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Abstract We consider a market comprising a number of perfectly complementary
and homogeneous commodities. We concentrate on the incentives for firms producing
these commodities to merge and form a vertical syndicate. The main result establishes
that the nucleolus of the associated market game corresponds to the unique vector
of prices with the following properties: (i) they are vertical syndication-proof, (ii)
they are competitive, (iii) they yield the average of the buyers- and the sellers-optimal
allocations in bilateral markets, and (iv) they depend on the traders’ bargaining power
but not on their identity. The proof uses an isomorphism between our class of market
games and the entire class of bankruptcy games.

Keywords Multilateral market · Syndicate ·Cooperative game ·Assignment market ·
Bankruptcy problem · Nucleolus

JEL Classification C71 · D40

1 Introduction

1.1 The economics of syndicates

A syndicate is a coalition of agents who agree to operate as a single entity. Standard
approaches in cooperative game theory do not always yield results in keeping with the
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290 O. Tejada, M. Álvarez-Mozos

idea that syndication in markets is unequivocally profitable. Aumann (1973) considers
an exchange economy (or market) with an atomic trader plus a continuum of non-
homogeneous traders. He provides examples in which the former is worse off in any
core allocation than in the unique competitive one. Thus, the atomic trader would do
better by dissolving herself into a continuum of competing traders. Postlewaite and
Rosenthal (1974) look at a class of markets with two complementary commodities and
a finite number of agents, using the core as the set of predicted outcomes. They show
in an example that by acting as a syndicate, all agents owning the same commodity
can never do better than when they are not syndicated. Legros (1987) extends the
analysis of Postlewaite and Rosenthal (1974) to this entire class of markets, employing
the nucleolus of the associated cooperative game (Schmeidler 1969). He shows that
whether a syndicate of all agents owning one commodity is advantageous or not
depends on the size of its combined endowment relative to that of all agents owning
the other commodity. Alternative cooperative solution concepts such as the Shapley
value (Gardner 1977;Guesnerie 1977; Segal 2003) also yield the result that syndication
can be advantageous in some circumstances and disadvantageous in others.1 Similar
conclusions can be drawn from non-cooperative approaches to the problem (Okuno
et al. 1980; Salant et al. 1983; Bloch and Ghosal 2000; Fershtman and Gandal 1994),

Given this failure to obtain clear-cut results, is cooperative game theory an appro-
priate framework in which to analyze syndication? Aumann (1973) concludes that the
core fails in this sense. Postlewaite and Rosenthal (1974), in contrast, argue that syndi-
cation might not have any compelling advantages in certain economically meaningful
settings. The fact that it is thus not rare for syndicates to be disadvantageous to their
members partially rehabilitates the core in their view. Some empirical papers (see e.g.
Asch and Seneca 1976) find evidence that syndication is indeed sometimes associated
with lower profitability for firms. The conjecture that antitrust activity always results
in lower prices—and higher consumer surplus—has also been disputed empirically
(see e.g. Sproul 1993). All these findings, theoretical and empirical alike, reinforce the
need for a greater understanding of the role and potential advantages of syndicates,
both positively and normatively. This is the general object of our paper.

1.2 Multi-sided assignment markets

Bilateral assignment markets have come under close scrutiny since the seminal paper
of Shapley and Shubik (1972) (one should not forget Gale 1960). In such markets any
gains from trade arise from transactions between a pair of agents, say, a seller and a
buyer. In a multi-sided assignment market (Quint 1991), which includes the bilateral
case, there are several types of agents and a positive benefit can only be achieved by
forming coalitions that consist of exactly one individual of each type. An instance of
a three-sided market is provided by Stuart (1997). He considers an economy where
the outcome in one market may affect outcomes in another: a supplier, a firm, and a
buyer—as a final consumer—may be needed to carry out a transaction in this setting.

1 We refer to Schmalensee (2007) for the vast industrial organization literature that deals with the incentives
for the creation and/or destruction of syndicates.
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Sherstyuk (1999) provides related examples: a future home owner, an architect, and a
worker are needed to build and sell a house; a capitalist, an entrepreneur, and a worker
are necessary to start a new firm.

It is well-known that when the market comprises at least three types of agents,
the core of the associated market game can be empty (Kaneko and Wooders 1982).
The potential lack of stability of this broad family of markets does not mean they are
uninteresting. In fact, there exist several classes ofmulti-sided assignmentmarkets that
have a clear-cut economic interpretation and whose associated market games have a
non-empty core. We shall give additional reasons based on real-world observations
why studying such markets is of interest.

IT firms occupy a prominent position in economies nowadays. These firms spe-
cialize in software (Microsoft, Google, or Facebook), hardware (Samsung, LG, or
Foxconn), or both (IBM,Cisco, or Apple). A three-sided assignmentmarket arises nat-
urally when we consider consumers of technological gadgets that combine hardware
and software (an operating system), as these commodities are perfect complements.2

When any buyer values each bundle of the component goods equally, the assignment
market is called a multi-sided Böhm-Bawerk assignment market (Tejada and Núñez
2012; Tejada 2013). Bilateral markets of this type have been extensively analyzed in
the literature (von Böhm-Bawerk 1930; Shapley and Shubik 1972; Mendelson 1982;
Granot andGranot 1992; Núñez andRafels 2005).While some segments of ITmarkets
feature differentiated products, others consist of products which are indistinguishable
to consumers—consider, e.g., laptops of a given size and processor manufactured by
Asus and Lenovo. IT three-sided assignment markets with homogeneous products
indeed exist and are even common.

1.3 Syndication in multi-sided assignment markets

Two salient types of syndication can be considered for arbitrarymulti-sided assignment
markets. First, sellers owning the same commodity may collude, giving rise to a
horizontal syndicate. This is the type of syndication considered in most of the papers
alreadymentioned. Second, agents owning different commoditiesmaymerge and form
a vertical syndicate. To date, theoretical understanding of this type of syndication is
still limited. The goal of this paper is to make further progress in this direction.

To elaborate, we concentrate on vectors of prices at which the formation of vertical
syndicates does not favor any market participant. To be precise, we define a price
to be vertical syndication-proof if any buyer’s surplus is unaffected when either (a)
sellers of different commodities collude into vertical syndicates, or (b) single firms
split into more sellers of different commodities. Thus, at a vertical syndication-proof
price, vertical syndicates leave the buyers neither worse nor better off. If a vertical
syndication-proof price is also competitive, there are no incentives for individual sellers
to split artificially or for sellers owning different commodities to collude and form a
vertical syndicate.

2 The assumption that technology markets have only three sectors is a defensible simplification, despite
the fact that intermediary firms also participate in them.
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Several widely known IT firms have faced antitrust regulations in recent years.
Microsoft has been sued several times for abusing its market power in the operating
system industry.3 Google is currently being investigated by the EU for manipulating
web search results to favor its own shopping service.4 Both examples indicate that
public authorities grow concerned when a firm reaches a dominant position in a single
market. This fact notwithstanding, antitrust indictments have also targeted acquisitions
affecting two vertically related markets. A notorious case is the purchase of Motorola
by Google, which involved a firm producing software and a firm producing hardware.5

That is, syndicates between firms producing different commodities have been formed,
and their formation or dissolution is certainly a matter that concerns firms, consumers,
and antitrust authorities.

1.4 The main result

Our main finding, viz. Theorem II, is a characterization of the nucleolus of multi-sided
Böhm-Bawerk assignment games using four properties.6 To the best of our knowledge,
we are the first to provide an axiomatic analysis of such solution concept for a class of
market games. More specifically, we show that the nucleolus payoffs yield the unique
vector of prices with the following properties: (i) they are vertical syndication-proof,
(ii) they are competitive, (iii) they yield the average of the buyers- and the sellers-
optimal allocations in bilateral markets, and (iv) they are anonymous with respect to
the traders’ bargaining power.

The requirement that the labels of market traders be irrelevant, in particular, has
already been considered in axiomatic analyses of markets—see e.g. Dubey et al.
(1980).More generally, the widely applied two-player Nash bargaining solution (Nash
Jr 1950) treats both agents anonymously when both the set of feasible allocations and
the disagreement point are symmetric. The anonymity property that we impose in this
paper states that the surplus obtained by each market participant should depend only
on her bargaining power and the overall market surplus.7

We offer two alternative interpretations of the concept of a trader’s bargaining
power for the class of markets considered here. First, it can be understood as a proxy
for the value she adds to the rest of the market (Brandenburger and Stuart 2007). In our
model, a trader’s bargaining power sets an upper bound on hermarginal contribution to
the market game. Second, the process of Schumpeterian creative destruction exhibits
high frequency in the IT sector. This either renders some goods quickly obsolete
or drastically reduces the costs of producing them. Innovating firms can appropriate
temporarily the monopoly-type returns from investment through either lower costs or
higher prices.Afirm’s bargainingpower can thenbe seen as ameasure of the innovation

3 Economides (2001) analyzes the case of “US against Microsoft”.
4 See http://www.reuters.com/article/2015/04/27/us-eu-google-antitrust-idUSKBN0NF1YX20150427,
retrieved on 3-July-2015.
5 See http://www.bbc.com/news/business-18164190, retrieved on 29-June-2015.
6 We do not claim that the nucleolus and the properties characterizing are the only reasonable possibilities.
7 The impact of buyers’ bargaining power on their surplus was analyzed in Inderst and Wey (2007).
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embodied in its product relative to the competition. Similarly, a consumer’s bargaining
power is a measure of her willingness-to-pay for the bundle in question compared to
that of other buyers.

Our analysis also establishes conditions underwhich vertical syndication-proofness
is incompatible with horizontal syndication-proofness. Since a majority of the hori-
zontal syndicates analyzed by antitrust agencies occur in vertically related industries
(Milliou and Petrakis 2007), the analysis of this latter type of syndication is also
relevant for the class of markets analyzed in this paper.

1.5 A link to bankruptcy

The proof of our characterization result uses a link thatwe have discovered between our
class of market games and bankruptcy games. Bankruptcy problems involve situations
in which several individuals have claims over an estate, but the estate is not sufficient
to satisfy all claims. The cooperative approach to this problem was first addressed by
O’Neill (1982), and a large literature has followed. Bankruptcy problems are useful
in economic theory due to their simplicity and because they embody situations other
than bankruptcy, e.g. taxation, cost sharing, or surplus sharing.8 Our paper comple-
ments this literature in that we identify a subclass of market games that is isomorphic
to the entire class of bankruptcy games—see Theorem I. The insights provided by
this isomorphism enable us to translate rules, properties, and results from one setting
to another. Special attention is paid to how the Talmud Bankruptcy Rule (Aumann
and Maschler 1985) translates into our class of markets. Our findings thus rein-
force the relevance and applicability of the game-theoretical model of the bankruptcy
problem.

1.6 Organization of the paper

The paper is organized as follows. In Sect. 2 we present the main definitions and
illustrate them by examples. In Sect. 3 we establish a link between multi-sided Böhm-
Bawerk assignment games and bankruptcy games. In Sect. 4 we propose a procedure
to define (payoff) rules in our class of markets from rules in bankruptcy problems, and
vice versa. In Sect. 5 we analyze different properties that rules in both settings might
satisfy. In Sect. 6 we build on the previous sections to cast light on the relation between
the two aforementioned groups of properties. This helps us characterize the unique rule
in our class of markets that yields a vertical syndication-proof vector of competitive
prices and which satisfies three additional properties. In Sect. 7 we analyze alternative
forms of syndication. Section 8 concludes. The proofs of all auxiliary results can be
found in the Appendix.

8 See Thomson (2003, 2015) for an extensive survey of the subject.

123



294 O. Tejada, M. Álvarez-Mozos

2 Notation and preliminaries

A cooperative game with transferable utility (in short, a game) is a pair (N , v), where
N is a finite set of players and v, the characteristic function, is a real-valued function
on 2N = {S : S ⊆ N }, with v(∅) = 0. We denote by G the set of all games. For every
finite set N , (N , v0) stands for the null game, where for every S ⊆ N , v0(S) = 0. The
set of non-negative real numbers is denoted by R+, and for every x ∈ R we use the
notation (x)+ = max{0, x}. We denote by R

N the |N |-dimensional Euclidean space
with elements x ∈ R

N having components xi , i ∈ N . A vector x ∈ R
N is called an

allocation or payoff vector. For S ⊆ N and x ∈ R
N , let as usual x(S) = ∑

i∈S xi .
We say that x ∈ R

N is an imputation of (N , v) if x(N ) = v(N ) and xi ≥ v({i}) for
all i ∈ N . We let I (N , v) denote the set of imputations of (N , v). The core of a game
is the set of efficient allocations that cannot be improved upon by any coalition on its
own, i.e.,

C(N , v) =
{

x ∈ R
N : x(N ) = v(N ) and for every S � N , x(S) ≥ v(S)

}
.

Lastly, for x ∈ I (N , v) and S ∈ 2N \{∅, N }, the excess of coalition S at x is defined
by ev(S, x) = v(S) − x(S), and it is a measure of the satisfaction of coalition S with
respect to allocation x . Given (N , v) ∈ G with I (N , v) �= ∅ and x ∈ I (N , v), we
defineλ(x) ∈ R

2N \{∅,N } as the vector of excesses of all proper coalitions of N arranged
in a non-increasing order. That is, λk(x) = ev(Sk, x) for all k ∈ {1, . . . , 2n − 2} and
λk(x) ≥ λ j (x) if 1 ≤ k < j ≤ 2n − 2, where {S1, . . . , S2n−2} is the set of all proper
coalitions of N . The nucleolus of (N , v) is the imputation η(N , v) that minimizes
λ(x) with respect to the lexicographic order over the set of imputations. That is,
λ(η(v)) ≤Lex λ(x) for all x ∈ I (N , v).9 It is well known that the nucleolus is always
a single point and whenever the core of the game is non-empty, it is a core allocation.

2.1 Böhm-Bawerk assignment markets and games

In this section, we introduce a particular class of multilateral assignment markets and
we associate a game with each of these markets.

Definition 2.1 Given an integer m > 1, an m-sided Böhm-Bawerk assignment market
(in short, a market) is a tuple (N 1, . . . , N m, c, w), where N 1, . . . , N m−1 are the finite
sets of sellers, N m is the finite set of buyers, c = (c1, . . . , cm−1) ∈ R

N1

+ ×· · ·×R
N m−1

+ ,
and w ∈ R

N m

+ .

The m sets of agents N 1, . . . , N m are called sectors. Unless stated to the contrary,
henceforth we let M = {1, . . . , m} denote the set of sectors. Each seller owns exactly
one unit of an indivisible commodity. Each buyer is willing to buy a bundle composed
of exactly one unit of each commodity. The goods owned by two sellers belong to

9 Given x, y ∈ R
n , we say x <Lex y if there is some 1 ≤ i ≤ n such that xi < yi and x j = y j for

1 ≤ j < i . Also, we say x ≤Lex y if x <Lex y or x = y.
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the same commodity if and only if both sellers belong to the same sector. Hence in
an m-sided market there are m − 1 different commodities. For each k ∈ M\{m}, ck

i
stands for the valuation of seller i ∈ N k of her own good (or simply the cost). To buyer
i ∈ N m , wi stands for her valuation of a lot consisting of one good of each of the
commodities. Without loss of generality, we assume that |N 1| = · · · = |N m | = n by
introducing dummy sellers with very large reservation prices and dummy buyers with
zero willingness-to-pay. We arrange sellers’ valuations in a non-decreasing order,
and buyers’ valuations in a non-increasing order. That is, for every k ∈ M\{m},
ck
1 ≤ · · · ≤ ck

n and w1 ≥ · · · ≥ wn .10 Let BBM stand for the set of all such markets.
When no confusion regarding the set of agents can arise, we will denote a market
simply by (c, w).

Next, we present an example that will be used throughout the paper to illustrate
certain definitions.

Example 2.1 Consider the 24-person three-sided market given by

(c1, c2, w) = (30, 33, 40, 48, 50, 55, 70, 78;
25, 35, 58, 59, 60, 67, 70, 82;
200, 180, 160, 140, 130, 120, 100, 90).

We abuse language and henceforth use tuple indistinctly to refer both to the m-
tuple consisting of one agent of each type Z ∈ ∏m

k=1 N k as well as to the coalition
composed of all agents in the m-tuple. A matching among N 1, . . . , N m is a set of
n pairwise disjoint tuples. We denote by M(N 1, . . . , N m) the set of all matchings
among N 1, . . . , N m . Given (c, w) ∈ BBM, the mapping a(c, w) : ∏m

k=1 N k → R+
describes the potential benefit obtained by every tuple. That is, for Z = (i1, . . . , im) ∈∏m

k=1 N k ,

a(c, w)(Z) =
⎛

⎝wim −
∑

k∈M\{m}
ck

ik

⎞

⎠

+
.

When no confusion can arise, we will denote a(c, w)(Z) simply by aZ .
If money exists in the market and side payments between agents are allowed, a

market (c, w) generates an assignment game (N , ωc,w) ∈ G, where N = ∪m
k=1N k

and for every S ⊆ N ,

ωc,w(S) = max
μ∈M(N1∩S,...,N m∩S)

⎧
⎨

⎩

∑

Z∈μ

aZ

⎫
⎬

⎭
,

and the summation over the empty set is zero. That is, the assignment game describes
the best outcome that players in each coalition can achieve by organizing themselves
in tuples. Hence, it is a tool for the analysis of the division of the net profit ωc,w(N )

10 This assumption enables us to speak properly about the i th agent of sector k ∈ M .
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between buyers and sellers. We denote by BBG the set of all assignment games asso-
ciated with markets in BBM.

Tejada (2013) studies the core of an arbitrary game in BBG by means of the so-
called sectors game, in which the (fictitious) players are the sectors of the market.
Below we recall the main result therein, but first we introduce some concepts to
facilitate understanding. For every i ∈ N, let Zi = (i, . . . , i) ∈ R

m . Then, for every
(c, w) ∈ BBM let

r(c, w) = max
i∈{1,...,n}

{
i : aZi > 0

}
, (1)

with the convention that r(c, w) = 0 if a(c, w) is the null mapping. When the market
is clear from the context, we will denote r(c, w) simply by r .

Example 2.1 (cont.)
We can arrange the primitives of the market—note that r = 5, as indicated by the

boldface numbers—as follows:

Sector 1 Sector 2 Sector 3 Surplus Truncated surplus

c1i c2j wk wk − c1i − c2j

(
wk − c1i − c2j

)

+

30 25 200 145 145
33 35 180 112 112
40 58 160 62 62
48 59 140 33 33
50 60 130 20 20
55 67 120 −2 0
70 70 100 −40 0
78 82 90 −70 0

For every S ⊆ M we introduce the notation Z S = r1S + (r + 1)1M\S ∈ R
m ,

where for every T ⊆ M , 1T ∈ R
m is the vector such that 1T (k) = 1 if k ∈ T

and 1T (k) = 0 if k /∈ T . Notice that by introducing dummy players, we can always
ensure that r + 1 < n, so there are at least r + 2 agents in all sectors. Also note that{

Z S : S ⊆ M
}
are precisely all the tuples that can be obtained by combining the r th

and (r + 1)th agents of each sector.

Definition 2.2 Given (c, w) ∈ BBM, the associated sectors game (M, vc,w) ∈ G is
the game defined for every S ⊆ M by

vc,w(S) =
{

aZ S if r > 0,
0 if r = 0.

We denote by SG the set of all sectors games associated with markets in BBM.
Example 2.1 (cont.) The sectors game (M, vc,w) is given by M = {1, 2, 3} and

vc,w({1}) = 3, vc,w({1, 2}) = 10,

vc,w({2}) = 5, vc,w({1, 3}) = 13, vc,w({1, 2, 3}) = 20.

vc,w({3}) = 8, vc,w({2, 3}) = 15,
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Payoffs in the sectors game belong to a different space than those of the corre-
sponding market game (RM versus R

N1 ×· · ·×R
N m

). Since the main result in Tejada
(2013) relates the core of both games, we next introduce two tools that will allow us
to map the payoffs of one space onto the payoffs of another space.

First, for every (c, w) ∈ BBM we introduce the replica operator, Rc,w, which is
an injective linear function defined by

Rc,w: R
M −→ R

N1 × . . . × R
N m

(x1, . . . , xm) −→ (

r
︷ ︸︸ ︷
x1, . . . , x1,

n−r
︷ ︸︸ ︷
0, . . . , 0; . . . ;

r
︷ ︸︸ ︷
xm, . . . , xm,

n−r
︷ ︸︸ ︷
0, . . . , 0).

Example 2.1 (cont.) The replica operator is given by

Rc,w(x1, x2, x3) = (x1, x1, x1, x1, x1, 0, 0, 0; x2, x2, x2, x2, x2, 0, 0, 0;
x3, x3, x3, x3, x3, 0, 0, 0).

Second, for every (c, w) ∈ BBM we introduce the translation vector

tc,w = (t11 , . . . , t1n ; . . . ; tm
1 , . . . , tm

n ) ∈ R
N1 × · · · × R

N m
,

which is defined for every i ∈ {1, . . . , n} by

tk
i =

{(
ck

r − ck
i

)
+ if k ∈ M\{m},

(wi − wr )+ if k = m,

if r(c, w) > 0 and by tc,w = (0, . . . , 0) if r(c, w) = 0.

Example 2.1 (cont.) The translation vector is given by

tc,w = (20, 17, 10, 2, 0, 0, 0, 0; 35, 25, 2, 1, 0, 0, 0, 0; 70, 50, 30, 10, 0, 0, 0, 0).

Lastly, for every t ∈ R
l and B ⊆ R

l , let t + B denote the translated set B by the
vector t , i.e., t + B = {t + x : x ∈ B}. We are now in a position to state both the main
result in Tejada (2013) and the main result in Tejada and Núñez (2012).

Theorem 2.1 (Tejada 2013; Tejada and Núñez 2012) For every market (c, w) ∈
BBM,

(i) C(N , ωc,w) = tc,w + Rc,w(C (M, vc,w)) �= ∅,

(ii) η(N , ωc,w) = tc,w + Rc,w(η (M, vc,w)).

Part (i) indicates that the variability of the core of an assignment game can be
entirely explained by the core of the corresponding sectors game. Accordingly, the
core of the assignment game associated with the 24-person market in Example 2.1 is
determined (up to a bijection) by the core of the 3-player sectors game also described
in Example 2.1. The interests of all agents that belong to the same sector are thus
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298 O. Tejada, M. Álvarez-Mozos

perfectly aligned in the core. Part (ii) states that the nucleolus of the assignment game
can also be obtained by translating the nucleolus of the sectors game.

The only information relevant for the variability of the core of a market is contained
in the positions r and (r +1) of the vectors c1, . . . , cm−1, w. In particular, the agents in
the (r + 1)th position are important even though they do not contribute to creating any
value. The reason is that they determine the best outside option of the agents in the r th

position. To every market (N 1, . . . , N m, c, w) ∈ BBM, we then propose associating
another market

(
Ñ 1, . . . , Ñ m, c̃, w̃

)
where

∣
∣Ñ 1

∣
∣ = . . . = ∣

∣Ñ m
∣
∣ = 2 and

(̃c, w̃) =
{((

c1r , c1r+1; . . . ; cm−1
r , cm−1

r+1

)
, (wr , wr+1)

)
if r(c, w) > 0,

((
c11, c12; . . . ; cm

1 , cm
2

)
, (w1, w2)

)
if r(c, w) = 0.

(2)

It is straightforward to check that (M, vc,w) = (
M, vc̃,w̃

)
.

In the following definition, we formally introduce the class of all markets obtained
from markets in BBM by the above procedure. These markets will play an important
role throughout the paper.

Definition 2.3 Given an integer m > 1, a 2-regular market is a market (N 1, . . . , N m,

c, w) ∈ BBM such that |N 1| = · · · = |N m | = 2 and

w2 −
∑

k∈M\{m}
ck
2 ≤ 0.

We denote by 2-BBM the set of all 2-regular markets and by 2-BBG the set of
assignment games associated with 2-regular markets. Note that in a 2-regular market,
the only possible transaction takes place between the agents in the first position of
each sector. Hence, we say that these agents are active, while the agents in the second
position are inactive. For every (c, w) ∈ 2-BBM and k ∈ M , we define the bargaining
power of the active agent of sector k when r(c, w) = 1 as

bk(c, w) =
{
ck
2 − ck

1 if k ∈ M\{m},
w1 − w2 if k = m.

(3)

The bargaining power of active agents when r(c, w) = 0 and of inactive agents is
zero by definition. We slightly abuse language and refer to bk(c, w) as the bargaining
power of sector k.11

The following two remarks are straightforward:

Remark 2.1 For every 2-regular market, the marginal contribution of every agent to
the grand coalition in the market game is bounded from above by her bargaining
power.12

11 For convenience, we define the bargaining power only in 2-regular markets. However, the definition can
be generalized to arbitrary markets in BBM by using Eq. (2) and the translation vector.
12 Given a game (N , v) and a player i ∈ N , the marginal contribution of i to the grand coalition is the
amount v(N ) − v(N\{i}).
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Remark 2.2 The set of sector games associated with 2-regular markets is SG.

2.2 Bankruptcy problems and games

In this section, we formally introduce bankruptcy problems and bankruptcy games.

Definition 2.4 Given an integer m > 1, a bankruptcy problem is a tuple (M, E, d),
where M = {1, . . . m} is the finite set of agents, E ≥ 0 is the estate to be divided, and
d ∈ R

M+ is the vector of claims, which satisfy
∑

i∈M di ≥ E .

We denote by BP the set of all bankruptcy problems. When no confusion can arise,
we will omit the set of players and write (E, d) ∈ BP . Given a bankruptcy problem
(E, d) ∈ BP , the associated bankruptcy game

(
M, vE,d

) ∈ G is defined for every
S ⊆ M by

vE,d(S) = (E − d(M\S))+ .

The worth of a coalition according to the bankruptcy game is the amount that is left
after all other claims have been satisfied, assuming there is something left over. We
denote by BG the set of all bankruptcy games obtained from bankruptcy problems.
Let us illustrate the definition with the example below.

Example 2.2 Consider the bankruptcy problem where M = {1, 2, 3}, E = 20, and
d = (5, 7, 10). The associated bankruptcy game

(
M, vE,d

)
is then given by:

vE,d({1}) = 3, vE,d({1, 2}) = 10,

vE,d({2}) = 5, vE,d({1, 3}) = 13, vE,d({1, 2, 3}) = 20.

vE,d({3}) = 8, vE,d({2, 3}) = 15,

3 Connection between assignment and bankruptcy games

In this section, we show that there exists a link between bankruptcy problems and
markets.

Theorem I The set of bankruptcy games and the set of sector games associated with
markets coincide, i.e.,

BG = SG.

Proof On the one hand, for every (M, E, d) ∈ BP with M = {1, . . . , m}, we define
a market, (c(E, d), w(E, d)) ∈ BBM, with two agents in each sector, i.e., c(E, d) ∈
R
2(m−1)
+ and w(E, d) ∈ R

2+, as follows:

c(E, d) =
(

dm

m − 1
, d1 + dm

m − 1
; . . . ; dm

m − 1
, dm−1 + dm

m − 1

)

,

w(E, d) = (E + dm, E).

(4)
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From the definition of the bankruptcy problem, it follows that (c(E, d), w(E, d)) ∈
2-BBM. Indeed,

w2(E, d) −
∑

k∈M\{m}
ck
2(E, d) = E −

∑

k∈M\{m}

(

dk + dm

m − 1

)

= E −
∑

k∈M

dk ≤ 0.

Note that the exact identity of the players in (E, d) is important, as the valuations of
the buyers in (c(E, d), w(E, d)) are associated with E and the claim of the agent m in
(E, d). The sectors game associated with (c(E, d), w(E, d)) is then defined for every
S ⊆ M\{m} by

vc(E,d),w(E,d)(S) =
⎛

⎝E −
∑

k∈S

dm

m − 1
−

∑

k∈M\(S∪{m})

[

dk + dm

m − 1

]
⎞

⎠

+
= (E − d(M\S))+ = vE,d(S),

and

vc(E,d),w(E,d)(S ∪ {m}) =
⎛

⎝E + dm −
∑

k∈S

dm

m − 1
−

∑

k∈M\(S∪{m})

[

dk + dm

m − 1

]
⎞

⎠

+
= (E − d(M\(S ∪ {m})))+ = vE,d(S ∪ {m}).

On the other hand, for every (N 1, . . . , N m, c, w) ∈ 2-BBMwedefine a bankruptcy
problem (E(c, w), d(c, w)), where E(c, w) ∈ R+ and d(c, w) ∈ R

m+ are as follows:

E(c, w) =
⎛

⎝w1 −
∑

k∈M\{m}
ck
1

⎞

⎠

+
,

d(c, w) =
(

c12 − c11, . . . , cm−1
2 − cm−1

1 , w1 − w2

)
.

(5)

Again, note that the agent m in (M, E(c, w), d(c, w)) is always associated with
the buyers’ sectors in (c, w). It immediately follows that (E(c, w), d(c, w)) ∈ BP .
Indeed,

∑

k∈M

dk(c, w) =
∑

k∈M\{m}
(ck

2 − ck
1) + (w1 − w2)

=
⎛

⎝w1 −
∑

k∈M\{m}
ck
1

⎞

⎠−
⎛

⎝w2 −
∑

k∈M\{m}
ck
2

⎞

⎠ ≥ w1 −
∑

k∈M\{m}
ck
1,

where the inequality holds since (c, w) ∈ 2-BBM. Since
∑

k∈M dk(c, w) ≥ 0, we

conclude that
∑

k∈M dk(c, w) ≥
(
w1 −∑

k∈M\{m} ck
1

)

+ = E(c, w). The associated
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bankruptcy game is then defined for every S ⊆ M\{m} by

vE(c,w),d(c,w)(S) =
⎛

⎝

⎛

⎝w1−
∑

k∈M\{m}
ck
1

⎞

⎠

+
−(w1 − w2)−

∑

k∈M\(S∪{m})
(ck

2−ck
1)

⎞

⎠

+

=
⎛

⎝w2 −
∑

k∈S

ck
1 −

∑

k∈M\(S∪{m})
ck
2

⎞

⎠

+
= vc,w(S)

and

vE(c,w),d(c,w)(S ∪ {m}) =
⎛

⎝

⎛

⎝w1 −
∑

k∈M\{m}
ck
1

⎞

⎠

+
−

∑

k∈M\(S∪{m})

(
ck
2 − ck

1

)
⎞

⎠

+

=
⎛

⎝w1 −
∑

k∈S

ck
1 −

∑

k∈M\(S∪{m})
ck
2

⎞

⎠

+
= vc,w(S ∪ {m}).

��

Several comments are in order. First, the above theorem shows that for every game
obtained from a bankruptcy problem there exists a market whose associated sec-
tors game is the former game, and vice versa. For instance, the bankruptcy game of
Example 2.2 corresponds to the sectors game associated with the 2-regular market of
Example 2.1.

Second, it can be verified that the mapping defined by Eq. (4) is injective but not
surjective, and that the mapping defined by Eq. (5) is surjective but not injective. Con-
sequently, for each bankruptcy problem, there exists a 2-regular market such that the
former can be obtained from the latter via Eq. (5). However, there are 2-regular mar-
kets such that there does not exist any bankruptcy problem which can be transformed
via Eq. (4) into the former.

Third, together with part (i) of Theorem 2.1, we have shown that the variability of
the core of an arbitrary multi-sided Böhm-Bawerk assignment game is described by
the core of a bankruptcy game, and vice versa. This latter finding raises the question
whether a more general class of market games could also be linked to the more general
class of convex games. This is left to further research.

Fourth and last, a consequence of Theorem I—see also Proposition 8.1 in the
Appendix—that the entire class of bankruptcy games can be seen as a subclass of
assignment games.

Corollary 3.1 The set of assignment games associated to 2-regular markets, 2-BBG,
and the set of bankruptcy games, BG, are isomorphic, i.e.,

BG = SG ∼= 2-BBG ⊆ BBG.
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4 Exploiting the link to define rules

In this section, we exploit the insights revealed by the connection between mar-
kets and bankruptcy problems, and focus on point-valued solution concepts (or
rules). Given H ⊆ BBM, a rule in H is a map, f, that associates with every
(N 1, . . . N m, c, w) ∈ H, a payoff vector f(c, w) = (fk(c, w))k∈M , where for every
k ∈ M , fk(c, w) = (

fki (c, w)
)

i∈N k ∈ R
N k
. A rule in BP is a map, fb, that associates

with every (M, E, d) ∈ BP a payoff vector fb(E, d) = (fbi (E, d))i∈M ∈ R
M .

Theorem 2.1 together with Theorem I and its proof suggest a natural procedure to
define rules in BBM based on rules in BP , and vice versa.13 On the one hand, for
every rule fb in BP , we define a rule �(fb) in BBM constructed for every market
(c, w) ∈ BBM according to the following steps:

1. Define the market (̃c, w̃) from (c, w) by means of Eq. (2).
2. Define the bankruptcy problem (E (̃c, w̃) , d (̃c, w̃)) from (̃c, w̃) by means of Eq.

(5).
3. Apply fb to the bankruptcy problem to obtain an allocation.
4. Translate the allocation of the bankruptcy problem to the original market bymeans

of the transformation used in Theorem 2.1.

Formally, we have defined a mapping � that assigns a rule in BBM to every rule fb
in BP as follows:

�(fb)(c, w) = tc,w + Rc,w (fb (E (̃c, w̃) , d (̃c, w̃))) . (6)

On the other hand, for every rule f in BBMwe conversely define a rule�(f) in BP
constructed for every bankruptcy problem (E, d) ∈ BP according to the following
steps:

1. Define the 2-regular market (c(E, d), w(E, d)) from (E, d) by means of Eq. (4).
2. Apply f to the 2-regular market to obtain an allocation.
3. Translate the allocation of the market to the original bankruptcy problem by taking

only the payoffs to the agents in the first position in each sector of the market.

Formally, we have defined a mapping � that assigns a rule in BP to every rule f in
BBM as follows:

�(f)(E, d) =
(
fk1(c(E, d), w(E, d))

)

k∈M
. (7)

5 Properties of rules

In this section, we consider several properties that both rules in BBM and in BP
might satisfy. We start with some well-known properties for rules in BP , and then we
propose some new properties for rules in BBM.

13 Theorem 2.1 is concerned with the core of the assignment game. Consequently, the translations that
we present here are especially applicable when the rule that is being translated proposes core allocations.
However, to study how properties in one setting are translated to the other setting, it is convenient to be able
to translate any rule in BP into a rule in BBM, and vice versa.
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5.1 Bankruptcy problems

The literature regarding properties of rules in BP is vast. Here, we consider four of
them.

wd A rule in BP , fb, is well-defined if for every (E, d) ∈ BP ,14

0 ≤ fi (E, d) ≤ di and
∑

i∈M

fi (E, d) = E .

The above property requires verymild assumptions, i.e., that all the estate is divided
among all the players and that none of them receives more than her claim.

co A rule in BP , fb, satisfies consistency if for every (M, E, d) ∈ BP and S ⊆ M ,
if we set x = fb(M, E, d), then

xS = fb(S, x(S), dS).

The above property requires that the payoffs remain unaffected if some agents
leave the problem with the payoffs proposed by the rule, and they bargain again for
the division of the joint payoff with reference to the original claims.

bc A rule in BP , fb, satisfies bilateral consistency if for every (M, E, d) ∈ BP and
S ⊆ M such that |S| = 2, if we set x = fb(M, E, d), then

xS = fb(S, x(S), dS).

The above property requires that consistency holds only for subsets of two players.

cg A rule inBP , fb, satisfies the contested garment property if for every (M, E, d) ∈
BP with M = {1, 2},

fb(E, d) =
(

E + (E − d2)+ − (E − d1)+
2

,
E + (E − d1)+ − (E − d2)+

2

)

.

The above property proposes a particular division of the estate for the two-claimant
case based on the concede–and–divide principle (Dagan 1996; Moreno-Ternero and
Villar 2006).

Aumann andMaschler (1985) show that the properties listed above lead to a unique
possibility.

Theorem 5.1 (Aumann and Maschler 1985) There exists a unique rule in BP , the
so-called Talmud Bankruptcy Rule, that satisfies wd, bc, and cg. Moreover, for every
bankruptcy problem this rule chooses the nucleolus of the associated bankruptcy game.

14 This condition is usually imposed on the definition of a rule. However, to compare rules and properties
of bankruptcy problems and markets, it is better to considerwd as a property of a rule in BP . In particular,
note that the translation � may give rise to a rule in BP that is not well defined.
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Two comments are in order. First, the Talmud Bankruptcy Rule, henceforth Tb,
admits for every (M, E, d) ∈ BP and k ∈ M the following expression:

Tbk(M, E, d) =
⎧
⎨

⎩

min
{

dk
2 , λ

}
if
∑

k∈M
dk
2 ≥ E,

dk − min
{

dk
2 , λ

}
if
∑

k∈M
dk
2 ≤ E,

where λ is chosen so that
∑

k∈M Tbk(M, E, d) = E . Second, it is well known that
Tb satisfies co. Thus, Theorem 5.1 remains valid if bc is replaced by co.

5.2 Markets

Next, we introduce and discuss a number of properties that rules in BBM might
satisfy. For the purpose of illustrating the properties, we henceforth consider the 2-
regular market obtained from the market described in Example 2.1 by means of Eq.
(2).

Example 5.1 Let (c̃, w̃) be the 6-person three-sided market given by

(
c̃11, c̃12; c̃21, c̃22; w̃1, w̃2

)
= (50, 55; 60, 67; 130, 120).

5.2.1 Core selection

We start with a property that requires a rule to select payoffs that belong to the core
of the assignment game.

cs A rule in BBM, f, satisfies core selection if for every (c, w) ∈ BBM,

f(c, w) ∈ C(N , ωc,w).

The above property requires a rule to share completely the spoils generated in
the market, in such a way that no coalition of agents has incentives to search for an
agreement on its own. Therefore, it can be considered a stability property. For the
class of market games considered in this paper, cs can be spelled out in two different
conditions. This is shown in the next lemma.

Lemma 5.1 A rule in BBM, f, satisfies cs if and only if for every (c, w) ∈ BBM,

(i) f(c, w) = tc,w + Rc,w
((
fk1(̃c, w̃)

)
k∈M

)
,

(ii) f(̃c, w̃) ∈ C(N , ωc̃,w̃),

where (̃c, w̃) is the 2-regular market associated with (c, w) according to Eq. (2).

Property cs has a further appeal when interpreted in terms of the money exchanged
for goods by buyers and sellers. Indeed, consider a payoff vector x = (

(xk
i )i∈N k

)
k∈M .

To obtain a utility of xk
i when bargaining with a buyer, seller i ∈ N k must charge a

price to the buyer equal to
pk

i (x) = xk
i + ck

i . (8)
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It turns out that there is a one-to-one correspondence between competitive prices and
prices obtained from core allocations by means of Eq. (8)—see Remark 5.1 below. To
define competitive prices, we need to introduce some concepts. Let (c, w) ∈ BBM
be a market and let p = (

(pk
i )i∈N k

)
k∈M\{m} denote a vector of prices, one for each

seller.
First, given a buyer im ∈ N m , the demand set of im at prices p, which we denote

by Dim (p), is the set of tuples (i1, . . . , im−1) ∈ N 1 × · · · × N m−1 which maximize
wim −∑

k∈M\{m} pk
ik
, whenever this last expression is positive. Otherwise, Dim (p) is

the empty set.
Second, a vector of prices p is quasi-competitive if

(i) pk
i ≥ ck

i , for every i ∈ N k and k ∈ M\{m}, and
(ii) there is a matching μ ∈ M(N 1, . . . , N m), which is said to be compatible with

p, such that for every buyer im ∈ N m ,

Dim (p) �= ∅ ⇒ ∃(i1, . . . , im−1) ∈ Dim (p) such that (i1, . . . , im−1, im) ∈ μ.

Third, a pair (p, μ) ∈ ∏k∈M\{m} R
N k ×M(N 1, . . . , N m) is a competitive equilib-

rium if

(i) p is a quasi-competitive vector of prices,
(ii) μ is a matching compatible with p, and
(iii) pk

i = ck
i for every seller i ∈ N k , with k ∈ M\{m}, such that i is assigned under

μ to a buyer with an empty demand set.

Given a competitive equilibrium (p, μ), we say that the price p is competitive. Building
on part (i) of Theorem 2.1, we can formulate the main result in Tejada (2010) for the
class of markets considered in the paper, which reads as follows:

Remark 5.1 Given (c, w) ∈ BBM, the following two statements are equivalent:

(a) p is a vector of competitive prices,
(b) there exists x ∈ C(N , ωc,w) and p(x) = (p1(x), . . . , pm−1(x)) ∈ R

M\{m}
+ such

that for every k ∈ M\{m} and i ∈ N k ,

pk
i =

{
pk(x) = xk

i + ck
i if i ≤ r,

ck
i if i > r.

Whenever x ∈ C(N , ωc,w), it holds that xk
i + ck

i = xk
j + ck

j for all i, j ∈ N k such

that i, j ≤ r . In what follows, for every k ∈ M\{m} we let pk(x) ∈ R+ denote the
price of the commodity k at allocation x . We stress that whenever x is a core allocation
of the assignment game, the vector p(x), with components pk(x) = xk

1 + ck
1, collects

the prices paid in any actual transaction that occurs in the market. Using Theorem 2.1,
we find that the set of competitive prices of the market of Example 5.1 is

{
(p1, p2) : 53 ≤ p1 ≤ 55, 65 ≤ p2 ≤ 67, 120 ≤ p1 + p2 ≤ 122

}
.

The remaining properties introduced in this section refer only to 2-regular markets.
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5.2.2 Vertical syndication-proof

Suppose that prices in a market are determined according to a certain rule in BBM, f,
which satisfies cs.15 Let also p(x) = (p1(x), p2(x)) be the current price level in the
market of Example 5.1, with x = f(c̃, w̃). Then, assume that the following occurs: (i)
the active firm in sector 1 buys the good from the active firm in sector 2 at price p2(x),
(ii) the inactive firm in sector 1 buys the good from the inactive firm in sector 2 at price
p2(x), and (iii) both firms in sector 1 offer the buyers a bundle composed of the two
goods that each of them owns. The firms that sold their products no longer participate
directly in the market. Other potential side-payments may nonetheless occur between
all firms. This yields the following two-sided market:

Example 5.1 (cont.) Let (N 1, N 3, α1, w̃) be the 2-sided 2-regular market given by

(
α1
1, α

1
2; w̃1, w̃2

)
=
(
50 + p2(x), 55 + p2(x); 130, 120

)
,

where x = f(c̃, w̃).

The reduced market (α1, w̃), with α1 = (α1
1, α

1
2), captures the situation where one

syndicate is formed between the two active firms and another between the two inactive
firms. As the latter syndicate will not sell its bundle when prices are competitive, only
one operative syndicate will actually form. In this new setting, a consumer can only
buy the two-commodity bundled good but none of the goods separately. A cardinal
question regarding the reduced market is: Who benefits and who loses in (α1, w̃)

with respect to the original market (c̃, w̃) if prices are chosen according to f in both
markets? To answer this question, we have to compare sellers’ and buyers’ payoffs
in both settings. Doing so in real-world applications may be relevant for consumers,
firms, and antitrust authorities.

The property below requires that buyers be indifferent to the two above situations.

2-vsp A rule in BBM, f, satisfies vertical syndication-proofness for 2-regular mar-
kets if for every (N 1, . . . , N m, c, w) ∈ 2-BBM and k ∈ M\{m},

fm(N 1, . . . , N m, c, w) = fm
(

N k, N m, αk(c, w, f), w
)

,

where the reduced two-sided market
(
N k, N m, αk(c, w, f), w

)
is composed of

the original sector of buyers, with valuations given by w, and a unique sector
of sellers with costs, αk(c, w, f), defined for every i ∈ N k by16

αk
i (c, w, f) = ck

i +
∑

l∈M\{k,m}
pl(f(c, w)). (9)

15 We impose that f satisfies cs to facilitate the explanation of the property.
16 For the sake of understanding the property, we do not rename this unique sector of sellers, as it should be
denoted by N1 instead of N k . An analogous comment applies to the sector of buyers. Also note that both
the active seller and the inactive seller pay the same price. In particular, the inactive seller may be paying
prices to other sellers that are below their costs.

123



Vertical syndication-proof competitive prices in… 307

Four comments are in order. First, the bargaining power in the 2-sided market(
αk(c, w, f), w

)
of the unique sector of firms coincides with the bargaining power of

sector k in the original market (c, w). Moreover, such a coincidence is independent
of f by construction. Trivially, the same holds for the buyers. Second, 2-vsp relates
the payoffs in a multi-sided market to the payoffs in a two-sided market. While the
literature on bilateral assignment markets is large, comparatively few papers study
multi-sided assignment markets. We are not aware of any property described in the
literature which would connect the multilateral to the bilateral case. Third, if f satisfies
cs, the set of 2-regular markets is closed under the reduced market operator.

Lemma 5.2 Let (c, w) ∈ 2-BBM. If a rule, f, satisfies cs then

(i)
(
N k, N m, αk(c, w, f), w

) ∈ 2-BBM for every k ∈ M\{m}.
(ii) If (N , ωc,w) = (N , v0) then

(
N k ∪ N m, ωαk (c,w,f),w

)
= (N , v0).

Fourth and last, 2-vsp requires that the buyers’ surplus is not affected by the creation
of vertical syndicates. It is interesting also to investigate the incentives of sellers to
create such syndicates. Lemma 5.3 below shows that when applied to a rule f that
satisfies cs, 2-vsp requires that any active (resp. inactive) seller be indifferent to the
following two options: (i) syndicating with m − 2 other active (resp. inactive) sellers,
each owning a different commodity, compensating them with the price prescribed by
f, and then bargaining directly with the buyers, and (ii) not creating such a syndicate.

Lemma 5.3 If a rule in BBM, f, satisfies cs and 2-vsp, then for every (c, w) ∈
2-BBM and every k ∈ M\{m},

fk(c, w) = fk
(
αk(c, w, f), w

)
.

We have assumed that the sellers who are not present in the reduced market receive,
according to 2-vsp, the payoff prescribed by f in the original market—by means of
the corresponding competitive price. Lemma 5.3 thus asserts that the total payoff of
all active (or inactive) sellers should not be affected by the creation of the vertical
syndicates. Indeed, it follows from Lemma 5.3 that under cs and 2-vsp, for every
(c, w) ∈ 2-BBM and i ∈ N k ,

∑

l∈M\{m}
fli (c, w) = fki

(
αk(c, w, f), w

)
+

∑

l∈M\{k,m}
fli (c, w). (10)

As a consequence, under cs and 2-vsp there are no incentives for the creation of
vertical syndicates in 2-regular markets.17

17 At this point, the question arises whether or not to require Eq. (10) to hold with a weak inequality and
then use such a condition as a property instead of 2-vsp. The answer to this question falls outside the scope
of the current paper. In Knudsen and Østerdal (2012) merging and splitting incentives are studied separately
for arbitrary cooperative games.
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5.2.3 Compromise in the bilateral case

For bilateral markets, the core is a segment determined by both the buyers- and the
sellers-optimal allocations. There seems to be a widespread consensus that the fairest
solution to such a market game is the midpoint of the core. This allocation not only
is the average between the two aforementioned polar allocations, but it also coincides
with the nucleolus and the τ -value—see Núñez and Rafels (2005). The following
property requires that for every bilateral 2-regular market the midpoint of the core be
selected.

2-cbs A rule in BBM, f, coincides with the canonical bilateral solution for bilateral
2-regular markets if for every 2-sided market (c, w) ∈ 2-BBM,

f1(c, w) =
((

w1 − c11
)
+ + (

w2 − c11
)
+ − (

w1 − c12
)
+

2
, 0

)

, and

f2(c, w) =
((

w1 − c11
)
+ + (

w1 − c12
)
+ − (

w2 − c11
)
+

2
, 0

)

.

(11)

5.2.4 Anonymity with respect to the bargaining power

In Sect. 2 we have defined the bargaining power of each sector in a 2-regular mar-
ket. The property below requires that in 2-regular markets, traders—be they firms or
consumers—be treated equally with regard to bargaining power.

2-abp A rule in BBM, f, satisfies anonymity with respect to bargaining power for
2-regular markets if for every two markets (c, w), (ĉ, ŵ) ∈ 2-BBM with
the same total surplus w1 − ∑

k∈M\{m} ck
1 = ŵ1 − ∑

k∈M\{m} ĉk
1, if there

is k ∈ M\{m} such that bk(c, w) = bm(ĉ, ŵ), bm(c, w) = bk(ĉ, ŵ), and
bl(c, w) = bl(ĉ, ŵ) for all l ∈ M\{k, m}, then

fl(ĉ, ŵ) =

⎧
⎪⎨

⎪⎩

fm(c, w) if l = k,

fk(c, w) if l = m,

fl(c, w) otherwise.

6 Exploiting the link: a characterization result

In this section, we do two things. First, we study the relation between the proper-
ties presented in the previous section for bankruptcy problems and markets. Second,
we characterize the unique rule in BBM that satisfies, among other properties, our
proposed notion of vertical syndication-proofness.

123



Vertical syndication-proof competitive prices in… 309

6.1 Translating properties

First, we study the translation of properties from the domain of markets to the domain
of bankruptcy problems.

Proposition 6.1 Let f be a rule in BBM and � the mapping defined in Eq. (7).

(i) If f satisfies cs, then �(f) satisfies wd.
(ii) If f satisfies 2-cbs, then �(f) satisfies cg.

(iii) If f satisfies cs, 2-cbs, 2-vsp, and 2-abp, then �(f) satisfies bc.

Proof Let fb = �(f) and (E, d) ∈ BP . Throughout the proof, let also N 1, . . . , N m

denote the sets of agents of the market obtained from (E, d) via Eq. (4) and N =
N 1 ∪ · · · ∪ N m . Recall that (c(E, d), w(E, d)) ∈ 2-BBM.

For part (i), assume that f satisfies cs. Then,

∑

k∈M

fbk(E, d) =
∑

k∈M

fk1(c(E, d), w(E, d)) = ωc(E,d),w(E,d)(N ) = E,

where the first equality holds by definition of � in Eq. (7), the second equality holds
since f satisfies cs, and the last equality holds by Eq. (4). Moreover, since a player’s
payoff in the core is bounded from below by her stand-alone worth and from above by
her marginal contribution to the grand coalition, we obtain that for every k ∈ M\{m},

0 ≤ fbk(E, d) = fk1(c(E, d), w(E, d))

≤ ωc(E,d),w(E,d)(N ) − ωc(E,d),w(E,d)
(

N\{1k}
)

=
⎛

⎝w1(E, d)−
∑

l∈M\{m}
cl
1(E, d)

⎞

⎠

+
−
⎛

⎝w1(E, d)−
∑

l∈M\{k,m}
cl
1(E, d)−ck

2(E, d)

⎞

⎠

+
≤ ck

2(E, d) − ck
1(E, d) = dk,

and

0 ≤ fbm(E, d) = fm1 (c(E, d), w(E, d))

≤ ωc(E,d),w(E,d)(N ) − ωc(E,d),w(E,d)
(
N\{1m})

=
⎛

⎝w1(E, d) −
∑

l∈M\{m}
cl
1(E, d)

⎞

⎠

+
−
⎛

⎝w2(E, d) −
∑

l∈M\{m}
cl
1(E, d)

⎞

⎠

+
≤ w1(E, d) − w2(E, d) = dm,

where 1k denotes the first agent in sector k ∈ M . Hence, �(f) satisfies wd.
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For part (ii), assume that f satisfies 2-cbs. Then, let (M, E, d) ∈ BP be such that
M = {1, 2}. By Eq. (4) and the fact that f satisfies 2-cbs, it follows that

fb1(E, d) = 1

2

( (
w1(E, d) − c11(E, d)

)

+
+
(
w2(E, d) − c11(E, d)

)

+ −
(
w1(E, d) − c12(E, d)

)

+

)

= 1

2

(
E + (E − d2)+ − (E − d1)+

)
.

We can repeat the same argument for the second player in the bankruptcy problem

and obtain fb2(E, d) = 1
2

(
E + (E − d1)+ − (E − d2)+

)
. Hence, �(f) satisfies cg.

Finally, for part (iii) assume that f satisfies cs, 2-cbs, 2-vsp, and 2-abp. In the
following, we show that fb is bilaterally consistent. To ease the notation, let henceforth
yk = fbk(M, E, d) for every k ∈ M . Let S ⊆ M be such that |S| = 2. We distinguish
two cases.

Case A: m ∈ S
Accordingly, S = {k, m} for some k ∈ M\{m}. For l ∈ {k, m}, let zl =

fbl({k, m}, yk + ym, (dk, dm)). On the one hand, by Eq. (4),

c (yk + ym, (dk, dm)) = (dm, dm + dk) and

w (yk + ym, (dk, dm)) = (yk + ym + dm, yk + ym) .

By definition of � and the fact that f satisfies 2-cbs, we obtain

zk = 1

2
(yk + ym + (yk + ym − dm)+ − (yk + ym − dk)+) and

zm = 1

2
(yk + ym + (yk + ym − dk)+ − (yk + ym − dm)+) .

On the other hand, by definition of � in Eq. (7), the fact that f satisfies 2-vsp, and
Lemma 5.3, we have for l ∈ {k, m},

yl = fl1 (c(E, d), w(E, d)) = fl1

(
αk (c(E, d), w(E, d), f) , w(E, d)

)
. (12)

Note that the right-hand side of Eq. (12) involves a bilateral market. By Eq. (9),

αk (c(E, d), w(E, d), f)

=
(

ck
1(E, d) +∑

l∈M\{k,m}
[
cl
1(E, d) + fl1(c(E, d), w(E, d))

]

ck
2(E, d) +∑

l∈M\{k,m}
[
cl
1(E, d) + fl1(c(E, d), w(E, d))

]

)

. (13)
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Since f satisfies cs,

∑

l∈M\{k,m}
fl1(c(E, d), w(E, d))

= ωc(E,d),w(E,d)(N ) −
∑

l∈{k,m}
fl1(c(E, d), w(E, d))

= E − yk − ym,

where the last equality holds by the definition of the assignment game and Eq. (4).
Then, using Eq. (4) and the equation above, Eq. (13) becomes

αk (c(E, d), w(E, d), f) =
(

dm + E − yk − ym

dm + dk + E − yk − ym

)

. (14)

Finally, since f satisfies 2-cbs, Eqs. (12) and (14) yield

yk = 1

2
(yk + ym + (yk + ym − dm)+ − (yk + ym − dk)+) and

ym = 1

2
(yk + ym + (yk + ym − dk)+ − (yk + ym − dm)+) .

That is, we have proved that yl = zl for l ∈ {k, m}.
Case B: m /∈ S
Hence, S = {k, l} with k, l ∈ M\{m} and k �= l. Consider the auxiliary bank-

ruptcy problem (E, d ′) ∈ BP defined by d ′
l = dm , d ′

m = dl , and d ′
h = dh for

all h ∈ M\{l, m}. Denote y′
h = fbh(E, d ′) for all h ∈ M . Let c′ = c(E, d ′) and

w′ = w(E, d ′). Since f satisfies 2-abp, we can apply such a property to markets
(c(E, d), w(E, d)) and (c′, w′) to obtain

yk = fk1(c(E, d), w(E, d)) = fk1(c
′, w′) = y′

k and

yl = fll(c(E, d), w(E, d)) = fm1 (c′, w′) = y′
m .

(15)

In particular, note that
yk + yl = y′

k + y′
m . (16)

Moreover, let z′
h = fbh

({k, m}, y′
k + y′

m, (d ′
k, d ′

m)
)
for h ∈ {k, m}. Then, from Case

A we know that
y′

k = z′
k and y′

m = z′
m . (17)

Since by part (ii) fb satisfies cg, we have

z′
k = 1

2

(
y′

k + y′
m + (y′

k + y′
m − d ′

m)+ − (y′
k + y′

m − d ′
k)+

)
and

z′
m = 1

2

(
y′

k + y′
m + (y′

k + y′
m − d ′

k)+ − (y′
k + y′

m − d ′
m)+

)
.
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Next, let zh = fbh({k, l}, yk + yl , (dk, dl)) for h ∈ {k, l}. Again because fb satisfies
cg,

zk = 1

2
(yk + yl + (yk + yl − dl)+ − (yk + yl − dk)+) and

zl = 1

2
(yk + yl + (yk + yl − dk)+ − (yk + yl − dl)+) .

Then, by Eq. (16) and taking into account that d ′
l = dm and d ′

m = dl , it follows that

z′
k = zk and z′

m = zl . (18)

Lastly, it follows from Eqs. (15), (17), and (18) that yh = zh for l ∈ {k, l}, so the proof
is complete. ��

Second, we study the translation of properties from the domain of bankruptcy
problems to that of markets.

Proposition 6.2 Let fb be a rule in BP and � the mapping defined in Eq. (6).

(i) If fb satisfies cg, then �(fb) satisfies 2-cbs.
(ii) If fb satisfies wd, cg, and bc, then �(fb) satisfies cs, 2-vsp, and 2-abp.

Proof Let fb be a rule in BP and f = �(fb). By Lemma 5.1 and construction of �

in Eq. (6), it follows that f satisfies cs if it associates a core allocation with every
2-regular market. Since 2-cbs, 2-vsp, and 2-abp only apply to 2-regular markets, we
henceforth assume that (c, w) ∈ 2-BBM. Note in particular that by construction of
� in Eq. (6), it follows that for every sector k ∈ M , fk2(c, w) = 0.

For part (i), let (N 1, N 2, c, w) ∈ 2-BBM be a bilateral 2-regular market. Since fb
satisfies cg,

f11(c, w) = fb1(E(c, w), d(c, w))

= 1

2
(E(c, w) + (E(c, w) − d2(c, w))+ − (E(c, w) − d1(c, w))+)

= 1

2

(
(w1 − c11)+ + (w2 − c11)+ − (w1 − c12)+

)
.

Following an analogous argument for the sector of buyers yields

f21(c, w) = 1

2

(
(w1 − c11)+ + (w1 − c12)+ − (w2 − c11)+

)
.

Hence, f satisfies 2-cbs.
For part (ii), suppose that fb satisfieswd, cg, and bc. By Theorem 5.1, fb selects the

nucleolus of the bankruptcy game induced by any bankruptcy problem. If r(c, w) = 0,
we have (N , ωc,w) = (N , v0), so f satisfies cs, 2-vsp, and 2-abp. We thus focus for
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the rest of the proof on the case where r(c, w) �= 0. First, we show that f satisfies cs.
Note that part (i) of Theorem 2.1 implies that

f(c, w) ∈ C(N , ωc,w) ⇔ (fk1(c, w))k∈M ∈ C(M, vc,w)

⇔ fb(E(c, w), d(c, w)) ∈ C(M, vc,w).

Therefore, from Theorem I—and its proof—and the fact that the nucleolus is always
a core allocation, we deduce that f(c, w) ∈ C(N , ωc,w).

Second, to show that f satisfies 2-vsp, let yl = fl1(c, w) for all l ∈ M . By construc-
tion of � in Eq. (6), we have y = fb(E(c, w), d(c, w)). Let (N k, N m, αk(c, w, f), w)

be the reduced bilateral 2-regular market obtained from (c, w), with k ∈ M\{m}.
Let zl = fl1(N k, N m, αk(c, w, f), w) for l ∈ {k, m}. By definition of the costs of the
reduced market—see Eq. (9)—,

αk
1(c, w, f) = ck

1 +
∑

l∈M\{k,m}
(cl

1 + yl) = w1 − yk − ym,

where the last holds since f satisfies cs. Similarly,

αk
2(c, w, f) = w1 + ck

2 − ck
1 − yk − ym .

Using Eq. (5), we obtain

E
(
αk(c, w, f), w

)
= w1 − αk

1(c, w, f) = yk + ym,

dk

(
αk(c, w, f), w

)
= ck

2 − ck
1 = dk(c, w), and

dm

(
αk(c, w, f), w

)
= w1 − w2 = dm(c, w).

By construction of � in Eq. (6) and the fact that fb satisfies bc, it follows from the
above equations that for l ∈ {k, m},

zl = fbl({k, m}, yk + ym, (dk(c, w)), dm(c, w)) = fbl(M, E(c, w), d(c, w)) = yl .

Thus, f satisfies 2-vsp.
Third, to show that f satisfies 2-abp, let (c, w) and (ĉ, ŵ) be as in the definition of

2-abp. Then (N , ωc,w) is obtained from (N , ωĉ,ŵ) by exchanging the roles of players
in the sectors k and m. Since the nucleolus is an anonymous solution concept, part (ii)
of Theorem 2.1 implies that f satisfies 2-abp.18 ��

18 A point- or set-valued solution concept f is anonymous if for all (N , v) ∈ G and i ∈ N , it holds that
fπ(i)(N , πv) = fi (N , v), where π : N → N is a permutation and πv(S) = v(π(S)) for all S ⊆ N .
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6.2 The main result

Next, we prove the paper’s main result. It is convenient to define the rule obtained by
translating the Talmud Bankruptcy Rule.

Definition 6.1 The Talmud Assignment Rule, T, is the rule in BBM defined as the
transformation using � of the Talmud Bankruptcy Rule, i.e., T = �(Tb).

We are now in a position to state and prove the theorem.

Theorem II The Talmud Assignment Rule is the unique rule in BBM that satisfies
cs, 2-vsp, 2-abp, and 2-cbs. Moreover, it selects for every market the nucleolus of the
associated assignment game.

Proof The proof proceeds in three steps. First, we show that if there is a rule in BBM
satisfying cs, 2-vsp, 2-cbs, and 2-abp, then it must be unique. Second, we show that
there is a rule in BBM, namely T, that satisfies the four properties. Third, we show
that these four properties do in fact single out the nucleolus of the market games in
BBG.
Step 1: Uniqueness

Let f be a rule in BBM that satisfies cs, 2-vsp, 2-cbs, and 2-abp. First, let H be
the set of 2-regular markets obtained from bankruptcy problems via Eq. (4), i.e.,

H = {(c, w) ∈ 2-BBM : ∃(E, d) ∈ BP s.t. (c, w) = (c(E, d), w(E, d))} . (19)

Since the mappings c(E, d) and w(E, d) are not surjective, H � 2-BBM. We show
that f is the only rule inH satisfying the four properties. Indeed, let (c, w) ∈ H. Then,
there is (E, d) ∈ BP such that for all k ∈ M ,

fk1(c, w) = fk1(c(E, d), w(E, d)) = �(f)k(E, d), (20)

where the last equality holds by definition of � in Eq. (7). Since f satisfies cs, 2-vsp,
2-cbs, and 2-abp, it follows from Proposition 6.1 that �(f) satisfies wd, bc, and cg,
which implies by Theorem 5.1 the uniqueness of the payoffs in Eq. (20).

Second, from Lemma 5.1, we know that a rule in BBM that satisfies cs is uniquely
defined for all (c, w) ∈ BBM if and only if it is uniquely defined for all (c, w) ∈
2-BBM. Thus, henceforth, we restrict our attention to 2-BBM. Moreover, cs also
implies that for all (c, w) ∈ 2-BBM and k ∈ M , fk2(c, w) = 0. As a consequence, we
only need to show the uniqueness of f11(c, w), . . . , fm1 (c, w).

Third, we define several binary relations in 2-BBM based on the relation between
the markets in the definition of 2-abp. Consider two arbitrary 2-regular markets
(c, w), (ĉ, ŵ) ∈ 2-BBM. On the one hand, let k ∈ M\{m}. Then,

(c, w) ∼k (ĉ, ŵ) ⇔

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w1 − ∑

l∈M\{m}
cl
1 = ŵ1 − ∑

l∈M\{m}
ĉl
1,

ck
2 − ck

1 = ŵ1 − ŵ2,

w1 − w2 = ĉk
2 − ĉk

1, and

cl
2 − cl

1 = ĉl
2 − ĉl

1 for every l ∈ M\{k, m}.
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Similarly,

(c, w) ∼m (ĉ, ŵ) ⇔

⎧
⎪⎪⎨

⎪⎪⎩

w1 − ∑

l∈M\{m}
cl
1 = ŵ1 − ∑

l∈M\{m}
ĉl
1

w1 − w2 = ŵ1 − ŵ2, and

cl
2 − cl

1 = ĉl
2 − ĉl

1 for every l ∈ M\{m}.

On the other hand,

(c, w) ∼ (ĉ, ŵ) ⇔ (c, w) ∼k (ĉ, ŵ) for some k ∈ M.

Note that ∼ is an equivalence relation. For convenience, for a given k ∈ M , let πk be
the permutation of M defined by πk(k) = m, πk(m) = k, and for every l ∈ M\{k, m},
πk(l) = l.

Fourth, given an arbitrary (c, w) ∈ 2-BBM, let (c′, w′) ∈ H be defined by19

c′ = c (E(c, w), d(c, w)) and w′ = w (E(c, w), d(c, w)) . (21)

It is straightforward to verify that the sectors games associated with the above markets

coincide, i.e., that (M, vc,w) =
(

M, vc′,w′)
.

The remainder of the proof is devoted to showing that for every (c, w) ∈
2-BBM\H, f(c, w) = f(c′, w′). To that purpose, we assume on the contrary that
there exists a market (c∗, w∗) ∈ 2-BBM\H such that

f(c∗, w∗) �= f((c∗)′, (w∗)′), (22)

where ((c∗)′, (w∗)′) ∈ H is obtained from (c∗, w∗) as in Eq. (21). We shall reach a
contradiction.

Consider now the rule g in 2-BBM defined for every (c, w) ∈ 2-BBM and l ∈ M
as follows:

gl(c, w) =

⎧
⎪⎨

⎪⎩

fπ
k (l)(c∗, w∗) if (c, w) ∼k (c∗, w∗), for some k ∈ M,

fl(c′, w′) if (c, w) � (c∗, w∗), where (c′, w′) ∈ H
is as defined in Eq. (21).

We shall show that g satisfies cs, 2-vsp, 2-abp, and 2-cbs. The following two claims
will be helpful.

Claim A Let (c, w), (c̄, w̄) ∈ 2-BBM be two 2-sided 2-regular markets with the
same total surplus and same bargaining powers, i.e., w1 − c11 = w̄1 − c̄11, b1(c, w) =
b1(c̄, w̄), and b2(c, w) = b2(c̄, w̄). If f is a rule in 2-BBM satisfying 2-cbs, then
f(c, w) = f(c̄, w̄).

19 We abuse notation and do not write the dependence of c′ and w′ on the market (c, w). This spares us
the use of some cumbersome expressions.
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Claim B Let (c, w), (c̄, w̄) ∈ 2-BBMbe two 2-sided 2-regular markets with the same
total surplus and switched bargaining powers, i.e., w1 − c11 = w̄1 − c̄11, b1(c, w) =
b2(c̄, w̄), and b2(c, w) = b1(c̄, w̄). If f is a rule in 2-BBM satisfying 2-cbs, then
f1(c, w) = f2(c̄, w̄) and f2(c, w) = f1(c̄, w̄).

Note that because f satisfies 2-cbs, the market (c∗, w∗) must have at least three sides,
i.e.,m > 2.OtherwiseClaimAapplied to rule f andmarkets (c∗, w∗) and ((c∗)′, (w∗)′)
contradicts Eq. (22).

Next we proceed to prove that g satisfies the four properties. With regard to cs,

note that whenever (c, w) ∼k (ĉ, ŵ),
(

M, vĉ,ŵ
)
can be obtained from (M, vc,w) by

permuting the players according to πk . Then, g satisfies cs by Theorem 2.1 and the
following facts: f satisfies cs and the core is an anonymous solution concept.Moreover,
g satisfies 2-cbs trivially because f does so. It is also straightforward to verify that by
construction, g satisfies 2-abp. Then, it remains to prove that g satisfies 2-vsp. Let
(c, w) ∈ 2-BBM and k ∈ M\{m}. We distinguish three cases.

Case A: (c, w) � (c∗, w∗).
Then,

gm(c, w) = fm(c′, w′) = fm
(
αk(c′, w′, f), w′) = fm

((
αk(c, w,g)

)′
, w′

)

= gm
(
αk(c, w,g), w

)
,

where the first and last equalities hold by definition of g, and the second equality holds
because f satisfies 2-vsp. The third equality follows from Claim A applied to rule f

and markets
(
αk(c′, w′, f), w′) and

((
αk(c, w,g)

)′
, w′

)
, and is explained as follows:

On the one hand, the two markets have the same firms’ bargaining power. Indeed,

αk
2(c

′, w′, f) − αk
1(c

′, w′, f) = (c′)k
2 − (c′)k

1=ck
2 − ck

1 =αk
2(c, w,g) − αk

1(c, w,g)

=
(
αk(c, w,g)

)′
2
−
(
αk(c, w,g)

)′
1
,

where the first and third equalities are obtained using Eq. (9), and the second and last
equalities follow from Eq. (21). On the other hand, using the definition of g, it follows
from immediate algebraic manipulations that

(
w′
1 − αk

1(c
′, w′, f)

)

+ = fk1(c
′, w′) + fm1 (c′, w′) =

(

w′
1 −

(
αk(c, w,g)

)′
1

)

+
.

Therefore, the surplus of the two markets is the same.
Case B: (c, w) ∼m (c∗, w∗).
Then,

gm(c, w) = fm(c∗, w∗) = fm
(
αk(c∗, w∗, f), w∗)

= fm
((

αk(c, w,g)
)′

, w′
)

= gm
(
αk(c, w,g), w

)
,
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where the first and last equalities hold by definition of g, and the second equality
holds because f satisfies 2-vsp. The third equality is due to Claim A being applied

to rule f and markets
(
αk(c∗, w∗, f), w∗) and

((
αk(c, w,g)

)′
, w′

)
, and is explained

as follows: On the one hand, both markets have the same firms’ bargaining power.
Indeed,

αk
2(c

∗, w∗, f)−αk
1(c

∗, w∗, f) = (c∗)k
2 − (c∗)k

1=ck
2 − ck

1 =αk
2(c, w,g) − αk

1(c, w,g)

=
(
αk(c, w,g)

)′
2
−
(
αk(c, w,g)

)′
1
,

where the first and third equalities are obtained using Eq. (9), the second equality is
due to the fact that (c, w) ∼m (c∗, w∗), and the fourth equality holds by Eq. (21).
Moreover,

w∗
1 − w∗

2 = w1 − w2 = w′
1 − w′

2,

where the first equality holds because (c, w) ∼m (c∗, w∗), and the second equality
follows from Eq. (21). On the other hand, the surplus of the two markets is the same.
Indeed, due to definition of g and Eq. (21), by straightforward algebraic manipulations
we obtain

(
w∗
1 − αk

1(c
∗, w∗, f)

)

+ = fk1(c
∗, w∗) + fm1 (c∗, w∗) = gk

1(c, w) + gm
1 (c, w)

=
(
w1 − αk

1(c, w,g)
)

+ =
(
w′
1 − αk

1(c, w,g)′
)

+ .

Case C: (c, w) ∼l (c∗, w∗) for some l ∈ M\{m}.
The proof of gm(c, w) = gm

(
αk(c, w,g), w

)
proceeds by showing two chains of

equalities, which yield the desired result when appended. The first chain is

gm(c, w) = fl(c∗, w∗) = fl
(
αl (c∗, w∗, f

)
, w∗)

= fm
(
αl(c, w, f), w

)
= fm(c, w), (23)

where the first equality holds by definition of g, the second equality follows from the
fact that f satisfies 2-vsp and cs—and hence Lemma 5.3—, and the last equality holds
because f satisfies 2-vsp. The third equality follows from application of Claim B to
rule f and markets

(
αl (c∗, w∗, f) , w∗) and

(
αl(c, w, f), w

)
. Indeed,

w∗
1 − w∗

2 = cl
2 − cl

1 = αl
2(c, w, f) − αl

1(c, w, f),

where the first equality holds because (c, w) ∼l (c∗, w∗) and the second equality
follows from Eq. (9). Similarly,

αl
2

(
c∗, w∗, f

)− αl
1

(
c∗, w∗, f

) = (c∗)l
2 − (c∗)l

1 = w1 − w2,

123



318 O. Tejada, M. Álvarez-Mozos

where the first equality follows from Eq. (9) and the second equality holds because
(c, w) ∼l (c∗, w∗). That is, both markets have switched bargaining powers. More-
over, the total surplus is equal to fm1 (c∗, w∗) + fl1(c

∗, w∗) and fl1(c, w) + fm1 (c, w),
respectively. Since (c, w) ∼l (c∗, w∗) and f satisfies 2-abp, both quantities coincide.
On the other hand, the second chain of equalities is

fm(c, w) = fm
(
αk(c, w, f), w

)
= fm

((
αk(c, w,g)

)′
, w′

)

= gm
(
αk(c, w,g), w

)
, (24)

where the first equality holds because f satisfies 2-vsp, the last equality is by definition
of g, and the second equality is consequence of applying ClaimA to rule f and markets
(
αk(c, w, f), w

)
and

((
αk(c, w,g)

)′
, w′

)
. Indeed, by Eq. (21) it immediately follows

that both markets have the same bargaining powers and that their total surplus is equal
to fk1(c, w) + fm1 (c, w) and gk

1(c, w) + gm
1 (c, w), respectively. We next show that the

two latter quantities coincide. Together with Eqs. (23) and (24), this will imply that g
satisfies 2-vsp. To show the latter claim, we distinguish two cases.

Case C.I: k = l.
In this case,

gk(c, w) + gm(c, w) = gm(c∗, w∗) + gk(c∗, w∗) = fm(c∗, w∗) + fk(c∗, w∗)
= fk(c, w) + fm(c, w),

where the first two equalities hold by definition of g, and the last equality holds
since f satisfies 2-abp.
Case C.II: k �= l.
In this case,

gk(c, w) + gm(c, w) = gk(c∗, w∗) + gl(c∗, w∗) = fk(c∗, w∗) + fl(c∗, w∗)
= fk(c, w) + fm(c, w),

where the first two equalities hold by definition of g, and the last equality holds
since f satisfies 2-abp.

Finally, sinceg satisfies the four properties, f andgmust coincide inH. In particular,

f
(
c∗, w∗) = g

(
c∗, w∗) = g

(
(c∗)′, (w∗)′

) = f
(
(c∗)′, (w∗)′

)
,

where the first equality holds by definition of g, the second is due to the fact that, by Eq.
(21),

(
(c∗)′, (w∗)′

) ∼m (c∗, w∗), and the third equality holds since ((c∗)′, (w∗)′) ∈ H.
As a consequence, Eq. (22) cannot hold, and the proof is complete.
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Step 2: Existence
To demonstrate that cs, 2-vsp, 2-abp, and 2-cbs are compatible properties for

rules in BBM is straightforward. Indeed, from Theorem 5.1 and Proposition 6.2 it
immediately follows that T = �(Tb) satisfies the four properties.

Step 3: The characterization result
Given the results in the previous two steps, to prove the theorem it only remains to

show that T selects the nucleolus of the associated assignment game. Indeed, by part
(ii) of Theorem 2.1 and Theorem I—together with its proof—we know that T selects
for every (c, w) ∈ BBM the nucleolus of (N , vc,w). ��

Theorem II shows that 2-vsp—together with the other three properties—leads to a
solution, T, constructed for every (c, w) ∈ BBM in two steps. First, the information
contained in the rows r and r + 1 of (c, w) is used to construct the sectors game, for
which the nucleolus is calculated. Second, the information in the remaining rows of
(c, w) is used by the replica operator and the translation vector to obtain the payoffs
for all agents of (c, w).

We make two further remarks. First, as a corollary of Theorem II we obtain that for
any rule inBBM, f, other than T there might be incentives for sellers owning different
commodities to collude and create a vertical syndicate. Second, no property can be
excluded from the characterization of T in Theorem II—, as shown in Proposition 8.2
in the Appendix.

7 Other forms of syndication

In this section, we present one positive result and one impossibility result. First, we
show that the Talmud Assignment Rule satisfies a stronger version of 2-vsp. This
property applies to general markets and permits vertical syndicates with an arbitrary
number of members. Second, we show that among the solution concepts that satisfy
2-cbs, cs, and 2-abp, none simultaneously satisfies our notions of vertical and hori-
zontal syndication-proofness—see below.

Let us formalize the properties just described. We start with a possible extension
of 2-vsp. Given S ⊆ M\{m}, let N M\(S∪{m}) = (Nl)l∈M\(S∪{m}) and cM\(S∪{m}) =
(cl)l∈M\(S∪{m}).20

svsp A rule in BBM, f, satisfies strong vertical syndication-proofness if for every
(c, w) ∈ BBM, every ∅ �= S ⊆ M\{m}, and every k ∈ S, we have that for
every j ∈ M\S,

f j (N 1, . . . , N m, c, w)

= f j
(

N k, N M\(S∪{m}), N m, βk(c, w, f, S), cM\(S∪{m}), w
)

, (25)

where the reduced (m − |S| + 1)-sided market in the right-hand side of Eq.
(25) is composed of the original sector of buyers, with valuations given by w,

20 In line with part (i) of Lemma 5.2, it can be verified that the reduced market in the definition of svsp is
a 2-regular market whenever f satisfies cs and (c, w) ∈ 2-BBM.
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of the original sectors of sellers Nl , with l ∈ M\(S ∪ {m}), with costs given
by (cl)l∈M\(S∪{m}), and a new sector of sellers, N k , with costs, βk(c, w, f, S)

defined for every i ∈ N k by

βk
i (c, w, f, S) = ck

i +
∑

l∈S\{k}
pl(f(c, w)).

Recall that for the markets under consideration, the interests of all agents in one
sector are completely aligned in competitive prices. This implies that there is an incen-
tive to create a vertical syndicate for some sellers if and only if there is an incentive
to create a vertical syndicate for all active sellers in the sectors to which the former
belong. Accordingly, the restrictions imposed by svsp are reasonable for our class of
markets.

Next, we consider horizontal syndicates.

hsp A rule inBBM, f, satisfies horizontal syndication-proofness if for every (c, w) ∈
BBM, every k ∈ M\{m}, and every ∅ �= S ⊆ N k ,

fm(N 1, . . . , N m, c, w) = fm(S, (Nl)l∈M\{k,m}, N m, γ k,S, cM\{k,m}, w), (26)

and ∑

i∈N k

fki (c, w) ≤
∑

i∈S

fki (γ
k,S, cM\{k,m}, w), (27)

where cM\{k,m} = (cl)l∈M\{k,m} and γ k,S = (ck
i )i∈S .21

The above property, hsp, requires that the benefits assigned by a rule to each of
the buyers should not be affected by the horizontal syndicate composed of all sellers
in N k when they decide to dump only those goods into the market that belong to
the sellers in S—see Eq. (26). We have also assumed that the syndicate behaves in
a rational way, i.e., the aggregate payoff to all agents in N k does not decrease—see
Eq. (27). Unlike 2- svp, hsp does not imply that sellers have no incentives to create
a (horizontal) syndicate even when prices are competitive. We refer to the property
obtained by imposing the requirements in hsp only to 2-regular markets as horizontal
syndication-proofness for 2-regular markets and we denote it by 2- hsp.

In the following, we show the results concerning the above two properties.

Proposition 7.1 The Talmud Assignment Rule, T, satisfies svsp.

Proposition 7.1 reveals that the Talmud Assignment Rule is vertical syndication-
proof for all markets, but Theorem II specifies that this stronger property is not
necessary to characterize the rule.

Proposition 7.2 Let f be a rule in BBM that satisfies cs, 2-cbs, and 2-abp. Then f
does not satisfy simultaneously 2-vsp and 2-hsp.

21 To be consistent with the assumptions made throughout this paper, dummy sellers might be added to
sector k so that there is the same number of agents in all sectors.
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Proposition 7.2 identifies certain conditions under which, for the market games
considered in this paper and also for any superclass containing them, a rule does not
exist that specifies prices so that buyers are immune to any arbitrary syndication of
the sellers.

8 Conclusion

This paper has considered syndication in markets. In the literature, various attempts at
studying this phenomenon have been framed within cooperative game theory. Here,
we have opted for one particular cooperative-game solution concept, viz. the nucleolus
(see Legros 1987; Einy et al. 1999). We believe that it holds out particular promise for
an improved understanding of the formation and behavior of syndicates.

The market games considered herein belong to the class of multi-sided assignment
games. The literature on the latter is relatively scarce, and mainly focuses on finding
sufficient conditions to guarantee the non-emptiness of the core (seeQuint 1991; Stuart
1997; Sherstyuk 1999). Our findings look beyond this concern and yield insights into
the functioning of these games.

Multi-sided assignment games with more than two types of agents enable the
insightful investigation of vertical syndicates. We have proposed a definition of verti-
cal syndication-proofness for these market games. Such a property may be relevant to
a regulator who has to decide whether to allow this form of integration in particular
branches of the economy.

Actual markets exist such that (i) their economic structure resembles that of a
(Böhm-Bawerk)multi-sided assignmentmarket and (ii) their vertical production chain
has caused some concern. In this regard, we have discussed the IT industry in the
Introduction. Vertical integration in the steel industry, whose products are largely
homogeneous, is also both practiced and the object of regulators’ attention. The Euro-
pean Union, for example, imposes restrictions on the conduct of the various parties
by means of antitrust laws.22

Lastly, this paper has also established a connection betweenmulti-sided assignment
games and bankruptcy games. Exploiting this connection appears to be a promising
direction for future research.

Acknowledgments This research received financial support from the Ministerio de Economía y Competi-
tividad through Projects ECO2014-52340-P and MTM2014-53395-C3-2-P as well as from Generalitat de
Catalunya through Project 2014-SGR-40. Discussions with Julio González-Díaz, Hans Gersbach, Marie
Riekhof, and Clive Bell improved the paper and are gratefully acknowledged. We also acknowledge the
comments received at the seminars and conferences in which this work was presented: Seminars at the
Hebrew University of Jerusalem, Universitat de Barcelona, and University of Southern Denmark as well
as at the SING9 and IWGTS2014 conferences in Vigo and São Paulo, respectively. Last but not least, we
would like to thank the referees for their comments and suggestions which substantially helped improve a
previous version of the paper. Finally, the usual disclaimer applies.

22 See http://ec.europa.eu/competition/antitrust/legislation/legislation.html, retrieved on 10-September-
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Appendix

Proposition 8.1 The set of assignment games associated with 2-regular markets,
2-BBG, and the set of sectors games, SG, are isomorphic, i.e.,

2-BBG ∼= SG.

Proof of Proposition 8.1 Let N 1, . . . , N m be fixed throughout the proof, and recall
that M = {1, . . . , m} and N = N 1 ∪ · · · ∪ N m . First, note that due to Remark 2.2,

SG = {
(M, vc,w) : (c, w) ∈ 2-BBM}

,

and, by Definition 2.3,

2-BBG = {
(N , ωc,w) : (c, w) ∈ 2-BBM}

.

Second, consider the following mapping:

� : 2-BBG → SG
(N , ωc,w) → (M, vc,w)

Note that if (N , ωc,w) = (N , ωc′,w′
), then (M, vc,w) = (M, vc′,w′

), so � is well
defined. Moreover, it is straightforward to check that � is surjective. To check that it
is also injective, let (N , ωc,w), (N , ωc′,w′

) ∈ 2-BBG be such that

ωc,w �= ωc′,w′
. (28)

On the one hand, suppose that r(c, w) = 0. Then, by Eq. (28) it must be that
r(c′, w′) = 1. Thus, vc,w = v0 and vc′,w′ �= v0, which implies �(N , ωc,w) �=
�(N , ωc′,w′

).
On the other hand, assume that r(c, w) = r(c′, w′) = 1. From Eq. (28) it follows

the existence of S ⊆ N minimal w.r.t. to inclusion such that ωc,w(S) �= ωc′,w′
(S).

Furthermore, from the definition of the characteristic function of an assignment game,
it must be that S = Z R for some R ⊆ M . Hence,

vc,w(R) = ωc,w(S) �= ωc′,w′
(S) = vc′,w′

(R).

Thus, �(N , ωc,w) �= �(N , ωc′,w′
), so � is injective. ��

Proof of Lemma 5.1 Let f be a rule in BBM satisfying cs, then it trivially satisfies
part (ii). Part (i) then follows from Theorem 2.1. The reverse implication follows from
Theorem 2.1 and the properties of the market (c̃, w̃) defined in Eq. (2).
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Proof of Lemma 5.2 We only prove the first part, as the second part is trivial. Indeed,
|N k | = |N m | = 2 since (c, w) ∈ 2-BBM, and

w2 − αk
2(c, w, f)

=w2 − ck
2 −

∑

l∈M\{k,m}

(
fl1(c, w) + cl

1

)
= w2 − ck

2 −
∑

l∈M\{k,m}
cl
1 −

∑

l∈M\{k,m}
fl1(c, w)

≤
⎛

⎝w2 − ck
2 −

∑

l∈M\{k,m}
cl
1

⎞

⎠

+
−
⎡

⎣fk2(c, w) + fm2 (c, w) +
∑

l∈M\{k,m}
fl1(c, w)

⎤

⎦ ≤ 0,

where the penultimate inequality holds because fk2(c, w) = fm2 (c, w) = 0—due to
Theorem 2.1—, the fact that (c, w) is a 2-regular market, and because f satisfies cs,
while the last inequality holds since (fk(c, w))k∈M is a core allocation of (N , vc,w).

��

Proof of Lemma 5.3 By Lemma 5.2, the reduced market is a 2-regular market, so
r(αk(c, w, f), w) ≤ 1. Then it suffices to realize that cs implies fk2(c, w) =
fk2
(
αk(c, w, f), w

) = 0 and

fk1(c, w) = ωc,w(N ) −
∑

l∈M\{k,m}
fl1(c, w) − fm1 (c, w)

= ωc,w(N ) −
∑

l∈M\{k,m}
fl1(c, w) − fm1

(
αk(c, w, f), w

)

= ωc,w(N ) −
∑

l∈M\{k,m}
fl1(c, w) − ωαk (c,w,f),w

(
N k ∪ N m

)
+ fk1

(
αk(c, w, f), w

)

= fk1

(
αk(c, w, f), w

)
,

where the first and the third equalities hold since f yields efficient allocations for (c, w)

and (αk(c, w, f), w) respectively, the second equality holds since f satisfies 2-vsp, and
the last equality holds since by definition of the reduced market,

ωαk (c,w,f),w
(

N k ∪ N m
)

= (w1 − αk
1(c, w, f))+

=
⎛

⎝w1 −
∑

l∈M\{m}
cl
1 −

∑

l∈M\{k,m}
fl1(c, w)

⎞

⎠

+
= ωc,w(N ) −

∑

l∈M\{k,m}
fl1(c, w).

��
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Proof of Claim A Let f be a rule in 2-BBM satisfying 2-cbs and let (c, w), (c̄, w̄) ∈
2-BBM be two 2-sided markets satisfying w1 − c11 = w̄1 − c̄11 (same total surplus),
c12 − c11 = c̄12 − c̄11, and w1 − w2 = w̄1 − w̄2 (same bargaining power). Then,

w̄2 − c̄11 = (w̄1 − w1 + w2) − c̄11 = (w̄1 − c̄11) − (w1 − c11) + (w2 − c11) = w2 − c11,

w̄1 − c̄12 = w̄1 − (c12 − c11 + c̄11) = (w̄1 − c̄11) − (w1 − c11) + (w1 − c12) = w1 − c12.

Since f satisfies 2-cbs, we obtain f(c, w) = f(c̄, w̄) by inserting the above equations
into the two expressions of Eq. (11). ��
Proof of Claim B Let f be a rule in 2-BBM satisfying 2-cbs and let (c, w), (c̄, w̄) ∈
2-BBM be two 2-sided markets satisfying w1 − c11 = w̄1 − c̄11 (same total surplus),
c12 − c11 = w̄1 − w̄2, and w1 − w2 = c̄12 − c̄11 (switched bargaining power). Then,

w̄2 − c̄11 = (w̄1 − c12 + c11) − (w̄1 − w1 + c11) = w1 − c12,

w̄1 − c̄12 = (w1 − c11 + c̄11) − (w1 − w2 + c̄11) = w2 − c11.

Since f satisfies 2-cbs, we obtain f1(c̄, w̄) = f2(c, w) and f2(c̄, w̄) = f1(c, w) by
inserting the above equations into the two expressions of Eq. (11). ��
Proposition 8.2 The properties that characterize the Talmud Assignment Rule, T, are
logically independent.

Proof We consider the following four rules in BBM:
(i) Let the rule in BBM, T̂, be defined for every (c, w) ∈ BBM as

T̂(c, w) =
{
T(c, w) if (c, w) ∈ 2-BBM,

0 otherwise.

Then, T̂ satisfies 2-vsp, 2-abp, and 2-cbs but not cs.
(ii) Let the rule in BBM, T̂, assign for every (c, w) ∈ BBM the core-center (see

González-Díaz and Sánchez-Rodríguez (2007)) of (N , ωc,w). FromNúñez and Rafels
(2005) and Tejada and Núñez (2012), we know that this allocation differs from the
nucleolus (of the assignment game) for the whole class of market games in BBG,
but that they coincide for bilateral markets. Lastly, the core-center is an anonymous
solution concept. Then, T̂ satisfies cs, 2-abp, and 2-cbs, but not 2-vsp.

(iii) Let C E A be the constrained equal awards bankruptcy rule. This rule is defined
for every (M, E, d) ∈ BP and i ∈ M by C E Ai (M, E, d) = min {di , λ}, where λ is
chosen so that

∑
i∈M C E Ai (E, d) = E . The following properties are known:

(a) C E A chooses a core allocation of the bankruptcy game (M, vE,d)—see The-
orem 2 in Thomson (2003).
(b) C E A satisfies bc—see Theorem 1 in Herrero and Villar (2001).
(c) C E A does not satisfy cg—by Theorem 5.1 and because C E A satisfies wd by
construction.
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First, let T̂ = �(C E A). From Theorems 2.1 and I and statement (a), it holds that
T̂ satisfies cs. Second, following the same lines as in the proof of statement (ii)
in Proposition 6.2, we can show that due to statements (a) and (b), T̂ also satisfies
2-vsp. Third, the definition of T̂ directly implies that it satisfies 2-abp. Fourth and last,
statement (c), statement (ii) in Proposition 6.1, statement (i) in Proposition 6.2, and
the fact that C E A = �(�(C E A)) imply that T̂ does not satisfy 2-cbs.

(iv) Consider the following subset of 2-BBM:

V =
{
((c1, c2), w) ∈ BBM : c11 = c21 = 0, c12 = c22 = c, w1 = w2 < c

}
.

Since w2 − 2c < 0 for all (c, w) ∈ V , we have V ⊆ 2-BBM. Let the rule in BBM,
T̂, be such that for every (c, w) ∈ V ,

xk = T̂k
1(N 1, N 2, N 3, c, w) =

⎧
⎪⎨

⎪⎩

w1 if k = 1,

0 if k = 2,

0 if k = 3,

and T̂k
2(c, w) = 0 for all k ∈ M = {1, 2, 3}. Note that for every (c, w) ∈ V

vc,w({1}) = (w2 − c)+ = 0, vc,w({1, 2}) = (w2)+ = w2,

vc,w({2}) = (w2 − c)+ = 0, vc,w({1, 3}) = (w1 − c)+ = 0, vc,w({1, 2, 3}) = w1.

vc,w({3}) = (w1 − 2c)+ = 0, vc,w({2, 3}) = (w1 − c)+ = 0,

Hence, sectors 1 and 2 are symmetric players in the sectors game. Since the nucleolus
is an anonymous solution, T1

1(c, w) = T2
1(c, w). Also, note that x1 + x2 = w1 ≥ w1,

so x ∈ C(M, vc,w), with M = {1, 2, 3}. It then follows from part (i) of Theorem
2.1 that T̂(c, w) ∈ C(N , ωc,w) for all (c, w) ∈ V . Next, let the rule in BBM, T̃, be
defined for every (c, w) ∈ BBM by

T̃(c, w) =
{
T̂(c, w) if (c, w) ∈ V,

T(c, w) otherwise.

By construction, T̃ satisfies 2-cbs and cs. Next we focus on 2-vsp. On the one hand,
consider the reduced market (N 1, N 3, α1(c, w, T̃), w), where α1

1(c, w, T̃) = 0 and

α1
2(c, w, T̃) = c. Then,

T̃3
1(N 1, N 3, α1(c, w, T̃), w) = w1 − 0 + (w1 − c)+ − (w2 − 0)+

2
= 0

= T̃3
1(N 1, N 2, N 3, c, w).

On the other hand, consider the reduced game (N 2, N 3, α2(c, w, T̃), w), where
α2
1(c, w, T̃) = w1 and α2

2(c, w, T̃) = w1 + c. Then,
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T̃3
1(N 2, N 3, α1(c, w, T̃), w) = w1 − w1 + (w1 − w1 − c)+ − (w2 − w1)+

2
= 0

= T̃3
1(N 1, N 2, N 3, c, w).

That is, we have proved that T̃ satisfies 2-vsp. Lastly, since T̃ differs from T, it follows
from Theorem II that T̃ cannot satisfy 2-abp. ��
Proof of Proposition 7.1 First, we show that T satisfies svsp for 2-regular markets.
Indeed, for such a market, the conditions in the definition of svsp easily follow by
repeating the lines in the proof of Proposition 6.2 and the existence part of Theorem II
using consistency instead of bilateral consistency. Finally, from Lemma 5.1 it follows
that T satisfies svsp for arbitrary markets. ��
Proof of Proposition 7.2 First, note that if a rule in BBM satisfies 2-cbs, cs,
2-abp, and 2-vsp, by Theorem II it has to coincide with the Talmud Assignment Rule.
Second, consider the bilateral 2-regular market (c, w) defined by c = c1 = (1, 2) and
w = (3, 0), and let k = 1 and S = {1} ⊆ N 1. Then, by Definition 6.1,

T1
1(c

1, w) + T1
2(c

1, w) = 1

2
≤ 1 = T1

1(γ
1,S, w) + T1

2(γ
1,S, w),

and

T2(c1, w) =
(
3

2
, 0

)

�= (1, 0) = T2(γ 1,S, w),

which concludes the proof. ��
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