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Abstract

In this paper, we discuss integer-valued autoregressive time series (INAR), Hawkes point processes,
and their interrelationship. Besides presenting structural analogies, we derive a convergence theorem. More
specifically, we generalize the well-known INAR(p), p ∈ N, time series model to a corresponding model
of infinite order: the INAR(∞) model. We establish existence, uniqueness, finiteness of moments, and give
formulas for the autocovariance function as well as for the joint moment-generating function. Furthermore,
we derive a branching-process – as well as an AR(∞) – and an MA(∞) representation for the model.
We compare Hawkes process properties with their INAR(∞) counterparts. Given a Hawkes process N , in
the main theorem of the paper we construct an INAR(∞)-based family of point processes and prove its
convergence to N . This connection between INAR and Hawkes models will be relevant in applications.
c⃝ 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

MSC: 60G55; 60F99; 37M10

Keywords: Hawkes process; Integer-valued time series; Weak convergence of point processes; Branching process

0. Introduction

In this paper, we show that Hawkes point processes are continuous-time versions of integer-
valued autoregressive time series and – vice versa – that integer-valued autoregressive time series
are discrete-time versions of Hawkes point processes; see Theorem 2 for the main result of the
paper. To start with, we outline the history of the concepts involved.

Standard time series theory for sequences of real-valued data points has been developed in
seminal works like Whittle [25] and Box and Jenkins [3]. This theory led to the natural question
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of time series models for count data. In the count-data context, the starting point is also a defining
system of difference equations of the form “Xn −


αk Xn−k = εn +


βkεn−k, n ∈ Z”. The

main idea of the construction is to manipulate these equations in such a way that their solutions
are integer-valued. This can be achieved by giving the error terms “(εn)” a distribution supported
on N0 and by substituting all multiplications with thinning operations. In the above spirit,
autoregressive integer-valued (INAR) time series were defined and examined by McKenzie [19]
and Al-Osh and Alzaid [1]. The modern definition of the INAR model comes from [17].
Latour [16] generalizes the model to the multivariate case. For an exhaustive collection of
properties of the INAR model; see [8]. For a textbook reference; see [9].

The Hawkes process was introduced in [11,12] as a model for contagious processes such
as measles infections or hijackings. As a point process in continuous time, the Hawkes process
allows for the modeling of intensities which depend on the past of the process itself. Its alternative
name, “selfexciting point process”, stems from the fact that, given the occurrence of an event,
intensity jumps upwards and then decays gradually. Theoretical cornerstones for the model are
Hawkes [13] which establishes the representation as a cluster process, Ogata [21] which covers
calibration issues and propagates a recursive method for likelihood calculations, Brémaud and
Massoulié [4] which extends the original model by generalizing the affine dependence on the past
to Lipschitz dependence, Brémaud and Massoulié [5] which proves the existence of a specific
borderline case of the model, and Liniger [18] which puts the subtleties of the definition and the
construction on a solid mathematical foundation – especially for the marked multivariate case.
For a textbook reference that covers many aspects of the Hawkes process; see [7].

To the best of our knowledge, the close connection between INAR and Hawkes processes
has not been studied before. The correspondence between the model classes becomes even more
direct if one applies infinite autoregression instead of finite autoregression for the time series
model. This was our main motivation for generalizing the existing INAR(p) framework with
p < ∞ to the case p = ∞. For the new INAR(∞) model, we give an explicit construction
and show uniqueness; see Theorem 1. Then we derive three alternative descriptions of the
process, namely a branching-process, an autoregressive, and a moving-average representation.
Furthermore, we calculate basic quantities such as the joint moment-generating function and the
autocovariance function. These are mainly presented for comparison with their Hawkes process
counterparts. We observe that the equivalent branching-construction of INAR and Hawkes
models form the core of the connection. This equivalence yields corresponding equations for
generating functions, similar moment structures, and analogous stability criteria. Theorem 2
establishes a convergence result. In this theorem, for a given Hawkes process N , we construct

a specific family of INAR(∞) sequences


X (∆)n


n∈Z


∆>0

. From each member of this family,

we derive a point process N (∆) by setting

N (∆)(a, b]


:=


n:1n∈(a,b]

X (∆)n , a < b.

The theorem states that N (∆) converges weakly to the Hawkes process N when ∆ goes to
zero. This result is relevant for applications of INAR and Hawkes processes. In particular, the
convergence theorem yields an estimation method for the Hawkes process by estimating the
more tractable approximating INAR model instead. We work out this estimation method in [15].
Moreover, from a purely theoretical point of view, the presented line of thought is useful: the time
series perspective on point processes as well as the point process perspective on (integer-valued)
time series can be fertile for constructing and understanding event-data models; see Section 4.
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The paper is organized as follows: Section 1 introduces the INAR(∞) model. Section 2
presents the Hawkes process. Section 3 establishes the convergence theorem. Furthermore, it
collects structural analogies between the two model classes. In the final section, we discuss the
broader interpretation of the INAR–Hawkes relation.

1. The INAR(∞) model

Throughout the paper, we consider a basic probability space (Ω ,F ,P) carrying all random
variables involved.

1.1. Definition and existence

Definition 1. For an N0-valued random variable Y and a constant α ≥ 0, the reproduction
operator ◦ is defined by

α ◦ Y :=

Y
n=1

ξ (α)n ,

where ξ (α)n
i.i.d.
∼ Pois(α), n ∈ N, independently of Y . We refer to ξ (α)n , n ∈ N, as offspring

variables and to

ξ
(α)
n


as offspring sequence.

Here and throughout the paper, we use the convention that
q

n=p an := 0, q < p, for any
sequence (an)n∈Z ⊂ R.

Definition 2. For αk ≥ 0, k ∈ N0, let εn
i.i.d.
∼ Pois(α0), n ∈ Z, and ξ (n,k)l ∼ Pois (αk),

independently over n ∈ Z, k ∈ N, l ∈ N, and also independent of (εn). An integer-valued
autoregressive time series of infinite order (INAR(∞)) is a sequence of random variables
(Xn)n∈Z which is a solution to the system of stochastic difference equations

εn = Xn −

∞
k=1

αk ◦ Xn−k (1)

:= Xn −

∞
k=1

Xn−k
l=1

ξ
(n,k)
l , n ∈ Z. (2)

We call α0 immigration parameter, (εn) immigration sequence, αk ≥ 0, k ∈ N, reproduction
coefficients, and K :=


∞

k=1 αk reproduction mean.

In most situations, it is enough to use the reproduction notation from (1) in Definition 2 without
explicitly writing out the offspring sequences as in (2) – keeping in mind that each “◦” operates
independently over k ∈ N and n ∈ Z. Clearly, Definitions 1 and 2 depend on the choice of
the distribution of the offspring variables. A more obvious option would have been sequences
of Bernoulli variables. This would yield the binomial thinning operator from [24] which has
in fact been the choice in the cited INAR(p) literature. The Poisson choice for the offspring
sequences, however, again yields a Poisson distribution for “Xn|Xn−1, Xn−2, . . .”. This in turn
leads to formulas that are simpler and that can be compared with their Hawkes counterparts more
directly. We will address this issue in Sections 3.4 and 4. For the following existence theorem, any
N0-valued distribution with finite first moments would do for the offspring variables. Throughout
our paper, “stationary” is understood as “strictly stationary”.
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Theorem 1. Let αk ≥ 0, k ∈ N0, with reproduction mean K :=


∞

k=1 αk < 1. Then (2) has
an almost surely unique stationary solution (Xn)n∈Z, where Xn ∈ N0, n ∈ Z, and EXn ≡

α0/(1 − K ).

Proof. See Appendix A.1. �

1.2. Branching structure

We highlight the branching nature of the solution to (2). As we will see, one can interpret this
solution as a model for the size of a population, where each individual is alive exactly during
one time-step. Each individual is either an immigrant or stems from a prior individual. This is
similar to a Galton–Watson framework with immigration; see Section 5 in [23]. In contrast to the
Galton–Watson setup, each INAR(∞) individual does not only have offspring at the next time-
step but (potentially) at any future time. The proof of Theorem 1 formalizes this structure and
then establishes that the construction indeed yields a process with the desired properties. The next
proposition summarizes the branching representation of the INAR(∞) process. We emphasize
the branching intuition of family processes consisting of generation processes by the unusual but
suggestive notation for stochastic processes (Fn) and (Gn). The branching formulation will be
useful for the derivation of the moment-generating function. It furthermore summarizes the most
elegant and, at the same time, most efficient way, for simulating from the INAR(∞) model:

Proposition 1. Let (Xn) be an INAR(∞) sequence with respect to an immigration parameter
α0 > 0 and reproduction coefficients αk ≥ 0, k ∈ N, so that


∞

k=1 αk < 1; see Definition 2.
Then

Xn
d
=


i∈Z

εi
j=1

F (i, j)
n−i , n ∈ Z, (3)

where εi
i.i.d.
∼ Pois(α0), i ∈ Z, and


F (i, j)

n


are independent (over i ∈ Z and j ∈ N) copies of a

branching process (Fn) defined by

Fn :=

∞
g=0

G(g)
n , n ∈ Z. (4)

The generations (Gn) in (4) are constructed recursively by

G(0)
n := 1{n=0} and G(g)

n :=

n
k=1

αk ◦ G(g−1)
n−k :=

n
k=1

G(g−1)
n−k

m=1

ξ
(n,k,g)
m , n ∈ Z, g ∈ N,

(5)

with ξ (n,k,g)m ∼ Pois(αk) independently over m, n, k, g– and also independent of (εi )i∈Z. Fur-
thermore, we have the following distributional equality for the generic family-process (Fn)

from (4):

(Fn)n∈Z
d
=

1{n=0} +

n
i=1

G(1)
i

j=1

F (i, j)
n−i


n∈Z

. (6)

Proof. See Appendix A.2. �
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1.3. Moment generating function

From the representation of the INAR(∞) sequence as a superposition of shifted i.i.d. family
processes in Proposition 1, we derive equations for the joint moment-generating function of the
model. First, we fix some notation:

Definition 3. For any sequence (tn)n∈N0 ⊂ R, let supp

(tn)


:= sup{n ∈ N0 : tn ≠ 0, tk =

0, k > n} be the support of the sequence (tn). Furthermore, for A ⊂ R, let c00(A) :=
(tn)n∈N0 ⊂ A : supp


(tn)


< ∞


, the space of sequences in A with a finite number of nonzero

values. For any time series (Yn)n∈N0 , we define the joint moment-generating function

M(Yn)


(tn)n∈N0


:= E exp


∞

n=0

tnYn


, (tn) ∈ c00 (R) . (7)

The somewhat unusual definitions above have been chosen for most direct comparison between
the INAR(∞) joint moment-generating function and the Laplace functional of a Hawkes process;
see Propositions 7 and 9.

Proposition 2. Let (Xn) be an INAR(∞) sequence with respect to immigration parameter α0 ≥

0 and reproduction coefficients αk ≥ 0, k ∈ N, such that K =


∞

k=1 αk < 1; see Definition 2.
Then there exists a constant δ > 0 such that

M(Xn)


(tn)


≤ exp


dα0

1 + K

2K


< ∞, (tn) ∈ c00


(−∞, δ]


, (8)

where d := supp

(tn)


+ 1 is the maximal number of nonzero values of (tn). Furthermore, we

have that

M(Xn)


(tn)


= exp


α0


i∈Z


M(Fn)


(ti+n)n∈N0


− 1


, (9)

where we set tm := 0 for m < 0. Here, (Fn) denotes the generic family-process from
Proposition 1. Its joint moment-generating function M(Fn) is the unique solution to

M(Fn)


(sn)


= es0 exp


∞

k=1

αk


M(Fn)


(sn+k)n∈N


− 1


, (sn) ∈ c00((−∞, δ]). (10)

Proof. See Appendix A.3. �

As a matter of fact, every moment-generating function that is finite in a neighborhood of zero has
a Taylor series about zero. The coefficients of this series are the joint moments. Consequently,
from Proposition 2, we obtain

Corollary 1. Let (Xn) be an INAR(∞) sequence as in Theorem 1. For m ∈ N and k1, . . . , km ∈

N0, we have that

E


X k1
1 X k2

2 · · · X km
m


< ∞.
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1.4. ARMA representations

We represent the INAR(∞) model as both, an autoregressive as well as a moving-average time
series. These explicit representations allow the application of standard linear time-series theory
on the INAR(∞) model.

Proposition 3. Let αk ≥ 0, k ∈ N0, with K =


∞

k=1 αk < 1, and let (Xn) be the corresponding
INAR(∞) process; see Definition 2. Then

un := Xn −

∞
k=1

αk Xn−k − α0, n ∈ Z, (11)

defines a stationary sequence (un) with Eun ≡ 0, n ∈ Z, and

E [unun′ ] =


0, n ≠ n′,
α0

1 − K
, n = n′.

(12)

Furthermore, we have that

(Xn − µX )−

∞
k=1

αk (Xn−k − µX ) = un, n ∈ Z, m < 0, (13)

whereµX := EX0 = α0/(1−K ). In other words, (un) is a (dependent) white-noise sequence and
the time series (Xn − µX )n∈Z can be described in terms of a solution to an ordinary standard
AR(∞) system of difference equations.

Proof. See Appendix A.4. �

From Proposition 3, we find the Wold decomposition of the INAR(∞), that is, a representation
as a standard MA(∞) time series. It will be most helpful for establishing the second-order
properties of the process.

Proposition 4. Let αk ≥ 0, k ∈ N0, with


∞

k=1 αk < 1. Then the corresponding INAR(∞)
process from Definition 2 is a solution to the family of equations

Xn − µX =

∞
k=0

βkun−k, n ∈ Z, (14)

where (un) is the white-noise sequence from Proposition 3, µX := EX0 = α0/(1− K ), β0 := 1,
and βk :=

k
i=1 αiβk−i , k ∈ N. Furthermore, βk ≥ 0, k ∈ N0, and


∞

k=0 βk = 1/(1 − K )
< ∞.

Proof. See Appendix A.5. �

Note that the moving-average coefficients (βk)k∈N0 defined in Proposition 4 correspond to
(EFk)k∈N0

, the expected values of the family-process (4) after k = 0, 1, 2, . . . time steps. Also
note that Proposition 4 is not a corollary of the standard result stating that ARMA(p, q) processes
(p, q < ∞) are MA(∞) processes; for example, see Theorem 3.1.1 of [6]. The argumentation
for the case p = ∞ has to be more subtle: we have to prove that the (in general infinitely many)
zeros of the involved power series can be bounded away from the unit circle.
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1.5. Second order properties

The MA(∞) representation makes the second moments of the INAR(∞) sequence
particularly tractable:

Proposition 5. Let (Xn) be an INAR(∞) process with reproduction coefficients αk ≥ 0, k ∈ N,
such that K :=


∞

k=1 αk < 1, and immigration parameter α0 ≥ 0. Furthermore, let R( j) :=

Cov

Xn, Xn+ j


, j ∈ Z, be the autocovariance function of the (stationary) sequence. Then

R( j) =
α0

1 − K

∞
k=0

βkβk+| j | ≥ 0, j ∈ Z, k ∈ N (15)

where β0 := 1 and βk :=
k

i=1 αiβk−i . In addition, we have that

∞
j=0

R( j) ≤
α0

(1 − K )3
< ∞. (16)

Proof. See Appendix A.6. �

2. The Hawkes process

After the first section on the new INAR(∞) model, the following shorter section formally
presents the well-known Hawkes point process. We treat point processes as random counting-
measures and only consider point processes on R. First, we fix some general notation and
terminology. Then we recall the definition, the existence theorem, and selected properties of the
(univariate) Hawkes process. For the general theory, we mainly follow Resnick [22, Chapter 3].
For the Hawkes part, our main references are the seminal papers Hawkes [11,12] and
Hawkes [13].

2.1. Preliminaries

Let B := B(R) be the Borel-sets in R and Bb := {B ∈ B(R) : B bounded}. A measure
m on R is a point measure if m(B) ∈ N0, B ∈ Bb. We denote the space of point measures
on R by Mp := Mp(R). Let C+

K := C+

K (R) be the space of nonnegative continuous func-
tions on R with compact support. Point measures (mn) converge vaguely to a point measure
m if limn→∞


f (t)mn(dt) →


f (t)m(dt), f ∈ C+

K (R); we write mn
v

→ m. Vague con-
vergence yields the vague topology on Mp. The Borel σ -algebra generated by this topology,
M p := B(Mp), coincides with the σ -algebra generated by the sets {m ∈ Mp : m(A) = k}, A ∈

Bb, k ∈ N0; see Lemma 1.4. in [14]. Any measurable mapping Φ : (Mp,M p) → (R,B)
such that limn→∞ Φ(mn) = Φ(m) whenever mn

v
→ m, is continuous with respect to the

vague topology. Our basic underlying probability space is (Ω ,F ,P). A measurable mapping
N : (Ω ,F) →


Mp,M p


, ω → N (ω) is called point process. The history of a point process

N is the filtration


H N
t


, where, for t ∈ R,

H N
t := σ


ω ∈ Ω : N (ω)


(a, b]


∈ B


: −∞ < a < b ≤ t, B ⊂ N0


. (17)
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We assume that H N
t ⊂ F , t ∈ R. Note that our definition of a point process allows multiple

points, i.e., we may have that “P [N ({t}) > 1|N ({t}) > 0] > 0”. Also note that, for t ∈ R, the
σ -algebra H N

t includes all sets of the form
ω : N (ω)


{tn}


= kn, N (ω)


(tn−1, tn)


= 0, n = 0,−1,−2, . . .


with t =: t0 ≥ t−1 ≥ · · · and k0, k−1, . . . ∈ N. (18)

2.2. Definition and existence

Definition 4. For any point measure m ∈ Mp, define the Hawkes intensity

λ(t |m) := η +


R

h(t − s)m(ds), t ∈ R,

where η > 0 is a constant and h : R → R+

0 is a nonnegative measurable function with
h(t) = 0, t ≤ 0. We refer to η as immigration intensity and to h as reproduction intensity.

The immigration intensity is often called baseline intensity and the reproduction intensity is often
called excitement function. However, our objective is to highlight the similarity between Hawkes
and INAR processes. Consequently, we make use of a joint branching-process terminology; see
Definition 2.

Definition 5. Let λ be a Hawkes intensity as in Definition 4. A Hawkes process is a point process
N that is a solution to the family of equations

E


1A N


a, b


= E


1A

 b

a
λ(s|N )ds


, a < b, A ∈ H N

a . (19)

A priori, it is not clear whether this family of equations has a solution, whether any possible
solution would be unique (in a distributional sense), and whether the distribution of a solution
would be stationary. These questions are answered by the following proposition; see [13]:

Proposition 6. Let λ be a Hawkes intensity with immigration intensity η > 0 and reproduction
intensity h such that


∞

0 h(t)dt < 1. Then there is precisely one stationary process that
satisfies (19).

The existence and uniqueness result above is established by the observation that the solution to
(19) must be a cluster process or – more specifically – a branching process with immigration: the
points are interpreted as individuals that are either immigrants or offspring. The immigrants (or
cluster centers) stem from a homogeneous Poisson process with intensity η. These immigrants
form generation zero of the following branching procedure: an immigrant at time s ∈ R triggers
an inhomogeneous Poisson process with intensity h (· − s) where h is the reproduction intensity
of the process as in Definition 4. These offspring individuals form generation one. Each of
these first-generation individuals again triggers an inhomogeneous Poisson process in a similar
way, etc., so that the families (or clusters) are generated by cascades of inhomogeneous Poisson
processes.

2.3. The Laplace functional

The cluster and branching process point of view is also fertile beyond the results of
Proposition 6. For example, it leads to equations for the Laplace functional of a Hawkes
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process. The Laplace functional ΨN of a point process N is a functional defined on the space of
nonnegative measurable functions with compact support by

ΨN [ f ] := E exp

−


∞

−∞

f (t)N (dt)


.

The next proposition is Theorem 2 in [13] – with a slight modification as the original statement
refers to the probability generating functional whereas we prefer the nowadays more common
Laplace functional notion:

Proposition 7. Let N be a Hawkes process with immigration intensity η > 0 and reproduction
intensity h as in Proposition 6. Then the Laplace functional ΨN of N is

ΨN [ f ] = exp

η


∞

−∞


ΨF


f (t + ·)


− 1


dt


,

where ΨF is a functional that is the unique solution to

ΨF [ f ] = e− f (0) exp


∞

0
h(t)


ΨF


f (t + ·)


− 1


dt


.

In both equalities, f denotes an arbitrary measurable, nonnegative function with compact
support.

3. Links between INAR(∞) and Hawkes processes

In the following section, we first explain how discrete-time INAR(∞) processes can
approximate a continuous-time Hawkes process. After the convergence theorem, we establish
a number of properties of the approximating sequence. Finally, we collect some structural
analogies of the two models.

3.1. Preliminaries

Let Yn, n ∈ N, and Y be random variables with values in some topological space. The
sequence (Yn) converges weakly to Y if limn→∞ Eϕ(Yn) = Eϕ(Y ) for all nonnegative
continuous bounded functions ϕ. We define weak convergence of point processes with respect
to the vague topology M p on Mp; see Section 2.1. In this case, weak convergence of point
processes is equivalent to convergence of their finite-dimensional distributions; see [7, Theorem
11.1.VII]. General weak convergence theory, as developed in the monograph Billingsley [2],
considers sequences in metric spaces. Therefore it is important to note that the vague topology is
metrizable; see [22, Proposition 3.17]. In other words, we may treat


Mp,M p


as a metric space

where necessary. A most helpful theorem in the weak-convergence context is the continuous
mapping theorem; see Theorem 5.1 in [2]. We apply it in the following form:

Proposition 8. Let (Nn) and N be point processes such that Nn
w
→ N , n → ∞. Furthermore,

let f : R → R+

0 be a bounded, measurable function with compact support and with a set of

discontinuities D f ∈ B such that P

N

D f

> 0


= 0. Then,


f (t)Nn(dt)

w
→


f (t)N (dt) for
n → ∞.
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3.2. The convergence theorem

Next to the conditions on the reproduction intensity h from Definition 5 and Proposition 6,
we introduce an additional assumption: we want h piecewise continuous. We say a function
f : R → R is piecewise continuous if its set of discontinuities D f ⊂ R is finite and for all
t0 ∈ D f the limits limt→t−0

f (t) and limt→t+0
f (t) exist and are finite. Combining all assumptions

on h yields the following important technical

Lemma 1. Let h : R → R+

0 be a piecewise continuous function with h(t) = 0, t ≤ 0, and
h(t) dt < 1. Then there exist constants δ > 0 and K̃ < 1 such that, for any ∆ ∈ (0, δ),

K (∆)
:= 1

∞
k=1

h(k∆) ≤ K̃ < 1. (20)

In the sequel of the section, let δ > 0, K (∆)
≤ K̃ < 1, and ∆ ∈ (0, δ), be as in the lemma above.

We state the main mathematical result of our paper:

Theorem 2. Let N be a Hawkes process with immigration intensity η and reproduction

intensity h as in Lemma 1. For ∆ ∈ (0, δ), let


X (∆)n


be an INAR(∞) sequence with

immigration parameter 1η and reproduction coefficients 1h(k∆), k ∈ N. From the sequences
X (∆)n


∆∈(0,δ), we define a family of point processes by

N (∆)(A) :=


k:k∆∈A

X (∆)k , A ∈ B, ∆ ∈ (0, δ). (21)

Then, we have that

N (∆) w
−→ N for ∆ → 0.

Proof. See Appendix A.11. �

Our proof uses the standard weak-convergence approach – as followed in the Hawkes context,
e.g., by Brémaud and Massoulié [5]. First, tightness of the approximating family is established.
By Prokhorov’s theorem, tightness yields weak subsequential limits for all subsequences. Then
we show that all those potential weak subsequential limits have the same distribution as the
Hawkes process. This will establish the result. An alternative approach would be convergence of
Laplace functionals that are given by

Proposition 9. For some ∆ ∈ (0, δ), let N (∆) be as in Theorem 2. Let f be a nonnegative mea-
surable function with compact support. Then the Laplace functional of N (∆) evaluated at f is

ΨN (∆) [ f ] = exp


1η


i∈Z


Ψ (∆)

F (∆)


f ((i + n)∆)


n∈N0


− 1


.

Here, the function Ψ (∆)
F (∆)

operating on sequences (sn)n∈N0 ∈ c00 ([0,∞)) is a solution to

Ψ (∆)
F (∆)


(sn)n∈N0


= e−s0 exp


∞

k=1

1h(k∆)

Ψ (∆)

F (∆)

(sk+n)n∈N0


− 1


.
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Proof. See A.7. �

The similarities between the formulas in Proposition 9 and the corresponding equations for the
Hawkes process in Proposition 7 are striking. Still, rather than establishing the convergence result
from Theorem 2 via the Laplace functionals, we choose a more direct reasoning on the process
level that contains useful information on the approximating point process family as a by-product.
The information necessary for the convergence proof is collected in the following lemmas:

Lemma 2. For any ∆ ∈ (0, δ), let N (∆) be a point process as in Theorem 2. Then, for A ∈ B,
we have that

A ∩ {k∆ : k ∈ Z} = ∅ ⇒ N (∆)A


= 0, almost surely. (22)

For the expectation, we find that

EN (∆)
{k∆}


= ∆

η

1 − K (∆)
< δ

η

1 − K̃
, k ∈ Z, (23)

and, for a < b,

EN (∆)
[a, b]


< (b − a + 2δ)

η

1 − K̃
< ∞. (24)

Proof. See Appendix A.8. �

Lemma 3. For

N (∆)


∆∈(0,δ), the approximating family of point processes from Theorem 2, we

have that

sup
∆∈(0,δ)

Var


N (∆)(A)

< ∞, A ∈ Bb.

Proof. See Appendix A.9. �

A family of random variables (Yi )i∈I is uniformly integrable if limM→∞ supi∈I E[1|Yi |>M |Yi |]

= 0. We obtain uniform integrability of the random variables in question as a corollary from
Lemma 3:

Lemma 4. Let

N (∆)


∆∈(0,δ) be the approximating family of point processes from Theo-

rem 2 and A ∈ Bb. Then we have that the family of random variables

N (∆)(A)


∆∈(0,δ) is

uniformly integrable.

A family of probability measures

P(i)


i∈I on


Mp,M p


is uniformly tight if, for all ε > 0,

there exists a compact set K ⊂ Mp such that P(i)[K c
] < ε, i ∈ I .

Lemma 5. The family of the probability measures

P(∆)


0<∆<δ on


Mp, σ


M p


correspond-

ing to the point processes

N (∆)


0<∆<δ is uniformly tight.

Proof. See Appendix A.10. �

3.3. Structural analogies

Besides the formal convergence result from Theorem 2, we point out a number of structural
parallels between the Hawkes and the INAR(∞) model. The branching structure of the INAR(∞)
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model described in Section 1.2 is the same as the branching structure of the Hawkes process
described after Proposition 6. This similar underlying structure yields analogous equations for
the moment-generating function of the INAR(∞) and the Laplace functional of the Hawkes
process; see Propositions 2 and 7. Consequently, we can expect similar distributional properties.
In the following, we compare the models more directly by considering a specific Hawkes process
N together with its approximating family of INAR(∞) sequences,


X (∆)


, ∆ ∈ (0, δ), obtained

from Theorem 2.

(i) The defining Eqs. (2) and (19) have similar interpretations: taking expectations conditional

on H X (∆)
n−1 := σ


X (∆)k : k ≤ n − 1


on both sides of (2) yields

E


X (∆)n |H X (∆)
n−1


∆

= η +

n−1
k=−∞

h

(n − k)∆


X (∆)k , n ∈ Z,

which is similar to the local version of (19)

E

N (dt)|H N

t


dt

= η +

 t

−∞

h(t − s)N (ds), t ∈ R.

(ii) The stability criteria from Theorem 1 and Proposition 6 correspond: for the time series case,
∞

k=11h(1k) < 1 is a sufficient existence condition which in the Hawkes case becomes
∞

0 h(t)dt < 1. Brémaud and Massoulié [5] establishes the existence of a nontrivial Hawkes
process, where the total weight of the reproduction intensity equals 1 and the immigration
intensity is zero. The analogous statement for INAR(∞) sequences can be derived in a
similar way.

(iii) From the correspondence of the generating functions, we know that the moments of the
INAR(∞) and the Hawkes process must be similar. The first moments are

EX (∆)n

∆
=

η

1 − K (∆)
, respectively,

EN (dt)

dt
=

η

1 − K
.

For the first equality see Theorem 1; for the second equality see [11].
(iv) For the autocovariances of both models, i.e., for

R(∆)(n) :=

E


X (∆)0 X (∆)n


∆2 −


EX (∆)0

∆

2

, n ∈ Z,

respectively, for

r(t) :=
E [dN0dNt ]
(dt)2

−


EN (dt)

dt

2

, t ∈ R,

we find at the origin

R(∆)(0) =
1
∆

η

1 − K (∆)
+

∞
k=1

1h(k∆)R(∆)(k), (25)

respectively,

r(0) =
1
dt

η

1 − K
+


∞

0+

h(s)r(s)ds. (26)
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Implicit equations of Yule–Walker type are valid in both cases:

R(∆)(n) =

∞
k=1

h(1k)R(∆)(|n| − k)∆, n ≠ 0, (27)

respectively,

r(t) =


∞

0
h(s)r(|t | − s)ds, t ≠ 0. (28)

Eqs. (25) and (27) are standard facts given the representation of the INAR(∞) sequence as
a standard AR(∞) process in Proposition 3; see, e.g., [6]. Eq. (28) can be derived as in [12],
where r is called “complete autocovariance density”. Eq. (26) corresponds to (10) in [12]
evaluated at zero.

3.4. The choice of the offspring distribution

As a last remark, we again refer to the choice of the offspring distribution in Definition 1.
An obvious alternative to the Poisson distribution would have been the Bernoulli distribution;
see the discussion after Definition 2. With the Bernoulli choice, each individual would have not
more than one offspring at each future point in time instead of potentially unboundedly many. We
want to indicate that in the limit (in the sense of Theorem 2 where all reproduction coefficients
go to zero) this option would yield the same result: for ∆ ∈ (0, 1) and (αk) ⊂ [0, 1] such that
αk < 1, let ξ (∆)k

i.i.d.
∼ Pois(1αk), k ∈ N, and ξ̃ (∆)k

i.i.d.
∼ Bernoulli(1αk), k ∈ N. Then one can

easily show that

lim
∆→0+

P

ξ
(∆)
k = 0


P

ξ̃
(∆)
k = 0

 = lim
∆→0+

P

ξ
(∆)
k = 1


P

ξ̃
(∆)
k = 1

 = 1, k ∈ N.

So when ∆ is very small, the offspring distribution candidates, Poisson and Bernoulli, become
very similar. Roughly speaking, the limiting procedure in Theorem 2 is nothing else than a
(complicated) superposition of limits of the form


∞

k=1 ξ
(∆)
k . For these kinds of sums, we have

that

lim
∆→0+

P


∞
k=1

ξ
(∆)
k = n


P


∞
k=1

ξ̃
(∆)
k = n

 = 1, n ∈ N0.

If αk > 0 infinitely often, then – by the Poisson limit theorem – the two considered probabilities
are even equal for all ∆ ∈ [0, 1]. In view of the above, one can expect that Theorem 2 with
Bernoulli offspring would yield the same limit as Poisson offspring, namely the Hawkes process.

4. Conclusion

The mathematical formulation of the correspondence between INAR and Hawkes processes
in Theorem 2 has the following heuristic interpretation relevant for practical applications: let
N (∆)


be the approximating family of INAR(∞)-based point processes for a Hawkes process

N as in Theorem 2. Then for ∆ > 0 (small), the finite-dimensional distributions of N (∆)
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are approximately equal to the finite-dimensional distributions of N . In particular, we find, for
n ∈ N,

N


0,∆

, N


∆, 2∆

, . . . , N


(n − 1)∆, n∆


d
≈


N (∆)


0,∆


, N (∆)


∆, 2∆


, . . . , N (∆)


(n − 1)∆, n∆


=


X (∆)1 , X (∆)2 , . . . , X (∆)n


, (29)

where


X (∆)n


is the INAR(∞) sequence that the point process N (∆) is based on; see Theorem 2.

So


X (∆)n


is an approximative model for the bin-count sequences of the considered Hawkes

process N . This point of view can be very fertile. For example, it leads to a nonparametric
estimation procedure for the Hawkes process. Instead of fitting a Hawkes process directly, one
fits the corresponding INAR(∞) model from Theorem 2 on the bin-counts for some small ∆ > 0.
Kirchner [15] gives a detailed discussion of this estimation procedure including asymptotic
properties, bias issues and techniques for an optimal bin-size choice ∆. Also note that the Hawkes
bin-count sequence view in (29) on the INAR(∞) model is another argument in favor of choosing
the Poisson instead of the Bernoulli distribution for the offspring sequences: clearly a Hawkes
event can have potentially more than one direct offspring event in a future time-interval.

For any N0-valued time series model, one can construct a point process model the way it is
done in Theorem 2. So, studying integer-valued time series can be inspiring for developing and
understanding point process models. For example, one might want to consider the corresponding
point process of an integer-valued autoregressive moving-average (INARMA) time series. For
INARMA time series, a moving-average part is added to the autoregressive part in the defining
difference Eqs. (2); see [9]. In fact, the corresponding point process is nothing else but the
“dynamic contagion process” as proposed in [27]. Also for integer-valued time series theory,
it is inspiring to translate point process models into the discrete-time setup. For example, one
might want to translate the generalizing results on selfexciting point processes in [4] to the INAR
context. Here, the selfexcitement of the point process is modeled not as an affine but as a general
Lipschitz function of the past of the process. The analogous generalization in time series theory
is “nonlinear Poisson autoregression” as studied in [10] for the case p = 1. In the latter paper,
the authors also find a Lipschitz condition for the transfer function. Yet another idea might be to
consider marked INAR sequences in analogy to marked Hawkes processes; see [18].

One can expect that the results of our paper also hold in a multivariate setup – with
the obvious modifications. However, the notation would become even more tedious, so that
we have decided to concentrate on the univariate case. In view of the many INAR/Hawkes-
correspondences presented in this paper we conclude: INAR(∞) sequences are discrete-time
versions of Hawkes processes and, vice versa, Hawkes processes are continuous-time versions
of INAR(∞) sequences.
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Appendix. Proofs

A.1. Proof of Theorem 1

Let εi
i.i.d.
∼ Pois (α0) , i ∈ Z, be the immigration terms from Definition 2. For the j th potential

immigrant at time i ∈ Z, we define generation processes

G(g,i, j)

n

, g ∈ N0, by the following

recursive procedure:

G(0,i, j)
n := 1{n=0}, n ∈ Z, i ∈ Z, j ∈ N (A.1)

G(g,i, j)
n :=

n
k=1

αk ◦ G(g−1,i, j)
n−k . (A.2)

For all distributional properties of the construction, it will be enough to apply defining Eq. (A.2)
for the generations. We will consider an explicit representation of the involved offspring
sequences later. Note that G(g,i, j)

n = 0 whenever n < 0. A family originating from the j th
individual immigrant at time i is the superposition of all the corresponding generation-processes:

F (i, j)
n :=

∞
g=0

G(g,i, j)
n , n ∈ Z, i ∈ Z, j ∈ N. (A.3)

The candidate series


X̃n


for a solution of (2) is the superposition of all these families – modulo

an appropriate shift in the time index:

X̃n :=

n
i=−∞

εi
j=1

F (i, j)
n−i , n ∈ Z. (A.4)

Note that only family and generation processes indexed by (i, j) with j ∈ {1, . . . , εi } come into
play. Also note that all infinite series involved in the construction above are well-defined because
their partial sums are nondecreasing. As a first step, we remind ourselves that K =


∞

k=1 αk and
establish

E
∞

n=0

G(g,i, j)
n = K g, g ∈ N0, i ∈ Z, j ∈ N, (A.5)

by induction: for g = 0, (A.5) is correct because we have E


∞

n=0 G(0,i, j)
n =


∞

n=0 1{n=0} =

1 = K 0. For g > 0, one can show that E


∞

n=0 G(g,i, j)
n = K · E


∞

n=0 G(g−1,i, j)
n and (A.5)

follows. By (A.5),


∞

n=0 F (i, j)
n has expectation 1/(1 − K ). In particular,


∞

n=0 F (i, j)
n is almost

surely finite. Since F (i, j)
n is a sum of integers, we have that F (i, j)

n ∈ N0, n ∈ Z, almost surely.
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For X̃n, n ∈ Z, we find that

EX̃n =

n
i=−∞

E
εi

j=1

F (i, j)
n−i = α0

n
i=−∞

EF (i,1)n−i = α0E
n

i=−∞

F (1,1)n−i =
α0

1 − K
. (A.6)

Note that in the present work, nearly all random variables involved are nonnegative.
Consequently, in most cases the interchange of summations as in the first equality above is
covered by Tonelli’s Theorem. Also Wald’s Identity as applied in the second equality above will
be applied without further notice. From (A.6), we get that X̃n is almost surely finite and therefore

almost surely N0-valued. Note that, by construction, the generations


G(i, j)
n


and therefore the

families


F (i, j)
n


are independently and identically distributed time series over i ∈ Z and j ∈ N.

Stationarity of


X̃n


then follows from the i.i.d. property of the immigration sequence (εi ).

To show that our candidate sequence

X̃n


indeed solves (2), we have to work with an explicit
representation for the reproductions involved in (A.2). To that aim, let

ξ
(n,k)
g,i, j,m ∼ Pois(αk), independently over i, n ∈ Z and k, j, g,m ∈ N. (A.7)

In our branching terminology, ξ (n,k)g,i, j,m denotes the number of offspring individuals at time n
whose parent lived at time n − k. This parent belongs to the (g − 1)-th generation of family
(i, j). Furthermore, this parent is the mth such individual. We repeat the defining recursion for
the generation processes from above – this time we represent the involved offspring sequences
explicitly:

G(0,i, j)
n := 1{n=0}, n ∈ Z, i ∈ Z, j ∈ N (A.8)

G(g,i, j)
n :=

n
k=1

αk ◦ G(g−1,i, j)
n−k (A.9)

:=

n
k=1

G(g−1,i, j)
n−k
m=1

ξ
(i+n,k)
g,i, j,m , n ∈ Z, i ∈ Z, j ∈ N, g ∈ N. (A.10)

It is obvious that (A.10) justifies the distributional assumptions on (A.9) (i.e., (A.2)), used in the
first part of this proof. For any n ∈ Z, we find

X̃n =

n
i=−∞

εi
j=1

F (i, j)
n−i =

n−1
i=−∞

εi
j=1

F (i, j)
n−i +

εn
j=1

F (n, j)
0 =

n−1
i=−∞

εi
j=1

∞
g=0

G(g,i, j)
n−i + εn .

(A.11)

Note that the third summation really starts in g = 1 because G(0,i, j)
n−i = 1{n−i=0} = 0 whenever

i ≤ n − 1. For the triple sum in (A.11), we obtain

n−1
i=−∞

εi
j=1

∞
g=1

G(g,i, j)
n−i =

n−1
i=−∞

εi
j=1

∞
g=1

n−i
k=1

G(g−1,i, j)
n−i−k
m=1

ξ
(i+n−i,k)
g,i, j,m

=

∞
k=1

 n−k
i=−∞

εi
j=1

∞
g=1

G(g−1,i, j)
n−k−i
m=1

ξ
(n,k)
g,i, j,m

 . (A.12)
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For (A.12), we use the fact that it is irrelevant whether we let k run over {1, 2, . . . , n − i} or over
N because G(g−1,i, j)

n−i−k = 0 whenever k > n − i ; by the same argument, we may let i run up to
n − k only. For fixed n ∈ Z and k ∈ N, the term in the bracket is a sum of i.i.d. Pois(αk) random
variables ξ (n+i,k)

n, j,g,m over the (stochastic) index set

I (n,k) :=


(g, i, j,m) ∈ Z4

: 1 ≤ g, i ≤ n − k, 1 ≤ j ≤ εi , 1 ≤ m ≤ G(g−1,i, j)
n−k−i


.

For the size of I (n,k), we obtainI (n,k) =

n−k
i=−∞

εi
j=1

∞
g=1

G(g−1,i, j)
n−i−k

(A.3)
=

n−k
i=−∞

εi
j=1

F (i, j)
n−i−k

(A.4)
= X̃n−k (< ∞, a.s.).

(A.13)

Let (ξ (n,k)m ) be the offspring sequences from Definition 2. Note that, for n ∈ Z and k ∈ N,
ξ
(n,k)
l : l = 1, 2, . . . , X̃n−k


and


ξ
(n,k)
g,i, j,m : (g, i, j,m) ∈ I (n,k)


(A.14)

are equally distributed – no matter which order we choose for the second set. Also note that, for
(n, k) ≠ (n′, k′), we have that I (n,k) ∩ I (n

′,k′)
= ∅. Consequently, the independence properties

over n and k necessary for the reproductions are preserved. We did indeed make correspondence
(A.14) explicit. The reordering of the offspring sequences, however, is cumbersome. It involves a
function that is recursively defined on multiple levels; its presentation would double the length of
the whole proof – yielding hardly additional insight at that. So we chose to leave it with (A.14).
Continuing with (A.11), we obtain that, for n ∈ Z,

X̃n
(A.11)
=

n−1
i=−∞

εi
j=1

∞
g=0

G(g,i, j)
n−i + εn

(A.12)
=

∞
k=1


(g,i, j,m)∈I (n,k)

ξ
(n,k)
g,i, j,m + εn =

∞
k=1

|I (n,k)|
l=1

ξ
(n,k)
l + εn

(A.14)
=

∞
k=1

X̃n−k
l=1

ξ
(n,k)
l + εn .

We conclude that


X̃n


indeed solves (2).

For uniqueness, consider two stationary solutions (Xn, ) , (Yn) of (2) – defined on the same
probability space and with respect to the same immigration sequence (εn) and the same offspring

sequences

ξ
(n,k)
l


, n ∈ Z, k ∈ N. It follows from (2) that EXn = EYn = α/(1 − K ) < ∞.

Then

E
Xn − Yn

 (1)
= E

 ∞
k=1

(αk ◦ Xn−k − αk ◦ Yn−k)

 ≤ E
∞

k=1

αk ◦ Xn−k − αk ◦ Yn−k


=

∞
k=1

E
αk ◦ Xn−k − αk ◦ Yn−k

. (A.15)



M. Kirchner / Stochastic Processes and their Applications 126 (2016) 2494–2525 2511

As the offspring at time n of Xn−k and Yn−k is given by same offspring sequence, we have that

αk ◦ Xn−k − αk ◦ Yn−k
 =


Xn−k
l=1

ξ
(n,k)
l −

Yn−k
l=1

ξ
(n,k)
l

 =


max{Xn−k ,Yn−k }

l=min{Xn−k ,Yn−k }

ξ
(n,k)
l


d
=


|Xn−k−Yn−k |

l=1

ξ
(n,k)
l

 , k ∈ N. (A.16)

Plugging (A.16) in (A.15), we obtain

E
Xn − Yn

 ≤

∞
k=1

E
|Xn−k−Yn−k |

i=1

ξ
(n,k)
i =

∞
k=1

αkE
Xn−k − Yn−k

 stat.
= KE

Xn − Yn
, n ∈ Z.

As K < 1 by assumption and E|Xn − Yn| < ∞, we get that E|Xn − Yn| = 0 and therefore
Xn = Yn , n ∈ Z, almost surely. �

A.2. Proof of Proposition 1

Eq. (3) together with (4) and (5) is exactly the construction of a solution to the defining
difference-equations (2) in the proof of Theorem 1; see (A.3) and (A.10). To establish (6),
consider the process on the right-hand side:


F̃n


n∈Z

:=

1{n=0} +

n
i=1

G(1)
i

j=1

F (i, j)
n−i


n∈Z

.

We show that the process


F̃n


is constructed by the same (stochastic) recursion as (Fn); see (4)

and (5). Then the equality in distribution follows. For n ∈ Z, we define

G̃(0)
n := 1{n=0} and G̃(g)

n :=

n
i=1

G(1)
i

j=1

G(g−1,i, j)
n−i , g ∈ N, (A.17)

where


G(g,i, j)
n


, g ∈ N0, are the generation processes that constitute the family processes

F (i, j)
n


, i ∈ Z, j ∈ N, in (6). In particular,


G(g,i, j)

n


are independent copies of the generations

G(g)
n


defined in (5). Then, by construction, F̃n =


g≥0 G̃(g)

n , n ∈ Z. This establishes a

representation for


F̃n


of the same form as (4) for (Fn). Next, we show that the summands

G̃(g)
n


follow the same recursion (5) as the original generations


G(g)

n


: for g = 0, we have

that G̃(0)
n = 1{n=0}, n ∈ Z. So the starting value of the recursion for


G̃(g)

n


is the same as the

starting value of the recursion (5) for


G(g)
n


. For g = 1, recursion (5) is also analogue:

G̃(1)
n =

n
i=1

G(1)
i

j=1

G(0,i, j)
n−i =

n
i=1

G(1)
i

j=1

1{n−i=0} = G(1)
n =

n
k=1

αk ◦ 1{n−k=0} =

n
k=1

αk ◦ G̃(0)
n−k .
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And, for any g ≥ 2, we find that

G̃(g)
n =

n
i=1

G(1)
i

j=1

G(g−1,i, j)
n−i =

n
i=1

G(1)
i

j=1

n−i
k=1

αk ◦ G(g−2,i, j)
n−i−k =

n
k=1

n−k
i=1

G(1)
i

j=1

αk ◦ G(g−2,i, j)
n−i−k ,

where in the third equality we use that G(g−2,i, j)
n−i−k = 0, g ≥ 2, n − i − k ≤ 0. At this point

we avoid the explicit representation of the offspring sequences. We just remind ourselves that all
reproductions involved are independent and establish

G̃(g)
n =

n
k=1

αk ◦

n−k
i=1

G(1)
i

j=1

G(g−2,i, j)
n−i−k =

n
k=1

αk ◦ G̃(g−1)
n−k , n ∈ Z, g ≥ 2.

In other words, the processes (Gn) and


G̃n


and, consequently, the processes (Fn) and

F̃n


are constructed by the same stochastic recursion. We conclude that


Fn
 d

=


F̃n


. This

establishes (6). �

A.3. Proof of Proposition 2

For (9), we first apply representation (3):

M(Xn) ((tn)) = E exp


∞

n=0

tn Xn


= E exp


d

n=0

tn Xn


= E exp


d

n=0

tn

i∈Z

εi
j=1

F (i, j)
n−i



= E

i∈Z

εi
j=1

exp


d

n=0

tn F (i, j)
n−i


.

In the following, we set tm := 0 whenever m < 0. Conditioning on the immigration sequence

(εi ) and exploiting its independence from the family processes


F (i, j)
n


yields

M(Xn)(t1, . . . , td) = E

i∈Z

εi
j=1

E


exp


d

n=0

tn F (i, j)
n−i



=


i∈Z

E


E


exp


n∈Z

tn Fn−i

εi


=


i∈Z

E


M(Fn)


(ti+n)n∈N0

εi


=


i∈Z

exp

α0


M(Fn)


(ti+n)n∈N0


− 1



= exp


i∈Z

α0


M(Fn)


(ti+n)n∈N0


− 1


, (A.18)
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where in the last but one step we applied the formula for the probability-generating function of a
Poisson random variable. Up to now, (A.18) is only a formal representation of M(Xn) in terms of
M(Fn). It is not clear yet, whether and when M(Xn) is finite. For (10), we apply representation (6)
of (Fn) from Proposition 1:

M(Fn)


(sn)


= E exp


∞

n=0

sn Fn


(6)
= E exp

 ∞
n=0

sn

1{n=0} +

n
k=1

G(1)
k

j=1

F (k, j)
n−k

 .
We note that in the last term, the index k may run to ∞ instead of n, because F (k, j)

n−k = 0, j ∈ N,
whenever k > n. After straightforward calculations, we obtain

M(Fn)


(sn)n∈N0


= es0E exp

 ∞
n=0

∞
k=1

G(1)
k

j=1

sn F (k, j)
n−k


= es0 exp


∞

k=1

αk


M(Fn)


(sn+k)n∈N0


− 1


. (A.19)

Next we derive finiteness of M(Fn). Let (sn) be a sequence with finite support and s := max{sn}

so that


∞

n=0 sn Fn is bounded from above by sS, where S :=


∞

n=0 Fn denotes the total number
of individuals in the generic family (Fn). We remind ourselves of the defining Eq. (4) for the
family process (Fn) and find that

S =

∞
n=0

Fn =

∞
n=0

∞
g=0

G(g)
n =

∞
g=0

∞
n=0

G(g)
n . (A.20)

We denote the total number of individuals in the gth generation by Yg :=


∞

n=0 G(g)
n , g ∈ N0.

The sequence

Yg


g∈N0
is the embedded generation process. Applying (5), we find that Y0 = 1

and, for g ≥ 2,

Yg =

∞
n=0

G(g)
n =

∞
n=0

∞
k=1

αk ◦ G(g−1)
n−k =

∞
k=1

∞
n=0

αk ◦ G(g−1)
n−k

d
=

∞
k=1

αk ◦

∞
n=0

G(g−1)
n−k

=

∞
k=1

αk ◦ Yg−1 =

Yg−1
k=1

ξ
(g)
k ,

where ξ (g)k
i.i.d.
∼ Pois(K ), k, g ∈ N. In other words, the embedded generation process


Yg


is a standard Galton–Watson branching process. From (A.20), we see that S
d
=


∞

g=0 Yg . In
other words, S is distributed like the cumulative limit of a standard Galton–Watson process. The
moment-generating functions of such limits have been considered in the literature: as K < 1, by
Theorem 2.1 in [20], there exists a δ > 0 such that E exp{δS} < ∞ if and only if there exists a
δ̃ > 0 such that E exp


δ̃ξ
(1)
1


< ∞. The latter is indeed the case because the moment-generating

function of a Poisson variable is finite on R. Furthermore, by Jensen’s inequality, we see that
1 ≤ limn→∞ E exp{δS/n} ≤ limn→∞ (E exp{δS})1/n

= 1. So, for any given ϵ > 0, we can
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assume the existence of a δ > 0 such that E exp (δS) < 1 + ϵ. In particular,

∃ δ > 0 such that M(Fn)


(sn)


≤ E exp (δS) < 1 + (1 − K )/(2K )

for (sn)n∈N0 ∈ c00 ((−∞, δ]) , (A.21)

where, as before, K =


∞

k=1 αk < 1. We now have established finiteness of M(Fn) in a
neighborhood of zero. It remains to establish finiteness of M(Xn). Our goal is to bound the series
representation (A.18) of M(Xn). To that aim, we need to refine the bound (A.21) for M(Fn)


(sn)


.

To that aim, with the constant δ > 0 from (A.21), for i ∈ Z, we introduce the sequences

δ
(i)
n


n∈Z

defined by

δ(i)n :=


δ, n = i, i − 1, . . . , i − d,
0, else,

(A.22)

where d = supp((tn))+ 1, as before, with (tn) the considered argument sequence. Note that, for
i < 0, we have that δ(i)n = 0, n ∈ N0. Consequently, by definition of M(Fn), for i < 0, we have

that M(Fn)


δ
(i)
n


n∈N0


= 1. Furthermore, observe that


δ
(i)
n+k


n

=


δ
(i−k)
n


n
, i, k ∈ Z. For

(tn) ∈ c00

(−∞, δ]


, we have by component-wise monotonicity of M(Xn) that

M(Xn)


(tn)


≤ M(Xn)


(δ
(d)
n+i )n∈N0


(A.18)
= exp


i∈Z

α0


M(Fn)


(δ
(d)
n+i )n∈N0


− 1



= exp


d

i=−∞

α0


M(Fn)


(δ(d−i)

n )n∈N0


− 1



= exp


α0

∞
i=0

mi


, (A.23)

where we set mi := M(Fn)


(δ
(i)
n )n∈N0


− 1, i ∈ Z. Note that, by (A.21), we have that

0 ≤ mi ≤ (1 − K )/(2K ), i ∈ Z. (A.24)

and, in particular, mi = 0 for i < 0. In the following, we only consider mi with i > d. In this

case, we get from (A.22) that eδ
(i)
0 = e0

= 1 and we obtain the recursion

mi = M(Fn)


(δ(i)n )n∈N0


− 1

(A.19)
= eδ

(i)
0 exp


∞

k=1

αk


M(Fn)


(δ
(i)
n+k)n∈N0


− 1


− 1

(A.22)
= exp


i

k=1

αkmi−k


− 1, i > d. (A.25)

For the sum in the exponential, we find that

i
k=1

αkmi−k
(A.24)
≤

∞
k=1

αk(1 − K )/(2K ) = K (1 − K )/(2K ) < 1, i ∈ Z.
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Therefore, we may apply the exponential inequality exp(x) ≤ (1 − x)−1, x < 1, in (A.25):

mi ≤
1

1 −

i
k=1

αkmi−k

− 1 =

i
k=1

αkmi−k

1 −

i
k=1

αkmi−k

(A.24)
≤

i
k=1

αkmi−k

1 −

i
k=1

αk(1 − K )/(2K )

≤

2
∞

k=1
αkmi−k

1 + K
, i > d. (A.26)

Summing both sides of (A.26) over i > d, we obtain

∞
i=d+1

mi ≤
2

1 + K

∞
i=d+1

∞
k=1

αkmi−k =
2

1 + K

∞
k=1

αk

∞
i=d+1

mi−k

(A.24)
≤

2
1 + K

∞
k=1

αk

∞
l=0

ml =
2K

1 + K


d

l=0

ml +

∞
l=d+1

ml


. (A.27)

Keeping in mind that 1 − 2K/(1 + K ) > 0, we solve (A.27) for


∞

i=d+1 mi and find that

∞
i=d+1

mi ≤


1 −

2K

1 + K

−1 2K

1 + K

d
l=0

ml
(A.24)
≤

2K

1 − K
d

1 − K

2K
= (1 + d). (A.28)

For the summation of (mi )i∈N0 over i ∈ N0, we finally obtain

∞
i=0

mi
(A.28)
≤

d
i=0

mi + d + 1
(A.24)
≤ (d + 1)


1 − K

2K
+ 1


= (d + 1)

1 + K

2K
. (A.29)

We conclude that, for all (tn) ∈ c00((−∞, δ]) with supp((tn)) = d , we have that

M(Xn)(t1, . . . , td)
(A.23)
≤ exp


α0

∞
i=0

mi


(A.29)
≤ exp


α0d

1 + K

2K


< ∞. (A.30)

Uniqueness of M(Fn) follows by induction over the (finite) support of the argument sequence.
In that sense, the implicit equation (10) specifies M(Fn) recursively. �

A.4. Proof of Proposition 3

The sequence values un, n ∈ Z, are well-defined because the partial sums of


∞

k=1 αk Xn−k
are nondecreasing and their expectations have a finite limit. Stationarity of (un) follows from
stationarity of (Xn). Denote Fn := σ {Xk : k ≤ n}. From E


αk ◦ Xn−k |Fn


= αk Xn−k, k ∈ N,

we get that

E[un|Fn−1] = E[Xn|Fn−1] − α0 −

∞
k=1

αk Xn−k = 0, (A.31)
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and, consequently, Eun = 0, n ∈ Z. For the autocovariances of the errors, note that, for n′ < n
(and then, by symmetry, for n′

≠ n),

E

unun′


= E


E

unun′ |Fn−1


= E


un′ E


un|Fn−1

  
(A.31)
= 0


= 0.

Finally, we have that

Var(un) = E

Var


un|Fn−1

  
(11)
= Var(Xn |Fn−1)


+ Var


E

un|Fn−1

  
(A.31)
= 0


= E


α0 +

∞
k=1

αk Xn−k



= α0 + K
α0

1 − K
=

α0

1 − K
. � (A.32)

A.5. Proof of Proposition 4

Let B be the backward shift operator defined by Bk xn := xn−k, k ∈ Z, for any sequence
(xn)n∈Z. Consider the power series φ (z) := 1 −


∞

k=1 αk zk . With these notations, we may
rewrite (13) as φ(B) (Xn − µX ) = un, n ∈ Z, where (un) is the white-noise sequence from
Proposition 3. One can show that the power series φ (z) is (absolutely) convergent for all |z| ≤ 1.
So φ is analytic on the open unit disc. Furthermore, we have that

|φ(z)| =

1 −

∞
k=1

αk zk

 ≥ 1 −

 ∞
k=1

αk zk

 ≥ 1 −

∞
k=1

αk |z|
k

≥ 1 − K > 0, |z| ≤ 1.

As φ(z) ≠ 0 for |z| ≤ 1, we may define the function ψ(z) := 1/φ(z), |z| ≤ 1, which is
also analytic on the open unit disc and which, consequently, has a power-series representation
ψ(z) =


∞

k=0 βk zk, |z| < 1. As 1 = ψ(z)φ(z) by definition, if follows that, for |z| < 1,

1 =

∞
k=0

βk zk


1 −

∞
l=1

αl z
l


=

∞
k=0


βk −

k
j=1

α jβk− j


zk . (A.33)

Comparing coefficients in (A.33), one obtains the recursion

β0 = 1 and βk =

k
j=1

α jβk− j , k ∈ N.

We note that βk ≥ 0 because αk ≥ 0. Formally, we can write

Xn − µX = ψ(B)un, n ∈ Z. (A.34)

For the well-definedness of the right-hand side of this equation, it suffices to show that
∞

k=0 |βk | < ∞; see Proposition 3.1.2 in [6]. To that aim, we apply Wiener’s Lemma; see
Lemma IIc. in [26]. Let φ̃(θ) = 1 −


∞

k=1 αkeikπθ , θ ∈ (−π, π]. The lemma states that if
∞

k=1 |αk | < 1, then the Fourier series of the function 1/φ̃(θ) is absolutely convergent. By the
same calculation as in (A.33), we find that the Fourier-coefficients of 1/φ̃(θ) are exactly the



M. Kirchner / Stochastic Processes and their Applications 126 (2016) 2494–2525 2517

βk, k ∈ N0, from our ψ function. From this we get
∞

k=0

|βk |
Lemma

=
1

φ̃(0)
=

1
φ(1)

=
1

1 − K
< ∞.

We conclude that (A.34) is a meaningful family of equations. In other words, (Xn − µX ) can be
represented as a moving-average process with respect to the white-noise sequence (un). �

A.6. Proof of Proposition 5

With the notation from the moving-average representation of the INAR(∞) sequence in
Proposition 4, we find that, for j, n ∈ Z,

R( j) = Cov

Xn − µX , Xn+ j − µX


= Cov


∞

k=0

βkun−k,

∞
k=0

βkun+ j−k


.

From Proposition 3, we know that Cov

un, un+ j


= 1{ j=0}α0/(1 − K ), j ∈ Z,. Furthermore,

from Proposition 4, we have that the coefficients βk are absolutely summable. So (15) follows
from Proposition 3.1.2. in [6]. For the sum of the autocovariance sequence, we observe

∞
k=0

R(k) =
α0

1 − K

∞
k=0

∞
i=0

βiβi+k =
α0

1 − K

∞
i=0

βi

∞
k=0

βi+k

≤
α0

1 − K

∞
i=0

βi

∞
k=−i

βi+k =
α0

(1 − K )3
.

The last equality re-uses the result


∞

i=0 βi = 1/(1 − K ) from Proposition 4. �

A.7. Proof of Proposition 9

Plugging in definitions, we obtain

ΨN (∆) [ f ] = E exp

−


R

f (t)N (∆) (dt)


= E exp


−


n∈Z

X (∆)n f (n∆)


.

By stationarity of (X (∆)n ), we may assume without loss of generality that f (t) = 0, t < 0. We
apply formulas (9) and (10) for the joint moment-generating function of the INAR(∞) process

X (∆)n


and the corresponding generic family process


F (∆)n


:

ΨN (∆) [ f ] = M
X (∆)n

− f (0),− f (∆),− f (2∆), . . .


(9)
= exp


∆η


i∈Z


M
(F (∆)n )


− f


(n + i)∆


n∈N0


− 1


.

We set Ψ (∆)
F (∆)


(sn)


:= M(F (∆))


(−sn)


, (sn) ∈ c00


[0,∞)


. This establishes the lemma. �

A.8. Proof of Lemma 2

Claims (22) and (23) directly follow from the definition of N (∆) in (21) together with
Theorem 1 and Lemma 1. For (24), we find that the number of grid points in the interval
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[a, b] is less or equal ⌈(b − a)/∆⌉ + 1. To get rid of the ceiling function, we observe that
⌈(b − a)/∆⌉ + 1 < (b − a)/∆ + 2. Combining this with the facts that K (∆)

≤ K̃ and ∆ < δ

together with (22) and (23) yields inequality (24). �

A.9. Proof of Lemma 3

Let A ∈ Bb be a bounded Borel set. Note that

Var


N (∆)(A)


= Var

 
n: n∆∈A

X (∆)n


=


m: m∆∈A


n: n∆∈A

Cov


X (∆)n , X (∆)m


=


m: m∆∈A


n: n∆∈A

R(∆)(n − m),

where R(∆) is the autocovariance function of the INAR(∞) sequence from Proposition 5. From
this proposition, we know that R(∆)(k) ≥ 0, k ∈ Z and


∞

k=0 R(∆)(k) ≤ η∆(1 − K (∆))−3.
Applying these results yields

Var


N (∆)(A)


≤


m: m∆∈A


n∈Z

R(∆)(n − m) ≤


m: m∆∈A

2η∆
(1 − K (∆))3

≤


2 +

sup A − inf A

∆


2η∆

(1 − K̃ )3

≤ (2δ + sup A − inf A)
2η

(1 − K̃ )3
,

where K̃ < 1 does not depend on the choice of ∆ ∈ (0, δ); see Lemma 1. �

A.10. Proof of Lemma 4

The claim follows with Proposition 11.1.VI. from [7] if for all compact intervals [a, b] ⊂ R
and for all ϵ > 0 there exists an M < ∞ such that

sup
∆∈(0,δ)

P


N (∆)
[a, b]


> M


< ϵ.

The uniform boundedness of these probabilities is a consequence of Lemma 2 and Markov
inequality: for any ϵ > 0 and a < b, let Mϵ := (b − a + 2δ)η/(1 − K̃ ), where δ > 0 and
K̃ < 1 as in Lemma 1. Then we have that

P


N (∆)

[a, b]


> Mϵ


≤

EN (∆)

[a, b]


Mϵ

< (b − a + 2δ)
η

Mϵ(1 − K̃ )
= ϵ, ∆ ∈ (0, δ). �

A.11. Proof of Theorem 2

As a consequence of Lemma 5, the family of probability measures

P(∆)


∆∈(0,δ) that corre-

sponds to the family of point processes

N (∆)


∆∈(0,δ) is relatively compact for weak conver-

gence by Prokhorov’s theorem; see [7, Theorem A.2.4.I]. So every sequence in

P∆

∆∈(0,δ),

respectively,

N (∆)


∆∈(0,δ), contains a weakly convergent subsequence. In particular, for any
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zero sequence in (0, δ), we can find a subsequence (∆n) such that

N (∆n)


converges weakly to

some point process N∗. If the distribution of N∗ does not depend on the initial choice of the sub-
sequence, it follows that the original sequence converges weakly to N∗; see Theorem 2.3. in [2].
Reconsider the implicit defining-equation (19) from Definition 5. By Proposition 6, we know that
this equation determines the distribution of the solving process. So, for the proof of Theorem 2,
it suffices to show that any subsequential limit candidate N∗ solves (19). Furthermore, one can
show that it suffices to prove (19) for A∗

∈ BN∗

a , where BN∗

a is a semiring of sets that generates
the σ -algebra H N∗

a ; see (17). A semiring is a class of sets A such that for any pair A, B ∈ A
one has (i) A ∩ B ∈ A and (ii) (A ∪ B) \ (A ∩ B) = ∪

n
i=1 Ai for some n ∈ N, (Ai ) ⊂ A and

Ai ∩ A j = ∅, i, j = 1, . . . , n. We consider, for any a ∈ R and any point process N ,

BN
a :=


ω ∈ Ω : N ((s1, t1]) (ω) ∈ D1, . . . , N ((sk, tk]) (ω) ∈ Dk


:

−∞ < si < ti ≤ a, Di ⊂ N0, k ∈ N

. (A.35)

One can check that the set system BN
a is indeed a semiring. Summarizing the above, for the

proof of Theorem 2, it suffices to establish

E


1A∗ N∗

(a, b]


= E


1A∗

 b

a
λ(s|N∗) ds


, a < b, A∗

∈ H N∗

a . (A.36)

First, let us establish a discrete version of (A.36) for the approximating sequence: set Nn :=

N (∆n) for all ∆n in the chosen subsequence. For a < b and An ∈ B
Nn
a , we find that

E


1An Nn

(a, b]


= E

1An


k: k∆n∈(a,b]

X (∆n)
k


= E

1An


k: k∆n∈(a,b]


ε
(∆n)
k +

∞
l=1


∆nh(l∆n)


◦ X (∆n)

k−l


= E

1An


k: k∆n∈(a,b]


∆nη +

∞
l=1

∆nh(l∆n)X
(∆n)
k−l

 , n ∈ N.

The last step follows by the observation that the immigrations ε(∆n)
k as well as the reproductions

that contribute to X (∆n)
k , k∆n > a, are independent of X (∆n)

k−1 , X (∆n)
k−2 , . . .

Rewriting the inner sum of the last term as an integral with respect to the random measure
Nn , we obtain, for a < b,

E


1An Nn

(a, b]



= E

1An


k: k∆n∈(a,b]

∆n


η +

 k∆n

−∞

h(k∆n − s)Nn(ds)

 , An ∈ BNn
a , n ∈ N.

(A.37)

Note that here and throughout the proof the upper integration bounds in the Hawkes intensities
do not require special attention due to the assumption h(0) = 0 for reproduction intensities
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h in Definition 4, respectively, Lemma 1. Now we show that (A.37) converges to (A.36)
corresponding to the Hawkes process. For both sides of Eq. (A.37), this is achieved in three
steps:

• First, we establish that the random variable in the expectation can be written as Φ(Nn), where
Φ : (Mp,M p) → (R,B) denotes some measurable mapping with set of discontinuities
DΦ ⊂ Mp.

• Next, we show that P

N∗

∈ DΦ


= 0.
• Finally, we prove that the random variables in question are uniformly integrable.

By Proposition 8, the first two points together imply that Φ(Nn)
w
→ Φ(N∗). The additional

uniform-integrability property yields that the corresponding expectations also converge; see
Theorem 5.4 in [2].

Left-hand side of (A.37):
Consider the map

Φ :

Mp,M p


→ (R,B) , m → 1{m((s1,t1])∈D1,...,m((sk ,tk ])∈Dk }m


(a, b]


; (A.38)

see the definition of BN
a in (A.35) for the notation. We claim that Φ is vaguely continuous on

Mp \{m : m (DΦ) > 0}, where DΦ :=


{a, b} ∪

k
i=1{si , ti }


. Indeed: the map m → m((a, b])

is vaguely continuous on Mp \ {m : m({a, b}) > 0} and, for i = 1, . . . , k, the maps m →

m((si , ti ]) are vaguely continuous on Mp \ {m : m ({si , ti }) > 0}. The map Nk
0 ∋ (l1, . . . , lk) →

1{l1∈D1, ..., lk∈Dk } is trivially continuous, so that m → 1{m((s1,t1])∈D1,...,m((sk ,tk ])∈Dk } is continuous

on Mp \
k

i=1{si , ti }. From Proposition 8, we have that Φ(Nn)
w
→ Φ(N∗) if P


N∗ (DΦ) > 0


=

0. Because DΦ is finite, it suffices to show that P

N∗

{t}

> 0


= 0 for any t ∈ R.

P

N∗({t}) > 0


= E1N∗({t})>0 ≤ EN∗({t})

Lemma 4
= lim

n→∞
ENn({t})

(23)
< ∆

η

(1 − K̃ )
, t ∈ R,∆ ∈ (0, δ).

So P

N∗({t}) > 0


= 0 and, consequently, P


N∗(DΦ) > 0


must also be zero. This establishes

Φ(Nn)
w
→ Φ(N∗), respectively, 1An Nn(a, b)

w
→ 1A∗ N∗(a, b). From Lemma 4, we know that

(Nn(a, b)) is uniformly integrable, so

1An Nn(a, b)


is also uniformly integrable. Combining

weak convergence and uniform integrability yields convergence of expectations

lim
n→∞

E


1An Nn

(a, b]


= E


1A∗ N∗


(a, b]


.

We have established the convergence of the left-hand side of (A.37) to the left-hand side of
(A.36).

Right-hand side of (A.37):
Note that the right-hand side of (A.37) converges to the right-hand side of (A.36) if

k∈(a,b]

∆nE


1An

 k∆n

−∞

h(k∆n − s)Nn(ds)



n→∞
−→

 b

a
E


1A∗

 t

−∞

h(t − s)N∗(ds)


dt. (A.39)
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As a first step for establishing (A.39), note that, for all choices of M with −M < a, and, for
t ∈ [a, b],

1An

 t

−M
h(t − s)Nn(ds)

w
→ 1A∗

 t

−M
h(t − s)N∗(ds), n → ∞. (A.40)

This is due to a continuous-mapping argument similar to the one we have used for the left-hand
side of (A.37). We establish that the variances of the random variables

 t
−M h(t − s)Nn(ds), n ∈

N0, are uniformly bounded:

Var
 t

−M
h(t − s)Nn(ds) ≤ Var

⌈M/∆n⌉
l=1

h(l∆n)X
(∆n)
−l

=

⌈M/∆n⌉
l=1

⌈M/∆n⌉
m=1

h(l∆n)h(m∆n)Cov


X (∆n)
−l , X (∆n)

−m


.

At this point, we write R(∆n) for the autocovariance function of the INAR(∞) process


X (∆n)
l


.

Applying Proposition 5 yields

Var
 t

−M
h(t − s)Nn(ds) ≤

⌈M/∆n⌉
l=1

h(l∆n) sup h
⌈M/∆n⌉

m=1

R(∆n)(|l − m|)

≤

⌈M/∆n⌉
l=1

h(l∆n) sup h
∞

i=−∞

R(∆n)(i)

(16)
≤

⌈M/∆n⌉
l=1

h(l∆n) sup h
2η∆n

1 − K (∆n)
3

≤


M

∆n
+ 1


(sup h)2

2η∆n
1 − K (∆n)

3
(20)
≤ (M + ∆n) (sup h)2

2η
1 − K̃

3
∆n≤δ
≤ (M + δ) (sup h)2

2η
1 − K̃

3 ≤ cM < ∞, (A.41)

where cM is a constant independent of n, respectively, ∆n . We may conclude that the random
variables 1An

 t
−M h(t − s)Nn(ds), n ∈ N, are uniformly integrable. Weak convergence together

with uniform integrability yields convergence of expectations. We have established that, for M
with −M < a,

lim
n→∞

E


1An

 t

−M
h(t − s)Nn(ds)


= E


1A∗

 t

−M
h(t − s)N∗(ds)


. (A.42)

For the proof of (A.39), we consider a truncated part of h and its remaining tail separately. For
the truncated part, we use (A.42); for the tail part, we use the integrability condition


h dt < 1:
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for any M > −a, we have 
k∈(a,b]

∆nE


1An

 k∆n

−∞

h(k∆n − s)Nn(ds)


−

 b

a
E


1A∗

 t

−∞

h(t − s)N∗(ds)


dt


≤

 
k∈(a,b]

∆nE


1An

 k∆n

−M
h(k∆n − s)Nn(ds)



−

 b

a
E


1A∗

 t

−M
h(t − s)N∗(ds)


dt


+


k∈(a,b]

∆nE


1An


−M

−∞

h(k∆n − s)Nn(ds)



+

 b

a
E


1A∗


−M

−∞

h(t − s)N∗(ds)


dt. (A.43)

Let ε > 0. We show that we can find Mε and Nε ∈ N such that each of the three summands in
(A.43) is bounded by ε/3 for n ≥ Nε. First, consider the integrand of the last summand in (A.43).
By arguing similarly to the m((a, b]) part in (A.38), we find that EN∗(dt)/dt ≤ η/(1 − K̃ ). So
we can choose M (1)

ε > 0 so large that, for t ∈ [a, b],

E


1A∗


−M(1)

ε

−∞

h(t − s)N∗(ds)


≤ E


−M(1)

ε

−∞

h(t − s)N∗(ds)

≤
η

1 − K̃


∞

M(1)
ε +a

h(s)ds <
ε

3(b − a)
.

The summands of the second term in (A.43) can be bounded by ε/(3⌈b − a⌉) in a similar and
even more direct way – uniformly over n and possibly with respect to another M (2)

ε > 0. We
set Mε := max


M (1)
ε ,M (2)

ε


. So taking the integral over the interval [a, b] of the last summand,

respectively, the Riemann sum of the second summand in (A.43), yields b

a
E


1A∗


−Mε

−∞

hM (t − s)N∗(ds)


dt <

ε

3
, (A.44)

respectively,
k: k∆n∈(a,b]

∆nE


1A∗


−Mε

−∞

hM (k∆n − s)N∗(ds)


<
ε

3
. (A.45)

For the first term in (A.43), denote

En(t) := E


1An

 t

−Mε

h(t − s)Nn(ds)


and E∗(t) := E


1A∗

 t

−Mε

h(t − s)N∗(ds)


.

From (A.40), we already know that, for any choice of Mε, limn→∞ |En(t) − E∗(t)| = 0, t ∈

(a, b]. However, the convergence of the Riemann-like sums


k: k∆n∈(a,b]
En(k∆n)∆n to the

integral
 b

a E∗(s)ds is nontrivial as the functions En are themselves part of the sequence. We
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write 


k: k∆∈(a,b]

∆n En(k∆n)−

 b

a
E∗(t)dt

 ≤




k: k∆∈(a,b]

∆n En(k∆n)−

 b

a
En(t)dt


+

 b

a
En(t)dt −

 b

a
E∗(t)dt

 . (A.46)

The second absolute difference in (A.46) converges to zero because of dominated convergence
of (En). Indeed, for t ∈ [a, b],

E


1An

 t

−Mε

h(t − s)Nn(ds)


≤ E

 b

−Mε

h(t − s)Nn(ds) ≤ sup h


k: k∆n∈(−Mε,b]

EX (∆n)
k

≤ sup h
⌈Mε + b⌉η

1 − K̃
. (A.47)

Note that sup h < ∞ follows from the piecewise-continuity assumption. In view of the upper
bound (A.47), we apply the dominated convergence theorem and choose N (1)

ε ∈ N so large that,
for the second absolute difference in (A.46), we have b

a
En(t)dt −

 b

a
E∗(t)dt

 < ε

6
, n ≥ N (1)

ε . (A.48)

For the first absolute difference in (A.46), we assume that, without loss of generality, the
piecewise continuous function h is uniformly continuous on (0,∞). Otherwise, we note that any
piecewise continuous function on R that is vanishing at infinity is uniformly continuous on each
of its continuous pieces and do the following calculation once for every uniformly continuous
piece of h. Uniform continuity gives us a constant δh > 0, so small, that, for any t0 > 0,

|t − t0| < δh ∧ t > 0 ⇒ |h(t)− h(t0)| <
ε(1 − K̃ )

12η(b − a + δ)(Mε + b + δ)
. (A.49)

Now, choose N (2)
ε so large that

∆n < min


δh,

ε(1 − K̃ )

12η(b − a + δ) sup h


for n ≥ N (2)

ε . (A.50)

Here again, δ and K̃ are the constants from Lemma 1. Let a ≤ s < t ≤ b with t −s < ∆n(< δh),
then

|En(t)− En(s)|

=




k∆n∈(−Mε,t)

E

1An h(t − k∆n)X

(∆n)
k


−


k∆n∈(−Mε,s]

E

1An h(s − k∆n)X

(∆n)
k


≤

 
k∆n∈(−Mε,s]

|h(t − k∆n)− h(s − k∆n)| +


k∆n∈(s,t)

h(t − k∆n)

EX (∆n)
0

(A.49)
≤


Mε + s + ∆n

∆n

ε(1 − K̃ )

12η(b − a + δ)(Mε + b + δ)
+ sup h


∆nη

1 − K (∆)
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≤
ε

12(b − a + δ)
+ ∆n

η sup h

1 − K̃
(A.50)
≤

ε

12(b − a + δ)
+

ε

12(b − a + δ)
=

ϵ

6(b − a + δ)
. (A.51)

Summarizing the above calculation, we have established the existence of an N (2)
ε ∈ N such that,

for all n ≥ N (2)
ε , we have |En(t) − En(s)| ≤ ε/(6(b − a + δ)) whenever |t − s| < ∆n and

s, t ∈ [a, b]. For the first absolute difference in (A.46), we therefore get


k: k∆n∈(a,b]

∆n En(k∆n)−

 b

a
En(t)dt


≤


k: k∆n∈(a,b]

 (k+1)∆n

k∆n

|En(k∆n)− En(t)| dt

≤


k: k∆n∈(a,b]

 (k+1)∆n

k∆n

ε

6(b − a + δ)
dt

(A.51)
≤

(b − a + ∆n)

∆n
∆n

ε

6(b − a + δ)

≤
ε

6
, n ≥ N (2)

ε . (A.52)

Set Nε := max


N (1)
ε , N (2)

ε


. Combining (A.48) and (A.52), we get that


k:k∆∈(a,b]

∆n En(t)−

 b

a
E∗(t)dt

 < ε

3
, n ≥ Nε. (A.53)

Combining (A.44), (A.45) and (A.53), shows that (A.43) is smaller than the given ε, for n ≥ Nε
and M := Mε, i.e.,

lim
n→∞


k:k∆n∈(a,b]

∆nE


1An

 ∆n

−∞

h(k∆n − s)Nn(ds)



=

 b

a
E


1A∗

 t

−∞

h(t − s)N∗(ds)


dt.

We have established that the right-hand side of (A.37) also converges to the right-hand side of
(A.36). With the result from Proposition 6 on the uniqueness property of (A.36), we find that
every subsequential limit N∗ has the same distribution as the Hawkes process N . We may then
conclude that, for ∆ → 0, the approximating sequence of point processes


N (∆)


converges

weakly to the Hawkes process N . �
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