
ETH Library

Collaborative Navigation for Flying
and Walking Robots

Conference Paper

Author(s):
Fankhauser, Péter; Bloesch, Michael; Krüsi, Philipp; Diethelm, Remo; Wermelinger, Martin; Schneider, Thomas; Dymczyk, Marcin;
Hutter, Marco ; Siegwart, Roland

Publication date:
2016

Permanent link:
https://doi.org/10.3929/ethz-a-010687710

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/IROS.2016.7759443

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-4285-4990
https://doi.org/10.3929/ethz-a-010687710
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/IROS.2016.7759443
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Collaborative Navigation for Flying and Walking Robots

Péter Fankhauser1,2, Michael Bloesch1, Philipp Krüsi1, Remo Diethelm1, Martin Wermelinger2,
Thomas Schneider1, Marcin Dymczyk1, Marco Hutter2, Roland Siegwart1

Abstract— Flying and walking robots can use their comple-
mentary features in terms of viewpoint and payload capability
to the best in a heterogeneous team. To this end, we present our
online collaborative navigation framework for unknown and
challenging terrain. The method leverages the flying robot’s
onboard monocular camera to create both a map of visual
features for simultaneous localization and mapping and a dense
representation of the environment as an elevation map. This
shared knowledge from the flying platform enables the walking
robot to localize itself against the global map, and plan a global
path to the goal by interpreting the elevation map in terms of
traversability. While following the planned path, the absolute
pose corrections are fused with the legged state estimation
and the elevation map is continuously updated with distance
measurements from an onboard laser range sensor. This allows
the legged robot to safely navigate towards the goal while taking
into account any changes in the environment. In this setup,
our approach is independent of external localization, relative
observations between the robots, and does not require an initial
guess about the pose of the robots. The presented methods are
fully integrated and we demonstrate their capabilities in an
experiment with a hexacopter and a quadrupedal robot.

I. INTRODUCTION

Flying and ground vehicles, such as walking robots,
possess complementary beneficial properties for autonomous
navigation tasks. Flying robots can quickly cover large areas
and have a favorable viewpoint for situational assessment. On
the other hand, a ground vehicle has longer autonomy, can
carry substantial payload, and can actively interact with the
environment. Working with a heterogeneous team of flying
and ground vehicles opens new possibilities to combine these
unique features. In this paper, we present our work on a fully
integrated approach on collaborative navigation for flying
and walking robots in unknown and challenging terrain. We
are interested in particular in legged robots, because of their
superior capability to traverse challenging terrain which can
be found for example in search and rescue scenarios. Our
approach is to have the (faster) flying robot explore and map
the environment (see Fig. 1), while the (slower) walking
robot utilizes the shared data to localize itself and plan a
global path to the goal position.

In our work, we introduce a range of methods which
interact as follows: A flying robot (e.g. a hexacopter or
similar) is guided to fly over an unknown area of interest
in order to collect visual data with a monocular camera. The
visual data is used to create a global map of visual fea-
tures (landmarks) and simultaneously localize itself against
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Fig. 1: A heterogeneous team consisting of a flying and a legged robot is
used to navigate in rough terrain: https://youtu.be/9PprNdIKRaw.

it (SLAM). Furthermore, the collected monocular image
stream is used to create depth images with help of a semi-
dense reconstruction pipeline. These depth-images are used
to generate a probabilistic elevation map representation of the
terrain. The information about the terrain profile is leveraged
by the walking robot to plan a global path to a desired
goal position. This is achieved by interpreting the elevation
map as a traversability map, judging the easiness/safety to
walk over a certain region. While following the planned path
with a walking gait, the pose of the robot relative to the
global landmark map is tracked with an onboard camera. The
absolute pose references and the high-rate data from joint
states and Inertial Measurement Unit (IMU) are fused in the
legged state estimator providing accurate, fast, and drift-free
pose estimations for the locomotion controller. As the legged
robot moves through the environment, the original elevation
and traversability maps are continuously updated with help of
a laser range sensor. The walking robot performs continuous
replanning of the path to account for the new data acquired in
the map. This allows the walking robot to navigate through a
previously unknown environment while preventing collision
with unforeseen obstacles.

To the best of our knowledge, the only work that focuses
on a collaboration of a legged and a flying robot for navi-
gation was discussed in [1]. However, it was limited to the
application of receiving an alternative camera viewpoint by
visually servoing a quadrotor with attached markers.

Prior work in collaboration between aerial and ground
robots often addressed the navigation problem in large-scale
outdoor environments [2, 3, 4, 5, 6]. These approaches
rely on the (at least partial) availability of satellite-based
localization, which precludes their application in indoor
environments and GPS-denied outdoor areas such as dense
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forests or narrow urban canyons. Alternatively, several ap-
proaches have been proposed for GPS-independent relative
localization of aerial and ground robots. A flying robot is
tracked using a sensor mounted on a ground robot [7], or
vice versa [8, 9], while mapping is accomplished by only
one of the agents. The two robots are required to stay close
to each other at all times, since the tracked agent can only
be localized as long as it is in the field-of-view of the other
robot. In a navigation scenario, this prevents the aerial robot
from exploring areas further away from the ground robot,
which is essential for efficient global guidance. Moreover,
tracking-based systems may not easily be scalable to groups
of more than two robots.

Our localization and mapping system is independent of
both external localization (such as GPS) and relative obser-
vations between the robots. In contrast, the robots build and
localize within a single map of visual features using on-board
cameras. Hence, the system is readily extendable to groups
of more than two robots. The approaches of Michael et al.
[10] and Forster et al. [11] are conceptually similar to ours,
yet based on geometric registration, which is known to be
sensitive to initial guesses. We experimentally demonstrate
that our feature-based visual localization and mapping frame-
work enables reliable operation of both aerial and ground
robots using a single map — despite the strongly varying
viewpoints of the different agents, and without requiring
prior information about the relative poses of the robots.

Moreover, unlike [10] and [11], we integrate localiza-
tion and mapping with a complete system for autonomous
navigation of the ground robot, comprising collaborative
terrain mapping using both cameras and laser scanners
(multi-modal mapping), as well as traversability estimation,
path planning, and motion control. To this end, we also
integrate the high-level localization and mapping framework
into our high-bandwidth but drift-affected Extended Kalman
Filter-based (EKF) state estimation fusing kinematics and
inertial measurements. Together, this provides the control and
planning framework with an accurate, drift-free, global state
estimation, with sufficient bandwidth such that the legged
robot can stabilize itself and precisely navigate through the
environment.

In this work, we contribute with the design and imple-
mentation of a navigation framework for ground robots in
rough terrain that is enhanced by the help of flying robots.
The framework is designed for a collaborative navigation
in the sense that data is actively shared by the robots in
order to increase the planning breadth and thus enhance the
capability to navigate in previously unknown terrain. The
proposed methods comprise all aspects of navigation such
as localization, mapping, map interpretation, path planning,
state estimation, and control in a tightly coupled manner. To
this end, we present an experimental evaluation showcasing
the advantages of our approach.

The remainder of the paper is structured as follows.
Section II introduces the different methods applied in the
navigation framework and describes their interrelation. Sec-
tion III presents the experimental setup and evaluation of the
proposed framework. In Section IV, we extend the sequential
deployment of the flying and walking robot with a concurrent
operation of the platforms. Section V concludes our work.

II. METHODS

In the following, we describe the methods that we have
developed for the collaborative navigation of flying and
walking robots. Although our approach can be used for
multiple flying and walking robots in the same mission, we
will assume that the tasks involve one robot of each type
(see Fig. 1).

For the walking robot, we work with StarlETH [12],
an electrically actuated quadrupedal robot of the length of
∼1 m. All joints are driven by series elastic actuators (SEA)
enabling the execution of various gaits that are robust against
variations of the ground. The flying robot is an Asctec Firefly
Hexacopter. Both machines can operate self-autonomously
as they have onboard batteries and computers. Each robot
has a network for internal data transfer and the robots can
share information through a dedicated WLAN network.

For global localization and mapping, the flying and walk-
ing robots are equipped with a VI-Sensor [13] containing
two global-shutter, wide-VGA 1/3 inch cameras in a front-
parallel stereo configuration. For this work, the stereo config-
uration is not made use of (although could readily be used)
because a single camera is sufficient and the adaptive/larger
baseline can provide better accuracy. The mounted lenses
have a diagonal field of view of 120°. The intrinsics and
extrinsics of the sensor are factory calibrated for a stan-
dard pinhole camera model and a radial-tangential distortion
model. StarlETH is additionally equipped with a front-facing
rotating Hokuyo laser range sensor.

Fig. 2 provides an overview of the system and the work-
flow of the involved components.

A. Localization and Mapping

For achieving a proper collaboration between flying and
legged robots, it is essential to localize both robots within a
common global frame of reference. To this end, we propose
the use of a framework based on [14]. The idea is to
provide a statistically consistent interface between visual-
inertial odometry and a mapping backend. Both parts rely
on the extraction of visual point features and corresponding
descriptors.

The mapping backend merges the visual-inertial data
from multiple independent robot trajectories into a single
global map representation. Each trajectory is composed
of a graph of visual-inertial keyframes and a set of 3D
landmarks. The map merging process establishes landmark
correspondences between the different trajetories [15] based
on visual appearance-matching. Subsequently, it performs a
joint visual-inertial bundle-adjustment in order to achieve a
globally consistent map (global localization map). Finally,
landmarks with low information for localization are pruned
from the map [16] (compression step) to obtain a reduced set
of landmarks which can be used by the online localization.

The visual-inertial localization is based on a non-linear
fixed-lag smoother. It is able to track its own set of SLAM
landmarks and simultaneously integrate global localization
information by tracking the map landmarks provided by
the backend. This is enabled by co-estimating the relative
transformation between the global frame of reference, in
which the map landmarks are represented, and the odometry
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Fig. 2: Overview of the collaborative navigation framework: The hexacopter’s onboard IMU and camera are used to localize, construct a global sparse
map of landmarks (global localization map) and to provide a semi-dense reconstruction of the surroundings. The global localization map is used by the
legged robot to localize itself and is fused in the state estimation with data from IMU and leg kinematics. A joint terrain map is created from visual data
(flying robot) and laser data (legged robot). Finally, control and navigation of the legged robot rely on the state estimation and traversability map to move
through previously unseen rough terrain.

frame of reference for local SLAM landmarks. Only a fixed-
number of keyframes is kept within the optimization window
to keep the computational complexity tractable. Local SLAM
landmarks get marginalized once the corresponding keyframe
leaves the temporal window. This approach enables accurate
visual-inertial localization with respect to a global reference
frame. At each localization step, the SLAM landmarks are
queried in the database of the global map landmarks to
establish the feature matches. This means that no initial guess
about the pose of the walking robot is required.

B. Legged State Estimation

Locomotion with force-controlled legged robots requires
permanent motion stabilization using an on-board feedback
controller which computes corrective joint torques based on
the current estimation of the robot’s pose and velocity (e.g.
[12]). The discussed localization and mapping framework
provides an accurate pose estimation (see [14] for an evalu-
ation), but the obtained bandwidth (5 Hz) is insufficient for
the feedback controller for stabilizing the system.

In order to overcome the above shortcoming, an EKF-
based state estimator is implemented on the legged robot as
presented in [17]. This filter fuses the measurements from
the dedicated on-board IMU with data it receives from the
joint encoders at a frequency of 400 Hz in order to guarantee
a high bandwidth feedback. While the local egomotion can
be estimated accurately, this filter is prone to drift in the
position and the yaw angle (due to the IMU roll and pitch
are fully observable) [17].

To overcome this limitation, we extend the existing on-
board legged state estimation by enabling the incorporation
of external 6 Degree of Freedom (DoF) pose measurements
between an arbitrary inertial coordinate frame (not neces-
sarily gravity aligned) and a body-fixed coordinate frame.

The motivation is twofold. First, the additional pose mea-
surements improve the quality of the legged state estimator
by limiting the drift of the unobservable states and by fa-
cilitating the estimation of online calibration parameters like
IMU biases. Second, it provides the controller and planner
processes with a unified, high accuracy, high bandwidth,
gravity aligned estimate of the robot pose and its derivatives.

Directly fusing the external 6 DoF pose measurements
with the internally estimated pose can lead to inconsistencies,
especially if the frame of reference of the external pose is not
properly aligned with gravity. Thus, we decouple the system
by introducing two inertial frames, one for the ‘internal’
fusion of kinematics and IMU which is always aligned
with gravity, and one for the reference for the ‘external’
pose measurements. The filter state is then augmented with
the transformation between both inertial frames, which is
modeled as a random walk process with small covariance
parameter. This so-called loose coupling of both frameworks
yields a state estimation which exhibits a high accuracy
and drift-free localization with respect to the global map
while ensuring a sufficiently high bandwidth. All derivatives
are always represented w.r.t. the body frame (robo-centric
formulation) and taken w.r.t. the ‘internal’ odometry frame
in order to avoid discontinuities.

C. Elevation Mapping
We choose an elevation map representation to approximate

the geometry of the terrain. In this model, a two-dimensional
regular grid covers the mission area and stores for each
cell the height of the terrain at that position. Although
different terrain representations exists, elevation maps have
the advantage that they can accurately capture the terrain
profile while allowing for simple and efficient data handling.

The elevation map is generated by populating the grid
cells with range measurements and fusing new measurements



with existing data in the map. For the entire process, one
elevation map is maintained and updated with data from
the different robots. The range measurements originate either
from estimating the image depth from the camera motion of
the flying robot, or directly from the distance measurements
from the rotating laser range sensor on the walking robot.
In both cases, we are interested in the terrain profile below
the robot and remove all distance measurements which are
above the robot’s current base.

For the flying robot, we employed a semi-dense recon-
struction pipeline. Assuming an accurate estimation of the
camera trajectory, the pipeline performs a patch warping
and alignment between selected camera frames and thereby
estimates the corresponding depth. Given a frame of interest,
a matching frame is heuristically selected in order to allow a
good estimation of the disparity. The baseline of the selected
camera frames is adapted to the mean scene distance which
improves depth estimation for varying flying altitudes of the
robot.

For all data generated by the flying and the walking robot,
we use the elevation mapping method presented in [18] to
probabilistically fuse multiple measurements that fall into
the same cell. To this end, we extend the elevation map
representation with a height variance information for each
cell. The noise of the sensor measurements is approximated
with the measurement errors models from [19] for the laser
range sensor and an error model based on [20] for the depth
estimation from the camera. With these models, the sensor
noise in direction of the measurement and lateral direction
is expressed as a quadratic function of the measurement
distance. With the knowledge of the current pose of the
robot, the sensor noise is propagated to the corresponding
elevation measurement noise. A recursive filter fuses the
received height measurement to estimate the height and
variance for each cell. We use the Mahalanobis distance
to reject measurements that fall below the highest elevation
measurement. This is important to correctly reflect the height
of objects such as boxes and tables, where multiple heights
fall into the same cell. Note that because in this work the
robots are able to localize themselves accurately and drift-
free, we do not have to propagate the robot pose uncertainty
into the elevation map in contrast to [18].

D. Traversability Estimation

Finding a safe path for the walking robot through the
environment requires to judge the suitability of the terrain
for safe locomotion. To this end, we interpret the generated
elevation map in terms of traversability, a local measure
expressing the safety to pass the terrain at different locations.
Similar to [21], we use the three local terrain characteristics
slope, roughness, and step height to estimate the traversabil-
ity for each cell. The slope value reflects the local surface
normal in a small radius around the cell. The roughness is
computed as the standard deviation of the height values of
the neighboring cells. The difference between the maximal
and minimal height of the neighboring cells is captured in the
step height value. These terrain characteristics are normalized
with a constant for the critical value and summed up to the
final traversability value as weighted mean. The traversability
is expressed in the interval [0,1], where a value of 1 indicates

full traversability (flat and smooth terrain) and a value of
0 means that the terrain is locally untraversable. If one
of the terrain characteristics exceeds its critical value, the
traversability is set to 0.

In difference to the method presented in [21], we do not
directly assess the traversability for the region of the robot’s
size, but we choose the radii for the different traversability
characteristics as small as reasonably possible depending
on the grid resolution [22]. This results in a more precise
representation of the environment which enables us to mark
features such as stairs or small gaps as traversable.

E. Navigation Planning

We employ a sampling-based RRT* planner to find the
shortest valid path from the walking robot’s start pose to
the goal as presented in [22]. The planner searches for a
trajectory of the x- and y-position of the robot’s footprint.
Since a legged robot works omni-directionally, we ignore
the yaw-orientation of the robot in the planning process
and adapt the yaw-angle such that the robot walks forward
towards the next node on the path. To guarantee a rotation-
independent traversability of the terrain, we approximate the
footprint conservatively with a circumscribed circle. When
checking the connectivity between two nodes in the planning
process, we check if all cells within the convex hull of the
two circles of the footprint are traversable. We define the
path cost between two nodes as the weighted sum of the
length cost and the traversability cost. The length cost is
computed as the Euclidean distance between the two nodes.
The traversability cost is given by the inverse of the sum of
the traversability values in the convex hull of the two circular
footprints normalized with the path length. The weighting
parameters in the summation of the total costs determine
how much short paths over safe paths are preferred or vice-
verca.

Since the map is permanently updated, the planner is
automatically restarted on a regular basis to update the plan
from the current position. In the recurring planning steps,
new information in the updated map is taken into account
which makes sure that previously unmapped obstacles are
avoided and potential shortcuts are taken.

F. Path Execution

The robot receives walking commands by iterating through
the nodes of the planned path as the robots walks. A PID
controller determines the desired velocity from the error
between the current and the next desired pose. The desired
velocity contains the translational velocities in x- and y-
direction and the yaw rotational velocity. For long distances,
we prefer to walk forward and orient the robot towards the
goal pose while for short distances, the controller is also
allowed to step sideways. The commands are executed by
the walking robot by placing its feet in a static walking gait
corresponding to the desired velocity [23].

As the navigation planning updates the path on a regular
basis, the planning time might cause the new path to start
behind the current robot location. To tackle this issue, a
simple algorithm iteratively removes the first pose on the
path as long as the angle between its connections to the
second pose and current robot pose is smaller than 90°.
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Fig. 3: Overview of the mission in which the walking robot is asked
to autonomously find a path from the start region to the goal. In an
exploration flight, the hexacopter covers the area to provide global maps of
the environment in which the quadruped robot can plan a path and localize
against. During execution a previously unmapped obstacle is added, forcing
the walking robot to adapt its plan.

III. EXPERIMENTAL EVALUATION

We have successfully verified and analyzed our proposed
approach with multiple experiments involving the entire
algorithmic pipeline. In the following, we describe our results
for the mission shown in Fig. 3.1 The walking robot is
deployed in a start area from which the direct line of sight
to the desired goal position is blocked by a big obstacle.
The only feasible path to the goal consists of a scaffolding
with narrow passages (90 cm width) and a ramp which leads
down to the floor. During the execution of the mission with
the walking robot, a previously unmapped obstacle is put on
to the pathway and forces the walking robot to maneuver
around it.

A. Localization and Mapping

For mapping the environment with the flying robot, we
let the UAV fly multiple rounds over our experimental area
to detect and track the visual landmarks (see Fig. 4a). The
captured data are transmitted to the walking robot. With its
higher computational capacity (Intel Core i7 4500U dual-
core 1.8 GHz and 8 Gb RAM), the generation of the global
localization map takes several seconds. After the exploration
with the flying robot from the air, the walking robot is able to
localize itself within the global map. We have tested different
start poses of the legged robot without an initial guess for
the localization. The proposed method was able to reliably
localize even though the landmarks are observed from a
different view point (see Fig. 4b) than originally recorded.

Once the robot starts walking, the localization against
the global map continuously tracks the pose of the robot
(localization runs in real-time with ∼20 ms processing time
per query). Figure 5 shows the successfully matched features
of the walking robot as it moves through the global map. The
pose correction updates to the legged state estimator helped
to safely track the path on the scaffolding without causing
any instabilities of the walking controller.

1A video is available at https://youtu.be/9PprNdIKRaw.

a) b)

Fig. 4: The tracked features are shown for the flying robot (a) and the legged
robot (b). Despite the change in view points both frames are successfully
registered to a common global model.

Global map

Active landmarks

Mission map

Fig. 5: Visualization of the landmarks as the walking robot executes the
mission and localizes itself with the mission map against the global map
from the flying robot.

B. Elevation Mapping

Similar to the localization map, the data from the UAV are
used to generate dense vision depth estimates which are fused
in an elevation map on the computer of the walking robot
(processing in approx. real-time). Figure 6a shows a snapshot
of the elevation map creation during the exploration phase of
the flying robot. The dense reconstruction from the camera
of the flying robot delivers accurate depth measurements at
a frame rate of 5 Hz. This enables to generate an elevation
map with a grid size of 4 cm with only few holes. After the
exploration flight, the entire area is well covered as elevation
map (see Fig. 6b).

As the legged robot moves through the environment, the
elevation map is continuously updated from the rotating laser
range sensor as shown in Fig. 6c. The moved obstacle is
successfully captured by the map updates (A in Fig. 6). Errors
in the pose estimation of the walking robot can cause an
offset between the previous map from the flying robot and
new data from the walking robot. While this has a bigger
effect on map regions further away from the walking robot
(such as B in Fig. 6), these offsets diminish for close regions
and the important area in front of the robot is represented
with more detail in comparison to the original map (C in
Fig. 6).

C. Traversability Estimation and Navigation Planning

Figure 7 shows the interpreted elevation map (after the full
mission) as traversability map. We can observe that all safe
areas including the ramp are correctly marked as traversable
while the borders of the scaffolding are correctly interpreted
as dangerous. Thanks to the high resolution of the map and
the locally bounded interpretation of the traversability, the

https://youtu.be/9PprNdIKRaw


a) b)

C

AA

C

BB

c)

Fig. 6: Three snapshots of the estimated elevation map. a) The elevation map is built incrementally from the dense depth estimates of the flying robot’s
camera. b) Map after the flying robot has observed the full scene. This map is used for an initial navigation plan for the legged robot. c) Final elevation
map where data from the laser range sensor on the walking robot is fused with the original map. Point A marks the point where an obstacle has been
added after the initial mapping of the flying robot.
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0 1

Fig. 7: The traversability of the terrain evaluates whether a certain region is
safe to walk over for the legged robot. The total traversability (a) consists
of a combination of the local characteristics taking slope (b), roughness (c),
and step height (d) into account.

navigation planner can successfully find a feasible path even
in narrow regions.

The first plan based on the map from the exploration of
the flying robot (no updates from the walking robot yet)
is shown in Fig. 8a. The planner is able to find a short
path while maintaining a minimal distance to untraversable
regions. As the robot starts tracking the planned path, the
planner continuously replans the path to take into account
the refined map and a changing environment. Figure 8b
shows how the updated plan successfully guides the robot
around the previously unmapped obstacle. Furthermore, we
can observe that our navigation controller approach smoothly
guides the robot along the path without causing irregularities
because of plan updates.

IV. CONCURRENT OPERATION OF WALKING
AND FLYING ROBOTS

In the experimental evaluation of Section III, we have let
the flying robot first fully explore the environment before
sharing the data with the walking robot (sequential opera-

a)

Goal Start

First plan

First plan

Executed
trajectory

Updated plan

Unmapped
obstacle

Goal Start

b)

Fig. 8: Top-view on the traversability map and the planned paths for the
walking robot. a) Initial path based on the traversability map acquired from
the flying robot. b) Updated path to account for the additional obstacle.

tion). In the following, we describe the main differences that
have to be considered for an operation of the platforms at
the same time (concurrent operation).

We enable a simultaneous exploration and navigation of
the robots by updating the shared map data between the
robots in a batch-based approach. After the flying robot
has transferred the first batch of the (incomplete) map, the
walking robot starts to localize against the global localization
map and uses the provided terrain data to plan its path
and start execution. As the operation continues, new map



0 20 40 60 80 100 120 140 160 180 200
Time [s]

Availability in time

0

5

10

15

20

25

N
um

. o
f o

bs
er

ve
d 

fe
at

ur
es

A

A

B

B

C

C

D

D

Fig. 9: Number of observed features over time for the legged robot’s
camera within the global localization map. The colored areas represent the
theoretical number of observable features given the localization map at 4
different stages (A–D) of the flying robot’s exploration trajectory. After 10 s
map A is provided to the robot and the number of observed features (bold
black-white) coincides with the observable features of map A. The coverage
of the map gets increasingly better as more data is included (A→D).

data is provided by the flying robot and is merged with the
existing data to extend the range in which the legged robot
can operate within the global frame.

A. Localization and Mapping

As the flying robot operates, the environment is explored
on an increasing scale. To maintain global consistency, we
apply bundle-adjustment (see Section II-A) on the trajectory
which was previously included in the last batch and the
newly acquired trajectory data. We maintain a computation-
ally scalable map by pruning features with the least visual
information.

As the global map grows with each new batch, the legged
robot is able to localize in more areas. Figure 9 shows an
example of how the walking robot is able to localize with
increased certainty as the map coverage and quality increases
with each batch update A–D. We quantify the global lo-
calization quality as the number of feature correspondences
between the global map and the features from the current
view of the walking robot (vertical axis of Fig. 9). The
lower limit for the number of features for a (long-term)
reliable localization is 4, and for performance reasons we
threshold the max. number at 25. Although some viewpoints
of the walking robot contain large areas with very little visual
features (e.g. at time 80 s and 155 s), the localization can still
be performed reliably.

B. Legged State Estimation

With each update of the global map from the flying robot,
the localization of the walking robot can vary. Figure 10
shows a top-down view on the trajectories for the localization
with the different map batches A–D. For each update A–D,
the resulting trajectory for the walking robot transits to the
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Fig. 10: Top-down view on the localization trajectories of the legged robot
for the different map updates A→D. The resulting trajectory for the walking
robot transits to the latest trajectory at each map update.

latest (and more accurate) localization. This means that at
each update A–D the perceived robot’s position can ‘jump’
instantaneously. We decouple these discontinuities from the
control framework with the loosely coupled approach de-
scribed in Section II-B.

C. Mapping and Navigation Planning

The walking robot can utilize the map updates from the
flying robot to increase the range and precision of the path
planning. At each map update, empty cells in the global
terrain map are filled in where new data is available, while
existing cells are not changed. Where no data is yet provided
from the flying robot and is not yet visible by the onboard
sensors, our planner assumes a traversability with value 0.1.
Figure 11 shows snapshots of the concurrent mapping and
navigation planning process of the two platforms. The terrain
and the walking robot’s position changes slightly with each
localization and terrain map update from the flying robot.
These changes are taken into account in our navigation
planning method (Section II-E) which adapts the path locally
to changes in the environment and replans the global path
on a regular basis.

V. CONCLUSION

We have presented the design and methods for a collabora-
tive localization and mapping framework for a heterogeneous
team of flying and ground robots. The methods applied to
the flying and ground robot tightly integrate with each other
and allow the ground robot to navigate with significantly
increased performance than without the help of the flying
robot. We have experimentally validated our approach with
a full integration with a hexacopter and a quadrupedal robot,



Fig. 11: The terrain map and associated motion plans for different execution stages (A→D). From left to right the coverage of the semi-dense visual map
is increasing (grey) as the hexacopter flies over the area (smooth black line). Simultaneously, the legged robot adds its own perception data (laser, blue)
to the elevation map. The estimated traversability (brightness of the terrain) as well as the planned (colored coordinate frames) and executed path (zigzag
black line) of the legged robot are depicted.

in which the hexacopter enables the quadrupedal robot to
navigate in previously unknown, rough terrain in an envi-
ronment of ∼9×5 m. Our implementation demonstrates a
successful functional interaction of many complex navigation
tasks, which is rarely demonstrated in other work. We have
additionally shown that our framework naturally extends to
concurrent operation of the robots.

In current work, the goal is to extend the presented
localization method to a larger team of robots (e.g. [24]),
but reliable wireless communication is still a major issue. In
the future, we will evaluate our approach in more extended
and complex environments and adapt our strategy where
necessary. Furthermore, we are working on extending the
rough terrain capabilities of our legged robot by taking
foothold selection and whole body climbing maneuvers into
account. Eventually, the legged robot could also be equipped
with a landing platform, where the flying robot could rest and
charge until its action is required.
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multiple robot visual mapping with heterogeneous landmarks in semi-
structured terrain,” Robotics and Autonomous Systems, vol. 59, no. 9,
pp. 654–674, 2011.

[7] P. Rudol, M. Wzorek, G. Conte, and P. Doherty, “Micro Unmanned
Aerial Vehicle Visual Servoing for Cooperative Indoor Exploration,”
in IEEE Aerospace Conference, 2008.

[8] E. Mueggler, M. Faessler, F. Fontana, and D. Scaramuzza, “Aerial-
guided Navigation of a Ground Robot among Movable Obstacles,”
in IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), 2014.
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and M. Hutter, “Navigation Planning for Legged Robots in Challeng-
ing Terrain,” in IEEE International Conference on Intelligent Robots
and Systems (IROS), 2016.

[23] C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. A. Hoepflinger, and
R. Siegwart, “Control of Dynamic Gaits for a Quadrupedal Robot,”
IEEE International Conference on Robotics and Automation (ICRA),
2013.

[24] T. Cieslewski, S. Lynen, M. Dymczyk, S. Magnenat, and R. Siegwart,
“Map API - scalable decentralized map building for robots,” in
IEEE International Conference on Robotics and Automation (ICRA),
pp. 6241–6247, 2015.


