
ETH Library

Macroscopic model for on- and off-
street parking
Traffic effects

Conference Paper

Author(s):
Jakob, Manuel; Menendez, Monica

Publication date:
2017

Permanent link:
https://doi.org/10.3929/ethz-b-000119109

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000119109
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Manuel Jakob, Monica Menendez                                                                              Page 1 

MACROSCOPIC MODEL FOR ON- AND OFF-STREET PARKING: 1 

TRAFFIC EFFECTS 2 

 3 

Submission Date: 07/28/2016 4 

 5 

Manuel Jakob (Corresponding author) 6 

Institute for Transport Planning and Systems (IVT) 7 

ETH Zürich 8 

Office address: HIL F41.3, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland 9 

Phone:  +49 151 108 31 281  10 

Fax:  +41 44 633 10 57 11 

Email :  manuel.jakob@ivt.baug.ethz.ch 12 

 13 

Monica Menendez  14 

Ph.D., Director of Research Group “Traffic Engineering” 15 

Institute for Transport Planning and Systems (IVT) 16 

ETH Zürich  17 

Office address: HIL F37.2, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland 18 

Phone:  +41 44 633 66 95 19 

Fax:  +41 44 633 10 57 20 

Email:  monica.menendez@ivt.baug.ethz.ch  21 

 22 

 23 

 24 

 25 

Paper word Count:  5747 words 26 

Number of tables:  4 tables (1000 words) 27 

Number of figures:  3 figures (750 words) 28 

Final word count:  7497 words  29 

mailto:manuel.jakob@ivt.baug.ethz.ch
mailto:monica.menendez@ivt.baug.ethz.ch


Manuel Jakob, Monica Menendez                                                                              Page 2 

ABSTRACT 1 

On- and off-street parking has been gaining attention in recent research, but its interdependency with searching-for-2 

parking traffic and traffic performance is still unknown. In this paper, we develop a macroscopic formulation to model 3 

off-street parking dynamically and integrate it into an urban traffic and on-street parking study to better replicate 4 

reality. The parking searchers decide between driving to a parking garage or searching for an on-street parking place 5 

in the network. 6 

We analyze the influence of on- and off-street parking on the traffic system with regard to different parking pricing 7 

schemes. These pricing scenarios include demand-responsive parking pricing methodologies for both on- and off-8 

street parking. Their effects on cruising-for-parking and traffic performance are evaluated. 9 

This macroscopic pricing model is only based on aggregated data at the network level over time. Hence, it saves on 10 

data collection efforts and reduces the computational costs significantly compared to most literature. This easy to 11 

implement methodology can be solved with a simple numerical solver. 12 

The model provides a preliminary idea for city councils regarding the interdependency between on- and off-street 13 

parking, and their influence on searching-for-parking traffic (cruising), the congestion in the network (traffic 14 

performance), the total driven distance (environmental conditions), and the revenue created by on- and off-street 15 

parking fees for the city.   16 
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1. INTRODUCTION 1 

In nearly all urban areas, there are both on- and off-street parking opportunities that lead to rather complex 2 

interdependencies. Both parking possibilities follow diverse policies, which can sometimes lead to significant changes 3 

on the performance of a transportation network. The performance of both the urban parking and traffic system can, 4 

for example, be influenced by short-term on- and off-street pricing strategies, e.g., parking pricing can affect the 5 

parking availability, the congestion and traffic performance, or the traffic composition in the network. Hence, we 6 

present a macroscopic off-street parking model and integrate it into the urban traffic and on-street parking study in [8] 7 

and [13] to better replicate reality. We analyze the relationship between on- and off-street parking, but also their 8 

interdependency on cruising-for-parking traffic and traffic performance with respect to different parking pricing 9 

schemes. These pricing scenarios include demand-responsive parking pricing methodologies for both on- and off-10 

street parking. 11 

In the existing literature, there are empirical or modelling approaches used to define on- and off-street parking pricing. 12 

Empirical approaches usually focus on collecting data for both on- and off-street parking, e.g., [18] uses its demand-13 

responsive pricing scheme to leave between 20 and 40 percent of on-street parking spaces open on every block, and 14 

to have open spaces available in public garages at all times ([16]). Other off-street pricing approaches are based on 15 

questionnaires, e.g., [4]; [5]; or they use dynamic information to predict real-time off-street parking availability ([7]). 16 

[14] estimates the effect of on-street parking fees on drivers' choice between on- and off-street parking. [11] analyzes 17 

how off-street parking demand is affected by on-street parking regulations. Our macroscopic model provides general 18 

results regarding the effects of on- and off-street parking pricing on traffic under generalized conditions without any 19 

physical devices or data collections efforts. 20 

For modelling both on- and off-street parking with its associated parking fees, [1] and [12] show that the full price of 21 

parking consists of the interaction between garage operators and the cruising costs for on-street parking. They develop 22 

a spatial competition model to eliminate cruising by allocating excessive cruising demand to garage parking and focus 23 

on social optimum suggestions concerning the relationship between curbside and garage fares. [15] develops a 24 

dynamic Stackelberg leader-follower game theory approach to model variable on- and off-street parking prices in real-25 

time for effective parking access and space utilization. Compared to these models that provide a long-term demand 26 

management strategy capturing user competition and considering market equilibrium, our models focuses on the short-27 

term effects. [17] models a system optimal parking flow minimization problem that follows a real-time pricing 28 

approach for a parking lot based on its occupancy rate. They assume a user equilibrium travel behavior and only focus 29 

on off-street parking without analyzing its interdependency to on-street parking in the network. [19] investigates an 30 

optimal parking pricing problem in a park-and-ride (P+R) network with multiple origins and one destination. Their 31 

objective is to minimize the total travel cost by setting optimal parking fees and only considering P+R terminals. [20] 32 

models multi-modal traffic with limited on-street and garage parking and dynamic pricing based on the Macroscopic 33 

Fundamental Diagram (MFD). [3] analyzes how much curbside to allocate to parking when the private sector provides 34 

garage parking. [2] analyzes parking in a spatially homogeneous downtown area where the drivers chose between on- 35 

and off-street parking. Cruising for parking contributes to congestion, such that the full price of the initially cheaper 36 

on-street parking is increased until it equals the price of garage parking. Then increasing the on-street parking fee may 37 

generate an efficiency gain through reduction of cruising. These papers consider parking pricing but they focus on 38 

social optimum and user equilibrium pricing suggestions and do not include demand-responsive garage pricing. 39 
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This paper builds on a previous study from [13], in which a macroscopic on-street parking pricing model was 1 

developed. It is based on the parking-state-based matrix from [8] providing an approximation of the proportion of cars 2 

searching for on-street parking, as well as the time cars spent searching for parking, or travelling through the system. 3 

These approximations are now enhanced by including off-street parking and considering various parking pricing 4 

schemes, e.g., demand-responsive on- and off-street parking fees over time. Independently of their current traffic state, 5 

the drivers can make the decision to use off-street parking, then drive towards the closest parking garage and access it 6 

depending on its current capacity. This off-street parking decision is based on several cost factors: 7 

 the drivers’ value of time (VOT) depending on their origin; 8 

 the current on- and off-street parking fees; 9 

 the expected cost of cruising for on-street parking; 10 

 the expected driving cost to the closest possible garage; and 11 

 the walking cost from the off-street parking location to the drivers’ final destination. 12 

By comparing these costs, drivers come to a decision, such that all traffic and parking conditions can be determined 13 

over time. We analyze the efficiency of the integrated on- and off-street parking model with respect to its associated 14 

pricing scheme. 15 

The paper is organized as follows. Section 2 presents the overall methodology of the macroscopic off-street parking 16 

model. Section 3 reviews the off-street parking decision model by introducing new relevant transition events to the 17 

parking-state-based matrix. Section 4 shows a numerical example to explore the use of the concept and the proposed 18 

methodology. Section 5 summarizes the findings of this paper. 19 

2. FRAMEWORK 20 

In this research, we develop a macroscopic off-street parking model with an associated pricing scheme. It enhances 21 

the on-street parking pricing model in [13] and is incorporated into a traffic system with a parking search model over 22 

time to better replicate reality. 23 

The methodology is based on the macroscopic parking-state-based matrix in [8] that estimates the proportion of cars 24 

cruising-for-parking and the cruising time, as well as the traffic conditions and parking usage over time. The total time 25 

domain is split into small time slices (e.g., 1 minute), and all traffic/parking conditions are assumed steady within each 26 

time slice, although they can change over time. In [8] and [13] two types of traffic demands are generated 27 

simultaneously in each time slice. The first group of vehicles searches for on-street parking as seen in Fig 1(a) and 28 

influences the associated demand-responsive parking fee. The second group of vehicles in Fig 1(b) can be considered 29 

as through-traffic and does not search for parking. Accordingly, vehicles go through different transition events, used 30 

to update the possible parking-related traffic states in a matrix form (see Table 1). During one single time slice a 31 

vehicle may experience at most one transition event. The matrix is then updated iteratively over time. 32 

In this study, all vehicles have in addition the option to decide for garage parking at their current location. This decision 33 

can be done anywhere independently of their current traffic state, i.e., the vehicles can decide to use off-street parking 34 

in “non-searching” or in “searching”-state. This leads to two new transition event scenarios for garage parking (Fig 35 

1(c) and Fig 1(d)). 36 
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 1 

   (a) First group of vehicles.                              (b) Second group of vehicles. 2 

 3 

 (c) Third group of vehicles.                              (d) Fourth group of vehicles. 4 

Fig 1. The transition events of urban traffic with on-street parking in (a) and (b) (Source: [9]),  5 

and the transition events with off-street parking in (c) and (d). 6 

After the decision for off-street parking the vehicles drive towards the garage and access it depending on its current 7 

capacity. If there is no capacity available, the vehicles need to return into the searching-for-parking state. 8 

By including off-street parking, we need to introduce the new traffic states compared to [8], 𝑁𝑑𝑔𝑝
𝑖  that includes all 9 

drivers who have decided to use garage parking, and 𝑁𝑔𝑝
𝑖  that includes the drivers who actually access the garage. 10 

These new traffic states and all related transition events are summarized in Table 1.  11 
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   Table 1. Relevant key variables (including off-street parking related variables) for matrix per time slice. 1 

Notation Definition 

𝑁𝑛𝑠
𝑖  Number of vehicles in the state “non-searching” at the beginning of time slice 𝑖 (Non-searching). 

𝑁𝑠
𝑖 Number of vehicles in the state “searching” at the beginning of time slice 𝑖 (Searching). 

𝑁𝑝
𝑖  Number of vehicles in the state “parking” at the beginning of time slice 𝑖 (On-street parking). 

𝑁𝑑𝑔𝑝
𝑖  

Number of vehicles in the state “decide for garage parking” at the beginning of time slice 𝑖  

(Decide for garage parking). 

𝑁𝑔𝑝
𝑖  Number of vehicles in the state “off-street parking” at the beginning of time slice 𝑖 (Off-street parking). 

𝑛 /𝑛𝑠
𝑖

 Number of vehicles that enter the area and transition to “non-searching” during time slice 𝑖 (Enter the area). 

𝑛𝑛𝑠/s
𝑖

 Number of vehicles that transition from “non-searching” to “searching” during time slice 𝑖 (Start to search). 

𝑛𝑠/𝑝
𝑖

 Number of vehicles that transition from “searching” to “parking” during time slice 𝑖 (Access on-street parking). 

𝑛𝑝/ns
𝑖  Number of vehicles that transition from “parking” to “non-searching” during time slice 𝑖 (Depart on-street parking). 

𝑛𝑛𝑠/
𝑖  Number of vehicles that leave the area and transition from “non-searching” during time slice 𝑖 (Leave the area). 

𝑛 𝑛𝑠/𝑑𝑔𝑝
𝑖  

Number of vehicles that transition from “non-searching” to “decide for garage parking” during time slice 𝑖  

(Go to off-street parking). 

𝑛𝑠/𝑑𝑔𝑝
𝑖  

Number of vehicles that transition from “searching” to “decide for garage parking” during time slice 𝑖  

(Switch to off-street parking). 

𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖  

Number of vehicles that transition from “decide for garage parking” to “off-street parking” during time slice 𝑖  

(Access off-street parking). 

𝑛𝑑𝑔𝑝/𝑠
𝑖  

Number of vehicles that transition from “decide for garage parking” to “searching” during time slice 𝑖  

(Not access off-street parking). 

𝑛𝑔𝑝/𝑛𝑠
𝑖  

Number of vehicles that transition from “off-street parking” to “non-searching” during time slice 𝑖  

(Depart off-street parking). 

 2 

Based on Table 1, we adapt all transition state related formulas in [8] between consecutive time slices. By including 3 

𝑛 𝑛𝑠/𝑑𝑔𝑝
𝑖 , 𝑛𝑠/𝑑𝑔𝑝

𝑖 , 𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖 , 𝑛𝑑𝑔𝑝/𝑠

𝑖  and 𝑛𝑔𝑝/𝑛𝑠
𝑖  we get Eq. (1) to (3) that update the number of “non-searching”, 4 

“searching”, and ”parking” vehicles. Notice that Eq. (3) remains the same. 5 

𝑁𝑛𝑠
𝑖+1 = 𝑁𝑛𝑠

𝑖 + 𝑛/𝑛𝑠
𝑖 + 𝑛𝑝/𝑛𝑠

𝑖 + 𝑛𝑔𝑝/𝑛𝑠
𝑖 − 𝑛𝑛𝑠/𝑠

𝑖 − 𝑛𝑛𝑠/𝑑𝑔𝑝
𝑖 − 𝑛𝑛𝑠/

𝑖  (1) 

  𝑁𝑠
𝑖+1 = 𝑁𝑠

𝑖 + 𝑛𝑛𝑠/𝑠
𝑖 + 𝑛𝑑𝑔𝑝/𝑠

𝑖 − 𝑛𝑠/𝑝
𝑖 − 𝑛𝑠/𝑑𝑔𝑝

𝑖  (2) 

  𝑁𝑝
𝑖+1 = 𝑁𝑝

𝑖 + 𝑛𝑠/𝑝
𝑖 − 𝑛𝑝/𝑛𝑠

𝑖  (3) 

Eq. (4) updates the number of vehicles that “decide for garage parking”. Vehicles that decide to use a parking garage 6 

during time slice 𝑖 (i.e., 𝑛𝑛𝑠/d𝑔𝑝
𝑖  and 𝑛𝑠/d𝑔𝑝

𝑖 ) join this state; vehicles that actually access off-street parking (i.e., 7 

𝑛𝑑𝑔𝑝/gp
𝑖 ) and vehicles that cannot access off-street parking (i.e., 𝑛𝑑𝑔𝑝/s

𝑖 ) quit this state. Eq. (5) updates the number of 8 

“off-street parking” vehicles. Vehicles that access a garage during time slice 𝑖 (i.e., 𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖 ) join this state; vehicles 9 

that depart off-street parking (i.e., 𝑛𝑔𝑝/𝑛𝑠
𝑖 ) quit this state. 10 

𝑁𝑑𝑔𝑝
𝑖+1 = 𝑁𝑑𝑔𝑝

𝑖 + 𝑛𝑛𝑠/𝑑𝑔𝑝
𝑖 + 𝑛𝑠/𝑑𝑔𝑝

𝑖 − 𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖 − 𝑛𝑑𝑔𝑝/𝑠

𝑖  (4) 

  𝑁𝑔𝑝
𝑖+1 = 𝑁𝑔𝑝

𝑖 + 𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖 − 𝑛𝑔𝑝/𝑛𝑠

𝑖  (5) 

The transition events 𝑛 /𝑛𝑠
𝑖 , 𝑛𝑛𝑠/s

𝑖 , 𝑛𝑠/𝑝
𝑖 , 𝑛𝑝/ns

𝑖  and 𝑛𝑛𝑠/
𝑖  are modeled in [8] and [13]. Here we focus only on the new 11 

transition events related to off-street parking, 𝑛 𝑛𝑠/𝑑𝑔𝑝
𝑖 , 𝑛𝑠/𝑑𝑔𝑝

𝑖 , 𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖 , 𝑛𝑑𝑔𝑝/𝑠

𝑖  and 𝑛𝑔𝑝/𝑛𝑠
𝑖 . 12 
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We require the origin 𝑘 ∈ 𝐾 dependent demand 𝑛𝑘, /𝑛𝑠
𝑖  and the transition event 𝑛𝑘, 𝑛𝑠/𝑠

𝑖  to incorporate the VOT 1 

influence into our off-street parking decision model. 𝑛𝑘, /𝑛𝑠
𝑖  is an input to the model, such that 𝑛 /𝑛𝑠

𝑖 = ∑ 𝑛𝑘, /𝑛𝑠
𝑖𝐾

𝑘=1 , 2 

whereas 𝐾 is the total number of origins in the network. 𝑛𝑘, 𝑛𝑠/𝑠
𝑖  is modeled in [13]. 3 

3. DECISION MODEL FOR OFF-STREET PARKING 4 

This section shows an overview of the assumptions, inputs and outputs of the off-street parking model, and the related 5 

transition events. 6 

3.1. Basic information for analytical model 7 

Basic model assumptions, inputs, and expected outputs are briefly described below. 8 

Assumptions: 9 

Basic assumptions from [13] and [8] for the matrix are kept here. They include a simple spatially symmetric urban 10 

traffic network where traffic is homogenously distributed, and the traffic demand over a period of time (e.g., a day), 11 

the distribution of parking durations, and the length and general traffic properties of the network are known. All trips 12 

are exclusively made by car in this network (i.e., the mode choice has been previously made). 13 

The cruising time and distance depend on drivers’ luck finding an available on-street parking space (based on their 14 

own location, that of the available parking spots, and that of the competitors) and on the current traffic conditions. The 15 

use of our macroscopic strategy allows us to avoid recording the location of all cars and parking spots throughout the 16 

different time slices in the system to specify each vehicles’ driving time and distance, i.e., only average numbers of 17 

vehicles during a time slice and total/average times and distances are tracked. The macroscopic model is not influenced 18 

by the randomness of vehicles’ location at a specific time slice due to the reset of parking searchers and available 19 

parking spaces at the beginning of each time slice. The on-street parking spaces are on average uniformly distributed 20 

on the network, i.e., the locations of available parking spaces are assumed as random at the beginning of each time 21 

slice. A uniformly distribution of all on-street parking searchers is assumed on the network at the beginning of each 22 

time slice, i.e., the traffic demand is guaranteed to be homogeneously generated. This assumption limits the 23 

applicability of the model when searchers focus on one street to find parking while parking spots are easily available 24 

in other areas of the network. In those cases, the model would likely overestimate the amount of parking spaces being 25 

taken in this case. 26 

All parking garages are assumed to be homogenously distributed within the network and all associated off-street 27 

parking capacities are assumed to be equal. The decision for off-street parking can be made anywhere within the “non-28 

searching” or “searching”-state. As soon as this decision is made there is no possibility for the drivers to change it 29 

afterwards, unless there is no capacity in the parking garages by the time they get there. 30 

We assume that the VOT is different for individual vehicles depending on their origins. This affects the time-related 31 

costs in our off-street parking decision model.   32 
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Inputs: 1 

Table 2 shows all the model’s independent variables. The first set corresponds to the travel demand and supply, and 2 

can be estimated based on historical data. The second set corresponds to the traffic network, and can be directly 3 

measured. The third set corresponds to the initial conditions of the parking-related states, and can be measured, 4 

assumed or simulated. The fourth set corresponds to off-street parking specific input parameters, and can be directly 5 

measured or estimated based on historical data. 6 

     Table 2. Independent variables (inputs to the model). 7 

Notation Definition 

𝐾 Total number of origins for demand input of the network. Each origin might have a different VOT. 

𝑉𝑂𝑇𝑘  VOT for origin 𝑘 ∈ 𝐾. 

𝑛𝑘, /𝑛𝑠
𝑖  New arrivals to the network for origin 𝑘 ∈ 𝐾 during time slice 𝑖 (i.e., travel demand per VOT origin) 

𝛽𝑖 Proportion of new arrivals during time slice 𝑖 that correspond to traffic that is not searching for parking. 

𝐴 Total number of existing on-street parking spaces (for public use) in the area. 

𝑙𝑛𝑠/𝑠 Distance that must be driven by a vehicle before it starts to search for parking. 

𝑙/ Distance that must be driven by a vehicle before it leaves the area without parking. 

𝑙𝑝/ Distance that must be driven by a vehicle before it leaves the area after it has parked. 

𝑡𝑑 Parking duration. 

𝐿 Size (length) of the network. 

𝑏 Average length of a block in the network.  

𝑡 Length of a time slice. 

𝑣 Free flow speed, i.e., maximum speed in the network. 

𝑤 Walking speed in the network. 

𝑁𝑛𝑠
0  Initial condition for the non-searching state. 

𝑁𝑠
0 Initial condition for the searching state. 

𝑁𝑝
0 Initial condition for the parking state. 

𝑁𝑑𝑔𝑝
0  Initial condition for the decision for off-street parking state. 

𝑁𝑔𝑝
0  Initial condition for the off-street parking state. 

𝐺 Number of parking garages in the network. 

𝑅𝑡𝑜𝑡
0  Total capacity of all parking garages, i.e., total number of off-street parking spaces. 

𝑝𝑔𝑝
0  Initial garage parking pricing. 

𝛥𝑚𝑎𝑥 Maximum increase/decrease of garage pricing per time slice. 

𝑦 Influence factor of the off-street parking related demand-responsivity during garage parking pricing. 

𝜆 Penalty term to reduce circular movements while switching to off-street parking, 𝜆 ∈ (0,1). 

𝑝𝑑𝑖𝑠𝑡 Price per kilometer driven on the network (i.e., external costs as petrol, wear and tear of vehicles). 

 8 

Outputs:  9 

The model provides, amongst others, the interactions between on- and off-street parking and their influence on the 10 

urban traffic system. The short-term effects of parking pricing on traffic conditions can be investigated, i.e., all 11 
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distances driven with all related times as well as the effects on city revenue. 1 

Table 3 shows a list of variables we define and use for our methodology. The first set is used to quantify the number 2 

of vehicles that experience each transition event in a time slice. The second set corresponds to the off-street parking 3 

decision model. The third set is used to compute the costs variables in this decision model. 4 

    Table 3. Dependent variables. 5 

Notation Definition 

𝑛𝑘, 𝑛𝑠/𝑠
𝑖  Number of vehicles that transition from “non-searching” to “searching” for origin 𝑘 ∈ 𝐾 during time slice 𝑖. 

𝐴𝑖  Number of available parking spots at the beginning of time slice 𝑖. 

𝑣𝑖 Average travel speed in time slice 𝑖. 

𝑑𝑖  Maximum driven distance of a vehicle in time slice 𝑖. 

𝑅𝑡𝑜𝑡
𝑖  Capacity of all parking garages per time slice. 

𝑝𝑜𝑝
𝑖  On-street parking fee in time slice 𝑖. 

𝑝𝑔𝑝
𝑖  Off-street parking fee in time slice 𝑖. 

𝐶𝑜𝑝
𝑖  Average costs of cruising for on-street parking determined in time slice 𝑖. 

𝐶𝑔𝑝
𝑖  Average costs of garage parking determined in time slice 𝑖. 

𝐶𝑑𝑟𝑖𝑣𝑒
𝑖  Average costs of driving to the closest off-street parking location in time slice 𝑖. 

𝐶𝑤𝑎𝑙𝑘
𝑖  Average costs of walking from the off-street parking to the final destination in time slice 𝑖. 

𝐸VOT
𝑖  Expectation value for all VOT costs considering all origins 𝑘 ∈ 𝐾 and all time slices {1,… , 𝑖}. 

𝐴𝐶𝐷𝑖 Average cruising distance for on-street parking in time slice 𝑖. 

𝐴𝐷𝐷 Average driving distance to the closest off-street parking location. 

𝐴𝑊𝐷 Average walking distance from the off-street parking to the final destination. 

𝛾𝑖  Binary variables to model different transition events. 

 6 

3.2. Model for off-street related transition events 7 

We introduce the following transition events based on the assumption that the urban network is abstracted as one ring 8 

road with cars driving in a single direction. This simplifies the model without affecting the model results ([8]). The 9 

different costs associated with the parking decisions are formulated in section 3.3. 10 

3.2.1. Transition event: Go to off-street parking 11 

We assume that the vehicles start to search after driving a distance 𝑙𝑛𝑠/𝑠 since they enter the area. 𝑙𝑛𝑠/𝑠 can be fixed 12 

or taken out of a distribution. For simplicity, we assume it is fixed. Besides searching for an on-street parking space, 13 

the vehicles have then the option to decide for off-street parking as modelled in Eq. (6); 𝑛𝑛𝑠/𝑑𝑔𝑝
𝑖  may consist of 14 

vehicles entering the network in any former time slice 𝑖′ ∈ [1, 𝑖 − 1]. 15 

𝑛𝑛𝑠/𝑑𝑔𝑝
𝑖 = [∑ (1 − 𝛽𝑖

′
) ∙ 𝑛/𝑛𝑠

𝑖′

⏟          
term 1

∙ 𝛾𝑛𝑠/𝑠
𝑖′

⏟
term 2

𝑖−1

𝑖′=1

] ∙ 𝛾𝑛𝑠/𝑑𝑔𝑝
𝑖
⏟    
term 3

 (6) 



Manuel Jakob, Monica Menendez                                                                              Page 10 

where 1 

𝛾𝑛𝑠/𝑠
𝑖′ = {

1,    if 𝑙𝑛𝑠/𝑠 ≤∑ 𝑑𝑗
𝑗=𝑖−1

𝑗=𝑖′
 and ∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
≤ 𝑙𝑛𝑠/𝑠 + 𝑑

𝑖−1

0,    otherwise                                    

 (7) 

  
𝛾𝑛𝑠/𝑑𝑔𝑝
𝑖 = {

1, if 𝐶𝑜𝑝
𝑖 ≥ 𝐶𝑔𝑝

𝑖

0, otherwise  
 (8) 

Term 1 in Eq. (6) represents the portion of the total demand 𝑛/𝑛𝑠
𝑖′  that needs to park, i.e., all vehicles excluding 2 

through traffic. Term 2 indicates whether these vehicles can start to search for parking in time slice 𝑖 or need to 3 

continue driving (Eq. (7)). The maximum driven distance 𝑑𝑖 = 𝑣𝑖 ∙ 𝑡 . Term 3  shows the decision for off-street 4 

parking depending on the on- and off-street parking related costs (Eq. (8)). The vehicles decide for garage parking in 5 

case the average cruising cost 𝐶𝑜𝑝
𝑖  (subsection 3.3.1) to find on-street parking is higher than the associated off-street 6 

parking cost 𝐶𝑔𝑝
𝑖  (subsection 3.3.2). In case the vehicles do not decide for garage parking, they enter the searching-7 

for-on-street-parking state (see 𝑛𝑛𝑠/𝑠
𝑖  in [8]). For realistic networks ([10]) the maximum number of vehicles entering 8 

a network (see MATSim simulation for the city of Zurich) for a small time slice (𝑡 = 1 min in this paper) is rather 9 

small. Thus, we can assume that either all or no vehicles decide for garage parking per time slice. 10 

3.2.2. Transition event: Switch to off-street parking 11 

In this subsection, the transition event 𝑛𝑠/𝑑𝑔𝑝
𝑖  is modelled in Eq. (9) to determine the number of vehicles switching 12 

to off-street parking from searching-for-parking state. The drivers can decide to use off-street parking while cruising 13 

for on-street parking. Alternatively, the vehicles keep on searching for on-street parking. 14 

𝑛𝑠/𝑑𝑔𝑝
𝑖 = 𝑁𝑠

𝑖 ∙ 𝛾𝑠/𝑑𝑔𝑝
𝑖 ∙ 𝛾𝑝𝑒𝑛

𝑖  (9) 

where: 15 

𝛾𝑠/𝑑𝑔𝑝
𝑖 = {

1,    if  𝐶𝑜𝑝
𝑖 ≥ 𝐶𝑔𝑝

𝑖

0,    otherwise  
 (10) 

𝛾𝑝𝑒𝑛
𝑖 = {

𝜆,     if  𝑛𝑠/𝑑𝑔𝑝
𝑖−1 > 0 or 𝑛𝑠/𝑑𝑔𝑝

𝑖−2 > 0

1,     otherwise               
 (11) 

Eq. (10) models the off-street parking decision analogously to Eq. (8). We also introduce an additional penalty term  16 

𝜆 ∈ (0,1) in Eq. (11) to reduce circular movements between 𝑛𝑑𝑔𝑝/𝑠
𝑖  and 𝑛𝑠/𝑑𝑔𝑝

𝑖 . 17 

3.2.3. Transition event: Access off-street parking 18 

The transition event 𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖  (Eq. (12)) describes the process of accessing a parking garage. After the vehicles have 19 

decided to use off-street parking, they drive towards the parking garage where they realize whether it is possible for 20 

them to access it depending on the available capacity. 21 

𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖 = min{∑ (𝑛𝑛𝑠/𝑑𝑔𝑝

𝑖′ + 𝑛𝑠/𝑑𝑔𝑝
𝑖′ )⏟            

term 1

∙ 𝛾𝐴𝐷𝐷
𝑖′
⏟
term 2

𝑖−1

𝑖′=1

; 𝑅𝑡𝑜𝑡
𝑖 } (12) 
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where 1 

𝛾𝐴𝐷𝐷
𝑖′ = {

1,     if 𝐴𝐷𝐷 ≤∑ 𝑑𝑗
𝑗=𝑖−1

𝑗=𝑖′
 and ∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
≤ 𝐴𝐷𝐷 + 𝑑𝑖−1     

0,     otherwise                                         

 (13) 

  Term 1 in Eq. (12) shows the sum of all vehicles (from section 3.2.1 and 3.2.2) that have decided to use garage 2 

parking in any former time slice 𝑖′ ∈ [1, 𝑖 − 1]. Term 2 (Eq. (13)) indicates whether these vehicles have arrived at 3 

the garage after reaching the average driving distance 𝐴𝐷𝐷 (subsection 0). Here two conditions must be satisfied: 4 

the vehicles have driven enough distance to arrive at an off-street parking after having decided for it, and they have 5 

not accessed a garage in a former time slice. The number of vehicles that can access parking at the end is the minimum 6 

of the total capacity available and the number of vehicles that want to park. 7 

3.2.4. Transition event: Not access off-street parking 8 

This transition event describes the case when the vehicles cannot access off-street parking due to capacity limitations. 9 

In this situation, these vehicles 𝑛𝑑𝑔𝑝/𝑠
𝑖  in Eq. (14) return back to searching-for-parking state. 10 

𝑛𝑑𝑔𝑝/𝑠
𝑖 = max{𝑛𝑑𝑔𝑝/𝑔𝑝

𝑖 −𝑅𝑡𝑜𝑡
𝑖 ; 0} (14) 

In case 𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖  surpasses 𝑅𝑡𝑜𝑡

𝑖 , the remaining vehicles need to return to searching-for-parking state; otherwise all 11 

vehicles can successfully enter a garage. 12 

3.2.5. Transition event: Depart off-street parking 13 

The transition event 𝑛𝑔𝑝/𝑛𝑠
𝑖  is modeled analogously to 𝑛𝑝/𝑛𝑠

𝑖  in [8]. As we know the number of vehicles having 14 

decided to use off-street parking in all former time slices, we can find 𝑛𝑔𝑝/𝑛𝑠
𝑖  based on the distribution of parking 15 

durations (an input to the model). Eq. (15) shows the number of vehicles to depart off-street parking in time slice 𝑖. 16 

𝑛𝑔𝑝/𝑛𝑠
𝑖 = ∑ 𝑛𝑑𝑔𝑝/𝑔𝑝

𝑖′ ∙ ∫ 𝑓(𝑡𝑑) 𝑑𝑡𝑑

(𝑖+1−𝑖′)∙𝑡

(𝑖−𝑖′)∙𝑡

𝑖−1

𝑖′=1

 (15) 

𝑛𝑔𝑝/𝑛𝑠
𝑖  may consist of vehicles 𝑛𝑑𝑔𝑝/𝑔𝑝

𝑖′  having accessed off-street parking in any former time slice 𝑖′ ∈ [1, 𝑖 − 1]. 17 

The probability that these vehicles depart off-street parking in time slice 𝑖 equals to the probability of the parking 18 

duration between (𝑖 − 𝑖′) ∙ 𝑡 and (𝑖 + 1 − 𝑖′) ∙ 𝑡, i.e., ∫ 𝑓(𝑡𝑑) 𝑑𝑡𝑑
(𝑖+1−𝑖′)∙𝑡

(𝑖−𝑖′)∙𝑡
. 19 

After vehicles access or depart from off-street parking, the total capacity is updated in Eq. (16). 20 

𝑅𝑡𝑜𝑡
𝑖+1 = 𝑅𝑡𝑜𝑡

𝑖 + 𝑛𝑔𝑝/𝑛𝑠
𝑖 − 𝑛𝑑𝑔𝑝/𝑔𝑝

𝑖  (16) 

3.2.6. Transition event: Leave the area 21 

The vehicles leave the area after having driven for a given distance. Here 𝑛𝑛𝑠/
𝑖  needs to be modified in Eq. (17) to 22 

include 𝑛𝑔𝑝/𝑛𝑠
𝑖′ . 23 
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𝑛𝑛𝑠/
𝑖 = ∑(𝛽𝑖

′
∙ 𝑛/𝑛𝑠

𝑖′ ∙ 𝛾/
𝑖′ + (𝑛𝑝/𝑛𝑠

𝑖′ + 𝑛𝑔𝑝/𝑛𝑠
𝑖′ ) ∙ 𝛾𝑝/

𝑖′ )

𝑖−1

𝑖′=1

 (17) 

where 1 

𝛾/
𝑖′ = {

1,    if 𝑙/ ≤∑ 𝑑𝑗
𝑗=𝑖−1

𝑗=𝑖′
 and ∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
≤ 𝑙/ + 𝑑

𝑖−1

0,    otherwise                               

  

  

𝛾𝑝/
𝑖′ = {

1,    if 𝑙𝑝/ ≤∑ 𝑑𝑗
𝑗=𝑖−1

𝑗=𝑖′
 and ∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
≤ 𝑙𝑝/ + 𝑑

𝑖−1

0,    otherwise                                 

  

Further details can be found in [8]. 2 

3.3. Off-street parking decision related costs 3 

In subsections 3.2.1 and 3.2.2, we have introduced the costs 𝐶𝑜𝑝
𝑖  and 𝐶𝑔𝑝

𝑖  that are required to model the off-street 4 

parking related decisions. In the following subsections, we mathematically derive these cost terms. 5 

3.3.1. Cost of cruising for on-street parking 6 

We determine 𝐶𝑜𝑝
𝑖  in Eq. (18). This cost is only related to on-street parking searchers as there is no cruising cost 7 

assumed for finding off-street parking. Term 1 represents the on-street parking fee which can be constant or demand-8 

responsive ([13]). Term 2  represents the average cruising distance expressed in distance price units. Term 3 9 

represents the average cruising time expressed in VOT price units. We differentiate between computations considering 10 

𝑛𝑛𝑠/d𝑔𝑝
𝑖  (subsection 3.2.1) and 𝑛𝑠/𝑑𝑔𝑝

𝑖  (subsection 3.2.2). 𝐸𝑉𝑂𝑇
𝑖  in Eq. (19) shows the expectation value for VOT in 11 

time slice 𝑖, whereas 𝑉𝑂𝑇𝑘  are input parameters showing the actual VOT costs for all origins 𝑘 ∈ 𝐾 (more details 12 

on the derivation are shown in [13]). 13 

𝐶𝑜𝑝
𝑖 = 𝑝𝑜𝑝

𝑖
⏟

𝑡𝑒𝑟𝑚 1

+ 𝑝𝑑𝑖𝑠𝑡 ⋅ 𝐴𝐶𝐷
𝑖⏟      

term 2

+𝐸𝑉𝑂𝑇
𝑖 ∙

𝐴𝐶𝐷𝑖

𝑣𝑖⏟        
term 3

 (18) 

where 14 

𝐸𝑉𝑂𝑇
𝑖 =

{
 
 

 
 1

𝑖
∑∑

𝑛𝑘, /𝑛𝑠
𝑡

𝑛/𝑛𝑠
𝑡

𝑖

𝑡=1

𝐾

𝑘=1

∙ 𝑉𝑂𝑇𝑘 ,    for 𝑛𝑛𝑠/d𝑔𝑝
𝑖  

1

𝑖
∑∑

𝑛𝑘, 𝑛𝑠/𝑠
𝑡

𝑛𝑛𝑠/𝑠
𝑡

𝑖

𝑡=1

𝐾

𝑘=1

∙ 𝑉𝑂𝑇𝑘 ,    for 𝑛𝑠/𝑑𝑔𝑝
𝑖   

 (19) 

The average cruising distance 𝐴𝐶𝐷𝑖 is determined as in [13]. 15 
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3.3.2. Cost of garage parking 1 

The costs 𝐶𝑔𝑝
𝑖  in Eq. (20) consist of the off-street parking fee 𝑝𝑔𝑝

𝑖  (subsection 0), the average driving cost to the 2 

closest off-street parking location 𝐶𝑑𝑟𝑖𝑣𝑒
𝑖  (subsection 0) and the average walking cost to the final destination 𝐶𝑤𝑎𝑙𝑘

𝑖  3 

(subsection 0). 4 

𝐶𝑜𝑝
𝑖 = 𝑝𝑔𝑝

𝑖 + 𝐶𝑑𝑟𝑖𝑣𝑒
𝑖 + 𝐶𝑤𝑎𝑙𝑘

𝑖  (20) 

3.3.2.1 Off-street parking fee.  In general, the off-street parking fee 𝑝𝑔𝑝
𝑖  can be considered as a constant input or 5 

as a demand-responsive pricing variable. The demand-responsive fee 𝑝𝑔𝑝
𝑖  in Eq. (21) is modelled analogously to the 6 

on-street parking pricing model in [13]. 7 

𝑝𝑔𝑝
𝑖 =

{
 
 
 

 
 
 𝑝𝑔𝑝

𝑖−1 +𝑚𝑖𝑛{𝛥𝑝𝑔𝑝
𝑖 , 𝛥𝑚𝑎𝑥},       if  𝛥

𝑁𝑑𝑔𝑝
𝑖

𝑅𝑡𝑜𝑡
𝑖 > 0

𝑝𝑔𝑝
𝑖−1,                        if  𝛥

𝑁𝑑𝑔𝑝
𝑖

𝑅𝑡𝑜𝑡
𝑖 = 0

𝑝𝑔𝑝
𝑖−1 −𝑚𝑖𝑛{𝛥𝑝𝑔𝑝

𝑖 , 𝛥𝑚𝑎𝑥},       if  𝛥
𝑁𝑑𝑔𝑝
𝑖

𝑅𝑡𝑜𝑡
𝑖 < 0

 (21) 

where 8 

𝛥
𝑁𝑑𝑔𝑝
𝑖

𝑅𝑡𝑜𝑡
𝑖 =

𝑁𝑑𝑔𝑝
𝑖

𝑅𝑡𝑜𝑡
𝑖 −

𝑁𝑑𝑔𝑝
𝑖−1

𝑅𝑡𝑜𝑡
𝑖−1  (22) 

𝛥𝑝𝑔𝑝
𝑖 = 𝑝𝑔𝑝

0
⏟
term 1

⋅ (|𝛥
𝑁𝑑𝑔𝑝
𝑖

𝑅𝑡𝑜𝑡
𝑖
|)

1
𝑦

⏟        
term 2

 (23) 

The ratio concerning 𝑁𝑑𝑔𝑝
𝑖  and 𝑅𝑡𝑜𝑡

𝑖  varies between consecutive time slices (Eq. (22)). Depending on 𝛥
𝑁𝑑𝑔𝑝
𝑖

𝑅𝑡𝑜𝑡
𝑖  the 9 

garage fee 𝑝𝑔𝑝
𝑖  in Eq. (21) increases or decreases per time slice. The actual change of the off-street parking pricing 10 

is modelled in Eq. (23), where term 1 represents the initial fee 𝑝𝑔𝑝
0  and term 2 the demand-responsive impact to 11 

𝛥𝑝𝑔𝑝
𝑖 . Within term 2, 𝑦 is the influence factor of the demand-responsivity. It changes the level of influence of 𝛥

𝑁𝑑𝑔𝑝
𝑖

𝑅𝑡𝑜𝑡
𝑖  12 

to the delta pricing value 𝛥𝑝𝑔𝑝
𝑖 . For further studies in this paper, we assume a square root dependency and set 𝑦 = 2. 13 

To avoid drastic price fluctuations in Eq. (21) a maximum pricing increase/decrease input variable 𝛥𝑚𝑎𝑥 is used per 14 

time slice ([13]). 15 

3.3.2.2 Cost of driving from current vehicle location to closest off-street parking.  The driving cost 𝐶𝑑𝑟𝑖𝑣𝑒
𝑖  from 16 

the actual vehicle decision location to the closest garage is modelled in Eq. (24). It contains the average distance to 17 

the closest off-street parking expressed in distance price units (term 1) and the average time expressed in VOT price 18 

units that is needed to get there (term 2). 19 

𝐶𝑑𝑟𝑖𝑣𝑒
𝑖 = 𝑝𝑑𝑖𝑠𝑡 ⋅ 𝐴𝐷𝐷⏟      

term 1

+ 𝐸𝑉𝑂𝑇
𝑖 ∙

𝐴𝐷𝐷

𝑣𝑖⏟      
term 2

 (24) 
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Both terms include 𝐴𝐷𝐷 (determined in Eq. (25)). The computation is based on the assumption that vehicles and 1 

garages are uniformly distributed over the network and that the relationship between on- and off-street parking 2 

locations is random, i.e., the locations could be close or far away from each other. 3 

𝐴𝐷𝐷 =
𝐿

2 ∙ 𝐺
 (25) 

Fig. 2(a) shows a simple example of four on-street parking spaces and two uniformly distributed parking garages to 4 

illustrate Eq. (25). 5 

 6 

(a) Average driving distance from current location to closest garage.    (b) Average walking distance from garage to destination. 7 

Fig. 2. Simple example of uniformly distributed on- and off-street parking to illustrate Eq. (25) and Eq. (27). 8 

3.3.2.3 Cost of walking from off-street parking to destination.  Assuming that drivers choose on-street parking 9 

close to their destination, there is no need to consider walking costs for on-street parking. Garages could be further 10 

away from the drivers’ destination. Thus, the associated walking cost 𝐶𝑤𝑎𝑙𝑘
𝑖   in Eq. (26) consists of the average 11 

walking distance from the garage to the destination expressed in distance price units (term 1), and its associated 12 

average walking time cost expressed in VOT price units (term 2). The walking speed 𝑤 is assumed to be a constant 13 

input. 14 

𝐶𝑤𝑎𝑙𝑘
𝑖 = 𝑝𝑑𝑖𝑠𝑡 ⋅ 𝐴𝑊𝐷⏟        

term 1

+ 𝐸𝑉𝑂𝑇
𝑖 ∙

𝐴𝑊𝐷

𝑤⏟        
term 2

 (26) 

We may assume without loss of generality that the network is a square grid, whereas the average length of a block 𝑏 15 

in the network is known. This network is then visualized as a ring network by joining all blocks together. We take the 16 

surface of this total square [𝑏 ⋅ (−
1

2
+ √

1

4
+

𝐿

2𝑏
)]

2

 and divide it by 𝐺. We move this partial surface into a circle 17 

where we assume that its radius is the average walking distance 𝐴𝑊𝐷 to the drivers’ destination described in Eq. 18 

(27). 19 
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𝐴𝑊𝐷 =
𝑏

√𝜋 ∙ 𝐺
[−
1

2
+√

1

4
+
𝐿

2𝑏
] (27) 

Fig. 2(b) shows a simple example with uniformly distributed garages to illustrate the model in Eq. (27). 1 

4. APPLICATIONS 2 

Here a numerical example is provided to illustrate the influences of on- and off-street parking on the traffic system. 3 

We present the results obtained from multiple simulation runs and discuss the findings regarding the average/total 4 

searching time and distance in the network. 5 

4.1. Numerical example 6 

There is a total travel demand of 160 trips spread between three different origins (30/ 50/ 80 trips) in the network 7 

associated to different VOTs (𝑉𝑂𝑇1 = 14 CHF/h; 𝑉𝑂𝑇2 = 18 CHF/h; 𝑉𝑂𝑇3 = 16 CHF/h). A Poisson distribution 8 

is used to define the entry time of the vehicles to the area, where the average arrival rate is 20 vehicles per hour. We 9 

consider time slices of 1 min, i.e., 𝑡 = 1 min. Due to space constraints and for simplicity, no through-traffic (i.e., 10 

𝛽𝑖 = 0,∀𝑖) is assumed. The price per distance driven is assumed as 𝑝𝑑𝑖𝑠𝑡 = 0.3 CHF/km and the walking speed is 11 

set to 𝑤 = 5
𝑘𝑚

ℎ
 ([6]). The number of garages is 𝐺 = 3 with a total capacity of 𝑅𝑡𝑜𝑡

0 = 27. The penalty term 𝜆 12 

should be calibrated, but for simplicity we assume 𝜆 = 0.5. Other inputs include: 𝐿 = 1 km; 𝑏 = 83.3 m; 𝐴 = 23 13 

on-street parking spaces, and 𝑣 = 30 km/h. All further input parameters to the general macroscopic model can be 14 

found in the numerical example in [13]. 15 

4.2. Impacts of on- and off-street parking pricing 16 

The focus of this paper is on the influence of on- and off-street parking to the traffic system with regard to different 17 

parking pricing schemes. We consider the following pricing scenarios: 18 

 Scenario (a): Without parking pricing 19 

 Scenario (b): 𝑝𝑜𝑝
𝑖  and 𝑝𝑔𝑝

𝑖  constant 20 

 Scenario (c): 𝑝𝑜𝑝
𝑖  demand-responsive, 𝑝𝑔𝑝

𝑖  constant 21 

 Scenario (d): 𝑝𝑜𝑝
𝑖  constant, 𝑝𝑔𝑝

𝑖  demand-responsive 22 

 Scenario (e): 𝑝𝑜𝑝
𝑖  and 𝑝𝑔𝑝

𝑖  demand-responsive 23 

All constant and initial parking fees in all scenarios are set to 𝑝𝑜𝑝
0 = 2.50 CHF for all on-street and to 𝑝𝑔𝑝

0 = 6 CHF 24 

for all off-street parking spots. We consider the pricing fees grouped over 5 consecutive time slices, i.e., the parking 25 

price is updated every 5 minutes, and it is rounded to the next 0.5 CHF value to simplify the pricing structure.  26 

We concentrate on short-term effects such as the financial benefits of on- and off-street parking fees which can lead 27 

to the following revenues for the city. 28 

 Scenario (b): Total revenue: 475 CHF (347 CHF on-street, 128 CHF off-street) 29 

 Scenario (c): Total revenue: 718 CHF (416 CHF on-street, 365 CHF off-street) 30 
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 Scenario (d): Total revenue: 475 CHF (347 CHF on-street, 128 CHF off-street) 1 

 Scenario (e): Total revenue: 900 CHF (418 CHF on-street, 482 CHF off-street) 2 

All effects on cruising-for-parking and traffic performance are evaluated in Table 4 with respect to the results of 3 

scenario (a).  4 

Fig. 3(a) and (b) show the influence of ratio 
𝑝𝑜𝑝
𝑖

𝑝𝑔𝑝
𝑖  on 𝐶𝑜𝑝

𝑖  (see section 3.3.1 for 𝑛𝑛𝑠/d𝑔𝑝
𝑖 ) and 𝐶𝑔𝑝

𝑖  in scenario (c) and 5 

(e). We used a quadratic regression approach based on aggregated data that shows an increasing 𝐶𝑜𝑝
𝑖  (red continuous 6 

line) and a constant/increasing 𝐶𝑔𝑝
𝑖  (blue dashed line) for an increasing ratio 

𝑝𝑜𝑝
𝑖

𝑝𝑔𝑝
𝑖 . 7 

 8 

(a) 𝑝𝑜𝑝
𝑖  demand-responsive and 𝑝𝑔𝑝

𝑖  constant (scenario (c))  (b) 𝑝𝑜𝑝
𝑖  and 𝑝𝑔𝑝

𝑖  demand-responsive (scenario (e))  9 

Fig. 3. Demand-responsive on- and off-street parking pricing and its influence on the cost of cruising and garage parking.  10 

By introducing demand-responsive on- and off-street parking pricing in scenario (e), 𝐶𝑜𝑝
𝑖  and 𝐶𝑔𝑝

𝑖  increase until 11 

both are equal at approximately 𝑝𝑜𝑝
𝑖 = 𝑝𝑔𝑝

𝑖 . The system balances out 𝐶𝑜𝑝
𝑖  and 𝐶𝑔𝑝

𝑖  depending on the traffic situation 12 

by using demand-responsive 𝑝𝑜𝑝
𝑖  and 𝑝𝑔𝑝

𝑖 . This leads to significant time (distance) improvements across all states in 13 

scenario (e) (Table 4). These improvements come along with financial revenues such as a total revenue of 900 CHF 14 

for city councils or private agencies in the area. Scenario (c) uses a constant 𝑝𝑔𝑝
𝑖  and thus, has less flexibility to adapt 15 

𝐶𝑔𝑝
𝑖  on the traffic situation. These traffic effects lead to less time (distance) improvements across all states in scenario 16 

(c) compared to scenario (e). Scenario (b) and (d) lead to a worse traffic performance with respect to scenario (a) and 17 

a relatively small numbers of vehicles deciding for garage parking. Due to the gap between 𝑝𝑜𝑝
0 = 2.50 CHF and 18 

𝑝𝑔𝑝
0 = 6 CHF vehicles will only consider to drive to a garage in case the average cruising time and distance are high. 19 

Therefore, congestion with high cruising cost already exists before the vehicles consider this garage parking decision.  20 
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Table 4. Average/Total time and driven distance for vehicles in relevant traffic states. Value within parenthesis represents 1 
percentage change with respect to the scenario (a) without parking pricing. 2 

 

State 

Average travel 

time per vehicle 

(min/veh) 

Total travel  

time (min) 

Total time costs 

(converted 

through VOT) 

Average  

driven distance 

(km/veh) 

Total driven  

distance (km) 

N
o
n

-s
e
a
rc

h
in

g
 s

ta
te

 

(a) Without parking pricing 3.214 514.186 139.242 1.128 180.48 

(b) 𝑝𝑜𝑝
𝑖  and 𝑝𝑔𝑝

𝑖  constant 
4.664  

(+ 45.1 %) 

746.166  

(+ 45.1 %) 

202.062  

(+ 45.1 %) 

1.197 

(+ 6.1 %) 

191.569  

(+ 6.1 %) 

(c) 𝑝𝑜𝑝
𝑖  demand-responsive, 

𝑝𝑔𝑝
𝑖  constant 

2.864  

(- 10.9 %) 

458.287  

(- 10.9 %) 

124.105 

(- 10.9 %) 

1.073  

(- 4.9 %) 

171.733  

(- 4.9 %) 

(d) 𝑝𝑜𝑝
𝑖  constant, 

𝑝𝑔𝑝
𝑖  demand-responsive 

4.664  

(+ 45.1 %) 

746.166  

(+ 45.1 %) 

202.062  

(+ 45.1 %) 

1.197  

(+ 6.1 %) 

191.569  

(+ 6.1 %) 

(e) 𝑝𝑜𝑝
𝑖  and 𝑝𝑔𝑝

𝑖  

demand- responsive 

2.889  

(- 10.1 %) 

462.233  

(- 10.1 %) 

125.173  

(- 10.1 %) 

1.111  

(- 1.5 %) 

177.735  

(- 1.5 %) 

S
e
a

rc
h

in
g
 s

ta
te

 

(a) Without parking pricing 8.644 1383 374.516 3.107 497.12 

(b) 𝑝𝑜𝑝
𝑖  and 𝑝𝑔𝑝

𝑖  constant 
25.355  

(+ 193.3 %) 

4056.7 

(+ 193.3 %) 

1098.554  

(+ 193.3 %) 

6.37  

(+ 105 %) 

1019.2  

(+ 105 %) 

(c) 𝑝𝑜𝑝
𝑖  demand-responsive, 

𝑝𝑔𝑝
𝑖  constant 

9.17 

(+ 6.1 %) 

1467.2  

(+ 6.1 %) 

397.316  

(+ 6.1 %) 

3.283  

(+ 5.7 %) 

525.339  

(+ 5.7 %) 

(d) 𝑝𝑜𝑝
𝑖  constant, 

𝑝𝑔𝑝
𝑖  demand-responsive 

25.355  

(+ 193.3 %) 

4056.7 

(+ 193.3 %) 

1098.554  

(+ 193.3 %) 

6.37  

(+ 105 %) 

1019.2  

(+ 105 %) 

(e) 𝑝𝑜𝑝
𝑖  and 𝑝𝑔𝑝

𝑖  

demand- responsive 

6.745 

(- 22 %) 

1080.8 

(- 22 %) 

292.247 

(- 22 %) 

2.489 

(- 19.9 %) 

398.235 

(-19.9 %) 

D
e
c
id

e
 f

o
r 

g
a
r
a

g
e 

p
a

r
k

in
g

 s
ta

te
 

(a) Without parking pricing 3.983 637.194 172.552 1.32 211.129 

(b) 𝑝𝑜𝑝
𝑖  and 𝑝𝑔𝑝

𝑖  constant 
0.133  

(- 96.7 %) 

21.326  

(- 96.7 %) 

5.775  

(- 96.7 %) 

0.067  

(- 95 %) 

10.663  

(- 95 %) 

(c) 𝑝𝑜𝑝
𝑖  demand-responsive, 

𝑝𝑔𝑝
𝑖  constant 

1.761  

(- 55.8 %) 

281.757  

(- 55.8 %) 

76.3  

(- 55.8 %) 

0.632  

(- 52.1 %) 

101.148  

(- 52.1 %) 

(d) 𝑝𝑜𝑝
𝑖  constant, 

𝑝𝑔𝑝
𝑖  demand-responsive 

0.133  

(- 96.7 %) 

21.326 

(- 96.7 %) 

5.775  

(- 96.7 %) 

0.067 

(- 95 %) 

10.663  

(- 95 %) 

(e) 𝑝𝑜𝑝
𝑖  and 𝑝𝑔𝑝

𝑖  

demand- responsive 

2.731  

(- 31.4 %) 

436.852  

(- 31.4 %) 

118.299  

(- 31.4 %) 

0.969  

(- 26.6 %) 

155.075  

(- 26.6 %) 

A
c
r
o

ss
 a

ll
 s

ta
te

s 

(a) Without parking pricing 15.841 2534.38 686.31 5.555 888.729 

(b) 𝑝𝑜𝑝
𝑖  and 𝑝𝑔𝑝

𝑖  constant 
30.152  

(+ 90.3 %) 

4824.192  

(+ 90.3 %) 

1306.391  

(+ 90.3 %) 

7.634  

(+ 37.4 %) 

1221.432  

(+ 37.4 %) 

(c) 𝑝𝑜𝑝
𝑖  demand-responsive, 

𝑝𝑔𝑝
𝑖  constant 

13.795  

(- 12.9 %) 

2207.244  

(- 12.9 %) 

597.721 

(- 12.9 %) 

4.988  

(- 10.2 %) 

798.22  

(- 10.2 %) 

(d) 𝑝𝑜𝑝
𝑖  constant, 

𝑝𝑔𝑝
𝑖  demand-responsive 

30.152  

(+ 90.3 %) 

4824.192  

(+ 90.3 %) 

1306.391 

(+ 90.3 %) 

7.634  

(+ 37.4 %) 

1221.432  

(+ 37.4 %) 

(e) 𝑝𝑜𝑝
𝑖  and 𝑝𝑔𝑝

𝑖  

demand- responsive 

12.365  

(- 21.9 %) 

1979.885 

(- 21.9 %) 

535.719  

(- 21.9 %) 

4.569  

(- 17.7 %) 

731.045  

(- 17.7 %) 

 3 

Demand-responsive on-and off-street parking pricing (scenario (e)) not only leads to high financial revenues, it also 4 

leads to significant cruising, environmental and traffic performance improvements across all states. However, the 5 

usage of the model is not limited to these specific results. It can be used to optimize on- and off-street parking for 6 

different object criteria (e.g., minimize cruising traffic, minimize travel distance, and maximize revenues) in the 7 
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network. 1 

5. CONCLUSIONS 2 

In this study, we develop a dynamic macroscopic off-street parking model and integrate it into the urban traffic and 3 

on-street parking study in [8] and [13] to better replicate reality. We analyze the influence of on- and off-street parking 4 

on searching-for-parking traffic and traffic performance based on different parking pricing schemes. 5 

The main contributions of this paper are: 6 

 We model off-street parking macroscopically, including the parking searcher’s decision between driving to 7 

a parking garage or searching for an on-street parking place in the network. 8 

 We formulate pricing scenarios including demand-responsive parking pricing methodologies as introduced 9 

in [13] for both on- and off-street parking. Scenarios include both constant and demand-responsive pricing 10 

policies. By evaluating their effects on the traffic system in all scenarios, we show that the demand-responsive 11 

on- and off-street parking pricing scenario leads to significant cruising and environmental improvements. In 12 

addition, a relationship between on- and off-street parking pricing and the costs of cruising and garage 13 

parking are analyzed in this paper. The model provides a preliminary idea for city councils regarding the on- 14 

and off-street parking influence on searching-for-parking traffic (cruising), the congestion in the network 15 

(traffic performance), the total driven distance (environmental conditions), and the revenue created by on- 16 

and off-street parking fees for the city. In the long-term, drivers might avoid paying high on- or off-street 17 

parking fees and quit their journeys. This could affect the demand, but long-term effects are out-of-scope of 18 

this paper. 19 

The general framework provides an easy to implement methodology to macroscopically model on- and off-street 20 

parking. All methods are based on very limited data inputs, including travel demand, VOT, number of garages with 21 

their capacity, the traffic network, and initial parking specifications. Only aggregated data at the network level over 22 

time is required such that there is no need for individual parking data. This macroscopic approach saves on data 23 

collection efforts and reduces the computational costs significantly compared to existing literature. Additionally, there 24 

is no requirement of complex simulation software and the model can be easily solved with a simple numerical solver. 25 

Overall, the usage of the model is far beyond the illustration in the numerical example. The relation between through 26 

traffic, i.e., vehicles that are not searching for parking, on- and off-street parking and traffic conditions can be analyzed. 27 

Due to simplification purposes through-traffic was assumed to be zero in this paper. For simplicity we have 28 

additionally assumed that all individual on- and off-street parking spaces have the same initial parking price and all 29 

garages have equal capacities. The influence of individual parking prices and individual off-street capacities on the 30 

traffic system can be analyzed in future studies. In reality, vehicles often prefer parking possibilities in a central street 31 

or area of the network. Parking in non-homogenous environments can be included in future research. We can also 32 

include a traffic demand split with a fixed (low subsidized) parking fee for all on- and/or off-street parking spaces. All 33 

remaining portions of demand could be treated demand-responsively, reflecting the external costs for parking. This 34 

approach can be motivated by, e.g., the subsidy by a company or a city for their residents. 35 

In summary, the model can be used to efficiently analyze the influence of on- and off-street parking on the traffic 36 
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system, despite its simplicity in data requirements. Based on scarce aggregated data, this model can be used to analyze 1 

how on- and off-street parking can affect cruising-for-parking traffic; and how cruising vehicles can affect the decision 2 

to use on- or off-street parking. It is hoped that the knowledge and methodology obtained in this research can later be 3 

transferred and used in urban areas. A validation with real data will, evidently, be required. 4 
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