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Real-time Dense Surface Reconstruction for Aerial Manipulation

Marco Karrer∗, Mina Kamel∗∗, Roland Siegwart∗∗ and Margarita Chli∗

∗Vision for Robotics Lab and ∗∗Autonomous Systems Lab, ETH Zurich, Switzerland

Abstract— With robotic systems reaching considerable ma-
turity in basic self-localization and environment mapping, new
research avenues open up pushing for interaction of a robot with
its surroundings for added autonomy. However, the transition
from traditionally sparse feature-based maps to dense and
accurate scene-estimation imperative for realistic manipulation
is not straightforward. Moreover, achieving this level of scene
perception in real-time from a computationally constrained and
highly shaky and agile platform, such as a small an Unmanned
Aerial Vehicle (UAV) is perhaps the most challenging scenario
for perception for manipulation. Drawing inspiration from
otherwise computationally constraining Computer Vision tech-
niques, we present a system combining visual, inertial and depth
information to achieve dense, local scene reconstruction of high
precision in real-time. Our evaluation testbed is formed using
ground-truth not only in the pose of the sensor-suite, but also
the scene reconstruction using a highly accurate laser scanner,
offering unprecedented comparisons of scene estimation to
ground-truth using real sensor data. Given the lack of any
real, ground-truth datasets for environment reconstruction,
our V4RL Dense Surface Reconstruction dataset is publicly
available1.

I. INTRODUCTION

For a robot to be able to interact with its environment,
awareness of both its ego-motion as well as its workspace
are necessary. With Simultaneous Localization And Mapping
(SLAM) techniques opening up new horizons in robotic
autonomy, we have witnessed a series of impressive break-
throughs to motion and environment estimation all the way
from systems using range sensors on ground robots [1], [2]
to real-time SLAM from a single camera [3]. It is due to
this progress that vision-based flights with all processing and
sensing onboard a small Unmanned Aerial Vehicle (UAV)
were made possible [4]. Combining visual and inertial cues
is now accepted as a powerful setup suitable for UAV naviga-
tion offering complementary sensor information at relatively
low weight, power and computation resources, which are
particularly limited onboard UAVs. Aiming for more robust
and scalable solutions, Visual-Inertial (VI) SLAM has come
a long way with systems such as [5] and [6] able to perform
with unprecedented robustness, albeit still prone to drift
and erroneous estimates due to common challenges, such as
lighting changes and fast camera motion. With the increasing
availability and affordability of UAVs as well as the acquired
knowledge on the controls, active interaction of a UAV with

This research was supported by EC’s Horizon 2020 Programme under
grant agreement n. 644128 (AEROWORKS), the Swiss National Science
Foundation (SNSF, Agreement no. PP00P2 157585) and the Swiss National
Centre of Competence Research (NCCR) Robotics.

1http://www.v4rl.ethz.ch/research/datasets-code.html
2http://www.asctec.de

(a) Sensor-Suite (b) AscTec Neo2

(c) Local scene reconstruction with SLAM in the loop

Fig. 1: (a) The Sensor-Suite used for capturing visual, intertial
and depth cues as well as ground truth poses. (b) UAV able to
carry these sensors as well as processing all data in real-time. (c)
An example local scene reconstruction obtained by the proposed
method using a time-of-flight camera and color-coded according
to the reconstruction error (mean error of 8mm in this frame,
processed at 5.2ms per frame).

its environment is increasingly attracting the interest of the
community. With robot’s interaction with its environment
spanning a great spectrum from guiding physical contact
across a set of pre-defined waypoints on a surface [7], [8]
to grasping objects during flight [9], [10], the focus in such
works is on the control aspect to ensure the integrity and
stability of the vehicle during such tasks. However, such
works typically rely on knowing the robot’s pose and its
workspace, for example using an external tracking system
to provide the UAV’s pose and attempt to interact only with
objects of simple, predefined shapes, sometimes compensat-
ing for small errors using tactile feedback [7]. In this way,
the big challenge of effective and timely robotic perception
of its environment are circumvented, albeit limiting the
applicability of these works to real scenarios outside the
controlled laboratory environment, such as the industrial
manipulation tasks envisioned in [11].

Following the demand for more realistic frameworks en-
abling robot autonomy, recent Robotics research has been
turning towards denser scene representations than traditional
feature-based SLAM, borrowing ideas from Computer Vision



and Photogrammetry. A significant milestone in this direction
was the emergence of the Microsoft Kinect camera, which
paved the way to a variety affordable depth sensors able to
provide dense depth images at high frame rates. Of particular
interest are also the new generations of more compact and
cheaper Time of Flight (ToF) cameras.

KinectFusion [12] pioneered real-time dense scene recon-
struction using a Kinect camera proposing to maintain a
discretized Signed Distance Function (SDF) to fit a surface
to the scene. Aiming to address the lack of scalability
of [12], [13] proposed a movable reconstruction volume,
while [14] proposed the use of a discretized Octree scene
representation. Putting SLAM in the loop of dense scene
estimation, [15] proposed an RGB-D SLAM system built
on dense image alignment and an Octree-based mapping of
the underlying SDF. However, despite the visually appealing
scene reconstructions that they produce, all aforementioned
works make use of power-hungry GPUs to compensate for
the otherwise unaffordable cost of computation. As the use
of such computational power is prohibitive onboard low
power and low payload platforms such as UAVs, most recent
research focuses on bringing such techniques on the basis of
affordable CPU processing. In this direction, [16] demon-
strated real-time CPU-only capability based their earlier
work [15], while single-camera CPU-only reconstructions
have also made their debut [17], albeit with significantly less
accurate and less robust frameworks.

In realistic manipulation tasks, for example to clean a
surface from oxidation, it is imperative to have a timely,
dense and accurate estimation of the robot’s workspace.
This is especially the case in aerial manipulation, where
the base of the manipulator, instead of firmly mounted on
a rigid structure, is attached on a highly agile and shaky
UAV, highlighting the need for real-time and precise dense
scene estimation before any manipulation task can be carried
out successfully. With this challenge in mind, in this paper
we propose a novel system, which estimates the pose of
the sensor-suite in real-time using monocular-inertial SLAM
and produces a dense, local scene reconstruction based on
[16] using sensing cues from a depth sensor (Figure 1). We
evaluate our system on a variety of challenging surfaces
and camera motions with respect to scene ground truth
obtained by millimetre-accurate laser scans from a Leica
MS503 station. While several datasets exist in the literature,
recording depth values from RGB-D sensors (e.g. [18]), to
the best of our knowledge, there are no datasets offering
ground truth for evaluating the scene reconstruction at this
level of accuracy. The dataset used in this paper, consisting
of data from our hand-held multi-sensor setup (Figure 1a),
as well as millimetre-precise ground truth for both the pose
of the sensor-suite using a Vicon4 Tracking system and the
scene using the Leica laser scanner is available online1.
Accompanying this paper, a video is available summarizing
our approach.

3http://leica-geosystems.com
4http://www.vicon.com

VI sensor RS sensor ToF sensor

TECHNOLOGY

Monochrome
global-shutter
CMOS, IMU

RGB imaging, IR
depth imaging

Laser
(VCSEL)
depth imaging

WEIGHT 130g 35g 18g

RANGE - 0.5 − 5m indoors,
varies outdoors 0.1− 4m

POWER 5W 1− 1.6W 300mW
IMAGING

RESOLUTION
480× 752

RGB: 1920×1080,
IR: 640× 480

172× 224

TABLE I: Specifications of the sensors used to produce the local
scene reconstruction. While the VI is sufficient for pose estimation,
we discuss the use of either the RS or the ToF for dense scene
estimation. Note that the resolutions correspond to the maximal
supported values.

II. METHOD

A. Sensor Setup

Since our framework is intended for the use with an aerial
robot, besides accuracy, the weight and power consumption
of the sensors are also important specifications. In this
paper the Intel RealSense R2005 (RS), and the novel Time-
of-Flight (ToF) camera CamBoard pico flexx6 from PMD
are used for the depth perception. For the onboard pose
estimation, the Visual-Inertial (VI) sensor [19] which consist
of a stereo camera pair and a time-synchronized Inertial
Measurement Unit (IMU) is used. In Table I specifications
for the sensors used are shown. We use Vicon, an external
visual 6 degree of freedom measurement system consisting of
a constellation of multiple infrared cameras, tracking markers
such as the ones in Figure 1a at 100 Hz at millimeter-
precision. This is used to provide ground truth for the poses
of the sensor-suite. The setup with the ToF mounted and the
markers for the external tracker is shown in Figure 1a.
For clarity, we refer to the visual image captured by the RS
as the “RS image”, and equivalently for the ToF we refer to
the amplitude image as the “ToF image”. Note that both of
these sensors also provide a corresponding “depth image”.

B. Calibration

In a first step, the camera intrinsics as well as the rigid
body transformation between the IMU and the camera are
calibrated using the framework of [20], [21] and [22]. The
intrinsic parameters of the depth sensors are used as provided
by the manufacturer, which were verified using the camera
calibration application from MATLAB’s Computer Vision
Toolbox.
The remaining calibration parameters, namely the rigid body
transformations from the left VI-camera (C) to depth sensor
(D), which can be either the ToF or the RS, and from
the external tracker-body (B) to the camera are depicted in
Figure 2. To compute these transformations, a set of images
j = 1, . . . , J of a checkerboard calibration pattern (P ) are
taken, while simultaneously capturing the pose of the tracker-
body (TBW ) from the Vicon, along with the amplitude image
for the ToF or the RGB image of the RS. Instead of just

5https://software.intel.com/en-us/realsense/r200camera
6http://pmdtec.com/picoflexx/



Fig. 2: In the calibration procedure, we aim to estimate the follow-
ing rigid body transformations: TCP between the VI-camera (C)
and the calibration pattern (P ), TDC between the depth sensor (D)
and camera, and TBC between the tracker body and camera. The
pose of the tracker body in the world frame W (TBW ) is measured
given by the Vicon system. Note that during the calibration the
transformation between the world frame and the calibration pattern
does not need to be estimated.

using the visual images of the calibration pattern, for every
frame of the depth sensor (i.e. the amplitude image of the
ToF or the RGB image of the RS) we also take into account
its corresponding depth image. This enables the calibration
procedure to account for systematic depth errors, for example
coming from deviations of the actual emitted signal and the
correlation function used to capture the depth image with
the ToF [23]. For the depth correction of the ToF-camera,
the parametric depth correction model presented in [24] was
used. The model consists of a third order polynomial in the
depth as well as two first order terms to correct for possible
tilt of the sensing chip, expressed:

λ∗ = a0 +(1+a1) ·λ+a2 ·x+a3 ·y+a4 ·λ2 +a5 ·λ3, (1)

where λ corresponds to the measured ray-length, λ∗ to the
corrected ray length and a0, a1, . . . , a5 are the correction
parameters, which have to be calibrated. The variables x and
y correspond to the image coordinates. For the RS, we use
a simplified model which only takes the constant offset and
the linear term of Equation (1) into account, since it does
not suffer from the effects caused by the oscillating signal
typical in ToF depth imaging.
To estimate the calibration parameters of our system, a joint
optimization problem is formulated by parameterizing the
rigid body transform with respect to the variables v. In order
to have a minimal representation of the transformations, these
are represented as elements of the Lie-algebra [25], for which

T =

(
R t
0 1

)
= expse(3) (ξ) , ξ ∈ <6 (2)

holds. Therefore, the optimization vector variables v is
composed of

v =
(
T 1
CP , . . . ,T

j
CP , . . . ,T

J
CP ,TCD,TCB , a0, . . . , a5

)
.

(3)

For clarity we denote the Lie-parametrization as the actual
transformation matrices. The notation T jCP corresponds to
the transformation TCP for the jth frame. We pose the
optimization problem to include four different error terms,
namely the reprojection errors in both the VI-images and the
ToF or the RS images, the depth errors, and the pose errors of
the tracker-body and the camera. For the first error term we
detect the corner points of the calibration patter in each VI-
image, as well as the ToF or RS images. The corresponding
error term is composed as the error between the detected
corner point yD for the ToF or the RS image, yC for the
VI-image and the projection of the corresponding 3D point
yp expressed in the coordinate frame of P .

ejyC := yjC − hC
(
T jPCyp

)
(4)

ejyD := yjD − hD
(
TCDT

j
PCyp

)
(5)

The camera projection models hC(·) and hD(·) correspond
to the VI-image and the ToF or the RS image respectively.
The second error term included is built by the difference of
the predicted and the corrected ray-length measured, coming
from the depth image, as

e
(u,v),j
λ := λ(u,v),j − λ∗(u,v),j (6)

where λ(u,v),j is the predicted ray-length computed by in-
tersecting the ray formed by the pixel coordinates (u, v) and
the plane of the calibration pattern. Furthermore, λ∗(u,v),j

corresponds to the corrected measurement by applying Equa-
tion (1). For a more detailed view of the prediction, we refer
the reader to [24]. The last error term included accounts for
the error between the predicted camera pose (TCP ) and the
measured pose of the tracker-body (TBW ). In order to elim-
inate the transformation between the calibration pattern and
the Vicon origin (TPW ), motion is necessary corresponding
to recording two poses per error term [26]. Then the error
term is expressed as an element of the Lie-group, as

ejξ := logSE(3)

(
ATBC (TBCB)

−1
)

(7)

where A and B are defined as

A :=
(
T jCP

)−1

T j−1
CP , B := T jBW

(
T j−1
BW

)−1

(8)

The components of the objective function are defined as

GyC :=

J∑
j=1

ej
T

yCW
−1
yC e

j
yC (9)

GyD :=

J∑
j=1

ej
T

yDW
−1
yD e

j
yD (10)

Gλ :=

J∑
j=1

∑
(u,v)∈A

1

wλ
e2
λ (11)

Gξ :=

J∑
j=2

ej
T

ξ W
−1
ξ ejξ (12)



where A denotes the pixels of the depth image corresponding
to the area covered by the calibration pattern. The weight-
matrices WyC ,WyD and Wξ were chosen to be diagonal
with the corresponding variance expected considering the
calibration of the individual sensors or the manufacturer’s
specification on the uncertainty. The scalar weight wλ cor-
responds to the noise variance of the depth sensor. The
objective function is composed as:

G = GyC +GyD +Gλ +Gξ (13)

For the initialization of the camera poses the linear solution
to the extrinsics problem is used. The transformation
between the depth sensor and the camera is initialized
using a least squares solution to the reprojection error on a
subset of the calibration images. The initial guess for the
transformation between the tracker-body and the camera is
obtained using the algorithm of [26]. For the optimization
of the objective function we use the Levenberg-Marquardt
algorithm.

C. Surface Reconstruction

We employ the framework of [16] to estimate the surface
and extend this to account for any priors on the uncertainty
of the depth measurements as well as with an efficient
method for performing a local reconstruction as elaborated
in Section II-D. At the core of the approach of [16] lies
the Octree structure, which at its leafs, called “bricks” (b),
stores the value of the SDF in a 83 voxel volume. With the
arrival of a new depth image, the corresponding brick for
every pixel is looked up and put into a queue. The queue
is then iterated over and for every voxel contained inside of
the brick, its position p in the world frame transformed into
the frame of the depth sensor pD. The measured point is
computed using the linear inverse projection model h̃−1

D (·)
on the undistorted depth image and the depth measurement
Z(u, v) at pixel coordinates (u, v), as

pobs = h̃−1
D (u, v, Z(u, v)) (14)

Due to the use of a truncated version of the SDF, defined as

∆D = max {min {Φ, |pD − pobs|} ,−Φ} (15)

where Φ is the truncation threshold and the multiscale
approach, the number of bricks queued per frame are limited.
The update of the stored distance values D(p, t) at the voxel
position p at time t is performed as a weighted running
average

D(p, t) =
D(p, t− 1)W (p, t− 1) + ∆Dw(∆D)

w(∆D) +W (p, t− 1)
(16)

Where W (p, t) corresponds to the accumulated weight at
position p and time t. For the weight increment w(∆D)
different weighting schemes can be used as presented in [27].
In [16] w(∆D) is constant for areas in front of the surface

and decreases linearly until zero behind the surface, i.e.

w(∆D) =


1 , if ∆D < δ
Φ−∆D

Φ−δ , if ∆D ≥ δ and ∆D ≤ Φ

0 , if ∆D > Φ

(17)

where δ can be seen as an allowed penetration depth of the
measurement. This weighting scheme solely relies on the
geometric distance to the measurement, but does not take any
additional information into account. A simple noise estimate
for example for a ToF camera can be obtained as described
by [28]. Since the ToF camera used provides information
about the noise level of each pixels, we propose a weighting
scheme to incorporate these in the weighting function using
it as a scaling factor. Assuming a noise value σ(u, v) at pixel
coordinates (u, v), we compute a scaling factor according to

fσ =

{
1 , if σ(u, v) ≤ σmin
σmin

σ(u,v) , if σmin < σ(u, v),
(18)

where σmin is a parameter that can be chosen according to
the expected noise of the sensor. In this way, we aim to
take the sensor’s estimated uncertainty into account when
weighting the different incoming votes of the voxels. This
results to more informed estimation of the surface, providing
robustness to common bottlenecks, for example too oblique
angles of incidence. The adapted weighting scheme is de-
fined as:

w̃(∆D) = fσ · w(∆D) (19)

This simple scheme allows to incorporate sensor-specific
uncertainty measurement, which in case of our ToF camera
is available anyway, without degrading the computational
efficiency of the estimation. For the RS, we use the uniform
weighting scheme according to Equation (17).
The SDF representation has a large memory footprint,
which e.g. limits cooperative interactions between multiple
agents due to limited bandwidth. Therefore, and also for
visualization purposes, the algorithm of [16] keeps track of
the updated bricks and performs a re-meshing on those areas
using an adapted version of a marching cubes algorithm in
order to account for the multiscale approach. For a detailed
explanation of the meshing algorithm, we refer to [16].

D. Surface Reconstruction using SLAM Poses

In order to use the reconstruction algorithm with SLAM
poses, typically subject to drift, we implemented a scheme
which is able to maintain a locally accurate scene estimate.
We implement this by introducing a visibility constraint in
the sense that we only keep the portion of the reconstruction,
which received measurements within the time horizon th
and discard the rest. This is done by keeping track of the
time-stamp of updated bricks and maintaining the local scene
reconstruction within th with respect to the current camera
pose. We denote Bs as the set of bricks used for the surface
estimation at the current time and Bo as the bricks to be
updated. The notation t(bi) corresponds to the latest time-
stamp that brick bi was updated. The actual voxels grouped



inside the brick bi are indicated by pj , which corresponds to
the voxel center coordinates. The update procedure is shown
in Algorithm 1. The time horizon th influences the behavior
of the algorithm. For larger th during exploratory motion,
drift of the SLAM system result in larger reconstruction
errors and higher computational cost as more bricks need to
be tracked, i.e. the size of Bs increases. On the other hand,
if the chosen th is too small, even quick deviations from
the current viewpoint, e.g. by wind disturbances, can result
in loss of the previous reconstruction. The reconstruction

Algorithm 1 Time Window for Local Reconstruction
Bo := all bricks observed from the current pose
t← current time-stamp
for all bi ∈ Bo do

if bi /∈ Bs then
add bi to Bs

for all bi ∈ Bs do
if bi ∈ Bo then

t(bi)← t
for all pj ∈ bi do

update W (pj , t)
update D(pj , t)

else if (t− t(bi)) > th then
remove bi from Bs

Bo ← ∅

algorithm itself is agnostic to the SLAM technique used. For
the pose estimation in our system, we use the framework
proposed by [29], which uses the sensor readings of both
the IMU as well as the camera input streaming from the
VI-sensor. The system is based on sparse features on a
set of keyframes as well as the incorporation of IMU
measurements into a local graph. The window of keyframes
is kept bounded by marginalizing out old keyframes. This
allows the algorithm to run in real time on a CPU, while
maintaining an accurate pose estimate. However, due to the
local keyframe approach the system is still prone to global
drift. The framework can be run using multiple cameras or as
a monocular system. Motivated by the lower computational
complexity, while maintaining a comparable performance,
here we use the monocular version of the algorithm for state
estimation.

III. EXPERIMENTAL RESULTS

A. V4RL Dense Surface Reconstruction Dataset

In order to evaluate the performance of the system in terms
of accuracy, a dataset consisting of the VI data, as well
as the data of the depth sensor (RS or ToF) and the pose
of the tracker-body from the Vicon system were recorded.
Complementary, the observed scene was scanned using a
Leica MS50 laser scanner from multiple viewpoints in order
to obtain ground truth for the scene, against which we can
compare the estimated reconstruction. This dataset, which
includes scene and poses’ ground truth for the first time, is
publicly available1.

Fig. 3: A view of the Desk scene used for the evaluation together
with the Leica MS50 station used to obtain the ground truth scene
reconstruction.

Fig. 4: The registered laser scans of mm-precision used as scene
ground truth, left: Pipe structure, right: Desk scene

We choose two different scenes to evaluate the system;
one generic desk sequence containing objects of different
texture and material (e.g. affecting their reflectance prop-
erties) as shown in Figure 3, as well as a more industrial
object consisting of a Pipe structure typical in an industrial
inspection scenario (ground truth reconstruction in Figure 4).
The recordings were made using a hand-held setup in order to
ease testing different types of motions (i.e. of different speed,
shaky, different viewpoints) as well as to avoid changes of
the scene setup due to the airstream of a UAV.

The scene ground truth was captured by 8 separate scans
for the Desk scene with a total number of approximately
10M points and 6 scans for the Pipe structure with 2.5M
points in total. The scans were pre-aligned by localizing
the Leica station with respect to a set of known markers
in the room. The final alignment was performed using the
Iterative Closest Point (ICP) algorithm on adjacent scans,
incrementally building the ground truth point cloud. Outlier
filtering using radius search was applied on the obtained
point clouds, while points with low neighborhood support
were also removed. The final ground truth point clouds for
both scenes are shown in Figure 4.

The properties of the sequences used are listed in Table II.
Note that the trajectories using the ToF and the RS are similar
in each case but cannot be identical due to the hand-held
setup.

B. Reconstruction Accuracy (Global)

To quantitatively evaluate the reconstruction accuracy iso-
lating it from any pose errors, the scenes are reconstructed



Scene
Type Name Average linear

velocity [m/s]
Average rotation
velocity [◦/s]

Trajectory
length [m]

Desk

d1

ToF

0.2 13.6 25
d2 0.3 29.6 40
d3 0.2 12.9 17
d4 0.3 25.1 24
d1

RS

0.2 13.2 25
d2 0.3 29.5 43
d3 0.2 12.7 14
d4 0.3 27.5 22

Pipes

p1

ToF

0.3 17.1 22
p2 0.3 24.2 20
p3 0.1 6.4 6
p4 0.2 25.8 11
p1

RS

0.3 16.2 24
p2 0.3 26.3 20
p3 0.1 7.7 5
p4 0.3 23.9 10

TABLE II: Properties and naming convention of the V4RL Dense
Surface Reconstruction dataset.

Fig. 5: Resulting reconstruction error using ground truth poses along
with the ToF depth measurements on the Desk scene, while applying
the proposed weighting scheme.

using the ground truth poses from the Vicon system. The
reconstruction is performed by fusing the full data sequence
in the system for every trajectory. The voxel resolution at
the finest level is chosen to have a side length of 6mm.
The transformation between the world frame (of the Vicon
system) and the origin of the scene ground truth is only
known approximately, since the world frame origin of the
Vicon system can only be selected manually. Therefore,
for every comparison we perform an ICP alignment of the
estimated reconstruction to the ground truth. Although the
obtained reconstruction is represented as a mesh, we consider
its vertex points for the alignment. For the evaluation process,
we compute the distance of every vertex of the reconstruction
to its Nearest Neigbhor (NN) in the ground truth point cloud.
In order to correct for regions, where no ground truth data is
available (due to occlusions, shiny surfaces, etc.), we do not
consider vertices whose NN is further away than a certain
maximal distance dmax. The distance dmax was chosen to be
50mm for the Desk scene and 30mm for the Pipe structure,
respectively. In Figure 5, an example of a reconstruction
color-coded with respect to the NN-distance is shown. The
NN-based errors are recorded for every sequence of the two
scenes, using both the RS and the ToF. For the ToF camera,
both the standard weighting scheme of [16] as well as our
proposed weighting system (according to Section II-C) are
evaluated. The reconstruction accuracies achieved in each

(a) Desk Scene

(b) Pipe Structure

Fig. 6: Average reconstruction error using ground truth poses. Note:
the labels d1− d4 and p1− p4 correspond to the sequences in the
dataset defined in Table II

case are summarized in Figure 6. On both the Desk scene as
well as the Pipe structure, the RS achieves higher accuracy
compared to the ToF. This is caused by the higher resolution
(2×) of and the higher frame rate (3×) of the RS, which
results in a higher information density. For the ToF our
proposed weighting scheme improves the accuracy on all
sequences on average by 10% up to a maximal improvement
of 17%. The error level on the Desk scene is higher which is
caused not only by the larger size of the scene, but also due
to the different materials and larger variety in the angles of
incidence. Furthermore, in the sequences of the Pipe structure
all areas of the object are observed from a similar number
of views and viewpoints, whereas for the Desk scene some
regions are only viewed quickly, while others are observed
more thoroughly.

C. Local Reconstruction with SLAM in the loop

To evaluate the estimated reconstruction when using
SLAM for the pose estimation, we applied the time window
discussed in Section II-D resulting to a local estimation of
the scene. The time window th for this procedure was set
the constant value of 3s, which gives some tolerance to
shaky motions of the camera when observing an area, while
still keeping the region of the estimated reconstruction small
enough to avoid significant motion drift. Instead of the global



Fig. 7: Average errors of the local reconstructions using poses from
VI-SLAM [29]. Note that for the Pipe structure only sequences
p3 and p4 are used, since for the sequences p1, p2 there was a
significant yaw drift in the SLAM poses when turning around the
structure.

model, the most recently estimated local reconstructions
were stored at a frequency of about 1 Hz. We aligned each of
these local reconstructions to the corresponding scene ground
truth using ICP and used the same error metric as for the
global reconstruction. The corresponding mean error values
are shown in Figure 7.

Surprisingly, the average error for the ToF on the Desk
scene is lower than when using the ground truth poses
(Section III-B). This is due to the fact that the impact on the
overall error coming from poorly reconstructed areas (e.g.
due to oblique angles of incidence, few views) is diminished
when considering the average error of local reconstructions.
Using the time horizon scheme, there is significant overlap
in the regions considered at consecutive reconstructions,
therefore these areas are bound to have better accuracy and
can overall reduce the average reconstruction error.

When reconstructing the scene locally using RS cues, the
average reconstruction error is increased and the accuracy
disadvantage of ToF-based global reconstruction is dimin-
ished. The explanation for this is multi-fold; firstly, because
the variability of viewpoints during local reconstruction is
limited, any internal calibration errors of the RS become
more evident (i.e. resulting to erroneous depth values at
contour edges). Moreover, although the maximum range of
the ToF and the RS (Table I) appear similar in their specifi-
cation, in practice we observed that the RS usually perceives
more distant measurements increasing the sensitivity of the
acquired data (and thus, the reconstruction) to angular pose
errors.

D. Evaluation of Computational Performance

A thorough investigation of the computational perfor-
mance of the reconstruction and meshing algorithm was
performed by [16]. Hence, we focused our investigation on
the comparison between the ToF and the RS as well as on the
difference between our weighting scheme and the standard
implementation. Furthermore, we evaluate the computational
overhead induced by applying the time window based Local
reconstruction with SLAM in the loop, versus the full

Sequence

Fusion Time per Frame [ms]
ToF ToF RSUniform Weighting Our Weighting

Global Local Global Local Global Local
d1 4.2 4.6 4.5 4.9 11.0 12.4
d2 4.6 5.1 5.0 5.5 10.8 12.3
d3 4.3 4.7 4.6 5.0 10.0 11.2
d4 4.4 4.9 4.7 5.2 10.0 11.4
p3 2.2 2.3 2.3 2.4 6.0 6.4
p4 2.1 2.2 2.2 2.3 6.6 7.2
Average 3.6 4.0 3.9 4.2 9.1 10.1

TABLE III: Average time per frame for fusing a new depth image
in the model. The columns labeled “Global” correspond to the
timings recorded when using ground truth poses with full scene
reconstruction, “Local” corresponds to the timings when using
SLAM for the pose estimation along with a 3s time window for
the reconstruction. Despite the slightly increased time necessary for
the “Local” reconstruction, our method is always real-time.

Global reconstruction with Vicon poses. We conducted the
experiments on the sequences used in Section III-C, while
setting the voxel size at the finest level to 8mm. The
timings were measured on a Intel Core i7-4710MQ CPU
running at 2.5 GHz and are presented in Table III. The
computational overhead of our proposed weighting scheme
is minimal, on average about 0.4ms, while reducing the
reconstruction error on average by 10%. The difference in
the update times between the RS and the ToF stems from the
higher resolution of the RS compared to the ToF. Using the
local reconstruction over the time horizon th increases the
computational complexity by O(n), with n being the number
of bricks tracked within the time horizon th. Table IV records
the average number of bricks per frame tracked during the
reconstruction as well as the percentage of these which get
updated (per frame). Generally, faster motion or finer the
voxel resolution (i.e. more detailed reconstruction) results the
higher number of tracked bricks, which influences directly
the execution time per update step. The RS requires on
average 3 times more bricks tracked compared to the ToF
due to its higher resolution as well as its larger measurement
range. More execution time is consumed on average to
achieve the Local reconstruction, but this is still real-time
for the ToF (< 6ms) and the RS (< 13ms).

In manipulation tasks, we cannot afford to compromise the
reconstruction accuracy as this can be catastrophic, especially
in the case of UAV manipulation. As a result, in order
to ensure sufficient quality of the reconstruction even in
the presence of inevitable global drift accumulating in the
SLAM pose estimation, a small overhead in execution time
is acceptable. In the case of the RS Local reconstruction, this
overhead becomes more evident due to a larger number of
bricks to track. Overall, the RS outperforms the ToF in terms
of accuracy on the global scale (Section III-B), but in terms
of local accuracy (Section III-C) both the RS and the ToF
perform similarly. As a result, considering that ToF offers
a significant advantage in execution time, it poses a better
choice for a setup with limited computational resources, such
as onboard a UAV.



Sequence Number of Bricks Tracked Updated Bricks [%]
ToF RS ToF RS

d1 1544 5182 37.4 17.8
d2 2468 6636 28.2 13.1
d3 1658 4867 37.2 15.9
d4 2106 5920 29.3 13.8
p3 543 1843 45.3 16.0
p4 733 2875 30.6 13.8
Average 1509 4554 34.7 15.1

TABLE IV: Average number of bricks tracked using the time
window based Local reconstruction, and the percentage of bricks
updated related to the number of tracked bricks.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we present a system capable of accurately
reconstructing a local scene in real-time, suitable for ma-
nipulation tasks even from a highly agile platform, such as
a UAV. Fusing depth cues at frame rate, while estimating
the pose of the sensor-suite using visual-inertial SLAM,
our experimental evaluation on a variety of challenging
scenarios reveals the high fidelity of the system achieving
reconstruction accuracy of the order of 10mm on average.

A thorough evaluation of the proposed approach was
presented assessing the accuracy of the obtained 3D recon-
struction both on a global scale using ground truth poses
and ground truth scene reconstruction, as well as for local
reconstructions using poses obtained by a nominal visual-
inertial SLAM system. As no such testbed (with real sensing
data and scene ground truth) exists in the literature, we
release our dataset consisting of visual, inertial and depth
data from a time-of-flight and an RGBD camera, as well as
pose and scene ground truth of millimeter precision. Future
work includes employing this reconstruction framework to
perform simple manipulation tasks from a UAV, as well as
research into UAV path planning for viewpoints promising
more accurate reconstructions.
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