virtual Memory Management on Flash. In Proceedings of
the 2010 USENIX Conference on USENIX Annual Technical Conference, ATC’10, pages 14–14, Boston, MA,
USA.

[301] Saxena, M., Swift, M. M., and Zhang, Y. (2012b). FlashTier: A Lightweight, Consistent and Durable
Storage Cache. In Proceedings of the 7th ACM European Conference on Computer Systems, EuroSys ’12,
pages 267–280, Bern, Switzerland.

[302] Scaling the Facebook data warehouse to 300 PB. https://code.facebook.com/posts/
229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/.

[303] Schroeder, M. D. and Burrows, M. (1989). Performance of Firefly RPC. In Proceedings of the Twelfth ACM
Symposium on Operating Systems Principles, SOSP ’89, pages 83–90.

[304] Schrmann, F., Delalondre, F., Kumbhar, P., Biddiscombe, J., Gila, M., Tacchella, D., Curioni, A., Metzler,
B., Morjan, P., Fenkes, J., Franceschini, M., Germain, R., Schneidenbach, L., Ward, T., and Fitch, B. (2014).
Rebasing i/o for scientific computing: Leveraging storage class memory in an ibm bluegene/q supercomputer.
In Kunkel, J., Ludwig, T., and Meuer, H., editors, Supercomputing, volume 8488 of Lecture Notes in Computer

http://www.samsung.com/us/computer/memory-storage/MZ-7KE2T0BW
http://www.samsung.com/us/computer/memory-storage/MZ-7KE2T0BW
http://www.samsung.com/global/business/semiconductor/file/product/XS1715_ProdOverview_2014_1.pdf
http://www.samsung.com/global/business/semiconductor/file/product/XS1715_ProdOverview_2014_1.pdf
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/


BIBLIOGRAPHY 193

Science, pages 331–347. Springer International Publishing.

[305] Seagate. The 1200 SSD, http : / / www . seagate . com / internal-hard-drives /
solid-state-hybrid/1200-ssd/.

[306] Seppanen, E., O’Keefe, M., and Lilja, D. (2010). High performance solid state storage under Linux. In
IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pages 1–12.

[307] Shah, H., Marti, F., Noureddine, W., Eiriksson, A., and Sharp, R. (2014). Remote Direct Memory Access
(RDMA) Protocol Extensions. RFC 7306, RFC Editor.

[308] Shah, H., Pinkerton, J., Recio, R., and Culley, P. (2007). Direct Data Placement over Reliable Transports.
RFC 5041, RFC Editor.

[309] Shah, H. V., Pu, C., and Madukkarumukumana, R. S. (1999). High Performance Sockets and RPC over
Virtual Interface (VI) Architecture. In Sivasubramaniam, A. and Lauria, M., editors, Network-Based Paral-
lel Computing. Communication, Architecture, and Applications, volume 1602 of Lecture Notes in Computer
Science, pages 91–107. Springer Berlin Heidelberg.

[310] Shalev, L., Satran, J., Borovik, E., and Ben-Yehuda, M. (2010). IsoStack: Highly Efficient Network Pro-
cessing on Dedicated Cores. In Proceedings of the 2010 USENIX Conference on USENIX Annual Technical
Conference, ATC’10, pages 61–74, Boston, MA, USA.

[311] Shamis, P., Venkata, M. G., Lopez, M., Baker, M. B., Hernandez, O., Itigin, Y., Dubman, M., Shainer,
G., Graham, R. L., Liss, L., Shahar, Y., Potluri, S., Rossetti, D., Becker, D., Poole, D., Lamb, C., Kumar, S.,
Stunkel, C., Bosilca, G., and Bouteiller, A. (2015). UCX: An Open Source Framework for HPC Network APIs
and Beyond. In Proceedings of the 23rd IEEE Annual Symposium on High-Performance Interconnects (HOTI),,
pages 40–43.

[312] Shao, B., Wang, H., and Li, Y. (2013). Trinity: A Distributed Graph Engine on a Memory Cloud. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD ’13,
pages 505–516, New York, New York, USA.

[313] Shin, D. I., Yu, Y. J., Kim, H. S., Choi, J. W., Jung, D. Y., and Yeom, H. Y. (2013). Dynamic Interval Polling
and Pipelined Post I/O Processing for Low-latency Storage Class Memory. In Proceedings of the 5th USENIX
Conference on Hot Topics in Storage and File Systems, HotStorage’13, pages 5–5, San Jose, CA, USA.

[314] Shin, W., Chen, Q., Oh, M., Eom, H., and Yeom, H. Y. (2014). OS I/O Path Optimizations for Flash
Solid-state Drives. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference,
USENIX ATC’14, pages 483–488, Philadelphia, PA, USA.

[315] Shinde, P., Kaufmann, A., Kourtis, K., and Roscoe, T. (2013a). Modeling NICs with Unicorn. In Proceed-
ings of the Seventh Workshop on Programming Languages and Operating Systems, PLOS ’13, pages 3:1–3:6,
Farmington, PA, USA.

[316] Shinde, P., Kaufmann, A., Roscoe, T., and Kaestle, S. (2013b). We Need to Talk About NICs. In Proceed-
ings of the 14th USENIX Conference on Hot Topics in Operating Systems, HotOS’13, pages 1–1, Santa Ana
Pueblo, NM, USA.

[317] Shivam, P. and Chase, J. S. (2003a). On the Elusive Benefits of Protocol Offload. In Proceedings of the
ACM SIGCOMM Workshop on Network-I/O Convergence: Experience, Lessons, Implications, NICELI ’03,
pages 179–184, Karlsruhe, Germany.

[318] Shivam, P. and Chase, J. S. (2003b). On the Elusive Benefits of Protocol Offload. In Proceedings of the
ACM SIGCOMM Workshop on Network-I/O Convergence: Experience, Lessons, Implications, NICELI ’03,
pages 179–184, Karlsruhe, Germany.

[319] Smith, J. M. and Traw, C. B. S. (1993). Giving Applications Access to Gb/s Networking. IEEE Network,
7(4):44–52.

http://www.seagate.com/internal-hard-drives/solid-state-hybrid/1200-ssd/
http://www.seagate.com/internal-hard-drives/solid-state-hybrid/1200-ssd/


194 BIBLIOGRAPHY

[320] Soares, L. and Stumm, M. (2010). FlexSC: Flexible System Call Scheduling with Exception-less System
Calls. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation,
OSDI’10, pages 1–8, Vancouver, BC, Canada.

[321] Soares, L. and Stumm, M. (2011). Exception-less System Calls for Event-driven Servers. In Proceedings
of the 2011 USENIX Conference on USENIX Annual Technical Conference, ATC’11, pages 131–144, Portland,
OR, USA.

[322] Steenkiste, P., Zill, B., Kung, H. T., Schlick, S., Hughes, J., Kowalski, B., and Mullaney, J. (1993). A Host
Interface Architecture for High-Speed Networks. In Proceedings of the IFIP TC6/WG6.4 Fourth International
Conference on High Performance Networking IV, pages 31–46, Amsterdam, The Netherlands, The Netherlands.
North-Holland Publishing Co.

[323] Steenkiste, P. A. (1994). A Systematic Approach to Host Interface Design for High-speed Networks. IEEE
Computer, 27(3):47–57.

[324] Sterling, T., Becker, D. J., Savarese, D., Dorband, J. E., Ranawake, U. A., and Packer, C. V. (1995). Beowulf:
A Parallel Workstation For Scientific Computation. In In Proceedings of the 24th International Conference on
Parallel Processing, pages 11–14.

[325] Stuedi, P., Metzler, B., and Trivedi, A. (2013). jVerbs: Ultra-low Latency for Data Center Applications. In
Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages 10:1–10:14, Santa Clara,
CA, USA.

[326] Stuedi, P., Trivedi, A., and Metzler, B. (2012). Wimpy Nodes with 10GbE: Leveraging One-sided Op-
erations in soft-RDMA to Boost Memcached. In Proceedings of the 2012 USENIX Conference on Annual
Technical Conference, USENIX ATC’12, pages 347–353, Boston, MA, USA.

[327] Stuedi, P., Trivedi, A., Metzler, B., and Pfefferle, J. (2014). DaRPC: Data Center RPC. In Proceedings of
the ACM Symposium on Cloud Computing, SOCC ’14, pages 15:1–15:13, Seattle, WA, USA.

[328] Suzuki, K. and Swanson, S. (2015). The non-volatile memory technology database (nvmdb). Technical
Report CS2015-1011, Department of Computer Science & Engineering, University of California, San Diego.
http://nvmdb.ucsd.edu.

[329] Swanson, L. A. E. T. M. S. (2013). Quill: Exploiting fast non-volatile memory by transparently bypassing
the file system. Technical Report CS2013-0991, Computer Science and Engineering University of California,
San Diego.

[330] Swanson, S. and Caulfield, A. (2013). Refactor, Reduce, Recycle: Restructuring the I/O Stack for the Future
of Storage. IEEE Computer, 46(8):52–59.

[331] Tennenhouse, D. L. (1989). Layered Multiplexing Considered Harmful. In In First International Workshop
on High Speed Networking.

[332] The Data Center Bridging (DCB) Task Group (TG). http://www.ieee802.org/1/pages/
dcbridges.html.

[333] Thekkath, C. A. and Levy, H. M. (1993). Limits to Low-latency Communication on High-speed Networks.
ACM Trans. Comput. Syst., 11(2):179–203.

[334] Thekkath, C. A., Levy, H. M., and Lazowska, E. D. (1994). Separating Data and Control Transfer in
Distributed Operating Systems. In Proceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS VI, pages 2–11, San Jose, CA, USA.

[335] Thekkath, C. A., Nguyen, T. D., Moy, E., and Lazowska, E. D. (1993). Implementing Network Protocols
at User Level. In Conference Proceedings on Communications Architectures, Protocols and Applications,
SIGCOMM ’93, pages 64–73, San Francisco, CA, USA.

[336] Thereska, E., Ballani, H., O’Shea, G., Karagiannis, T., Rowstron, A., Talpey, T., Black, R., and Zhu,

http://www.ieee802.org/1/pages/dcbridges.html
http://www.ieee802.org/1/pages/dcbridges.html


BIBLIOGRAPHY 195

T. (2013). IOFlow: A Software-defined Storage Architecture. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, pages 182–196, Farminton, PA, USA.

[337] Traw, C. and Smith, J. (1993). Hardware/software organization of a high-performance ATM host interface.
IEEE Journal on Selected Areas in Communications, 11(2):240–253.

[338] Trivedi, A. ”(R)DMA in userspace” on Linux RDMA mailing list, http://comments.gmane.org/
gmane.linux.drivers.rdma/13635, October, 2012.

[339] Trivedi, A., Metzler, B., and Stuedi, P. (2011). A Case for RDMA in Clouds: Turning Supercomputer
Networking into Commodity. In Proceedings of the Second Asia-Pacific Workshop on Systems, APSys ’11,
pages 17:1–17:5, Shanghai, China.

[340] Trivedi, A., Stuedi, P., Metzler, B., Lutz, C., Schmatz, M., and Gross, T. R. (2015). RStore: A Direct-Access
DRAM-based Data Store. In IEEE 35th International Conference on Distributed Computing Systems (ICDCS),
pages 674–685, Columbus, OH, USA.

[341] Trivedi, A., Stuedi, P., Metzler, B., Pletka, R., Fitch, B. G., and Gross, T. R. (2013). Unified High-
performance I/O: One Stack to Rule Them All. In Proceedings of the 14th USENIX Conference on Hot Topics
in Operating Systems, HotOS’13, pages 4–4, Santa Ana Pueblo, NM, USA.

[342] Tschudin, C. (1991). Flexible Protocol Stacks. In Proceedings of the Conference on Communications
Architecture &Amp; Protocols, SIGCOMM ’91, pages 197–205, Zurich, Switzerland.

[343] Tzou, S.-Y. and Anderson, D. P. (1991). The Performance of Message-passing Using Restricted Virtual
Memory Remapping. Software - Practice and Experience, 21(3):251–267.

[344] Vasudevan, V., Andersen, D. G., and Kaminsky, M. (2011). The Case for VOS: The Vector Operating
System. In Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems, HotOS’13,
pages 31–31, Napa, CA, USA.

[345] Vasudevan, V., Kaminsky, M., and Andersen, D. G. (2012). Using Vector Interfaces to Deliver Millions of
IOPS from a Networked Key-value Storage Server. In Proceedings of the Third ACM Symposium on Cloud
Computing, SoCC ’12, pages 8:1–8:13, San Jose, CA, USA.

[346] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T., Lowe, J.,
Shah, H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed, B., and Baldeschwieler, E. (2013).
Apache Hadoop YARN: Yet Another Resource Negotiator. In Proceedings of the 4th Annual Symposium on
Cloud Computing, SOCC ’13, pages 5:1–5:16, Santa Clara, CA, USA.

[347] Venkataraman, S., Tolia, N., Ranganathan, P., and Campbell, R. H. (2011). Consistent and Durable Data
Structures for Non-volatile Byte-addressable Memory. In Proceedings of the 9th USENIX Conference on File
and Stroage Technologies, FAST’11, pages 61–76, San Jose, CA, USA.

[348] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., and Wilkes, J. (2015). Large-scale
Cluster Management at Google with Borg. In Proceedings of the Tenth European Conference on Computer
Systems, EuroSys ’15, pages 18:1–18:17, Bordeaux, France.

[349] Volos, H., Nalli, S., Panneerselvam, S., Varadarajan, V., Saxena, P., and Swift, M. M. (2014). Aerie:
Flexible File-system Interfaces to Storage-class Memory. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, pages 14:1–14:14, Amsterdam, The Netherlands.

[350] Volos, H., Panneerselvam, S., Nalli, S., and Swift, M. M. (2013). Storage-class Memory Needs Flexible In-
terfaces. In Proceedings of the 4th Asia-Pacific Workshop on Systems, APSys ’13, pages 11:1–11:7, Singapore,
Singapore.

[351] Volos, H., Tack, A. J., and Swift, M. M. (2011). Mnemosyne: Lightweight Persistent Memory. In Pro-
ceedings of the Sixteenth International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, pages 91–104, Newport Beach, CA, USA.

http://comments.gmane.org/gmane.linux.drivers.rdma/13635
http://comments.gmane.org/gmane.linux.drivers.rdma/13635


196 BIBLIOGRAPHY

[352] von Eicken, T., Basu, A., Buch, V., and Vogels, W. (1995). U-Net: A User-level Network Interface for
Parallel and Distributed Computing. In Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, pages 40–53, Copper Mountain, CO, USA.

[353] von Eicken, T., Culler, D. E., Goldstein, S. C., and Schauser, K. E. (1992). Active Messages: A Mechanism
for Integrated Communication and Computation. In Proceedings of the 19th Annual International Symposium
on Computer Architecture, ISCA ’92, pages 256–266, Queensland, Australia.

[354] Watson, R. W. and Mamrak, S. A. (1987). Gaining Efficiency in Transport Services by Appropriate Design
and Implementation Choices. ACM Trans. Comput. Syst., 5(2):97–120.

[355] Wei, M., Bjørling, M., Bonnet, P., and Swanson, S. (2014). I/O Speculation for the Microsecond Era. In
Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’14,
pages 475–482, Philadelphia, PA, USA.

[356] Weiss, Z., Subramanian, S., Sundararaman, S., Talagala, N., Arpaci-Dusseau, A. C., and Arpaci-Dusseau,
R. H. (2015). ANViL: Advanced Virtualization for Modern Non-volatile Memory Devices. In Proceedings of
the 13th USENIX Conference on File and Storage Technologies, FAST’15, pages 111–118, Santa Clara, CA,
USA.

[357] Welsh, M., Basu, A., and von Eicken, T. (1997). Incorporating memory management into user-level network
interfaces. Technical report, Ithaca, NY, USA.

[358] Wilkes, J. (1992). Hamlyn - an Interface for sender-based communications. Technical Report HPL-OSR-
92-13, Hewlett-Packard Laboratories.

[359] Willmann, P., Kim, H.-y., Rixner, S., and Pai, V. S. (2005). An efficient programmable 10 gigabit ethernet
network interface card. In Proceedings of the 11th International Symposium on High-Performance Computer
Architecture, HPCA ’05, pages 96–107.

[360] Willmann, P., Rixner, S., and Cox, A. L. (2006). An Evaluation of Network Stack Parallelization Strategies
in Modern Operating Systems. In Proceedings of the Annual Conference on USENIX ’06 Annual Technical
Conference, ATC ’06, pages 91–96, Boston, MA, USA.

[361] Woodhouse, D. (2001). JFFS: The journaling flash file system. In Proceedings of the Ottawa Linux Sympo-
sium.

[362] Wu, M. and Zwaenepoel, W. (1994). eNVy: A Non-volatile, Main Memory Storage System. In Proceedings
of the Sixth International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS VI, pages 86–97, San Jose, CA, USA.

[363] Wu, X. and Reddy, A. L. N. (2011). SCMFS: A File System for Storage Class Memory. In Proceedings of
2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’11,
pages 39:1–39:11, Seattle, WA, USA.

[364] Yang, J., Minturn, D. B., and Hady, F. (2012). When Poll is Better Than Interrupt. In Proceedings of the
10th USENIX Conference on File and Storage Technologies, FAST’12, pages 25–32, San Jose, CA, USA.

[365] Yang, J., Wei, Q., Chen, C., Wang, C., Yong, K. L., and He, B. (2015). NV-Tree: Reducing Consistency Cost
for NVM-based Single Level Systems. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies, FAST’15, pages 167–181, Santa Clara, CA, USA.

[366] Yu, Y. J., Shin, D. I., Shin, W., Song, N. Y., Choi, J. W., Kim, H. S., Eom, H., and Yeom, H. Y. (2014).
Optimizing the Block I/O Subsystem for Fast Storage Devices. ACM Trans. Comput. Syst., 32(2):6:1–6:48.

[367] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J., Shenker, S., and Sto-
ica, I. (2012). Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing.
In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, NSDI’12,
pages 15–28, San Jose, CA, USA.



BIBLIOGRAPHY 197

[368] Zhang, Y., Arulraj, L. P., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. (2012). De-indirection for
Flash-based SSDs with Nameless Writes. In Proceedings of the 10th USENIX Conference on File and Storage
Technologies, FAST’12, pages 1–16, San Jose, CA, USA.

[369] Zhang, Y., Yang, J., Memaripour, A., and Swanson, S. (2015). Mojim: A Reliable and Highly-Available
Non-Volatile Memory System. In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’15, pages 3–18, Istanbul, Turkey.

[370] Zhao, J., Mutlu, O., and Xie, Y. (2014). FIRM: Fair and High-Performance Memory Control for Persistent
Memory Systems. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-47, pages 153–165, Cambridge, United Kingdom.





List of Figures

1.1 Comparison of data flow in three different settings. Efforts on the path-(a) fo-

cus on storage related challenges and on the path-(b), network related. This

thesis takes an end-to-end holistic consideration (marked as the path-(c)) to-

wards the data flow management on both the server as well as the client side in

a distributed setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Traditional Fiber Channel Protocol (FCP) and various flavours of iSCSI SAN

protocols in a layered architecture. . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2 Comparison of data flows in SAN, NAS, and FlashNet approaches. . . . . . . . 57

2.3 Data deliver targets for various storage/networking protocols that are capable of

using RDMA networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Illustration of a single-path and a separated path network architecture. The

dotted lines represent the control transfer while the solid lines represent the

data path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 RDMA resources, namely memory regions, a queue pair (QP), work requests

(WR), an scatter-gather element (SGE) array, a completion queue (CQ), and a

completion queue element (CQE). . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Illustration of a two-sided RDMA send/recv operation. . . . . . . . . . . . . . 71

3.4 Illustration of a one-sided RDMA write operation. . . . . . . . . . . . . . . . . 72

3.5 Potential performance gains of using RDMA network IO in comparison to the

traditional BSD socket/TCP stack. . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6 Interaction sequence among the CPU core, LLC, DMA access, and Coherence

Engine. Line numbers refer to the code listing in Figure 3.7. . . . . . . . . . . 83

3.7 Server-side execution logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.8 The snoop and the LLC hit rates. . . . . . . . . . . . . . . . . . . . . . . . . . 86

199



200 LIST OF FIGURES

3.9 Performance degradation due to LLC misses and coherence overhead. The per-

centage performance drop is calculated by comparing the performances of the

Touch accesses to the NoTouch accesses. . . . . . . . . . . . . . . . . . . . . . 88

3.10 Performance gains due to Next-line hardware pre-fetching. . . . . . . . . . . . 90

4.1 Evolution of high-performance network properties. The arrow does not repre-

sent any casual dependency or temporal precedence in the development. . . . . 97

4.2 Illustration of the unified IO stack that can deal with network, local NVMs, and

remote NVMs under a common framework. . . . . . . . . . . . . . . . . . . . 101

5.1 IO execution paths of a single net-storage read request with (a) socket

send/recv and file read IO; (b) socket send/receive and sendfile;

(c) FlashNet’s RDMA read operation. Dotted lines represent a possibility of

a context switch during the execution. . . . . . . . . . . . . . . . . . . . . . . 107

5.2 4kB IOPS with one server CPU core enabled. . . . . . . . . . . . . . . . . . . 108

5.3 FlashNet stack illustrating the local network-storage control setup path and the

end-to-end data flow path between a flash device and a client buffer. . . . . . . 111

5.4 Stitching of the IO path abstractions from network to flash while eliminating

the file system from the data path. . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 The life of a FlashNet net-storage operation. Steps 1–3 and 4–9 constitute the

extended control and the extended data paths in the FlashNet stack, respectively. 115

5.6 Example of RDMA code using the FlashNet stack. . . . . . . . . . . . . . . . 116

5.7 The state machine of a flash LBA page. . . . . . . . . . . . . . . . . . . . . . 119

5.8 mmap and buffer registration cost. . . . . . . . . . . . . . . . . . . . . . . . . 124

5.9 Read latency of net-storage operations. . . . . . . . . . . . . . . . . . . . . . . 125

5.10 Bandwidth of read net-storage operations. . . . . . . . . . . . . . . . . . . . . 126

5.11 4kB IOPS scaling with number of cores. . . . . . . . . . . . . . . . . . . . . . 126

5.12 Peak 4kB synchronous write IOPS/core. . . . . . . . . . . . . . . . . . . . . . 127

5.13 Synchronous write bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.1 RDMA communication model showing the control setup and the data flow. . . 134

6.2 Design and components in RStore. . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3 mmap and unmap costs in Linux with 4 kB and 2 MB page sizes. . . . . . . . 143



LIST OF FIGURES 201

6.4 Memory registration and de-registration costs with 4 kB and 2 MB page sizes.

The 4 kB page size does not allow registration beyond 16 GB buffer size. . . . 144

6.5 Control setup cost for a single client. . . . . . . . . . . . . . . . . . . . . . . . 146

6.6 Scaling of the control path setup cost. . . . . . . . . . . . . . . . . . . . . . . 146

6.7 Read latencies wrt. concurrent readers. . . . . . . . . . . . . . . . . . . . . . . 147

6.8 Single-client IO bandwidth for read() and write() operations. . . . . . . 148

6.9 Aggregate cluster IO bandwidth of RStore. . . . . . . . . . . . . . . . . . . . . 149

6.10 Distributed barrier coordination. . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.11 Message delivery and Pregel execution in Carafe. Assuming k is even (1) col-

lect incoming messages from the even containers; (2) invoke compute on ver-

tices with messages; (3) write messages to odd containers; (4) synchronize the

superstep; (5) collect messages from even containers for (k+1)th superstep. . . . 151

6.12 Performance of Carafe on the LiveJournal social network graph [8] . . . . . . . 153

6.13 Weak scaling performance of RSort. . . . . . . . . . . . . . . . . . . . . . . . 155

6.14 Performance of RSort and Hadoop TeraSort. . . . . . . . . . . . . . . . . . . . 156

7.1 Control setup cost for a single RStore/FlashNet client. . . . . . . . . . . . . . . 163

7.2 Scaling of distributed and extended reserve() operation. . . . . . . . . . . 164

7.3 Single-client read() and write() bandwidth for RStore/FlashNet operations.165

7.4 Distributed sorting performance. . . . . . . . . . . . . . . . . . . . . . . . . . 166





List of Tables

2.1 IO latencies and endurance summary of various storage technologies [90]. The

next generations of PCM and STT-MRAM deliver a performance very close to

DRAM while providing persistency and durability of the stored data. . . . . . . 48

3.1 Raw data for Figure 3.5. All numbers are in µsecs, representing the time it took

to transfer a test buffer. The difference is calculated with respect to the baseline

performance of TCP/socket’s performance. . . . . . . . . . . . . . . . . . . . 82

3.2 Content of last-level cache depending on the mode and the scan type. Modi-

fied(M) and Exclusive(E) cache line status represent the MESIF protocol states. 84

3.3 Architectural properties and configuration of Intel Nehalem-EX Xeon E7520

CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Latency numbers for a complete request-response loop, measured at the client

side for the different modes and scans on the server. The response buffer size is

256kB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Raw data for Write and Read scans for Figure 3.9. All numbers are in µsecs,

representing the time it took to transfer a test buffer. The difference is calculated

between NoTouch and Touch accesses. . . . . . . . . . . . . . . . . . . . . . . 88

3.6 Raw data for Write and Read scans with pre-fetching enabled or disabled for

Figure 3.10. All numbers are in µsecs, representing the time it took to trans-

fer a test buffer. The difference is calculated between pre-fetching disabled to

enabled settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1 The widening CPU-IO performance gap between a CPU speed and bandwidth

improvements of IO devices. In the last couple of years, performance (both

bandwidth and latency) of IO devices continues to improve rapidly whereas a

single CPU speed improvement has only seen marginal gains. . . . . . . . . . . 96

203



204 LIST OF TABLES

4.2 Comparison of recent storage efforts to achieve high-performance properties.

N/A denotes that the property is not the primary focus of the work. . . . . . . . 98

5.1 Breakdown of the CPU cycles spent in various routines and operations. Key

performance gains of FlashNet comes from saving the cycles in scheduling,

storage, and spending more time in IO logic processing logic routines. . . . . . 109

5.2 The flash controller API for data management. . . . . . . . . . . . . . . . . . . 118

5.3 9-machine testbed configuration for FlashNet. . . . . . . . . . . . . . . . . . . 123

5.4 IO latencies of various hybrid configurations. . . . . . . . . . . . . . . . . . . 128

5.5 Comparison of related work for end-to-end cross-stack data transfers. . . . . . 130

6.1 RStore client API. The reserve(), alloc(), and map() calls constitute

the control path in the distributed setting. The read() and write() calls are

fast data-path calls, in which no global or local resource allocations happen. . . 138

6.2 12-machine testbed configuration for RStore evaluation. All machines are con-

nected via two IBM BNT G8264 switches. . . . . . . . . . . . . . . . . . . . . 145

6.3 Hadoop TeraSort configuration. The values are configured to give maximum

cluster resources to Hadoop. . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.4 Comparison of related work to integrate RDMA in distributed data storage and

processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



Curriculum Vitae

Personal Data
Full Name: Animesh Kumar Trivedi

Date of birth: August 02 1986, Lucknow, India

Citizenship: The Republic of India

Education
2011–2015 Ph.D studies, Department of Computer Science, ETH Zurich.

Pre-Doc researcher, IBM Research Lab, Zurich.

2007–2009 Master of Science (M.Sc.) ETH in Computer Science,

Department of Computer Science, ETH Zurich.

2003–2007 Bachelor of Technology (B.Tech.) in Information Technology,

Indian Institute of Information Technology, Allahabad (IIITA), India.

1999-2003 Secondary Education (High-School),

CBSE, Rani Laxmi Bai Memorial School, Lucknow, India.

Conference Publications

– Animesh Trivedi, Patrick Stuedi, Bernard Metzler, Clemens Lutz, Martin Schmatz,

Thomas R. Gross. RStore: A Direct-Access DRAM-based Data Store. In Proceedings of

the 35th IEEE International Conference on Distributed Computing Systems, ICDCS’15,

pages 674–685, Columbus, OH, USA, July 2015.

– Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi, Bernard Metzler, Ioannis Koltsidas,

Thomas R. Gross. A Hybrid I/O Virtualization Framework for RDMA-capable Network

Interfaces. In Proceedings of the 11th ACM SIGPLAN/SIGOPS International Confer-

ence on Virtual Execution Environment, (VEE’15), pages 17–30, Istanbul, Turkey, March

2015.

205



206 Curriculum Vitae

– Patrick Stuedi, Animesh Trivedi, Bernard Metzler, Jonas Pfefferle. DaRPC: Data Center

RPC. In Proceedings of the 5th ACM Symposium on Cloud Computing 2014 (SoCC’14),

pages 15:1–15:13, Seattle, WA, USA, November 2014.

– Animesh Trivedi, Bernard Metzler, Patrick Stuedi, and Thomas R. Gross. On Limitations

of Network Acceleration. In Proceedings of the Ninth ACM Conference on Emerging Net-

working EXperiments and Technologies (CoNEXT ’13), pages 121–126, Santa Barbara,

CA, USA, December 2013.

– Patrick Stuedi, Bernard Metzler, Animesh Trivedi. jVerbs: Ultra-low Latency for Data

Center Applications. In Proceedings of the 4th ACM Symposium on Cloud Computing

2013 (SoCC’13), pages 10:1–10:14, Santa Clara, CA, USA, October 2013.

– Animesh Trivedi, Patrick Stuedi, Bernard Metzler, Roman Pletka, Blake G. Fitch,

Thomas R. Gross. Unied High-Performance I/O: One Stack to Rule Them All. In Pro-

ceedings of the 14th Workshop on Hot Topics in Operating Systems (HotOS XIV), Santa

Ana Pueblo, NM, USA, May 2013.

– Patrick Stuedi, Animesh Trivedi, Bernard Metzler. Wimpy Nodes with 10GbE: Lever-

aging One-Sided Operations in Soft RDMA to Boost Memcached. In Proceedings of

the 2012 USENIX conference on Annual Technical Conference (ATC), pages 347–353,

Boston, MA, USA, June 2012.

– Animesh Trivedi, Bernard Metzler, and Patrick Stuedi. A Case for RDMA in Clouds:

Turning Supercomputer Networking into Commodity. In Proceedings of the Second Asia-

Pacific Workshop on Systems, APSys 11, pages 17:1–17:5, Shanghai, China, July 2011.

Patents

– US 8909727 B2 - RDMA read destination buffers mapped onto a single representation.

– US 20130326122 A1 - Distributed memory access in a network.

– US 20140214997 A1 - Method and device for data transmissions using RDMA.

– US 20140359146 A1 - Remote procedure call with call-by-reference semantics using

Remote Direct Memory Access.

– US 20150113088 A1 - Persistent caching for operating a persistent caching system.


	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Thesis Statement
	1.2 Contributions
	1.3 Organization

	2 Related Work on High-Performance Networking and Storage
	2.1 Evolution of High-Performance Networking
	2.1.1 Network Controllers and Interfaces
	2.1.2 Design and Implementation of High-Speed Networking Stacks
	2.1.3 Networking in Distributed Multiprocessor Systems
	2.1.4 High-Performance Networking APIs
	2.1.5 Summary

	2.2 Evolution of Non-Volatile Memories
	2.2.1 Current and Emerging NVM Technologies
	2.2.2 Host Interfaces
	2.2.3 Storage Systems, Abstractions, and Stacks

	2.3 Distributed Storage
	2.3.1 Storage Area Network (SAN)
	2.3.2 Network-Attached Storage (NAS)
	2.3.3 Commentary on the Usage of RDMA
	2.3.4 Recent Interest In RDMA

	2.4 Conclusion

	3 Remote Direct Memory Access
	3.1 Background
	3.2 Terminology
	3.3 The Data and Control Path Separation Principle
	3.4 Abstractions
	3.4.1 Protection Domain (PD)
	3.4.2 Memory Regions (MRs) and Registration
	3.4.3 Event Channel
	3.4.4 Queue Pairs (QPs)
	3.4.5 Work Requests (WRs)
	3.4.6 Completion Queue (CQ) and Channel

	3.5 Network Operations
	3.5.1 Two-Sided Operations
	3.5.2 One-Sided Operations

	3.6 RDMA-Network Implementations
	3.6.1 InfiniBand (IB)
	3.6.2 Internet Wide Area RDMA Protocol (iWARP)
	3.6.3 RDMA over Converged-Enhanced Ethernet(RoCEE)
	3.6.4 Remarks

	3.7 Programming with the RDMA Separation Philosophy
	3.7.1 Steps on the Client
	3.7.2 Steps on the Server

	3.8 RDMA Performance Potential and Pitfalls
	3.8.1 Motivation and Key Findings
	3.8.2 Benchmark Application and Experimental Setup
	3.8.3 Result: Intention Mismatch between DMA Access and Cache Coherence
	3.8.4 Result: High LLC Misses and Coherence Overhead
	3.8.5 Result: Pre-Fetching Sensitivity for Buffer Access Patterns
	3.8.6 Analysis of Results
	3.8.7 Summary

	3.9 Conclusion

	4 A Case for Unified High-Performance IO
	4.1 The Struggles of the Storage Stack
	4.1.1 Rising CPU-IO Gap
	4.1.2 Software and Access Overhead
	4.1.3 Restrictive APIs

	4.2 A View from High-Performance Networks
	4.3 Distilling Common High-Performance IO Properties
	4.3.1 Efficient Host Interfaces and Hardware Access
	4.3.2 Operating System Bypass
	4.3.3 Zero-Copy Data Movement
	4.3.4 Asynchronous IO
	4.3.5 Polling and Synchronous Completion
	4.3.6 Rich IO Operations and APIs

	4.4 A Case for Unification
	4.4.1 Unified Operating System Support
	4.4.2 Ready to Use
	4.4.3 Favorable Advancements

	4.5 Discussion
	4.5.1 Operating System Support
	4.5.2 Hardware Support
	4.5.3 Open Issues

	4.6 Conclusion

	5 FlashNet: A Unified High-Performance IO Stack
	5.1 The Cost of High-Performance IO
	5.2 Design of FlashNet
	5.2.1 The Flash Controller
	5.2.2 Contiguous File System (ContigFS)
	5.2.3 The RDMA Controller
	5.2.4 The Life of a Unified IO Operation

	5.3 Implementation of FlashNet
	5.3.1 The Extended Control Path
	5.3.2 The Extended Data Path
	5.3.3 Data Synchronization
	5.3.4 On-Going Efforts

	5.4 Evaluation
	5.4.1 The Cost of Flash Buffer Registration
	5.4.2 Single Client Performance
	5.4.3 CPU Core Scaling
	5.4.4 Write Performance
	5.4.5 Hybrid IO Configurations
	5.4.6 Remarks about the Flash Management

	5.5 Related Work
	5.6 Conclusion

	6 RStore: A Direct-Access In-Memory Based Data Store
	6.1 Opportunities and Challenges with RDMA
	6.2 RStore
	6.2.1 Scope and Goals
	6.2.2 Components
	6.2.3 Abstraction and Principles
	6.2.4 RStore API and the Path Separation
	6.2.5 Distributed Memory Management
	6.2.6 IO Operations and Synchronization
	6.2.7 Copy-on-write for Machine Failures
	6.2.8 Discussion on RStore API and Abstraction

	6.3 Implementation of RStore
	6.3.1 System Booting
	6.3.2 RDMA Resource Caching
	6.3.3 Hugepages and Memory Registration

	6.4 Performance Evaluation
	6.4.1 Cost of the Distributed Control Path
	6.4.2 Efficiency of the Resource Caching
	6.4.3 Performance of Data-Path Operations

	6.5 Applications
	6.5.1 Global Barrier Synchronization (GBS)
	6.5.2 Carafe: Distributed Graph Processing
	6.5.3 RSort: Distributed Sorting on RStore

	6.6 Experiences with RStore
	6.7 Related Work
	6.8 Conclusion

	7 RStore on FlashNet
	7.1 Porting RStore to FlashNet
	7.2 The Cost of the Distributed Control Path
	7.3 Performance of Data-Path Operations
	7.4 Running RSort on FlashNet

	8 Conclusion
	8.1 Experience and Outlook
	8.2 Recommendations for Future Hardware and Stacks
	8.2.1 Resource Management
	8.2.2 IO Operations

	8.3 Summary

	Bibliography
	List of Figures
	List of Tables

