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Abstract
A central role in the general circulation of the atmosphere is played by pla-
netary-scale inertial fluctuations with zonal wavenumber in the range k=1–4.
Geopotential variance in this range is markedly non-gaussian and a great
fraction of it is non-propagating, in contrast with the normal distribution of
amplitudes and the basically propagating character of fluctuations in the
baroclinic range (3<k<15). While a wave dispersion relationship can be
identified in the baroclinic range, no clear relationship between time and
space scales emerges in the ultra-long regime (k<5, period >10 days). We
investigate the hypothesis that nonlinear self-interaction of planetary waves
influences the mobility (and, therefore, the dispersion) of ultra-long planetary
fluctuations. By means of a perturbation expansion of the barotropic vorticity
equation we derive a minimal analytic description of the impact of self-non-
linearity on mobility and we show that this is responsible for a correction term
to phase speed, with the prevalent effect of slowing down the propagation of
waves. The intensity of nonlinear self-interaction is shown to increase with the
complexity of the flow, depending on both its zonal and meridional modula-
tions. Reanalysis data of geopotential height and zonal wind are analysed in
order to test the effect of self-nonlinearity on observed planetary flows.

Keywords: Rossby waves, potential vorticity, stationary waves, nonlinear
processes, multiple-scale analysis, barotropic vorticity equation
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1. Introduction: the dispersion relation of atmospheric global scale fluctuations
and the role of planetary waves self-nonlinearity

Intermittence and persistence are substantial components of atmospheric phenomenology:
observations show the occasional appearance, in both the extra-tropical and tropical atmo-
spheric circulation, of long-lasting features associated with specific and recurrent flow
patterns—like blocking highs in middle latitudes and monsoons in the tropics—that are
characterized, from a dynamical point of view, by enhanced stability with respect to ordinary
flows. The idea that such persistent features may be more predictable found an explicit
formulation in the 1979 work by Charney and DeVore [1] (hereafter referred to as CDV) in
connection with blocking, and in Charney and Shukla [2] in connection with monsoons,
raising great interest in view of the development of extended range forecast. Intensive
research work following the seminal CDV paper highlighted a number of properties of the
atmospheric low frequency variability (LFV) in the range 10–40 days: the non-normal,
possibly bimodal [3, 4], statistical behavior of mid-latitudinal geopotential fluctuations, as
opposed to the unambiguously normal behavior of fluctuations in the short range (3–5 days)
that, as well known, are essentially associated with the classical jet cycle (baroclinic
instability-barotropic convergence), and the problematic behavior of average zonal wind
(mean westerly momentum) which is subject to normally distributed fluctuations confined to a
very restricted range [3, 5].

Additional information concerning atmospheric LFV comes from space–time analysis of
planetary scale fluctuations: since Blackmon it is known that systematic connections exist
among space and time scales and the mobility of patterns of middle-latitude atmospheric
circulation [6, 7]. In fact, simple low pass filtering at 10 days allows one to separate of non-
traveling global scale features from shorter-scale traveling fluctuations. All the above
phenomenological knowledge finds a synthetic quantitative representation in Fourier space–
time Hayashi analysis [8, 9] in the form of spectra revealing the existence in the ultra-long
spectral range (zonal wavenumber k<5, period >10 days) of a quite robust non-traveling
flow component [10]. Use of Hayashi spectra as global metrics in order to measure the ability
of global models in representing the internal dynamical processes of atmospheric circulation
shows that the dynamical nature of LFV still has to be fully understood in order to adequately
model atmospheric circulation [11].

It is evident from the analysis of Hayashi spectra that a wave dispersion relation—
although complicated by baroclinic instability and other processes (in particular barotropic
convergence)—holds at medium-small scales (k>4, corresponding at 50° of latitude to
8000 km), while no distinct dispersion relation can be identified in the ultra-long regime
(k<4) where Rossby wave dynamics should be operating. It is well known that a number of
relevant linear dynamical processes are operating in the ultra-long range which can account
for the presence of a conspicuous fraction of non-propagating variance: flow modulation by
mountains [12], heat sources [13], and, in particular, the presence around k=3 of a zero
phase speed of the Rossby wave dispersion relation (the linear resonance of planetary waves).
However, the effect of such processes does not seem to fully explain the observed phe-
nomenology, in particular for what concerns the evolution of large amplitude waves. The
point of view we propose in this work is that a key role in determining the observed
phenomenology in the ultra-long spectral range is played by self-nonlinearity, i.e., the non-
linear interaction of planetary waves with themselves occuring when the amplitude of fluc-
tuations is large. This process, local in wavenumber, can be seen as a possible alternative to
the energy cascade process, i.e., the interaction of long waves with much shorter ones,
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initially proposed by Green [14] and further investigated by, e.g., Shutts [15] and Malguzzi
[16], to explain the maintenance of blocking episodes. In order to explain the limited range of
variations of zonal wind statistics and the intermittent behaviour of planetary waves, self-
nonlinearity was already introduced in many theoretical studies as a possible mechanism
capable of producing multiple equilibration of stationary Rossby waves in the presence of
orographic relieves for a specified meridional profile of the zonal wind [17–20]. In this work,
this approach is generalized to traveling planetary disturbances, confined in the extra-tropical
atmosphere by the gradient of mean potential vorticity.

The paper is organized as follows. In section 2 we introduce free Rossby wave self-
interaction by means of a weakly nonlinear expansion in terms of wave amplitude of the
barotropic vorticity equation. In sections 3 and 4 we look for the observational signature of
planetary scale fluctuations self-interaction by analysing the ECMWF ERA-Interim reanalysis
[21], considering the extended winter seasons October–April from 1979 to 2015. The self-
interaction coefficient defined by the theory is computed from the geopotential height of the
northern hemisphere extra-tropics and, as suggested by theoretical treatment, a statistical
correlation with the observed planetary wave phase speed is sought for. In section 5 con-
clusions are drawn.

2. Self-interaction of atmospheric planetary waves: a weakly nonlinear theory

Based on past analyses of weakly nonlinear interaction of Rossby waves through self-
advection [17–20], we assume that part of tropospheric LFV can be associated with self-
interaction of planetary fluctuations. This assumption is tested by computing the intensity of
the nonlinear self-interaction of Rossby waves in the context of a barotropic framework. This
kind of problem has been widely explored both for the atmosphere and the ocean: see, for
example, the recent papers [22] and [23] and literature therein. Our objective is to derive from
theory a quantitative formulation of the nonlinear self-interaction of planetary scale atmo-
spheric fluctuations that is suitable for observational analysis. Mirroring the approach of
several previous works, the adopted procedure is that of multiple-scale analysis. We do not
restrict our study to the stationary case, thus considering any zonally propagating wave that is
confined in the meridional domain (i.e., not crossing the equator). We derive an analytic
relationship linking zonal phase speed to wave amplitude that can be possibly tested by
looking for a statistical correlation in long time series of geopotential height from reana-
lysis data.

In order to model the mobility of planetary geopotential fluctuations and the effect of
their self-interaction we need to effectively represent the advection of potential vorticity,
which is the basic propagation mechanism of vertically coherent disturbances (as most of the
planetary scale variance) in the troposphere. To this aim, we adopt the barotropic vorticity
equation

¶  Y + Y  Y + =( ) ( )J f, 0. 1t
2 2

Its solution is sought in the form

òl f f f y l fY = - ¢ ¢ +
f

f
( ) ( ) ( ) ( )t a u t, , d , , 2

0

thus separating the symmetric component (corresponding to the zonal wind profile) from
zonally asymmetric fluctuations. The expressions above are both dimensionless and the
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classic quasi-geostrophic scaling is assumed: the reference quantities are horizontal length,
time scale and horizontal velocity taken equal to 106 m, 105 s, and 10 ms−1, respectively.
Spherical coordinates are employed, with λ and f indicating longitude and latitude. The
Laplace operator is defined as  = f f

f
¶ + ¶ ¶ll f f[ ]

,
a

2 cos cos

cos2 2 the jacobian

=
f

¶ ¶ - ¶ ¶l f f l( )J A B, ,
A B A B

a cos2 the Coriolis parameter f= Wf 2 sin , the rescaled Earth radius

=a 6.37, and the dimensionless Earth rotation rate pW = /2 0.864.
The solution of the barotropic vorticity equation is not to be sought analytically, being

preferable to construct a uniformly valid approximation of l fY( )t, , through multiple-scale
analysis. As highlighted, for example, by Bender and Orszag [24] this is a particularly useful
technique for the estimation of solutions of perturbation problems. The perturbation solution
is obtained by expanding the streamfunction as a power series of ε in the form

òå åe y f f e yY = = - ¢ ¢ +
f

f

=

¥

=

¥

( ) ( )a u d . 3
n

n
n

n

n
n

0 10

Consistently with classical Rossby scaling hypothesis, the zonal wind component cor-
responds to the zero order and the nonsymmetric part to higher order terms. The assumption
that the latter component is small compared to the former directly entails that the order of
magnitude of the perturbation parameter is given by the ratio of the amplitudes of the eddy
and symmetric velocities, i.e.

e
y f

=
¶ ¶⎛

⎝⎜
⎞
⎠⎟

∣ ∣
∣ ∣

( )/
O

au
. 4

In the adopted approach, the latitudinal wind profile f( )u is considered constant in time,
clearly in contrast with its observed variability. Fixing the value of the time derivative of
zonal wind as zero has the advantage of leading to a great simplification of the problem in
discussion. In computing self-nonlinearity, the input zonal wind profile will be defined
through a proper average in time. This choice is supported by the classical interpretation of
the general circulation theory, revolving around the idea that turbulent fluxes have the effect
of maintaining an ‘equilibrium circulation’, i.e., a time-mean circulation remarkably different
from the true stationary solutions. Many dynamical theories in last decades have been
founded on the hypothesis of a correspondence between time-mean and stationary config-
urations, although the naive application of averaging procedures might be misleading. These
notions were discussed by [25, 26]. The consistency of the classical theoretical framework
was tested in [25] by analysing a model atmosphere on the basis of an ‘equilibrium’ circu-
lation as approximated by the average zonal flow. A linear stability analysis of the modeled
circulation proved it to be unstable. The conclusion was that several statistically independent
processes contribute to the definition of a most probable state for circulation which carries no
particular dynamical meaning.

In the past, however, LFV was also described as a consequence of the eddy-instability of
a basic state constructed by perturbing the climatological mean flow with stochastic fluc-
tuations, as discussed in [27]. Other authors such as [28] adopted in their work a forcing
capable of keeping the climatological steady state in the absence of any disturbance and not
acting on disturbances themselves. Likewise, we assimilate the input zonal wind to its time
mean average, thus implicitly assuming the existence of a forcing allowing the zonal
component of the solution to keep its steady state and not acting on the higher order
asymmetric terms.

An approximate solution l fY( )t, , is found through multiple-scale analysis, which is
applied to the present problem by introducing a new set of slow time variables {τn} with
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n=1, 2, K such that t e= t.n
n Even though the physical solution will be a function of time

alone, in the employed formal procedure we will treat the new variables t and {εn} as
independent. We assume a perturbation expansion of the form

òl f t f f e y l f t e y l f tY = - ¢ ¢ + + + ¼
f

f
( { }) ( ) ( { }) ( { })

( )

t a u t t, , , d , , , , , ,

5

n n n1
2

2
0

in which the zero order zonal component is supposed to be constant in time. Inserting
expression (2) in the barotropic vorticity equation (1) gives

y y s f y y y¶  + ¢¶  + ¶ +  =l l∣ ( ) ( ) ( )u J , 0, 6t M
2 2 2

where f¢ = ( )u u a cos and

s f f= W - ¶ ¢ + ¶ ¢ + ¢ff f( ) [ ] ( )
a

u u u
1

2 3 tan 2 . 7
2

The multiple-scale time derivative ¶ ∣t M is computed recurring to the chain rule for partial
differentiation:

t
t

t
t

e
t

e
t

¶ =
¶
¶

+
¶
¶

+
¶
¶

+ ¼ =
¶
¶

+
¶
¶

+
¶
¶

+ ¼∣ ( )
t t t t

d

d

d

d
8t M

1

1

2

2 1

2

2

so that, inserting the perturbation series (5) into (6) and collecting like powers of e, we obtain
the following set of equations:

òe f f¶  ¢ ¢ =( ) ( )u a: d 0, 9t
0 2

e y y s f y¶  + ¢¶  + ¶ =l l( ) ( )u b: 0, 9t
1 2

1
2

1 1

e y y s f y y y y¶  + ¢¶  + ¶ = -  - ¶ l l t( ) ( ) ( )u J c: , , 9t
2 2

2
2

2 2 1
2

1
2

11

e y y s f y y y y

y y y

¶  + ¢¶  + ¶ =-  - ¶ 

-  - ¶ 
l l t

t

( ) ( )
( ) ( )

u J

J d

: ,

, . 9
t

3 2
3

2
3 3 1

2
2

2
2

2
2

1
2

1

1

2

We can write the general solution of the first order equation (9b) in the form:

y l f t t f= +l-( { }) ({ }) ( ) ( )( )t A g, , , e c.c. 10n n
k ct

1
i

with the functional form of the slow time modulation of the amplitude A to be determined
afterwards. Denoting by

f f
f

º
- + ¶ ¶f f( )

[ ]
( )L g k

k g g

a
,

cos cos

cos
11

2

2 2

the meridional profile of the Laplace operator, we obtain:

s f¢ - + =( ) ( ) ( ) ( )u c L g k g, 0. 12

By solving the eigenvalue problem (12), it is possible to compute the eigenfunctions f( )g and
their corresponding eigenvalues as a dispersion relation of the form = ( )c c k . In order to
numerically satisfy the observational condition of hemispheric wave confinement (planetary
waves never cross the equator), we deal with the above problem in the restricted latitudinal
domain f f =  ( ) ( ), 25.5 N, 90 N .0 1 The two relations necessary for the univocal
determination of the solution f( )g are then given by the boundary condi-
tions f f= =( ) ( )g g 0.0 1
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In the second order equation (9c), the term y y( )J ,1
2

1 projects onto l -( )e nk cti with
n=0, 2. The term projecting on the symmetric part (n=0) identically vanishes and, to
preclude the appearance of secularity related to the term y¶ t ,2

11
we also impose that the τ1

derivative be zero, so that A=A(τ2). Hence, the solution of (9c) assumes the form:

y l f t t f= +l-( ) ( ) ( ) ( )( )t A p, , , e c.c. , 13k ct
2 2

2
2

2i

where f( )p satisfies the following differential equation:

s f
f

s f
¢ - + = ¶

¢ -
f⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( ) ( ) ( )u c L p k p

g

a u c
, 2

2 cos
. 14

2

2

The necessary and sufficient condition for the solvability of the third order equation (9d)
is that the projection of the rhs on the solutions of the adjoint of (9b) be zero. Assuming the
standard definition of scalar product in spherical coordinates with fcos as area element, the
operator L is self-adjoint and the adjoint of equation (12) becomes

* *s¢ - + =(( ) )L u c g k g, 0, whose eigenfunctions are * = ¢ -( )/g g u c . Therefore, the
condition to avoid secularity becomes:

ò òp
l y y y y y

f
f +  + ¶ 

¢ -
=

p

f

f
t

l- -( ( ) ( ) )

( )

( )a
J J

g

u c2
d , ,

cos
e d 0.

15

k ct
2

0

2

1
2

2 2
2

1
2

1
i

0

1

2

The above integral can be rewritten in the compact form

*c¶ + =t ( )A k A Ai 0 162
2

with the coefficient χ (hereafter referred to as self-interaction coefficient) given by

ò

ò
c

f
s f

f

s f
f f

=
¢ -

+
¶ ¢

¢ -
¶

¢ -

¢ -

f

f f
f

f

f

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( )

( )

( )
( )

( )

g

u c
p

g u

a u c u c

u c
a g

2 cos
d

cos d
17

2 2

2 2

2
2 2

0

1

0

1

and *A indicating the complex conjugate of A. In the derivation of equation (17) from (15),
only those terms proportional to l+ -( )e k cti need to be retained. Terms proportional to the
Laplacian operator have been simplified by means of (11) and (14) so that, after several
integrations by parts, the final result (17) is consistent with equation (24) of Malguzzi et al
[20], which was obtained in the case of stationary Rossby waves forced by orography. The
solution of (16) can be written in the form:

= ct- ( )A A e . 18k
0

i 2

Since the simultaneous presence of the (arbitrary) coefficient ε and of the (arbitrary)
amplitude A0 in the perturbative solution becomes obviously redundant, we can set A0=1
without losing generality. Therefore, ε assumes the role of the dimensionless wave amplitude.
Expression (18) is a correction term for the phase speed c. The solution for y1 can be rewritten
as:

y l f t f= +l ct- - +( ) ( ) ( )( )t g, , , e c.c. 19k ct
1 2

i 2

with an analogous expression for y .2 The explicit form of the general solution up to the
second order in ε of the reduced barotropic vorticity equation on the sphere is then:
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òl f f f e f

e f e

Y = - ¢ ¢ + +

+ + +

f

f
l e c e

l e c e

- + +

- + +

( ) ( ) ( )

( ) ( ) ( )

[ ( ( )) ]

[ ( ( )) ]

t a u g

p O

, , d e c.c.

e c.c. . 20

k c O t

k c O t

i

2 2i 3

0

2 3

2 3

In the above expression of l fY( )t, , a second order correction to the phase speed is
introduced which is directly proportional to the self-nonlinearity coefficient χ that, in turn, is
an implicit function of the zonal wavenumber.

3. Numerical implementation

We estimate the strength of nonlinear self-interaction working on 6-hourly data from
ECMWF ERA-Interim reanalysis [21] in the extended winter season October, November,
December, January, February, March, April (ONDJFMA) in the period 1979–2015. A cen-
tered running mean over 3 time steps (corresponding to 18 h) is first applied to the 500 hPa
zonal wind in the domain f f =  ( ) ( ), 25.5 N, 90 N .0 1 The zonal average of the zonal wind
field f( )u t, is computed and the index Δu(t06) representing the variation of zonal wind
between 12 and 00 UTC is introduced:

òf f
f f f fD =

-
-

f

f
( ) ∣ ( ) ( )∣ ( ) ( )u t u t u t

1
, , cos d 2106

1 0
12 00

0

1

with t00, t06 and t12 indicating each triplet of successive time steps at 00, 06 and 12 UTC. As
our theoretical estimation of the strength of nonlinear self-coupling relies on the assumption
of a zonal wind constant in time, we choose to compute χ at 06 UTC only from those time
steps characterized by a small value of Δu(t06). All 06 UTC time steps satisfying to this
criterion are fed into the eigenvalue problem (12). A numerical solution of (12) is sought by
reducing it to a matrix form and employing a finite difference scheme, which allows to
compute the eigenvectors f{ ( )}g and the associated eigenvalues { }c . We restrict our analysis
to the first two eigenvectors, hereafter named modes A and B, as they are physically more
relevant. Mode A is characterized by zero nodes, while mode B has zero or one node. All
eigenvectors are taken with maximum amplitude equal to +1. Singular solutions are excluded
a posteriori by identifying those cases where ¢ - =u c 0 changes sign (no critical level is
considered here).

The eigenvalues associated to modes A and B are real and correspond to realistic values
of phase speed for propagating waves, although in many cases the eigenvalue problem tends
to overestimate negative phase speeds (this is thought to be a consequence of barotropicity).
However, in a small number of cases, among the solutions of (12), couples of complex
eigenvalues were found. It was observed that the number of such solutions decreases as the
input zonal wind profile becomes smoother and increases as its strength grows. This class of
solutions, interpretable as related to barotropic instability, were not considered being outside
the scope of this study.

The meridional structure f( )p of the second order solution is obtained by solving the
differential equation (14) with a finite difference scheme. The nonlinear self-interaction
coefficient χ is finally computed by numerical integration of (17).

Individual wavenumber components are obtained through Fourier analysis by calculating
the complex functions

òg f
p

l f l=
p

l-( ) ( ) ( )Z
1

2
, e d 22k k

0

2
i
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so that

å ål f l f g f g f l g= = + + 
=

¥

=

¥

( ) ( ) ( ) ∣ ( )∣ ( ( )) ( )Z kZ , , 2 cos 23
k

k

k

k k

0

0

1

with l f( )Z , representing the dimensionless reanalysis geopotential height, l f( )Z ,k its
projection on wave number k, and the symbol ∠( g )k the phase of the complex-valued g f( ).k

Knowing nothing about the properties of orthogonality of the class of eigenfunctions { }g ,m
k a

simple projection on each mode is obtained by choosing a weighting function equal to 1. The
projection of the kth wave number component l f( )Z ,k on the latitudinal mode gk

m is then
computed as

ò

ò
l f f

l f f f

f f
=

f

f

f

f( ) ( )
( ) ( )

( )
( )Z g

Z g

g
,

, d

d
. 24m

k
m
k

k
m
k

m
k

0

1

0

1 2

Here gm
k represents the solution of the eigenvalue problem (11) for wavenumber k and

m=A, B.
The phase speed of the kth Fourier component, denoted by c*, is then derived at 06 UTC

by cross-correlating the fields (24) computed at 00 and 12 UTC and estimating the 12 h lag.
The perturbative parameter is defined as the dimensionless amplitude of the first order
solution and is thus computed as

ò

ò
e

g f f f

f f
=

f

f

f

f

∣ ( )∣ ( )

( )
( )

g

g

2 d

d
. 25

k
m
k

m
k

0

1

0

1 2

4. The signature of nonlinear self-interaction

In this section our objective is twofold: on one side, we want to present results for all possible
wind profiles observed in the real atmosphere in order to give an idea of the sensitivity of the
expected self-interaction coefficient to variations of such a basic quantity. On the other side,
looking in reanalysis data, we seek observational support of possible correlations between the
estimated self-interaction coefficient and the propagation properties of planetary scale waves.

In order to account for the condition of stationarity of the dimensionless zonal wind
introduced in the multi-scale analysis of the barotropic vorticity equation, the strength of
nonlinear self-interaction was estimated at 06 UTC only for time steps with4 Δu(t06)<0.055
with Δu(t06) given by (21). In figures 1(a) and (b) we report the distributions of the nonlinear
self-interaction coefficients computed in the extended winter season ONDJFMA in the period
1979–2015 for k=1, 2, 3, and modes A and B, respectively. With the aim of assessing the
normality of the two distributions, a non-parametric Kolmogorov–Smirnov (K–S) test [29]
was performed. In both cases, the K–S test rejected with a 95% confidence level the
hypothesis of normality for any interval of χ taken into account. The distributions, peaked
around non self-interacting waves, are asymmetric with both negative and positive values for
modes A and B, corresponding to westward and eastward corrections to phase speed,
respectively. The average values of the self-nonlinear coefficient for modes A and B are equal
to 1.00 and −2.45, respectively. The two distributions are characterized by positive and

4 The choice of this value did not influence the following results in a significant way.
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negative values of skewness (S=2.83 for mode A and S=−3.07 for mode B) and high
values of kurtosis (K=23.11 for mode A and K=21.24 for mode B), with very long tails
indicating the seldom occurrence of strong self-interacting waves. The mean negative value of
self-interaction for mode B is consistent with the fact that meridional dipoles of opposite
vorticity tend to self-advect westward. These results show that the computation of the self-
interaction coefficient is quite sensitive to the details of the zonal mean wind.

Figure 1. Smooth (kernel) estimate of the distributions of the nonlinear self-interaction
coefficient for the meridional modes A (a) and B (b). Results from wavenumbers
k=1, 2, 3 are shown in the range c <∣ ∣ 5. Units are dimensionless (one unit
corresponds to 10 ms−1).
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We tested the stability of the values of phase speed c and χ with respect to the extension
of the latitudinal domain. To this aim, f = 90 N1 was kept constant and f0 was varied in the
range 15°N–35°N for k=1–3 and for all meridional modes. Not unexpectedly, variations of
the latitudinal domain extension proved to affect the estimate of the eigenvalues c. Recalling
the classical expression for the phase speed of free-propagating barotropic Rossby waves, it
appears plausible that the values of c decrease along with the extension of the latitudinal
domain. As the domain narrows, the meridional wave number increases and the phase speed
tends to approach zero. It is also worth noting that, as the meridional structure of the
asymmetric field becomes more complex, its phase speed decreases.

According to the theoretical predictions of the adopted multiple-scale analysis approach,
the general solution of the reduced barotropic equation at the second order in the perturbative
parameter ε is given by (20) and is characterized by the presence of a correction to phase
speed given by ε2χ. The signature of self-nonlinearity on the propagation of planetary scale
waves was sought in ERA-Interim data by looking for a positive correlation between mea-
sured wave phase speeds and the values of ε2χ obtained from theory, with ε given by (25).
However, it can be hardly expected to find statistical evidence of such a correlation in
reanalysis of data, since eigenvalues and eigenfunctions depend on the details of the zonal
wind profile, which change from day to day. In the scatter plots of the measured phase speed
c* versus computed nonlinear corrections ε2χ, a peculiar feature is observed: as manifest in
figure 2, large (positive and negative) values of the nonlinear corrections to the phase speed
tend to occur in concomitance with very small or zero c* for modes A and B. Also evident is
the accumulation of fast traveling waves on the axis of zero self-interaction. This result
supports the hypothesis that self-nonlinearity preferentially acts with the effect of slowing
down wave propagation, and that its role is fundamental especially in the dynamics of
stationary (or nearly stationary) waves.

5. Conclusions

A multiple-scale analysis of the solution for the barotropic vorticity equation was performed
in absence of any external forcing or topography, deriving a nonlinear self-interaction second
order correction to phase speed proportional to the square of wave amplitude.

The above formulation was used for analysing zonal wind data and geopotential fields at
the 500 hPa pressure level from ECMWF ERA-Interim reanalysis in the latitudinal domain
25.5°N–90°N. The analysis focused on months ranging from October to April in the period
1979–2015, as during these months ultra-long fluctuations activity is prominent in the
Northern Hemisphere. The estimated statistics of nonlinear self-interaction shows that its
strength tends to increase with the complexity of the structure of the fluctuations, depending
on their wavenumber and meridional profile. Although the estimated corrections to phase
speed are often small or negligible, results show that higher values of self-interaction are
found for stationary or quasi-stationary fluctuations, supporting the hypothesis that this
nonlinear process plays an important role in the dynamics of the standing part of the Hayashi
spectra.

The use of the barotropic vorticity equation, although traditionally justified by the
equivalent barotropic nature of large-scale waves, is a limitation especially for what concerns
the correct estimation of the theoretical phase speed of Rossby waves. Moreover, it is well
known that the energetics of planetary waves is dominated by baroclinic conversion [30], i.e.,
the conversion from zonal to eddy available potential energy associated with a small vertical
tilt of the planetary waves. The incorporation of these features in the theory is possible and
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can be tackled by extending the perturbative approach to the framework of a baroclinic
atmosphere.

A final, important aspect implicit in this study is the problem of the meridional con-
finement of planetary waves, which is a physical requirement at the basis of the theory
presented here. Time fluctuations of the zonal wind (here neglected) have the statistical effect
of confining the propagation of Rossby waves [31], and constitute an important feature to be
taken into account in future generalizations of the self-interaction theory.

a

Figure 2. Observed phase speed c* versus nonlinear phase speed correction computed
for modes A (a) and B (b). Results for wavenumbers k=1, 2, 3 are shown together.
Units are dimensionless (one unit corresponds to 10 ms−1).

J. Phys. A: Math. Theor. 49 (2016) 364003 C Saffioti et al

11



Acknowledgments

The authors wish to thank Andrea Buzzi, Valerio Lucarini, and two anonymous reviewers for
their insightful suggestions.

References

[1] Charney J G and DeVore J G 1979 J. Atmos. Sci. 36 1205
[2] Charney J G, Shukla J and Mo K C 1981 J. Atmos. Sci. 38 762
[3] Benzi R, Malguzzi P, Speranza A and Sutera A 1986 Q. J. R. Meteorol. Soc. 112 661
[4] Hansen A R and Sutera A 1986 J. Atmos. Sci. 43 3250
[5] Benzi R and Speranza A 1989 J. Clim. 2 367
[6] Blackmon M L 1976 J. Atmos. Sci. 33 1607
[7] Blackmon M L, Wallace J M, Lau N C and Mullen S L 1977 J. Atmos. Sci. 34 1040
[8] Hayashi Y 1971 J. Meteorol. Soc. Japan 49 125 (available at www.jstage.jst.go.jp/article/

jmsj1965/49/2/49_2_125/_article)
[9] Hayashi Y 1979 J. Atmos. Sci. 36 1017
[10] Fraedrich K and Bottger H 1978 J. Atmos. Sci. 35 745
[11] Lucarini V, Calmanti S, Dell’Aquila A, Ruti P M and Speranza A 2007 Clim. Dyn. 28 829
[12] Charney J G and Eliassen A 1949 Tellus 1 38
[13] Smagorinsky J 1954 Q. J. R. Meteorol. Soc. 80 461
[14] Green J S A 1970 Q. J. R. Meteorol. Soc. 96 157
[15] Shutts G J 1983 Q. J. R. Meteorol. Soc. 109 737
[16] Malguzzi P 1993 J. Atmos. Sci. 50 1429
[17] Malguzzi P and Speranza A 1981 J. Atmos. Sci. 38 1939
[18] Benzi R, Speranza A and Sutera A 1986 J. Atmos. Sci. 43 2962
[19] Malguzzi P, Speranza A, Sutera A and Caballero R 1996 J. Atmos. Sci. 53 298
[20] Malguzzi P, Speranza A, Sutera A and Caballero R 1997 J. Atmos. Sci. 54 2441
[21] Dee D P et al 2011 Q. J. R. Meteorol. Soc. 137 553
[22] Yang S et al 2015 J. Meteorol. Res. 29 859
[23] Polukhina O E and Kurkin A A 2005 Oceanology 45 607 (available at https://nnov.hse.ru/data/

2011/01/28/1208122789/OCEN607_Rossby_2005.pdf)
[24] Bender C M and Orszag S A 1978 Advanced Mathematical Methods for Scientists and Engineers

(New York: McGraw-Hill)
[25] Speranza A and Malguzzi P 1988 J. Atmos. Sci. 45 3046
[26] Lucarini V, Speranza A and Vitolo R 2007 Physica D 234 105
[27] Jin F F 2010 J. Atmos. Sci. 67 1947
[28] Frederiksen J S 1983 J. Atmos. Sci. 40 2593
[29] Corder G W and Foreman D I 2014 Nonparametric Statistics: A Step-by-Step Approach (New

York: Wiley)
[30] Hansen A R 1986 Adv. Geophys. 29 101
[31] Pandolfo L and Sutera A 1991 Tellus A 43 257

J. Phys. A: Math. Theor. 49 (2016) 364003 C Saffioti et al

12

http://dx.doi.org/10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1981)038<0762:COABBT>2.0.CO;2
http://dx.doi.org/10.1002/qj.49711247306
http://dx.doi.org/10.1175/1520-0469(1986)043<3250:OTPDDO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1989)002<0367:SPOLFV>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2
http://www.jstage.jst.go.jp/article/jmsj1965/49/2/49_2_125/_article
http://www.jstage.jst.go.jp/article/jmsj1965/49/2/49_2_125/_article
http://dx.doi.org/10.1175/1520-0469(1979)036<0757:STSAOR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1978)035<0745:AWFAOT>2.0.CO;2
http://dx.doi.org/10.1007/s00382-006-0213-x
http://dx.doi.org/10.1111/j.2153-3490.1949.tb01258.x
http://dx.doi.org/10.1002/qj.49708034522
http://dx.doi.org/10.1002/qj.49709640802
http://dx.doi.org/10.1002/qj.49710946204
http://dx.doi.org/10.1175/1520-0469(1993)050<1429:AASOTF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1981)038<1939:LMEARA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1986)043<2962:AMBMFT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1996)053<0298:NAOSRW>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1997)054<2441:NAOSRW>2.0.CO;2
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1007/s13351-015-5088-5
https://nnov.hse.ru/data/2011/01/28/1208122789/OCEN607_Rossby_2005.pdf
https://nnov.hse.ru/data/2011/01/28/1208122789/OCEN607_Rossby_2005.pdf
http://dx.doi.org/10.1175/1520-0469(1988)045<3046:TSPOAZ>2.0.CO;2
http://dx.doi.org/10.1016/j.physd.2007.07.006
http://dx.doi.org/10.1175/2009JAS3185.1
http://dx.doi.org/10.1175/1520-0469(1983)040<2593:AUTDIT>2.0.CO;2
http://dx.doi.org/10.1034/j.1600-0870.1991.t01-3-00001.x

