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ABSTRACT

Post-translational chromatin modifications are an important
regulatory mechanism in light signalling and circadian clock
function. The regulation of diurnal transcript level changes re-
quires fine-tuning of the expression of generally active genes
depending on the prevailing environmental conditions. We in-
vestigated the association of histone modifications H3K4me3,
H3K9ac, H3K9me2, H3S10p, H3K27ac, H3K27me3 and
H3S28p with diurnal changes in transcript expression using
chromatin immunoprecipitations followed by sequencing
(ChIP-Seq) in fully expanded leaves 6 of Arabidopsis thaliana
grown in short-day optimal and water-deficit conditions. We
identified a differential H3K9ac, H3K27ac and H3S28p signa-
ture between end-of-day and end-of-night that is correlated
with changes in diurnal transcript levels. Genes with this signa-
ture have particular over-represented promoter elements and
encode proteins that are significantly enriched for transcription
factors, circadian clock and starch catabolic process. Additional
activating modifications were prevalent in optimally watered
(H3S10p) and in water-deficit (H3K4me3) plants. The data
suggest a mechanism for diurnal transcript level regulation in
which reduced binding of repressive transcription factors facil-
itates activating H3K9ac, H3K27ac and H3S28p chromatin
modifications. The presence of activating chromatin modifica-
tion patterns on genes only at times of the day when their
expression is required can explain why some genes are differ-
entially inducible during the diurnal cycle.
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tion; chromatin modifications; diurnal; epigenetics; histone;
leaf.
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INTRODUCTION

Gene expression in eukaryotes is regulated at different levels,
including chromatin organization that modulates the accessibil-
ity of DNA to transcriptional regulatory proteins such as tran-
scription activators and repressors (Kouzarides 2007; Pfluger &
Wagner 2007). Chromatin activity and function are determined
by various modifications, including DNA methylation, histone
modifications, as well as exchange of histone variants (Pfluger
& Wagner 2007; Barneche et al. 2014; Seo & Mas 2014; Shu
et al. 2014). Histones H2A, H2B, H3 and H4 are post-
translationally modified mainly in their amino-terminal se-
quences and H2A also in its carboxy-terminal sequence by
acetylation, phosphorylation, methylation, sumoylation or
ubiquitylation. These modifications can either directly modu-
late chromatin compaction and accessibility or change the
interaction with other proteins (Kouzarides 2007; Ruthenburg
et al. 2007). Establishment and maintenance of histone modifi-
cations in plants are related but not identical to those in fungi
or animals (Pfluger & Wagner 2007; Zhou 2009; Liu et al.
2010). Acetylation of histone amino-terminal tails facilitates
transcriptional activation either by neutralizing the lysine posi-
tive charge and thereby relaxing the chromatin structure, or by
forming a binding site for bromodomain-containing proteins
(Barneche er al. 2014; Lee et al. 2010). Histone H3 acetylation
and deacetylation were implicated in the regulation of light-
responsive genes (Chua et al. 2003; Bertrand et al. 2005;
Benhamed et al. 2006; Charron et al. 2009) and have therefore
been proposed as a switch between permissive and repressive
states of chromatin for gene expression (Shahbazian &
Grunstein 2007). Histone methylation can have both activating
and repressive functions in gene expression and the distinct
mono-methylation, di-methylation or tri-methylation modifica-
tions often have different biological roles (Zhou 2009; Liu ez al.
2010). For example, histone H3K4 methylation activates tran-
scription by recruitment of chromatin modifying proteins,
while histone H3K27 methylation represses transcription by
promoting a compact chromatin structure (Bernstein et al.
2006). In Arabidopsis, histone lysine methylation occurs mainly
at K4, K9, K27 and K36 of histone H3. Histone H3K9 is
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predominantly mono-methylated or di-methylated, and to-
gether with H3K27 tri-methylation, these methylations are as-
sociated with silenced regions, whereas H3K4 and H3K36
methylation are associated with active genes (Berger 2007,
Liu et al. 2010). In yeast and mammals, histone phosphoryla-
tion occurs in response to DNA damage and during meiotic
and mitotic chromatin remodelling. Histone H3 phosphoryla-
tion also controls H3 acetylation and methylation and was
therefore implicated in the regulation of gene expression
(Rossetto et al. 2012). Plant histones are phosphorylated at
multiple sites as well, including H3S10 and H3S28, which corre-
lates with chromosome segregation and metaphase/anaphase
transitions (Kurihara et al. 2006; Houben et al. 2007; Bigeard
et al. 2014). In addition, histone H3 phosphorylation in differ-
entiated mesophyll cells is mostly associated with rRNA genes
(Granot et al. 2009). However, phosphorylation of histone H3
has so far not been implicated in regulating transcription in
plants.

Histone modifications have been proposed to constitute a
code that determines the transcription state of a gene, but the
temporal order and enzymatic mechanism by which they are
established can also affect the level of transcriptional activity
(Karli¢ ef al. 2010; Lee et al. 2010). For example, interactions
have been reported between phosphorylation at H3S10 and
methylation at H3K9 or acetylation at H3K9 and H3K14
(Demidov et al. 2009; Fry et al. 2004; Li et al. 2005), or between
phosphorylation at H3S28 and acetylation at H3K27 (Lau &
Cheung 2011).

In plants, light-regulated gene expression has been investi-
gated mainly in the context of light signalling and the transi-
tion to photomorphogenesis (Barneche et al. 2014). Light
signals are integrated by transcription factors that bind to
light-responsive elements (LREs) in the promoter regions
of genes, but transcriptional regulation also depends on
changes in histone modifications. These play an important
role in light-driven processes and light signalling, for transient
adaptations to changing light conditions, and to control circa-
dian gene expression (Barneche et al. 2014; Bertrand et al.
2005; Chua et al. 2003; Li et al. 2012; Schroeder et al. 2002;
Seo & Mas 2014; Van Zanten et al. 2012). The rhythmic ex-
pression of several circadian clock genes including LHY,
CCAl, TOCI1, PRRY, PRR7 and LUX correlates with oscil-
lating acetylation at H3K9, H3K14 and H3KS56, as well as
tri-methylation at H3K4 (Perales & Mas 2007; Farinas &
Mas 2011; Hemmes et al. 2012; Malapeira et al. 2012; Song
& Noh 2012). Histone acetylation and tri-methylation at
H3K4 seem to be active marks that promote the rhythmic
activation of clock genes, and thus, the precise temporal
and combinatorial accumulation of histone modifications
may regulate the shape of the circadian waveforms of core
clock gene transcription (Malapeira et al. 2012; Seo & Mas
2014). The circadian clock is functionally connected to light
signalling because light entrains the clock, and the clock
modulates the expression of many light-regulated genes. It
was therefore not unexpected that the control of many
light-driven and circadian-driven processes such as growth,
flowering and metabolism also involves chromatin-based
mechanisms (Barneche et al. 2014).

We previously reported that transcript levels in Arabidopsis
leaf 6 strongly oscillate between the end of the day (EOD) and
end of the night (EON) (Baerenfaller et al. 2012). These diur-
nal transcript level changes were dependent on the growth
stage and experimental conditions because fewer transcripts
fluctuated in fully expanded leaves compared with earlier de-
velopment stages and also in water deficit compared with opti-
mal water conditions (Baerenfaller et al. 2012). We therefore
hypothesized that temporal changes in chromatin modifica-
tions and between experimental conditions could cause differ-
ences in diurnal transcript level fluctuations. To test this
hypothesis, we performed a chromatin immunoprecipitation
(ChIP) experiment using antibodies against seven different his-
tone H3 modifications. We now show that diurnal transcript os-
cillations correlate with previously undetected diurnal changes
in H3K9 and H3K27 acetylation and H3S28 phosphorylation.
Genes marked by these modifications encode core clock and
other proteins. We therefore argue that their diurnal transcript
level changes depend on the dynamic reversible acetylation
and phosphorylation of their corresponding genomic regions,
while their general active state is controlled by a more static ac-
tivating H3K4 tri-methylation and the absence of repressive
H3KO9 di-methylation and H3K27 tri-methylation.

MATERIALS AND METHODS
Plant material and growth conditions

Arabidopsis thaliana accession Col-4 (N933) plants were grown
in a growth chamber equipped with the PHENOPSIS automa-
ton (Granier et al. 2006) as described previously (Baerenfaller
et al. 2012). For the optimal water condition experiment, the
soil water content was adjusted to 0.40g water g ' dry soil,
and for the water deficit experiment, plants were grown in mild
water deficit conditions with soil water content adjusted to
0.24 g water g~ ' dry soil. Leaves 6 at fully expanded stage were
harvested during the last hour before the light is on and before
the light is off, and each sample was prepared by bulking mate-
rial from numerous plants. The frozen plant material was sent
to the MPI in Golm, where it was ground and aliquoted using
a cryogenic grinder (German Patent No. 08146.0025U1).

Chromatin immunoprecipitation-quantitative PCR
and chromatin immunoprecipitation-sequencing

Native ChIP was performed as described (Shu et al. 2014) with
minor modifications. One hundred milligrams of cryogenic
grinded plant material was treated in 8 mL of nuclei extraction
buffer (1.0M hexylene glycol, 20mM PIPES-KOH pH7.6,
10mM MgCl,, 0.1 mM EGTA, 20 mM sodium butyrate, 60 mM
KCl, 0.5% Triton 100, 5 mM B-mercaptoethanol, supplemented
with complete EDTA-free protease inhibitor cocktail and
PhosSTOP phosphatase inhibitor cocktail (Roche, Basel,
Switzerland)) for 15min at 4°C on a slow rocker. The ho-
mogenate was filtered through 50 um CellTrics nylon-mesh
filters (Partec, Georlitz, Germany), and a nuclei pellet was
collected by centrifugation for 10min at 1500xg at 4°C.
Isolated nuclei were washed once in MNase buffer (50 mm
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Tris-HCI pH 8, 10 mM sodium butyrate, 5 mM CaCl,, complete
EDTA-free protease inhibitor cocktail and PhosSTOP phos-
phatase inhibitor cocktail (Roche)), treated with 2 uLL of RN-
ase A, 30ug/ul. (Sigma-Aldrich, St. Louis, MO, USA) and
used for Micrococcal Nuclease (New England BioLabs, NEB,
Beverly, MA, USA) digestion for 1min (final concentration
8 gel units/uL) in 200 L MNase buffer at 37 °C. The reaction
was stopped with 10mM EGTA. After centrifugation, the su-
pernatant was collected as phase 1 chromatin preparation.
The pellet was treated in 200 4L buffer S2 (1 mm Tris—-HCI
pHS8, 0.2mM EDTA, complete EDTA-free protease inhibitor
cocktail and PhosSTOP phosphatase inhibitor cocktail
(Roche)) for 30 min at 4 °C. After centrifugation, the superna-
tant was collected as phase 2 chromatin preparation. The two
phases of chromatin preparations were combined and diluted
with 600 «L Dilution Buffer (25 mm Tris-HCl pHS8, 220 mMm
NaCl, 20mM sodium butyrate, SmM EDTA, complete
EDTA-free protease inhibitor cocktail and PhosSTOP phos-
phatase inhibitor cocktail (Roche)) to adjust the Na* concen-
tration to 150mM. The majority of the chromatin was of
mononucleosome size (data not shown). The Triton-X 100 con-
centration in the mononucleosomal chromatin was adjusted to
0.1% followed by pre-clearing using non-immune rabbit IgG
and 100 uL Dynabeads Protein A (Invitrogen, Carlsbad, CA,
USA). Fifty microliters of pre-cleared mononucleosomal chro-
matin were kept as input control, and 100 4L were used for each
immunoprecipitation with respective antibodies (Table S1).
Antibody-recognized chromatin was collected with Dynabeads
Protein A (Invitrogen). After washing, beads were re-
suspended in TE buffer (10mMm Tris-HCI, pH7.5, 1mMm
EDTA), and DNA was extracted using phenol-chloroform ex-
traction and ethanol/salt precipitation. ChIP was performed in
biological duplicates. DNA was amplified using the Ovation Ul-
tralow IL Multiplex Kit (NuGEN, San Carlos, CA, USA) ac-
cording to manufacturer’s instructions with 15 amplification
cycles. Amplification fidelity was confirmed by quantitative
PCR using DNA samples before and after amplification for five
selected genomic loci (data not shown). Sequencing of
stranded, paired-end 100bp reads was carried out on an
Ilumina HiSeq 2000 platform using v3 chemistry (Illumina,
San Diego, CA, USA).

Sequencing data processing

For processing of the sequencing data, we followed the
workflow depicted in Figure S1. The sequencing data were
loaded into the CLC Genomics Server (version 5.0.2) (CLC
bio, Aarhus, Denmark) and mapped to the Arabidopsis ge-
nome using the following parameters: auto-detect paired
distances = Yes; collect un-mapped reads=No; colour space
alignment = Yes; colour error cost =3; deletion cost=3; global
alignment = No; insertion cost = 3; length fraction = 0.9; masking
mode =NO_MASKING; mismatch cost=2; non-specific
match handling=IGNORE; Output mode=CLUSTER;
similarity fraction=0.9. The mapped sequencing data have
been deposited to the European Nucleotide Archive with
accession number PRTEB9989 (available at http:/www.ebi.ac.
uk/ena/data/view/PRIEB9989).
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The sequencing data exported from CLC were subsequently
binned with binsize =200 bp starting at position 1 of each chro-
mosome by counting the fragment reads in the individual bins
using the Set::IntervalTree perl module (Booth 2010), generat-
ing lists with a bincount for each bin. Assessing the distribution
of the bincounts, we realized that some genomic regions com-
prised bins with extremely high bincounts as compared with
the general distribution of the bincount data. As these high
bincounts could potentially compromise data normalization,
we needed to identify these regions using the criteria: 1) as
the extremely high bincounts are outside of the general distri-
bution of the data, the bincounts were sorted and the gap in
the distribution was identified by determining where the
bincount was larger than the previously ranked bincount plus
the average bincount of the sample (Figure S2) and 2) as the
reason for these extremely high bincounts most probably lies
in the repetitive nature of the genomic sequence, it is by defini-
tion not sample dependent, and we therefore only considered
regions when they had extremely high bincounts in at least
three quarter of all samples. After visual inspection and
curation of these regions, they were masked by setting the
bincounts in the corresponding bins to 0 (Table S2). After
masking, the bincounts in each sample were normalized by
scaling the average bincount to a value of 1000.

For the correlation analyses between transcript expression
and chromatin modification levels, the average bincounts for
regions comprising the transcription start site (TSS), gene body
and transcription termination site (TTS) were determined and
normalized to histone H3 to account for altered nucleosome
density.

Identification of genes with differentially modified
chromatin regions between two samples

For the identification of differentially modified chromatin
regions, we applied the general principle of the ChIP norm
method (Nair et al. 2012) with some alterations.

1) Identification of significant bins. For the removal of the sto-
chastic noise, we initially assumed that the noise follows an
amplified binomial distribution (ABD) as suggested in Nair
et al. (2012). After binning the data in different binsizes, we
calculated the theoretical ABD, and based on this, we deter-
mined the minimum bincount cut-offs for achieving a false
discovery rate (FDR) <5%. We found that the calculated
bincount cut-offs would only leave few significant bins and
that the theoretical ABD is very different compared with
the distribution of the unspecific IgG antibody background
data. From this, we concluded that the ABD only poorly
represents the stochastic noise in our data. We therefore ap-
plied the FDR calculation to determine the bincount cut-off
on the IgG background data instead. After filtering at
FDR < 5%, we found that the number of remaining signifi-
cant bins in general only depended on the binsize but not
the antibody or the sample. However, for some samples with
poorly performing IgG data, the number of remaining signif-
icant bins was particularly low, and filtering at FDR < 5%
based on the IgG data would lead to skewed analyses for
these samples. For the removal of stochastic noise, we
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therefore decided to calculate the average bincount cut-off
for achieving an FDR <5% only including the well
performing IgG data. Based on this, we defined that for
binsize =200, the lowest 5.5% of bincounts of each sample
correspond to stochastic noise. If the bincounts for a given
bin were in the stochastic noise in sample 1 and in sample
2, the bincounts for that bin were set to 0 in both samples.

2) Identification of enriched bins. After removal of the noise,
the bincounts of the samples and the input DNA control
were again normalized by scaling. To identify differentially
modified chromatin regions between two samples, only
those regions that are enriched with respect to the input
DNA control should be compared. If this step is omitted,
the results will mainly comprise chromatin regions with very
low bincounts. For the identification of the enriched bins, we
therefore required a minimum sample/input DNA ratio of 2.
Because we found that a poorly performing input DNA
sample led to skewed results, we took the average input
DNA bincounts from all samples to determine the
sample/input DNA ratio.

3) Identification of differentially enriched bins. For the identifi-
cation of a differentially enriched bin between samples 1 and
2, we required that the bin was defined to be enriched in at
least one of the samples and that the bincount ratio between
sample 1 and sample 2 was >1.5 or <1/1.5 (if the bincount
was 0 in one of the samples, it was set to 0.1 before calculat-
ing the ratio). All the bins that passed these criteria were
given out together with the information on their genome
localization based on the gene annotation and the previously
applied definition of the TSS, gene body and TTS regions.
For the identification of genes containing differentially mod-
ified chromatin regions between two samples, we required
that a gene contained at least two differentially enriched bins
comparing sample 1 with sample 2. For the genes that ful-
filled this criterion, the bincounts for all enriched bins in
sample 1 and sample 2 were written out and a Wilcoxon rank
sum test on the bincounts of the differentially enriched bins
was performed to calculate the P-value for the statistical sig-
nificance of the difference in the bincounts. Genes with a P-
value < 0.05 were considered to contain differentially modi-
fied chromatin between samples 1 and 2 (Supporting
Information 2). Analyses were carried out using perl and R
(R Core Team 2015).

Tiling array transcript data

Previously reported AGRONOMICSI1 microarray transcript
data of leaf number 6 at developmental stage 4 in three biolog-
ical replicates in short-day optimal water (SOW) and short-day
mild water deficit (SWD) conditions were taken (Baerenfaller
et al. 2012). After exclusion of probe sets for plastid and mito-
chondrion encoded transcripts and of probe sets matching to
more than one gene, 30442 probe sets remained. To identify
genes that are differentially expressed between SOW and
SWD and between EOD and EON in each experimental con-
dition, the following tests were performed: 1) paired r-test
between all six SOW and six SWD samples, 2) t-test between
the three SOW EON and SOW EOD samples, 3) r-test

between the three SWD EON and SWD EOD samples. The
P-values were corrected for multiple testing with the
Benjamini-Hochberg method (Benjamini & Hochberg 1995).
Transcripts with a P-value <0.05 and a fold-change >log2
(1.5) between the respective mean expression values were con-
sidered to change significantly. This gave 2105 transcripts with
significantly different expression levels between SOW EOD
and EON (1333 higher at EOD, 772 higher at EON), 374 tran-
scripts with significantly different levels between SWD EOD
and EON (211 higher at EOD, 163 higher at EON) and 294
transcripts with significantly different levels between SOW
and SWD (170 higher in SOW, 124 higher in SWD)
(Supporting Information 3).

Gene ontology categorization

Gene ontology (GO) categorization was performed using the
Ontologizer software (http://compbio.charite.de/ontologizer)
(Bauer et al. 2008) in combination with the Arabidopsis annota-
tion file (download on 6 May 2014) considering aspect
biological process (BP). Annotations with GO evidence codes
inferred from electronic annotation (IEA) or inferred from
reviewed computational analysis (RCA) were excluded from
analyses. Over-representation analysis was carried out using
the Topology-Elim method, and after correction of the
P-values with Bonferroni, GO terms with P-values < 0.01 were
considered to be enriched.

Promoter element analyses

The promoter region was defined as 1000 bp upstream of the
annotated TSS or until the TTS of the preceding gene. The
TSS corresponds to the genome region spanned by the bin con-
taining the TSS plus the two preceding bins, while the TTS
comprises the genome region spanned by the bin containing
the TTS plus the two following bins. Over-representation and
under-representation was assessed separately for the genes
with higher modification levels at EOD or EON using Fisher’s
exact test and by comparing the number of identified genes
with the number that would be expected by chance.

Co-expression cluster analysis

Co-expression clusters provide an alternative tool to classify
gene groups, in this case in relation to the general expression
pattern. The ATTED-II co-expression database (Version 5.0)
(Obayashi er al. 2014) was used to assemble for every gene a
co-expression cluster containing all genes with a mutual rank
(MR) value <100. To extract a smaller number of these clusters
that represent the majority of all genes with minimal overlap
between the clusters, the complete gene list was iteratively
matched against all clusters and each time the cluster contain-
ing the largest number of genes from the complete list was ex-
tracted and the genes present in this cluster removed from the
query list. This was repeated until no new clusters containing
more than eight genes were retrieved. The resulting collection
of 384 clusters covers 19734 (94.7% ) of the 20’836 genes in the
complete list, with 18’645 (89.5%) genes that are present in
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maximum five clusters and no gene that is present in more than
12 clusters. For each cluster, the over-representation of the
genes with the respective differential chromatin modifications
higher at EON or EOD was determined with a Fisher’s exact
test. The clusters were sorted according to the presence of the
H3K9ac, H3K27ac or H3S28p differential modification at
EON or EOD, respectively, in the replicate intersect of SOW
(Supporting Information 2).

RESULTS
Experimental set-up

We investigated a set of diagnostic histone H3 modifications in
fully expanded Arabidopsis leaf number 6 in which all cell divi-
sion has ceased to identify differential chromatin modifications
that correlate with diurnal expression level changes and with
changes between two different experimental conditions. For
this, we collected fully expanded leaves 6 of plants grown under
SOW and SWD (60% soil water content) conditions at EON
and EOD as previously reported (Baerenfaller et al. 2012).
Chromatin was prepared from leaf powder and
immunoprecipitated using antibodies against the H3 modifica-
tions K4 tri-methylation (H3K4me3), K9 acetylation
(H3K9ac), K9 di-methylation (H3K9me2), K27 acetylation
(H3K27ac), K27 tri-methylation (H3K27me3), S10 phosphory-
lation (H3S10p) and S28 phosphorylation (H3S28p), as well as
against histone H3 (histone) and using an unspecific antibody
(IgG) as background control (Fig. 1(a)). The captured DNA
fragments from the ChIPs and input DNA (input) were
subjected to deep sequencing (ChIP-Seq) generating paired
end sequence data.

Binning chromatin
immunoprecipitation-sequencing reads reveals
activating and repressive H3 modifications

For data processing and evaluation, we adopted the workflow
outlined in Figure S1. Sequence reads were mapped to the
Arabidopsis genome using the CLC Genomics Workbench
and their number per sample after mapping is summarized
in Table S3. Mapped reads were sorted into bins of 200 bp,
and fragment reads in the individual bins were counted, gen-
erating lists with bincounts per bin. A few regions of the
genome contained bins with extremely high bincounts outside
of the general distribution of the bincount data that could
compromise data normalization. These regions were there-
fore masked by setting the bincounts of the corresponding
bins to zero, followed by normalization of the bincount data
by scaling (Methods). Clustering of the bincounts per bin
for the seven antibodies and eight samples (two biological
replicates) after normalization separates the activating from
the repressive chromatin modifications (Figure S3), demon-
strating that the main difference in the data is between the
activating or repressive functions of the individual chromatin
modifications.

Diurnal chromatin modification signature 2561

Histone modifications are correlated with transcript
levels

To correlate the bincounts of the different chromatin modifica-
tions with transcript expression values, we first defined the
antibody over histone and histone over input ratios for the
regions comprising the TSS, gene body and TTS of each gene.
The value for the TSS region is the average of the bincounts in
the bin comprising the start site and the two proximal bins
(promoter region); the value for the TTS region is the average
of the bincounts in the bin comprising the termination site and
the two distal bins; and the gene body is the average of the
bincounts of all bins in between. Because the allocation of bins
starts with the TSS region followed by the TTS region and the
body, 1069 very short genes had no bins specific for their body.
These genes comprise 78 pseudogenes, 217 genes for non-coding
RNAs and 774 genes encoding short proteins.

Correlation of chromatin modifications in the regions com-
prising the TSS, body and TTS with transcript expression data
from the same leaf samples plus a third biological replicate
reported previously (Baerenfaller et al. 2012) revealed that
H3K4me3, H3K9ac, H3K27ac and H3S10p are positively cor-
related with expression in all samples with highest correlation
in the gene body, while the correlation for H3S28p is highest
in the TTS region. In contrast, H3K9me2 and H3K27me3 are
negatively correlated with expression with the most negative
correlation in the gene body. Histone density is negatively cor-
related with transcript expression in the TSS and TTS regions
(Fig. 1(b)). The negative correlation of histone density and
transcript expression is consistent with the binding of transcrip-
tion factors to regulatory DNA regions, which causes displace-
ment of nucleosomes and chromatin remodelling and results in
DNase I hypersensitivity (ENCODE Project Consortium 2012;
Neph et al. 2012; Thurman et al. 2012).

H3K9ac, H3K27ac and H3S28p modifications in
genes with diurnal transcript oscillations vary
between EOD and EON

We next asked if genes with significantly different transcript
levels between EOD and EON (2105 for SOW and 374 for
SWD) have histone modifications that can separate the
EOD and EON samples in a principal component analysis.
The separation of the EOD and EON samples in the first
two principal components for a given histone modification
indicates that the difference between modification levels at
EOD and EON is a major source of variation in the
corresponding data. The results show that the variation in
H3K9ac, H3K27ac and H3S28p modifications separate the
EOD and EON samples both in SOW and SWD, but more
pronounced in SWD (Figures S4, S5). The EOD and EON
samples could not be separated when all genes were taken
into account or only genes with significantly different expres-
sion levels between SOW and SWD. Genes with transcript
expression changes between EOD and EON therefore have
varying H3K9ac, H3K27ac and H3S28p modifications in the
EOD and EON samples.
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Figure 1. Histone H3 modifications included in this study and their
correlation with transcript expression. (a) Modifications of histone H3
included in this study are tri-methylation of K4 (H3K4me3) and K27
(H327me3) (red circles), di-methylation of K9 (H3K9me?2) (green
circles), acetylation of K9 (H3K9ac) and K27 (H3K27ac) (orange
triangle) and phosphorylation at S10 (H3S10p) and S28 (H3S28p) (blue
pentagon). (b) Spearman correlation between transcript expression
and chromatin modifications expressed as antibody over histone ratios
in the regions containing the TSS, TTS or gene body. For histone, the
transcript expression values were correlated with the histone over input
ratios to detect regions of nucleosome depletion. The indicated values
are the mean correlation coefficients over all eight samples and their
standard deviations.

The H3K9aclH3K27aclH3S28p signature is
indicative for genes with differential EOD and EON
chromatin modifications

To identify genes with differentially modified chromatin be-
tween EOD and EON, we removed stochastic noise from the
bincount data to include only significant bins in the analysis.
The filtered data were re-normalized, and a data/input thresh-
old was used to retain only enriched bins. We then searched
for differentially enriched bins between two different samples
and identified genes comprising at least two differentially
enriched bins. Using a P-value cut-off of 0.05, we included only
genes with a significant difference between enriched bins
(Methods). When comparing the identified genes with differen-
tial EOD and EON chromatin modifications in the SOW and
SWD biological replicates, we found the highest replicate con-
sistency for H3K9ac, H3K27ac and H3S28p (Tables S4, S5).
Inconsistencies between the biological replicates for the other
modifications are likely a result of the complex Chip-Seq proto-
col that causes higher variability than any true differences in
these modifications between the EOD and EON samples,
which were all harvested on the same day. Thus, differences in
the H3K9ac, H3K27ac and H3S28p modifications are most
indicative for chromatin changes between EOD and EON.
We next investigated the extent of co-occurrence of two
different modifications in specific genes and found that

differential modifications of H3K9ac&H3K27ac co-occurred
most often in the SOW and SWD samples, followed by
H3K27ac&H3S28p and H3K9ac&H3S28p (Tables S6, S7). Be-
cause H3K9ac, H3K27ac and H3S28p alone or in combination
differ most between EOD and EON, we defined genes to have
a H3K9aclH3K27aclH3S28p signature when they had differen-
tial chromatin modifications between EOD and EON in
H3K9ac, H3K27ac or H3S28p. GO categorization of the genes
with the H3K9ac/lH3K27aclH3S28p signature revealed the
enrichment of various response pathways and the GO terms cir-
cadian rhyythm and starch catabolic process (Table S8). Of the 84
genes assigned to GO category circadian rhythm, 43 had a differ-
ential chromatin modification between EOD and EON and 36
had the H3K9aclH3K27aclH3S28p signature (Table S9). Differ-
ential modifications of H3K9ac, H3K27ac or H3S28p in
H3K9aclH3K27aclH3S28p signature genes were either all
higherat EOD or all higher at EON, butnever intermixed, which
confirms the co-occurrence of these modifications on specific
genes at specific times of the day. The 12 genes with higher levels
of all three chromatin modifications (H3K%ac&
H3K27ac&H3S28p) at EON include the key components of
the morning loop circadian clock associated 1 (CCAI,
AT2G46830) and late elongated hypocotyl 1 (LHY,
ATIG01060), as well as night light-inducible and clock-
regulated 3 (LNK3, AT3GI12320) and reveille 1 (RVEI,
AT5G17300). Genes with higher levels of H3K9ac&H3K27ac&
H3S28p at EOD were the evening loop components timing of
CAB expression 1 (TOCI, AT5G61380), pseudo-response
regulator 5 (PRRS5, AT5G24470), Constans-like 9 (COL9,
AT3G0707650), glycine-rich protein 7 (GRP7, AT2G21660),
flavin-binding, kelch repeat, F box 1 (FKFI, AT1G68050) and
Gigantea (GI, AT1G22770). The strong diurnal transcript oscil-
lation of clock genes between EOD and EON therefore involves
reversible acetylation and phosphorylation of histone H3.

Of the 21 genes assigned to GO category starch catabolic pro-
cess, 12 have differential chromatin modifications between EOD
and EON. Of these, 10 have the H3K9aclH3K27aclH3S28p sig-
nature with higher modification levels at EOD, and only beta-
amylase 1 (BAM1, AT3G23920) has higher modification levels
at EON (Table S10). The four genes with higherlevels of all three
chromatin modifications (H3K9ac&H3K27ac&H3S28p) at
EOD encode pyruvate phosphate dikinase (GWD1, SEXI1,
AT1G10760), phosphoglucan, water dikinase (GWD3, PWD,
AT5G26570) and dual-specificity protein phosphatase 4
(DSP4, SEX4, AT3G52180), which are key enzymes of starch
breakdown involvedin transient glucan phosphorylation, as well
as disproportionating enzyme 2 (DPE2, AT2G40840), which
metabolizes the cytosolic maltose that is produced in starch
breakdown (Streb & Zeeman 2012). The H3K9aclH3K27acl
H3S28p signature is therefore also associated with the diurnal
expression of genes that encode starch breakdown proteins.

Differential chromatin modification versus
differential expression

When we compared the genes that are differentially expressed
with those that have differential chromatin modifications
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between EOD and EON, we again found that many genes in
the overlap have differential modifications of H3K9ac,
H3K27ac or H3S28p. The average expression level of the
genes that are differentially expressed between EOD and
EON was generally higher for those with the H3K9acl
H3K27aclH3S28p signature than for those without. However,
the distributions were overlapping, and genes in almost the full
range of expression levels can have the H3K9aclH3K27acl
H3S28p signature (Figure S6). Furthermore, almost all of the
genes that contain a differential chromatin modification and
are also differentially expressed have the H3K9aclH3K27acl
H3S28p signature (89.2% for SOW and 97.3% for SWD in
the replicate intersect; Table S11). The differential H3K9acl
H3K27aclH3S28p modification signature between EOD and
EON also corresponds with differential transcript expression
levels between EOD and EON in SOW and SWD, except for
two genes in SOW (Fig. 2). Higher levels of modifications in
the H3K9aclH3K27aclH3S28p signature at EOD are therefore
indicative of higher transcript expression at EOD and vice
versa. In support of this conclusion, the fold-change in tran-
script expression between EON and EOD for all genes with a
differential H3K9aclH3K27aclH3S28p modification signature
and higher levels at EON was positive, while it was negative
for the genes with higher modification levels of the H3K9acl
H3K27aclH3S28p signature at EOD. This was not the case
for the genes with differential chromatin modifications
between EOD and EON that did not have a differential
modification of the H3K9aclH3K27aclH3S28p signature (Fig. 3,
Figure S7).

The H3K9aclH3K27aclH3S28p signature is
associated with co-expressed genes that have
diurnal fluctuation of expression

To obtain an unbiased presentation of gene activities based on
general co-expression, we used the ATTED-II database
(Obayashi et al. 2014) to group Arabidopsis genes in a basic
set of 384 co-expression clusters with maximum gene coverage
and minimal overlap. Genes with differential chromatin marks
are over-represented in specific co-expression clusters, and
these clusters clearly discriminate between genes showing in-
creased H3K9ac, H3K27ac and H3S28p modification levels at

{b:l Diff, exp. | DA exp
SWD WD
Bt

(a) Diff. exp. | Diff. exp
soW SOW
EON EQD
H3KSac|HIK2 Tac|HIS28p
SOW 246 114 2
EON
HIKSac|HIK2TacH 3528
207 2 158
EOD

Diurnal chromatin modification signature 2563

EON or EOD, with the three modifications co-occurring in
the respective clusters (Fig. 4, Figure S8). Genes in the top
ranking clusters have a diurnal fluctuation of expression in pre-
viously reported short-day diurnal expression profiles (Endo
et al. 2014). Genes in EON clusters have expression maxima
at EON and/or the early light period and low expression at
EOD and in the early dark period. Genes in EOD clusters
show the reciprocal pattern with peak expression at EOD
and in the early dark period (Figure S9). Diurnal expression
therefore contributes to the co-expression pattern of the se-
lected gene clusters.

H3S10p and H3K4me3 are condition-dependent
co-occurring modifications that correlate with
increased diurnal transcript level changes

When comparing the SOW and SWD experiments, we found
that in SWD, fewer genes were differentially expressed and
had differential chromatin modifications between EON and
EOD (Fig. 2). The genes with differential modifications in the
H3K9aclH3K27aclH3S28p signature in both conditions had
higher modification levels at either EON or EOD in both ex-
periments (Figure S10). Thus, the general principle of diurnal
changes in the H3K9ac/lH3K27aclH3S28p chromatin modifica-
tion signature is the same in both conditions. However, analysis
of the co-occurrence of differential chromatin modifications be-
tween EON and EOD on specific genes revealed that in SOW,
the pairwise co-occurrences with the second highest values
were between H3S10p and H3K9ac, H3K27ac or H3S28p (Ta-
ble S6), while in SWD, they were between H3K4me3 and
H3K9ac, H3K27ac or H3S28p (Table S7). The additional
H3S10p and H3K4me3 marks were found both in the genes
that showed differential chromatin modifications in the overlap
between the SOW and SWD experiment and in those that were
specific for one or the other condition (Figure S10). The fold-
change in transcript expression between EON and EOD was
higher for genes that had the H3S10p mark in addition to the
H3K9ac/lH3K27aclH3S28p signature in SOW and the
H3K4me3 modification in addition to H3K9aclH3K27acl
H3S28p in SWD (Fig. 3). This suggests that the additional
H3S10p and H3K4me3 modifications are activating and that
they depend on the prevailing experimental condition.

HIKSaclHIK2Tac|HIS28p
Wh

EOM

HIKSaclHIK2TaclH3S28p
SWD

EQD

Figure 2. Overlap between differential H3K9aclH3K27aclH3S28p modification and differential expression at end of the day (EOD) and end of the
night (EON). Diagram of the overlap between genes with the differential H3K9aclH3K27aclH3S28p modification pattern in the replicate intersect and
higher modification levels either at EON (blue) or EOD (red) and genes that are differentially expressed and have higher expression levels either at
EON (blue) or EOD (red) in the (a) short-day optimal water (SOW) and the (b) short-day water deficit (SWD) experiment.
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Figure 3. Association between modifications in the H3K9aclH3K27ac/H3S28p signature and transcript expression at end of the day (EOD) and end
of the night (EON). Fold-change between the log-transformed transcript expression values at EON and EOD for the short-day optimal water (SOW)
and the short-day water deficit (SWD) experiment for 1) the genes with differential expression values between EON and EOD and higher expression
levels at EON or EOD, 2) for the genes in the replicate intersect with differential chromatin modifications between EON and EOD displaying the
H3K9aclH3K27ac/H3S28p pattern and higher modification levels at EON or EOD, 3) for the genes in the replicate intersect with differential
chromatin modifications between EON and EOD displaying the H3K9aclH3K27aclH3S28p pattern and differential modification of H3S10p for SOW
and of H3K4me3 in SWD and higher modification levels at EON or EOD and 4) for the genes in the replicate intersect with differential chromatin
modifications between EON and EOD not displaying the H3K9aclH3K27aclH3S28p pattern and higher modification levels at EON or EOD.
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Figure 4. Correlation of the H3K9aclH3K27ac/H3S28p signature with gene co-expression. Heatmap displaying the over-representation of the genes
with the respective differential modifications of histone H3 higher at end of the night (EON) or end of the day (EOD) in the individual clusters.
Displayed are the —log10 of the P-values from Fisher’s exact test (0-2: blue, 2-4: yellow, 4-100: red). Clusters were sorted according to the presence of
the H3K9ac, H3K27ac or H3S28p differential modification at (a) EON or (b) EOD, respectively, and the top 30 clusters are displayed.

The genes that have the differential H3K9aclH3K27acl higher modification levels at EON are LHY and early-
H3S28p&H3S10p chromatin modification in SOW and responsive to dehydration stress (ERD) family protein
H3K9aclH3K27ac/H3S28p&H3K4me3 in SWD and that have (AT4G15430), while those with higher modification levels at
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EOD are PRR5, alpha-glucan phosphorylase 2 (PHS2,
AT3G46970), B-S glucosidase 44 (BGLU44, AT3G18080)
and thiamin C (THIC, AT2G29630). The list of genes with
H3K9aclH3K27aclH3S28p&H3S10p in SOW or H3K9acl
H3K27aclH3S28p&H3K4me3 in SWD includes the clock com-
ponents CCAI, reveille 1 (RVEIL, AT5G17300), cycling DOF
factor 2 (CDF2), GI, FKF1, GRP7, as well as short vegetative
phase (SVP, AT2G22540) (Table S12). This suggests that strict
diurnal transcript expression control of clock and metabolism
genes is tuned with additional activating modifications.

Histone H3 acetylation and phosphorylation are
distributed differently across genes

For the genes with differential H3K9ac, H3K27ac and H3S28p
modifications between EOD and EON and in addition H3S10p
for SOW and H3K4me3 for SWD, we investigated where in the
gene the significantly enriched bins are located. In both exper-
iments, we found that for most genes, H3K9ac-enriched and
H3K27ac-enriched bins mapped mainly to the gene body and
TSS region. In contrast, H3S28p-enriched bins are mainly
located in the gene body and TTS region (Fig. 5). Correspond-
ingly, the gene regions containing most of the enriched bins in
the respective modifications primarily separated the EOD
and EON samples in the principal component analysis, while
the other regions often showed a separation of the biological
replicates (Figures S4, S5). The genes with differential
H3S10p in the SOW experiment have the enriched bins mostly
in the gene body (Fig. 5(a)), while the differential H3K4me3-
enriched bins in SWD are similarly distributed as the H3K9ac
and H3K27ac-enriched bins (Fig. 5(b)). Thus, although the
acetylated and phosphorylated amino acids in H3 are directly
next to each other, they are enriched in different gene regions.
It therefore seems unlikely that H3K9ac, H3S10p, H3K27ac
and H3S28p co-occur on individual H3 proteins.

Diurnally controlled transcription factors are
associated with the H3K9aclH3K27aclH3S28p
signature

Considering the diurnal dynamics in the H3K9aclH3K27acl
H3S28p signature, histone H3 acetylation and phosphorylation
must be both reversible within 8 hours and specific for individ-
ual genes. This can be achieved by available chromatin modify-
ing complexes together with proteins that tether them to
chromatin at the right time of the day. Transcription factors
are ideally suited for specific tethering and in fact, genes
assigned to GO category sequence-specific DNA binding tran-
scription factor activity are significantly over-represented in
genes with the H3K9aclH3K27aclH3S28p signature in SOW
and SWD with higher modification levels at EON (Table
S13). The repressive transcription factors CCA1, LHY and
RVEI1 belong to this group, and their increased modification
and expression level at EON corresponds well with the con-
comitant repression of their target genes. Genes with higher
EOD H3K9aclH3K27aclH3S28p modification levels also have
a significant over-representation of the evening element (EE)
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(a) iy
HIKBac HIK2Tac HiS28p H3310p
8 - BR1 BRZ BR1 BR2Z BR1 BR2 BR1 BR2
¥ .
E B
2
=
&
g
-4
£ 29
3
&
8
2
i
i
3
T
£ &
. -
B TS5S&Bady&TTS
O Bocy&TTS
B TSSATTS
B T55&Body
(b SWo "oy
:I HIK2T s H3IS2Bp HiS10p
8 _ BR BR1 BR2

[%] of genes with significantly enriched bins

BR1 BR2

Figure 5. Localization information for the significantly enriched bins.
For the significantly enriched bins of the specified antibody, the
localization on the genes with differential chromatin modification
between end of the day and end of the night in the replicate intersect
were assessed. Considered were the regions comprising the TSS, the
gene body, the TTS and combinations thereof. There were no
significantly enriched bins located solely on the TSS or the TTS regions.
TSS, transcription start site; TTS, transcription termination site.
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and the canonical CCA1/RVEI element (Franco-Zorrilla et al.
2014), especially in the TSS and promoter regions, as well as in
the TTS region. In addition, the non-canonical RVE_a element
and G-box are over-represented in the TSS and promoter
regions (Table S14). Direct binding of the EE by CCAL, for ex-
ample, represses TOC1 expression at dawn, and this repression
is relieved when CCAL is degraded during the day (Harmer
et al. 2000; Alabadi et al. 2001). Relief of repression of genes
with promoter elements such as EE, CCA1/RVE1 or RVE _a
therefore coincides with increased modifications in the
H3K9aclH3K27aclH3S28p signature. Together, the activity of
genes with diurnally oscillating transcript levels thus might
not only depend on the combinatorial presence or absence of
circadian control transcription factors but also on prevailing
histone H3 modifications.

Genes with higher EOD H3K9aclH3K27ac/lH3S28p modifi-
cation levels include fewer transcription factors, and these tran-
scription factors are not associated with the over-represented
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promoter elements found in genes with higher H3K9acl
H3K27aclH3S28p modification levels at EON. In the genes
with higher EON modification levels, over-represented pro-
moter elements include the G-box, the strong G-box-like
ABA-responsive element (S_G_ABRE) (Choi et al. 2000),
the hormone-up-at-dawn element (Michael ef al. 2008) and
the PIF3 element (Franco-Zorrilla et al. 2014) (Table S14).
These elements are recognized by phytochrome interacting
factors (PIFs), which are transcription factors that are phos-
phorylated and degraded after light activation of phyto-
chromes (Chen & Chory 2011). PIF4 (AT2G43010) has the
H3K9aclH3K27aclH3S28p signature with higher modification
levels at EOD in SOW and SWD as well as the additional
H3K4me3 modification in SWD (Tables S12, S13). PIF4
ChIP-Seq identified 4363 PIF4 target genes (Oh et al. 2012)
that are strongly over-represented among H3K9aclH3K27acl
H3S28p signature genes (P-value =2.31E-34 for SOW and P-
value=3.75E-20 for SWD in a Fisher’s exact test, Figure
S11). The transcription factor LONG HYPOCOTYL 5
(HYS5, AT5G11260) promotes photomorphogenesis down-
stream of photoreceptors by binding to the G-box in the pro-
moter of target genes (Lee er al. 2007), but in contrast to
PIFs, HYS is degraded in the dark (Osterlund et al 2000).
Although HYS5 is differentially expressed between EOD and
EON in SOW with higher mRNA levels at EON, HYS does
not have differential chromatin modifications between EOD
and EON. HYS target genes are also strongly over-represented
among the H3K9aclH3K27aclH3S28p signature genes (P-
value =8.75E-103 for SOW and P-value =9.51E-33 for SWD
in a Fisher’s exact test). Together, the abundance levels of
circadian clock and photoreceptor-controlled transcription fac-
tors most likely regulate diurnal expression level changes of
their target genes also by timing enzymes that modify the
histone H3 H3K9aclH3K27ac/H3S28p signature.

DISCUSSION

We have established that in the mature Arabidopsis leaf 6
grown in SOW, diurnal changes in transcript expression be-
tween EON and EOD correlate with changes in a novel
histone H3 H3K9aclH3K27aclH3S28p signature of their genes.
The transcript level fluctuations may contribute to the time-
dependent optimization of the cellular energy status
(Baerenfaller er al. 2012). Accordingly, in long days, fewer
genes have significant diurnal transcript changes because in this
condition, plants do not need to economize their energy budget
(Baerenfaller et al. 2015). In contrast, the smaller numbers of
genes with significant diurnal transcript fluctuations in SWD
plants are likely a consequence of the restricted water regime
(Baerenfaller et al. 2012). The similar changes of histone H3
H3K9%ac, H3K27ac and H3S28p modifications in genes with
fluctuating transcript levels in both conditions suggest that the
H3K9aclH3K27aclH3S28p signature is part of a general mech-
anism of diurnal transcript level regulation. Moreover, we
identified additional condition-dependent activating H3 modi-
fications, namely H3S10p in SOW and H3K4me3 in SWD.
Because H3K4me3 is regarded as a strongly activating modifi-
cation by itself (Bernstein et al. 2006; Berger 2007; Liu et al.

2010), it appears that under non-optimal growth conditions,
the genes that have high diurnal transcript level changes
require an additional activation.

Genes with significantly different transcript levels between
the morning and evening are by definition active genes, and
correspondingly, their expression levels are positively corre-
lated with H3K4me3 and H3K27ac and negatively with
H3K9me2 and H3K27me3 modifications. The presence and
absence of these modifications therefore mark the general ‘ac-
tiveness’ of these genes, but they are not part of a mechanism
that regulates their diurnal transcript level fluctuations. We
found that diurnal gene expression changes between EOD
and EON are correlated with the absence or presence of the
novel activating H3K9aclH3K27aclH3S28p signature.

Histone modifications modulate various biological processes
including the circadian rhythm (Barneche et al. 2014; Seo &
Mas 2014). The histone acetylation pattern at the TOCI1 pro-
moter follows a circadian oscillation that is associated with
the rhythmic expression of the gene (Perales & Mas 2007). In
the morning, TOCI transcript expression is repressed through
binding of the partly redundant transcription factors CCA1l
and LHY to the EE promoter element (Harmer ez al. 2000;
Alabadi et al. 2001). Transcription factor binding in the TOC1
promoter antagonizes H3 acetylation, most likely by blocking
histone acetyltransferase (HAT) accessibility (Stratmann &
Mas 2008). As CCA1 levels and binding decrease during the
day, repression of TOCI transcription is relieved. TOC1 itself
functions as a general repressor of oscillator gene expression
through rhythmic association with the promoters of the oscilla-
tor genes. In the evening and at night, when TOCI levels are
high, it prevents the activation of morning-expressed genes
(Huang et al. 2012). The declining phase of TOC1 expression
is associated with histone deacetylase (HDAC) activities,
resulting in histone H3 hypoacetylation (Perales & Mas 2007;
Farinas & Mas 2011). Regulation of circadian expression by os-
cillating histone marks is not exclusive to TOC1 but has also
been shown for the core clock genes CCA1l, LHY, PRRY,
PRR7 and LUX (Hemmes et al. 2012; Malapeira et al. 2012;
Song & Noh 2012; Seo & Mas 2014). We demonstrate that this
type of gene expression regulation is not limited to core clock
genes but has a broader role in the diurnal regulation of gene
expression.

For transcription factors that mainly act as repressors, the
following model therefore emerges for the diurnal control of
transcript expression. At EON, transcription factors of the
morning loop are highly expressed both at transcript and pro-
tein levels. The proteins bind to their recognition sequences
in the promoters of genes, such as the EE or the canonical
CCA1/RVEI1 element, which might prevent H3 modification
with activating chromatin marks. Consequently, the activity of
target genes at EON is suppressed because of the absence or
removal of activating chromatin marks, perhaps via a more
condensed and less accessible chromatin structure. During
the day, the abundance of the repressive transcription factors
decreases and hence also their promoter binding. This could
either increase the placement of activating modifications or
decrease their removal in H3 of their target genes to result in
higher EOD transcript levels. Increased expression at
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transcript and protein level of evening transcription factors
such as TOC1 and PIF4 will lead to increased binding to their
promoter recognition sequences, which either suppresses or ac-
tivates the expression of their target genes. Because mainly
genes with higher H3K9aclH3K27aclH3S28p modification
levels at EOD have promoter elements bound by repressive
transcription factors such as CCA1, LHY and RVE], this mode
of regulation seems to be more prevalent for genes with higher
transcript expression at EOD.

The association of the H3K9aclH3K27aclH3S28p signature
with diurnal transcript level changes between EOD and
EON is consistent with the over-representation of these H3
modifications in co-expression clusters that contain genes with
diurnal expression patterns. The presence of the activating
H3K9aclH3K27aclH3S28p signature only at times of the day
when the corresponding genes are transcribed can also explain
why certain genes are regulated differently between day and
night. For example, about 70% of the light-inducible genes
respond more strongly to a light pulse in the middle of the sub-
jective day than during the subjective night. The light-inducible
and clock-regulated (LNK) gene family seems to have a key
role in the process. LNK genes are morning phased, more
strongly induced by light in the middle of the night, and expres-
sion of LNK1 and LNK2 is repressed by TOC1/PRR proteins
in the evening (Rugnone et al. 2013). Here, we found that of
the four LNK genes LNK2 (AT3G54500), LNK3
(AT3G12320) and LNK4 (AT5G06980) have the H3K9acl
H3K27aclH3S28p signature with higher modification levels at
EON. The presence of the activating pattern only during the
night can therefore explain why they are especially light-
inducible during the night.

The chromatin modification complex(es) responsible for
placing and removing the H3K9aclH3K27aclH3S28p signa-
ture must minimally consist of one or several HATs, HDACs,
kinases and phosphatases. The specificities of HATs and
HDACGC:s are regulated by interactions with sequence-specific
DNA-binding or chromatin regulatory proteins (Marmorstein
& Roth 2001; Carrozza et al. 2003). However, HATS can also
have global acetylating activity independent of recruitment by
DNA-binding transcription activators (Imoberdorf et al
2006). The Arabidopsis genome encodes 12 HATs and 18
HDACs that are responsible for the deposition and the
removal of acetylation marks, respectively. This makes it diffi-
cult to rigorously establish which HATs and HDACsS are in-
volved in the dynamic regulation of the H3K9aclH3K27acl
H3S28p signature. A well-characterized HAT required for
light-regulated gene expression and growth is general control
non-repressible 5 (GCNS, AT3G54610) (Benhamed et al
2006). GCNS recruitment to promoters is mediated either di-
rectly by transcription factor binding to promoters or indi-
rectly through interaction of GCNS5-containing complexes
with promoter-binding transcription factors, or the
bromomodomains of GCNS can bind directly to acetylated
histone tails (Benhamed et al. 2008). HDACs were classified
in three subfamilies, of which the HD2 (histone deacetylase)
family is plant-specific and comprises four proteins (Wu
et al. 2000, 2003; Dangl et al. 2001; Pandey et al. 2002). Their
transcript levels are higher at EOD in SOW and SWD, with
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significant changes between EOD and EON for HD2A
(AT3G44750), HD2B  (AT5G22650) and  HD2D
(AT2G27840). The only other HDAC with a significant tran-
script expression change between EOD and EON is HDA2
(AT5G26040), which is also more highly expressed at EOD.
This suggests that plant-specific HDACs in particular remove
the activating acetylation marks in the evening. All three
Aurora kinases in Arabidopsis can phosphorylate H3S10,
and treatment with the Aurora kinase inhibitor hesparadin in-
hibits histone H3 phosphorylation (Weimer et al. 2016). For
example, Auroral is responsible for the cell cycle-dependent
phosphorylation of H3S10 (Demidov et al. 2009). Aurora3
phosphorylates both H3S10 and H3S28, and these phosphor-
ylations are associated with chromosome segregation and
metaphase/anaphase transition (Kurihara et al. 2006). How-
ever, in the Auroral and Aurora2 double T-DNA insertion
mutant, histone H3 phosphorylation was not impaired (Van
Damme et al. 2011). Furthermore, plant Aurora kinases are
considered mitotic kinases because their expression levels
are highest during mitosis in actively dividing cells (Weimer
et al. 2016). Tt therefore seems rather unlikely that they also
have a role outside of the cell cycle in the regulation of gene
expression. In mammalian cells, H3S10 and H3S28 are phos-
phorylated in response to EGF treatment by the kinases
RSK2, MSK1, MSK2 and MLTK-a (Rossetto et al. 2012).
Human MSK1 is a direct transcription activator. Phosphoryla-
tion of H3S28 correlates with transcription initiation and can
also induce a methyl-acetylation switch in the adjacent K27
residue (Lau & Cheung 2011). The Arabidopsis MSK homo-
logues are the S6 kinases S6K1 and S6K2, which are part of
the TOR signalling pathway (Mahfouz et al. 2006). Further
research is required to establish if these kinases phosphorylate
histone H3 and if this phosphorylation regulates gene
expression.

TOC1 diurnal transcript levels correlate with circadian
rhythms in the binding of chromatin remodelling factors
such as SSRP1 and SPt16 of the facilitates chromatin tran-
scription (FACT) complex that functions as transcriptional
co-activators (Perales & Més 2007). Co-activation by FACT
may occur via nucleosome destabilization, which facilitates
RNA polymerase II passage, although FACT is absent in
terminally differentiated cells (Duroux et al. 2004). In fully
expanded leaves, other factors may therefore be needed to
facilitate transcription. The activity of chromatin modifica-
tion complexes may also be regulated by post-translational
modifications. For example, the HDACs HD2A and HD1
(HDA19, AT4G38130) as well as GCN5 can be phosphory-
lated (Bigeard et al. 2014). GCNS also interacts specifically
with a phosphatase 2C protein (AtPP2C-6-6) and can be
phosphorylated by a nuclear protein kinase, potentially
SNF1 (Servet et al. 2008). Although we have identified
concerted H3K9aclH3K27aclH3S28p modifications as a
novel chromatin signature for diurnally regulated genes,
the mechanism for the timely placement and removal of
the H3K9aclH3K27aclH3S28p signature and the composition
of the responsible chromatin modification complexes are
currently not known and will need to be elucidated in
future research.
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2568 K. Baerenfaller et al.

ACKNOWLEDGMENTS

This work was supported by ETH Zurich and in part by the
AGRON-OMICS integrated project funded in the European
Framework Programme 6 (LSHG-CT-2006-037704) awarded
to W.G.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

AUTHOR’S CONTRIBUTIONS

W.G. designed the research, H.S. performed the experiment, L.
O. and H.R processed the data, K.B., M.H-H., J.F. and W.G.
analysed and interpreted the data, K.B. wrote the manuscript,
J.E, LH. and W.G. edited the manuscript and all authors
approved the final version.

REFERENCES

Alabadi D., Oyama T., Yanovsky M.J., Harmon F.G., Mas P. & Kay S.A. (2001)
Reciprocal regulation between TOC1 and LHY/CCAL1 within the Arabidopsis
circadian clock. Science 293, 880-883.

Baerenfaller K., Massonnet C., Hennig L., Russenberger D., Sulpice R., Walsh S.,
... Gruissem W. (2015) A long photoperiod relaxes energy management in
Arabidopsis leaf six. Current Plant Biology 2, 34-45.

Baerenfaller K., Massonnet C., Walsh S., Baginsky S., Bithimann P., Hennig L., ...
Gruissem W. (2012) Systems-based analysis of Arabidopsis leaf growth reveals
adaptation to water deficit. Molecular Systems Biology 8, 606.

Barneche F., Malapeira J. & Mas P. (2014) The impact of chromatin dynamics on
plant light responses and circadian clock function. Journal of Experimental Bot-
any 2895-2913.

Bauer S., Grossmann S., Vingron M. & Robinson P.N. (2008) Ontologizer 2.0 —a
multifunctional tool for GO term enrichment analysis and data exploration.
Bioinformatics 24, 1650-1651.

Benhamed M., Bertrand C., Servet C. & Zhou D.-X. (2006) Arabidopsis GCNS5,
HD1, and TAF1I/HAF2 interact to regulate histone acetylation required for
light-responsive gene expression. The Plant Cell 18, 2893-2903.

Benhamed M., Martin-Magniette M.L., Taconnat L., Bitton F., Servet C., De
Clercq R., ... Hilson P. (2008) Genome-scale Arabidopsis promoter array iden-
tifies targets of the histone acetyltransferase GCNS. The Plant Journal 56,
493-504.

Benjamini Y. & Hochberg Y. (1995) Controlling the false discovery rate: a practi-
cal and powerful approach to multiple testing. Journal of the Royal Statistical
Society, Series B 57, 289-300.

Berger S.L. (2007) The complex language of chromatin regulation during
transcription. Nature 447, 407-412.

Bernstein B.E., Mikkelsen T.S., Xie X., Kamal M., Huebert D.J., Cuff J., ...
Lander E.S. (2006) A bivalent chromatin structure marks key developmental
genes in embryonic stem cells. Cell 125, 315-326.

Bertrand C., Benhamed M., Li Y.-F.,, Ayadi M., Lemonnier G., Renou J.-P, ...
Zhou D.-X. (2005) Arabidopsis HAF2 gene encoding TATA-binding protein
(TBP)-associated factor TAF1, is required to integrate light signals to regulate
gene expression and growth. The Journal of Biological Chemistry 280,
1465-1473.

Bigeard J., Rayapuram N., Bonhomme L., Hirt H. & Pflieger D. (2014) Proteo-
mic and phosphoproteomic analyses of chromatin-associated proteins from
Arabidopsis thaliana. Proteomics 14, 2141-2155.

Booth B. (2010) Set:IntervalTree-0.01. Retrieved from http://search.cpan.org

Carrozza M.J., Utley R.T., Workman J.L. & Coté J. (2003) The diverse functions
of histone acetyltransferase complexes. Trends in Genetics 19, 321-329.

Charron J.-B.F., He H., Elling A.A. & Deng X.W. (2009) Dynamic landscapes of
four histone modifications during deetiolation in Arabidopsis. The Plant Cell
21, 3732-3748.

Chen M. & Chory J. (2011) Phytochrome signaling mechanisms and the control of
plant development. Trends in Cell Biology 21, 664-671.

Choi H., Hong J., Ha J., Kang J. & Kim S.Y. (2000) ABFs, a family of ABA-
responsive element binding factors. The Journal of Biological Chemistry 275,
1723-1730.

Chua Y.L., Watson L.A. & Gray J.C. (2003) The transcriptional enhancer of the
pea plastocyanin gene associates with the nuclear matrix and regulates gene ex-
pression through histone acetylation. The Plant Cell 15, 1468-1479.

Dangl M., Brosch G., Haas H., Loidl P. & Lusser A. (2001) Comparative analysis
of HD2 type histone deacetylases in higher plants. Planta 213, 280-285.

Demidov D., Hesse S., Tewes A., Rutten T., Fuchs J., Ashtiyani R.K., ... Houben
A. (2009) Auroral phosphorylation activity on histone H3 and its cross-talk
with other post-translational histone modifications in Arabidopsis. The Plant
Journal : For Cell and Molecular Biology 59, 221-230.

Duroux M., Houben A., Rizicka K., Friml J. & Grasser K.D. (2004) The chroma-
tin remodelling complex FACT associates with actively transcribed regions of
the Arabidopsis genome. The Plant Journal : For Cell and Molecular Biology
40, 660-671.

ENCODE Project Consortium (2012) An integrated encyclopedia of DNA
elements in the human genome. Nature 489, 57-74.

Endo M., Shimizu H., Nohales M.A.., Araki T. & Kay S.A. (2014) Tissue-specific
clocks in Arabidopsis show asymmetric coupling. Nature 515, 419-422.

Farinas B. & Mas P. (2011) Functional implication of the MYB transcription fac-
tor RVES/LCLS in the circadian control of histone acetylation. The Plant
Journal 66, 318-329.

Franco-Zorrilla J.M., Lopez-Vidriero 1., Carrasco J.L., Godoy M., Vera P. &
Solano R. (2014) DNA-binding specificities of plant transcription factors and
their potential to define target genes. Proceedings of the National Academy of
Sciences of the United States of America 111, 2367-2372.

Fry CJ., Shogren-Knaak M.A. & Peterson C.L. (2004) Histone H3 amino-
terminal tail phosphorylation and acetylation: synergistic or independent tran-
scriptional regulatory marks? Cold Spring Harbor Symposia on Quantitative
Biology 69, 219-226.

Granier C., Aguirrezabal L., Chenu K., Cookson S.J., Dauzat M., Hamard P,, ...
Tardieu F. (2006) PHENOPSIS, an automated platform for reproducible
phenotyping of plant responses to soil water deficit in Arabidopsis thaliana
permitted the identification of an accession with low sensitivity to soil water
deficit. New Phytol 169, 623-635.

Granot G., Sikron-Persi N., Li Y. & Grafi G. (2009) Phosphorylated H3S10 occurs
in distinct regions of the nucleolus in differentiated leaf cells. Biochimica et
Biophysica Acta — Gene Regulatory Mechanisms 1789, 220-224.

Harmer S.L., Hogenesch J.B., Straume M., Chang H.S.,Han B., Zhu T., ... Kay S.
A. (2000) Orchestrated transcription of key pathways in Arabidopsis by the
circadian clock. Science 290, 2110-2113.

Hemmes H., Henriques R., Jang I.C., Kim S. & Chua N.H. (2012) Circadian clock
regulates dynamic chromatin modifications associated with arabidopsis
CCA1/LHY and TOCI transcriptional rhythms. Plant and Cell Physiology
53,2016-2029.

Houben A., Demidov D., Caperta A.D., Karimi R., Agueci F. & Vlasenko L.
(2007) Phosphorylation of histone H3 in plants — a dynamic affair. Biochimica
et Biophysica Acta — Gene Structure and Expression 308-315.

Huang W., Perez-Garcia P., Pokhilko A., Millar AJ., Antoshechkin I.,
Riechmann J.L. & Mas P. (2012) Mapping the core of the Arabidopsis circa-
dian clock defines the network structure of the oscillator. Science 75-79.

Imoberdorf R.M., Topalidou I. & Strubin M. (2006) A role for genS-mediated
global histone acetylation in transcriptional regulation. Molecular and Cellular
Biology 26, 1610-1616.

Karli¢ R., Chung H.-R., Lasserre J., Vlahovicek K. & Vingron M. (2010) Histone
modification levels are predictive for gene expression. Proceedings of the
National Academy of Sciences of the United States of America 107, 2926-2931.

Kouzarides T. (2007) Chromatin modifications and their function. Cell 128,
693-705.

Kurihara D., Matsunaga S., Kawabe A., Fujimoto S., Noda M., Uchiyama S. &
Fukui K. (2006) Aurora kinase is required for chromosome segregation in to-
bacco BY-2 cells. The Plant Journal : For Cell and Molecular Biology 48, 572-580.

Lau P.N.I. & Cheung P. (2011) Histone code pathway involving H3 S28 phosphor-
ylation and K27 acetylation activates transcription and antagonizes polycomb
silencing. Proceedings of the National Academy of Sciences of the United
States of America 108, 2801-2806.

LeeJ.,He K., Stolc V., Lee H., Figueroa P, Gao Y., ... Deng X.W. (2007) Analysis
of transcription factor HYS genomic binding sites revealed its hierarchical role
in light regulation of development. The Plant Cell 19, 731-749.

Lee J.-S., Smith E. & Shilatifard A. (2010) The language of histone crosstalk. Cell
142, 682-685.

LiJ., Terzaghi W. & Deng X.W. (2012) Genomic basis for light control of plant
development. Protein & Cell 3, 106-116.

© 2016 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd., 39, 2557-2569


http://search.cpan.org

Li Y., Butenko Y. & Grafi G. (2005) Histone deacetylation is required for progres-
sion through mitosis in tobacco cells. The Plant Journal: For Cell and
Molecular Biology 41, 346-352.

Liu C, Lu F, Cui X. & Cao X. (2010) Histone methylation in higher plants.
Annual Review of Plant Biology 61, 395-420.

Mahfouz M.M., Kim S., Delauney A.J. & Verma D.P.S. (2006) Arabidopsis target
of rapamycin interacts with raptor, which regulates the activity of S6 kinase in
response to osmotic stress signals. The Plant Cell 18, 477-490.

Malapeira J., Khaitova L.C. & Mas P. (2012) Ordered changes in histone modifi-
cations at the core of the Arabidopsis circadian clock. Proceedings of the
National Academy of Sciences of the United States of America 109,21540-21545.

Marmorstein R. & Roth S.Y. (2001) Histone acetyltransferases: function, struc-
ture, and catalysis. Current Opinion in Genetics and Development 11, 155-161.

Michael T.P.,, Breton G., Hazen S.P., Priest H., Mockler T.C., Kay S.A. & ChoryJ.
(2008) A morning—specific phytohormone gene expression program underly-
ing rhythmic plant growth. PLoS Biology 6, 1887-1898.

Nair N.U,, Das S.A., Bucher P. & Moret B.M.E. (2012) Chipnorm: a statistical
method for normalizing and identifying differential regions in histone modifica-
tion chip-seq libraries. PLoS ONE 7, €39573.

Neph S., Vierstra J. & Stergachis A. (2012) An expansive human regulatory
lexicon encoded in transcription factor footprints. Nature 489, 83-90.

Obayashi T., Okamura Y., Ito S., Tadaka S., Aoki Y., Shirota M. & Kinoshita K.
(2014) ATTED-II in 2014: evaluation of gene coexpression in agriculturally
important plants. Plant and Cell Physiology 55, 6.

OhE., Zhu J.-Y. & Wang Z.-Y. (2012) Interaction between BZR1 and PIF4 inte-
grates brassinosteroid and environmental responses. Nature Cell Biology
802-809.

Osterlund M.T., Hardtke C.S., Wei N. & Deng X.W. (2000) Targeted destabiliza-
tion of HYS during light-regulated development of Arabidopsis. Nature 405,
462-466.

Pandey R., Miiller A., Napoli C.A., Selinger D.A., Pikaard C.S., Richards E.J., ...
Jorgensen R.A. (2002) Analysis of histone acetyltransferase and histone
deacetylase families of Arabidopsis thaliana suggests functional diversification
of chromatin modification among multicellular eukaryotes. Nucleic Acids
Research 153, 5036-5055.

Perales M. & Més P. (2007) A functional link between rhythmic changes in
chromatin structure and the Arabidopsis biological clock. The Plant Cell 19,
2111-2123.

Pfluger J. & Wagner D. (2007) Histone modifications and dynamic regulation of
genome accessibility in plants. Current Opinion in Plant Biology 10, 645-652.

R Core Team. (2015) R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria Retrieved from http:/
WWW.I-project.org.

Rossetto D., Avvakumov N. & Coté J. (2012) Histone phosphorylation: a
chromatin modification involved in diverse nuclear events. Epigenetics 7,
1098-1108.

Rugnone M.L., Faig A., Sanchez S.E., Schlaen R.G., Hernando C.E., Danelle K.,
... Mas P. (2013) LNK genes integrate light and clock signaling networks at the
core of the Arabidopsis oscillator. Proceedings of the National Academy of
Sciences of the United States of America 110, 12120-12125.

Ruthenburg A.J., Li H., Patel D.J. & Allis C.D. (2007) Multivalent engagement of
chromatin modifications by linked binding modules. Nature Reviews. Molecular
Cell Biology 8, 983-994.

Schroeder D.F., Gahrtz M., Maxwell B.B., Cook R.K., Kan J.M., Alonso J.M., ...
ChoryJ. (2002) De-etiolated 1 and damaged DNA binding protein 1 interact to
regulate arabidopsis photomorphogenesis. Current Biology 12, 1462-1472.

Seo PJ. & Mas P. (2014) Multiple layers of posttranslational regulation refine
circadian clock activity in Arabidopsis. The Plant Cell 26, 79-87.

Diurnal chromatin modification signature 2569

Servet C., Benhamed M., Latrasse D., Kim W., Delarue M. & Zhou D.X. (2008)
Characterization of a phosphatase 2C protein as an interacting partner of the
histone acetyltransferase GCNS in Arabidopsis. Biochimica et Biophysica Acta
— Gene Regulatory Mechanisms 1779, 376-382.

Shahbazian M.D. & Grunstein M. (2007) Functions of site-specific histone acety-
lation and deacetylation. Annual Review of Biochemistry 76, 75-100.

Shu H., Nakamura M., Siretskiy A., Borghi L., Moraes I., Wildhaber T, ...
Hennig L. (2014) Arabidopsis replacement histone variant H3.3 occupies pro-
moters of regulated genes. Genome Biology 15, R62.

Song H.R. & Noh Y.S. (2012) Rhythmic oscillation of histone acetylation and
methylation at the arabidopsis central clock loci. Molecules and Cells 34,
279-287.

Stratmann T. & Més P. (2008) Chromatin, photoperiod and the Arabidopsis circa-
dian clock: a question of time. Seminars in Cell and Developmental Biology 19,
554-559.

Streb S. & Zeeman S.C. (2012) Starch metabolism in Arabidopsis. Arabidopsis
Book 10, e0160.

Thurman R., Rynes E. & Humbert R. (2012) The accessible chromatin landscape
of the human genome. Nature 489, 75-82.

Van Damme D., De Rybel B., Gudesblat G., Demidov D., Grunewald W., De
Smet L, ... Russinova E. (2011) Th Arabidopsis o Aurora kinases function in
formative cell division plane orientation e. The Plant Cell 23, 4013-4024.

Van Zanten M., Tessadori F., Peeters A.J.M. & Fransz P. (2012) Shedding light on
large-scale chromatin reorganization in Arabidopsis thaliana. Molecular Plant
5, 583-590.

Weimer A.K., Demidov D., Lermontova I., Beeckman T. & Van Damme D. (2016)
Aurora kinases throughout plant development. Trends in Plant Science 21, 69-79.

Wu K., Tian L., Malik K., Brown D. & Miki B. (2000) Functional analysis of HD2
histone deacetylase homologues in Arabidopsis thaliana. The Plant Journal 22,
19-27.

Wu K., Tian L., Zhou C., Brown D. & Miki B. (2003) Repression of gene expres-
sion by Arabidopsis HD2 histone deacetylases. The Plant Journal 34, 241-247.

Zhou D.X. (2009) Regulatory mechanism of histone epigenetic modifications in
plants. Epigenetics 4, 15-18.

Received 26 April 2016; received in revised form 26 July 2016; accepted
for publication 27 July 2016

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Supporting Information 1: PDF document with Tables S1-S14
and Figures S1-S11 with descriptions in the corresponding table
headers and figure legends.

Supporting Information 2: Table with genes with differentially
modified chromatin between EOD and EON in the replicate
union and intersect in the SOW and SWD experiment.

Supporting Information 3: Table with genes with significantly
differential expression between EOD and EON in the SOW
and the SWD experiment and between SOW and SWD.

© 2016 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd., 39, 2557-2569


http://www.r-project.org
http://www.r-project.org

