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Abstract
Wepresent a detailed analysis of various tensor network parameterizations within the complete
graph tensor network states (CGTNS) approach.We extend our 2-site CGTNS scheme by introducing
3-site correlators. For this we devise three different strategies. Thefirst relies solely on 3-site correlators
and the second on 3-site correlators added on top of the 2-site correlator ansatz. To avoid an inflation
of the variational space introduced by higher-order correlators, we limit the number of higher-order
correlators to themost significant ones in the third strategy. Approaches for the selection of thesemost
significant correlators are discussed. The sextet and doublet spin states of the spin-crossover complex
manganocene serve as a numerical test case. In general, the CGTNS scheme achieves a remarkable
accuracy for a significantly reduced size of the variational space. The advantages, drawbacks, and
limitations of all CGTNSparameterizations investigated are rigorously discussed.

1. Introduction

Electronic structure theory aims at providing accurate properties ofmolecules in their electronic ground and
excited states. However, systematically improvable wave functionmethods are often computationally expensive
and can even becomeunfeasible. This dilemma is particularly pressing for systemswith strong static electron
correlation, i.e., for (gap-less) critical systems or thosewith dense one-electron states around the Fermi energy
level showing a small gap.

For such cases, the density-matrix renormalization group (DMRG)method [1–3] has evolved as a powerful
alternative to exact diagonalization techniques such as complete active space self-consistent field (CAS-SCF)
approaches [4–15]. The success ofDMRG is due to a polynomial scaling of the computational cost with respect
to an increasing number of active orbitals, in contrast to the exponential scaling [16] of CAS-based approaches.
It was shownbyÖstlund andRommer [17] that theDMRGoptimizesmatrix product states (MPS)—one-
dimensional chains of tensors that are a consequence of the algorithmwhich imposes a one-dimensional
ordering of themolecular orbitals in the construction process of the total basis states.

In contrast to one-dimensional spin chains in solid-state physics,molecular systems governed by the full
Coulomb interaction in general featuremultidimensional entanglement for which the linearMPS ansatz is not
well suited (note that wewill refer to general quantum correlations of subsystems as ‘entanglement’ in order to
distinguish them fromordinary electron-correlation effects discussed formolecules on the basis of orbital
spectra in quantum chemistry). This in turnmay lead to convergence problems. Still, theDMRGoptimization of
MPSs can be beneficial for strongly correlatedmolecules if other approaches are unfeasible as we pointed out for
transitionmetal complexes [18].Moreover, dynamic correlation effects have to be considered—either
a posteriori by perturbation theory [15, 19–27] and tailored coupled clustersmethod [28] or from the outset by
short–range density functional theory (DFT) [29, 30] or by pairDFT [31]. Alsomultireference configuration
interaction [32] and canonical transformation theory [33–35]were developed for this purpose.

One can overcome the problemof complex,multidimensional entanglement patterns by generalizing the
MPS ansatz (see [14] for a discussion in the context of electronic structure theory). In thefield of solid-state
physics, the tensor product variational approach (TPVA) [36–39], string bond states (SBS) [40], projected
entangled pair states [41], multiscale entanglement renormalization ansatz [42], entangled plaquette states [43]
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(EPS), correlator product states (CPS) [44], and tree tensor network states (TTNSs) [45–48] attempt to
generalize theMPS ansatz and describemultidimensional entanglement. These approaches constitute a new
family of states called tensor network states (TNS). Alsowithin standard quantum chemical approaches
methods related to tensor decompositions have been developed. See, for instance, themultifacet graphically
contracted function approach [49–53] and a tensor decomposition technique in the canonical product
format [54].

Complete-graph tensor network states (CGTNS) [55]were thefirst TNS application in quantum chemistry
employing the full electronicHamiltonian. The complexity of the high-dimensional coefficient tensor was
reduced by breaking it down into a complete-graph tensor network, inwhich all spin orbitals are connectedwith
each other by 2-site correlators. The number of variational parameters is explicitly defined by the number of spin
orbital pairs, which limits the variational freedomof theCGTNS ansatz for large active spaces.

Another TNS approach explored in thefield of quantum chemistry are TTNSs [48, 56–58]. Tensors are
connected as defined by a tree graph in TTNS, which attempt tomap themolecular structure. Due to the absence
of loops in the TTNS ansatz, one could apply theDMRGoptimization algorithm.While representing an
interesting class of quantum states, the optimization of TTNS parameters can be cumbersome and non-
competitive when compared to efficient traditional quantum chemicalmethods. In 2013,Nakatani andChan
proposed a TTNS variant for the full electronicHamiltonian [57] that overcomes this problem exploiting half-
renormalization steps.

TheMPS ansatz is computationally very efficient, but truly reliable only for encoding a sequential
entanglement structure. The TTNS scheme provides amore general description of entanglement which is, in the
Nakatani–Chan formulation, of similar computational efficiency asMPS-DMRG, but it still imposes
restrictions on the entanglement structure. Note that due to an exponential scaling of low-order tensors (lying
on the boundary of the TTNSnetwork)with system size in the TTNS ansatz onemay expect at a certain point a
crossover in computational time between theMPS and theTTNSwave function optimizations [58]. CGTNS, in
principle, does not restrict the entanglement pattern andworks aswell formultidimensional entanglement as it
does for one-dimensional entanglement. However, the optimization of 2-site correlators is difficult as an
efficient global and local optimization strategy is required. It is desirable to have an ansatz which adjusts the
number of variational parameters to the systemunder study. Therefore, herewe propose the concept of a
CGTNS ansatz that starts from2-site correlators and gradually include higher-order correlators.We then
explore different optimization strategies to assess its potential for actual applications inmolecular physics and
chemistry.

2. Theory

2.1. Exact solution
The eigenstate Yñ∣ of electronicHamiltonianH for anN-electronmolecular system in non-relativistic quantum
mechanics can be expressed employingM spin orbitals (arising froma given one-electron basis set) as a linear
combination of all Slater determinants contained in the ( )M

N
-dimensional subspace ( )F M N, of the

2M-dimensional Fock space F (M),

åYñ = ¼ ñ
¼

¼∣ ∣ ( )C n n n , 1
n n n

n n n M1 2

M

M

1 2

1 2

where ¼ ñ∣n n nM1 2 is an occupation number vector (ONV) representing a Slater determinant in the second
quantization formalism. It is constructed as a tensor product of spin orbitals (sites) ñ∣ni ,

¼ ñ º ñ Ä ñ Ä ¼ Ä ñ∣ ∣ ∣ ∣ ( )n n n n n n . 2M M1 2 1 2

Every spin orbital can be ‘unoccupied’ or ‘occupied’, = { }n 0, 1i , which yields a dimension of the localHilbert
space of two. Equation (1) is called a full configuration interaction (FCI) expansion. The coefficients ¼Cn n nM1 2

in
equation (1) are obtained according to the variational principle which leads to the eigenvalue problem

= ( )EHC C, 3

where H is thematrix representation ofH in the determinant basis and C is a vector of ¼Cn n nM1 2
coefficients for

an electronic state of energyE. Since the number of Slater determinants that can be generated by distributingN
electrons amongM spin orbitals scales exponentially [16], the ¼Cn n nM1 2

can be found only for systems of limited
size of up to about 18 electrons in 18 spatial orbitals. Hence, approximations are desirable for approaching the
FCI solution in a given orbital spacewithmore orbitals and electrons.
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2.2. Tensor network decomposition
Tensor network approximations were suggested to reduce the dimensionality of a strongly correlated system.
The TNSparameterizationsmentioned in the introductionwere investigated formodelHamiltonians such as
theHeisenberg, Hubbard, Potts, and IsingHamiltonians. The idea behind parameterizations such as TPVA,
SBS, EPS, andCPS is similar, which can be seen in thework byChanglani et al [44] and other CPS studies
[59, 60]. They afford a factorization of the high-dimensional coefficient tensor ¼Cn n nM1 2

into a product of

nearest-neighbor 2-site correlator elements [ ]Cn n
ij
i j
,

å Y ñ = ¼ ñ
¼ á ñ

∣ ∣ ( )[ ]C n n n , 4
n n n ij

n n
ij

MCPS 1 2

M

i j

1 2

where á ñij indicates that only neighboring sites are taken into account. The correlators are represented by the
second order tensors [ ]C ij ,

º
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )[ ]

[ ] [ ]

[ ] [ ]

C C

C C
C , 5ij

ij ij

ij ij
00 01

10 11

for each pair of neighboring spin orbitals i and j.

2.2.1. 2-site correlator ansatz
Weextended [55] the nearest-neighbors ansatz to all possible 2-site correlators,


å Y ñ = ¼ ñ
¼

∣ ∣ ( )[ ]C n n n , 6s

n n n i j
n n
ij

MCGTNS
2

1 2

M

i j

1 2

whichwe therefore denotedCGTNS.Note that the notation for theCGTNS ansatz in equation (7) is different
from the one presented in the original paper [55] in order to better discriminate the different tensor networks
explored in this work. The total number of correlators in this ansatz is equal to +( )M M1 2 1 . Taking into
account that each correlator is represented by a tensor of second order, equation (5), with q2 elements (q= 2 for
spin orbitals and q= 4 for spatial orbitals), the total number of variational parameters is equal
to +( )M M q1 2 1 2.

It is possible to avoid correlatormatrices inCGTNS corresponding to interactions of certain sites with
themselves—whichwemay call self-interaction (si) correlators— [ ]C ii —and to obtain the following ansatz

å Y ñ = ¼ ñ
¼ <

∣ ∣ ( )[ ]C n n n . 7s si

n n n i j
n n
ij

MCGTNS
2

1 2

M

i j

1 2

This removesMsi correlators from the ansatz -[ ( )M M1 2 1 correlators]without serious loss in accuracy as
we shall demonstrate in section 4.2. The graphical representation of such a tensor network ansatz at the example
of a four-site system is shown infigure 1(a).

Note that the CGTNS ansatz is related not only to TPVA, SBS, EPS, andCPS, but also to the antisymmetric
products of nonorthogonal geminals ansatz [61, 62]. The lattermay be considered as a special case of Y ñ∣ s

CGTNS
2

where only the correlators between spin orbitals with the same spatial part are employed.

2.2.2. 3-site correlator ansatz
CGTNS is an approximation to aCAS configuration interaction (CAS-CI)wave function, i.e., to FCI in a
restricted orbital space.Higher accuracy can be achieved by introducing higher-order correlators [44]. For
example, onemay choose a tensor network of 3-site correlators,

Figure 1.Graphical representations of the (a) Y s si
CGTNS
2 and (b)Y s si

CGTNS
3 ansätze for a system containing four sites. The blue vertices

represent sites, while the connecting black lines represent correlators.
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å Y ñ = ¼ ñ
¼

∣ ∣ ( )[ ]C n n n , 8s

n n n i j k
n n n
ijk

MCGTNS
3

1 2

M

i j k

1 2

where [ ]C ijk is the third-order tensor

ð9Þ

In the limit ofM-site (all-site) correlators the coefficients of equation (1), ¼Cn n nN1 2
, are recovered. In a 3-site

correlator ansatz the total number of correlators (third-order tensors) is + +( )( )M M M1 6 1 2 . As the tensor
of third order, [ ]C ijk of equation (9), has q3 elements, this yields + +( )( )M M M q1 6 1 2 3 variational degrees of
freedom. In analogy to the case of second-order tensors, one can remove si tensors of the type [ ]C iii , [ ]C iik , and

[ ]C ikk to obtain

å Y ñ = ¼ ñ
¼ < <

∣ ∣ ( )[ ]C n n n , 10s si

n n n i j k
n n n
ijk

MCGTNS
3

1 2

M

i j k

1 2

which removesM2 correlators. A graphical representation of such a tensor network is shown infigure 1(b). As
will be shown in sections 4.2 and 4.3, si correlators do not play a negligible role in the 3-site correlator ansatz in
contrast to their 2-site correlator analogs.

2.2.3. Hybrid 2-site and 3-site correlator Ansätze
For better optimization efficiency, correlators can be introduced and optimized gradually startingwith 2-site
correlators and continuingwith 3-site correlators. Having first optimized 2-site correlators, wemay freeze their
values and start the optimization of 3-site correlators incorporated in the ansatz as scaling factors

  
å  Y ñ = ¼ ñ
¼      

∣ ∣ ( )[ ] [ ] [ ]C C n n n , 11s s

n n n i j
n n
ij

k l m
n n n
klm

MCGTNS
3 2

frozen active

1 2

M

i j k l m

1 2

or in self-interaction free form


å  Y ñ = ¼ ñ
¼ < <     

∣ ∣ ( )[ ] [ ] [ ]C C n n n . 12s si s

n n n i j
n n
ij

k l m
n n n
klm

MCGTNS
3 2

frozen active

1 2

M

i j k l m

1 2

However, introduction of products of 2-site and 3-site correlators will augment the nonlinear structure of the
CGTNS ansatz, which in turn could hamper the convergence of the optimization and increase the probability of
getting trapped in localminima. This problem could be alleviated by splitting up the hybrid ansatz into a sum of
2-site correlator and 3-site correlator products

  
å  Y ñ = + ¼ ñ+

¼      

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
∣ ∣ ( )[ ] [ ] [ ]C C n n n , 13s s

n n n i j
n n
ij

k l m
n n n
klm

MCGTNS
3 2

frozen active

1 2

M

i j k l m

1 2

or in self-interaction free form


å  Y ñ = + ¼ ñ+

¼ < <     

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
∣ ∣ ( )[ ] [ ] [ ]C C n n n . 14s si s

n n n i j
n n
ij

k l m
n n n
klm

MCGTNS
3 2

frozen active

1 2

M

i j k l m

1 2

These parameterization strategies can be naturally continued to higher-order correlators. It is possible, but of no
practical value, tofinally include up toM-site correlators. Already four-site correlators willmake the ansatz
intractable, because of their sheer number. Hence, only the selective inclusion of higher-order correlators will be
feasible. The number of variational parameters for all CGTNS variants depends only on the number of spin
orbitals,M. By analogy to Y s

CGTNS
2 and Y s

CGTNS
3 , one can define the ansätze for 4-, 5-, 6-site etc.correlators to be

denoted as Y s
CGTNS
4 , Y s

CGTNS
5 , Y s

CGTNS
6 and so forth. Assuming that the number of electronsN is growingwith the

number of spatial orbitals, =M M 2orb , and that they are equal, =N Morb, we obtain for the number of
ONVs, NONV , with spin projectionMs=0 for the active space ofN electrons in Morb orbitals denoted asCAS

4
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(N, Morb) [16]

p
= ( )N

M

2
4 . 15M

ONV
orb

orb

Note that if one exploits symmetry, this number can be decreased. The scaling of the number of variational
parameters with respect to the number of orbitals for all variations of CGTNS aswell as for CAS-basedmethods
is shown infigure 2.

Clearly, onewould stop the systematic extension of theCGTNS ansatz by higher-order correlators when the
change in energy drops below a certain threshold. It would bemost desirable to determine this threshold so that
relative energies rather than absolute electronic energies are accurately approximated. Themaximumnumber of
variational parameters would then be determined by the highest-order tensor network ansatz. An alternative
strategy is to introduce higher-order correlators at or before the points where the curve corresponding to a
specificCGTNS ansatz crosses theCAS-CI curve infigure 2. The colored regions infigure 2 show the scope of
application for eachCGTNSparameterization (the regions aremarkedwith a color corresponding to the curve
representing that CGTNS ansatz). Such a strategy, however, only gives a qualitative idea on the applicability of
CGTNS schemes. Amore rigorous waywill be developed in section 4.4.

The set of higher-order correlators can inflate the variational space to that of CAS-CI and beyond (the
regionswhere curves corresponding toCGTNS ansätze are above theCAS line infigure 2). To properly cope
with such situations requires to introduce higher-order correlators only for certain sites whichmay be
determined based on entanglementmeasures. The entanglement between sites can be estimated from single-
orbital entropies andmutual information entropies [63–68] obtained for the low-order correlators such as those
in Y s

CGTNS
2 . In this, work such an ansatz will be denoted as Y [ ]s s

CGTNS
3 2 sel.

2.3. The spin-adapted CGTNS ansatz
The expectation value of theHamiltonian operator over an approximateN-electronwave function YCGTNS is an
upper bound to the exact CAS-CI reference energy,

=
áY Y ñ
áY Y ñ

áY Y ñ
áY Y ñ

∣ ∣
∣

∣ ∣
∣

( )‐
‐ ‐

‐ ‐
E

H H
, 16CAS CI

CAS CI CAS CI

CAS CI CAS CI

CGTNS CGTNS

CGTNS CGTNS

where for YCGTNS we can have any approximation introduced above (Y s
CGTNS
2 , Y s

CGTNS
3 , Y s si

CGTNS
2 , Y s si

CGTNS
3 ,

Y [ ]s si s
CGTNS
3 2 , Y [ ]s s

CGTNS
3 2 sel). For a specificONV ñ = ¼ ñ∣ ∣t t t tM1 2 in the Y s

CGTNS
2 ansatz, for instance, we approximate a

CI coefficient = ¼C Ct t t tM1 2
as,


» = á Y ñ = " Î ñ∣ ∣ ( )[ ]C C t C n n t, , , 17t t
i j

n n
ij

i j
CGTNS

CGTNS i j

Figure 2. Scaling of variational parameters in CAS-CI and various CGTNSparameterizations with increasingCAS(N, Morb) sizes for a
number of electronsN identical to the number of active spatial orbitals Morb, =N Morb. The colored shaded regions denote active
spaces forwhich the low-order CGTNS ansatz of the same color introduces less variational parameters than the exact solution.
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so that the CGTNSwave function can be rewritten in compact form as

åY ñ = ñ∣ ∣ ( )C n . 18
n

nCGTNS
CGTNS

Then, the normalization condition reads

*

*

å

å åd

áY Y ñ= á ñ

= =

∣ ( ) ∣

( ) ( ) ( )

C C n l

C C C . 19

nl
n l

nl
n l nl

n
n

CGTNS CGTNS
CGTNS CGTNS

CGTNS CGTNS CGTNS 2

Accurate calculations demand spin-adapted configuration state functions (CSFs),

åF ñ = ñ∣ ∣ ( )K n , 20p
n

pn
CSF

whereKpn are Clebsch–Gordan coefficients generating these spin-adapted basis functions. TheCAS-CI function
can then be expanded as

åY ñ = F ñ∣ ∣ ( )‐ S . 21
p

p pCAS CI
CSF

Since Clebsch–Gordan coefficientsKpn from equation (20) are fixed, one can no longer optimize theweights of
Slater determinants, Cn

CGTNS, and the straightforward CGTNS concept breaks down.However, it is possible to
approximate Sp in the previous equation as a sumofClebsch–Gordan coefficientsKpn scaled by Cn

CGTNS for
every ñ∣n in equation (20),

å» = ( )S S K C . 22p p
n

pn n
CGTNS CGTNS

With theweights Sp
CGTNS in equation (22), we define the spin-adaptedCGTNS ansatz as

åå åY ñ = F ñ = F ñ∣ ∣ ∣ ( )K C S . 23
p n

pn n p
p

p pCGTNS
CGTNS CSF CGTNS CSF

The normalizationwill then take the following form

åå

åå

å å

d

áY Y ñ= á ñ

=

=

∣ ∣

( )

S K S K n l

S K S K

S S K K , 24

pn ql
p pn q ql

pn ql
p pn q ql nl

pq
p q

n
pn qn

CGTNS CGTNS
CGTNS CGTNS

CGTNS CGTNS

CGTNS CGTNS

wherewe assume real coefficients Sp
CGTNS andKpn. In the following, wewill always consider spin-adapted

CGTNSparameterizations.

2.4.MonteCarlo optimization
The highly nonlinear dependence of theCGTNS ansatz on correlatorsmakes convergence of optimization
procedures toward a globalminimumadifficult task.Hence, we continue to employ a variationalMonte Carlo
optimization scheme [55, 69].With equations (23) and (24), the expectation value of theHamiltonian for a
CGTNSwave function reads

å
å å

=
áY F ñ∣ ∣

( )E
S H

S S K K
. 25r r r

pq p q n pn qn
CGTNS

CGTNS
CGTNS

CSF

CGTNS CGTNS

Wecan rewrite equation (25) in amore useful form forMonte Carlo sampling,

å

å å
=

áY F ñ
( )

∣ ∣

( )E

S
H

S

S S K K
, 26

r r
r

r

pq p q n pn qn
CGTNS

CGTNS 2 CGTNS
CSF

CGTNS

CGTNS CGTNS

where the ( )Sr
CGTNS 2 represent strictly non-negative probabilities for corresponding energy estimators

å=
áY F ñ

= áF F ñ
∣ ∣

∣ ∣ ( )E
H

S

S

S
H . 27r

r

r s

s

r
s r

CGTNS
CSF

CGTNS

CGTNS

CGTNS
CSF CSF

Since every Ss
CGTNS is determined by a set of correlators C̃, with C̃ = { [ ] [ ]C C, ,11 12 ¼, [ ]C ,ij ¼, }[ ]C NN through

equations (17) and (22) for the 2-site case, for every choice of correlators C̃ one can assign an energy ( ˜ )E Cr
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å= áF F ñ( ˜ ) ( ˜ )
( ˜ )

∣ ∣ ( )E
S

S
HC

C

C
. 28r

s

s

r
s r

CGTNS

CGTNS
CSF CSF

Introducing an artificial temperatureT (a parameter with the dimension of energy,measured inHartree), it is
possible to sample the continuous variables C̃ following a canonical ensemblewith theweight of a configuration
given by -[ ( ˜ ) ]E TCexp r . The limit T 0Hartree yields the desired ground state of themolecule. The
optimization procedure can be easily controlled by tuningT. To avoid getting trapped in localminima, the
parallel tempering scheme is applied [55] during the optimizationwith swap-move probabilities between two
neighboring temperatures defined as

« = D D+ +(( ) ( )) { ( )} ( )p T E T E E T, , min 1, exp , 29i i i i1 1

whereD = -+E E Ei i1 andD = -+ +( )T T T T Ti i i i1 1 . The set ofP temperatures in the range [ ]T T, P1 are
chosen according to the formula

=
-
-

= ¼
-

⎜ ⎟⎛
⎝

⎞
⎠ ( )T T
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It is clear from equation (28) that this procedure will only be feasible for large CAS if not all Fr
CSF are required.

The exponential scaling of the dimension of theHilbert spacewith the number of orbitals is clearly a restriction
of theCGTNS approach, which it shares with other techniques (see also the FCIQuantumMonteCarlo (QMC)
approach of Alavi and co-workers [70–72] and how this problem is treated in the FCIQMCcontext).
Accordingly, CSFs that hardly contribute to the energymust be omitted.

2.4.1. Gradient-based optimization
TheMonteCarlo optimizedCGTNS ansatz, e.g. Y s

CGTNS
2 , can be taken as a starting point for a non-stochastic

local optimization for refinement. The local gradient
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can be evaluated and exploited in such a local search. Introducing the correlators together with the
corresponding gradient, equation (31), into theQuasi-Newton optimizationmethodwith the Broyden–
Fletcher–Goldfarb–Shanno algorithm for an update of theHessianmatrix [73], we can further lower theCGTNS
energy. An alternative way is to consider only the gradient of the CGTNS energy for the correlators
corresponding to certain pairs of sites i and j at a time
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Switching between all possible pairs of the sites in theCGTNS ansatz, convergence should be reached at some
point.Wewill refer to the first optimization strategy as a gradient optimization, while the second strategywill be
denoted ‘reduced’ gradient optimization in the following. FollowingChan and coworkers [44], we note that,
because thewave function is linear with respect to correlators of a given set of sites, the components of the
gradient for the chosen correlatormay define a vector space for the optimization.Hence, it is possible to
introduce theHamiltonian and overlapmatrix in the vector space spanned by the components of the local
gradient [44]. Finding the eigenpairs corresponding to thisHamiltonian and switching between all possible
pairs, wemay finally obtain the same solution as in the case of ‘reduced’ gradient optimization.

3. Computational details

A suitablemolecule for the analysis of the various CGTNS parameterizations should have a strongmulti-
configurational character.Manganocene in its low-spin (doublet) state is such amolecule. It is particularly
interesting becausemostDFT calculations fail to predict the proper spin ground state [74].While it is decisive to
be able to predict the energy difference between high- and low-spin states in transitionmetal compounds, it
turned out to be hard to predict the energy difference between sextet and doublet state inmanganocene [74].
Satisfactory accuracy can be achieved by describing these two spin states with theCASPT2method [75]. Phung
et alshowed [75] that dynamic electron correlation is as important as static electron correlation for the
quantitative prediction of the spin state splitting (see also [76]). Our CGTNS ansatz operates in an active space of
selected orbitals and hence approximates aCAS-CIwave function.While this is no issue for the analysis of the
CGTNSparameterizations, reliable predictionswill require to consider dynamic correlation, which can, for
instance, be included by short-rangeDFT [30, 77]. Hence, the theoretical reference for our studywill be the
CAS-SCF result rather than theCASPT2 data by Phung et al [75].
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DFT structure optimizations ofmanganocenewere conductedwith the TURBOMOLEprogram version 6.5
[78, 79] in the doublet and sextet states. The hybrid Perdew–Burke–Ernzerhof (PBE0) [80] density functional
togetherwith triple-ζ valence polarized (def2-TZVP) [81] (for carbon and hydrogen atoms) and quadruple-ζ
valence polarized (def2-QZVPP) [82] (for themanganese atom) basis sets were chosen. In addition, single-point
DFT calculations were performed for the sextet and doublet states with the pure Perdew–Burke–Ernzerhof
(PBE) [83] density functional. Note, that for all DFT calculationsGrimmeD3 dispersion corrections [84] and the
second-order scalar-relativistic Douglas-Kroll-HessHamiltonian [85–88]were switched on.

The doublet and sextetmanganocene structures were optimizedwithDFT-PBE0-D3 inC2v andD5h

symmetries, respectively. These optimized structures were then taken for all single-point calculations in this
work; see figure 3.

All reference CAS-SCF calculations were performedwith theMOLCAS 8.1 package [16]. The extended
ANO-RCCbasis sets (with a total of 1487 basis functions)were employedwith [6s4p3d1f] contraction for
hydrogen [89], [8s8p4d3f2g] contraction for carbon [90], and [10s9p8d6f4g2h] contraction formanganese [91].
Two-electron integrals were approximatedwith aCholesky decomposition technique [92] using a threshold of
10−6Hartree. Also in these calculations, the second-order scalar-relativistic Douglas–Kroll–HessHamiltonian
[85–87, 93]was chosen.

TheCGTNS program reads one- and two-electronmolecular orbital integrals for the second-quantized
electronicHamiltonian generated byMOLCAS. The integrals are calculated from the natural orbitals of the
correspondingCAS-SCF reference calculations. For theCGTNS calculationswe improved on our original
implementation presented in [55]. The gradient optimization and the ‘reduced’ gradient optimization according
to equation (31) and equation (32), respectively (see section 2.4.1), were implemented. In addition to the

existing Y s
CGTNS
2 ansatz, we implemented Y s si

CGTNS
2 , Y s

CGTNS
3 , Y s si

CGTNS
3 , Y [ ]s s

CGTNS
3 2 , Y +[ ]s s

CGTNS
3 2 , Y [ ]s si s

CGTNS
3 2 , and Y +[ ]s si s

CGTNS
3 2 .

The Y [ ]s s
CGTNS
3 2 sel ansatz is a slightlymodified version of the Y [ ]s s

CGTNS
3 2 parameterization. In contrast to Y [ ]s s

CGTNS
3 2 , it

contains the 3-site correlators corresponding only to themost entangled spin orbitals (the same holds true for
Y +[ ]s s

CGTNS
3 2 sel and Y +[ ]s s

CGTNS
3 2 ). These selected spin orbitalsmay be chosen on the basis of entanglementmeasures

calculated from Y s
CGTNS
2 ansatz [66–68]. I.e., one could choose spin orbitals corresponding to spatial orbitals

with high values of single-orbital entropies ( )s 1i [63, 64],

åw w= -
a

a a
=

( ) ( )s 1 ln 33i i i
1

4

, ,

(whereα runs over the four possible occupations of a spatial orbital and wa i, are the eigenvalues of the one-
orbital reduced densitymatrix for the ith orbital) andmutual information Iij [63–65] (for spatial orbitals i and j),

Figure 3.The PBE0-D3/def2-TZVP(C,H)/def2-QZVPP(Mn) structures ofmanganocene in the doublet state (left) and the sextet
state (right). Hydrogen atoms inwhite, carbon atoms in black, andmanganese atoms in purple.
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d= + - -[ ( ) ( ) ( )]( ) ( )I s s s
1

2
1 1 2 1 , 34ij i j ij ij

where the two-orbital entropy,

åw w= -
a

a a
=

( ) ( )s 2 ln , 35ij ij ij
1

16

, ,

is evaluated from the eigenvalues wa ij, of the two-orbital reduced densitymatrix.
However, here we select 3-site correlators for spin orbitals corresponding to spatial orbitals with natural

orbital occupation numbers in the range [0.02,1.98] (unless otherwise noted). This follows theUnrestricted
NaturalOrbital-CASmodel [94, 95], inwhich the active space is constructed fromUnrestrictedHartree–Fock
(UHF)natural (spatial) orbitals with occupation numbers between 0.02 and 1.98. The same strategywas also
adopted for choosing an active space inDMRGcalculations [96]. UHFnatural orbitalsmay even represent a
good choice for the orbital basis [94–96].We also analyze the suitability of our selection criterion by comparison
to the entanglementmeasures from anMPS-DMRG calculations carried outwithQCMAQUIS [97]. For this, the
MPS-DMRG sextet and doublet wave functions employed the natural orbitals from the reference CAS-SCFwave
functions.We set the number of renormalized block states to 1000 and chose afixed number of sweeps of 20.

4.Discussion

4.1. Reference CAS-SCF(9, 12) energy difference
TheCAS-SCF(9, 12) reference calculations for both spin states inC2v symmetrywere carried out for active
orbital spaces proposed in [75]. The orbitals included into the active spaces of the CAS-SCF calculation are
shown infigure 4.

Note that an active space consisting of 9 electrons in 12 spatial orbitals chosen according to [75] turned out to
be notwithout difficulties. In particular, for both spin states one cannot obtain pure *p orbitals without the
inclusion of lower lyingπ orbitals, high lying *p orbitals, and 4dxy/ -4dx y2 2 orbitals into the active space. This
would introduce two additional electrons and six additional orbitals into active space.Moreover, symmetry
breakingmay occur for the sextet state. Nevertheless, in order to be in line with [75], we adopt the smaller active
space from that reference as the choice of the active space is of little importance for ourwave-function
parameterization analysis. The natural orbitals produced in theCAS-SCF(9, 12) calculationwere then chosen
for theCGTNS calculations. Hence, the CGTNS result approximates theCAS-SCF(9, 12) result.

The reference energy difference calculatedwithCAS-SCF(9, 12) for the sextet and doublet states is presented
in table 1. TheCAS-SCF(9, 12) energy difference of−40.59 kcal mol–1, deviates from the experimental value of
3.58 kcal mol–1 because of the lack of dynamic electron correlation. The PBE0 result of−8.28 kcal mol–1 (see
DFT-PBE0-D3 in table 1) ismuch closer to the experimental result, but fails to predict the correct sign. PBE (see

Figure 4.Converged natural orbitals—denoted asD-i and S-i (in red color) for the doublet and sextet states, respectively
( = ¼{ }i 1 2 3 12, , , , )—that constitute the active spaces in theCAS-SCF(9, 12) reference calculations ofmanganocene.
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DFT-PBE-D3 in table 1), predicts the correct sign, but the energy is overestimated by approximately 19
kcal mol–1. TheCASPT2 energy difference (seeCASPT2 in table 1) is very close to the experimental result [75].
We emphasize again that, in this work, we concentrate on the assessment of static correlation described by tensor
network parameterizations. Dynamic correlationmay be included through second order perturbation theory
[98, 99] or short-rangeDFTmethods [30, 77].

4.2.Manganocene—sextet state
13108ONVs span the configurational space corresponding to an active space of 9 electrons in 12 spatial orbitals
(see figure 4) for the sextet state ofmanganocene inC2v point group symmetry. The number of CGTNS
variational parameters for 24 spin orbitals is 1200 for Y s

CGTNS
2 and 1104 for Y s si

CGTNS
2 . Hence, the parameterization

in Y s
CGTNS
2 and Y s si

CGTNS
2 reduce the variational space bymore than 90% in both cases, see table 2. The number of

spin-adaptedCSFs for the sextet state is 11628 and therefore notmuch lower than the total number ofONVs so
that the CGTNS reduction is still approximately 90%. At the same time, the deviation of theCGTNS energy
from the reference energy is lower than 20mHartree, see table 2.

Note that the Y s
CGTNS
2 parameterization is slightlymore accurate than the Y s si

CGTNS
2 parameterization yielding

a 0.001317Hartree lower energy, induced by only 96 additional variational parameters. The convergence
behavior of both parameterization is similar, see figure 5. TheMonte Carlo optimizations for bothCGTNS
parameterizations have reached convergence. However, theMonteCarlo sampling of CGTNSparameters
requires significantlymore computational time than the traditional diagonalization approach.Hence, the
CGTNS ansatz will be beneficial only for cases where exact diagonalization is no longer feasible.

As the 2-site correlator CGTNS energy deviates from theCAS-SCF reference, it is important to analyze
whether 3-site correlators better approximate the reference result. The 3-site correlator variants of CGTNS
Y s

CGTNS
3 /Y [ ]s s

CGTNS
3 2 and Y s si

CGTNS
3 /Y [ ]s si s

CGTNS
3 2 dramatically increase the variational space from1200 to 20800 and

16192 parameters, respectively (see table 2). Hence, it is inevitable to include only those 3-site correlators of the
most entangled spin orbitals. The natural orbitals are divided into two sets as can be seen from the entanglement
diagram infigure 6. Thefirst set consists of natural orbitals S-1, S-2, S-3, S-4, S-7, S-8, S-9, S-10, S-11, and S-12
with average values ofmutual information and low values of single orbital entropies, while the second set
contains orbitals with very low single orbital entropies andmutual information S-5, S-6. According to the
selection criterion described in section 3, we have chosen the natural orbitals S-1, S-9, S-10, S-11, S-12, which
are part of the first set. Then the additional 3-site correlators were constructed for 10 spin orbitals attributed to
the selected natural orbitals, which resulted in a total of 1760 variational parameters for the hybrid CGTNS
ansatz Y [ ]s s

CGTNS
3 2 sel.With this parameterization the energy converges very fast, but lowers it by only−0.272

mHartree.

Table 1.Electronic energy difference (in kcal mol–1) ofmanganocene in the sextet [ ]E A6
1 and doublet

[ ]E A2
1 states, -[ ] [ ]E A E A6

1
2

1 obtained for differentmethods described in section 3. CASPT2 and exper-
imental (exp.) results were taken from [75].

DFT-PBE-D3 DFT-PBE0-D3 CAS-SCF(9, 12) CASPT2 exp.

-[ ] [ ]E A E A6
1

2
1 22.55 −8.28 −40.59 5.77 3.58

Table 2.Electronic energies for the sextet state ofmanganocene. A positive/
negative percentage indicates a decreased/increased parameter space com-
pared to the 13108CI coefficients in theCAS-SCF(9, 12) reference
calculation.

Parameterization Parameters Percentage Energy/Hartree

CAS-SCF(9, 12) 13108 −1542.209620

Y s
CGTNS
2 1200 91% −1542.194072

Y s si
CGTNS
2 1104 92% −1542.192755

Y s si
CGTNS
3 16192 −29% −1542.195739

Y s
CGTNS
3 20800 −59% −1542.197777

Y [ ]s si s
CGTNS
3 2 16192 −29% −1542.195415

Y +[ ]s si s
CGTNS
3 2 16192 −29% −1542.195290

Y [ ]s s
CGTNS
3 2 20800 −59% −1542.195283

Y +[ ]s s
CGTNS
3 2 20800 −59% −1542.195227

Y [ ]s s
CGTNS
3 2 sel 4480 66% −1542.194826

Y +[ ]s s
CGTNS
3 2 sel 4480 66% −1542.194822
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If additional 3-site correlators are constructed for orbitals S-5 and S-6 that feature occupation numbers
larger than 1.98 and low entanglement, a total of 4480 variational parameters results. In this case, the energy is
slightly lowered by−0.482 mHartree, see table 2 andfigure 7, which is not surprising according to the
entanglement of orbitals S-5 and S-6. If also 3-site correlators corresponding to orbitals S-2, S-3, S-4, S-7, S-8 are
included, which results in the Y [ ]s s

CGTNS
3 2 ansatz, the energy will be further lowered by−0.457mHartree. Hence,

although 3-site correlators do not significantly improve on the total electronic energy, the Y [ ]s s
CGTNS
3 2 sel ansatz is a

good approximation to Y [ ]s s
CGTNS
3 2 . The Y s

CGTNS
3 ansatz employing only 3-site correlators gives the lowest energy,

−1542.197777Hartree (the error is−11.843 mHartree), while the least accurate energy,−1542.195283Hartree,
is obtained from the Y [ ]s s

CGTNS
3 2 ansatz, see table 2.Note that in the best case the energy is lowered by only

−0.003705Hartree, which is lower by−0.002951Hartree compared to the energy from Y [ ]s s
CGTNS
3 2 sel.

If all si correlators are omitted, the Y s si
CGTNS
3 ansatz willminimize the energy to−1542.195739Hartree, while

Y [ ]s si s
CGTNS
3 2 yields a slightly higher energy of−1542.195415Hartree. In both cases, the hybrid ansätze give higher

energies than those frompure 3-site correlator schemes.We note that Y [ ]s si s
CGTNS
3 2 is somewhat lower in energy

than Y [ ]s s
CGTNS
3 2 , while Y s

CGTNS
3 is far lower than Y s si

CGTNS
3 .

We now consider the quantum fidelitymeasure, i.e., the overlap of a parametrized CGTNSwave function
with the correspondingCAS-SCF(9, 12) reference calculation in the same basis (see table 3). The sextet state is

Figure 5.Convergence behavior of Y s
CGTNS
2 and Y s si

CGTNS
2 parameterizations formanganocene in the lowest sextet state.

Figure 6.Entanglement diagram formanganocene in the lowest-energy sextet state from aMPS-DMRG calculation. The area of the
red circles is proportional to an orbital’s single-orbital entropy, while the thickness of the connecting lines is proportional to their
mutual information (green dashed lines indicate a value>0.001, gray dashed lines correspond to a value>0.01).
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dominated by a single configuration, which is not surprising for such a type of high-spin state considering the
one-electron spectrum.Hence, a single CI coefficients is responsible for 98.7%fidelity with theCAS-SCF
reference, whereas taking all other coefficients into account, this increases to 99.3% (for all CGTNS
parametrizations). It is interesting to note that we observe verymanywrong signs of small-valuedCI coefficients
for this state. TheCGTNS parametrization is not able to resolve them as the energy of the state is solely
determined by a single,most important configuration.

TheMonte Carlo parallel tempering optimization procedure fails to decrease the error bymore than−0.01
Hartree, even though the 3-site correlator schemes havemuchmore variational parameters thanCAS-SCF.
Obviously, the CGTNS ansatz introduces a highly nonlinear parameterizationwhich requires non-trivial
optimization techniques to avoid localminima. Various temperature sets were used for theMonte Carlo parallel
tempering optimization and only best results are reported in this work. The convergence behavior for all
parameterizations is shown infigure 7.One of the problems are rare swapmoves between neighboring
temperatures. If the temperature set has a smaller step,many swaps occur, but this is equivalent to performing
simulations on similar sets. For the hybrid parameterizations the parallel tempering scheme does notworkwell
because the energies resulting from every temperature set are biased to the already optimized Y s

CGTNS
2

correlators. This, in turn, increasesDE between the neighboring temperatures and the swapmoves are not likely
to appear, see equation (29). This can be easily seen from the convergence curves infigure 7, wherewe observe
steep steps for Y s

CGTNS
3 and Y s si

CGTNS
3 , while all the hybrid parameterizations show a smooth convergence

behavior. A solutionmight be to use dynamically optimized temperatures [100]. However, the accuracy

Figure 7.Convergence behavior of 3-site correlator CGTNS parameterizations formanganocene in the lowest-energy sextet state.

Table 3.Quantumfidelitymeasure for various CGTNSparameteriza-
tions: ‘largest’ denotes the overlap of the largest CI coefficient with the
reference coefficient form theCAS-SCF sextet calculation. ‘all’ denotes
the completefidelitymeasure where the products of all corresponding
CGTNS andCAS-SCF coefficient were added up. ‘>0.05’ denotes the
fidelity of all CI coefficients of the doublet state that are larger than 0.05
in absolute value.

Ansatz
Sextet Doublet

Largest All >0.05 All

Y s
CGTNS
2 0.987106 0.993333 0.927122 0.920353

Y s si
CGTNS
3 0.987306 0.993798 0.907977 0.907797

Y s
CGTNS
3 0.986862 0.992899 0.913067 0.905308

Y [ ]s si s
CGTNS
3 2 0.987012 0.993335 0.921416 0.913265

Y +[ ]s si s
CGTNS
3 2 0.987022 0.993377 0.921654 0.913737

Y [ ]s s
CGTNS
3 2 0.987001 0.993384 0.920567 0.915281

Y +[ ]s s
CGTNS
3 2 0.987030 0.993412 0.918204 0.914736

Y [ ]s s
CGTNS
3 2 sel 0.987080 0.993438 0.921022 0.911672

Y +[ ]s s
CGTNS
3 2 sel 0.987099 0.993493 0.917041 0.910176
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achieved here is sufficient for the analysis of CGTNS parameterizations.We emphasize that accurate relative
energies are the ultimate target for processes in low energy chemical physics.

In addition, calculations employing alternative Y +[ ]s s
CGTNS
3 2 , Y +[ ]s si s

CGTNS
3 2 , and Y +[ ]s s

CGTNS
3 2 sel hybrid parameterizations

were performed. One can see from table 2 that the final energies calculated from Y +[ ]s s
CGTNS
3 2 , Y +[ ]s si s

CGTNS
3 2 , and

Y +[ ]s s
CGTNS
3 2 sel wave functions are slightly higher than those of the corresponding Y [ ]s s

CGTNS
3 2 , Y [ ]s si s

CGTNS
3 2 , and Y [ ]s s

CGTNS
3 2 sel

parameterizations, respectively. In the case of Y +[ ]s si s
CGTNS
3 2 , the energy is higher than the one from Y [ ]s si s

CGTNS
3 2 by only

−0.125mHartree, while in the other cases the difference is even smaller. The only advantage of the alternative
hybrid schemes is slightly faster convergencewhich can be seen infigure 8.

If the (local) gradient optimization, equation (31), is applied afterMonte Carlo optimization, the energy is
decreased by only−0.34909mHartree to−1542.19442146Hartree.With the ‘reduced’ gradient optimization,
equation (32), the result deteriorates. The same holds true for the variational optimization suggested by
Changlani et al in their work onCPS ansatz [44]when applied for CGTNS ansatz. Apparently, while such a
variational optimizationworkswell in the case of CPS ansatz [44], the presence of correlators different from the
ones corresponding to the nearest neighbors in theCGTNS ansatz [55] introduces unsurmountable difficulties.

4.3.Manganocene—doublet state
The configurational space of the doublet state is spanned by 98060ONVs inC2v point group symmetry for an
active space consisting of 9 electrons in 12 orbitals, see figure 4. But in contrast to the sextet case, the number of
spin-adaptedCSFs is 47240 and therefore about half as large as the number ofONVs. It should be emphasized
that the number of variational parameters for theCGTNS ansatz here is the same as in the case of the sextet, as it
depends only on the number of spin orbitals in the active space. The 2-site correlator CGTNS scheme reduces
the number of variational parameters by 99%with an error of about 40mHartree, see table 4. Y s

CGTNS
3 introduces

20800 variational parameters, which corresponds to a 80% reduction. For Y s si
CGTNS
3 the reduction is larger (85%),

corresponding to 16192 variational parameters.

Figure 8.Convergence behavior of hybrid CGTNSparameterizations formanganocene in the lowest-energy sextet state.

Table 4.Electronic energies for the doublet state ofmanganocene calcu-
latedwith various CGTNSparameterizations andCAS-SCF(9, 12). A
percentage indicates a decreased parameter space compared to the 98060CI
coefficients in theCAS-SCF(9, 12) reference calculation.

Parameterization Parameters Percentage Energy/Hartree

CAS-SCF(9, 12) 98060 −1542.144937

Y s
CGTNS
2 1200 99% −1542.104681

Y s si
CGTNS
3 16192 85% −1542.116784

Y s
CGTNS
3 20800 80% −1542.119695

Y [ ]s si s
CGTNS
3 2 16192 85% −1542.123527

Y [ ]s s
CGTNS
3 2 20800 80% −1542.125171

Y [ ]s s
CGTNS
3 2 sel 9120 91% −1542.122804

Y +[ ]s s
CGTNS
3 2 sel 9120 91% −1542.123885
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The Y s si
CGTNS
3 and Y s

CGTNS
3 parameterizations decrease the energy by−0.012103 and−0.015014Hartree,

respectively, see table 4. From figure 9, it is obvious that 3-site correlators are important for energy
minimization. According to a very recent paper [101] by Szalay et al, that was uploaded to the arXiv after the
submission of this paper, this could be interpreted in terms ofmultipartite and hidden correlation. As in the case
of the sextet state, convergence is acceleratedwith information obtained from the 2-site correlators. As expected,
incorporating 3-site correlators into the 2-site correlator ansatz (Y [ ]s si s

CGTNS
3 2 and Y [ ]s s

CGTNS
3 2 ) yields energies close (and

lower) to the one of the 2-site correlator ansatz right from the start, seefigure 9. In contrast to the sextet state,
both hybrid parameterizations, Y [ ]s si s

CGTNS
3 2 and Y [ ]s s

CGTNS
3 2 , minimize the doublet energies further than the pure 3-site

correlator schemes, yielding−1542.123527 and−1542.125171Hartree, respectively.
As for the sextet, we studywhether all of the 3-site correlators are equally important in thewave function

parameterization. Again, we choose the 18most entangled spin orbitals according to the selection criterion in
section 3, resulting fromnatural orbitalsD-1,D-2,D-4,D-5,D-6,D-9,D-10,D-11,D-12, see figure 4. It should
bementioned that all selected orbitals have high values of single orbital entropies aswell asmutual information,
see figure 10.One could also include spin orbitals derived fromnatural orbitalD-3, but as it has a slightly lower
value of single orbital entropy than the other selected orbitals, we consider our choice reasonable.

The hybrid CGTNS ansatz, Y [ ]s s
CGTNS
3 2 sel, corresponding to our selected set of spin orbitals has only 9120

variational parameters compared to 20800 in the Y [ ]s s
CGTNS
3 2 ansatz.We observe that the chosen 3-site correlators

are important for energyminimization. One can clearly see infigure 9 that Y [ ]s s
CGTNS
3 2 sel shows even faster

convergence and thefinal energy is close to those of Y [ ]s si s
CGTNS
3 2 and Y [ ]s s

CGTNS
3 2 . Hence, the concept to include higher-

order correlators in theCGTNS ansatz only for themost entangled orbitals is efficient.
Inspecting the quantumfidelitymeasure for the doublet state (table 3), we see that the quantumfidelity for

all parametrization is very similar and larger than 90%.Considering for the fidelity calculation only CI
coefficients that are larger than 0.05 in absolute value, we obtain afidelity of about 92%,which is only slightly
reducedwhen all coefficients are taken into account (to about 91%).We againfind thatmany of the very small
CI coefficients have thewrong sign, but also somewith nonnegligible CIweight. However, introducing the
option for sign changes explicitly in theMonte-Carlo optimization does not improve the energy significantly.

In contrast to the sextet case, the hybrid schemes that employ a sumof 2-site and 3-site correlator products,
Y +[ ]s s

CGTNS
3 2 and Y +[ ]s si s

CGTNS
3 2 , show slower energy convergence than their analogs employing products between 2-site

and 3-site correlators, Y [ ]s s
CGTNS
3 2 and Y [ ]s si s

CGTNS
3 2 , see figure 11. Thefinal energies obtained from Y +[ ]s s

CGTNS
3 2 and

Y +[ ]s si s
CGTNS
3 2 are higher than the ones obtained from their counterparts. An interesting behavior is exhibited by the

Y +[ ]s s
CGTNS
3 2 sel ansatz, see figure 11. Although at the beginning, it shows convergence similar to that of the Y [ ]s s

CGTNS
3 2 sel

ansatz, at the point where the energy from the Y [ ]s s
CGTNS
3 2 sel ansatz is almost converged, the Y +[ ]s s

CGTNS
3 2 sel ansatz

succeeded to overcome localminima and the energy decreases further by 1.081mHartree, see table 4 and
figure 11.

4.4. Accuracymeasure
So far, we observed two peculiarities of theCGTNS ansatz. In the case of the sextet state, the 2-site correlator
parameterization provides an accurate approximation to the reference wave function and the introduction of
higher-order correlators hardly changes the energy any further, in the best case by only−0.003705Hartree. By

Figure 9.Convergence behavior of 3-site correlator CGTNS parameterizations formanganocene in the doublet state.
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contrast, Y s
CGTNS
2 does not provide an adequate energy estimate for the doublet state ofmanganocene and 3-site

correlators are needed to decrease the energy by−0.02049Hartree. In the light of these observations, it is
necessary to introduce ameasure for the accuracy of CGTNSparameterizations and for the decisionwhether
higher-order correlators should be introduced or not. For example, the small energy difference of Y [ ]s s

CGTNS
3 2

compared to its extension to 3-site correlators in the Y [ ]s s
CGTNS
3 2 ansatz,

D = - ( )[ ]E E E , 36s s s s s
CGTNS
2 3

CGTNS
3 2

CGTNS
2

clearly shows that the introduction of 3-site correlators will not improve the energy. Such an energy-difference
measure can serve for accuracy control. In the general case of n-site correlators, it is given by

D = -+ + ( )( ) ( ) [ ]E E E . 37n n s n s ns ns
CGTNS

1
CGTNS

1
CGTNS

As the next tier of approximation, Y +( ) [ ]n s ns
CGTNS

1 , may dramatically inflate the variational space, we insert the
approximation Y +( ) [ ]n s ns

CGTNS
1 sel instead of Y +( ) [ ]n s ns

CGTNS
1 ,

D » -+ + ( )( ) ( ) [ ]E E E . 38n n s n s ns ns
CGTNS

1
CGTNS

1 sel
CGTNS

The smaller variational space of a Y +( ) [ ]n s ns
CGTNS

1 sel parameterizationmakes optimizations feasible and the energy
usually converges within comparatively fewMonte Carlo steps.

Figure 10.Entanglement diagram formanganocene in the doublet state from aMPS-DMRG calculation. The area of the red circles is
proportional to an orbital’s single-orbital entropy, while the thickness of the connecting lines is proportional to theirmutual
information (green dashed lines indicate a value>0.001, gray dashed lines correspond to a value>0.01, and values>0.1 are indicated
by a solid black line).

Figure 11.Convergence behavior of hybridCGTNS parameterizations formanganocene in the doublet state.
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4.5.Manganocene—spin-state splitting
From sections 4.2 and 4.3 it is obvious that energies obtained from low-order CGTNS parameterizations still
deviate from theCAS-SCF reference. Thismay only be tolerated if relative energies are obtainedwith higher
accuracy.We investigate this issue now for the spin-state splitting inmanganocene. Aswe neglect dynamical
correlation, our reference splitting is−40.59 kcal mol–1 (table 1). SinceDFT results scatter by about 30 kcal mol–
1 (table 1, see also [74]), wemay consider a deviation by up to about 5 kcal mol–1 (10%of theCAS-SCF reference
result) acceptable. If the simple strategy to use the same parameterization for both spin states is followed, two
issues arise. Thefirst one can be clearly seen if one takes the Y s

CGTNS
2 ansatz for both spin states. For the sextet

state, an accurate total energy is obtained, whereas for the doublet state the reduction of the variational space by
99% is so large that it leads to an inaccurate total energy. The energy difference thenmounts to−56.09 kcal mol–
1, see table 5. The problemhere is that the configurational space for the doublet is 10 times larger than the one for
the sextet, while the number of CGTNS variational parameters is equal. The second issue can be observed for the
Y [ ]s s

CGTNS
3 2 parameterization applied for both spin states. Then, the energy difference is equal to−44.00 kcal mol–1,

whereas the variational space for the sextet was enlarged by 59% relative to theCAS-SCF configurational space.
Using the same ansatz for both states therefore introduces an imbalance in the approximation of the two
different configurational spaces.

A reasonable strategy is to choose those parameterizations which reduce the variational space by the same
amount and are therefore likely to be affected by similar errors. Formanganocene, Y [ ]s s

CGTNS
3 2 sel achieves a reduction

by 91%of the variational space for the doublet state, while for the sextet state the same reduction is achieved by
the Y s

CGTNS
2 ansatz. The energy difference estimated based on these schemes is−44.72 kcal mol–1. If the

Y +[ ]s s
CGTNS
3 2 sel scheme is used instead, the energy difference is equal to−44.04 kcal mol–1.

The energy differences calculatedwith other 3-site correlator schemes are presented in table 5. The Y [ ]s si s
CGTNS
3 2

ansatz performs slightly worse than the Y [ ]s s
CGTNS
3 2 ansatz for the spin-state splitting energy giving−45.11 kcal/

mol. Approximately the same result,−45.20 kcal mol–1, can be obtained if the Y [ ]s s
CGTNS
3 2 sel ansatz is employed in

both spin-state calculations. The energy difference obtained from the Y +[ ]s s
CGTNS
3 2 sel ansatz is equal to

−44.51 kcal mol–1.Whereas in the case of the 3-site CGTNS schemes employing correlators for all spin orbitals
the variational space for the sextet state is enlarged compared to theCAS-CI space in a reference calculation, the
Y [ ]s s

CGTNS
3 2 sel and Y +[ ]s s

CGTNS
3 2 sel ansätze reduce the variational space not only for the doublet state but also for the sextet

state (66%). The results obtained from Y s si
CGTNS
3 and Y s

CGTNS
3 parameterizations are nearly the same and equal to

−49.55 kcal mol–1 and−49.00 kcal mol–1, respectively. Note that these schemes enlarge the variational space for
the sextet to the same extent as their hybrid analogs.

5. Conclusions

In this paper, we presented a rigorous analysis of various n-site correlators schemes for TNS at the example of
manganocene.We demonstrated that the 2-site correlator CGTNS scheme achieves an efficient parameter
reduction for the systemswith a configurational space spanned by about 15 000ONVs. In the case of the sextet
state ofmanganocene, the number of variational parameters is reduced by 91%without significant loss of
accuracy; the error is about 15.5mHartree.

Introducing higher-order correlators increases the accuracy and delivers results closer to theCAS-SCF
reference results. This, however, comeswith an unreasonable inflation of the parameter space.We suggested and

Table 5.The doublet–sextet energy differences inHartree and kcal mol–1

formanganocene calculatedwith various CGTNS parameterizations and
CAS-SCF(9, 12).

Parameterization -[ ] [ ]E A E A6
1

2
1

6A1
2A1 Hartree kcal mol–1

CAS-SCF(9, 12) CAS-SCF(9, 12) −0.064683 −40.59

Y s
CGTNS
2 Y s

CGTNS
2 −0.089391 −56.09

Y [ ]s si s
CGTNS
3 2 Y [ ]s si s

CGTNS
3 2 −0.071888 −45.11

Y [ ]s s
CGTNS
3 2 Y [ ]s s

CGTNS
3 2 −0.070112 −44.00

Y s si
CGTNS
3 Y s si

CGTNS
3 −0.078955 −49.55

Y s
CGTNS
3 Y s

CGTNS
3 −0.078082 −49.00

Y [ ]s s
CGTNS
3 2 sel Y [ ]s s

CGTNS
3 2 sel −0.072022 −45.20

Y +[ ]s s
CGTNS
3 2 sel Y +[ ]s s

CGTNS
3 2 sel −0.070936 −44.51

Y s
CGTNS
2 Y [ ]s s

CGTNS
3 2 sel −0.071269 −44.72

Y s
CGTNS
2 Y +[ ]s s

CGTNS
3 2 sel −0.070187 −44.04
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analyzed two different strategies for the introduction of higher-order correlators. Thefirst one assumes that the
ansatz features only 3-site correlators and optimizes the energy with respect to them alone. The second strategy
incorporates 3-site correlators into a converged 2-site correlator ansatz.We demonstrated that such a hybrid
extension of a 2-site correlator ansatz converges better and faster than the optimization of only 3-site correlators.
The 3-site correlator CGTNSparameterizations are accurate for the description of a configurational space of
about 100 000ONVs.One can avoid inflation of the variational space by considering 3-site correlators only for
themost entangled spin orbitals. Such a restriction has only a slight affect on accuracywith respect to the original
ansatz; in addition, it also increases energy convergence in theMonte Carlo optimization.

Our results for the doublet state ofmanganocene showed that a reduction of the variational space by 80%,
85%, 91%, and 99% leads to errors of only−19.766 mHartree,−21.41 mHartree, 23.174mHartree, and
−40.256mHartree, respectively. Therefore, only an adaptive CGTNS ansatz is promising that introduces
higher-order correlators selectively on demand.With the energymeasures introduced for accuracy control such
an ansatz can adapt to the electronic structure under the study.

A reduction of variational space by 85%–90% leads to a 20mHartree error for total electronic energies.
However, formost chemical processes, the evaluation of energy differences ismost important.We found that
reliable results can be obtained if the same reduction of variational parameters for the two energies to be
compared is achieved. For themanganocene sextet–doublet energy difference, the error introduced by tensor
network parameterizations can be reduced to only 8.5%of the reference value.

While the non-stochastic optimization schemes performedwell for theCPS ansatz, for CGTNS they turned
out to be inefficient.Hence, additional work on the improvement of ourMonte Carlo optimization scheme is
required. A possibility is the introduction of dynamically optimized temperature sets [100].
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