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Abstract

This thesis consists of two parts investigating topics from discrete mathemat-
ics with computer science motivation.

In the first part we study a problem in the analysis of discrete functions,
which we call same-set hitting. Analysis of discrete functions is the study of
functions f : Ωn → R for a finite input alphabet Ω. An important part of
this field is the analysis of Boolean functions f : {0, 1}n → {0, 1}. It dates
back to the beginnings of the 20th century and has found many applications
across computer science and mathematics.

Our problem is motivated by connections to hypercontractivity (which is
an important tool in the analysis of discrete functions), hardness of approxi-
mation and additive combinatorics. It can be stated as follows:

Let P be a probability distribution over a finite alphabet Ω` with all
` marginals equal. Let X(1), . . . , X(`) be random vectors, where X(j) =
(X(j)

1 , . . . , X
(j)
n ). Furthermore, suppose that for each coordinate i ∈ [n] the

tuples (X(1)
i , . . . , X

(`)
i ) are identically and independently distributed accord-

ing to P. We say that the distribution P is same-set hitting if there ex-
ists a function cP() independent of n such that for every set S ⊆ Ωn with
Pr[X(j) ∈ S] = µ > 0:

Pr
[
X(1) ∈ S ∧ . . . ∧X(`) ∈ S

]
≥ cP(µ) > 0 .

The matter we address is: which probability distributions are same-set
hitting? Our main result answers this question in case ` = 2, as well as when
` > 2 and the distribution P has bounded correlation ρ(P) < 1.

The second part of this work discusses bounds on the value of parallel
repetition of multi-prover games, another problem motivated by hardness of
approximation.

An open problem in the field of parallel repetition concerns the differ-
ence between the games with two provers, for which we know exponentially
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small bounds, and those with three and more provers. In the latter case it is
unknown if general exponential bounds exist.

Exploring the differences between those two cases, and motivated by a
certain connection to the density Hales-Jewett theorem from additive combi-
natorics, we study a different kind of parallel repetition bounds, which depend
only on the number of repetitions and the question set of a game (so-called
forbidden subgraph bounds).

We ask the question: Which question sets admit such a bound that de-
creases exponentially with the number of repetitions?

We demonstrate that because of the connection to the density Hales-Jewett
theorem, exponential forbidden subgraph bounds cannot be established for
certain sets for three and more provers. However, it is not known if the same
holds in case of two provers. This is in contrast to classical bounds, where
(as just mentioned) two-prover exponential bounds are known, but multiple-
prover case is an open problem.

We use the concept of same-set hitting from the first part of the thesis
to obtain some new exponential forbidden subgraph bounds. In particular,
interpreting an r-prover questions set as an r-uniform hypergraph, we get
such bounds for two-prover question sets that have treewidth at most two and
for multi-prover sets that are α-acyclic.



Zusammenfassung

Diese Arbeit besteht aus zwei Teilen, die Themen der diskreten Mathematik
behandeln, welche durch Informatik motiviert sind.

Im ersten Teil untersuchen wir ein Problem in der Analyse diskreter Funk-
tionen, das wirGleichemengetreffen nennen. Die Analyse diskreter Funktionen
befasst sich mit Funktionen f : Ωn → R über einem endlichen Eingabealpha-
bet Ω. Ein wichtiger Teil dieses Gebiets ist die Analyse Boolescher Funktionen
f : {0, 1}n → {0, 1}. Dieses Feld reicht zurück zu den Anfängen des 20. Jahr-
hunderts und fand seither viele Anwendungen in Informatik und Mathematik.

Unser Problem wird durch Beziehungen zu Hyperkontraktivität, einem
wichtigen Werkzeug der Analyse diskreter Funktionen, zur Schwere von Ap-
proximationsproblemen und zur additiven Kombinatorik motiviert. Es kann
folgendermassen gestellt werden:

Sei P eine Wahrscheinlichkeitsverteilung über einem endlichen Alphabet
Ω`, wobei alle ` Randverteilungen gleich sind. Seien X(1), . . . , X(`) mit X(j) =
(X(j)

1 , . . . , X
(j)
n ) zufällige Vektoren, so dass für Koordinaten i ∈ [n] die Tupel

(X(1)
i , . . . , X

(`)
i ) entsprechend der Verteilung P unabhängig identisch verteilt

sind. Wir sagen, dass die Verteilung P gleichemengetreffend ist, wenn es eine
Funktion cP() gibt, die unabhängig von n ist, so dass für jede Menge S ⊆ Ωn
mit Pr[X(j) ∈ S] = µ > 0 gilt:

Pr
[
X(1) ∈ S ∧ . . . ∧X(`) ∈ S

]
≥ cP(µ) > 0 .

Dabei betrachten wir die folgende Fragestellung: welche Verteilungen sind
gleichemengetreffend? Unser Hauptresultat beantwortet diese Frage für den
Fall ` = 2, sowie wenn ` > 2 und die Verteilung P begrenzte Korrelation
ρ(P) < 1 hat.

Der zweite Teil dieser Arbeit betrachtet Schranken für den Wert paralleler
Wiederholung von Multibeweiserspielen, ein weiteres Problem, das durch die
Schwere von Approximationsproblemen motiviert wird.
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Ein ungelöstes Problem des Bereichs der paralleler Wiederholung betrifft
den Unterschied zwischen Spielen mit zwei Beweisern, für welche exponentiell
kleine Schranken bekannt sind, und diesen mit drei und mehr Beweisern. Für
letztere ist die Existenz genereller exponentieller Schranken nicht bekannt.

Um die Unterschiede dieser beiden Fälle zu erforschen, und motiviert durch
eine bestimmte Beziehung zum Density Hales-Jewett Satz aus der additiven
Kombinatorik, untersuchen wir eine andere Art von Schranken für parallele
Wiederholung, die nur von der Anzahl der Wiederholungen und der Frage-
menge des Spieles abhängen (sogenannte Schranken verbotener Teilgraphen).

Wir interessieren uns dafür, welche Fragemengen eine solche Schranke ha-
ben, die exponentiell mit der Anzahl der Wiederholungen sinkt.

Wir zeigen, dass auf Grund der Verbindung zum Density Hales-Jewett
Satz, exponentielle Schranken verbotener Teilgraphen für gewisse Mengen im
Fall von drei und mehr Beweisern nicht existieren können. Jedoch ist nicht
bekannt, ob das auch für zwei Beweiser geht. Das ist im Gegensatz zu klas-
sischen Schranken, für die (wie oben erwähnt) im Fall von zwei Beweisern
exponentielle Schranken bekannt sind, aber der Fall von mehreren Beweisern
ungelöst ist.

Wir benutzen das Konzept des Gleichemengetreffens aus dem ersten Teil
dieser Arbeit, um einige neue exponentielle Schranken verbotener Teilgra-
phen zu zeigen. Insbesondere, weil man eine Fragemenge für r Beweiser als
einen r-uniformen Hypergraphen interpretieren kann, zeigen wir entsprechen-
de Schranken für Fragemengen für zwei Beweiser, die Baumweite höchstens
zwei haben, sowie für Fragemengen für mehrere Beweiser, die α-azyklisch sind.
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Chapter 1

Introduction

This thesis consists of two parts. The first part (Chapter 2) discusses a prop-
erty of discrete probability distributions called same-set hitting. In the second
part (Chapter 3) we apply related techniques to the problem of parallel repe-
tition of multi-prover games.

In the two following sections we give respective introductions to those
two topics. Section 1.1 discusses same-set hitting and Section 1.2 considers
parallel repetition.

1.1 Same-Set Hitting
1.1.1 Background

The analysis of Boolean and discrete functions is a well established field at
the intersection of discrete mathematics and theoretical computer science. It
concerns itself with the study of Boolean functions f : {0, 1}n → {0, 1} and,
more broadly, discrete functions f : Ωn → R for a finite alphabet Ω. In
particular, it analyzes various aspects of behavior of those functions when
their inputs are sampled from different probability distributions.

The idea of studying Boolean functions in the context of computer science
is usually credited to Nakashima [Nak35], Shannon [Sha37] and Shestakov
[She38]. Arguably the most famous tool of the analysis of Boolean functions,
the discrete Fourier expansion, was introduced by Walsh [Wal23] and Paley
[Pal32] with a motivation arising from the study of L2([0, 1]) space in math-
ematical analysis.

A very important concept in the analysis of discrete functions is the in-
fluence of a function f : Ωn → R on a given coordinate i ∈ [n] := {1, . . . , n}.
The influence is a non-negative value that indicates how much impact the i-th
coordinate has on the value of a function. It was discovered independently
multiple times in the contexts of law and social sciences [Pen46, Ban65, Col71].
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2 Introduction

In particular, Banzhaf [Ban65] used it to argue that a certain local voting sys-
tem in the US gave zero influence to some of the involved municipalities. It
was first considered in the computer science setting by Ben-Or and Linial
[BL85].

The methods of the analysis of discrete functions have led to many im-
pressive applications, including the famous Arrow’s theorem [Arr50] on the
impossibility of a perfect voting system, the hardness of approximation of
3-SAT results by Håstad [Hås01] and non-trivial lower bounds on the maxi-
mum influence of a function given by the theorem of Kahn, Kalai and Linial
[KKL88]. For an extensive introduction to the field together with historical
notes (on which this short overview is mostly based) we refer to the textbook
by O’Donnell [O’D14].

The theory of hypercontractivity is a powerful tool that belongs to the
analysis of discrete functions. The original hypercontractivity theorem (for
the uniform distribution over Boolean space {0, 1}n) has a rather compli-
cated history [Bon70, Nel73, Gro75, Bec75] and there exist multiple follow-up
works extending it to more alphabets and probability distributions and sharp-
ening the bounds in the theorem [Tal94, Ole03, Wol07]. Hypercontractivity
has found many applications in theoretical computer science, notably for the
aforementioned KKL theorem, as well as for approximability results using
semi-definite programs (e.g., [ARV09, KV15]).

It turns out that hypercontractivity has a dual theory called reverse hy-
percontractivity. It was first proved by Borell [Bor82], but expanded only
recently [MOR+06, MOS13]. It has already found applications, for exam-
ple to the non-interactive correlation distillation [MOR+06] which deals with
the problem of agreeing on a shared random bit in the presence of noise, to
a quantitative version of Arrow’s theorem [Mos12] or to inapproximability
results for certain types of hypergraph colorings [GL15].

The precise theorem statements for hypercontractivity and reverse hy-
percontractivity are somewhat technical and require introducing several con-
cepts first. In short, those theorems are inequalities between different p-norms
of certain discrete functions (for details see Appendix A, in particular Sec-
tions A.4 and A.8). However, there is a simple corollary of reverse hyper-
contractivity that is elementary to state. Furthermore, the applications we
mentioned use this corollary rather than the full theorem. We call the prop-
erty of probability distributions given by this corollary set hitting. However,
not every distribution is set hitting. In the first part of this thesis, we intro-
duce a weaker (but still useful) property, which is exhibited by a broader class
of discrete distributions: same-set hitting.



1.1 Same-Set Hitting 3

1.1.2 Basic example

To obtain some intuition on the problem we are studying, consider the follow-
ing example. For a set S ⊆ {0, 1, 2}n, define its measure as µ(S) := |S|/3n.
We pick a random vector X = (X1, . . . , Xn) uniformly from {0, 1, 2}n, and
then sample another vector Y = (Y1, . . . , Yn) such that, for each i indepen-
dently, coordinate Yi is picked uniformly in {Xi, Xi + 1 (mod 3)}. Our goal
is to show that there exists a function c : (0, 1)→ (0, 1) such that for every n
and every S ⊆ Ωn with µ(S) = µ,

Pr[X ∈ S ∧ Y ∈ S] ≥ c(µ) > 0 (1)

holds. In particular, the probability in (1) is bounded away from 0 by an
expression which depends only on µ and not on n.

1.1.3 Set hitting and same-set hitting

More generally, let Ω be a finite alphabet. We consider `-step probability
distributions over Ω, that is distributions P over Ω` for some ` ≥ 2, where we
think of subsequent coordinates as steps in a random process.

Furthermore, assume we are given n ∈ N. We consider ` vectors X(1),

. . . , X(`), where X(j) = (X(j)
1 , . . . , X

(j)
n ) such that for every i ∈ [n], the `-

tuple (X(1)
i , . . . , X

(`)
i ) is sampled according to P, independently of the other

coordinates i′ 6= i (see Figure 2.1 for an overview of the notation).
We say that a distribution P is set hitting1 if for every µ ∈ (0, 1] there

exists c(µ) ∈ (0, 1] such that for every `-tuple of sets S(1), . . . , S(`) ⊆ Ωn with
Pr[X(j) ∈ S(j)] ≥ µ for every j ∈ [`] we have

Pr
[
X(1) ∈ S(1) ∧ . . . ∧X(`) ∈ S(`)

]
≥ c(µ) .

As we already mentioned, set hitting turns out to be a useful property in
the context of some applications [MOR+06, GL15]. Therefore, it makes sense
to ask which probability distributions are set hitting. It is easy to see that not
every distribution has this property. For example, since in the distribution
from Section 1.1.2 we have P(0, 2) = 0, we can take S := {x : x1 = 0} and
T :=

{
y : y1 = 2

}
. This gives us Pr[X ∈ S] = Pr[Y ∈ T ] = 1/3 and, at the

same time,

Pr [X ∈ S ∧ Y ∈ T ] = 0 .

1 The definition we use later is a bit more general (but more difficult to read), see
Section 2.1.2.
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It is easy to extend this example to any distribution that (informally speak-
ing) does not have a full support. It turns out that this is the only obstacle,
and the proof is an easy application of reverse hypercontractivity by Mossel,
Oleszkiewicz and Sen [MOS13]:

Theorem 1.1 (see Lemma 8.3 in [MOS13]). A probability space P is set
hitting if and only if:

min
x(1)∈supp(X(1)

i
),

...,

x(`)∈supp(X(`)
i

)

P(x(1), . . . , x(`)) > 0 , (2)

where supp(X) denotes the support of a random variable X.

Even though a distribution given in Section 1.1.2 is not set hitting, one
could still hope for the following, weaker, but still meaningful property:

We say that P is same-set hitting if for every µ ∈ (0, 1] there exists c(µ) ∈
(0, 1] such that for every single set S ⊆ Ωn with Pr[X(j) ∈ S] ≥ µ we have:

Pr
[
X(1) ∈ S ∧ . . . ∧X(`) ∈ S

]
≥ c(µ) . (3)

In the following, we address the question: which distributions P are same-
set hitting? We achieve full characterisation for ` = 2 and answer the question
affirmatively for a class of distributions with ` > 2.

1.1.4 Our contributions

We present the original contributions of this thesis to same-set hitting. Most
of them are contained in [HHM16]. We need a couple more definitions first.

We say that an `-step probability distribution P over an alphabet Ω has
equal marginals if for every j ∈ [`] and every x ∈ Ω:

Pr[X(1)
i = x] = . . . = Pr[X(j)

i = x] = . . . = Pr[X(`)
i = x] .

As explained in Section 2.2.4, same-set hitting is interesting only for distri-
butions with equal marginals. Whenever we discuss such distributions, we
assume w.l.o.g that Ω is equal to the support of the marginal.

Let us also define:

α(P) := min
x∈Ω
P(x, . . . , x) ,

β(P) := min
x(1),...,x(`)∈Ω

P(x(1), . . . , x(`)) .

Below we present our contributions in four related subareas:
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Two steps

Observe that α(P) > 0 is a necessary condition for same-set hitting. Indeed,
if P(x∗, . . . , x∗) = 0 for some x∗ ∈ Ω, then S := {x : x1 = x∗} is a constant-
measure set with

Pr
[
X(1) ∈ S ∧ . . . ∧X(`) ∈ S

]
= 0 .

In Section 2.4 (Theorem 2.29 and Corollary 2.30) we show that in case of
two steps this condition is also sufficient. Namely, we show that a two-step
probability distribution with equal marginals P is same-set hitting if and only
if α(P) > 0. This provides a full classification of same-set hitting for two-step
distributions.

Note that if β(P) > 0, then same-set hitting follows from Theorem 1.1.
The case β(P) = 0, in particular concerning the probability space from Sec-
tion 1.1.2, is our original contribution.

Multiple steps

In a general case of an `-step probability distribution with equal marginals,
it is still clear that α(P) > 0 is necessary. However, it remains open if it is
sufficient.

We provide the following partial results. Firstly, by an inductive argument
based on the two-step theorem, in Section 2.5 (Theorem 2.43) we show that
multi-step distributions induced by Markov chains are same-set hitting.

Secondly, in Sections 2.2 and 2.3 (Theorem 2.10) we prove that P is same-
set hitting if α(P) > 0 and its correlation ρ(P) is smaller than 1. Intuitively
(but not quite correctly), the opposite condition ρ(P) = 1 means that for
some step j the value of X(j)

i is deterministic given values of all other steps
X

(1)
i , . . . , X

(j−1)
i , X

(j+1)
i , . . . , X

(`)
i .

Formally, the condition ρ(P) = 1 is equivalent to the following: there exist
j ∈ [`], S ⊆ Ω, T ⊆ Ω`−1 such that S, T 6= ∅, S 6= Ω, and

X
(j)
i ∈ S ⇐⇒

(
X

(1)
i , . . . , X

(j−1)
i , X

(j+1)
i , . . . , X

(`)
i

)
∈ T ,

in other words we can partition Ω and Ω`−1 into two non-empty pairs that
are fully correlated with each other.

For example, taking Ω := Z3 with three steps and the distribution P uni-
form over {000, 111, 222, 012, 120, 201}, one can see that ρ(P) = 1 by taking j
to be the first step, S := {0} and T := {00, 12}. On the other hand, the space
from Section 1.1.2 has ρ(P) < 1. For the full definition of ρ(P), see Definition
2.8.
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As a matter of fact, Theorem 2.10 is our main result, with the two-step
and Markov theorems relying on it. Section 2.2 contains the proof sketch and
the discussion of the assumptions of the theorem. We give the full proof in
Section 2.3.

The proof of Theorem 2.10 relies on an adapted version of the low-influence
theorem from [Mos10]. This theorem in turn is based on a refined version
of invariance principle, which is another important tool in the analysis of
discrete functions. The landmark application of the invariance principle is the
“Majority is stablest” theorem [MOO10], which in turn gives the optimality
of the Goemans-Williamson approximation algorithm for Max-Cut under the
unique games conjecture [GW95, KKMO07].

The relation between the theorem in [Mos10] and our modified version
is explained in Section 2.2.3. The full proof of the low-influence theorem is
attached for completeness in Appendix A.

Finally, in Section 2.8 we explore the conjecture that α(P) > 0 and equal
marginals are sufficient for same-set hitting, even when ρ(P) = 1. We are
unable to prove the general result, but we provide a toy version that establishes
same-set hitting for dictators, linear functions and thresholds.

Set hitting for functions with no large Fourier coefficients

The methods developed here also allow to obtain lower bounds on the prob-
ability of hitting multiple sets. Specifically, in Section 2.6 (Theorem 2.45) we
show that if ρ(P) < 1, then a distribution P is set hitting for functions with
Ω(1) expectation and o(1) largest Fourier coefficient.

Polynomial same-set hitting

We also consider a stronger notion of polynomial same-set hitting, where we
require c(µ) from the bound (3) to be at least µC for some C ≥ 0.

The bounds that [MOS13] obtain when proving Theorem 1.1 actually im-
ply that all distributions that are set hitting are also polynomially set hit-
ting. However, our method of establishing same-set hitting gives much worse
bounds: they are triply exponentially small in case of the multi-step theorem.

With that respect we provide the following contribution: In Section 2.7
(Theorem 2.51) we show how to obtain polynomial same-set hitting for all
symmetric two-step distributions, i.e., the ones where P(x, y) = P(y, x).

1.1.5 Related work

Understanding set hitting by a number of consecutive steps of a process has
been of intense study also in additive combinatorics (where almost always
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ρ = 1).
For example, a well-studied case are random arithmetic progressions. Let

Z be a finite additive group and ` ∈ N. Then, we can define a distribution
PZ,` of random `-step arithmetic progressions in Z. Specifically, for every
x, r ∈ Z we set:

PZ,`(x, x+ r, x+ 2r, . . . , x+ (`− 1)r) := 1/|Z|2 .

Some of the distributions PZ,` can be shown to be same-set hitting using
the hypergraph regularity lemma:

Theorem 1.2 ([RS04], [RS06], [Gow07], cf. Theorem 11.27, Proposition 11.28
and Exercise 11.6.3 in [TV06]). If |Z| is coprime to (`−1)!, then PZ,` is same-
set hitting.

This follows a long line of work, started by Szemerédi lemma [Sze75], its
proof by Furstenberg using the ergodic theorem [Fur77] as well as finite group
and multidimensional versions, see, e.g., [Rot53, FK91, Gow01].

One might conjecture that α(P) > 0 is the sole sufficient condition for
same-set hitting. Unfortunately, the techniques used to prove Theorem 1.2
do not seem to extend easily to less symmetric spaces. This suggests that
proving the conjecture fully in ρ = 1 case might be a difficult undertaking.

The case of ρ < 1 has also been studied in the context of extremal com-
binatorics and hardness of approximation. In particular, Mossel [Mos10] uses
the invariance principle to prove that if ρ(P) < 1, then P is set hitting for
low-influence functions. We use this result to establish Theorem 2.10. Addi-
tionally, Theorem 2.45 can be seen as a strengthening of [Mos10].

Furthermore, Austrin and Mossel [AM13] establish the result equivalent
to Theorem 2.45 assuming in addition to ρ(P) < 1 also that the steps of P
are pairwise independent (they also prove results for the case ρ(P) = 1 with
pairwise independence but these involve only bounded degree functions).

Finally, we note that another relevant paper in the case of ` = 2 and
symmetric P is by Dinur, Friedgut and Regev [DFR08], who give a charac-
terization of non-hitting sets. However, due to a different framework, their
results are not directly comparable to ours.

Although we do not have a direct application, it is conceivable that our
work might be useful in inapproximability. For example, our theorem is re-
lated to the proof of hardness for rainbow colorings of hypergraphs by Gu-
ruswami and Lee [GL15]. In particular, it is connected to their Theorem 4.3
and partially answers their Questions C.4 and C.6.
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1.2 Parallel Repetition

1.2.1 Multi-prover games

An r-prover game is a protocol, in which r provers have a joint objective of
making another entity, the verifier, accept. The execution of such a game
looks as follows: the verifier first samples r questions q(1), . . . , q(r) ∈ Q(1) ×
. . . × Q(r). Those questions are sampled uniformly from some question set
Q ⊆ Q(1) × . . .×Q(r).

Then, she sends the questions to the provers: the j-th prover receives q(j)

and sends back an answer a(j) (from a finite answer alphabet) that depends
only on q(j). Finally, the verifier accepts or rejects based on the evaluation of
a verification predicate V (q(1), . . . , q(r), a(1), . . . , a(r)).

A strategy (S(1), . . . ,S(r)) for the provers consists of r functions, the j-th
of which maps questions to answers for the j-th prover. The value of a game
is

val(G) := max
S(1),...,S(r)

Pr
[
V
(
q(1), . . . , q(r),S(1)(q(1)), . . . ,S(r)(q(r))

)
= 1
]
,

where the maximum is over all strategies and the probability over the uniform
choice of q(1), . . . , q(r) ∈ Q. A game G is called trivial if val(G) = 1.

A formal definition is provided in Section 3.1.1. One might consider al-
lowing other distributions over a question set Q than the uniform one. This
would not make much difference in our setting, as discussed in Section 3.1.4.

1.2.2 Parallel repetition

The n-fold parallel repetition Gn of an r-prover game G is a game where the
verifier samples n independent question tuples, sends n questions to each
prover, receives n answers from each prover, and accepts if all n instances of
the verification predicate for G accept.

Since the provers can play an optimal strategy for G independently in
each coordinate, it is easy to see that val(Gn) ≥ val(G)n, in particular if G is
trivial, then Gn is trivial as well. However, since the i-th answer of a prover
can depend on all of his questions, as opposed to just the i-th one, it is possible
that val(Gn) attains a higher value.

As a simple example, in Section 3.1.2 we show a family of r-prover games
with val(Gr) = val(G) = 1/2.

The question, some aspects of which we address in this thesis, is how
strong this phenomenon can be for a non-trivial game. In particular, does the
value val(Gn) have to converge to 0 as n goes to infinity and, if yes, what is
the rate of convergence.
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1.2.3 Background

Two-prover games in the context of theoretical computer science were first
introduced by Ben-Or, Goldwasser, Kilian and Wigderson [BGKW88]. Ex-
tensive works on their parallel repetition were produced. Here we present only
the ones that are most relevant to this thesis. For a more extensive survey we
refer to [Fei95] and [Raz10].

Fortnow, Rompel and Sipser [FRS88] were the first to treat the value of
two-prover repeated games by incorrectly claiming val(Gn) = val(G)n. This
was followed by an errata [FRS90] showing an example with val(G2) > val(G)2.

One important motivation for showing that the value of a repeated two-
prover game decreases fast with the number of repetitions is for proving NP-
hardness of approximation. Roughly speaking, one can think of an instance of
an optimization problem as a two-prover game G, where val(G) corresponds to
the value of the instance normalized to [0, 1]. Then, assuming it is computa-
tionally hard to distinguish between instances with value 1 and with value 1−ε
for some small ε > 0, the parallel repetition can be used to show that it is also
hard to distinguish between values 1 and δ, where δ � 1− ε. This is because
the n-fold repetition maps trivial games to trivial games, but (hopefully) de-
creases the value of non-trivial games. A famous example of an application
of this technique is due to Håstad [Hås01].

The most important parallel repetition upper bound for two-prover games
discovered by Raz [Raz98] and improved by Holenstein [Hol09] gives

val(Gn) ≤ exp
(
−Ω

(
ε3n/ log

∣∣A∣∣)) (4)

for a two-prover game G with val(G) = 1− ε and answer set A = A(1) ×A(2).
This bound, as well as numerous others that depend on the same param-
eters (e.g., [Rao11, BRR+09]), is usually proved by employing information
theory. In the multi-prover case, such a bound is known for free games (i.e.,
those, where the questions to the provers are sampled independently, see,
e.g., [CWY15]). However, the only known fully general bound is by Verbitsky
[Ver96]:

val(Gn) ≤ ωDHJ
r (n) , (5)

where G is a non-trivial game with the question set of size r, and ωDHJ
r (n)

is the threshold from the famous density Hales-Jewett theorem [FK91] from
additive combinatorics (see Section 3.1.3 for details):

ωDHJ
r (n) := maximum measure of a subset of [r]n

without a combinatorial line.
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ωDHJ
r (n) is known to go to 0 as n goes to infinity, but only very slowly.

For example, we have ωDHJ
2 (n) = Θ(1/

√
n) and 1/ exp(

√
logn) ≤ ωDHJ

3 (n) ≤
1/
√

log∗ n.
Furthermore, it was shown [HHR16] that the inequality (5) is sometimes

tight for three and more provers. It is open if it is ever tight in the case of
two provers.

If the answer was positive, it would constitute an interesting difference
between two and more provers. One could hope that this sheds some light on
why bound like (4) seems to be harder to prove for multiple provers. However,
it should be noted that even the positive answer does not logically preclude (4)
from being true in the multi-prover case (since (4) and (5) are incomparable
with each other).

This potential difference between two- and multiple-prover cases is a moti-
vation for our research in the second part of this thesis. We consider so-called
forbidden subgraph bounds, discussed in the section below.

1.2.4 Forbidden subgraph bounds

We are interested in upper bounds on val(Gn) that depend only on the ques-
tion set Q and the number of repetitions n. Let ωQ(n) := maxG val(Gn),
where the maximum is over all non-trivial games G with question set2 Q. We
say that the question set Q admits parallel repetition if limn→∞ ωQ(n) = 0.
Furthermore, we will say that Q admits exponential parallel repetition if there
exists CQ < 1 such that

ωQ(n) ≤ (CQ)n .

We will be interested in which Q admit exponential parallel repetition.
Note that if one proved that all two-prover question sets admit exponential
parallel repetition, it would mean that (5) can never be tight in the two-prover
case (since ωDHJ

2 (n) ≥ Ω(1/
√
n)).

The bounds on ωQ(n) are called forbidden subgraph bounds, with the
name explained in [FV02].

1.2.5 Our contributions

We present the original contributions of this thesis in the area of parallel
repetition. They consist of some positive and negative results on exponen-
tial parallel repetition for different question sets Q and are mostly contained
in [HHR16].

2 Note that the number of provers r is implicitly determined by Q.
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We note here that such a set Q for an r-prover game can be naturally
interpreted as an r-uniform, r-partite hypergraph. In particular, for a two-
prover game it can be thought of as a bipartite simple graph.

On the positive side, in Section 3.2 (Theorem 3.21) we define a class of
hypergraphs that are constructible by conditioning and prove that they admit
exponential parallel repetition.

The construction and the proof are inspired by results of Chapter 2. In
particular, one of the main ingredients in the proof consists in establishing of
same-set hitting of a certain probability distribution.

Based on this, in Section 3.3 (Theorem 3.36) we show that all bipartite
graphs with treewidth at most two are constructible and therefore admit ex-
ponential parallel repetition. This is an improvement over previous results
[Ver95, Wei13] that showed exponential parallel repetition for trees and cy-
cles.

Furthermore, in Section 3.4 (Theorem 3.42) we prove that all multi-prover
question hypergraphs that are α-acyclic admit parallel repetition. α-acyclicity
is a generalization of the notion of graph acyclicity and therefore this result
can be seen as a generalization of the exponential parallel repetition for trees
[Ver95]. This is a considerable improvement over previous best bound in this
case, which was (5). We are not aware of any previous results of this kind in
the multi-prover setting, except for free games.

As for the negative results, in Section 3.5 (Theorem 3.55) we use the
previously mentioned equivalence of parallel repetition with the density Hales-
Jewett theorem [HHR16] to conclude that there exist question sets for three
and more provers that do not admit exponential parallel repetition. We also
use this result to construct an interesting family of multi-prover games with
good lower bounds on their parallel repetition value.

It remains open if all two-prover question sets admit exponential parallel
repetition. In Section 3.6 (Theorem 3.59) we show that at least our notion
of graph constructability is not enough to prove it. We do this by exhibiting
a specific bipartite graph on 12 vertices which is not constructible by con-
ditioning. The proof is computer-assisted and turns out to be unexpectedly
complicated. We explain where the difficulty lies in Section 3.6.1.

We note that even when we generalize previous work, our proofs do not
seem to be generalizations of earlier ones, but rather they establish a gen-
uinely new technique inspired by the work presented in Chapter 2. Finally,
we observe that where previous work is available, our bounds are mostly
quantitatively worse. This seems to be a trade-off for the generality of our
method.
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1.2.6 Related work

Verbitsky [Ver96] used the density Hales-Jewett theorem to show that every
question set, regardless of the number of provers, admits parallel repetition.
This result is shown for completeness in Section 3.1.3.

As concerns the exponential parallel repetition, Cai, Condon and Lipton
[CCL92] showed it for free games (their proof is for the two-prover case, but
using a result on hypergraphs by Erdős [Erd64] it generalizes to multiple
provers), with further works [Fei91, Pel95] improving the bounds.

Less is known for non-free games: Verbitsky [Ver95] proved exponential
parallel repetition for two-prover games when the question set is a tree and
Weissenberger [Wei13] for a cycle3.

There is little work on multi-prover case. An exponential bound like
(4) for free games is considered folklore and there are some results in re-
lated models of games with entangled and no-signaling strategies, see, e.g.,
[CWY15, BFS14]. Furthermore, exponential parallel repetition for so called
anchored multi-prover games is shown by Bavarian, Vidick and Yuen [BVY15].

Most of the work done on parallel repetition lower bounds is based on
two-prover examples by Feige and Verbitsky [FV02] and Raz [Raz11] with
little known in the multi-prover case.

1.3 Preliminaries

In this section we introduce basic preliminaries and notation used throughout
the thesis.

Perhaps unfortunately for the reader, many of our results feature doubly-
indexed collections of elements. We adopt the following conventions:

• Most of the time we consider two dimensions, one of which corresponds
to n independent coordinates. The other one can denote, e.g., r provers
or ` steps of a random process. Most of the time n is meant to be large
compared to the other dimension.

• We index the n-dimension with i in the subscript and the other dimen-
sion with j in parentheses in the superscript. We denote aggregation
over i by underline and over j by overline. For example:

V = (V (1), . . . , V (j), . . . , V (r)) = (V 1, . . . , V i, . . . , V n)

V (j) = (V (j)
1 , . . . , V

(j)
i , . . . , V (j)

n )

V i = (V (1)
i , . . . , V

(j)
i , . . . , V

(r)
i )

3 As a matter of fact, his result is even stronger: it gives an upper bound that depends
only on val(G), but not on question or answer alphabet size.
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• We call the element collections aggregated over i (like v(j)) vectors and
the element collections aggregated over j (like vi) tuples.

We let N := {0, 1, 2, . . .}. For k ∈ N>0, we let [k] := {1, . . . , k}. For sets
A, B we sometimes write A∪B as A ∪̇B to emphasize that A∩B = ∅. For an
event E we denote its indicator function by 1E . The powerset of X is denoted
by 2X . In accordance with the computer science tradition, by log we mean
the logarithm of base two.

Let X be a set and n ∈ N>0. For a vector x ∈ Xn and y ∈ X we define
the y-weight of x as wy(x) := |{i ∈ [n] : xi = y}|.

For a random variable X, its variance is Var[X] := E
[
(X − E[X])2]. For

random variables X, Y their covariance is

Cov[X,Y ] := E [(X − E[X])(Y − E[Y ])] .

For a discrete random variable Y over a support Ω and a random variable
X we define another random variable E[X | Y ] that is coupled with Y in the
natural way, i.e., whenever Y = y ∈ Ω, we have E[X | Y ] = E[X | Y = y].
We also define Var[X | Y ] by analogy.

Theorem 1.3 (Chernoff-Hoeffding bound, Theorem 1 in [Hoe63]). Let ran-
dom variable X1, . . . , Xn be i.i.d. in {0, 1}, with E[Xi] = p and let ε > 0.
Then,

Pr
[

n∑
i=1

Xi ≥ n(p+ ε)
]
≤ exp

(
−2ε2n

)
.
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Chapter 2

Same-Set Hitting

2.1 Notation and Preliminaries

We start with introducing necessary preliminaries: Section 2.1.1 introduces
our notation, while Sections 2.1.2 to 2.1.4 give the definitions we will work
with throughout this chapter.

2.1.1 Notation

We will now introduce our setting and notation specific to same-set hitting.
We refer the reader to Figure 2.1 for an overview.

We always assume that we have n independent coordinates. In each coor-
dinate i we pick ` values X(j)

i for j ∈ [`] = {1, . . . , `} at random using some
distribution. Each value X(j)

i is chosen from the same fixed set Ω, and the
distribution of the tuple Xi = (X(1)

i , . . . , X
(`)
i ) of values from Ω` is given by

a distribution P.
This gives us values X(j)

i for i ∈ {1, . . . , n} and j ∈ {1, . . . , `}. Thus, we
have ` vectors X(1), . . . , X(`), where X(j) = (X(j)

1 , . . . , X
(j)
n ) represents the

j-th step of the random process. In case ` = 2, we might call our two vectors
X and Y instead.

For reasons outlined in Section 2.2.4 we assume that all of X(1)
i , . . . , X

(`)
i

have the same marginal distribution, which we call π. We assume that Ω is
the support of π.

Even though it is not necessary, for clarity of the presentation we assume
that each coordinate Xi = (X(1)

i , . . . , X
(j)
i , . . . , X

(`)
i ) has the same distribu-

tion P.

We consistently use index i to index over the coordinates (from [n]) and j
to index over the steps (from [`]).

15
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X X1 X2 . . . Xi
. . . Xn

X(1) X
(1)
1 X

(1)
2 · · · X

(1)
i

· · · X
(1)
n

X(2) X
(2)
1 X

(2)
2 · · · X

(2)
i

· · · X
(2)
n

...
...

...
...

...
X(j) X

(j)
1 X

(j)
2 · · · X

(j)
i

· · · X
(j)
n

...
...

...
...

...
X(`) X

(`)
1 X

(`)
2 · · · X

(`)
i

· · · X
(`)
n

Tuples Xi are
i.i.d. according to P. Each
of the ` marginals of P
is π.

Vectors Xi are
distributed
(dependently)
according to
π := πn.

Distributed
according to
P := Pn.

α(P) := min
x∈Ω
P(x, x, . . . , x)

ρ(P) : See Definition 2.8

X
(j)
i ∈ Ω

X(j) ∈ Ω := Ωn

Xi ∈ Ω := Ω`

X ∈ Ω := Ωn·`

S ⊆ Ω

Figure 2.1: Naming of the random variables in the general case. The columns
Xi are distributed i.i.d according to P. Each X(j)

i is distributed according to
π. The overall distribution of X is P.
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As visible in Figure 2.1, we denote the aggregation across the coordinates
by the underline and the aggregation across the steps by the overline.

For example, we write Ω = Ωn, Ω = Ω`, P = Pn and X = (X1, . . . , Xn)
= (X(1), . . . , X(`)).

We sometimes call P a tensorized, multi-step probability distribution
as opposed to a tensorized, single-step distribution π and single-coordinate,
multi-step distribution P.

Furthermore, we extend the index notation to subsets of indices or steps.
For example, for S ⊆ [`] we define X(S) to be the collection of random vari-
ables

{
X(j) : j ∈ S

}
.

We also use the set difference symbol to mark vectors with one element
missing, e.g., X\j := (X(1), . . . , X(j−1), X(j+1), . . . , X(`)).

One should think of ` and |Ω| as constants and of n as large. We aim to
get bounds which are independent of n.

2.1.2 Formal definitions

In this section we state the definitions necessary for the formal statements of
our theorems. The definitions of set hitting and same-set hitting provided here
are slightly more general (though actually equivalent) than the ones presented
in the introduction.

Definition 2.1. Let µ, δ ∈ (0, 1]. We say that an `-step distribution P
is (µ, δ)-set hitting, if, whenever functions f (1), . . . , f (`) : Ω → [0, 1] satisfy
E[f (j)(X(j))] ≥ µ for every j ∈ [`], we have:

E

∏̀
j=1

f (j)(X(j))

 ≥ δ . (6)

We call P set hitting if for every µ ∈ (0, 1] there exists δ ∈ (0, 1] such that
P is (µ, δ)-set hitting. ♦

Definition 2.2. Let µ, δ ∈ (0, 1]. We say that an `-step distribution P
is (µ, δ)-same-set hitting, if, whenever a function f : Ω → [0, 1] satisfies
E[f(X(j))] ≥ µ for every j ∈ [`], we have:

E

∏̀
j=1

f(X(j))

 ≥ δ . (7)

We call P same-set hitting if for every µ ∈ (0, 1] there exists δ ∈ (0, 1] such
that P is (µ, δ)-same-set hitting. ♦
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Definition 2.3. A distribution P is polynomially set hitting (resp. polynomi-
ally same-set hitting) if there exists C ≥ 0 such that P is (µ, µC)-set hitting
(resp. same-set hitting) for every µ ∈ (0, 1]. ♦

Definition 2.4. Let P be an `-step distribution and j ∈ [`]. The j-th
marginal of P is defined as:

P(j)(x) :=
∑

x(1),...,x(j−1),x(j+1),...,x(`)∈Ω

P(x(1), . . . , x(j−1), x, x(j+1), . . . , x(`))

for x ∈ Ω. ♦

Definition 2.5. We say that P has equal marginals, if P(j) = P(j′) for every
j, j′ ∈ [`]. ♦

As mentioned, for same-set hitting we will always make the assumption
that P has equal marginals. We then denote the marginal distribution by π.
We refer to Section 2.2.4 for a discussion of this requirement.

Definition 2.6. Let P be an `-step distribution. We let

α(P) := min
x∈Ω
P(x, . . . , x) ,

β(P) := min
x(1),...,x(`)∈Ω

P(x(1), . . . , x(`)) .

♦

Remark 2.7. If α(P) = 0 then P is not same-set hitting. To see this, suppose
that x∗ is such that P(x∗, x∗, . . . , x∗) = 0. We set f to be the indicator
function of S := {(x1, . . . , xn) | x1 = x∗}. Clearly, the probability in (7)
equals 0. ♦

2.1.3 Correlation

In case ` > 2, the bound we obtain will depend on the correlation of the
distribution P. This concept was used before in [Mos10].

Definition 2.8. Let P be a single-coordinate distribution and let A,B ⊆ [`].
We define the respective correlation as

ρ(P, A,B) := sup
{

Cov[f(X(A)), g(X(B))]
∣∣∣ f : Ω(A) → R, g : Ω(B) → R,

Var[f(X(A))] = Var[g(X(B))] = 1
}
.

The correlation of P is ρ(P) := maxj∈[`] ρ (P, {j}, [`] \ {j}). ♦
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2.1.4 Influence

A crucial notion in the proof of Theorem 2.10 is the influence of a function.
It expresses the average variance of a function, given that all but one of its n
inputs have been fixed to random values:

Definition 2.9. Let X be a random vector over alphabet Ω and f : Ω → R
be a function and i ∈ [n]. The influence of f on the i-th coordinate is:

Infi(f(X)) := E
[
Var

[
f(X) | X\i

]]
.

The (total) influence of f is Inf(f(X)) :=
∑n
i=1 Infi(f(X)). ♦

Note that the influence depends both on the function f and the distribution
of the vector X.

2.2 Multi-Step Theorem: Statement, Proof Sketch and
Discussion

This is the first of two sections that address Theorem 2.10. We first state the
full theorem formally, then present a proof sketch of a simplified version and
finally discuss the assumptions and how the theorem from [Mos10] is used in
the proof.

2.2.1 Statement

Theorem 2.10. Let Ω be a finite set and P a distribution over Ω` in which
all marginals are equal. Let tuples Xi = (X(1)

i , . . . , X
(`)
i ) be i.i.d. according

to P for i ∈ {1, . . . , n}.
Then, for every function f : Ωn → [0, 1] with E[f(X(j))] = µ > 0:

E

∏̀
j=1

f(X(j))

 ≥ c (α(P), ρ(P), `, µ) , (8)

where the function c() is positive whenever α(P) > 0 and ρ(P) < 1.
Furthermore, whenever α(P) > 0 and ρ(P) < 1, there exists some D(P) >

0 (more precisely, D depends on α, ρ and `) such that if µ ∈ (0, 0.99], one
can take:

c(α, ρ, `, µ) := 1/ exp
(

exp
(

exp
(

(1/µ)D
)))

. (9)

Corollary 2.11. Let P be an `-step distribution with equal marginals. If
α(P) > 0 and ρ(P) < 1, then P is same-set hitting.
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2.2.2 Proof sketch

In this section we briefly outline the proof of Theorem 2.10. For simplicity, we
assume that the probability space is the one from Section 1.1.2, i.e., (Xi, Yi)
are distributed uniformly in {00, 11, 22, 01, 12, 20}. Additionally, we assume
that we are given a set S ⊆ {0, 1, 2}n with µ(S) = |S|/3n > 0, so that we
want a bound of the form

Pr [X ∈ S ∧ Y ∈ S] ≥ c(µ) > 0 .

The proof consists of three steps. Intuitively, in the first step we deal with
dictator sets, e.g., Sdict = {x : x1 = 0}, in the second step with linear sets,
e.g., Slin = {x :

∑n
i=1 xi (mod 3) = 0} and in the third step with threshold

sets, e.g., Sthr = {x : |{i : xi = 0}| ≥ n/3}.

Step 1 — making a set resilient

We call a set resilient if Pr[X ∈ S] does not change by more than a (small)
multiplicative constant factor whenever conditioned on (Xi1 = xi1 , . . . , Xis =
xis) on a constant number s of coordinates.

In particular, Sdict is not resilient (because conditioning on X1 = 0 in-
creases the measure of the set to 1), while Slin and Sthr are.

If a set is not resilient, using P(x, x) = 1/6 for every x ∈ Ω, one can find
an event E :≡ Xi1 = Yi1 = xi1 ∧ . . . ∧ Xis = Yis = xis such that for some
constant ε > 0 we have Pr[E ] ≥ ε and, at the same time, Pr[X ∈ S | E ] ≥
(1 + ε) Pr[X ∈ S].

Since each such conditioning increases the measure of the set S by a
constant factor, S must become resilient after a constant number of itera-
tions. Furthermore, each conditioning induces only a constant factor loss in
Pr[X ∈ S ∧ Y ∈ S].

After we are done, one can see that since no conditioning can increase the
measure of S to (1 + ε)µ, it must also be that no conditioning can decrease
this measure to (1− ε′)µ for some other (constant) ε′ > 0.

Step 2 — eliminating high influences

In this step, assuming that S is resilient, we condition on a constant number
of coordinates to transform it into two sets S′ and T ′ such that:

• Both of them have low influences on all coordinates.

• Both of them are supersets of S (after the conditioning).
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The first property allows us to apply low-influence set hitting from [Mos10]
to S′ and T ′. The second one, together with the resilience of S, ensures that
µ(S′), µ(T ′) ≥ (1− ε)µ(S).

In fact, it is more convenient to assume that we are initially given two
resilient sets S and T .

Assume w.l.o.g. that Infi(T ) ≥ τ for some i ∈ [n]. Given z ∈ {0, 1, 2}, let

Tz := {(x1, . . . , xi−1, xi+1, . . . , xn) : (x1, . . . , xn) ∈ T ∧ xi = z} .

Note that Tz is a subset of Ωn−1 rather than Ωn. Therefore, the sets Tz
can have non-empty intersections (while they would form a partition of T if
considered as subsets of Ωn). Furthermore, let T ∗z := Tz ∪ Tz+1 (mod 3).

The reduction is achieved by observing that there exists z ∈ {0, 1, 2} such
that, after conditioning on Xi = Yi = z, the sum µ(Sz) + µ(T ∗z ) is strictly
greater than the sum µ(S) + µ(T ):

Pr[X ∈ Sz | Xi = z] + Pr[Y ∈ T ∗z | Yi = z] ≥ Pr[X ∈ S] + Pr[Y ∈ T ] + c(τ) .
(10)

We choose to delete the coordinate i and replace S with S′ := Sz and T
with T ′ := T ∗z . Equation (10) implies that after a constant number of such
operations, neither S nor T has any remaining high-influence coordinates.

Crucially, with respect to same-set hitting our set replacement is essentially
equivalent to conditioning on Xi = z and Yi = z ∨ Yi = z + 1 (mod 3).
Therefore, each operation induces only a constant factor loss in Pr[X ∈ S∧Y ∈
T ].

Step 3 – applying low-influence theorem from [Mos10]

Once we are left with two low-influence, somewhat-large sets S and T , we
obtain Pr[X ∈ S ∧ Y ∈ T ] ≥ c(µ) > 0 by a straightforward application of a
version of the theorem from [Mos10]. The details are discussed in the next
section.

2.2.3 Low influence theorem from [Mos10]

A crucial ingredient in the proof of Theorem 2.10 is a slightly modified version
of Theorem 1.14 from [Mos10]. The theorem says that ρ(P) < 1 implies that
the distribution P is set hitting for low-influence functions:

Theorem 2.12. Let X be a random vector distributed according to (Ω,P)
such that P has equal marginals, ρ(P) ≤ ρ < 1 and minx∈Ω π(x) ≥ α > 0.
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Then, for all ε > 0, there exists τ := τ(ε, ρ, α, `) > 0 such that if functions
f (1), . . . , f (`) : Ω→ [0, 1] satisfy

max
i∈[n],j∈[`]

Infi(f (j)(X(j))) ≤ τ , (11)

then, for µ(j) := E[f (j)(X(j))] we have

E

∏̀
j=1

f (j)(X(j))

 ≥
∏̀
j=1

µ(j)

`/(1−ρ2)

− ε . (12)

Furthermore, there exists an absolute constant C ≥ 0 such that for ε ∈
(0, 1/2] one can take:

τ :=
(

(1− ρ2)ε
`5/2

)C ` ln(`/ε) ln(1/α)
(1−ρ)ε

. (13)

Theorem 2.12 is very similar to a subcase of Theorem 1.14 from [Mos10].
We make a stronger claim with one respect: in [Mos10] the influence threshold
τ depends among others on:

α∗ := min
(x(1),...,x(`))∈supp(P)

P(x(1), . . . , x(`)) , (14)

while our bound depends only on the smallest marginal probability:

α = min
x∈Ω

π(x) . (15)

The main differences to the proof in [Mos10] are:

• [Mos10] proves the base case ` = 2 and then obtains the result for
general ` by an inductive argument (cf., Theorem 6.3 and Proposition
6.4 in [Mos10]). Since the induction is applied to functions f (1) and
g :=

∏`
j=2 f

(j), where g is viewed as a function on a single-step space,
the information on the smallest marginal is lost in the case of g. To avoid
this, our proof proceeds directly for general `. However, the structure
and the main ideas are really the same as in [Mos10].

• In hypercontractivity bounds for Gaussian and discrete spaces (The-
orem A.42 and Lemma A.43) we are slightly more careful to obtain
bounds which depend on α rather than α∗ (as defined in (15) and (14)).
This better bound is then propagated in the proof of the invariance
principle.
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• Another change is unrelated to the dependency on the smallest marginal.
For the Gaussian reverse hypercontractivity bound (Theorem A.76) in-
stead of using the result of Borell ([Bor85], Theorem 5.1 in [Mos10]) for
a bound expressed in terms of the cdf of bivariate Gaussians, we utilize
the results of [CDP15] and [Led14] for a more convenient bound of the

form
(∏`

j=1 µ
(j)
)c(ρ,`)

.

The proof can be generalized in several directions, but for the sake of
clarity we present the simplest version sufficient for our purposes.

The (somewhat long) proof of Theorem 2.12 can be found in Appendix A.

2.2.4 Assumptions of the theorem

Equal distributions: unnecessary

In Theorem 2.10 we assume that the tuples (X(1)
i , . . . , X

(`)
i ) are distributed

identically for each i. It is natural to ask if it is indeed necessary.
This is not the case. Instead, we made this assumption for simplicity of

notation and presentation. If one is interested in statements which are valid
where coordinate i is distributed according to Pi, one simply needs to assume
that there are α > 0 and ρ < 1 such that α(Pi) ≥ α and ρ(Pi) ≤ ρ.

Equal marginals: necessary

We quickly discuss the case when P does not have equal marginals. Recall that
β(P) = minx(1),...,x(`)∈Ω P(x(1), . . . , x(`)). If β(P) > 0, then, by Theorem 1.1,
P is set hitting, and therefore also same-set hitting.

In case β(P) = 0, we exhibit an example which shows that the expec-
tation E

[∏`
j=1 f(X(j))

]
can be exponentially small in n. For concreteness,

we set ` := 2 and Ω := {0, 1} and consider P which picks uniformly among
{00, 01, 11}. We then set:

S1 = {x : x1 = 1 ∧ |w1(x)− n/3| ≤ 0.01n} (16)
S2 = {x : x1 = 0 ∧ |w1(x)− 2n/3| ≤ 0.01n} , (17)

recalling that w1(x) is the number of ones in x.
For large enough n, a concentration bound implies that Pr[X(1) ∈ S1] >

1
3 − 0.01 and Pr[X(2) ∈ S2] > 1

3 − 0.01. Hence, if we set f to be the indicator
function of S := S1 ∪ S2, the assumption of Theorem 2.10 holds. However,
because of the first coordinate we have Pr[∀j : X(j) ∈ S] ≤ Pr[X(1) ∈ S2 ∨
X(2) ∈ S1], and the right hand side is easily seen to be exponentially small.

It is not difficult to extend this example to any distribution with β(P) = 0
that does not have equal marginals.
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The case ρ = 1: open question

Theorem 2.10 requires that ρ < 1 in order to give a meaningful bound. It
is unclear whether this is an artifact of our proof or if it is necessary. In
particular, consider the three step distribution P which picks a uniform triple
from {000, 111, 222, 012, 120, 201}. One easily checks that ρ(P) = 1 and that
all marginals are uniform. We do not know if this distribution is same-set
hitting.

However, the method of our proof breaks down. We illustrate the reason
in the following lemma.

Lemma 2.13. For every n > n0 there exist three sets S(1), S(2), and S(3)

such that for the distribution P as described above we have

• ∀j : Pr[X(j) ∈ S(j)] ≥ 0.49.

• Pr[∀j : X(j) ∈ S(j)] = 0.

• The characteristic functions 1S(j) of the three sets all satisfy:

max
i∈[n]

Infi(1S(j)(X(j)))→ 0 as n→∞ .

While the lemma does not give information about whether P is same-set
hitting, it shows that our proof fails (since the analogue of Theorem 2.12 fails).

Proof. We let

S(1) := {x(1) : x(1) has less than n/3 twos} ,
S(2) := {x(2) : x(2) has less than n/3 ones} ,
S(3) := {x(3) : x(3) has less than n/3 zeros} .

Whenever we pick X(1), X(2), X(3), the number of twos in X(1) plus the num-
ber of ones in X(2) plus the number of zeros in X(3) always equals n (there
is a contribution of one from each coordinate). All three properties are now
easy to check.

2.3 Proof of Multi-Step Theorem

The goal of this section is a proof of Theorem 2.10.
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2.3.1 Properties of the correlation

Recall Definition 2.8. We now give an alternative characterization of ρ(P, {j},
[`] \ {j}) which will be useful later. For this, we first define certain random
process and an associated Markov chain.

Definition 2.14. Let P be a single-coordinate distribution and let j ∈
[`]. We call a collection of random variables (X\j = (X(1), . . . , X(j−1),
X(j+1), . . . , X(`)), Y, Z) a double sample on step j from P if:

• X is first sampled according to P, ignoring step j.

• Assuming that X\j = x\j , the random variables Y and Z are then
sampled independently of each other according to the j-th step of P
conditioned on X\j = x\j .

Sometimes we will omit X\j from the notation and refer as double sample to
(Y,Z) alone. ♦

An equivalent interpretation of a double sample is that after sampling
(X\j , Y ) according to P we “forget” about Y and sample Z again from the
same distribution (keeping the same value of X\j). Therefore, both (X\j , Y )
and (X\j , Z) are distributed according to P.

If we let

K(y, z) := Pr[Z = z|Y = y] = E
[
Pr
[
Z = z|Y = y,X

\j]]
,

we see that

π(y)K(y, z) = Pr[Y = y ∧ Z = z] = Pr[Y = z ∧ Z = y] = π(z)K(z, y) , (18)

which means that K is the kernel of a Markov chain that is reversible with
respect to π (see e.g., [LPW08, Section 1.6]). Thus, K has an orthonormal
eigenbasis with eigenvalues 1 = λ1(K) ≥ λ2(K) ≥ · · · ≥ λ|Ω|(K) ≥ −1, (e.g.,
[LPW08, Lemma 12.2]). We will say that K is the Markov kernel induced by
the double sample (Y, Z).

A standard fact from the Markov chain theory expresses λ2(K) in terms
of covariance of functions f ∈ L2(Ω, π):

Lemma 2.15 (Lemma 13.12 in [LPW08]). Let Y, Z be two consecutive steps
of a reversible Markov chain with kernel K such that both Y and Z are dis-
tributed according to a stationary distribution of K. Then,

λ2(K) = max
f :Ω→R

E[f(Y )]=0
Var[f(Y )]=1

E [f(Y )f(Z)] . (19)
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Lemma 2.16. Let P be a single-coordinate distribution and let (X\j , Y, Z)
be a double sample from P that induces a Markov kernel K. Then,

λ2(K) = ρ(P, {j}, [`] \ {j})2 .

Proof. For readability, let us write X instead of X\j .
Consider first two functions f and g as in Definition 2.8 and assume with-

out loss of generality that E[f(Y )] = E[g(X)] = 0. Of course, we also assume
that Var[f(Y )] = Var[g(X)] = 1 as specified by Definition 2.8. We will show
that

Cov
[
f(Y ), g(X)

]2 ≤ λ2(K) , (20)

and that there exists a choice of f and g that achieves equality in (20).
Let h(x) := E[f(Y )|X = x] and observe that

E[f(Y )f(Z)] =
∑
x,y,z

Pr[X = x] Pr[Y = y | X = x] Pr[Z = z | X = x]f(y)f(z)

= E[h(X)2] . (21)

Now, by Cauchy-Schwarz, (21) and Lemma 2.15 we see that

Cov[f(Y ), g(X)]2 = E[f(Y )g(X)]2 = E[h(X)g(X)]2 ≤ E[h(X)2] E[g(X)2]
= E[h(X)2] = E[f(Y )f(Z)] ≤ λ2(K) .

The equality is obtained for f that maximizes the right-hand side of (19) and
g := c · h for some c > 0.

For later use, we make the following implication of Lemma 2.16.

Corollary 2.17. Let (Y,Z) be a double sample on step j from a single-
coordinate distribution (Ω,P) with ρ(P) = ρ. Then, for every function f :
Ω→ R,

E[(f(Y )− f(Z))2] ≥ 2(1− ρ2) Var[f(Y )]. (22)

Proof. Assume w.l.o.g. that E[f(Y )] = 0. By Lemmas 2.15 and 2.16,

E
[
(f(Y )− f(Z))2

]
= 2 (Var[f(Y )]− E[f(Y )f(Z)]) ≥ 2(1− ρ2) Var[f(Y )] .
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2.3.2 Reduction to the resilient case

In this section, we will prove that we can assume that the function f is resilient
in the following sense: whenever we fix a constant number of inputs to some
value, the expected value of f remains roughly the same.

The intuitive reason for this is simple: if there is some way to fix the co-
ordinates which changes the expected value of f , we can fix these coordinates
such that the expected value increases, which only makes our task easier (and
can be done only a constant number of times).

We first make the concept of “fixing” a subset of the coordinates formal.

Definition 2.18. Let f : Ω → [0, 1] be a function. A restriction R is a
sequence R = (r1, . . . , rn) where each ri is either an element ri ∈ Ω, or the
special symbol ri = ?.

The coordinates with ri = ? are unrestricted, the coordinates where ri ∈ Ω
are restricted. The size of a restriction is the number of restricted coordinates.

A restriction R operates on a function f as

(Rf)(x1, . . . , xn) := f(y1, . . . , yn) (23)

where yi = ri if ri 6= ? and yi = xi otherwise. ♦

Next, we define what it means for a function to be resilient: restrictions
do not change the expectation too much.

Definition 2.19. Let X be a random vector distributed according to a
(single-step) distribution (Ω, π). A function f : Ω → [0, 1] is ε-resilient up to
size k if for every restrictionR of size at most k we have that (1−ε) E[f(X)] ≤
E[Rf(X)] ≤ (1 + ε) E[f(X)]. ♦

The function is upper resilient if the expectation cannot increase too much.

Definition 2.20. Let X be a random vector distributed according to a distri-
bution (Ω, π). A function f : Ω→ [0, 1] is ε-upper resilient up to size k if for
every restriction R of size at most k we have that E[Rf(X)] ≤ (1+ε) E[f(X)].

♦

Resilience and upper resilience are equivalent up to a multiplicative factor
which depends only on k and the smallest probability in the marginal distri-
bution α(π). Intuitively the reason is that if there is some restriction which
decreases the 1-norm, then some other restriction on the same coordinates
must increase the 1-norm somewhat.
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Lemma 2.21. Suppose that a function f is ε-upper resilient up to size k.
Then, f is ε′-resilient up to size k, where ε′ = ε/(α(π))k.

Proof. Fix a subset S ⊆ [n] of the coordinates of size |S| ≤ k. We consider a
random variable R whose values are restrictions with restricted coordinates
being exactly S. The elements ri ∈ Ω for i ∈ S are picked according to the
distribution π. We let p(R′) be the probability a certain restriction R′ is
picked, and get

E[f(X)] =
∑
R′

p(R′) · E [R′f(X)] , (24)

where we sum over all restrictions R′ that restrict exactly the coordinates in
S.

Let now R∗ be one of the possible choices for R. Then,

p(R∗) · E[R∗f(X)] = E[f(X)]−
∑
R′ 6=R∗

p(R′) · E[R′f(X)]

≥ E[f(X)]− (1 + ε)
∑
R′ 6=R∗

p(R′) · E[f(X)]

= (1− (1 + ε)(1− p(R∗))) · E[f(X)]
≥ (p(R∗)− ε) · E[f(X)] ,

and hence:

E[R∗f(X)] ≥
(

1− ε

p(R∗)

)
· E[f(X)] .

Since p(R∗) ≥ α(π)k we get the bound for the restriction R∗, which was
chosen arbitrarily.

Lemma 2.22. Let X be a random vector distributed according to a distri-
bution with equal marginals (Ω,P) and f : Ω → [0, 1] be a function with
E[f(X(1))] = µ > 0.

Let ε ∈ (0, 1], k ∈ N. Then, there exists a restriction R such that g := (Rf)
is ε-resilient up to size k and

E[g(X(1))] ≥ µ , (25)

E

∏̀
j=1

f(X(j))

 ≥ c · E
∏̀
j=1

g(X(j))

 , (26)

where c := exp
(
− 2 ln 1/µ

α2k·ε

)
with α := α(P) > 0.
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In particular, c depends only on ε, k, α(P) and µ (requiring ε, α(P), µ > 0).

Proof. Let ε′ := αk · ε and choose a restriction R such that E[Rf(X(1))] ≥
E[f(X(1))] · (1 + ε′). We repeat this, replacing f with (Rf), until there is no
such restriction.

Since the expectation of f only increases, we get (25). Finally, once the
process stops, the resulting function is ε-resilient due to Lemma 2.21 (note
that α(π) ≥ α).

It remains to argue that (26) holds for the resulting function. Note first
that the expectation cannot exceed 1, and hence the process will be repeated
at most p := ln(1/µ)/ ln(1 + ε′) ≤ 2 ln(1/µ)

ε′ times. Therefore, the final restric-
tion R obtained after at most p iterations of the process above is of size at
most pk.

Define g := (Rf) and let E be the event that all strings X(1), . . . , X(`) are
all equal to the value of R in the restricted coordinates of R. We see that

E

∏̀
j=1

f(X(j))

 ≥ E

∏̀
j=1

f(X(j)) · 1(E)

 = E

∏̀
j=1

g(X(j)) · 1(E)


≥ αpk · E

∏̀
j=1

g(X(j))

 .

Finally

αpk ≥ exp
(
−2k ln(1/α) ln(1/µ)

αk · ε

)
≥ exp

(
−2 ln 1/µ
α2k · ε

)
.

2.3.3 Reduction to the low-influence case

We next show that if f is resilient, we can also assume that it has only low
influences. However, this part of the proof actually produces a collection of
functions g(1), . . . , g(`) such that each of them has small influences: it operates
differently on each function. In turn, it is more convenient to do this part of
the proof also starting from a collection f (1), . . . , f (`), as long as all of them
are sufficiently resilient.

As in the previous section, we use restrictions. Here, however, we are only
interested in restrictions of size one. Consequently, we write R[i, a] to denote
the restriction R = (r1, . . . , rn) with ri = a and ri′ = ? for i′ 6= i.

Furthermore, we require a new operator.
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Definition 2.23. Let f : Ω→ [0, 1], i ∈ [n], and fix values y, z ∈ Ω.
We define the operatorM[i, y, z] as

(M[i, y, z]f)(x1, . . . , xn) := max
(
f(x1, . . . , xi−1, y, xi+1, . . . , xn),
f(x1, . . . , xi−1, z, xi+1, . . . , xn)

)
.

♦

The operator M[i, y, z] is useful for two reasons. First, if Infi(f (j)) is
“large”, then E

[
M[i, y, z]f (j)(X(j))

]
≥ E[f (j)(X(j))]+c for some y, z ∈ Ω and

c > 0. This implies that we can use this operator to increase the expectation
of a function unless all of its influences are small. We will prove this property
later.

Second, fix a step j∗ ∈ [`] and assume that for some values x\j∗ =
(x(1), . . . , x(j∗−1), x(j∗+1), . . . , x(`)), y, z ∈ Ω both conditional probabilities
Pr[X(j∗)

i = y | X\j
∗

i = x\j
∗ ] and Pr[X(j∗)

i = z | X\j
∗

i = x\j
∗ ] are “somewhat

large” (larger than some constant). We imagine now that X(\j∗)
i = x\j

∗ and
that we also picked all values X(j∗)

\i = (X(j∗)
1 , . . . , X

(j∗)
i−1 , X

(j∗)
i+1 , . . . , X

(j∗)
n ). We

then hope that X(j∗)
i is picked among y and z such that it maximizes f (j∗).

Since this happens with constant probability, we conclude the following: Sup-
pose we replace f (j∗) with M[i, y, z]f (j∗) and then prove that afterwards
E[
∏
f (j)(X(j))] is large. Then, E[

∏
f (j)(X(j))] was large before.

This second point is formalized in the following lemma:

Lemma 2.24. Let X be a random vector distributed according to (Ω,P).
Fix i ∈ [n], j∗ ∈ [`] and x\j∗ = (x(1), . . . , x(j∗−1), x(j∗+1), . . . , x(`)), y, z ∈ Ω.
Suppose that:

P(x\j
∗
, y) ≥ β , (27)

P(x\j
∗
, z) ≥ β . (28)

Let f (1), . . . , f (`) : Ω→ [0, 1], and for j ∈ [`] define:

g(j) :=
{
R[i, x(j)]f (j) if j 6= j∗,
M[i, y, z]f (j) if j = j∗.

(29)

Then:

E

∏̀
j=1

f (j)(X(j))

 ≥ β · E
∏̀
j=1

g(j)(X(j))

 . (30)
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Proof. We first define a random variable A, which is the value among y and
z which X(j∗)

i needs to take in order to maximize f (j∗). Formally,

A =
{
y if f

(
X

(j∗)
\i , y

)
> f

(
X

(j∗)
\i , z

)
,

z otherwise.
(31)

Consider now the event E which occurs if Xi = (x\j , A). We will use 1(E) to
denote the function which is 1 if event E happens and 0 otherwise. Then, we
get

E

∏̀
j=1

f (j)(X(j))

 ≥ E

∏̀
j=1

f (j)(X(j)) · 1(E)


= E

∏̀
j=1

g(j)(X(j)) · 1(E)


= E

E

∏̀
j=1

g(j)(X(j)) · 1(E)

∣∣∣∣∣∣X\i


= E

∏̀
j=1

g(j)(X(j)) · E
[
1(E)

∣∣∣X\i]


≥ β · E

∏̀
j=1

g(j)(X(j))·


The equality from the first to the second line follows because if the event

E happens, then the functions f (j)(X(j)) and g(j)(X(j)) are equal. From the
third to the fourth line we use that conditioned onX\i the functions g(j)(X(j))
are constant. Finally, the last inequality follows because by (27) and (28), for
every choice of X\i = (X1, . . . , Xi−1, Xi+1, . . . , Xn) event E has probability
at least β.

The obvious idea for the next step would be to find values x\j , y, z such
that E

[
M[i, y, z]f (j∗)(X(j∗))

]
≥ E

[
f (j∗)(X(j∗))

]
+ c and fix them.

Unfortunately, there is a problem with this strategy. To replace f (j∗) with
M[i, y, z]f (j∗), Lemma 2.24 also replaces f (j) with R[i, x(j)]f (j) for j 6= j∗

(and this is required for the proof to work). Unfortunately, it is possible that
E
[
R[i, x(j)]f (j)(X(j))

]
� E

[
f (j)(X(j))

]
. We remark that we cannot use
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that f (j) is resilient here: while f (j) is resilient the first time we condition,
the functionsM[i, y, z]f (j) obtained in the subsequent steps are not resilient
in general, so later steps will not have the guarantee.

Our solution is to pick the values (X\j
∗

, Y, Z) at random, as a double
sample on coordinate j∗ (cf. Definition 2.14). Let:

G(j) :=
{
R[i,X(j)]f (j) if j 6= j∗,
M[i, Y, Z]f (j) if j = j∗.

We will prove that (in expectation over X(\j)
, Y, Z) the sum of expectations∑`

j=1 E[G(j)(X(j))] is greater by a constant than the sum
∑`
j=1 E[f (j)(X(j))].

To argue that the sum of expectations increases, the key part is to show that
E
[
G(j∗)(X(j∗))

]
increases by a constant.

Lemma 2.25. Let (X\j
∗

, Y, Z) be a double sample from a single-coordinate
distribution P.

Let X be a random vector, independent of this double sample and dis-
tributed according to a single-step distribution (Ω, π) such that π is the j∗-th
marginal distribution of P.

Then, for every i ∈ [n] and every function f : Ω→ [0, 1] we have

E [M[i, Y, Z]f(X)] ≥ E[f(X)] + τ(1− ρ2(P)) , (32)

where τ = Infi(f(X)).
Recall that the distribution of (Y,Z) depends on j∗. We do not need to

consider the full multi-step process in this lemma, but when applying it later
we will set X = X(j∗) and f = f (j∗).

Proof. Fix a vector x\i for X\i, and define the function h : Ω → [0, 1] as
h(x) := f(x\i, x). By Corollary 2.17,

E[|h(Y )− h(Z)|] ≥ E[(h(Y )− h(Z))2] ≥ 2(1− ρ2) Var[h(Y )] ,

and hence, averaging over X\i,

E
[∣∣∣f(X\i, Y )− f(X\i, Z)

∣∣∣] ≥ 2(1− ρ2) Infi(f(X\i, Y )) = 2τ(1− ρ2) . (33)

Since Y and Z are symmetric (i.e., they define a reversible Markov chain,
cf. remarks after Definition 2.14) and by (33),

E [(M[i, Y, Z]f − f) (X)] = E
[
max(f(X\i, Y ), f(X\i, Z))− f(X\i, Y )

]
= 1

2 E
[∣∣∣f(X\i, Y )− f(X\i, Z)

∣∣∣] ≥ τ(1− ρ2) ,
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as claimed.

Lemma 2.26. Let a random vector X be distributed according to (Ω,P) and
functions f (1), . . . , f (`) : Ω→ [0, 1]. Let i, j∗ and τ be such that Infi(f (j∗)) ≥
τ ≥ 0 and let ρ(P) ≤ ρ ≤ 1.

Pick a double sample (X(j∗)
, Y, Z) from P and let:

G(j) :=
{
R[i,X(j)]f (j) if j 6= j∗

M[i, Y, Z]f (j∗) if j = j∗.
(34)

Then:

E

∑̀
j=1

E[G(j)(X(j)) | G(j)]

 ≥ ∑̀
j=1

E
[
f (j)(X(j))

]
+ τ · (1− ρ2) . (35)

Note that (34) defines the functions G(j) as random variables which is why
we use capital letters.

Proof. If j 6= j∗ we have

E
[
E[G(j)(X(j)) | G(j)]

]
= E[f (j)(X(j))] , (36)

since the marginal distribution of X(j) is exactly as in the marginal π of P.
Hence, it suffices to show that

E
[
E[G(j∗)(X(j∗)) | G(j∗)]

]
= E

[
M[i, Y, Z]f (j∗)(X(j∗))

]
≥ E[f (j∗)(X(j∗))] + τ(1− ρ2) ,

but this is exactly Lemma 2.25.

Lemma 2.27. Let X be a random vector distributed according to (Ω,P) and
let f (1), . . . , f (`) : Ω→ [0, 1], i ∈ [n], j∗ ∈ [`], Infi(f (j∗)) ≥ τ ≥ 0, ρ(P) ≤ ρ ≤
1.

Then, there exist values x\j∗ = (x(1), . . . , x(j∗−1), x(j∗+1), . . . , x(`)), y, z
such that the functions

g(j) :=
{
R[i, x(j)]f (j) if j 6= j∗

M[i, y, z]f (j) if j = j∗
(37)
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satisfy

∑̀
j=1

E[g(j)(X(j))] ≥
∑̀
j=1

E[f (j)(X(j))] + τ(1− ρ2)/2 , (38)

E

∏̀
j=1

f (j)(X(j))

 ≥ τ(1− ρ2)
2`|Ω|`+1 · E

∏̀
j=1

g(j)(X(j))

 . (39)

While (38) is immediate from Lemma 2.26, we have to do a little bit of
work to guarantee (39).

Proof. Choose (X\j
∗

, Y, Z) as a double sample from P and let G(j) be defined
as in (34).

Define p(x\j∗ , y, z) := Pr[X\j
∗

= x\j
∗
∧ Y = y ∧ Z = z], β := τ(1−ρ2)

2`|Ω|`+1 , an

event E :≡ p(X\j
∗

, Y, Z) < β and a random variable

A :=
∑̀
j=1

E[G(j)(X(j)) | G(j)]− E[f (j)(X(j))] .

By Lemma 2.26, we have E[A] ≥ τ(1− ρ2).
Since there are |Ω|`+1 possible tuples (x\j , y, z), by union bound we have

Pr[E ] ≤ |Ω|`+1β ≤ τ(1 − ρ2)/2` < 1 and hence it makes sense to consider
E[A | ¬E ]. Bearing in mind the above and that A ∈ [−`, `],

E[A | ¬E ] ≥ E[A · 1(¬E)] ≥ E[A]− `Pr[E ] ≥ τ(1− ρ2)/2 .

As a consequence, let us choose (x\j∗ , y, z) such that A ≥ τ(1− ρ2)/2 and
E does not happen. (38) is now immediate, while for (39) observe that ¬E
implies P(X\j

∗

, Y ) ≥ β and P(X\j
∗

, Z) ≥ β and apply Lemma 2.24.

We can now repeat the process from Lemma 2.27 multiple times to get
the result of this section.

Corollary 2.28. Let X be a random vector distributed according to (Ω,P)
with ρ(P) ≤ ρ < 1. Then, for every τ > 0 there exist k ∈ N and β > 0 such
that:

For every ε ∈ [0, 1] and functions f (1), . . . , f (`) : Ω→ [0, 1] such that each
f (j) is ε-resilient up to size k, there exist g(1), . . . , g(`) : Ω → [0, 1] with the
following properties:

1. maxj∈[`] maxi∈[n] Infi(g(j)(X(j))) ≤ τ .



2.3 Proof of Multi-Step Theorem 35

2. E
[∏`

j=1 f
(j)(X(j))

]
≥ β · E

[∏`
j=1 g

(j)(X(j))
]
.

3. For all j ∈ [`]: E[g(j)(X(j))] ≥ (1− ε) E[f (j)(X(j))].

Furthermore, one can take k := b 2`
τ(1−ρ2)c and β :=

(
τ(1−ρ2)
2`|Ω|`+1

)k
.

In particular, both k and β depend only on τ and P (requiring τ > 0 and
ρ(P) < 1).

Proof. We repeat the process from Lemma 2.27, always replacing the col-
lection of functions f (1), . . . , f (`) with g(1), . . . , g(`) until condition 1 is satis-
fied. Since

∑`
j=1 E[f (j)(X(j))] cannot exceed ` and every time it increases by

τ(1− ρ2)/2, we have to do this at most 2`
τ(1−ρ2) times.

The first point is then obvious, and the second point follows immediately
from Lemma 2.27.

Finally, the third point follows because the functions f (j) are all ε-resilient
up to size k, and each of the functions g(j) can be written as a maximum
of restrictions of size at most k of f (j). Since the maximum only increases
expectations, the proof follows.

2.3.4 Finishing the proof

Proof of Theorem 2.10. Let us assume that µ ∈ (0, 0.99], the computations
being only easier if this is not the case. To establish (9), whenever we say
“constant”, in the O() notation or otherwise, we mean “depending only on P
(in particular, on α, ρ, |Ω| and `), but not on µ”.

The proof consecutively applies Lemma 2.22, Corollary 2.28 and Theorem
2.12.

Given f : Ω → [0, 1] with E[f(X(1))] = µ, first apply Lemma 2.22 to f
with ε := 1/2 and k := exp

(
(1/µ)D

)
for a constant D large enough (where

“large enough” will depend on another constant D′ to be defined later). This
gives us a function g : Ω→ [0, 1] such that:

• g is ε-resilient up to size k.

• E[g(X(1))] ≥ µ.

•

E

∏̀
j=1

f(X(j))

 ≥ c · E
∏̀
j=1

g(X(j))

 , (40)
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where:

c = 1/ exp
(

(1/α)2k · 4 ln 1/µ
)
≥ 1/ exp (exp (O (k)) · 4 ln 1/µ)

≥ 1/ exp
(

exp
(

exp
(

(1/µ)O(1)
))
· 4 ln 1/µ

)
≥ 1/ exp

(
exp

(
exp

(
(1/µ)O(1)

)))
.

Next, apply Corollary 2.28. Set g(1) := . . . := g(`) := g and τ :=
1/ exp

(
(1/µ)D

′)
for a constant D′ large enough. We need to check if k

we have chosen satisfies the assumption of Corollary 2.28:

2`
τ(1− ρ2) ≤ O

(
exp

(
(1/µ)D

′))
≤ exp

(
(1/µ)O(1)

)
≤ k .

Therefore, Corollary 2.28 is applicable and yields h(1), . . . , h(`) : Ω → [0, 1]
such that:

• maxj∈[`] maxi∈[n] Infi(h(j)(X(j))) ≤ τ .

• ∀j ∈ [`] : E[h(j)(X(j))] ≥ µ/2.

•

E

∏̀
j=1

g(X(j))

 ≥ β · E
∏̀
j=1

h(j)(X(j))

 , (41)

where:

β =
(
τ(1− ρ2)
2`|Ω|`+1

)k
≥ 1/O

(
exp

(
(1/µ)D

′))k
≥ 1/ exp

(
(1/µ)O(1) · k

)
≥ 1/ exp

(
exp

(
(1/µ)O(1)

))
.

Finally, we need to apply Theorem 2.12. To this end, set:

ε := (µ/2)`
2/(1−ρ2)

/2 ≥ µO(1)

and verify (13):(
(1− ρ2)ε
`5/2

)O( ln(`/ε) ln(1/α)
(1−ρ)ε

)
≥ Ω (ε)(O(1)+ln 1/ε)·O(1/ε)

≥ 1/ exp
(

(O(1) + ln 1/ε)2 ·O (1/ε)
)

≥ 1/ exp
(

(1/ε)O(1)
)
≥ 1/ exp

(
(1/µ)O(1)

)
.
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Hence, from Theorem 2.12:

E

∏̀
j=1

h(j)(X(j))

 ≥ ε/2 ≥ µO(1) . (42)

(40), (41) and (42) put together give:

E

∏̀
j=1

f(X(j))

 ≥ c · β · µO(1) ≥ 1/ exp
(

exp
(

exp
((

(1/µ)O(1)
))))

,

as claimed.

2.4 Proof for Two Steps

In this section we prove the classification of same-set hitting for two-step
probability distributions:

Theorem 2.29. Let Ω be a finite set and P a probability distribution over
Ω2 with equal marginals π. Let pairs (Xi, Yi) be i.i.d. according to P for
i ∈ {1, . . . , n}.

Then, for every f : Ωn → [0, 1] with E[f(X)] = µ > 0:

E[f(X)f(Y )] ≥ c (α(P), µ) , (43)

where the function c() is positive whenever α(P) > 0.

We remark that Theorem 2.29 does not depend on ρ(P) in any way. This
is in contrast to the case ` > 2. To prove Theorem 2.29 we use the multi-step
Theorem 2.10 and then handle the ρ(P) = 1 case by convex decomposition.

Corollary 2.30. A two-step probability distribution with equal marginals P
is same-set hitting if and only if α(P) > 0.

Proof. The “if” part follows from Theorem 2.29. The “only if” can be seen
by taking f to be an appropriate dictator.

Our goal in the rest of this section is to prove Theorem 2.29 assuming
Theorem 2.10.

In the following we will sometimes drop the assumption that Ω is neces-
sarily the support of a probability distribution P. One can check that this
will not cause problems.
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2.4.1 Correlation of a cycle

Assume we are given a support set Ω of size |Ω| = k. Let s ≥ 2, p ∈ (0, 1) and
let (x0, . . . , xs−1) be a pairwise disjoint sequence of xi ∈ Ω.

Definition 2.31. We call a probability distribution C over Ω an (s, p)-cycle
if

C(x, y) =


p/s if x = y = xi for i ∈ {1, . . . , s} ,
(1− p)/s if x = xi ∧ y = x(i+1) mod s for i ∈ {1, . . . , s} ,
0 otherwise.

♦

Lemma 2.32. Let C be an (s, p)-cycle. Then

ρ(C) ≤ 1− 7p(1− p)
s2 .

Proof. Let K be the Markov kernel induced by a double sample on C (K is
the same whether a sample is on the first or the second step, cf. Section 2.3.1).
Observe that

K(y, z) :=
{
p2 + (1− p)2 if y = z = xi,
p(1− p) if y = xi and z = x(i±1) mod s.

Let αk := 2πk
s . One can check that the eigenvalues of K are λ0, . . . , λs−1 with

λk := 1 − 2p(1 − p)(1 − cosαk). This is easiest if one knows the respective
(complex) eigenvectors vk := (1, exp(αkı), . . . , exp((s−1)αkı)) (where ı is the
imaginary unit).

Using cosx ≤ 1 − x2/5 for x ∈ [0, π] and
√

1− x ≤ 1 − x/2 for x ∈ [0, 1]
we obtain that if k > 0, then

√
λk ≤

√
1− 2p(1− p)(1− cosα1) ≤

√
1− 2p(1− p)4π2

5s2 ≤ 1− 7p(1− p)
s2 .

The bound on ρ(C) now follows from Lemma 2.16.

2.4.2 Convex decomposition of P

In this section we show that if a distribution P can be decomposed into a
convex combination of distributions P =

∑r
k=1 β(k)P(k) and each distribution

P(k) is same-set hitting, then also P is same-set hitting.
Since we also need to apply this result in Section 2.7.2, the proof is more

general than otherwise necessary.
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Definition 2.33. Let P be a multi-step, single-coordinate probability distri-
bution with equal marginals and let P =

∑r
k=1 β(k) ·P(k) be its convex decom-

position into r probability distributions, each of them with equal marginals.
For every (z1, . . . , zn) = z ∈ [r]n we let P(z) be the tensorized multi-

step distribution such that its i-th coordinate is distributed independently
according to the distribution P(zi). ♦

Definition 2.34. Let P =
∑r
k=1 β(k) ·P(k) be a convex decomposition of an `-

step distribution with equal marginals into distributions with equal marginals
and let c : [0, 1]→ [0, 1] be a function such that c(µ) > 0 for µ > 0.

We say that a decomposition is c-same-set hitting if, for every function
f : Ω→ [0, 1] and every vector z ∈ [r]n:

E

∏̀
j=1

f
(
X

(j)
(z)

) ≥ c (µ(z)
)
,

where the random vectors X(z) are distributed according to P(z) and

µz := E
[
f
(
X

(1)
(z)

)]
.

♦

It turns out that a distribution that has a same-set hitting convex decom-
position is itself same-set hitting:

Lemma 2.35. Let P be an `-step distribution with equal marginals such that
P has a c-same-set hitting convex decomposition.

Then, P is same-set hitting. In particular, if X is a random vector dis-
tributed according to P, then for every function f : Ω→ [0, 1] with the expec-
tation E

[
f(X(1))

]
= µ > 0:

E

∏̀
j=1

f(X(j))

 ≥ µ/2 · c(µ/2) > 0 . (44)

Furthermore, if c(µ) = µα for some α ≥ 1 we have

E

∏̀
j=1

f(X(j))

 ≥ µα . (45)

Proof. Let us write the relevant decomposition as P =
∑r
k=1 α(k)P(k). The

existence of this decomposition implies that there exists a random vector
Z = (Z1, . . . , Zn) such that:
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• The variables Zi ∈ [r] are i.i.d. with Pr[Zi = k] = α(k).

• For every vector z ∈ [r]n, conditioned on Z = z the random vector X
is distributed according to P(z).

Recall that µ(z) = E[f(X(1)) | Z = z]. Since E[µ(Z)] = E[E[f(X(1)) |
Z]] = E[f(X(1))] = µ, by Markov

Pr
[
µ(Z) ≥ µ/2

]
≥ µ/2 . (46)

Since the decomposition of P is c-same-set hitting, (46) implies

E

∏̀
j=1

f(X(j))

 ≥ µ/2 · c(µ/2) > 0 .

As for (45), we use Jensen’s inequality on function µα:

E

∏̀
j=1

f(X(j))

 = E

E

∏̀
j=1

f(X(j)) | Z


≥ E

[
µα(Z)

]
≥ E

[
µ(Z)

]α = µα .

Definition 2.36. Let P =
∑r
k=1 β(k) ·P(k) be a convex decomposition of an `-

step distribution with equal marginals into distributions with equal marginals.
We say that it is an (α, ρ)-convex decomposition if α(P(k)) ≥ α and

ρ(P(k)) ≤ ρ for every k ∈ [r]. ♦

Lemma 2.37. Let an `-step distribution P with equal marginals have an
(α, ρ)-convex decomposition for some α > 0 and ρ < 1.

Then, for a random vector X distributed according to P and for every
function f : Ω→ [0, 1] with E[f(X(1))] = µ > 0:

E

∏̀
j=1

f(X(j))

 ≥ c(α, ρ, `, µ) > 0 .

Proof. Due to Theorem 2.101, an (α, ρ)-convex decomposition of P is also
c(α, ρ, `, µ)-same-set hitting for some universal function c(). By equation (44)

1 Strictly speaking, Theorem 2.10 requires the distributions to be the same for each
coordinate, which is not the case in our setting. However, this is not a problem, see Section
2.2.4.
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in Lemma 2.35,

E

∏̀
j=1

f(X(j))

 ≥ µ/2 · c(α, ρ, `, µ/2) = c(α, ρ, `, µ) > 0 .

2.4.3 Decomposition of P into cycles

Definition 2.38. Let us consider weighted directed graphs with non-negative
weights over a vertex set Ω. We will identify such a digraph G with its weight
matrix.

We say that such a weighted digraph is regular, if for every vertex the
total weight of the incoming edges is equal to the total weight of the outgoing
edges.

We call a weighted digraph a weighted cycle, if it is a directed cycle over
a subset of Ω with all edges of the same weight w > 0. We call w the weight
of the cycle and number of its edges s the size of the cycle.

We say that a weighted digraph G can be decomposed into r weighted
cycles if there exist weighted cycles C1, . . . , Cr such that G =

∑r
k=1 Ck. ♦

Lemma 2.39. Every regular weighted digraph G over a set Ω of size k can
be decomposed into at most k2 weighted cycles.

Proof. Since the digraph is regular, it must have a cycle. Remove it from the
graph (taking as weight w the minimum weight of the edge on this cycle).

Since the resulting graph is still regular, proceed by induction until the
graph is empty.

At each step at least one edge is completely removed from the graph,
therefore there will be at most k2 steps.

To see that a two-step distribution P can be decomposed into cycles, it
will be useful to take P ′ := P − α · Id and look at it as a weighted directed
graph (Ω,P ′), where P ′ is interpreted as a weight function P ′ : Ω×Ω→ R≥0.

Lemma 2.40. Let P be a two-step distribution with equal marginals over an
alphabet Ω with size t.

Then, P has a convex decomposition P =
∑r
k=1 βkPk such that each Pk

either has support of size 1 or is an (s, p)-cycle with 2 ≤ s ≤ t and p ∈
[α(P)3, 1/2].

Consequently, P has an (α, ρ)-convex decomposition with α := α(P)4 and
ρ := 1− 3α(P)5.
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Proof. Throughout this proof we will treat P as a weight matrix of a digraph.
Since P has equal marginals, this weighted digraph is regular. Use Lemma
2.39 to decompose P−α(P) · Id into weighted cycles, which allows us to write

P = α(P) · Id +
r∑

k=1
Ck ,

where Ck is a weighted cycle with weight wk and size sk and r ≤ t2. Let
βk := min(wk, α(P)/t2) and let Idk be the identity matrix restricted to the
support of Ck. Now we can write P as

P =
(
α(P) · Id−

r∑
k=1

βk Idk

)
+
(

r∑
k=1

sk(wk + βk) · βk Idk +Ck
sk(wk + βk)

)
.

Firstly, (α(P) · Id−
∑r
k=1 βk Idk) can be decomposed into distributions

with support size 1.
As for the other term, note that Ck := βk Idk +Ck

sk(wk+βk) is a probability distribu-
tion that either has support of size 1 (iff Ck has support of size 1) or is an
(s, p)-cycle with 2 ≤ s ≤ t and p = βk/(βk + wk).

If βk = wk, then p = 1/2. If βk < wk, then 1/2 ≥ p = βk/(βk + wk) ≥
βk = α(P)/t2 ≥ α(P)3. Therefore, p ∈ [α(P)3, 1/2], as stated.

Consequently, α(Ck) = p/sk ≥ α(P)4 and, by Lemma 2.32, ρ(Ck) ≥ 1 −
3α(P)5 and, since every (s, p)-cycle has equal marginals, we obtained an (α, ρ)-
convex decomposition of P.

2.4.4 Putting things together

Proof of Theorem 2.29. From Lemmas 2.40 and 2.37.

Remark 2.41. One can see that see that, as in Theorem 2.10, we obtain a
triply exponential explicit bound, i.e, there exists D(α(P)) > 0 such that if
µ ∈ (0, 0.99], then

E [f(X)f(Y )] ≥ 1/ exp
(

exp
(

exp
(

(1/µ)D
)))

.

♦

2.5 Multiple Steps of a Markov Chain

In this section we consider the case where the distribution P is such that the
random variables X(1), X(2), . . . , X(`) form a Markov chain.
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Definition 2.42. Let P be a an `-step distribution with equal marginals and
let X = (X(1), . . . , X(`)) be a random variable distributed according to P.
We say that P is generated by Markov chains2 if for every j ∈ {2, . . . , `} and
x(1), . . . , x(j) ∈ Ω we have

Pr[X(j) = x(j)|X(1) = x(1) ∧ · · · ∧X(j−1) = x(j−1)]
= Pr[X(j) = x(j)|X(j−1) = x(j−1)] .

♦

Observe that since we still require P to have equal marginals, the marginal
π is then simply a stationary distribution of the chain.

In this case, we give a reduction to Theorem 2.29 to prove a bound that
does not depend on ρ(P):

Theorem 2.43. Let Ω be a finite set and P a probability distribution over
Ω` with equal marginals generated by Markov chains. Let tuples Xi = (X(1)

i ,

. . . , X
(`)
i ) be i.i.d. according to P for i ∈ {1, . . . , n}.

Then, for every f : Ωn → [0, 1] with E[f(X(1))] = µ > 0:

E

∏̀
j=1

f(X(j))

 ≥ c (α(P), `, µ) , (47)

where the function c() is positive whenever α(P) > 0.

Proof. Let P be a distribution generated by Markov chains with α := α(P) >
0 and let f : Ω→ [0, 1] with E[f(X(1))] = µ > 0.

The proof is by induction on `. For ` = 2, apply Theorem 2.29 directly.
For ` > 2, define the function g : Ω→ [0, 1] as

g(x) := E
[
f(X(`−1))f(X(`)) | X(`−1) = x

]
= f(x) · E

[
f(X(`)) | X(`−1) = x

]
.

Applying Theorem 2.29 for the distribution of the last two steps,

E[g(X(1))] = E[g(X(`−1))] = E[f(X(`−1))f(X(`))] ≥ c(α, µ) > 0 . (48)

2 Note that our definition allows for different Markov chains in different steps.
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Now we have

E

∏̀
j=1

f(X(j))

 = E

`−2∏
j=1

f(X(j))

 g(X(`−1))

 (49)

≥ E

`−1∏
j=1

g(X(j))

 (50)

≥ c (α, `− 1, c(α, µ)) = c(α, `, µ) > 0, (51)

where (49) holds since P is generated by Markov chains, (50) is due to f ≥ g
pointwise and (51) is an application of the induction and (48).

Remark 2.44. Unfortunately, this proof worsens the explicit bound. One can
check that for a Markov-generated distribution with ` steps the dependence
on µ is a tower of exponentials of height 3(`− 1). ♦

2.6 Local Variance

In this section we state and prove a generalization of the low-influence theorem
from [Mos10]. We assume that the reader is familiar with Fourier coefficients
f̂(σ) and the basics of discrete function analysis, for details see, e.g., Chapter
8 of [O’D14].

[Mos10] shows that ρ(P) < 1 implies that P is set hitting for low-influence
functions. We extend this result to a weaker notion of influence. In particular,
we show that P is set hitting for functions with Ω(1) measure and o(1) largest
Fourier coefficient. The main result of this section is the following:

Theorem 2.45. Let X be a random vector distributed according to an `-step
distribution P with ρ(P) ≤ ρ < 1 and let µ(1), . . . , µ(`) ∈ (0, 1].

There exist k ∈ N and γ > 0 (both depending only on P and µ(1), . . . , µ(`))
such that for all functions f (1), . . . , f (`) : Ω → [0, 1], if E[f (j)(X(j))] = µ(j)

and maxσ:0<|σ|≤k |f̂ (j)(σ)| ≤ γ, then

E

∏̀
j=1

f (j)(X(j))

 ≥ c(P, µ(1), . . . , µ(`)) > 0 . (52)

We remark that for this theorem we do not require equal marginals. In
the rest of the section we prove Theorem 2.45. First, from Corollary 2.28 and
Theorem 2.12 it is easy to establish3 the following:

3 One needs to check that the assumption about equal marginals is not neces-
sary, but that turns out to be the case (the bound in Theorem 2.12 then depends on
minj∈[`],x∈supp(X(j)) π

(j)(x)).
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Theorem 2.46. Let X be a random vector distributed according to an `-step
distribution P with ρ(P) ≤ ρ < 1 and let ε ∈ [0, 1).

Then, for all µ(1), . . . , µ(`) ∈ (0, 1] there exists k(P, ε, µ(1), . . . , µ(`)) ∈ N
such that for all functions f (1), . . . , f (`) : Ω → [0, 1], if E[f (j)(X(j))] = µ(j)

and if f (1), . . . , f (`) are all ε-resilient up to size k, then

E

∏̀
j=1

f (j)(X(j))

 ≥ c(P, ε, µ(1), . . . , µ(`)) > 0 . (53)

Definition 2.47. Let π be a single-step distribution and let f : Ω→ R be a
function. Let S ⊆ [n] with |S| = k. We define f⊆S : Ω→ R as

f⊆S(x) := E[f(xS , XS)] , (54)

where S := [n] \ S, xS is the vector x restricted to coordinates in S, and XS
is a random vector of n−k elements with each coordinate distributed i.i.d. in
π. ♦

A proof of the following claim can be found, e.g., in [O’D14]:

Claim 2.48. Let π be a single-step distribution and f : Ω→ R and S ⊆ [n].
If X is distributed according to π and φ0, . . . , φm−1 form a Fourier basis for
π and f =

∑
σ∈Nn<m

f̂(σ)φσ, then f⊆S =
∑
σ:supp(σ)⊆S f̂(σ)φσ. In particular,

Var
[
f⊆S(X)

]
=

∑
σ:supp(σ)⊆S,

σ 6=0n

∣∣∣f̂(σ)
∣∣∣2 .

Lemma 2.49. Let X be distributed according to a single-step distribution π
with minx∈Ω π(x) ≥ α and let ε ∈ [0, 1], k ∈ N.

Then, for every f : Ω→ R≥0 with E[f(X)] = µ, if for every S ⊆ [n] with
|S| = k it holds that

Var
[
f⊆S(X)

]
≤ αk(εµ)2 ,

then f is ε-resilient up to size k.

Proof. We prove the contraposition.
If f is not ε-resilient up to size k, by definition of f⊆S it implies that there

exist S ⊆ [n] with |S| = k and x such that∣∣f⊆S(x)− E[f⊆S(X)]
∣∣ > εE[f⊆S(X)] = εµ .
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But this gives

Var
[
f⊆S(X)

]
≥ αk

(
f⊆S(x)− E[f⊆S(X)]

)2
> αk(εµ)2 ,

as required.

Using Lemma 2.49 we can weaken the assumption in Theorem 2.46 such
that it only requires that all Fourier coefficients of degree at most k are small:

Proof of Theorem 2.45. By Theorem 2.46, there must be some number k :=
k(P, µ(1), . . . , µ(`)) such that if f (1), . . . , f (`) are all 1/2-resilient up to size k,
then (52) holds. Therefore, it is sufficient to show that the functions f (j) are
indeed 1/2-resilient up to size k if the parameter γ is chosen small enough.

By Claim 2.48, if maxσ:0<|σ|≤k |f̂ (j)(σ)| ≤ γ, then for any S ⊆ [n] with
|S| = k we have Var

[
(f (j))⊆S(X(j))

]
≤ 2kγ2. With that in mind it is easy to

choose γ such that Lemma 2.49 can be applied to each f (j).

2.7 Polynomial Same-Set Hitting by Convexity

The property of set hitting establishes a lower bound on E
[∏`

j=1 f
(j)(X(j))

]
that is independent of n. However, it might be the case that this bound is very
small, perhaps far from the best possible one. In particular, our bound from
Theorem 2.10 is triply exponentially small, and the bound from Theorem 1.2
is not even primitive recursive.

Recall the concept of polynomial set hitting (Definition 2.3). As a matter
of fact, [MOS13] (cf. Theorem 1.1) establishes that all distributions that are
set hitting are also polynomially set hitting. We suspect that this is also the
case for two-step same-set hitting, but this remains an open problem.

In this section we present two techniques to establish polynomial same-
set hitting. We start with a simple, folklore method that works for some
symmetric distributions. Then, we harness reverse hypercontractivity from
[MOS13] to handle all two-step, symmetric (i.e., with P(x, y) = P(y, x))
distributions.

2.7.1 “Meet in the middle”

We make an illustration of the first technique by applying it for binary dis-
tributions:

Theorem 2.50. Fix p ∈ [0, 1/2]. Let P be a distribution over Ω = {0, 1} such
that Xi is uniform and Yi = 1−Xi with probability p and Xi = Yi otherwise.
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Then, for every f : Ωn → [0, 1] with E[f(X)] = µ we have

E [f(X)f(Y )] ≥ µ2 .

Proof. Let q := (1 −
√

1− 2p)/2. Let Zi, Ai, Bi ∈ {0, 1} such that Zi is
uniform in {0, 1} and Ai and Bi be independent of each other with Pr[Ai =
1− Zi] = Pr[Bi = 1− Zi] = q. Since Ai and Bi are uniform and

Pr[Ai 6= Bi] = 2q(1− q) = p ,

the distribution of (Ai, Bi) is the same as of (Xi, Yi). Since conditioned on
Zi, the random variables Ai and Bi are independent of each other, and by
Jensen’s inequality,

E [f(A)f(B)] = E [E [f(A)f(B) | Z]] = E
[
E
[
f(A)2 | Z

]]
≥ E

[
E [f(A) | Z]2

]
≥ E [E [f(A) | Z]]2 = E [f(A)]2 = µ2 .

Unfortunately, it is not generally true that a random variable like Zi can
be defined. In particular, this idea already does not work for the Boolean
space defined above with the choice of p ∈ (1/2, 1].

2.7.2 Symmetric two-step distributions

In this section we prove polynomial same-set hiting for two-step symmetric
distributions:

Theorem 2.51. Let a two-step probability distribution P be symmetric, i.e.,
P(x, y) = P(y, x) for all x, y ∈ Ω. Additionally, let

α′ := α′(P) := min
x∈Ω
P(x, x)/π(x) > 0 .

Then, P is polynomially same-set hitting. In particular, if (X,Y ) is a
random vector distributed according to P, then for every function f : Ω →
[0, 1] such that E[f(X)] = µ:

E [f(X) · f(Y )] ≥ µ8/α′ .

Note that a two-step distribution is symmetric if and only if it has equal
marginals. Furthermore, α′(P) > 0 if and only if α(P) > 0.

In the rest of this section we prove Theorem 2.51. In order to do that, we
need the following quantitative version of Theorem 1.1:
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Theorem 2.52 ([MOS13], Lemma 8.3). Let (X,Y ) be a random vector dis-
tributed according to a two-step tensorized distribution with equal marginals
P = (P1, . . . ,Pn) over an alphabet Ω = (Ω1, . . . ,Ωn) and let

γ :=
n

min
i=1

min
x,y∈Ωi

Pi(x, y)/πi(x) > 0 . (55)

Then, for all functions f, g : Ω → [0, 1] such that E[f(X)],E[g(Y )] ≥ µ ≥ 0
we have

E [f(X) · g(Y )] ≥ µ4/γ .

Note that Theorem 2.52 does not assume that the coordinates have the
same distribution.

Proof of Theorem 2.51. We make a convex decomposition of P into distribu-
tions with support sizes one and two:

P =
∑
x∈Ω

β(x) · P(x) +
∑

e={x,y}∈(Ω
2)

P(x,y)>0

β(e) · P(e) .

Distributions P(e) for e = {x, y} are defined such that

β(e)P(e)(x, y) := β(e)P(e)(y, x) := P(x, y) ,
β(e)P(e)(x, x) := P(x, y) · P(x, x)/π(x) ,
β(e)P(e)(y, y) := P(x, y) · P(y, y)/π(y) .

Distributions P(x) get the rest of the weight, i.e.,

β(x)P(x)(x, x) := P(x, x)−
∑

y∈Ω,y 6=x
P(x, y) · P(x, x)/π(x) .

One checks that β(x)P(x)(x, x) ≥ 0 and therefore we defined a valid convex
decomposition of P. Furthermore, it is easy to see that all distributions P(e)
and P(x) have equal marginals.

Next, we turn to evaluating γ defined in (55). To this end, we see that for
every e = {x, y}:

P(e)(x, y)
π(e)(x) =

P(e)(x, y)
P(e)(x, y) + P(e)(x, x) = 1

1 + P(x, x)/π(x) ≥
1
2 ≥

α′

2
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and

P(e)(x, x)
π(e)(x) =

P(e)(x, x)
P(e)(x, y) + P(e)(x, x) = P(x, x)/π(x)

1 + P(x, x)/π(x) ≥
P(x, x)
2π(x) ≥

α′

2 .

Consequently, applying Theorem 2.52 with λ ≥ α′/2 we conclude that our
convex decomposition is µ8/α′ -same-set hitting (cf. Definition 2.34). By equa-
tion (45) from Lemma 2.35, we have

E [f(X) · f(Y )] ≥ µ8/α′ ,

as claimed.

2.8 Conjecture with ρ = 1 for Simple Functions

One can conjecture that an `-step distribution with equal marginals P is same-
set hitting if and only if α(P) > 0. Since a variant of Szemerédi’s theorem
for finite groups (cf. Theorem 1.2) is a special case of this conjecture, its
proof might be difficult to find. In this section we offer a modest sanity check
instead. Specifically, we show that α(P) > 0 implies same-set hitting for some
simple families of functions: dictators, linear functions and thresholds. We
state those results in Lemmas 2.53, 2.54 and 2.56.

Lemma 2.53. Let X be a random vector distributed according to (Ω,P). Let
S ⊆ Ω be such that

S = {x : xi = y}

for some i ∈ [n] and y ∈ Ω. Then,

Pr
[
∀j ∈ [`] : X(j) ∈ S

]
≥ α(P) .

In particular, if α(P) > 0, then P is same-set hitting for S.

Proof. By definition of α(P).

Lemma 2.54. Let X be a random vector distributed according to (Ω,P),
where Ω = Zr for some r ∈ N>0. Assume that α(P) > 0 and let β′ :=
minx:P(x)>0 P(x). Let S ⊆ Ω be such that

S =
{
x :

n∑
i=1

xi = z

}
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for some z ∈ [r]. Then,

Pr
[
∀j ∈ [`] : X(j) ∈ S

]
≥ (β′)r

`

.

In particular, P is same-set hitting for S.

Proof. For x ∈ Ω, let x` := (x, . . . , x). If n < r`, we have

Pr
[
∀j ∈ [`] : X(j) ∈ S

]
≥

Pr
[
X1 = z` ∧X2 = . . . = Xn = 0`

]
≥ α(P)n ≥ (β′)r

`

.

If n ≥ r`, let n′ := n− r`. We are going to show that

Pr
[
∀j ∈ [`] : X(j) ∈ S | X1, . . . , Xn′

]
≥ (β′)r

`

. (56)

In other words, we claim that regardless of an assignment to X1, . . . , Xn′ ,
there is always at least (β′)r` conditional probability of hitting S in all steps.

For i ∈ {0, . . . , n} and j ∈ [`], let Y (j)
i :=

∑i
i′=1X

(j)
i′ (recall that the

arithmetic is in Zr). Note that the set S is hit in all steps if and only if
Y n = z`.

Consider a Markov chain where the state space is [r]` and for every x, y ∈
[r]` we set the transition probability from x to x+ y := (x(1) +y(1), . . . , x(`) +
y(`)) to P(y). Starting in the state 0`, an i-step random walk on this Markov
chain models the distribution of Y i.

Note that for every state x that is accessible from 0` in this Markov chain,
it is also possible to get back from x to 0`. This is because for every pair of
states x, x+ y with non-zero transition probability, one can get back from
x+ y to x by sampling y for r − 1 more times in a row.

Consequently, for every x, y ∈ [r]` accessible from 0`, there must be a way
to get from x to y in k ≤ r` steps with probability at least (β′)k. Since it is
possible to sample 0` in the remaining r` − k coordinates, there is also a way
to get from x to y in exactly r` steps with probability at least (β′)r

`

.
But then, this proves (56) (note that since α(P) > 0, z` is accessible from

0` in one step).

For the threshold case we need a reverse Chernoff bound:

Theorem 2.55 (Lemma 4 in [KY15]). Let X be an i.i.d. random vector over
{0, 1}n with Pr[Xi = 1] = p and let p∗ := min(p, 1−p). For every ε ∈ (0, p∗/2]
and n ≥ 3/ε2:

Pr
[

n∑
i=1

Xi ≥ (p+ ε)n
]
≥ exp

(
−9ε2n/p∗

)
.
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Lemma 2.56. Let X be a random vector distributed according to (Ω,P) with
equal marginals such that α := α(P) > 0. There exists a constant cα > 0 such
that for every y ∈ Ω with π(y) = p and for a set

S = {x : wy(x) ≥ pn}

we have

Pr
[
∀j ∈ [`] : X(j) ∈ S

]
≥ cα .

Proof. Consider the random vector X as a string of length n over alphabet
Ω = Ω` and let q = P(y`). The high-lever overview of the proof is as follows:
We show that in the vector X with constant probability:
• The number of coordinates where y` is sampled is slightly more than
the expectation qn.

• For every x 6= y`, the number of coordinates where x is sampled is
roughly the same as expected.

Those two conditions ensure that S is hit in all ` steps.
We proceed with a detailed proof. By Theorem 2.55 with ε = 2/

√
n we

have (for n big enough)

Pr
[
wy`

(
X
)
≥ qn+ 2

√
n
]
≥ exp(−36/q∗) ≥ cα > 0 .

Let A := wy`
(
X
)
and assume A = a ≥ qn +

√
n. Fix x 6= y` with

P(x) = qx > 0. By Chernoff bound,

Pr
[
wx
(
X
)
>
(
qx + 1/|Ω|`

)
n | A = a

]
≤ Pr

[
wx
(
X
)
>
(
qx + 1/|Ω|`

)
n
]

≤ exp
(
−2n/|Ω|2`

)
.

Define the event E :≡
(
∀x 6= y` : wx(X) ≤

(
qx + 1/|Ω|`

)
n
)
. By union bound,

Pr
[
E | A ≥ qn+ 2

√
n
]
≥ 1− |Ω|` exp

(
−2n/|Ω|2`

)
≥ 1/2 ,

where the last inequality holds for n big enough. Finally, note that the event
(A ≥ qn+ 2

√
n) ∧ E implies ∀j ∈ [`] : X(j) ∈ S. Therefore, we have

Pr
[
∀j ∈ [`] : X(j) ∈ S

]
≥ cα

for n big enough. The case of small n is easily handled by estimating

Pr
[
∀j ∈ [`] : X(j) ∈ S

]
≥ P(y`)n ≥ cα .

Remark 2.57. All three lemmas above can be generalized to a certain extent
at the expense of more complicated proofs. ♦
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Chapter 3

Parallel Repetition

3.1 Preliminaries

We start this chapter with a preliminary section to set-up the stage for our
results. In Section 3.1.1 we give formal definitions of our most important con-
cepts. In Section 3.1.2 we show a family of non-trivial games whose value does
not decrease after a constant number of repetitions. Section 3.1.3 presents
the argument of Verbitsky that density Hales-Jewett theorem implies that all
question sets admit parallel repetition, while Section 3.1.4 argues that our
assumption that a question is sampled from Q uniformly is without loss of
generality. All those results are known, but are included here for complete-
ness.

3.1.1 Multi-prover games and parallel repetition

In this section we provide formal definitions of the concepts we are concerned
with in this chapter: multi-prover games and parallel repetition.

Definition 3.1 (Multi-prover games). An r-prover game G = (Q,A, V ) con-
sists of the following elements:

• Q ⊆ Q(1) × . . .×Q(r) is a finite question set.
Note that Q does not have to consist of all possible tuples. However, we
will always assume that there are no “impossible questions”, i.e., that
for each element of a question alphabet q(j) ∈ Q(j) there exists at least
one question tuple q ∈ Q with q(j) as its j-th element.

• A = A(1) × . . .×A(r) is a finite answer set.

• V : Q×A→ {0, 1} is a verification predicate.

53
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A strategy S = (S(1), . . . ,S(r)) for a game G is a tuple of functions, where
S(j) : Q(j) → A(j).

Let q = (q(1), . . . , q(r)) be a random variable sampled uniformly from Q.
For a strategy S let S(q) := (S(1)(q(1)), . . . ,S(r)(q(r))).

We define the value of a game G as

val(G) := max
S

Pr
[
V
(
q,S(q)

)
= 1
]
.

We say that a game is trivial if its value is 1.
We also say it is free if Q = Q(1) × . . . × Q(r). Note that in our setting

this is equivalent to the property that the provers’ questions are distributed
independently. ♦

Definition 3.2 (Parallel repetition). The n-fold parallel repetition Gn of an
r-prover game G = (Q,A, V ) is the game Gn = (Q,A, V ) where

• The question set for the j-th proverQ(j) :=
(
Q(j))n is the n-fold product

of the original Q(j). Consequently, the question set Q is the n-fold
product of Q.

• In the same way, the answer set for the j-th prover A(j) is the n-fold
product of A(j).

• The verification predicate V accepts if and only if all of its n single
instances accept:

V
(
q, a
)

= 1 ⇐⇒ ∀i ∈ [n] : V (qi, ai) = 1 .

♦

Claim 3.3. For every r-prover game G and every n ∈ N: val(G)n ≤ val(Gn) ≤
val(G). In particular, G is trivial if and only if Gn is trivial.

Definition 3.4 (Forbidden subgraph bounds). For an r-prover question set
Q we define the parallel repetition threshold ωQ(n) := maxG val(Gn), where
the maximum is over all non-trivial games G with question set Q.

We say that Q admits parallel repetition if limn→∞ ωQ(n) = 0. We say
that Q admits exponential parallel repetition if there exists CQ < 1 such that
for every n ∈ N:

ωQ(n) ≤ (CQ)n .

♦
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3.1.2 Parallel repetition example

We present an example family of games with val(Gr) = val(G). The example
is taken from [Fei95] and credited to Ran Raz, but we discuss it here for the
convenience of the reader.

Definition 3.5. For r ≥ 3, m ≥ 2 the r-prover game Gr,m is defined as
follows:

The question alphabet for the j-th prover is Q(j) := Zm. The answer
alphabet for the j-th prover consists of pairs A(j) := [r] × Zm, where we
interpret the first element as a pointer to one of the provers.

Given questions x(1), . . . , x(r) and answers (p(1), y(1)), . . . , (p(r), y(r)) the
provers win if:

• p(1) = . . . = p(r) =: p. That is, we have a special prover that everyone
points to.

• x(p) = y(p).

•
∑r
j=1 y

(j) = 0 (mod m).

♦

Claim 3.6. val(Gr,m) = 1/m.

Proof. To achieve value 1/m, given a question x(j), the j-th prover can output
(1, x(j)). Then, the provers win if and only if

∑r
j=1 x

(j) = 0 (mod m), which
happens with probability 1/m.

On the other hand, fix a strategy for the provers and consider a question
tuple for which they win. Let the special prover for this question tuple be
p and the question to the special prover x(p). If we exchange the special
question in this tuple to any other value, the provers must lose. Therefore,
given a tuple for which the provers win, we found m − 1 tuples for which
they lose. Since one can see that this association is injective, it must be that
val(Gr,m) ≤ 1/m.

Claim 3.7. val(Grr,m) = 1/m.

Proof. Given r numbers x(j)
1 , . . . , x

(j)
r , the j-th prover responds with (1, x(j)

j ),
. . . , (r, x(j)

j ). The provers succeed in the repeated game if and only if it holds
that

∑r
j=1 x

(j)
j = 0 (mod m), which happens with probability 1/m.
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3.1.3 All question sets admit parallel repetition

In this section we present the proof from [Ver96] showing that all question
sets admit parallel repetition. We include it for completeness and because it
is a good illustration of the forbidden subgraph method.

The proof uses the famous density Hales-Jewett theorem:

Definition 3.8 (Combinatorial line). Let r, n ∈ N>0. A combinatorial pattern
over [r]n is a string

(b1, . . . , bn) = b ∈ ([k] ∪ {?})n \ [r]n ,

where ? is a special symbol called the wildcard. Note that a pattern has to
contain at least one wildcard.

For q ∈ [r] we let b(q) ∈ [r]n to be the string formed from b by substituting
all occurrences of the wildcard with q.

A combinatorial line associated with a pattern b is the set {b(1), . . . , b(r)}.
♦

Example 3.9. For r = 3, n = 5, an example pattern is b = 12?2?.
The corresponding combinatorial line is L = {12121, 12222, 12323}. ♦

Definition 3.10. Let r ∈ N>0. For a set S ⊆ [r]n we define its measure as
µ(S) := |S|/rn.

We then let the density Hales-Jewett threshold ωDHJ
r (n) to be the maxi-

mum measure of a subset of [r]n that does not contain a combinatorial line.
♦

The density Hales-Jewett theorem states that sets of constant measure
contain combinatorial lines for n big enough:

Theorem 3.11 (Density Hales-Jewett theorem, [FK91], for the proof see also
[Pol12]). Let r ∈ N>0. Then, limn→∞ ωDHJ

r (n) = 0.

Theorem 3.12 ([Ver96]). Let Q be a question set with |Q| = r. Then:

ωQ(n) ≤ ωDHJ
r (n) . (57)

In particular, Q admits parallel repetition.

Proof. The “in particular” part follows from (57) and Theorem 3.11. There-
fore, we only need to prove (57).

To this end, fix Q, n ∈ N>0 and a game G with question set Q. Note that
it is enough to show that if val(Gn) > ωDHJ

r (n), then G is trivial.



3.1 Preliminaries 57

Fix a strategy S = (S(1), . . . ,S(r)) for the repeated game that achieves
a value greater than ωDHJ

r (n). Let H ⊆ Q be the set of question tuples for
the repeated game on which the provers win using S. By Theorem 3.11, H
contains a combinatorial line with an associated pattern b = (b1, . . . , bn).

We construct a strategy for G as follows: given a question q ∈ Q(j), the
j-th prover proceeds as follows: It computes a(j) := S(j)(q(j)

1 , . . . , q
(j)
n ), where

q
(j)
i = b

(j)
i if bi ∈ Q and q(j)

i = q if bi = ?. Then, it returns a(j)
i , where i is

the first coordinate of b with bi = ?.
SinceH contains the combinatorial line of b, for every question tuple q ∈ Q

the provers win the repeated game on all coordinates. In particular, they win
on the i-th coordinate, but the game played there is exactly G.

3.1.4 Reduction of general parallel repetition to uniform case

We show how parallel repetition for a question distribution that is not neces-
sarily uniform over a question set Q reduces to the uniform case. The proof
is taken from [FV02].

Theorem 3.13. Let Q be an r-prover question set and let Q be a probability
distribution with support Q such that ε := minq∈QQ(q) and

α := ε

1/
∣∣Q∣∣ = ε

∣∣Q∣∣ .
Furthermore, assume that a function f : N>0 → [0, 1] is such that for every
non-trivial game H uniform over Q:

val(Hn) ≤ f(n) .

Then, for every non-trivial game G such that its questions are sampled ac-
cording to Q we have

val(Gn) ≤ exp
(
−α2n/2

)
+ f (αn/2) .

Proof. First, note that we can write Q = αUQ + (1 − α)Q′, where UQ is
the uniform distribution over Q and Q′ some other probability distribution.
Consequently, we can define an i.i.d. random binary vector B = (B1, . . . , Bn)
coupled with an execution of Gn such that Bi = 1 if the i-th question is
sampled from UQ and Bi = 0 if it was sampled from Q′.

Consider an execution of Gn with a modified verifier. The new verifier
first checks if w1(B) ≥ αn/2, i.e., if the number of coordinates with Bi = 1
is at least half of the expectation αn. She accepts if this check fails. If the
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first check succeeds, the new verifier accepts if the single-coordinate verifier
accepts on all coordinates with Bi = 1.

Let us call this modified game (Gn)′. Clearly, val(Gn) ≤ val((Gn)′). Fur-
thermore, let G∗ be a game with the same verifier as G but uniform over Q.
Note that G∗ is non-trivial. Observe that conditioned on a choice of B, the
game (Gn)′ is the same as G∗ repeated w1(B) times. Consequently, and using
Chernoff bound,

val(Gn) ≤ val((Gn)′) = E [val((Gn)′) | B] ≤ Pr [w1(B) < αn/2] + f(αn/2)
≤ exp(−α2n/2) + f(αn/2) .

3.2 Constructability Implies Parallel Repetition

Observe that we can identify the question set of an r-prover game with an
r-uniform, r-partite hypergraph. In this section we first define a class of
constructible hypergraphs and then establish that all constructible question
sets admit exponential parallel repetition. The main result of this section is
Theorem 3.21.

3.2.1 Constructing hypergraphs by conditioning

We define constructability in the general case, but for intuition the reader is
invited to think about bipartite graphs (i.e., r = 2).

Definition 3.14. Let r ≥ 2. We consider r-uniform, r-partite finite hyper-
graphs G = (Q(1), . . . , Q(r), Q), where Q ⊆ Q(1) × . . . × Q(r). We will often
abuse the notation by identifying the hypergraph with its edge set Q.

Given two hypergraphs (Q(1), . . . , Q(r), Q) and (P (1), . . . , P (r), P ) we say
that f = (f (1), . . . , f (r)), f (j) : Q(j) → P (j) is a homomorphism from Q to P
if q = (q(1), . . . , q(r)) ∈ Q implies f(q) := (f (1)(q(1)), . . . , f (r)(q(r))) ∈ P .

If f is a homomorphism from Q to Q we can just say that f is a homo-
morphism of Q. We also define the homomorphism space Hom(Q,P ) as the
set of homomorphisms from Q to P . ♦

Definition 3.15. Given a hypergraph (Q(1), . . . , Q(r), Q) and sets P (j) ⊆ Q(j)

we define its section hypergraph (P (1), . . . , P (r), P ), where P ⊆ Q consists of
those hyperedges whose vertices are all in P (1) ∪ . . . ∪ P (r). ♦

In the graph case the section hypergraph corresponds to an induced sub-
graph.
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Figure 3.1: Doubling a bipartite graph. Fixed vertices in red, old vertices in
green, new vertices in blue.
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Definition 3.16. Let r ≥ 2. We recursively define the class of r-partite
hypergraphs that are constructible by conditioning:

1. A hyperedge
(
{q(1)}, . . . , {q(r)}, {(q(1), . . . , q(r))}

)
is constructible.

2. If a hypergraph (P (1) ∪̇Q(1), . . . , P (r) ∪̇Q(r), P ) is constructible, then
(P (1) ∪̇Q(1) ∪̇R(1), . . . , P (r) ∪̇Q(r) ∪̇R(r), P ∪ Q) is also constructible,
where:

• R(j) := {q′ : q ∈ Q(j)} is a set of copies of vertices from Q(j). We
say that the vertices in P (j) are fixed, vertices from Q(j) are old
and vertices from R(j) are new.
• We say that a hyperedge is fixed if all of its vertices are fixed. For
a hyperdge q ∈ P that is not fixed we define q′ as the hyperedge
formed from q by replacing all of its old vertices by their respective
copies.
Then, Q :=

{
q′ : q ∈ P , q is not fixed

}
.

In this case we say that P ∪ Q was constructed from P by doubling
Q(1) ∪ . . . ∪Q(r).
Figure 3.1 can be consulted for an example in the graph case.
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3. If a hypergraph (P (1) ∪̇Q(1), . . . , P (r) ∪̇Q(r), Q) is constructible and, at
the same time, (P (1), . . . , P (r), P ) is a section hypergraph of Q such
that there exists a homomorphism from Q to P which is identity on
P (1) ∪ . . . ∪ P (r), then P is also constructible.
In such case we say that Q collapses onto P .

♦

Observe that the doubling operation never produces hyperedges incident
to both old and new vertices.

To give some intuition on the conditioning operations we state two simple
properties.

Claim 3.17. Let r ≥ 2. Every r-partite hypergraph can be collapsed onto one
of its hyperedges.

Definition 3.18. The complete hypergraph on Q(1), . . . , Q(r) is given as
(Q(1), . . . , Q(r), Q(1) × . . .×Q(r)). ♦

Claim 3.19. Let r ≥ 2 and Q(1), . . . , Q(r) be finite sets. The complete hyper-
graph on Q(1), . . . , Q(r) is constructible.

Proof. Let k(j) := |Q(j)|, Q(j) = {q(j)
1 , . . . , q

(j)
k(j)} and P (j) := {q(j)

1 }. Start the
construction with a single hyperedge (P (1), . . . , P (r), P (1) × . . .× P (r)).

The complete hypergraph is constructed in r stages. In the j-th stage
vertex q

(j)
1 is doubled k(j) − 1 times with all other vertices fixed. Observe

that after the j-th stage the current hypergraph is the complete hypergraph
on Q(1), . . . , Q(j), P (j+1), . . . , P (r).

Remark 3.20. As a matter of fact, if |Q(1)| = . . . = |Q(r)| = 2k, then it is
not difficult to see that the complete hypergraph on Q(1), . . . , Q(r) can be
constructed with rk doublings. ♦

3.2.2 Theorem statement

Our goal is:

Theorem 3.21. Let Q be an r-prover question set that is constructible by
conditioning using k doublings (and an arbitrary number of collapses). Let
M :=

∣∣Q∣∣. Then,

ωQ(n) ≤ 3 exp
(
−n/M2k+1

)
.

In particular, Q admits exponential parallel repetition.
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A very rough proof outline is as follows: first, exponential parallel repe-
tition is equivalent to exponential decrease of the threshold for good homo-
morphism vectors (cf. Definition 3.22). Second, we show that the existence
of good homomorphism vectors is implied by existence of a probability distri-
bution over Hom

(
Q,Q

)
with certain same-set hitting properties. Third, we

prove that such distribution exists for every constructible Q.
We elaborate those three steps in the next subsections.

3.2.3 Good question sets

Definition 3.22. Let Q be an r-prover question set and let Q := Q
n be

its n-fold parallel repetition. Let S ⊆ Q with µ(S) = |S|/
∣∣Q∣∣n and let

f = (f1, . . . , fn) be a vector of n homomorphisms of Q. We say that f is good
for S if:

• For every q ∈ Q we have that f(q) := (f1(q), . . . , fn(q)) ∈ S.

• There exists i ∈ [n] such that fi is identity.

We say that the question set Q is (n, ε)-good if for every S ⊆ Q with
µ(S) ≥ ε there exists a vector of homomorphisms that is good for S. ♦

Observe that a vector of n identities f = (Id, . . . , Id) is good for the whole
space Q and hence every question set Q is (n, 1)-good.

Remark 3.23. Note that if Q is (n, ε)-good, then it is also (n+1, ε)-good. This
is because given S ⊆ Q

n+1 we can set fn+1 to be a constant homomorphism
such that the (relative) measure µ(S) does not decrease conditioned on qn+1 =
fn+1(q). Then we can get f1, . . . , fn from the assumption thatQ is (n, ε)-good.

♦

Definition 3.24. Let Q be a question set and n ∈ N>0. We define the
goodness threshold as

ωgood
Q

(n) := inf
{
ε : Q is (n, ε)-good

}
.

We say that Q is good if limn→∞ ωgood
Q

(n) = 0. ♦

The value of the goodness threshold ωgood
Q

(n) is an upper bound on the
parallel repetition threshold ωQ(n):

Lemma 3.25. Let Q be a question set. Then,

ωQ(n) ≤ ωgood
Q

(n) .
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Proof. Assume otherwise, i.e., that there exists a game G with question set Q
and val(G) < 1 such that val(Gn) > ωgood

Q
(n). We construct a perfect strategy

for G, which is a contradiction.
Fix an optimal strategy for Gn and let S ⊆ Q with µ(S) > ωgood

Q
(n) be

the set of question vectors in the repeated game for which the players win.
Let f be a vector of homomorphisms of Q that is good for S and let i be

a coordinate where fi is identity.
A strategy for the game G for the j-th prover is as follows: Given q(j) ∈

Q(j), obtain f (j)(q(j)) = (f (j)
1 (q(j)), . . . , f (j)

n (q(j))). Then, consider the answer
of the j-th prover on f (j)(q(j)) in the strategy for Gn. Finally, output the i-th
coordinate of that answer.

Since for every q = (q(1), . . . , q(r)) ∈ Q we have that f(q) = (f (1)(q(1)),
. . . , f (r)(q(r))) ∈ S, when applying the above strategy the provers are always
winning on all coordinates of Gn. Since fi(q) = q, their answers on the i-
th coordinate are winning for q in the game G. Therefore, val(G) = 1, a
contradiction.

Remark 3.26. Lemma 3.25 is essentially what is called in the literature the
forbidden subgraph method. However, our formulation with homomorphisms
is different than the usual one, e.g., in [FV02].

Verbitsky [Ver95, FV02] showed that the forbidden subgraph method is
universal, i.e., for a connected question set Q there is ωQ(n) = ωgood

Q
(n). ♦

3.2.4 Proving that Q is good with probabilistic method

Lemma 3.27. Let Q be a question set and let H be a distribution over
Hom(Q,Q) such that:

1. If f = (f1, . . . , fn) is sampled such that fi is i.i.d. in H, then:

∀S ⊆ Q : Pr
[
∀q ∈ Q : f(q) ∈ S

]
≥ c(µ(S)) ,

where c(µ) > 0 if µ > 0.

2. H(Id) > 0.

Then, Q is good. Furthermore, if H(Id) ≥ ε > 0 and c(µ) ≥ µC/C for some
C ≥ 1, then ωgood

Q
(n) ≤ 3 exp(−εn/C).

Proof. Let ε := H(Id) and µ ∈ (0, 1]. For S ⊆ Q with µ(S) = µ, define the
event:

E :≡ ∀q ∈ Q : f(q) ∈ S ∧ ∃i ∈ [n] : fi = Id .
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Since Pr[∀q ∈ Q : f(q) ∈ S] ≥ c(µ) and Pr[∃i : fi = Id] = 1 − (1 − ε)n, by
union bound, if:

Pr[∀i : fi 6= Id] = (1− ε)n ≤ c(µ)/2 , (58)

then Pr[E ] > 0. Therefore, if we choose n such that (58) holds, then Q is
(n, µ)-good. Since for arbitrary µ ∈ (0, 1] we found that Q is (n, µ)-good for
n big enough, Q must be good.

Furthermore, if c(µ) ≥ µC/C, setting:

µ := (2C(1− ε)n)1/C ≤ (2C)1/C · exp(−εn/C) ≤ 3 exp(−εn/C) ,

we see that:

(1− ε)n = µC/2C ≤ c(µ)/2 ,

and therefore ωgood
Q

(n) ≤ 3 exp(−εn/C).

3.2.5 Same-set hitting homomorphism spaces

Lemma 3.28. Let P be an r-partite hypergraph constructible using k dou-
blings (and an arbitrary number of collapses) and let Q be another r-partite
hypergraph.

Then, there exists a distribution H over Hom(P ,Q) such that:

1. If f = (f1, . . . , fn) is sampled such that fi is i.i.d. in H, then:

∀S ⊆ Q : Pr
[
∀p ∈ P : f(p) ∈ S

]
≥ µ(S)C ,

where C = 2k.

2. minf∈Hom(P,Q)H(f) ≥ 1/MC , where C = 2k and M =
∣∣Q∣∣.

This lemma is connected to the same-set hitting from Chapter 2 in the
following way: Let f be a random homomorphism sampled according to H
and let P = {p(1), . . . , p(`)}. We can think of H as a k-step probability distri-
bution with the steps given by f(p(1)), . . . , f(p(`)). Then, the first condition in
Lemma 3.28 is equivalent to saying that H is polynomially same-set hitting.

Later we will apply Lemma 3.28 with P = Q.

Proof. The proof proceeds by induction on the structure of P . To achieve the
constant C as claimed, we need to show the base case with C = 1 and then
argue that a collapse preserves C and that a doubling increases C at most
twice.
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1. If P is a single hyperedge, then Hom(P ,Q) is isomorphic to Q. Setting
H(fq) := 1/M for q ∈ Q one can easily see that both 1 and 2 are satisfied
with C = 1.

2. Assume that P was constructed by doubling a hypergraph P 0. Let A
be the set of fixed vertices, B the old vertices and B′ the new vertices
(regardless of the player they belong to). Therefore the vertex set of P 0
is A ∪B and the vertex set of P is A ∪B ∪B′.

We are going to write homomorphisms f ∈ Hom(P 0, Q) as f = (fA, fB)
and f ∈ Hom(P ,Q) as f = (fA, fB , fB′).

Observe that

Hom(P ,Q) =
{

(fA, fB , fB′) : (fA, fB) ∈ Hom(P 0, Q)
∧ (fA, fB′) ∈ Hom(P 0, Q)

}
, (59)

where we abused the notation in the expression (fA, fB′): this is justified
from the definition of the doubling operation.

By induction, there exists a distribution H0 on Hom(P 0, Q) satisfying
1 and 2 for some C0 > 0. Let H = (HA, HB) be a random variable
distributed according to H0. Define:

H(fA, fB , fB′) := Pr[HA = fA] · Pr[HB = fB | HA = fA]
·Pr[HB = fB′ | HA = fA] . (60)

By (59), (60) defines a probability distribution. Furthermore:

H(fA, fB , fB′) ≥ H0(fA, fB) · H0(fA, fB′) ≥ ε2C0 .

As for condition 1, let EA be the fixed hyperedges of P 0 (i.e., those that
have all their vertices in A) and EB and EB′ be the hyperedges of P
that have vertices incident to B and B′, respectively. Note that EA and
EB form a partition of P 0 and EA, EB and EB′ form a partition of P .

Recall that f = (f1, . . . , fn) is a random vector with coordinates sam-
pled i.i.d. from H. We are going to decompose f = (f

A
, f
B
, f
B′

) in the
natural way. Fix S ⊆ Qn and define the event E :≡ ∀p ∈ EA : f(p) ∈ S.
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We estimate, using Jensen’s inequality in (61):

Pr
[
∀p ∈ P : f(p) ∈ S

]
= E

[
E
[
1E · Pr

[
∀p ∈ EB ∪ EB′ : f(p) ∈ S | f

A

]
| f

A

]]
= E

[
E
[
1E · Pr

[
∀p ∈ EB : f(p) ∈ S | f

A

]2
| f

A

]]
= E

[
E
[(
1E · Pr

[
∀p ∈ EB : f(p) ∈ S | f

A

])2
| f

A

]]
= E

[
E
[
1E · Pr

[
∀p ∈ EB : f(p) ∈ S | f

A

]
| f

A

]2]
≥ E

[
E
[
1E · Pr

[
∀p ∈ EB : f(p) ∈ S | f

A

]
| f

A

]]2
(61)

= Pr
[
∀p ∈ P0 : f(p) ∈ S

]2 ≥ µ2C0 .

3. The last case considers P constructed by collapsing some P 0. Let A be
the vertex set of P and A ∪̇B the vertex set of P 0. Let h ∈ Hom(P 0, P )
be a homomorphism that defines this collapse.
By induction, there exists a distribution H0 on Hom(P 0, Q) satisfying
properties 1 and 2 for some C0. For f ∈ Hom(P ,Q), define

H(f) :=
∑

g∈Hom(P 0,Q)
gA=f

H0(g) .

Since a restriction of a homomorphism is a homomorphism, H indeed is
a probability distribution. Furthermore, since H(f) ≥ H(h ◦ f) ≥ εC0 ,
condition 2 is satisfied.
Finally, let f0 be a vector of question homomorphisms that are sampled
i.i.d. from H0 and recall that the vector f is sampled i.i.d. from H. To
establish condition 1, we check that

Pr[∀p ∈ P : f(p) ∈ S] = Pr[∀p ∈ P : f0(p) ∈ S]

≥ Pr[∀p ∈ P 0 : f0(p) ∈ S] ≥ µC0 .

3.2.6 Putting things together

Proof of Theorem 3.21. Let Q be an r-prover question set constructible by
conditioning using k doublings with

∣∣Q∣∣ = M .
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By Lemma 3.28 applied for P = Q, Lemma 3.27 and Lemma 3.25,

ωQ(n) ≤ ωgood
Q

(n) ≤ 3 exp
(
−n/2kM2k

)
≤ 3 exp

(
−n/M2k+1

)
.

Since 3 exp(−αn) ≤ exp(−αn/2) for n big enough, this implies that Q admits
exponential parallel repetition.

As a corollary, we get exponential parallel repetition of free games:

Corollary 3.29. Let G be an r-prover free game with 2k questions available
to each prover, so that the question set Q has size M := 2kr. If val(G) < 1,
then

val(Gn) ≤ 3 exp(−n/M2M ) .

Proof. By Remark 3.20, the question hypergraph of game G can be con-
structed using rk doublings. The bound then follows from Theorem 3.21:

val(Gn) ≤ ωQ(n) ≤ 3 exp
(
−n/M2rk+1

)
= 3 exp

(
−n/M2M) .

We note that quantitatively the bound for free games from Corollary 3.29 is
much worse than the best known one by Feige, which is exp (−Ω (n/M logM))
[Fei91].

3.3 Constructing Graphs with Treewidth Two

We turn to presenting the power of our system for proving parallel repetition.
In particular, we show that all two-prover graphs with treewidth at most two
are constructible.

Since in this section we deal only with two provers, we use more stan-
dard notation where a bipartite graph is denoted as G = (X,Y,E). We will
sometimes refer to vertices from X as “on the left” and from Y as “on the
right”.

Our main result here is Theorem 3.36.

3.3.1 Warm-up: forests are constructible

We start with showing that all forests are constructible, recovering the parallel
repetition result by Verbitsky [Ver95]. We will later use Lemma 3.31 in the
construction of series-parallel graphs.

Firstly, we note that it is only interesting to consider constructability of
connected graphs (note that to create a new connected component one can
double all vertices of an existing connected component):
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Claim 3.30. A bipartite graph G is constructible by conditioning if and only
if all its connected components are constructible.

We can always add a “fresh” leaf to a constructible graph G:

Lemma 3.31. If G = (X ∪̇{u}, Y, E) is constructible, then G′ = (X ∪̇{u},
Y ∪̇{v}, E ∪ {(u, v)}) is also constructible.

Proof. Pick an arbitrary edge (u,w) originating from u. Fix u and double all
the other vertices. Then collapse all new vertices on the left onto u and all
new vertices on the right onto w′ (i.e., the copy of w).

From Claim 3.30, iterated application of Lemma 3.31 and Theorem 3.21
we have:

Theorem 3.32. Let G be a tree. Then, G is constructible by conditioning.
In particular, if G is interpreted as a two-prover question set, then it

admits exponential parallel repetition.

3.3.2 Treewidth and series-parallel graphs

Definition 3.33 (Treewidth). Let G be a simple graph. A tree decomposition
of G is a tree T , where each node (also called a bucket) corresponds to a subset
of the vertices of G, with the following properties:

• For each vertex v ofG, the buckets in which v appears form a non-empty,
connected subgraph of T .

• For each edge e of G, there exists a bucket that contains both endpoints
of e.

The width of a tree decomposition of G is the size of the biggest bucket minus
one. The treewidth of G denoted by tw(G) is the smallest possible width of a
tree decomposition of G. ♦

We will not discuss treewidth here, referring the reader to any standard
textbook on graph theory. We note that a connected graph has treewidth one
if and only if it is a tree.

To characterise graphs with treewidth two, we need to introduce the notion
of generalized series-parallel graphs.

Definition 3.34 (Series-parallel graphs). Let G = (X,Y,E) be a bipartite
graph and u, v ∈ X ∪ Y . We call a tuple (X,Y,E, u, v) an oriented bipartite
graph. We call the vertex u the top and v the bottom.

We define the class of generalized bipartite series-parallel oriented (in
short: series-parallel oriented) graphs recursively:
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1. Let G = ({a}, {b}, {(a, b)}) be a single edge. Then, both (G, a, b) and
(G, b, a) are series-parallel oriented graphs.

2. Let G1 = (X1, Y1, E1, u, v) and G2 = (X2, Y2, E2, v, w) be series-parallel
oriented graphs such that (X1 ∪ Y1) ∩ (X2 ∪ Y2) = {v} and v ∈ (X1 ∩
X2) ∪ (Y1 ∩ Y2).
Then, G := (X1 ∪X2, Y1 ∪ Y2, E1 ∪E2, u, w) is a series-parallel oriented
graph.
We say that G is a series composition of G1 and G2 with G1 on top and
G2 at the bottom.

3. Let G1 = (X1, Y1, E1, u, v) and G2 = (X2, Y2, E2, v, w) be series-parallel
graphs satisfying the same preconditions as for the series composition.
Then, both G := (X1 ∪ X2, Y1 ∪ Y2, E1 ∪ E2, u, v) and G′ := (X1 ∪
X2, Y1 ∪ Y2, E1 ∪ E2, v, w) are series-parallel graphs.
We say that G and G′ are a generalized series composition of G1 and G2.
We say that G1 is the primary graph of G and that G2 is the primary
graph of G′.

4. Let G1 = (X1, Y1, E1, u, v) and G2 = (X2, Y2, E2, u, v) be series-parallel
oriented graphs such that (X1 ∪ Y1) ∩ (X2 ∪ Y2) = {u, v} and {u, v} ⊆
(X1 ∩X2) ∪ (Y1 ∩ Y2).
Then, G := (X1 ∪ X2, Y1 ∪ Y2, E1 ∪ E2, u, v) is also a series-parallel
oriented graph.
We call G a parallel composition of G1 and G2.

We say that a bipartite graph G is series-parallel if there exist vertices u, v
such that (G, u, v) is an oriented series-parallel graph. ♦

We refer the reader to Figure 3.2 for intuitive understanding of the com-
position operations.

The requirement that the vertices by which the bipartite graphs are joined
belong to the set (X1 ∩X2) ∪ (Y1 ∩ Y2) ensures that they belong to the same
side of the graph and therefore the bipartedness is preserved. On the other
hand, observe that the top and the bottom can lie either on the same or the
opposite sides of the bipartite graph.

In the literature the (not necessarily bipartite) graphs constructed with
series and parallel composition are usually called series-parallel, and graphs
that are constructed also with generalized composition are called generalized
series-parallel. Incidentally, a connected graph is generalized series-parallel
if and only if all its biconnected components are series-parallel (see, e.g.,
[Bod07]).
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Figure 3.2: Illustration of the composition operations. The spines are drawn
in continuous red. Note that S(G2) is not part of S(G) in cases of generalized
and parallel composition, hence the red dashed line.
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From now on, by “series-parallel” we will always mean the generalized
bipartite series-parallel graph from Definition 3.34.

We will use the following useful characterisation of graphs with treewidth
at most two:

Theorem 3.35. A connected bipartite graph G has treewidth at most two if
and only if G is series-parallel.

For a proof of Theorem 3.35 see [HHC99]. Their proof concerns the case of
general (non-bipartite) graphs, but it is easy to see that a generalized series-
parallel graph is bipartite if and only if it can be constructed with additional
restrictions as in Definition 3.34.

3.3.3 Generalized series-parallel construction

The main theorem of this section is:
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Theorem 3.36. Every bipartite graph G with treewidth at most two is con-
structible by conditioning.

In particular, if G is interpreted as a two-prover question set, then it
admits exponential parallel repetition.

Due to Theorem 3.21, Claim 3.30 and Theorem 3.35, to establish Theorem
3.36 it is enough to show that series-parallel graphs are constructible. We
spend the rest of this section to achieve that goal.

Definition 3.37. Let G be an oriented series-parallel graph. We define its
(not oriented) subgraph S(G) and call it its spine. The definition follows the
recursive pattern of Definition 3.34:

1. If G is a single edge, its spine is the whole of G.

2. If G is a series composition of G1 and G2, then S(G) consists of S(G1)
and S(G2) taken together.

3. If G is a generalized composition of G1 and G2 with G1 as the primary
graph, then S(G) is equal to S(G1).

4. If G is a parallel composition of G1 and G2 and S(G1) has no more
edges than S(G2), then S(G) is equal to S(G1). Otherwise, it is equal
to S(G2).

♦

Observe that the spine is always an induced path between the top and the
bottom of G. As a matter of fact, it is a shortest path from top to bottom in
G. Furthermore, the length of the spine L(G) is given as:

1. One, if G is a single edge.

2. L(G1) + L(G2), if G is a series composition of G1 and G2.

3. L(G1), if G is a generalized composition of G1 and G2 with G1 as the
primary graph.

4. min(L(G1), L(G2)), if G is a parallel composition of G1 and G2.

Finally, note that if G is a parallel composition of G1 and G2, then due to
the bipartedness L(G1) and L(G2) must have the same parity.

Recall the graph construction operations from Definition 3.16. A series-
parallel graph can always be collapsed onto its spine:

Lemma 3.38. Let G be an oriented series-parallel graph. Then, G (treated
as an unoriented graph) can be collapsed onto its spine.



3.3 Constructing Graphs with Treewidth Two 71

Proof. By induction on the series-parallel structure of G. If G is a single edge,
it is clear. If G is a series composition of G1 and G2, then by induction G1
and G2 can be collapsed onto their respective spines.

If G is a generalized composition of G1 and G2, assume w.l.o.g. that G1 is
the primary graph and let v be the bottom vertex of G1. Then, by induction,
G1 can be collapsed onto its spine S(G1) = S(G). On the other hand, all
of G2 can be collapsed onto the edge (v, w), where w is the neighbor of v in
S(G1).

In case (G, u, v) is a parallel composition ofG1 andG2, assume w.l.o.g. that
S(G1) is not longer than S(G2). Firstly, observe that the spine S(G2) can
be collapsed onto S(G1) = S(G): indeed, if we write the vertices of S(G1)
top-bottom as (u0 = u, u1, . . . , uk = v) and analogously S(G2) as (v0 =
u, v1, . . . , vk+2` = v), then the mapping:

f(ui) := ui

f(vi) :=
{
ui if i ≤ k,
uk−(j mod 2) if i = k + j,

is a required homomorphism.
Finally, since by induction G1 and G2 can be collapsed onto their spines,

and since the composition of homomorphisms is a homomorphism, G can be
collapsed onto its spine.

Recall that our objective is showing that every series-parallel graph is
constructible.

Lemma 3.39. Let (G, u, v) be an oriented series-parallel graph. Then, the
spine S(G) can be extended to G using the doubling and collapsing operations.
Furthermore, the construction preserves the following invariant:

• In every doubling step, the doubled vertices on the spine form its con-
tiguous (possibly empty) subsegment.

Since the spine of G can be constructed by repeated application of Lemma
3.31, Lemma 3.39 implies what we want. In the remainder we prove Lemma
3.39 after establishing a couple of technical preliminaries.
Remark 3.40. In the proof of Lemma 3.39 we will use the fact that whenever
G is a composition of G1 and G2, the edges of G1 and G2 are disjoint.

This is not true if G is a parallel composition and there exists a direct
edge from top to bottom in both G1 and G2, but any series-parallel G can be
constructed without using this special case. ♦
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Claim 3.41. Let (G, u, v) be an oriented series-parallel graph which is a par-
allel composition. Then, there exists a series-parallel construction of (G, u, v)
such that its final step is a parallel composition of G1 and G2 with the follow-
ing properties:

• L(G1) ≤ L(G2).

• G2 is a series composition.

Proof. Firstly, note that whenever (G, u, v) is a generalized composition where
the primary graph is a series or parallel composition, the order of those two
compositions can be reversed without changing the final graph. Therefore,
we can assume w.l.o.g. that whenever a graph is a generalized composition,
its primary graph has spine of length one.

Let G be a parallel composition of H ′1 and H ′2. If any of H ′1 or H ′2 is
a parallel composition, recursively decompose them further until we are left
with a collection of graphs H1, . . . ,Hk which are all series or generalized
compositions or single edges.

Note that if we compose in parallel H1, . . . ,Hk in an arbitrary order, the
end result will always be G.

Therefore, we can set G2 as Hi with the longest spine and the parallel
composition of the remaining Hi graphs as G1. Due to Remark 3.40, the
spine of G2 must be longer than one, and therefore G2 must be a series
composition.

Figure 3.3 illustrates the content of Claim 3.41.

Figure 3.3: The continuous red line is the spine of G. The dashed red line is
the spine of G2.
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Proof of Lemma 3.39. Let (G, u, v) be an oriented series-parallel graph. We
apply induction on the number of vertices of G and, secondarily, (in reverse)
on the length of its spine.

1. If G is a single edge, there is nothing to prove (since S(G) = G).

2. Assume that (G, u, v) is a series composition of (G1, u, w) and (G2, w, v).
Recall that we need to extend S(G) to G. We do it in two stages, first
extending S(G1) to G1 and then extending S(G2) to G2.
By induction, we know how to extend S(G1) to G1. Now we will adapt
this sequence of operations to the fact that also S(G2) is present in the
graph. We do it as follows:

• Leave all the collapsing operations as they are (it is always possible
to collapse onto a bigger graph).

• For doubling operations that keep the vertex w fixed, keep all of
S(G2) fixed.

• Finally, let us handle the doubling operations that double the ver-
tex w. Let x be the neighbour of w on the spine S(G1) and let y
be x in case x is fixed and x′ in case x is doubled. Note that the
edge (y, w′) is present in G1 after doubling.
To emulate this operation in G we double all of S(G2) together
with w and then collapse the new copy of S(G2) onto the edge
(y, w′).

Consult Figure 3.4 for the illustration of one of the cases.
It is easy to see that as a result of this emulation we extend S(G) to a
series composition of G1 and S(G2).
Now we proceed in the same way to extend S(G2) to G2. The only
difference is that in case w is doubled we need to double and collapse
all of G1 instead of just S(G1). This does not pose a problem though,
since G1 can be collapsed onto S(G1) which then can be collapsed as
previously.
Finally, one easily checks that the “contiguous subsegment” invariant of
Lemma 3.39 is preserved in this construction.

3. If (G, u, v) is a generalized composition, assume w.l.o.g. that it is a com-
position of the primary graph (G1, u, v) and (G2, v, w). Using Lemma
3.31 we can extend S(G1) to S(G1)∪S(G2) and then proceed as in the
series composition case.
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Figure 3.4: Handling series decomposition in case w and x are doubled.
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4. Assume that the graph (G, u, v) is a parallel composition of (G1, u, v)
and (G2, u, v). By Claim 3.41, we can also assume that G2 is a series
composition of (G3, u, w) and (G4, w, v) and that L(G1) ≤ L(G2). In
this point we address a subcase where additionally:

L(G1) + L(G3) < L(G4) . (62)

(G, u, v) is the parallel composition of (G1, u, v) and the series com-
position of (G3, u, w) and (G4, w, v). Observe that we can also obtain
(G,w, v) as the parallel composition of (G4, w, v) and the series com-
position of (G3, w, u) and (G1, u, w). This is illustrated in Figure 3.5.
Furthermore, due to (62) we have that L(G,w, v) = L(G3) + L(G1) >
L(G1) = L(G, u, v).
To extend S(G, u, v) = S(G1) we proceed as follows: first, add S(G3)
on top of S(G1) using Lemma 3.31. Then, extend S(G3) ∪ S(G1) =
S(G,w, v) to G using induction (which is applicable since the length of
the spine increased).
Again, one easily checks that the contiguous subsegment invariant is
preserved in this construction.

5. If G is a parallel composition and L(G1) + L(G4) < L(G3), we proceed
symmetrically as in case 4.
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Figure 3.5: Rotating G which is a parallel composition.
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6. Finally, let (G, u, v) be a parallel composition and:

L(G1) + L(G3) ≥ L(G4) , (63)
L(G1) + L(G4) ≥ L(G3) . (64)

Again, we proceed in stages successively building (G1, u, v), (G3, u, w)
and (G4, w, v) using induction.
We start with S(G) = S(G1), which we need to extend to G. First, by
induction we extend S(G1) to G1. Next, we add S(G2) = S(G3)∪S(G4)
as follows: let a := L(G1) and b := L(G2). Recall that b ≥ a and that
a and b have the same parity.
Using Lemma 3.31, add a path of length (b− a)/2 starting from u and
let x be the endpoint of this path. Fix v and x and double all the other
vertices. Finally, collapse the resulting copy of G1 onto the path from
v to u′.
In the next stage, we work with the sequence that extends S(G3) to G3.
We need to adapt it to additional edges we have in the graph. This is
done as follows:

• All collapsing operations stay the same.
• Doubling operations that keep both u and w fixed fix all the vertices

of G1 and S(G4).
• In case at least one of u and w is doubled the arguments are very
similar to each other. Therefore we present only the one where u is
doubled and w is fixed. See Figure 3.6 for a graphical illustration.
By inductive assumption, we know that a contiguous subpath of
the spine S(G3) is doubled. Assume that its doubled vertices go
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Figure 3.6: Handling parallel decomposition when segment from u to y is
doubled. For clarity, G1 and G4 are drawn as spines only. The blue path is
collapsed onto the green path.
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from u to y and the fixed ones from w to x (i.e., x and y are
neighbours on the spine).
To emulate this case in G, double all vertices of G1 and S(G4)
except of w. Next, collapse the new copy of G1 onto its spine.
Finally, collapse the resulting path P1 := u′− v′−w onto the copy
of S(G3), i.e., P2 := u′ − y′ − x− w. This is possible due to (64):
since the path P1 is at least as long as P2, P1 can be collapsed
onto P2 as in the proof of Lemma 3.38.

Finally, we construct G4 from S(G4) in a very similar way. The only
differences are that when emulating doubling we need to perform an
additional collapse of G3 onto S(G3) and that we rely on the inequal-
ity (63) for the final collapse.
Again, one checks that the contiguous subsegment invariant is preserved
throughout the whole process.

3.4 α-acyclic Hypergraphs Are Constructible

Recall that in Section 3.3.1 we showed that all forests are constructible by
conditioning and therefore admit exponential parallel repetition. In this sec-
tion we generalize that proof to hypergraphs, obtaining exponential parallel
repetition for all α-acyclic hypergraphs:
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Theorem 3.42. Let Q be an r-uniform, r-partite α-acyclic hypergraph. Then,
Q is constructible by conditioning.

In particular, if Q is interpreted as an r-prover question set, then it admits
exponential parallel repetition.

In the following we first define and characterize α-acyclicity, and then prove
Theorem 3.42. The proof of constructibility uses a natural generalization of
Lemma 3.31.

3.4.1 Hypergraphs and α-acyclicity

The following exposition of hypergraph acyclicity is mainly based on [Bra14].

Definition 3.43 (Basic hypergraph notions). A (general) hypergraph H is a
finite set of non-empty sets, which are called its edges. The set of vertices of
a hypergraph V (H) is the union of its edges.

For a set of vertices S ⊆ V (H), the induced hypergraph H(S) is defined as
H(S) := {e ∩ S | e ∈ H} \ {∅}.

For a hypergraph H, we let its minimization M(H) to be M(H) :=
{e ∈ H | @f ∈ H : e ( f}, i.e.,M(H) is the set of edges maximal for inclusion.

Let m ≥ 3. We say that a tuple of pairwise distinct vertices (t1, . . . , tm)
of a hypergraph H is a cycle if

M (H ({t1, . . . , tm})) = {{t1, t2} , {t2, t3} , . . . , {tm−1, tm} , {tm, t1}} .

We say that a hypergraph is cycle-free if it does not contain a cycle.
We say that two vertices u, v ∈ V (H) are neighbors if there exists an edge

e ∈ H containing both u and v. We call a subset S ⊆ V (H) a clique if every
pair u, v ∈ S are neighbors.

Finally, we say that a hypergraph H is conformal if each of its cliques is
contained in an edge. ♦

Definition 3.44 (α-acyclicity). A hypergraph H is α-acyclic if it is cycle-free
and conformal. ♦

Example 3.45. The graph triangle H1 := {{u, v}, {v, w}, {w, u}} is neither
cycle-free nor conformal. The graph square H2 := {{u, v}, {v, w}, {w, x},
{x, u}} is conformal, but not cycle-free.

The tetrahedron H3 := {{u, v, w}, {u, v, x}, {u,w, x}, {v, w, x}} is cycle-
free, but not conformal. The beta triangle H4 := {{u, v}, {v, w}, {w, u},
{u, v, w}} is both cycle-free and conformal, that is α-acyclic.

The question graph Qr from Definition 3.52 is not conformal, since the set
of r vertices labeled with 0 is a clique that is not contained in an edge. On
the other hand, adding the edge 0r to Qr makes it α-acyclic. ♦
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Remark 3.46. In the setting introduced above, a simple graph is a hypergraph
whose edges have all size two1. It is easy to see that a simple graph is a forest
if and only if it is α-acyclic.

There exist several other notions of hypergraph acyclicity. For example,
one might require the hypergraph to be only cycle-free, disregarding the con-
formality. On the other hand, there are multiple more restricted definitions,
e.g., β-acyclicity, γ-acyclicity or Berge acyclicity (see [Bra14] for a survey).

It is somewhat interesting that we obtain exponential parallel repetition
for a relatively unrestricted notion. ♦

For the proof we need a different characterization of α-acyclicity:

Definition 3.47 (GYO reduction, [Gra79, YÖ79]). We say that a hypergraph
H ′ is obtained from H by an included edge removal if H ′ = H \ {e} where
e ∈ H and ∃f ∈ H : e ⊆ f ∧ e 6= f .

We say that H ′ is obtained from H by a singleton vertex removal if H ′ =
H (V (H) \ {u}), where the degree of u is one, i.e., u is contained in a single
edge of H.

We say that a hypergraph H is GYO-reducible if it can be reduced to
the empty hypergraph by a sequence of included edge and singleton vertex
removals. ♦

Theorem 3.48 (see Characterization 13 in [Bra14]). A hypergraph is α-
acyclic if and only if it is GYO-reducible.

3.4.2 Constructability proof

To prove Theorem 3.42, we need to introduce one more elementary operation.
Recall our definitions of graph constructability from Section 3.2.1.

Definition 3.49 (Simple constructability). Let (Q(1), . . . , Q(r), Q) be an r-
uniform, r-partite hypergraph and let q = (q(1), . . . , q(r)) ∈ Q and S ⊆ [r],
S 6= ∅.

Let q′ be a hyperedge where the positions not in S have the same vertices
as in q and the positions in S have new vertices, as in the doubling operation.

We define the (q, S)-extension of Q as (P (1), . . . , P (r), Q ∪ {q′}), where
P (j) = Q(j) ∪ {(q(j))′} or P (j) = Q(j) depending on if j ∈ S.

We say that an r-uniform, r-partite hypergraph Q is simply constructible if
it can be obtained from a single hyperedge by a sequence of (q, S)-extensions.

♦

Lemma 3.50. Every question set that is simply constructible is constructible
by conditioning.

1Neglecting the issue of isolated vertices.
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Proof. We show that every (q, S)-extension can be simulated using doubling
and collapsing operations. It may be instructive to compare this with the
proof of Lemma 3.31.

The simulation is achieved by one doubling and one collapse as follows:
Let q = (q(1), . . . , q(r)). First, fix all the vertices of q from the positions not in
S and double all other vertices in the hypergraph Q. If j ∈ S, then let (q(j))′
be the copy of q(j).

Then, collapse all new vertices except for (q(j))′: If j ∈ S, collapse each
of them onto (q(j))′, otherwise onto q(j). Check that this operation leaves all
old edges intact and collapses all new edges onto q′. Therefore, it is a valid
collapse and its result is the (q, S)-extension of Q.

Lemma 3.51. Let Q be an r-uniform, r-partite hypergraph. Q is simply
constructible if and only if it is GYO-reducible.

Proof. If Q is simply constructible, it is easy to devise an appropriate sequence
of removals: For every (q, S)-extension (in reverse order) perform singleton
vertex removals on new vertices of q′ and then an included edge removal on
the remaining part of q′ (if any).

On the other hand, suppose that Q is GYO-reducible. As a preliminary
point, let us assume that in case a vertex removal in the GYO reduction
sequence causes two edges to collapse into one, we keep two identical copies of
this edge instead (also counting them twice in the vertex degree calculation).
Of course one of those two copies can be removed at any later time. It is easy
to see that a hypergraph is GYO-reducible if and only if it is reducible with
this modified procedure.

We proceed by induction. If Q is a collection of (pairwise disjoint) sin-
gle hyperedges, then it is simply constructible and we are done. Otherwise,
consider the first edge removal of some edge q in the reduction sequence of Q.

Note that if we move all preceding vertex removals of the vertices contained
in q to the front of the sequence and then move the removal of q directly
thereafter, it is still a valid reduction sequence. But now after deleting q we
obtain an r-uniform, r-partite hypergraph P that can be (p, S)-extended to
Q, where p is one of the edges in which q was included and S corresponds to
the previously deleted vertices of q.

Since by induction P is simply constructible, Q is simply constructible as
well.

Proof of Theorem 3.42. Let Q be an r-uniform, r-partite α-acyclic hyper-
graph. By Theorem 3.48, it is GYO-reducible and by Lemma 3.51 it is simply
constructible. Finally, by Lemma 3.50, it is constructible by conditioning.
Moreover, by Theorem 3.21 the question set Q admits exponential parallel
repetition.
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3.5 Lower Bounds on Multi-Prover Parallel Repetition

We turn to lower bounds on parallel repetition and on our methods. In this
section we observe that for more than two provers the situation is dire: there
exist question sets that do not admit exponential parallel repetition.

To this end, we need a result from [HHR16] establishing that parallel
repetition of certain question sets implies the density Hales-Jewett theorem.

Definition 3.52. Let r ≥ 2. We define an r-prover question set Qr ⊆ {0, 1}r
of size r, where the j-th question contains 1 in the j-th position and 0 in the
remaining positions. In other words,

Qr := {q : w1(q) = 1} .

♦

Theorem 3.53 ([HHR16]). Let r ≥ 3, n ≥ 1 and S ⊆ [r]n with µ(S) = |S|/rn
such that S does not contain a combinatorial line.

There exists an r-prover game GS with question set Qr and answer alpha-
bets A(j) = 2[n] × [n] such that:

• val(GS) ≤ 1− 1/r.

• val(GnS) ≥ µ(S).

Recall ωDHJ
r (n) from Definition 3.10. Theorem 3.53 immediately implies

Theorem 3.54 ([HHR16]). Let r ≥ 3. We have ωDHJ
r (n) ≤ ωQr (n).

As another consequence, we have

Theorem 3.55. Let r ≥ 3. The question set Qr does not admit exponential
parallel repetition.

Proof. Let n be divisible by r and let

S := {x ∈ [r]n : w1(x) = . . . = wr(x) = n/r} .

It is clear that S does not contain a combinatorial line. At the same time, by
Stirling’s approximation, µ(S) ≥ Ω(1/n(r−1)/2) (where the constant in the Ω()
notation depends on r) and therefore ωDHJ

r (n) cannot decrease exponentially.
By Theorem 3.54, ωQr (n) cannot decrease exponentially either.

Better lower bounds for ωDHJ
r (n) are known, with the best ones established

by the Polymath project [Pol10].
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Theorem 3.56 ([Pol10], Theorem 1.3). Let ` ≥ 1 and r := 2`−1 + 1. There
exists C` > 0 such that for every n ≥ 2 there exists a set S ⊆ [r]n with

µ(S) ≥ exp
(
−C` (logn)1/`

)
,

such that S does not contain a combinatorial line.
That is, for r = 2`−1 + 1, we have

ωQr
(n) ≥ exp

(
−Cr (logn)1/dlog re

)
, (65)

where the o(1) function depends only on r.
Inequality (65) is also interesting in the context of the two-prover parallel

repetition lower bound by Feige and Verbitsky [FV02]. Recall that the upper
bound of Raz (cf. (4)) exhibits a dependence on the answer set size. More
specifically, it contains 1

log|A| term in the exponent. The example from [FV02]
shows that if an exponential two-prover parallel repetition bound depends only
on ε and

∣∣A∣∣, this term cannot be larger than log log|A|
log|A| .

Our example implies that we can bring down this last term to (log log|A|)ε
log|A|

for any ε > 0, at the price of increasing the number of provers:
Theorem 3.57. Let ` ≥ 1, r := 2`−1 + 1. There exists a constant C` > 0
such that for each n ≥ 2 there exists an r-prover game G with question set
Qr, val(G) ≤ 1−1/r and an answer set A with size

∣∣A∣∣ ∈ [2rn, 22rn] such that

val(Gn) ≥ exp
(
−C`n ·

(
log log

∣∣A∣∣)1/`
log
∣∣A∣∣

)
. (66)

Proof. Fix ` and n and take the r-prover game GS from Theorem 3.53 for the
set S ⊆ [r]n from Theorem 3.56. One verifies that GS has question set Qr and
that the answer alphabet size is

∣∣A∣∣ = (2n + n)r ∈ [2rn, 22rn].
Since S has no combinatorial line, we have val(GS) ≤ 1−1/r and val(GnS) ≥

µ(S) ≥ exp
(
−C` (logn)1/`

)
.

Noting that n ≥ log
∣∣A∣∣ /2r and logn ≤ log log

∣∣A∣∣, we can establish (66):

val(GnS) ≥ exp
(
−C` (logn)1/`

)
= exp

(
−C`n ·

(logn)1/`

n

)

≥ exp
(
−C ′`n ·

(
log log

∣∣A∣∣)1/`
log
∣∣A∣∣

)
.
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Figure 3.7: A drawing of C12.
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As a final note, we reiterate that our lower bounds do not exclude the pos-
sibility of an information-theoretic (see (4)) parallel repetition bound. Fur-
thermore, all results of this section concern games with at least three provers.
We consider the two-prover case in the following sections.

3.6 Some Graphs Are Not Constructible

It is an open question if all two-prover distributions admit exponential parallel
repetition. One way to prove that they do would be to show that all graphs
are constructible by conditioning. However, in this section we show that that
is not the case, hence another way must be found to resolve this open question:

Definition 3.58. Let n ∈ N be even and greater or equal to 8. We define the
cycle with shortcuts Cn as the following simple graph: V (Cn) := {0, . . . , n−1}
and {u, v} ∈ E(Cn) if and only if |u− v| ∈ {1, 3, n− 3, n− 1}. ♦

See Figure 3.7 for a drawing of C12. Observe that Cn is bipartite. We
show:

Theorem 3.59. The cycle with shortcuts C12 is not constructible by condi-
tioning.
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Since any bipartite graph G joined with C12 by a single vertex can be
collapsed onto C12, Theorem 3.59 implies the existence of an infinite family
of graphs that are not constructible.

Our proof of Theorem 3.59 turns out to be quite involved and computer-
assisted. Before we proceed with it, we explain why another natural proof
idea fails.

3.6.1 Warm-up: constructing all induced subgraphs

A natural idea to prove Theorem 3.59 would be to show for a certain graph
G that if it is not already present as an induced subgraph in another graph
H, then no doubling of H can produce an induced instance of G. It turns
out that this approach must fail, since for every bipartite graph G we can
construct a graph H such that G is an induced subgraph of H.

Definition 3.60. Let k ≥ 1. We define the set graph Sk := (X,Y,E) as
follows:

• X := [k].

• Y := {S ⊂ [k] : S 6= ∅}.

• E := {(x, S) : x ∈ S}.

♦

Theorem 3.61. The set graph Sk is constructible by conditioning with 2(k−
1) doublings.

Proof. The proof is by induction on k. The graph S1 is just a single edge.
To construct Sk+1, start with constructing Sk with 2(k − 1) doublings.

We make a preliminary point to avoid confusion. Note that the right
hand-side vertices of Sk are labeled with subsets of [k] such that for a vertex
labeled with S we have that its neighborhood is equal to its label: N(S) = S.
We will now perform some doublings and label the new vertices with subsets
that contain k+ 1. However, for a new vertex with a label S it is not evident
that N(S) = S: this is what we have to prove.

After constructing Sk, perform a doubling as follows: double all vertices
labeled with S such that k ∈ S and label each new vertex as S ∪ {k + 1}.

Then, perform a second doubling: double k and, again, all vertices labeled
with S such that k ∈ S and k+ 1 /∈ S. This time label the copy of k as k+ 1
and a copy of S as S \ {k} ∪ {k + 1}.

Note that after the doublings Y = {S ⊆ [k + 1] : S 6= ∅}. For S ∈ Y let
N(S) := {x ∈ X : (x, S) ∈ E} be the neighborhood of S. We need to check
that N(S) = S for every label S. This holds by the following case analysis:
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• Each vertex labeled with S such that k + 1 /∈ S existed before the first
doubling and its neighborhood did not change (since it was doubled in
the second doubling in case k ∈ S).

• Each vertex labeled with S such that {k, k + 1} ⊆ S was created in the
first doubling, at which point we had N(S) = S \ {k+ 1}. Then, it was
fixed in the second doubling and k + 1 was added to its neighborhood.

• Each vertex labeled with S such that k /∈ S and k + 1 ∈ S was created
in the second doubling with N(S) = S.

Therefore, we can construct Sk+1 from Sk in 2 doublings and Sk+1 from S1
in 2k doublings.

Remark 3.62. A modification of this construction can be used to construct
Sk,r with X := [k], Y := {S ⊆ [k] : |S| = r} and E := {(x, S) : x ∈ S}. ♦

Now we turn to the proof of Theorem 3.59.

3.6.2 Decomposing last two steps

Definition 3.63. Let u, v be two vertices arising during a construction of a
bipartite graph G. We write u ∼ v if u and v are adjacent. For two sets of
vertices A,B, we write E(A,B) for the set of edges between A and B. We
also write G(A) for the graph induced by vertices in A. ♦

Note that the operators ∼, E(·, ·) and G(·) do not depend on the stage
of the construction: doubling and collapsing only add and remove vertices,
without changing existing adjacencies.

Lemma 3.64. Let G be bipartite graph. If G is constructible, then it is
constructible such that all the operations except for the last one are doublings.

Proof. First, assume that in a construction of G there is a collapse operation
immediately followed by a doubling operation. Assume that A is the set of
the vertices collapsed in the first operation, B is the set of vertices that are
fixed in the first operation and doubled onto B’ in the second operation and C
the set of vertices that are fixed throughout both operations (see Figure 3.8).

Then, those two operations can be exchanged as follows. First, double A
onto A′ and B onto B′. Then, collapse A onto B ∪ C and A′ onto B′ ∪ C
(again see Figure 3.8). In both cases we end up with the same graph on
vertices B ∪B′ ∪ C.

Finally, note that once all collapses are at the end of the sequence of the
operations, they can be merged into a single collapse.
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Figure 3.8: Transposing a collapse and a doubling.
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Definition 3.65. We say that a graph G is collapsible onto a graph H, if H
can be constructed from G by a single collapse operation. ♦

Lemma 3.66. Let H be a constructible graph with at least two edges. There
exists a construction of H such that:

1. The last operation is a collapse.

2. All other operations are doublings.

3. Leting H0 be the graph before the last doubling, H0 is not collapsible
onto H.

Proof. By Lemma 3.64, there exists a construction of H satisfying the first
two conditions. Let us take such a construction with the smallest possible
number of doublings. Since H is not a single edge, the number of doublings
must be at least one.

If in this construction H0 is collapsible onto H, the last doubling and the
collapse can be replaced with a single collapse, which is a contradiction.

Due to Lemma 3.64, we can assume that if the graph C12 is constructible,
the last two steps of its construction are, respectively, doubling and collapsing.
Let us now divide the vertices of the construction depending on what happens
to them in those last two steps (see Figure 3.9).
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Figure 3.9: The last two steps in a construction of C12.

A

B

C

D

E

F

A

B

C

D

E

F

A′
B′

D′

F ′

A

B

C

B′

D′
H0 =

= C12

The division is as follows: A are vertices that are doubled onto A′ in the
first step, with A fixed and A′ collapsed in the second step. B are vertices
doubled onto B′ in the first step with both B and B′ fixed in the second step.
C are vertices that are fixed throughout both steps. D are vertices doubled
onto D′ in the first step with D collapsed and D′ fixed in the second step. E
are vertices fixed in the first step and collapsed in the second step. Finally,
F are vertices that are doubled onto F ′ in the first step with both F and F ′
collapsed in the second step.

One checks that this division covers all possible events in the last two
steps. The final graph C12 consists of vertices A ∪B ∪B′ ∪ C ∪D′.

Our proof of Theorem 3.59 goes as follows: First, we show that if the
last two steps of a construction of C12 are as above, it must be B = ∅ and
E(A,D) = ∅. Then, we prove that if B = ∅ and E(A,D) = ∅, then the initial
graph H0 must have been collapsible onto C12 in the first place. Parts of the
proof are computer-assisted, with the codes of C++ programs provided in
Appendix B.

3.6.3 Non-collapsible graphs never produce C12

Lemma 3.67. Let C12 be constructed in two steps from some bipartite H0,
as above. It cannot be that E = F = ∅, E(A,D) = ∅ and B 6= ∅.

Proof. Computer-assisted (enumerate all partitions of C12 into A ∪ B ∪ B′ ∪
C ∪D′ together with a bijection between B and B′, since E(A,D) = ∅ such
a partition implies a unique H0 = G(A ∪ B ∪ C ∪ D)), see the program
non_empty_b.cpp in Listing 2.
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Lemma 3.68. Let C12 be constructed in two steps from some bipartite H0,
as above. It cannot be that B = E = F = ∅ and |E(A,D)| = 1.

Proof. Computer-assisted (enumerate all partitions of C12 into A∪C∪D′ and
all edges between A and D, again this implies a unique H0 = G(A∪C ∪D)),
see the program non_empty_ad.cpp in Listing 3.

Lemma 3.69. Let C12 be constructed in two steps from some bipartite H0,
as above. Then, it must be that B = ∅ and E(A,D) = ∅.

Proof. Assume by contradiction that there exists a construction of C12 with
B 6= ∅ or E(A,D) 6= ∅.

Firstly, note that the same construction but with the vertices from E ∪F
deleted from the initial graph H0 is valid and also results in C12. Therefore,
we can assume w.l.o.g. that E = F = ∅.

We now proceed in two cases. If B 6= ∅, we can additionally assume
that E(A,D) = ∅. This is again due to the fact that if we deleted E(A,D)
edges from H0, we would still obtain a valid construction that results in C12
(cf. Figure 3.10). But B 6= ∅ and E(A,D) = ∅ is impossible due to Lemma
3.67.

On the other hand, assume that B = ∅ and E(A,D) 6= ∅. Then, by the
same argument as before, we can also assume that the size of E(A,D) is as
small as possible, namely |E(A,D)| = 1 (cf. Figure 3.11). But this also yields
a contradiction by Lemma 3.68.

Figure 3.10: An illustration of Lemma 3.69, case B 6= ∅.
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We need some additional concepts to deal with the remaining case B = ∅,
E(A,D) = ∅.

Definition 3.70. Let A and B be disjoint sets of vertices that exist at some
point during a construction of a bipartite graph H. Assume that a doubling
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Figure 3.11: An illustration of Lemma 3.69, case B = ∅, |E(A,D)| = 1. The
edge between A and D is marked red.
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operation is performed and that all vertices from B (possibly together with
some vertices from A and outside of A ∪B) are doubled.

Let B′ be the set of copies of vertices from B. There is an obvious bijection
between B and B′ which we call the natural bijection. Similarly, we say that
there is natural bijection between A ∪ B and A ∪ B′. If this bijection is also
an isomorphism between G(A∪B) and G(A∪B′), we say that G(A∪B) and
G(A ∪B′) are naturally isomorphic. ♦

Definition 3.71. Let C12 be constructed from some H0 in two steps, as
above. We say that A′ was naturally collapsed onto A, if in the collapse step
each vertex of A′ was collapsed onto A via the natural bijection. Analogously,
we say that D was naturally collapsed onto D′. ♦

Lemma 3.72. Let C12 be constructed from some H0 with one doubling and
one collapse, as above. If B = E = F = ∅ and E(A,D) = ∅, then in the
subsequent collapse either A′ is naturally collapsed onto A or D is naturally
collapsed onto D′.

Proof. Computer-assisted (enumerate all partitions of C12 into A ∪ C ∪ D′
and all possible collapses), see the program natural_collapse.cpp in Listing
4.

Lemma 3.73. Let C12 be constructed from some H0 with one doubling and
one collapse, as above. If B = ∅ and E(A,D) = ∅, then in the subsequent
collapse either A′ is naturally collapsed onto A or D is naturally collapsed
onto D′.

Proof. Assume there exists a construction of C12 from some H = G(A ∪ C ∪
D ∪ E ∪ F ) such that:

1. B = ∅ and E(A,D) = ∅.
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2. A′ does not naturally collapse onto A and D does not naturally collapse
onto D′.

Then, the same construction with vertices E ∪ F omitted from H0 is also
valid and satisfies both conditions. Therefore, we can assume w.l.o.g. that
E = F = ∅. Then, the result follows from Lemma 3.72.

Figure 3.12: An illustration of Lemma 3.73, case when E = F = ∅ and D
collapses naturally onto D′. Blue arrows denote a collapse.
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Lemma 3.74. Let C12 be constructed from some bipartite H0 by one doubling
and one collapse, as above. If B = ∅ and E(A,D) = ∅, then H0 is collapsible
onto C12.

Proof. Let the two steps in a construction of C12 be such as in the statement.
Recall that G(S) denotes the induced graph on a vertex set S. Note that
H0 = G(A∪C ∪D∪E ∪F ) and that C12 = G(A∪C ∪D′). For the following
discussion cf. Figures 3.9 and 3.12.

Since E(A,D) = ∅, the graphs G(A ∪ C ∪ D′) and G(A ∪ C ∪ D) are
naturally isomorphic. Therefore, it is enough to show that it is possible to
collapse E ∪ F onto A ∪ C ∪D.

Let us write the collapse that produces C12 as a homomorphism f ′ : A′ ∪
D ∪E ∪ F ∪ F ′ → A ∪C ∪D′. By Lemma 3.73, either A′ collapses naturally
onto A or D collapses naturally onto D′.

Consider first that A′ collapses naturally. We create a collapsing homo-
morphism f : E ∪ F → A ∪ C ∪D as follows:

• If u ∈ E and f ′(u) ∈ A ∪ C, then f(u) := f ′(u). If f ′(u) = w′ ∈ D′,
then f(u) := w ∈ D.

• For u ∈ F with u′ ∈ F ′, if f ′(u′) ∈ A ∪ C, then f(u) := f ′(u′). If
f ′(u′) = w′ ∈ D′, then f(u) := w ∈ D.
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We need to see that f is indeed a homomorphism, i.e., that all edges that
touch E ∪ F are mapped onto edges of G(A ∪ C ∪D). To this end we make
a case analysis:

• Since G(E∪F ) is naturally isomorphic to G(E∪F ′) and G(A∪C∪D) is
naturally isomorphic to G(A∪C ∪D′), the edges from E(E ∪F,E ∪F )
are preserved by f .

• Since G(A ∪C ∪D ∪E) is naturally isomorphic to G(A ∪C ∪D′ ∪E),
the edges from E(E,A ∪ C ∪D) are also preserved by f .

• Let u ∈ F , v ∈ A, u ∼ v. Then u′ ∼ v′ =⇒ f ′(u′) ∼ v =⇒ f(u) ∼ v,
where we used that A′ collapses naturally.

• Let u ∈ F , v ∈ C, u ∼ v. Then u′ ∼ v =⇒ f ′(u′) ∼ v =⇒ f(u) ∼ v.

• Finally, let u ∈ F , v ∈ D, u ∼ v. Then u′ ∼ v′ =⇒ f ′(u′) ∼ v′ =⇒
f(u) ∼ v.

Second, assume that D collapses naturally onto D′. In that case we give a
collapsing homomorphism f : E∪F → A∪C ∪D′ as follows: if f ′(u) ∈ A∪C,
then f(u) := f ′(u). If f ′(u) = w′ ∈ D′, then f(u) := w ∈ D. To see that f is
a collapsing homomorphism, consider:

• Since G(A∪C∪D) is naturally isomorphic to G(A∪C∪D′), f preserves
the edges from E(E ∪ F,A ∪ C ∪ E ∪ F ).

• If u ∈ E ∪ F , v ∈ D, u ∼ v consider the subcases (in all of them we use
that D collapses naturally):

– If f ′(u) ∈ A, then A 3 f ′(u) ∼ f ′(v) = v′ ∈ D′, implying
E(A,D′) 6= ∅, a contradiction.

– If f ′(u) ∈ C, then C 3 f(u) = f ′(u) ∼ f ′(v) = v′ =⇒ f(u) ∼ v.
– If f ′(u) ∈ D′, then f ′(u) ∼ f ′(v) = v′ =⇒ f(u) ∼ v.

3.6.4 Putting things together

Proof of Theorem 3.59. By Lemma 3.66, if C12 is constructible, there exists
a construction of it by one doubling and one collapse starting from some H0
that is not collapsible onto C12 in the first place. But this is impossible by
Lemmas 3.69 and 3.74.
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Remark 3.75. Our analysis, except for the computer-assisted part, does not
depend on the number of vertices in Cn. Further program runs confirmed that
also C14 and C16 are not constructible. On the other hand, one can see that
C8 and C10 are constructible. ♦
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Appendix A

Proof of Theorem 2.12

Our proof of Theorem 2.12 follows in this appendix. It is only a slight adap-
tation of the argument from [Mos10], but we include it in full for the sake of
completeness.

We first restate the theorem for convenience:

Theorem 2.12. Let X be a random vector distributed according to (Ω,P)
such that P has equal marginals, ρ(P) ≤ ρ < 1 and minx∈Ω π(x) ≥ α > 0.

Then, for all ε > 0, there exists τ := τ(ε, ρ, α, `) > 0 such that if functions
f (1), . . . , f (`) : Ω→ [0, 1] satisfy

max
i∈[n],j∈[`]

Infi(f (j)(X(j))) ≤ τ , (11)

then, for µ(j) := E[f (j)(X(j))] we have

E

∏̀
j=1

f (j)(X(j))

 ≥
∏̀
j=1

µ(j)

`/(1−ρ2)

− ε . (12)

Furthermore, there exists an absolute constant C ≥ 0 such that for ε ∈
(0, 1/2] one can take:

τ :=
(

(1− ρ2)ε
`5/2

)C ` ln(`/ε) ln(1/α)
(1−ρ)ε

. (13)

The proof can be generalized in several directions, but for the sake of
clarity we present the simplest version sufficient for our purposes.

93
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A.1 Preliminaries — the general framework

We start with explaining the notation of random variables and L2 spaces that
we will use throughout the proof.

Definition A.1. Let (Ω,F ,P) be a probability space. We define the real
inner product space L2(Ω,P) as the set of all square-integrable functions
f : Ω→ R, i.e., the functions that satisfy∫

Ω
f2 dP < +∞ , (67)

with inner product defined as

〈f, g〉 :=
∫

Ω
fg dP . (68)

♦

Remark A.2. As we will see shortly, if X is a random variable sampled from
Ω according to P, the equations (67) and (68) can be written as

E[f2(X)] < +∞ ,

〈f, g〉 = E[f(X)g(X)] .

♦

Remark A.3. We omitted the event space F in the definition of L2(Ω,P).
This is because F is always implicit in the choice of the measure P.

In particular, when P is discrete, of course we choose F to be the powerset
of Ω. When P is continuous over Rn, we use the “standard” real event space,
i.e., the completion of the Borel algebra. ♦

While this will not be our usual way of thinking, at this point it makes
sense to introduce the formal definition of a random variable: a function from
a probability space to some set.

Definition A.4. Let (Σ,F ,P) be a probability space. We say that X is a
random variable over a set Σ′ if it is a measurable function X : Σ→ Σ′. ♦

As usual, we will assume throughout the proof that all random variables are
induced by some underlying probability space (Σ,F ,P).

Using this, a random variable induces some distribution, which we can
study.
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Definition A.5. We say that a random variable X over a set Ω is distributed
according to a probability space (Ω,P) if for every event A ∈ F :

Pr[X ∈ A] = P(A) .

♦

Definition A.6. Let X be a random variable distributed over Ω. By L2(X)
we denote the inner product space of random variables that correspond to
square-integrable functions f : Ω→ R:

L2(X) := {Z | Z = f ◦X for some f : Ω→ R with E[f(X)2] < +∞} ,

with the inner product given as

〈Z1, Z2〉 := E[Z1 · Z2] .

♦

Remark A.7. We consider the formal setting again, i.e., suppose (Σ,F ,P)
is the underlying probability space, and X : Σ → Ω a random variable.
Then, L2(X) is a subspace of L2(Σ,P). Intuitively, it contains all real valued
functions which “depend only on X”. ♦

Example A.8. Fix (Ω,P) to be the uniform distribution on Ω := {0, 1, 2}
and let X be distributed according to (Ω,P). Then L2(X) has dimension
three and one of its orthonormal bases is

Z0 :≡ 1

Z1 :=


√

6/2 if X = 0,
−
√

6/2 if X = 1,
0 if X = 2.

Z2 :=
{√

2/2 if X ∈ {0, 1},
−
√

2 if X = 2.

♦

After this point, we will have no need to refer explicitly to the underly-
ing probability space (Σ,F ,P) anymore. Nevertheless, it will be useful to
remember that random variables are functions of this underlying space.

It immediately follows from the definitions that:

Lemma A.9. Let X be a random variable distributed according to (Ω,P).
Then L2(X) is isomorphic to L2(Ω,P).
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A.2 Preliminaries — orthonormal ensembles and multi-
linear polynomials

In this section we introduce orthonormal ensembles and multilinear polyno-
mials over them.

Definition A.10. We call a finite family (X0, . . . ,Xp) of random variables
orthonormal if they satisfy E[X 2

k ] = 1 for every k and E[XjXk] = 0 for every
j 6= k. ♦

Definition A.11. We call a finite family of orthonormal random variables
X = (X?,0 = 1,X?,1, . . . ,X?,p) an orthonormal ensemble. We call p the size of
the ensemble.

An ensemble sequence is a sequence of independent families of random
variables X = (X1, . . . ,Xn) such that each Xi is an orthonormal ensemble
Xi = (Xi,0 = 1,Xi,1, . . . ,Xi,p) of the same size p. We call n the size of the
sequence. ♦

The notation X?,k is a little awkward, but we do not need to use it often.
The reason for it is that we want to to make sure that one cannot confuse
one of the random variables X?,k within an orthonormal ensemble with the
orthonormal ensemble Xi itself. Whenever a random variable Xi,k is part of
an ensemble Xi, there is no reason to use the ?-symbol. Instead we use the
index of the ensemble.

Note that in an orthonormal ensemble for k > 0 we have E[X?,k] =
E[X?,kX?,0] = 0.

Definition A.12. We call two ensemble sequences X = (X1, . . . ,Xn) and Y =
(Y1, . . . ,Ym) compatible if n = m and the sizes of the individual ensembles Xi
and Yi are the same. ♦

Definition A.13. Let X = (X1, . . . ,Xn) be an ensemble sequence such that
each ensemble Xi is of size p.

A monomial compatible with X is a term

xσ :=
n∏
i=1

xi,σi ,

where σ = (σ1, . . . , σn) with σi ∈ {0, . . . , p}.
A (formal)multilinear polynomial compatible with X is a sum of compatible

monomials, i.e., a polynomial P of the form

P (x) =
∑

σ∈{0,...,p}n
α(σ)xσ =

∑
σ∈{0,...,p}n

α(σ)
n∏
i=1

xi,σi ,
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where the sum goes over all tuples σ = (σ1, . . . , σn) as above, and α(σ) ∈ R.
For a tuple σ we define its support as supp(σ) := {i ∈ [n] : σi 6= 0} and

its degree as the size of its support: |σ| := | supp(σ)|. Also, we will write the
tuple (0, . . . , 0) as 0n. ♦

Let a multilinear polynomial P compatible with X be given. Then, P (X ) is
what one expects: the random variable obtained by evaluating the polynomial
on the given input. Analogously, if σ is a tuple as above we write Xσ for the
random variable corresponding to the evaluation of the monomial xσ.

Lemma A.14. Let X be an ensemble sequence and σ, τ two tuples whose
monomials xσ, xτ are compatible with X . Then,

E[XσXτ ] =
{

1 if σ = τ

0 otherwise
(69)

and

E[Xσ] =
{

1 if σ = 0n

0 otherwise.
(70)

Proof. By independence of the coordinates we have E[XσXτ ] =
∏n
i=1 E[Xi,σi ·

Xi,τi ] and now we can use the orthonomality of each ensemble Xi. For the
second part, we apply the first on τ = 0n.

Definition A.15. Given a multilinear polynomial P (x) =
∑
σ α(σ)xσ we

define its following properties:

deg(P ) :=
{

maxσ:ασ 6=0 |σ| if P is non-zero
−∞ if P is the zero polynomial

(71)

E[P ] := α(0n) (72)
E[P 2] :=

∑
σ

α(σ)2 (73)

Var[P ] := E[P 2]− E2[P ] (74)
Infi(P ) :=

∑
σ:σi 6=0

α(σ)2 (75)

Inf(P ) :=
n∑
i=1

Infi(P ) (76)

♦
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The next lemma states that the formal expressions defined above are con-
sistent with the corresponding probabilistic interpretations for every ensemble
sequence.

Lemma A.16. For an ensemble sequence X and a multilinear polynomial P
compatible with it we have

E[P ] = E[P (X )] (77)
E[P 2] = E[(P (X ))2] (78)

Var[P ] = Var[P (X )] . (79)

Furthermore, if all random variables in X are discrete, then

Infi(P ) = E [Var [P (X ) | X1, . . . ,Xi−1,Xi+1, . . . ,Xn]] . (80)

Proof. Linearity of expectation and (70) yield E[P (X )] =
∑
σ α(σ) E[Xσ] =

α(0n), which is (77). Next, (69) gives E[P 2(X )] =
∑
σ,τ α(σ)α(τ)XσXτ =∑

σ α(σ)2, i.e. (78), and hence (79) by the definition of the variance.
As for (80), fix an assignment x\i = (x1, . . . , xi−1, xi+1, . . . , xn) to the

ensemble sequence X \i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn).1 We suppose that this
tuple has a non-zero probability of occurence. Since Xi is an orthornormal
ensemble,

Var[P (X ) | X \i = x\i] =
p∑
k=1

 ∑
σ:σi=k

α(σ) ·
∏
j 6=i

xj,σj

2

From Lemma A.14, for a fixed k ∈ {1, . . . , p},

E


 ∑
σ:σi=k

α(σ) ·
∏
j 6=i
Xj,σj

2
 =

∑
σ:σi=k

α(σ)2 .

Together this gives

E
[
Var

[
P (X ) | X \i

]]
=

∑
σ:σi 6=0

α(σ)2 ,

as claimed.
1 Note that each entry in this tuple is itself a tuple: xi = (xi,0 = 1, xi,1, . . . , xi,p), where

p is the size of the ensemble.
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Definition A.17. For a multilinear polynomial P (x) =
∑
σ α(σ)xσ and S ⊆

[n] we let PS be P restricted to tuples σ with supp(σ) = S, i.e., PS :=∑
σ:supp(σ)=S α(σ)xσ.
Then, let P>d :=

∑
S:|S|>d PS be P restricted to tuples with the degree

greater than d. We also define P=d, P≤d etc. in the analogous way. ♦

Lemma A.18. Let P and Q be multilinear polynomials compatible with an
ensemble sequence X . Then,

E [P (X )Q(X )] =
∑
S⊆[n]

E [PS(X )QS(X )] .

Proof. It is enough to show that for S 6= T

E [PS(X )QT (X )] = 0 .

Let P (X ) =
∑
σ α(σ) · Xσ and Q(X ) =

∑
σ β(σ) · Xσ. Assume w.l.o.g. that

there exists i∗ ∈ S \ T . Then,

E [PS(X )QT (X )] =

=
∑

σ:supp(σ)=S
σ′:supp(σ′)=T

α(σ)β(σ′) E [Xi∗,σi∗ ] E

∏
i 6=i∗
Xi,σiXi,σ′i

 = 0 .

Corollary A.19. Let P be a multilinear polynomial. Then, E[P 2] =
∑
S⊆[n]

E[P 2
S ].

Proof. Taking any ensemble sequence X compatible with P ,

E[P 2] = E[P (X )2] =
∑
S⊆[n]

E[PS(X )2] =
∑
S⊆[n]

E[P 2
S ] .

Claim A.20. Let P be a multilinear polynomial. Then, we have Var[P ] =∑
S⊆[n] Var[PS ].

Proof. Observing that Var[P∅] = 0, E[P 2
∅ ] = α(0n)2 and Var[PS ] = E[P 2

S ] for
S 6= ∅, by Corollary A.19

Var[P ] = E[P 2]− α(0n)2 =
∑

S⊆[n],S 6=∅

E[P 2
S ] =

∑
S⊆[n]

Var[PS ] .
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Lemma A.21. Let P be a multilinear polynomial with deg(P ) ≤ d. Then,

Inf(P ) ≤ d ·Var[P ] .

Proof.

Inf(P ) =
∑
σ

|σ| · α(σ)2 ≤ d ·
∑
σ 6=0n

α(σ)2 = d ·Var[P ] .

Definition A.22. Let ρ ∈ R. We define the operator Tρ as follows: let
P (x) =

∑
σ α(σ)xσ be a multilinear polynomial. Then,

(TρP )(x) :=
∑
σ

ρ|σ|α(σ)xσ .

♦

We will mostly use the operator Tρ with ρ ∈ [0, 1].

Definition A.23. We call an orthonormal ensemble G? of size p Gaussian if
random variables G?,1, . . . ,G?,p are independent N (0, 1) Gaussians.

We say that an ensemble sequence G = (G1, . . . ,Gn) is Gaussian if for each
i ∈ [n] the ensemble Gi is Gaussian. ♦

We remark than as in all ensemble sequences, in a Gaussian ensemble
sequence we have Gi,0 ≡ 1 for all i.

Definition A.24. For tuples of multilinear polynomials P = (P (1), . . . , P (`))
such that each polynomial P (j) is compatible with an ensemble sequence X
we write P (X ) for the tuple (P (1)(X ), . . . , P (`)(X )).

Similarly, given multilinear polynomials P = (P (1), . . . , P (`)) and a collec-
tion of ensemble sequences X = (X (1), . . .X (`)) such that P (j) is compatible
with X (j) we write P (X ) for (P (1)(X (1)), . . . , P (`)(X (`))). ♦

A.3 Preliminaries — ensemble collections

In this section we recall the setting of Theorem 2.12 and introduce some other
concepts we will need throughout the proof.

From now on we will always implicitly assume that all multi-step distribu-
tions P have equal marginals (denoted as π). This assumption is not necessary,
but sufficient for our main purpose, while making the notation easier.

Definition A.25. Let X be a random variable distributed according to a
single-step, single-coordinate distribution (Ω, π). We say that an orthonormal
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ensemble X? is constructed from X if the elements of X? form an orthonormal
basis of L2(X).

Similarly, let X be a random vector distributed according to (Ω, π). We
say that an ensemble sequence X = (X1, . . . ,Xn) is constructed from X if for
each i ∈ [n] the ensemble Xi is constructed from Xi. ♦

The definition of ensemble sequences requires that Xi,0 ≡ 1 for every i; of
course we can find a basis of L2(Xi) which satisfies this requirement, so that
ensemble sequences constructed from X indeed exist.

Lemma A.26. Let X be an ensemble sequence constructed from a random
vector X distributed according to (Ω, π). Assume that the size of each ensemble
Xi is p. Then the set of monomials

B := {Xσ | σ = (σ1, . . . , σn), σi ∈ {0, . . . , p}}

is an orthonormal basis of L2(X).

Proof. Observe that the dimension of L2(Xi) is p+1, (note that it is the sup-
port size of the single-coordinate distribution (Ω, π)). Hence, the dimension
of L2(X) is (p + 1)n, which equals the size of B. Therefore, it is enough to
check that B is orthonormal, which is done in Lemma A.14.

Definition A.27. Let X be an ensemble sequence constructed from a random
vector X distributed according to (Ω, π).

For a function f : Ω→ R and a multilinear polynomial P compatible with
X we say that f(X) is equivalent to P if it always holds that

f(X) = P (X ) .

♦

Recall the operator Tρ from Definition A.22. We show that it has a natural
counterpart in L2(Ω, π).

Definition A.28. Let ρ ∈ [0, 1] and let (Ω, π) be a single-step probability
space (with (Ω, π) a corresponding single-coordinate probability space).

We define a linear operator Tρ : L2(Ω, π)→ L2(Ω, π) as

Tρf(x) := E [f (Y ρ,x)] ,

where Y ρ,x = (Y ρ,x1 , . . . , Y
ρ,x
n ) is a random vector with independent coordi-

nates distributed such that Y ρ,xi = xi with probability ρ and Y
ρ,x
i is (inde-

pendently) distributed according to (Ω, π) with probability (1− ρ). ♦
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The next lemma states that taking operator Tρ preserves the equivalence
of functions and polynomials:

Lemma A.29. Let X be an ensemble sequence constructed from a random
vector X distributed according to (Ω, π).

Let ρ ∈ [0, 1], f : Ω → R and P be a multilinear polynomial equivalent to
f . Then, TρP and Tρf are equivalent, i.e.,

Tρf(X) = TρP (X ) .

Proof. Fix an input x ∈ Ω in the support of P. Let Yρ,x = (Yρ,x1 , . . . ,Yρ,xn )
be the random sequence where for each coordinate i ∈ [n], independently

Yρ,xi :=
{
Xi(xi) with probability ρ,
a random ensemble distributed as Xi with probability 1− ρ.

Note that Yρ,x is not an ensemble sequence, but this will not cause problems.
Writing P (x) =

∑
σ α(σ) · xσ we can calculate

Tρf(x) = E[f(Y ρ,x)] = E[P (Yρ,x)] =
∑
σ

α(σ) E[Yρ,xσ ]

=
∑
σ

ρ|σ|α(σ) · Xσ(x) = TρP (x) .

Since x was arbitrary, the claim is proved.

Recall Definition A.23. In the proof we will construct a tuple of ensemble
sequences X = (X (1), . . . ,X (`)) from a random vectorX and consider relations
between those sequences and compatible Gaussian ensemble sequences. To
this end, we need to introduce the Gaussian equivalent of marginal ensemble
sequences X (j).

Definition A.30. Let G? = (G?,0, . . . ,G?,p) be a Gaussian orthonormal en-
semble of size p. We define an inner product space V (G?) as

V (G?) :=
{

p∑
k=0

αk · G?,k | α0, . . . , αk ∈ R

}
with the inner product of A,B ∈ V (G?) given by 〈A,B〉 := E[A ·B].

Similarly, given a Gaussian ensemble sequence G such that each of its
ensembles is of size p we let

V (G) :=
{∑

σ

α(σ) · Gσ | σ = (σ1, . . . , σn) ∈ {0, . . . , p}, α(σ) ∈ R

}
,

with the inner product 〈A,B〉 := E[A ·B]. ♦
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Lemma A.31. Let a random tuple X = (X(1), . . . , X(`)) be distributed ac-
cording to a single-coordinate distribution (Ω,P). Let X ? = (X (1)

? , . . . ,X (`)
? )

be such that X (j)
? is an orthonormal ensemble constructed from X(j).

Then, there exist Gaussian orthonormal ensembles G? = (G(1)
? , . . . ,G(`)

? )
compatible with X ? such that for all j1, j2 ∈ [`], and all k1, k2 ≥ 0 we have

Cov
[
X (j1)
?,k1

,X (j2)
?,k2

]
= Cov

[
G(j1)
?,k1

,G(j2)
?,k2

]
. (81)

Proof. Consider (Ω,P) as a single-step probability space, and let X be the
corresponding random variable. Let now Z? be an orthonormal ensemble
constructed from X. Recall that this means that the elements of Z? form an
orthonormal basis of L2(X).

Let H? be a Gaussian ensemble sequence compatible with Z?. Define the
map Ψ : L2(X) → V (H?) by linearly extending Ψ(Z?,k) := H?,k. In this
way Ψ becomes an isomorphism between L2(X) and V (H?) (and as such it
preserves inner products).

Since L2(X(j)) is a subspace of L2(X), we can define G(j)
?,k as G(j)

?,k :=
Ψ(X (j)

?,k ). Since Ψ preserves inner products we get (81).
We still need to argue that for each j ∈ [`] the orthonormal ensemble G(j)

?

is Gaussian. The fact that G(j)
? is an ensemble sequence follows from (81) for

j1 = j2 = j (note that Ψ(1) = 1).
The variables G(j)

?,k are clearly jointly Gaussian, since they can be written as
sums of independent Gaussians. By (81), their covariance matrix is identity.
This finishes the proof, since joint Gaussians with the identity covariance
matrix must be independent.

Since the proof of Lemma A.31 is somewhat abstract, we illustrate the
construction of G? with an example.

Example A.32. Consider (X(1), X(2)) distributed according to P over Ω =
{0, 1} with P(0, 0) = P(1, 1) = 1/8 and P(0, 1) = P(1, 0) = 3/8. We can take
the following for the ensemble Z?:

(X(1), X(2)) := (0,0) (0, 1) (1, 0) (1, 1)
Z?,0 1 1 1 1
Z?,1 2 0 0 -2
Z?,2 0 2

√
3/3 −2

√
3/3 0

Z?,3
√

3 −
√

3/3 −
√

3/3
√

3
For the marginal ensemble X (1)

? we can take
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X(1) := 0 1
X (1)
?,0 1 1
X (1)
?,1 1 −1

Now one can check that X (1)
?,0 = Z?,0 and X (1)

?,1 = 1/2 · Z?,1 +
√

3/2 · Z?,2.
Defining the ensemble X (2)

? in the same way we get X (2)
?,0 = Z?,0 and X (2)

?,1 =
1/2 · Z?,1 −

√
3/2 · Z?,2.

Let H? = (H?,0 ≡ 1,H?,1,H?,2,H?,3) be a Gaussian ensemble sequence
compatible with Z?. One easily checks that our construction gives

G(1)
?,0 = G(2)

?,0 = H?,0
G(1)
?,1 = 1/2 · H?,1 +

√
3/2 · H?,2

G(2)
?,1 = 1/2 · H?,1 −

√
3/2 · H?,2 .

♦

Since the covariances between independent coordinates are always zero,
Lemma A.31 applied to each coordinate separately gives:

Corollary A.33. Let a random vector X = (X(1), . . . , X(`)) be distributed
according to a distribution (Ω,P). Let X = (X (1), . . . ,X (`)) be such that X (j)

is an ensemble sequence constructed from X(j).
Then, there exist Gaussian ensemble sequences G = (G(1), . . . ,G(`)) com-

patible with X such that for all i1, i2 ∈ [n], j1, j2 ∈ [`], and all k1, k2 ≥ 0 we
have

Cov
[
X (j1)
i1,k1

,X (j2)
i2,k2

]
= Cov

[
G(j1)
i1,k1

,G(j2)
i2,k2

]
. (82)

Definition A.34. An ensemble collection for (Ω,P) is a tuple(
X,X = (X (1), . . . ,X (`)),G = (G(1), . . . ,G(`))

)
where

• X is a random vector distributed according to (Ω,P),

• X (1), . . . ,X (`) are ensemble sequences constructed from X(1), . . . , X(`),
respectively,

• and G(1), . . . ,G(`) are obtained from Corollary A.33.

♦
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A.4 Hypercontractivity

In this section we develop a version of hypercontractivity for products of
multilinear polynomials. Our goal is to prove Lemma A.43.

Recall the operator Tρ from Definition A.22.

Definition A.35. Let X be an ensemble sequence and let 1 ≤ p ≤ q < ∞
and ρ ∈ [0, 1]. We say that the sequence X is (p, q, ρ)-hypercontractive if for
every multilinear polynomial P compatible with X we have

E [|TρP (X )|q]1/q ≤ E [|P (X )|p]1/p

♦

Definition A.36. Let X be an orthonormal ensemble and let 1 ≤ p ≤ q <∞
and ρ ∈ [0, 1]. We say that the ensemble X is (p, q, ρ)-hypercontractive if the
one-element ensemble sequence X := (X ) is (p, q, ρ)-hypercontractive. ♦

We start with stating without proofs the hypercontractivity of orthonor-
mal ensembles that we use in the invariance principle:

Theorem A.37 ([Bon70, Nel73, Gro75, Bec75]). Let G be a Gaussian or-
thonormal ensemble and ρ ∈ [0,

√
2/2]. Then, G is (2, 3, ρ)-hypercontractive.

Theorem A.38 (Special case of Theorem 3.1 in [Wol07]). Let X be an or-
thonormal ensemble constructed from a random variable X distributed ac-
cording to a (single-coordinate, single-step) probability distribution (Ω, π) with
minx∈Ω π(x) ≥ α ≥ 0.

Then, X is (2, 3, α1/6/2)-hypercontractive.

Subsequently, we observe that an ensemble sequence constructed from
hypercontractive ensembles is itself hypercontractive:

Theorem A.39. Let 1 ≤ p ≤ q <∞, ρ ∈ [0, 1] and let X := (X1, . . . ,Xn) be
an ensemble sequence such that for every i ∈ [n], the ensemble Xi is (p, q, ρ)-
hypercontractive. Then, the sequence X is also (p, q, ρ)-hypercontractive.

Yet again, we omit the proof of Theorem A.39. We remark that it is well-
known as the tensorization argument. The argument can be found, e.g., in
the proof of Proposition 3.11 in [MOO10].

Definition A.40. Let X be a random vector distributed according to a
(single-step, tensorized) probability space (Ω, π). We say that an ensemble
sequence X = (X1, . . . ,Xn) is X-Gaussian-mixed if for each i ∈ [n]:

• Either Xi is constructed from the random variable Xi,
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• or Xi is a Gaussian ensemble.
♦

Theorems A.37, A.38 and A.39 immediately imply:
Corollary A.41. Let X be a random vector distributed according to a prob-
ability space (Ω, π) with minx∈Ω π(x) ≥ α ≥ 0 and let X be an X-Gaussian-
mixed ensemble sequence.

Then, X is (2, 3, α1/6/2)-hypercontractive.
Theorem A.42. Let X be a random vector distributed according to a probabil-
ity space (Ω, π) with minx∈Ω π(x) ≥ α > 0 and let X be an X-Gaussian-mixed
ensemble sequence. Let P be a multilinear polynomial compatible with X of
degree at most d. Then,

E
[
|P (X )|3

]1/3
≤
(

2
α1/6

)d√
E [P 2] .

Proof. Let ρ := α1/6/2 and write P (X ) =
∑
σ β(σ)Xσ. By Corollary A.41,

definitions of Tρ and E[P 2], and the degree bound on P ,

E
[
|P (X )|3

]1/3
= E

[∣∣TρT1/ρP (X )
∣∣3]1/3 ≤√E

[
(T1/ρP )2

]
=
√∑

σ

ρ−2|σ|β(σ)2 ≤
√∑

σ

ρ−2dβ(σ)2 = ρ−d
√

E[P 2] .

Lemma A.43. Let X be a random vector distributed according to a (multi-
step) probability space with equal marginals (Ω,P) with minx∈Ω π(x) ≥ α > 0.

Let S(1), . . . ,S(`) be ensemble sequences such that S(j) is X(j)-Gaussian-
mixed. Let P (1), . . . , P (`) be multilinear polynomials such that P (j) is compat-
ible with S(j) and deg(P (j)) ≤ d.

Then, for every triple j1, j2, j3 ∈ [`]:

E
[∣∣∣∣∣

3∏
k=1

P (jk)(S(jk))

∣∣∣∣∣
]
≤
(

8√
α

)d
·

√√√√ 3∏
k=1

E
[
(P (jk))2

]
.

Proof. Let ρ := α1/6/2. By Hölder’s inequality and Theorem A.42,

E
[∣∣∣∣∣

3∏
k=1

P (jk)(S(jk))

∣∣∣∣∣
]
≤

3∏
k=1

E
[∣∣∣P (jk)(S(jk))

∣∣∣3]1/3

≤ ρ−3d ·

√√√√ 3∏
k=1

E
[
(P (jk))2

]
.
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A.5 Invariance principle

In this section we prove a basic version of invariance principle for multiple
polynomials.

We say that a function is B-smooth if all of its third-order partial deriva-
tives are uniformly bounded by B:

Definition A.44. For B ≥ 0 we say that a function Ψ : R` → R is B-smooth
if Ψ ∈ C3 and for every j1, j2, j3 ∈ [`] and every x = (x(1), . . . , x(`)) ∈ R` we
have ∣∣∣∣ ∂3

∂x(j1)∂x(j2)∂x(j3) Ψ(x)
∣∣∣∣ ≤ B .

♦

Theorem A.45 (Invariance Principle). Let (X,X ,G) be an ensemble collec-
tion for a probability space (Ω,P) with minx∈Ω π(x) ≥ α > 0.

Let P = (P (1), . . . , P (`)) be such that P (j) is a multilinear polynomial
compatible with the ensemble sequence X (j).

Let d ∈ N and τ ∈ [0, 1] and assume that deg(P (j)) ≤ d and Var[P (j)] ≤ 1
for each j ∈ [`], and that

∑`
j=1 Infi(P (j)) ≤ τ for each i ∈ [n].

Finally, let Ψ : R` → R be a B-smooth function. Then,

∣∣E [Ψ(P (X ))−Ψ(P (G))
]∣∣ ≤ `5/2dB

3

(
8√
α

)d√
τ .

Remark A.46. A typical setting of parameters for which Theorem A.45 might
be successfully applied is constant `, d, B, and α, while τ = o(1) (as n→∞).

♦

The rest of this section is concerned with proving Theorem A.45.
For i ∈ {0, . . . , n} and j ∈ [`] let the ensemble sequence U (j)

(i) be defined as
U (j)

(i) := (G(j)
1 , . . . ,G(j)

i ,X (j)
i+1, . . . ,X

(j)
n ).

Claim A.47.

∣∣E [Ψ(P (X ))−Ψ(P (G))
]∣∣ ≤ n∑

i=1

∣∣∣E [Ψ(P (U (i−1)))−Ψ(P (U (i)))
]∣∣∣ .

Proof. By the triangle inequality.
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Due to Claim A.47, we will estimate∣∣∣E [Ψ(P (U (i−1)))−Ψ(P (U (i)))
]∣∣∣

for every i ∈ [n]. Fix i ∈ [n] and write T (j) := U (j)
(i−1) and U (j) := U (j)

(i) for
readability. For j ∈ [`] we can write

P (j)(T (j)) = A(j) +
∑
k>0
X (j)
i,k ·B

(j)
k = A(j) + P

(j)
i (T (j)) , (83)

where A(j) and B(j)
k do not depend on the coordinate i and, if P (j)(T (j)) =∑

σ α(σ)T (j)
σ , then P

(j)
i (T (j)) =

∑
σ:i∈supp(σ) α(σ)T (j)

σ . At the same time,
since A(j) and B(j)

k do not depend on the i-th coordinate,

P (j)(U (j)) = A(j) +
∑
k>0
G(j)
i,k ·B

(j)
k = A(j) + P

(j)
i (U (j)) .

We note for later use that the construction gives us

deg(P (j)
i ) ≤ d (84)

E
[(
P

(j)
i

)2
]

= Infi
(
P (j)

)
. (85)

The rest of the proof proceeds as follows: we calculate the multivariate sec-
ond order Taylor expansion (i.e., with the third-degree rest) of the expression,
getting

Ψ(P (T ))−Ψ(P (U)) =

= Ψ
(
A(1) +

∑
k>0
X (1)
i,k B

(1)
k , . . . , A(`) +

∑
k>0
X (`)
i,kB

(`)
k

)

−Ψ
(
A(1) +

∑
k>0
G(1)
i,kB

(1)
k , . . . , A(`) +

∑
k>0
G(`)
i,kB

(`)
k

)

around the point A := (A(1), . . . , A(`)). We will see that:

• All the terms up to the second degree cancel in expectation due to the
properties of ensemble sequences.

• The remainder, which is of the third degree, can be bounded using that
Ψ is B-smooth, properties of P (j)

i , and hypercontractivity, in particular
Lemma A.43.
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We proceed with a detailed description. The first result we will need is
multivariate Taylor’s theorem for B-smooth functions:

Theorem A.48. Let Ψ : R` → R be a B-smooth function and let x =
(x(1), . . . , x(`)), ε = (ε(1), . . . , ε(`)) ∈ R`. Then,∣∣∣∣∣Ψ(x(1) + ε(1), . . . , x(`) + ε(`)

)
−Ψ(x) +

∑
j∈[`]

ε(j)
∂

∂x(j) Ψ(x) + 1
2
∑

j1,j2∈[`]

ε(j1)ε(j2) ∂2

∂x(j1)∂x(j2) Ψ(x)

∣∣∣∣∣
≤ B

6
∑

j1,j2,j3∈[`]

∣∣∣ε(j1)ε(j2)ε(j3)
∣∣∣ .

We omit the proof of Theorem A.48.

Lemma A.49. Fix i ∈ [n] and write T (j) := U (j)
(i−1) and U (j) := U (j)

(i) . Then,

E
[
Ψ(P (T ))

]
= E

[
Ψ(A)+

1
2
∑

j1,j2∈[`]

 ∑
k1,k2>0

X (j1)
i,k1
X (j2)
i,k2

B
(j1)
k1

B
(j2)
k2

∂2

∂A(j1)∂A(j2) Ψ(A)

+RT

]
, (86)

and

E
[
Ψ(P (U))

]
= E

[
Ψ(A)+

1
2
∑

j1,j2∈[`]

 ∑
k1,k2>0

G(j1)
i,k1
G(j2)
i,k2

B
(j1)
k1

B
(j2)
k2

∂2

∂A(j1)∂A(j2) Ψ(A)

+RU

]
, (87)

where random variables RT and RU are such that

E
[∣∣RT ∣∣] ,E [∣∣RU ∣∣] ≤ `3/2B

6

(
8√
α

)d∑̀
j=1

Infi(P (j))

3/2

. (88)

Proof. We show only (86) and the bound on E[|RT |], the proofs for the en-
semble sequence U being analogous.

As a preliminary remark, note that since all the random ensembles we are
dealing with are hypercontractive, and since Ψ is B-smooth, all the terms in
the expressions above have finite expectations.
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Keeping in mind both decompositions from (83), by Theorem A.48

Ψ(P (T )) = Ψ(A) +
∑
j∈[`]

(∑
k>0
X (j)
i,k B

(j)
k

∂

∂A(j) Ψ(A)
)

+

+ 1
2
∑

j1,j2∈[`]

 ∑
k1,k2>0

X (j1)
i,k1
X (j2)
i,k2

B
(j1)
k1

B
(j2)
k2

∂2

∂A(j1)∂A(j2) Ψ(A)

+RT , (89)

where

E[|RT |] ≤
B

6
∑

j1,j2,j3∈[`]

E
[∣∣∣∣∣

3∏
k=1

P
(jk)
i (T (jk))

∣∣∣∣∣
]
. (90)

Since E[X (j)
i,k ] = 0, and all other terms are independent of coordinate i, we

have

E

∑
j∈[`]

∑
k>0
X (j)
i,k B

(j)
k

∂

∂A(j) Ψ(A)

 = 0 ,

which together with (89) yields (86).
As for the bound on E[|RT |], since T (j) is X(j)-Gaussian-mixed ensemble

sequence, due to (90), Lemma A.43 (note that the degree is bounded due to
(84)), and (85),

E[|RT |] ≤
B

6

(
8√
α

)d ∑
j1,j2,j3∈[`]

√√√√ 3∏
k=1

E
[(
P

(jk)
i

)2
]

= B

6

(
8√
α

)d ∑
j1,j2,j3∈[`]

√√√√ 3∏
k=1

Infi(P (jk))

≤ `3/2B

6

(
8√
α

)d∑̀
j=1

Infi(P (j))

3/2

,

where the last inequality uses
∑
j1,j2,j3

ν(j1, j2, j3) ≤
√
`3
√∑

ν2(j1, j2, j3) for

the vector ν with entries ν(j1, j2, j3) =
√∏3

k=1 Infi(P (jk)).

Lemma A.50. Fix i ∈ [n] and write T (j) := U (j)
(i−1) and U (j) := U (j)

(i) . Then,

∣∣E [Ψ(P (T ))−Ψ(P (U))
]∣∣ ≤ `3/2B

3

(
8√
α

)d∑̀
j=1

Infi(P (j))

3/2

.
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Proof. First, we need to show that the second-order terms in (86) and (87)
cancel out. Since by Lemma A.31 for every j1, j2 ∈ [`] and k1, k2 > 0:

E
[
X (j1)
i,k1
X (j2)
i,k2

]
= Cov

[
X (j1)
i,k1

,X (j2)
i,k2

]
= Cov

[
G(j1)
i,k1

,G(j2)
i,k2

]
= E

[
G(j1)
i,k1
G(j2)
i,k2

]
,

and since all the other terms are independent of coordinate i, we have

E

 ∑
j1,j2∈[`]

∑
k1,k2>0

X (j1)
i,k1
X (j2)
i,k2

B
(j1)
k1

B
(j2)
k2

∂2

∂A(j1)∂A(j2) Ψ(A)


= E

 ∑
j1,j2∈[`]

∑
k1,k2>0

G(j1)
i,k1
G(j2)
i,k2

B
(j1)
k1

B
(j2)
k2

∂2

∂A(j1)∂A(j2) Ψ(A)

 .

Therefore, by (86), (87) and (88),∣∣E [Ψ(P (T ))−Ψ(P (U))
]∣∣ ≤ E[|RT |] + E[|RU |]

≤ `3/2B

3

(
8√
α

)d∑̀
j=1

Infi(P (j))

3/2

,

as claimed.

Proof of Theorem A.45. Recall that we have
∑`
j=1 Infi(P (j)) ≤ τ and also

Var[P (j)] ≤ 1. By Claim A.47, Lemma A.50 and Claim A.21,

∣∣E [Ψ(P (X ))−Ψ(P (G))
]∣∣ ≤ n∑

i=1

∣∣∣E [Ψ(P (U (i−1)))−Ψ(P (U (i)))
]∣∣∣

≤ `3/2B

3

(
8√
α

)d n∑
i=1

∑̀
j=1

Infi(P (j))

3/2

≤ `3/2B

3

(
8√
α

)d√
τ

n∑
i=1

∑̀
j=1

Infi(P (j))

= `3/2B

3

(
8√
α

)d√
τ
∑̀
j=1

Inf(P (j)) ≤ `5/2dB

3

(
8√
α

)d√
τ .



112 Proof of Theorem 2.12

A.6 A tailored application of invariance principle

Definition A.51. Define φ : R→ R as

φ(x) :=


0 if x ≤ 0,
x if x ∈ (0, 1),
1 if x ≥ 1,

and χ : R` → R as χ(x) :=
∏`
j=1 φ(x(j)). ♦

Definition A.52. Let P be a multilinear polynomial and γ ∈ [0, 1]. We say
that P is γ-decaying if for each d ∈ N we have

E
[(
P≥d

)2] ≤ (1− γ)d .

We also say that a tuple of multilinear polynomials P = (P (1), . . . , P (`))
is γ-decaying if P (j) is γ-decaying for each j ∈ [`]. ♦

Note that if a multilinear polynomial P is γ-decaying, then, in particular,
Var[P ] ≤ E[P 2] ≤ 1.

Our goal in this section is to prove a version of invariance principle for
γ-decaying multilinear polynomials and the function χ:

Theorem A.53. Let (X,X ,G) be an ensemble collection for a probability
space (Ω,P) with minx∈Ω π(x) ≥ α, α ∈ (0, 1/2].

Let P = (P (1), . . . , P (`)) be such that P (j) is a multilinear polynomial
compatible with the ensemble sequence X (j).

Let γ ∈ [0, 1], τ ∈ (0, 1] and assume that P is γ-decaying and that∑`
j=1 Infi(P (j)) ≤ τ for each i ∈ [n]. There exists an absolute constant C ≥ 0

such that ∣∣E [χ(P (X ))− χ(P (G))
]∣∣ ≤ C`5/2 · τ γ

C ln 1/α .

Two obstacles to proving Theorem A.53 by direct application of Theorem
A.45 are:

1. The function χ is not C3.

2. A γ-decaying multilinear polynomial does not have bounded degree.

We will deal with those problems in turn.
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A.6.1 Approximating χ with a C3 function

To apply Theorem A.45, we are going to approximate φ and χ with C3 (in
fact, C∞) functions.

For that we need to introduce the notion of convolution and a basic theo-
rem from real calculus, whose proof we omit (see, e.g., Chapter 9 in [Rud87]):

Definition A.54. Let f : R→ R and S ⊆ R. We say that S is a support of
f if x /∈ S implies f(x) = 0.

We say that f has compact support if there exists a bounded interval I
that is a support of f . ♦

Definition A.55. The convolution f ∗ g of two continuous functions f, g :
R→ R, at least one of which has compact support, is (f ∗g)(x) :=

∫∞
−∞ f(x−

t)g(t) dt. ♦

Theorem A.56. Let functions f, g : R→ R be such that f is continuous on
R, g ∈ C∞ and g has compact support. Then, (f ∗ g) ∈ C∞. Furthermore, for
every k ∈ N and x ∈ R:

∂k

∂xk
(f ∗ g)(x) =

(
f ∗ ∂

kg

∂xk

)
(x) .

We also need a special density function with support [−1, 1]:

Theorem A.57. There exists a function ψ : R → R≥0 such that all of the
following hold:

• ψ ∈ C∞.

• ψ has support [−1, 1].

• ∀x : ψ(x) = ψ(−x).

•
∫∞
−∞ ψ(x) dx =

∫ 1
−1 ψ(x) dx = 1.

Proof. Consider

Ψ(x) :=
{

exp(− 1
(x+1)2 ) · exp(− 1

(x−1)2 ) if x ∈ (−1, 1)
0 otherwise

(91)

and set ψ(x) := Ψ(x)/c where c :=
∫ 1
−1 Ψ(x) dx.

For any λ > 0 we can rescale ψ to an analogous distribution with support
[−λ, λ]:
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Definition A.58. Let λ > 0 and define ψλ : R→ R≥0 as ψλ(x) := 1
λψ
(
x
λ

)
.
♦

It is easy to see that ψλ has properties analogous to ψ:

Claim A.59. Let λ > 0. ψλ has the following properties:

• ψλ ∈ C∞.

• ψλ has support [−λ, λ].

• ∀x : ψλ(x) = ψλ(−x).

•
∫∞
−∞ ψλ(x) dx =

∫ λ
−λ ψλ(x) dx = 1.

We see that convoluting φ with ψλ for a small λ results in a smooth
function that is still very close to φ:

Definition A.60. Let λ ∈ (0, 1/2) and define φλ : R→ R as φλ := φ ∗ψλ. ♦

To start with, we state some easy to verify properties of φλ:

Claim A.61. Let λ ∈ (0, 1/2). The function φλ has the following properties:

• φλ(x) =
∫ λ
−λ ψλ(y)φ(x+ y) dy.

• x ≤ −λ ∨ x ∈ [λ, 1− λ] ∨ x ≥ 1 + λ =⇒ φλ(x) = φ(x).

• x ∈ [−λ, λ] =⇒ φλ(x) ∈ [0, λ].

• x ∈ [1− λ, 1 + λ] =⇒ φλ(x) ∈ [1− λ, 1].

• x ≤ y =⇒ φλ(x) ≤ φλ(y).

Lemma A.62. Let λ ∈ (0, 1/2):

1) ∀x : |φλ(x)− φ(x)| ≤ λ.

2) φλ ∈ C∞. Furthermore, for each k ∈ N there exists a constant Bk ≥ 0
such that ∀x :

∣∣∣ ∂k∂xkφλ(x)
∣∣∣ ≤ Bk

λk
.

Proof. 1) From Claim A.61.

2) Since φλ = φ ∗ ψλ, due to Theorem A.56 we have φλ ∈ C∞.

For x /∈ [−λ, 1 + λ] the function φλ is constant with
∣∣∣ ∂k∂xkφλ(x)

∣∣∣ ≤ 1.

For x ∈ [−λ, 1 + λ], first note that for every k ∈ N, since ψ has sup-
port [−1, 1], also all of its derivatives have support [−1, 1] and therefore
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∣∣∣ ∂k∂xkψ(x)
∣∣∣ ≤ Bk. Together with Theorem A.56 this gives (substituting

z := y/λ)∣∣∣∣ ∂k∂xk φλ(x)
∣∣∣∣ =

∣∣∣∣ ∂k∂xk (φ ∗ ψλ) (x)
∣∣∣∣ =

∣∣∣∣∫ +∞

−∞
φ(x− y) ∂

k

∂yk
ψλ(y) dy

∣∣∣∣
=

∣∣∣∣∣
∫ λ

−λ
φ(x− y) ∂

k

∂yk
ψλ(y) dy

∣∣∣∣∣
= 1
λk+1

∣∣∣∣∣
∫ λ

−λ
φ(x− y) ∂

k

∂zk
ψ(z) dy

∣∣∣∣∣ ≤ 2Bk
λk

,

as claimed.

Now we are ready for the approximation of χ:

Definition A.63. Let λ ∈ (0, 1/2). Define function χλ : R` → R as

χλ(x) :=
∏̀
j=1

φλ(x(j)) .

♦

From Lemma A.62 we easily get:

Corollary A.64. Let λ ∈ (0, 1/2). The function χλ has the following prop-
erties:

1) ∀x ∈ R` : |χ(x)− χλ(x)| ≤ `λ.

2) There exists a universal constant B ≥ 0 such that χλ is B
λ3 -smooth.

After developing the approximation we are ready to prove the invariance
principle for the function χ:

Theorem A.65. Let (X,X ,G) be an ensemble collection for a probability
space (Ω,P) with minx∈Ω π(x) ≥ α > 0.

Let P = (P (1), . . . , P (`)) be such that P (j) is a multilinear polynomial
compatible with the ensemble sequence X (j).

Let d ∈ N and τ ∈ [0, 1] and assume that deg(P (j)) ≤ d and Var[P (j)] ≤ 1
for each j ∈ [`], and that

∑`
j=1 Infi(P (j)) ≤ τ for each i ∈ [n].

There exists a universal constant C ≥ 0 such that∣∣E [χ(P (X ))− χ(P (G))
]∣∣ ≤ C · `5/2τ1/8

α4d .



116 Proof of Theorem 2.12

Proof. Let λ := τ1/8/3. By the triangle inequality we get∣∣E [χ(P (X ))− χ(P (G))
]∣∣ ≤ ∣∣E [χ(P (X ))− χλ(P (X ))

]∣∣
+
∣∣E [χλ(P (X ))− χλ(P (G))

]∣∣
+
∣∣E [χλ(P (G))− χ(P (G))

]∣∣ . (92)

From Corollary A.64.1 and the definition of λ we get both∣∣E [χ(P (X ))− χλ(P (X ))
]∣∣ ≤ `λ ≤ O ( `5/2τ1/8

α4d

)
(93)∣∣E [χλ(P (G))− χ(P (G))

]∣∣ ≤ `λ ≤ O ( `5/2τ1/8

α4d

)
. (94)

By Theorem A.45 and Corollary A.64.2 we get∣∣E [χλ(P (X ))− χλ(P (G))
]∣∣ ≤ O(`5/2d8dτ1/2

λ3αd/2

)
. (95)

We can assume w.l.o.g. that α ≤ 1/2 (otherwise the theorem is trivial).
Using the definition of λ, d8d ≤ 9d+1 and 9 ≤

( 1
α

)3.5 we see that

`5/2d8dτ1/2

λ3αd/2
≤ O

(
`5/2d8dτ1/8

αd/2

)
≤ O

(
`5/2τ1/8

α4d

)
. (96)

Inserting (93), (94), and the combination of (96) and (95) into (92) gives the
result.

A.6.2 Invariance principle for γ-decaying polynomials

Let P = (P (1), . . . , P (`)) be a tuple of mutlilinear polynomials and let P<d :=((
P (1))<d , . . . , (P (`))<d). We will deal with a γ-decaying P by estimating

|E[χ(P<d(X ))− χ(P (X ))]| for appropriately chosen d.
First, we need a bound on the change of χ:

Lemma A.66. For all x = (x(1), . . . , x(`)), ε = (ε(1), . . . , ε(`)) ∈ R`:∣∣∣χ(x(1) + ε(1), . . . , x(`) + ε(`))− χ(x(1), . . . , x(`))
∣∣∣ ≤ ∑̀

j=1
|ε(j)| .

Proof. Letting y(j) := (x(1), . . . , x(j), x(j+1) + ε(j+1), . . . x(`) + ε(`)),∣∣∣χ(x(1) + ε(1), . . . , x(`) + ε(`))− χ(x(1), . . . , x(`))
∣∣∣

≤
∑̀
j=1

∣∣∣χ(y(j−1))− χ(y(j))
∣∣∣ ≤ ∑̀

j=1

∣∣∣ε(j)∣∣∣ .
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Proof of Theorem A.53. Let d := b ln 1/τ
64 ln 1/αc. By the triangle inequality,∣∣E [χ(P (X ))− χ(P (G))

]∣∣ ≤ ∣∣∣E [χ(P (X ))− χ(P<d(X ))
]∣∣∣

+
∣∣∣E [χ(P<d(X ))− χ(P<d(G))

]∣∣∣
+
∣∣∣E [χ(P<d(G))− χ(P (G))

]∣∣∣ . (97)

We proceed to demonstrate that all three terms on the right hand side of

(97) are O
(
`4τ

Ω
(

γ
ln 1/α

))
, which will finish the proof.

Lemma A.67.∣∣∣E [χ(P (X ))− χ(P<d(X ))
]∣∣∣ ≤ `(1− γ)d/2 ≤ O

(
`τ

Ω
(

γ
ln 1/α

))
(98)

and, similarly,∣∣∣E [χ(P (G))− χ(P<d(G))
]∣∣∣ ≤ `(1− γ)d/2 ≤ O

(
`τ

Ω
(

γ
ln 1/α

))
(99)

Proof. We prove only (98), the argument for (99) being the same. Using
Lemma A.66, Cauchy-Schwarz, the fact that P is γ-decaying and the definition
of d, ∣∣∣E [χ(P (X ))− χ(P<d(X ))

]∣∣∣ ≤ ∑̀
j=1

E
[∣∣∣∣(P (j)

)≥d
(X (j))

∣∣∣∣]

≤
∑̀
j=1

√
E
[(
P (j)

)2] ≤ `(1− γ)d/2 ≤ 2`τ
γ

128 ln 1/α .

Lemma A.68.∣∣∣E [χ(P<d(X ))− χ(P<d(G))
]∣∣∣ ≤ O(`5/2τΩ

(
γ

ln 1/α

))
.

Proof. From Theorem A.65,∣∣∣E [χ(P<d(X ))− χ(P<d(G))
]∣∣∣ ≤ O(`5/2τ1/8

α4d

)
.
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From the definition of d (recall that α ≤ 1/2),

`5/2τ1/8

α4d ≤ `5/2τ1/16 ≤ `5/2τΩ
(

γ
ln 1/α

)
,

as claimed.

This finishes the proof of Theorem A.53.

A.7 Reduction to the γ-decaying case

To apply Theorem A.53 we need to show that “smoothing out” of multilinear
polynomials P (1), . . . , P (`) does not change the expectation of their product
too much.

Recall Definitions A.22 and A.28 for the operator Tρ. Our goal in this
section is to prove:

Theorem A.69. Let X be a random vector distributed according to (Ω,P)
with ρ(Ω,P) ≤ ρ ≤ 1. Let Z be an ensemble sequence constructed from
X and X (1), . . . ,X (`) be ensemble sequences constructed from X(1), . . . , X(`),
respectively.

Let ε ∈ (0, 1/2] and γ ∈
[
0, (1−ρ)ε

` ln `/ε

]
.

Then, for all multilinear polynomials P (1), . . . , P (`) such that P (j)(X (j)) ∈
[0, 1]: ∣∣∣∣∣∣E

∏̀
j=1

P (j)(X (j))−
∏̀
j=1

T1−γP
(j)(X (j))

∣∣∣∣∣∣ ≤ ε .
Let us start with an intuition: Due to Lemma A.18, it is enough to bound

E

∏̀
j=1

P
(j)
S −

∏̀
j=1

T1−γP
(j)
S


for every S ⊆ [n]. If |S| is small, we use the fact that P (j)

S −T1−γP
(j)
S shrinks

by a factor of 1− (1− γ)|S| for every j. If |S| is large, we exploit that both

E

∏̀
j=1

P
(j)
S

 ,E
∏̀
j=1

T1−γP
(j)
S


are small (roughly ρ|S| times smaller compared to their variances).
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To give a formal argument, we use yet another ensemble sequence: let
j ∈ [`]. We define Y(j) to be an ensemble sequence constructed from X [`]\{j}.
Furthermore, let

A(j) :=
∏
j′<j

T1−γP (X (j′))
∏
j′>j

P (X (j′)) .

Note that since A(j) ∈ L2(X [`]\{j}), there exists a multilinear polynomial Q(j)

compatible with Y(j) such that

A(j) = Q(j)(Y(j)) .

Lemma A.70.∏̀
j=1

P (j)(X (j))−
∏̀
j=1

T1−γP
(j)(X (j)) =

∑̀
j=1

(Id−T1−γ)P (j)(X (j)) ·Q(j)(Y(j)) .

Proof. By definition of Q(j).

Lemma A.71. For every j ∈ [`] and S ⊆ [n], S 6= ∅:∣∣∣E [P (j)
S (X (j)) ·Q(j)

S (Y(j))
]∣∣∣ ≤ ρ|S|√Var[P (j)

S ] Var[Q(j)
S ] .

Proof. For ease of notation let us write P := P (j), Q := Q(j), X := X (j) and
Y := Y(j).

Let P (X ) =
∑
σ α(σ)Xσ and Q(Y) =

∑
σ β(σ)Yσ.

We know that Xi,k ∈ L2(X(j)
i ) and Yi,k ∈ L2(X([`]\{j})

i ) for every i ∈
[n], k, k′ ≥ 0. Furthermore, if k, k′ > 0, then E[Xi,k] = E[Yi,k′ ] = 0 and
Var[Xi,k] = Var[Yi,k′ ] = 1. By definition of ρ, this implies

|E [Xi,k · Yi,k′ ]| = |Cov [Xi,k,Yi,k′ ]| ≤ ρ. (100)

Expanding the expectation and using (100) and Cauchy-Schwarz,

|E [PS(X )QS(Y)]| =

∣∣∣∣∣∣E
 ∑

σ:supp(σ)=S

α(σ)Xσ

 ∑
σ′:supp(σ′)=S

β(σ′)Yσ′

∣∣∣∣∣∣
≤

∑
σ,σ′:

supp(σ)=supp(σ′)=S

∣∣∣∣∣α(σ)β(σ′)
∏
i∈S

E
[
Xi,σiYi,σ′i

]∣∣∣∣∣
≤ ρ|S|

∑
σ,σ′:

supp(σ)=supp(σ′)=S

|α(σ)β(σ′)|

≤ ρ|S|
√

Var[PS ] Var[QS ] ,
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Lemma A.72. Let k ∈ N. Then, min(1− (1− γ)k, ρk) ≤ ε/`.
Proof. If ρ ∈ {0, 1} we are done, therefore assume that ρ ∈ (0, 1). If k ≥
logρ `/ε, then ρk ≤ ε/`.

If 0 ≤ k < logρ `/ε, then by Bernoulli’s inequality,

1− (1− γ)k ≤ γk ≤ 1− ρ
ln(1/ρ) ·

ε

`
≤ ε

`
.

Lemma A.73. For every j ∈ [`] and S ⊆ [n], S 6= ∅:∣∣∣E [(Id−T1−γ)P (j)
S (X (j)) ·Q(j)

S (Y(j))
]∣∣∣ ≤ ε

`
·
√

Var[P (j)
S ] Var[Q(j)

S ] .

Proof. As in the proof of Lemma A.71, we will write P := P (j), Q := Q(j),
X := X (j) and Y := Y(j).

By definition of T1−γ ,

(Id−T1−γ)PS(X ) = (1− (1− γ)|S|)PS(X ) . (101)

From (101), Lemma A.71 and Lemma A.72,

|E [(Id−T1−γ)PS(X ) ·QS(Y)]|

≤ min
(

1− (1− γ)|S|, ρ|S|
)√

Var[PS ] Var[QS ]

≤ ε

`

√
Var[PS ] Var[QS ] .

Lemma A.74. Fix j ∈ [`]. Then,∣∣∣E [(Id−T1−γ)P (j)(X (j)) ·Q(j)(Y(j))
]∣∣∣ ≤ ε/` .

Proof. For ease of notation write P := P (j), Q := Q(j), X := X (j) and
Y := Y(j).

Observe that since P (X ), Q(Y) ∈ [0, 1], also Var[P ],Var[Q] ≤ 1.
From Lemma A.18, Lemma A.73 and Cauchy-Schwarz,

|E [(Id−T1−γ)P (X ) ·Q(Y)|] ≤
∑
S⊆[n]

|E [(Id−T1−γ)PS(X ) ·QS(Y)]|

≤ ε

`

∑
S 6=∅

√
Var[PS ] Var[QS ]

≤ ε

`

√
Var[P ] Var[Q] ≤ ε/` .
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Proof of Theorem A.69. By Lemma A.70 and Lemma A.74,∣∣∣∣∣∣E
∏̀
j=1

P (j)(X (j))−
∏̀
j=1

T1−γP
(j)(X (j))

∣∣∣∣∣∣
≤
∑̀
j=1

∣∣∣E [(Id−T1−γ)P (j)(X (j)) ·Q(j)(Y(j))
]∣∣∣ ≤ ε .

A.8 Gaussian reverse hypercontractivity

Definition A.75. Let L2(Rn, γn) be the inner product space of functions
with standard N (0, 1) Gaussian measure. ♦

Our goal in this section is to prove the following bound:

Theorem A.76. Let (X,X ,G) be an ensemble collection for a probability
space (Ω,P) with ρ(P) ≤ ρ < 1 and such that each orthonormal ensemble in
G has size p.

Then, for all f (1), . . . , f (`) ∈ L2(Rpn, γpn) such that f (1), . . . , f (`) : Rpn →
[0, 1] and E

[
f (j)(G(j))

]
= µ(j):

E

∏̀
j=1

f (j)(G(j))

 ≥
∏̀
j=1

µ(j)

`/(1−ρ2)

.

Remark A.77. Since the random variables G(j)
i,0 are constant, it suffices to

consider consider f (j) as functions of pn rather than (p+ 1)n inputs. ♦

In order to prove Theorem A.76, we will use a multidimensional version of
Gaussian reverse hypercontractivity stated as Theorem 1 in [CDP15] (cf. also
Corollary 4 in [Led14]).

Theorem A.78 ([CDP15]). Let p > 0 and let G = (G(1), . . . , G(`)) be a
jointly Gaussian collection of ` random vectors such that:

• For each j ∈ [`], G(j) = (G(j)
1 , . . . , G

(j)
n ) is a random vector distributed

as n independent N (0, 1) Gaussians.
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• For every collection of real numbers {α(j)
i } ∈ R:

Var

∑
i,j

α
(j)
i ·G

(j)
i

 ≥ p ·∑
i,j

(
α

(j)
i

)2
. (102)

Then, for all f (1), . . . , f (`) ∈ L2(Rn, γn) such that f (1), . . . , f (`) : Rn → [0, 1]
and E

[
f (j)(G(j))

]
= µ(j):

E

∏̀
j=1

f (j)(G(j))

 ≥
∏̀
j=1

µ(j)

1/p

.

Remark A.79. An equivalent formulation of the condition in (102) is that the
matrix (T − p Id) is positive semidefinite, where T is the covariance matrix of
G. ♦

To reduce Theorem A.76 to Theorem A.78 we first look at a single-
coordinate variance bound for ensembles from X . Next, we will extend this
bound to multiple coordinates and ensembles from G.

Lemma A.80. Let (X,X ,G) be an ensemble collection for a probability space
(Ω,P) with ρ(P) ≤ ρ < 1 and such that each orthonormal ensemble in X has
size p.

Fix i ∈ [n] and for ease of notation let us write X (j) = (X (j)
0 , . . . ,X (j)

p )
for the random ensemble X (j)

i = (X (j)
i,0 , . . . ,X

(j)
i,p ).

Then, for every collection of real numbers {α(j)
k } ∈ R:

Var

 ∑
j≥1,k>0

α
(j)
k · X

(j)
k

 ≥ 1− ρ2

`
·
∑

j≥1,k>0

(
α

(j)
k

)2
.

Proof. For each j ∈ [`] we define random variables Aj :=
∑
k>0 α

(j)
k ·X

(j)
k and

Bj :=
∑
j′∈[`]\{j}

∑
k>0 α

(j′)
k · X (j′)

k .
We compute

Var[Bj ] ·Var[Aj +Bj ]
= Var[Aj ] ·Var[Bj ] + (Var[Bj ])2 + 2 Var[Bj ] Cov[Aj , Bj ]
= Var[Aj ] ·Var[Bj ] + (Var[Bj ] + Cov[Aj , Bj ])2 − Cov[Aj , Bj ]2

≥ Var[Aj ] ·Var[Bj ]− Cov[Aj , Bj ]2

≥ Var[Aj ] Var[Bj ](1− ρ2) ,
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where in the last inequality we used that the definition of ρ implies∣∣Cov[Aj , Bj ]
∣∣ ≤ ρ√Var[Aj ] Var[Bj ]

since Aj ∈ L2(X(j)
i ) and Bi ∈ L2(X([`]\{j})

i ).
Therefore,

Var

 ∑
j≥1,k>0

α
(j)
k · X

(j)
k

 = 1
`

∑̀
j=1

Var[Aj +Bj ] ≥
1− ρ2

`

∑̀
j=1

Var[Aj ]

= 1− ρ2

`

∑̀
j=1

∑
k>0

(
α

(k)
j

)2
.

Lemma A.81. Let (X,X ,G) be an ensemble collection for a probability space
(Ω,P) with ρ(P) ≤ ρ < 1.

Then, for every collection of real numbers {α(j)
i,k} ∈ R:

Var

 ∑
i,j≥1,k>0

α
(j)
i,k · X

(j)
i,k

 ≥ 1− ρ2

`
·

∑
i,j≥1,k>0

(
α

(k)
i,j

)2
.

Proof. Since ensembles X i are independent, by Lemma A.80,

Var

 ∑
i,j≥1,k>0

α
(j)
i,k · X

(j)
i,k

 =
n∑
i=1

Var

 ∑
j≥1,k>0

α
(j)
i,k · X

(j)
i,k


≥ 1− ρ2

`
·

∑
i,j≥1,k>0

(
α

(j)
i,k

)2
.

Lemma A.82. Let (X,X ,G) be an ensemble collection for a probability space
(Ω,P) with ρ(P) ≤ ρ < 1.

Then, for every collection of real numbers {α(j)
i,k} ∈ R:

Var

 ∑
i,j≥1,k>0

α
(j)
i,k · G

(j)
i,k

 ≥ 1− ρ2

`
·

∑
i,j≥1,k>0

(
α

(k)
i,j

)2
.

Proof. By Corollary A.31 and Lemma A.81.
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Proof of Theorem A.76. By application of Theorem A.78 to G = (G(1), . . . ,

G(`)), where G(j) = (G(j)
i,1 , . . . ,G

(j)
i,p , . . . ,G

(j)
n,1, . . . ,G

(j)
n,p).

Since G(j) is a Gaussian ensemble sequence, G(j) is distributed as pn in-
dependent N (0, 1) Gaussians. Condition (102) for p := 1−ρ2

` is fulfilled due
to Lemma A.82.

A.9 The main theorem

We recall the low-influence theorem that we want to prove:

Theorem 2.12. Let X be a random vector distributed according to (Ω,P)
such that P has equal marginals, ρ(P) ≤ ρ < 1 and minx∈Ω π(x) ≥ α > 0.

Then, for all ε > 0, there exists τ := τ(ε, ρ, α, `) > 0 such that if functions
f (1), . . . , f (`) : Ω→ [0, 1] satisfy

max
i∈[n],j∈[`]

Infi(f (j)(X(j))) ≤ τ , (11)

then, for µ(j) := E[f (j)(X(j))] we have

E

∏̀
j=1

f (j)(X(j))

 ≥
∏̀
j=1

µ(j)

`/(1−ρ2)

− ε . (12)

Furthermore, there exists an absolute constant C ≥ 0 such that for ε ∈
(0, 1/2] one can take:

τ :=
(

(1− ρ2)ε
`5/2

)C ` ln(`/ε) ln(1/α)
(1−ρ)ε

. (13)

We need to define some new objects in order to proceed with the proof.
Let (X,X ,G) be an ensemble collection for (Ω,P).

For j ∈ [`], let P (j) be a multilinear polynomial compatible with X (j)

and equivalent to f (j)(X(j)). For some small γ > 0 to be fixed later let
Q(j) := T1−γP

(j). Finally, letting p be the size of each of the ensembles X (j)
i

and G(j)
i , define a function R(j) : Rpn → R as

R(j)(x) :=


0 if Q(j)(x) < 0,
Q(j)(x) if Q(j)(x) ∈ [0, 1],
1 if Q(j)(x) > 1.
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Note that it might be impossible to write R(j) as a multilinear polynomial,
but it will not cause problems in the proof. Finally, let µ′(j) := E

[
R(j)(G(j))

]
.

The proof proceeds by decomposing the expression we are bounding into
several parts:

E

∏̀
j=1

f (j)(X(j))

 = E

∏̀
j=1

P (j)(X (j))

 =

= E

∏̀
j=1

P (j)(X (j))−
∏̀
j=1

Q(j)(X (j))

+ (103)

+ E

∏̀
j=1

Q(j)(X (j))−
∏̀
j=1

R(j)(G(j))

+ (104)

+ E

∏̀
j=1

R(j)(G(j))

 . (105)

We use the theorems proved so far to bound each of the terms (103), (104)
and (105) in turn. First, we apply Theorem A.69 to show that (103) has
small absolute value. Then, we use the invariance principle (Theorem A.53)
to argue that (104) has small absolute value. Finally, using Gaussian reverse
hypercontractivity (Theorem A.76) we show that (105) is bounded from below

by (roughly)
(∏`

j=1 µ
(j)
)`/(1−ρ2)

.
We proceed with a detailed argument in the following lemmas. In the

following assume w.l.o.g that ε ≤ 1/2 and α ≤ 1/2.

Lemma A.83. Set γ := (1−ρ)ε
2` ln 2`/ε . Then,∣∣∣∣∣∣E

∏̀
j=1

P (j)(X (j))−
∏̀
j=1

Q(j)(X (j))

∣∣∣∣∣∣ ≤ ε/2 .
Proof. By Theorem A.69.

Lemma A.84. There exists an absolute constant C > 0 such that∣∣∣∣∣∣E
∏̀
j=1

Q(j)(X (j))−
∏̀
j=1

R(j)(G(j))

∣∣∣∣∣∣ ≤ C`5/2 · τ γ
C ln 1/α .
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Proof. Note that for every j ∈ [`] the polynomial Q(j) is γ-decaying and that
it has bounded influence for every i ∈ [n]:

Infi(Q(j)) ≤ Infi(P (j)) = Infi(f (j)(X(j)) ≤ τ .

By definition of χ (Definition A.51) and Theorem A.53,∣∣∣∣∣∣E
∏̀
j=1

Q(j)(X (j))−
∏̀
j=1

R(j)(G(j))

∣∣∣∣∣∣ =
∣∣E [χ (Q(X )

)
− χ

(
Q(G)

)]∣∣
≤ C`5/2 · τ

γ
C ln 1/α .

Lemma A.85.

E

∏̀
j=1

R(j)(G(j))

 ≥
∏̀
j=1

µ′(j)

`/(1−ρ2)

.

Proof. By Theorem A.76.

Lastly, we need to show that the difference between the values
∏`
j=1 µ

′(j)

and
∏`
j=1 µ

(j) is small.

Claim A.86. Let a ≥ 0, ε ≥ 0, a+ ε ≤ 1, β ≥ 1. Then, (a+ ε)β − aβ ≤ βε.

Proof. The function hβ,ε(a) := (a+ε)β−aβ is non-decreasing (since d
dahβ,ε =

β((a+ ε)β−1 − aβ−1) ≥ 0). Hence,

(a+ ε)β − aβ ≤ 1− (1− ε)β ≤ βε ,

where in the last step we applied Bernoulli’s inequality.

Lemma A.87. There exists an absolute constant C > 0 such that∣∣∣∣∣∣∣
∏̀
j=1

µ(j)

`/(1−ρ2)

−

∏̀
j=1

µ′(j)

`/(1−ρ2)
∣∣∣∣∣∣∣ ≤

C`2

1− ρ2 · τ
γ

C ln 1/α .

Proof. By Claim A.86,∣∣∣∣∣∣∣
∏̀
j=1

µ(j)

`/(1−ρ2)

−

∏̀
j=1

µ′(j)

`/(1−ρ2)
∣∣∣∣∣∣∣ ≤

`

1− ρ2 ·

∣∣∣∣∣∣
∏̀
j=1

µ(j) −
∏̀
j=1

µ′(j)

∣∣∣∣∣∣ .
(106)
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Since µ(j), µ′(j) ∈ [0, 1],∣∣∣∣∣∣
∏̀
j=1

µ(j) −
∏̀
j=1

µ′(j)

∣∣∣∣∣∣ ≤
∑̀
j=1

∣∣∣µ(j) − µ′(j)
∣∣∣ . (107)

For a fixed j ∈ [`], from the definition of χ and Theorem A.53 applied with
` = 1,∣∣∣µ(j) − µ′(j)

∣∣∣ =
∣∣∣E [χ(Q(j)(X (j))

)
− χ

(
Q(j)(G(j))

)]∣∣∣ ≤ C · τ γ
C ln 1/α . (108)

Inequalities (106), (107) and (108) together give the claim.

Proof of Theorem 2.12. Following the decomposition of
∏`
j=1 f

(j)(X(j)) into
subexpressions (103), (104) and (105), from Lemma A.83, Lemma A.84,
Lemma A.85 and Lemma A.87,

E

∏̀
j=1

f (j)(X(j))


≥

∏̀
j=1

µ(j)

`/(1−ρ2)

− ε/2− C`5/2 · τ
γ

C ln 1/α − C`2

1− ρ2 · τ
γ

C ln 1/α

≥

∏̀
j=1

µ(j)

`/(1−ρ2)

− ε/2− 2C`5/2

1− ρ2 · τ
γ

C ln 1/α .

By choosing τ(ε, ρ, α, `, γ) small enough we get

2C`5/2

1− ρ2 · τ
γ

C ln 1/α ≤ ε/2 , (109)

which is the main part of the theorem (recall that γ = (1−ρ)ε
2` ln(2`/ε) ).

To see that we can choose τ as in (13), note that for D > 0 big enough we
have

τ :=
(

(1− ρ2)ε
`5/2

)D ` ln(`/ε) ln(1/α)
(1−ρ)ε

≤
(

(1− ρ2)ε
`5/2

)D′ 2C` ln(2`/ε) ln(1/α)
(1−ρ)ε

=
(

(1− ρ2)ε
`5/2

)D′ C ln(1/α)
γ
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for D′ > 0 as needed. Hence, we obtain

2C`5/2

1− ρ2 · τ
γ

C ln 1/α = 2C · `5/2

1− ρ2 ·
(

(1− ρ2)ε
`5/2

)D′
≤ 2CεD

′
≤ ε/2 ,

which establishes (109) for this choice of τ .



Appendix B

Listings of Computer-Assisted
Proofs

Here we provide program codes for the computer-assisted proofs from Section
3.6. The programs are written in C++.

Listing 1: construction.hpp — The header file used by all programs.
1 #include <cas s e r t >
2 #include <c l im i t s >
3 #include <cstd io>
4 #include <cs td l i b >
5 #include <algorithm>
6 #include <vector>
7 using namespace std ;
8

9 // B i t s h i f t s have h i ghe r p r i o r i t y than comparisons .
10 // Comparisons have h i gher p r i o r i t y than b i t
11 // opera t i ons .
12

13 // Mathematical modulo .
14 // Precondi t ion : MOD > 0
15 in l ine int mod( int x , int MOD) {
16 x %= MOD;
17 return x + (x < 0 ? MOD : 0 ) ;
18 }
19

20 // Number o f b i t s s e t to one in u .
21 struct PopCounter {
22 int pcnt [1<<16];
23 PopCounter ( ) {

129
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24 a s s e r t (CHAR_BIT == 8 && s izeof (unsigned ) == 4 ) ;
25 for ( int i = 1 ; i < 1<<16; ++i )
26 pcnt [ i ] = pcnt [ i /2 ] + i %2;
27 }
28 } P;
29 in l ine int popcount (unsigned u) {
30 return P. pcnt [ u & ((1<<16)−1)] + P. pcnt [ u >> 1 6 ] ;
31 }
32

33 // Undirected graph wi th s e t o f v e r t i c e s S .
34 // Invar i an t : a l l edges i n s i d e S .
35 struct Graph {
36 unsigned S ;
37 vector<unsigned> M;
38

39 Graph( const unsigned a_S ,
40 const vector<unsigned>& a_M) :
41 S(a_S) , M(a_M) { }
42 } ;
43

44 // Doubles su b s e t S o f V(G) .
45 // between [ uprim ] & (1<<u) i n d i c a t e s edge between
46 // u ’ in V(G ’) and u in V(G) .
47 // Precondi t ion : T i s a sub s e t o f G. S
48 void double_graph ( const unsigned T, const Graph& G,
49 Graph& Gprim , vector<unsigned>& between ) {
50 const vector<unsigned>& M = G.M;
51 vector<unsigned>& Mprim = Gprim .M;
52 const int N = M. s i z e ( ) ;
53

54 Mprim . r e s i z e (N) ;
55 between . r e s i z e (N) ;
56 Gprim . S = T;
57

58 for ( int u = 0 ; u < N; ++u)
59 i f (1<<u & T) {
60 Mprim [ u ] = M[ u ] & T;
61 between [ u ] = M[ u ] & ~T;
62 } else Mprim [ u ] = between [ u ] = 0 ;
63 }
64
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65 // Exchange v e r t i c e s in T between G and G ’ .
66 // Precondi t ion : T i s a sub s e t o f G. S \cap Gprim . S
67 void exchange ( const unsigned T, Graph& G, Graph& Gprim ,
68 vector<unsigned>& between ) {
69 vector<unsigned>& M = G.M;
70 vector<unsigned>& Mprim = Gprim .M;
71 const int N = M. s i z e ( ) ;
72

73 for ( int u = 0 ; u < N; ++u) i f (1<<u & T) {
74 unsigned old_M = M[ u ] , old_Mprim = Mprim [ u ] ,
75 old_between = between [ u ] ;
76

77 M[ u ] = old_between & ~(1<<u ) ;
78 for ( int v = 0 ; v < N; ++v) {
79 M[ v ] &= ~(1<<u ) ;
80 i f (M[ u ] & 1<<v) M[ v ] |= 1<<u ;
81 }
82

83 // I t i s important t ha t ‘ between ’ has not been
84 // modi f ied ye t .
85 Mprim [ u ] = 0 ;
86 for ( int vprim = 0 ; vprim < N; ++vprim )
87 i f (u != vprim ) {
88 Mprim [ vprim ] &= ~(1<<u ) ;
89 i f ( between [ vprim ] & 1<<u) {
90 Mprim [ u ] |= 1<<vprim ;
91 Mprim [ vprim ] |= 1<<u ;
92 }
93 }
94

95 between [ u ] = old_M ;
96 i f ( old_between & 1<<u) between [ u ] |= 1<<u ;
97 for ( int vprim = 0 ; vprim < N; ++vprim )
98 i f (u != vprim ) {
99 between [ vprim ] &= ~(1<<u ) ;

100 i f ( old_Mprim & 1<<vprim )
101 between [ vprim ] |= 1<<u ;
102 }
103 }
104 }
105
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106 // Can Gprim be c o l l a p s e d onto G?
107 // I f yes , ‘mapping ’ w i l l conta in a mapping
108 // from Gprim to G, wi th mapping [ uprim ] == −1
109 // f o r uprim not in Gprim . S .
110 bool i s _ c o l l a p s i b l e ( const Graph& a_G,
111 const Graph& a_Gprim ,
112 const vector<unsigned>& a_between ,
113 vector<int>& a_mapping ) {
114 struct RecursiveData {
115 const Graph& G;
116 const Graph& Gprim ;
117 const vector<unsigned>& between ;
118 vector<int>& mapping ;
119 const vector<unsigned>& M;
120 const vector<unsigned>& Mprim ;
121 const int N;
122

123 RecursiveData ( const Graph& a_G,
124 const Graph& a_Gprim ,
125 const vector<unsigned>& a_between ,
126 vector<int>& a_mapping ) :
127 G(a_G) , Gprim(a_Gprim) , between ( a_between ) ,
128 mapping ( a_mapping ) , M(G.M) , Mprim(Gprim .M) ,
129 N(M. s i z e ( ) ) {
130 mapping . r e s i z e (N) ;
131 f i l l _ n (mapping . begin ( ) , N, −1);
132 }
133

134 bool i s_ co l l a p s i b l e_ r e c ( int uprim ) {
135 i f ( uprim == N) return true ;
136 i f (1<<uprim & ~Gprim . S)
137 return i s_ co l l a p s i b l e_ r e c ( uprim+1);
138 // in va r i an t : u ’ < N and u ’ in V(G ’)
139

140 for ( int u = 0 ; u < N; ++u) i f (1<<u & G. S) {
141 i f ( (M[ u ] & between [ uprim ] ) != between [ uprim ] )
142 continue ;
143 // in va r i an t : u ’ −> u pre s e r v e s edges between
144 // u ’ and G
145

146 bool ok = true ;
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147 for ( int vprim = 0 ; vprim < uprim && ok ;
148 ++vprim ) {
149 i f (Mprim [ uprim ] & 1<<vprim &&
150 ! (M[ u ] & 1<<mapping [ vprim ] ) ) {
151 ok = fa l se ;
152 }
153 }
154 i f ( ! ok ) continue ;
155 // in va r i an t : u ’ −> u pre s e r v e s edges between
156 // u ’ and preced ing v e r t i c e s in G’
157

158 mapping [ uprim ] = u ;
159 i f ( i s_co l l a p s i b l e_ r e c ( uprim+1)) return true ;
160 }
161 return fa l se ;
162 }
163 } R(a_G, a_Gprim , a_between , a_mapping ) ;
164

165 return R. i s_co l l a p s i b l e_ r e c ( 0 ) ;
166 }
167

168 // Can G’ be c o l l a p s e d onto G such t ha t both T and
169 // G ’ . S \ setminus T do not c o l l a p s e na t u r a l l y ?
170 // I f yes , mapping w i l l conta in such mapping from
171 // G’ to G, wi th mapping [ u ’ ] == −1 f o r
172 // u ’ not in G ’ . S .
173 // Precondi t ion : T i s a sub s e t o f G ’ . S which i s
174 // a sub s e t o f G. S
175 bool i s_unna tu ra l l y_co l l ap s i b l e ( const unsigned a_T,
176 const Graph& a_G, const Graph& a_Gprim ,
177 const vector<unsigned>& a_between ,
178 vector<int>& a_mapping ) {
179 struct RecursiveData {
180 const unsigned T;
181 const Graph& G;
182 const Graph& Gprim ;
183 const vector<unsigned>& between ;
184 vector<int>& mapping ;
185 const vector<unsigned>& M;
186 const vector<unsigned>& Mprim ;
187 const int N;
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188

189 RecursiveData ( const unsigned a_T, const Graph& a_G,
190 const Graph& a_Gprim ,
191 const vector<unsigned>& a_between ,
192 vector<int>& a_mapping ) :
193 T(a_T) , G(a_G) , Gprim(a_Gprim) ,
194 between ( a_between ) , mapping ( a_mapping ) ,
195 M(G.M) , Mprim(Gprim .M) , N(M. s i z e ( ) ) {
196 mapping . r e s i z e (N) ;
197 f i l l _ n (mapping . begin ( ) , N, −1);
198 }
199

200 bool i s_ co l l a p s i b l e_ r e c ( int uprim ) {
201 i f ( uprim == N) {
202 bool ok1 = false , ok2 = fa l se ;
203 for ( int uprim = 0 ; uprim < N &&
204 ( ! ok1 | | ! ok2 ) ; ++uprim ) {
205 i f (1<<uprim & ~Gprim . S) continue ;
206 i f (1<<uprim & T && mapping [ uprim ] != uprim )
207 ok1 = true ;
208 else i f (1<<uprim & ~T &&
209 mapping [ uprim ] != uprim ) {
210 ok2 = true ;
211 }
212 }
213 return ok1 && ok2 ;
214 }
215

216 i f (1<<uprim & ~Gprim . S)
217 return i s_ co l l a p s i b l e_ r e c ( uprim+1);
218 // in va r i an t : u ’ < N and u ’ in V(G ’)
219

220 for ( int u = 0 ; u < N; ++u) i f (1<<u & G. S) {
221 i f ( (M[ u ] & between [ uprim ] ) != between [ uprim ] )
222 continue ;
223 // in va r i an t : u ’ −> u pre s e r v e s edges between
224 // u ’ and G
225

226 bool ok = true ;
227 for ( int vprim = 0 ; vprim < uprim && ok ;
228 ++vprim ) {
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229 i f (Mprim [ uprim ] & 1<<vprim &&
230 ! (M[ u ] & 1<<mapping [ vprim ] ) ) {
231 ok = fa l se ;
232 }
233 }
234 i f ( ! ok ) continue ;
235 // in va r i an t : u ’ −> u pre s e r v e s edges between
236 // u ’ and preced ing v e r t i c e s in G ’ .
237

238 mapping [ uprim ] = u ;
239 i f ( i s_co l l a p s i b l e_ r e c ( uprim+1)) return true ;
240 }
241 return fa l se ;
242 }
243 } R(a_T, a_G, a_Gprim , a_between , a_mapping ) ;
244

245 return R. i s_co l l a p s i b l e_ r e c ( 0 ) ;
246 }
247

248 // Precondi t ion : T i s a sub s e t o f G. S
249 in l ine unsigned ne ighbors ( const unsigned T,
250 const Graph& G) {
251 const int N = G.M. s i z e ( ) ;
252 unsigned r e s = 0 ;
253 for ( int u = 0 ; u < N; ++u) i f (1<<u & T)
254 r e s |= G.M[ u ] ;
255 return r e s ;
256 }
257

258 const int V = 12 ;
259 // Cycle wi th s h o r t c u t s C_V.
260 Graph orig inal_G ( ) {
261 Graph G((1<<V) − 1 , vector<unsigned>(V) ) ;
262 for ( int u = 0 ; u < V; ++u)
263 for ( int s = −3; s <= 3 ; s += 2)
264 G.M[ u ] |= 1 << mod(u+s , V) ;
265 return G;
266 }

Listing 2: non_empty_b.cpp — Proof of Lemma 3.67.
1 #include " c on s t ruc t i on . hpp "
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2

3 // Precondi t ion : B, C d i s j o i n t , 0 in B
4 bool Bprim_f i l l ed ( const unsigned a_C,
5 const unsigned a_B) {
6 struct RecData {
7 const Graph G;
8 const vector<unsigned>& M;
9 const unsigned C;

10 const unsigned B;
11 unsigned Bprim ;
12 const int pB ;
13 vector<int> B_list , Bprim_list ;
14

15 RecData ( const unsigned a_C, const unsigned a_B) :
16 G( original_G ( ) ) , M(G.M) , C(a_C) , B(a_B) ,
17 Bprim (0 ) , pB( popcount (B) ) , B_l i st (pB) ,
18 Bprim_list (pB) {
19 for ( int u = 0 , ind = −1; u < V; ++u)
20 i f (1<<u & B) {
21 ++ind ;
22 B_list [ ind ] = u ;
23 }
24 }
25

26 bool r e c u r s i v e l y_ f i l l e d ( int ind ) {
27 i f ( ind == pB) {
28 // in va r i an t : B, B ’ , C ( pa i rw i s e ) d i s j o i n t
29 // in va r i an t : edges o f B and B ’ ( i n s i d e and
30 // to C) isomorphic accord ing to Bprim_list .
31 return i s _ r e s t_ f i l l e d ( ) ;
32 }
33

34 const int u = B_list [ ind ] ;
35 for ( int uprim = 0 ; uprim < V; ++uprim ) {
36 i f (1<<uprim & (B|C| Bprim ) ) continue ;
37 // in va r i an t : uprim i s " f r e s h "
38 i f (M[ uprim ] & B) continue ;
39 // in va r i an t : no edges to B
40 i f ( (M[ u]&C) != (M[ uprim]&C) ) continue ;
41 // in va r i an t : edges to C the same
42 bool ok = true ;
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43 for ( int j = 0 ; j < ind && ok ; ++j ) {
44 const int v = B_list [ j ] ,
45 vprim = Bprim_list [ j ] ;
46 // a hack : ‘ ! ’ i s used to conver t to boo l
47 i f ( ! (M[ v]&(1<<u ) ) != ! (M[ vprim]&(1<<uprim ) ) )
48 ok = fa l se ;
49 }
50 i f ( ! ok ) continue ;
51 // in va r i an t : edges i n s i d e B and B ’ ( so f a r )
52 // isomorphic
53 Bprim |= 1<<uprim ;
54 Bprim_list [ ind ] = uprim ;
55 i f ( r e c u r s i v e l y_ f i l l e d ( ind+1)) return true ;
56 Bprim &= ~(1<<uprim ) ;
57 }
58 return fa l se ;
59 }
60

61 // precond i t i on s : B, Bprim , C d i s j o i n t
62 // B_list , Bprim_list , pB c o r r e c t l y f i l l e d
63 // B and B ’ isomorphic wrt each o ther and C
64 bool i s _ r e s t_ f i l l e d ( ) {
65 stat ic Graph Gout (0 , vector<unsigned>(V) ) ;
66 stat ic vector<unsigned> between (V) ;
67 stat ic vector<unsigned>& Mout = Gout .M;
68 stat ic vector<int> mapping (V) ;
69

70 for (unsigned A = 0 ; A < 1<<V; A += 2) {
71 i f (A & (B|C| Bprim ) ) continue ;
72 // in va r i an t : A, B, B ’ , C d i s j o i n t
73 i f ( ne ighbors (A, G) & (Bprim ) ) continue ;
74 // in va r i an t : no edges between A and B ’
75

76 const unsigned Dprim = ((1<<V)−1) &
77 ~(A|B| Bprim |C) ;
78 i f ( ne ighbors (Dprim , G) & (A|B) ) continue ;
79 // in va r i an t : no edges between D’ and A \cup B
80

81 Gout . S = A| Dprim ;
82 for ( int u = 0 ; u < V; ++u)
83 i f (1<<u & A) {
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84 Mout [ u ] = M[ u ] & A;
85 between [ u ] = M[ u ] & C;
86 for ( int ind = 0 ; ind < pB ; ++ind ) {
87 const int v = B_list [ ind ] ,
88 vprim = Bprim_list [ ind ] ;
89 i f (M[ u ] & 1<<v) between [ u ] |= 1<<vprim ;
90 }
91 } else i f (1<<u & Dprim) {
92 Mout [ u ] = M[ u ] & Dprim ;
93 between [ u ] = M[ u ] & C;
94 for ( int ind = 0 ; ind < pB ; ++ind ) {
95 const int v = B_list [ ind ] ,
96 vprim = Bprim_list [ ind ] ;
97 i f (M[ u ] & 1<<vprim ) between [ u ] |= 1<<v ;
98 }
99 } else Mout [ u ] = between [ u ] = 0 ;

100

101 i f ( i s_ c o l l a p s i b l e (G, Gout , between ,
102 mapping ) ) {
103 p r i n t f ( "FAILURE\nA␣=␣ " ) ;
104 for ( int u = 0 ; u < V; ++u) i f (1<<u & A)
105 p r i n t f ( "%d␣ " , u ) ;
106 p r i n t f ( " \n(B,B ’ ) ␣=␣ " ) ;
107 for ( int ind = 0 ; ind < pB ; ++ind )
108 p r i n t f ( "(%d , ␣%d) ␣ " , B_l i st [ ind ] ,
109 Bprim_list [ ind ] ) ;
110 p r i n t f ( " \nC␣=␣ " ) ;
111 for ( int u = 0 ; u < V; ++u) i f (1<<u & C)
112 p r i n t f ( "%d␣ " , u ) ;
113 p r i n t f ( " \nD ’ ␣=␣ " ) ;
114 for ( int u = 0 ; u < V; ++u) i f (1<<u & Dprim)
115 p r i n t f ( "%d␣ " , u ) ;
116 p r i n t f ( " \nmapping␣=␣ " ) ;
117 for ( int u = 0 ; u < V; ++u)
118 p r i n t f ( "(%d−>%d) ␣ " , u , mapping [ u ] ) ;
119 p r i n t f ( " \n " ) ;
120 e x i t ( 0 ) ;
121 }
122 }
123 return fa l se ;
124 }
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125 } R(a_C, a_B) ;
126

127 return R. r e c u r s i v e l y_ f i l l e d ( 0 ) ;
128 }
129

130 // Assume E(A, D) i s empty .
131 // Try a l l p a r t i t i o n s o f C_12 in to A, B, B ’ , C, D’
132 // s . t . in the l a s t doub l ing :
133 // A i s doub led and then A i s f i x e d and A’ c o l l a p s e d .
134 // (non−empty ) B i s doub led and f i x e d t o g e t h e r wi th B ’ .
135 // C i s f i x e d in both s t e p s .
136 // D i s doubled , wi th D co l l a p s e d and D’ f i x e d .
137 // Ob j e c t i v e : show tha t r e s u l t i n g A ’ , D cannot be
138 // c o l l a p s e d onto the r e s t .
139 int main ( ) {
140 p r i n t f ( " non−empty␣B, ␣V␣=␣%d\n" , V) ;
141 // Assume w. l . o . g . t h a t 0 i s in B.
142 for (unsigned C = 0 ; C < 1<<V; C += 2)
143 for (unsigned B = 1 ; B < 1<<V; B += 2) {
144 // in va r i an t : 0 in B
145 i f (B&C | | popcount (B)%2 == 1) continue ;
146 // in va r i an t : B, C d i s j o i n t
147 i f ( Bpr im_f i l l ed (C, B) ) {
148 // t h i s shou ld be never executed
149 p r i n t f ( "INTERNAL␣ERROR\n" ) ;
150 e x i t ( 1 ) ;
151 }
152 }
153 p r i n t f ( "SUCCESS\n" ) ;
154 }

Listing 3: non_empty_ad.cpp — Proof of Lemma 3.68.
1 #include " c on s t ruc t i on . hpp "
2

3 // Assume B i s empty and |E(A, D) | = 1 .
4 // Try a l l p a r t i t i o n s o f C_12 in to A, C, D’ s . t . in the
5 // l a s t doub l ing :
6 // A i s doub led and A’ i s l a t e r c o l l a p s e d .
7 // C i s not doub led .
8 // D i s doub led and l a t e r c o l l a p s e d and D’ i s kep t .
9 // Then t r y a l l c ho i c e s f o r the edge between A and D.
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10 // Goal : Show tha t r e s u l t i n g A ’ , D cannot be c o l l a p s e d
11 // onto A, C, D ’ .
12 int main ( ) {
13 p r i n t f ( " |E(A,D) | ␣=␣1 , ␣V␣=␣%d\n" , V) ;
14 Graph G = original_G ( ) ;
15 for (unsigned A = 0 ; A < 1<<V; ++A)
16 for (unsigned C = 0 ; C < 1<<V; ++C) {
17 i f (A&C) continue ;
18 // in va r i an t : A, C d i s j o i n t
19 unsigned Dprim = ((1<<V)−1) & ~(A|C) ;
20 i f ( ne ighbors (Dprim , G) & A) continue ;
21 // in va r i an t : no edges between A and D’
22

23 Graph tmp_G = G, Gprim (0 , vector<unsigned>()) ;
24 vector<unsigned> between ;
25 vector<int> mapping ;
26

27 double_graph (A| Dprim , tmp_G, Gprim , between ) ;
28 exchange (Dprim , tmp_G, Gprim , between ) ;
29

30 for ( int u = 0 ; u < V; ++u) i f (1<<u & A)
31 for ( int v = 0 ; v < V; ++v) i f (1<<v & Dprim) {
32 i f (u%2 == v%2) continue ;
33 // in va r i an t : u and v do not c r ea t e odd c y c l e
34 between [ u ] |= 1<<v ;
35 between [ v ] |= 1<<u ;
36 i f ( i s_ c o l l a p s i b l e (tmp_G, Gprim , between ,
37 mapping ) ) {
38 p r i n t f ( "FAILURE\nA␣=␣ " ) ;
39 for ( int w = 0 ; w < V; ++w) i f (1<<w & A)
40 p r i n t f ( "%d␣ " , w) ;
41 p r i n t f ( " \nC␣=␣ " ) ;
42 for ( int w = 0 ; w < V; ++w) i f (1<<w & C)
43 p r i n t f ( "%d␣ " , w) ;
44 p r i n t f ( " \nDprim␣=␣ " ) ;
45 for ( int w = 0 ; w < V; ++w)
46 i f (1<<w & Dprim) p r i n t f ( "%d␣ " , w) ;
47 p r i n t f ( " \nu␣=␣%d␣v␣=␣%d\nmapping␣=␣ " ,
48 u , v ) ;
49 for ( int w = 0 ; w < ( int )mapping . s i z e ( ) ;
50 ++w) {
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51 p r i n t f ( "(%d␣−>␣%d) ␣ " , w, mapping [w ] ) ;
52 }
53 p r i n t f ( " \n " ) ;
54 e x i t ( 0 ) ;
55 }
56 between [ u ] &= ~(1<<v ) ;
57 between [ v ] &= ~(1<<u ) ;
58 }
59 }
60 p r i n t f ( "SUCCESS\n" ) ;
61 }

Listing 4: natural_collapse.cpp — Proof of Lemma 3.72.
1 #include " c on s t ruc t i on . hpp "
2

3 // Assume E(A, D) i s empty .
4 // Try p a r t i t i o n i n g v e r t i c e s o f C_12 in to A, C, D’ s . t .
5 // in the l a s t doub l ing :
6 // A i s doub led and A’ i s l a t e r c o l l a p s e d .
7 // C i s not doub led .
8 // D i s doub led and l a t e r c o l l a p s e d and D’ i s kep t .
9 // Ob j e c t i v e : Show tha t every time e i t h e r A’ or D must

10 // be na t u r a l l y c o l l a p s e d .
11 int main ( ) {
12 p r i n t f ( " Natural ␣ c o l l a p s e ␣lemma , ␣V␣=␣%d\n" , V) ;
13 Graph G = original_G ( ) ;
14 for (unsigned A = 0 ; A < 1<<V; ++A)
15 for (unsigned C = 0 ; C < 1<<V; ++C) {
16 i f (A&C) continue ;
17 // in va r i an t : A, C d i s j o i n t
18 unsigned D = ((1<<V)−1) & ~(A|C) ;
19 i f ( ne ighbors (D, G) & A) continue ;
20 // in va r i an t : no edges between A and D
21

22 Graph tmp_G = G, Gprim (0 , vector<unsigned>()) ;
23 vector<unsigned> between ;
24 vector<int> mapping ;
25

26 double_graph (A|D, tmp_G, Gprim , between ) ;
27 exchange (D, tmp_G, Gprim , between ) ;
28 i f ( i s_unna tu ra l l y_co l l ap s i b l e (A, tmp_G, Gprim ,
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29 between , mapping ) ) {
30 p r i n t f ( "FAILURE\nA␣=␣ " ) ;
31 for ( int u = 0 ; u < V; ++u)
32 i f (1<<u & A) p r i n t f ( "%d␣ " , u ) ;
33 p r i n t f ( " \nC␣=␣ " ) ;
34 for ( int u = 0 ; u < V; ++u)
35 i f (1<<u & C) p r i n t f ( "%d␣ " , u ) ;
36 p r i n t f ( " \nD␣=␣ " ) ;
37 for ( int u = 0 ; u < V; ++u)
38 i f (1<<u & D) p r i n t f ( "%d␣ " , u ) ;
39 p r i n t f ( " \nmapping␣=␣ " ) ;
40 for ( int u = 0 ; u < ( int )mapping . s i z e ( ) ; ++u)
41 p r i n t f ( "(%d␣−>␣%d) ␣ " , u , mapping [ u ] ) ;
42 p r i n t f ( " \n " ) ;
43 e x i t ( 0 ) ;
44 }
45 }
46 p r i n t f ( "SUCCESS\n" ) ;
47 }
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