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Abstract—Solutions for accurate and fine-grain monitoring
are at the basis of the growth of future large-scale green high
performance computing (HPC) infrastructures. The capability
of these systems to adapt to specific application requirements
relies on sensing and correlating several distributed physical
parameters with application phases and states. Meeting such
requirements allows thus to achieve a better use of the resources,
higher throughput and higher energy-efficiency. As the capabil-
ity of drawing such correlations relies on the synchronization
across a network of nodes and measuring devices, the use of
synchronization protocols becomes a critical component. Novel
low-cost embedded devices start to include hardware support for
network synchronization protocols to achieve a high resolution
time accuracy. These devices are promising for monitoring
physical parameters of HPC infrastructures. In this paper we
evaluate how the performance of the two widely used network
synchronization protocols, namely the Network Time Protocol
and IEEE 1588, scale on a state-of-the-art embedded platform,
namely a Beaglebone Black Board.

I. INTRODUCTION

It is nowadays evident that the tradeoff between perfor-
mance and energy consumption is a key challenge for future
large-scale green HPC infrastructures [1]. Such infrastructures
include a large variety of sensors for measuring architectural
and physical run-time parameters. Both architectural and phys-
ical parameters have been historically used to understand ap-
plications performance and bottlenecks, as well as to monitor
the status of the infrastructure by system administrators. With
a view to increasing the total energy efficiency, there is an in-
creasing demand for correlating applications and architectural
events, measured from the processing elements, with physical
parameters taken at the node level [1].

However, HPC applications usually run on multiple nodes
[2], which are in the order of thousands or millions [3],
each consisting of several processing elements and measuring
points. As a result, the monitoring system can be seen as
a multitude of agents that measure different metrics for the
hardware (HW) components. Ultimately, the capability of
correlating these monitoring points to form useful application
metrics is bounded by their sampling rate as well as by
the synchronization between the monitoring agents. Indeed,
a synchronization in a distributed system is essential for the
global ordering of events.

Distributed synchronization in IT systems is supported by
network time synchronization protocols. In these protocols

all the nodes are kept synchronized against a time reference
assumed as true time. In this context, accuracy refers to the
amount of shift between the mean of the time-tags obtained by
the agent and the time reference, while precision corresponds
to the standard deviation. This is represented in Figure 1.
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Fig. 1: Accuracy and precision of a set of measurements.

In the last few years two standards have emerged and are
widely adopted: the Network Time Protocol (NTP) and the
Precision Time Protocol (PTP), also known as IEEE 1588. The
NTP was proposed by Mills in 1991 [4], and later revised in
2010 with the version 4 (NTPv4) [5]. It is targeted towards
Wide Area Networks (WANs), where it typically achieves an
accuracy in the order of a few milliseconds. However, as
documented in the standard, within fast Local Area Networks
(LANs) NTPv4 can reach a potential accuracy in the tens of
microseconds. The Precision Time Protocol was proposed in
2002 and later revised in 2008 (PTPv2) [6]. It targets LANs
and can synchronize devices with accuracy and precision
in the sub-microsecond range. The protocol is suitable for
measurement and control systems, and for applications where
the cost of an external source of time for each node is not
sustainable (e.g. using the Global Positioning System - GPS).

The Precision Time Protocol has a highly accurate and
precise implementation, which is developed at CERN in col-
laboration with other partners. It is called White Rabbit (WR)
[7], and it aims to be included into the next PTP standard
revision. WR can synchronize nodes in an Ethernet-based
network with sub-nanosecond accuracy and deterministic data
transfer. Furthermore, it is based on an open-source paradigm
for both its hardware and software implementation. However,



WR is not suitable when general purpose monitoring devices
are used, as it requires specialized hardware. For this reason,
we focus our analysis only on the NTP and PTP protocols.

A key concept in the study of such protocols is that synchro-
nization is performed within the LAN of the HPC monitoring
infrastructure. This allows to work in a corner-case for the
NTP, where it can achieve its best performance. However,
both of them need to be evaluated on the embedded low cost
devices that are used for the HPC monitoring. With this goal,
one of the best out-of-the-box solution to realize the fine-grain
HPC monitoring, is a low-cost and low-power state-of-the-art
embedded device, namely the Beaglebone Black Board (BBB).
It is based on a TI Sitara AM335x processor, which is a 1GHz
ARM Cortex-A8. The system-on-chip (SoC) has a built-in
12-Bit Successive Approximation Register (SAR) ADC, with
8-channels and a default sample rate of 200K Samples per
second. Furthermore, it includes two Programmable Real-Time
Units (PRUs), which make it suitable for on-board processing
of the sampled HPC-sensor data. Finally, it is PTP hardware-
enabled, which means it has a dedicated PTP hardware support
that improves the synchronization accuracy and precision.

The main contribution of the paper is a fine performance
evaluation of NTP and PTP in terms of accuracy, precision and
scalability, when they are used in a context of large scale HPC
monitoring. We conduct our analysis on a Beaglebone Black
Board platform which is a promising device for smart monitor-
ing and suitable for being integrated in a HPC infrastructure.
Our study shows that: (i) NTP protocol achieves in our best
configuration an accuracy of 17.5us and 8.4us of precision.
This means that for 99% of the cases the timestamp offset
(in between the monitoring device and its time reference)
is below 35us.(ii) PTP protocol instead achieves in our best
configuration an accuracy of 16.1ns and 513.7ns of precision.
This means that for 99% of the cases the timestamp offset (in
between the monitoring device and its time reference) is below
1.32us. (iii) when considering 75% of the cases the measured
timestamp offset, in between the monitoring device and its
time reference, becomes 23us for the NTP and 500ns for the
PTP. (iv) time synchronization protocols do not represent the
critical factor for the monitoring system scalability. Indeed,
our results shows that, for the above mentioned values of time
accuracy performance, these protocols require only 23 B/s per
client for the NTP, and a traffic of 180B/s plus a data exchange
of 186B/s per client for the PTP. In light of such results,
our study demonstrates that both NTP and PTP, as well as
the low-cost monitoring devices, can be used for fine-grain
measurement of supercomputer systems.

The paper starts by introducing, in section II, the im-
portance of HPC fine-grain monitoring and the key rule of
synchronization in this context. Then, section III describes
the selected synchronization protocols (i.e. NTP and PTP),
in terms of their specifications (sections III.A and III.B) and
implementations (sections III.C and III.D). Finally, section IV
discusses the experimental results, focusing on the achieved
accuracy and precision and further scalability. This is followed
by a short ”how-to” section, to outline the Beaglebone Black
Board software settings, and conclusions.

II. FINE GRAIN HPC MONITORING

This section introduces the concept of fine grain HPC
performance monitoring and the importance of time synchro-
nization in this context. Figure 2 sketches out a simplified
picture of a HPC system.
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Fig. 2: Sketch of a HPC smart monitoring and data collection.

It consists of a set of racks composed by several nodes.
HPC applications can run on one or multiple nodes at the same
time, taking advantage of the various computational resources
(e.g. several cores on different CPUs, accelerator cards, etc.).
As effect of the computation, different physical parameters
of the environment and of the components of the machine
are modified. The analysis of these changes is important for
system administrators and final users, and allows them to
ensure safe working conditions, higher system performance
and higher energy efficiency. A practical example is cooling,
which is a costly operation on HPC machines. As a reference
point, according to the TOP5001, nowadays most powerful
supercomputer in the world, Tianhe-2, consumes ~17.8 MWs
of peak power, that increases to ~24 MWs including the
cooling infrastructure [8]. Works in [9][10] show that this cost
can be reduced when advanced cooling control policies, based
on extensive monitoring, are in place. Indeed, as depicted
in Figure 2, several sensors are integrated in various node
components. These include performance counters, temperature
sensors, power gauges, etc. Therefore, a smart monitoring
device, located on each node, it is at the basis of a distributed
monitoring system. Such devices sample the data, process
them in real-time (that explains the attribute ”smart”) and fur-
ther sends them to a centralized unit via the LAN that connects
the whole infrastructure. Correlating these measurements will
lead to a better understanding awareness of the system, and
will help modeling and later optimizing both the computational
power and the energy efficiency of the entire machine.

This is where the synchronization protocols come into play.
The key point is that the capability of correlating the data

1Top500 is an organization which ranks the 500 most powerful supercom-
puters in the world, using Linpack Benchmarks.



taken by different devices is bounded by both the sampling
rate and the capability to precisely time stamp measurements.
Indeed, every sampled data is associated with a timestamp.
This is taken from a clock running on each embedded device.
Therefore, the time offset between clocks is one of the main
factor that bounds the monitoring granularity: the smaller the
offset, the finer the monitoring and correlation grain.

Sensor Y
(Clock_Dev_2)

Sensor X
(Clock_Dev_1)

Actual_Time1 2 3 4 5

Sensor Y
(Clock_Dev_2)

Sensor X
(Clock_Dev_1)

Clock_Ts_Dev_21 2 3 4 5

Clock_Ts_Dev_1
1 2 3 4 5

Θ

Correlation based on actual time: Correlation based on “wrong” Timestamps:
Clock_Ts_Dev_1 = Actual_Time
Clock_Ts_Dev_2 = Actual_Time + Θ

Fig. 3: Importance of the clock synchronization for a fine grain
monitoring and events correlation.

Figure 3 explains the concept. Events occurred at the
same time (represented with spikes in the left plot of the
picture), could be interpreted in a wrong way if the timestamp
offset θ between the sampler devices (Clock Ts Dev 1 and
Clock Ts Dev 2 in the plot on the right) is not ”small”
enough. We will see in the next sections that more than one
clock can be present on a single device, and each of them
introduces a different level of synchronization.

III. SYNCHRONIZATION PROTOCOLS

In this section the key concepts of the two synchronization
protocols used in this paper will be described. More in detail,
the first two subsections are focused on their specifications,
outlining the hierarchical topologies and the message synchro-
nization patterns. In the last two parts their implementation
is then introduced, focusing on the different timestamping
methods and the main sources of jitter.

According to the protocols’ standardization, from now on
the terms client and server will be used in the NTP context,
while slave and master in the PTP. However, there is no
conceptual difference between them.

A. Hierarchical Topologies
Figure 4 shows typical hierarchical topologies for both NTP

and PTP. Both protocols use a hierarchical master-slave net-
work. In the NTP, each level is called ”stratum” and can range
from 0 to 15. Stratum 0 represents the time reference (e.g.
atomic clock, GPS) and is connected to stratum 1. Lower strata
are instead synchronized over the network, to the respective
one-upper level stratum (e.g. stratum ”n” to stratum ”n-1”).
The NTP algorithm sets then the synchronization paths by a
shortest-path spanning tree with specific metrics. Devices in
the same stratum can also peer with each other to stabilize the
clock. Finally, stratum 16 indicates unsynchronized devices.

Stratum 0

(Time Ref.)

Stratum 1

Stratum 2

(1) NTP Hierarchical topology

Grandmaster

(2) PTP Hierarchical topology

OC

Boundary Clock

Time Ref.

Fig. 4: Examples of hierarchical topologies.

The Precision Time Protocol uses a similar master-slave
hierarchy within a LAN. Such a hierarchy is managed by the
Best Master Clock (BMC) algorithm running on every device.
As in a general network we can distinguish between end-nodes
and networking-nodes (e.g. switches) used to interconnect the
former. The end-nodes are devices with only one PTP port
which can be either master or slave. Such devices are called
ordinary clocks (OC). In particular, the ordinary clock that
is the root timing reference for the whole PTP network is
called grandmaster clock. This device is straight connected to
a source of time which gives a high-degree of accuracy and
precision (e.g. GPS). Therefore, to synchronize each network
segment the BMC algorithm select one master between all the
PTP ports. If the connection with the grandmaster is lost, other
clocks may assume its rule.

PTP networking-nodes can be of two kinds. The first one is
called transparent clock (TC), while the second one boundary
clock (BC). Both have the goal to compensate the jitter (load
dependent latency) introduced by general networking devices.
The transparent clock corrects it by measuring the time taken
for a PTP message to transit the device and adding that to the
packet. It is ”transparent” from the clocks point of view, as
it does not have PTP ports which acts as a master or a slave
for other nodes. Such a thing is done instead by the boundary
clock, which has several PTP ports. As illustrated in Figure
4.2, in such a node one port (in a specific moment) is in a slave
state, while the others are masters for one or more slaves.

B. Synchronization Message Exchange Pattern
The basic synchronization message exchange for both pro-

tocols is represented in Figure 5. The idea behind NTP is that
each client regularly polls a cluster of servers to synchronize
its clock, computing both the round-trip delay δ and the time
offset θ. According to the standard, the latter is the time offset
of the server relative to the client (Timeserver - Timeclient).
The message exchange pattern is composed by only a pair of
messages: the NTP_Req from the client to the server (query)
and the backward called NTP_Resp (reply). As soon as the
server receives the query containing the client’s transmission
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Fig. 5: Synchronization message exchange patterns.

timestamp t1, it generates a reception timestamp t2 and sends it
back together with its transmission timestamp t3 via the reply
message. Therefore, the client notes its reply reception time
t4, and can finally compute both δ and θ by:

δ = (t4 − t1)− (t3 − t2) (1)

θ =
(t2 − t1) + (t3 − t4)

2
(2)

where equation 2 is calculated assuming:
• a symmetric network delay between the client (c) and the

server (s), δc→s = δs→c = δ
2 ,

• by summing the server-client offset obtained by the
NTP_Req message θ = t2 − (t1 + δ

2 ), and that obtained
by the NTP_Resp message θ = t3 − (t4 − δ

2 ).
Equations 1 and 2 are also valid for PTP, where the one-

way delay δ
2 it is used instead. Similar to NTP, the idea is

to continuously exchange messages between master and slave
ports in order to calculate both offset and one-way delay. Fig-
ure 5.2 describes the synchronization message exchange using
the delay request-response pattern2. Four packets are involved:
Sync, Follow_Up, Delay_Req and Delay_Resp. Sync
and Delay Req are called event messages, as an accurate
timestamp is generated at both transmission and receipt. In-
stead, the other two are general messages, as no timestamp
is required. That means only the event messages contribute to
the actual computation of θ and δ

2 , while the other two packets
are used as support. Indeed, the master periodically sends Sync
packets to the slaves, taking note of its transmission current
time t1. Such a time is then delivered within the general
message Follow Up. The reason behind this mechanism is
that, to include t1 within the Sync packet itself, dedicated
hardware is necessary. In the PTP nomenclature, such kind of
hardware is called one-step clock, while the generic hardware
which delivers the time in two steps (Sync + Follow Up)
is called two-step clock. As soon as the slave receives the
Sync message, it notes the reception time t2, and conveys the
Delay Req packet to the master, writing down its transmission
time t3. In the last step, the slave receives from the master

2A second option would be to evaluate the protocol synchronization
performance via the peer delay mechanism pattern, which is actually less
flexible, and for such a reason left for possible future works.

the Delay Req reception time t4 by the Delay Resp message.
Therefore, the slave can finally measure both offset and mean
propagation time.

Some further considerations on the PTP synchronization
pattern are essential to understand its network scalability,
which will be later examined. The key concept is that PTP
communication is based on a multicast messaging model (or
potentially a unicast messaging model). In other words, each
PTP packet sent by any PTP port has a destination’s multicast
address, which means that will be received by all the PTP ports
in the network segment. For packets which are specific for a
device (e.g. the Delay Resp message, which is specific for the
slave that delivered the Delay Req), then the clock identity of
the destination device is specified within the message. This
allows PTP to reduce the network load on the master side.

C. Timestamping Methods
One of the main sources of jitter that directly affects the time

synchronization accuracy is due to the uncertain processing
time of the protocol stack during the packets transmission.
Ideally, the packet is forwarded right after the timestamp
is generated, with no related timing delay. However, in the
real implementation, this delay depends on the layer of the
protocol stack where the timestamp is done: the higher the
distance from the physical layer, which is the exact point
where the packet is transmitted, the greater the jitter introduced
in the timestamp. Figure 6 depicts the difference between
ideal and real implementation, and the several points where
the timestamp can be done.

Ideal Timestamp 

Timing

Fig. 6: Sources of jitter in the protocol stack.

The two possibilities are the software timestamp and the
hardware timestamp. The latter is available only for PTP
hardware-enabled devices, and it is actually one of the main
advantages that PTP has over NTP. The software timestamp,
indeed, is the least accurate option. It is based on a software



clock that runs in the kernel, namely the system clock. It can
be applied when a packet reaches the application layer or,
in order to reduce the delay in the protocol stack, the device
driver layer. The system clock works with timer interrupts and
keeps the time by reading the CPU register which counts the
number of clock cycles since the last reboot (e.g. the Time
Stamp Counter on Intel x86 processors). The system clock,
has not to be confused with the battery powered clock, also
known as Real-Time Clock and present in most Linux devices.
This clock, indeed, is used only to keep track of the time when
the system is turned off and later initialize the system clock at
boot time. In Linux systems, NTP is usually implemented by
a daemon running in user space, the ntpd, which constantly
updates the system clock. The kernel will then correct the
real-time clock drift, usually at a much lower frequency.

To minimize the jitter introduced by the processing time of
the OSI3 layers, PTP introduces the idea of hardware times-
tamping support. As described in Figure 6, the PTP Hardware
Clock (PHC) subsystem, sketched here with the PHC block,
takes advantage of the Media Independent Interface (MII) to
detect PTP frames and provide timestamps with an accuracy
close to the physical layer. Several Linux implementations are
available for PTP. The one used in this paper is the Linux
PTP Project [11]. It involves two user space applications, ptp4l
and phc2sys. Both take advantage of the kernel space support
for the PHC subsystem by using the clock gettime family of
calls. While ptp4l is the actual implementation of the PTPv2,
implementing both boundary and ordinary clocks, phc2sys is
used to synchronize the PHC to the system clock.

We will see in the next sections, it is possible to tune the
synchronization messages rate on both protocols implementa-
tions, ntpd and ptp4l. This can be done by setting the client
(slave in the case of PTP) polling period parameter. We will
see also that while it is useful to increase such frequency
for the NTP, it is not for the PTP. Instead, using phc2sys
to increase the update rate between the PHC and the system
clock, will result in a higher synchronization performance.

D. Possible Sources of Jitter

Aim of this subsection is to summarize the main sources
of jitter that affect the time synchronization performance that
will be after evaluated. The main difference between the two
protocols is of course the method used for the timestamp,
as the HW timestamping support reduces the processing time
delay to the OSI physical layer. Therefore, remaining sources
of jitter, on both protocols, are mainly attributed to [12][13]:

1) the delay on the physical link, which includes
• the physical channel (i.e. asymmetry of the network

propagation delay in the two directions),
• the use of general networking devices. In the PTP

that can be improved by using PTP-enabled net-
working devices. In the NTP by replacing general
switches with more recent models, which can be
used as NTP time server. Indeed, the number of

3ISO/OSI model, which stands for International Organization for Standard-
ization/Open Systems Interconnection model.

hops between client and server will be reduced to a
point-to-point connection.

• the physical distance between the PHY layer and
the PHC support within the device, for PTP only.

2) the hardware properties of the clock (i.e. rate and stabil-
ity of the oscillator, which result in a limited hardware
resolution and precision of the timestamps, respectively).
More in detail,
• in the NTP, the rate and the stability of the oscillator

used for the system clock interrupt timer.
• in the PTP, the rate and the stability of the PHC.

IV. EXPERIMENTAL RESULT

A. Testbed Setup

The goal of this section is to evaluate how the performance
of NTP and PTP scale on a Beaglebone Black Board used as
monitoring device in this work. For this purpose, we set up
the testbed described in Figure 7. It consist of a slave node
(BB1) directly connected to a master (BB2). Using the NTP
nomenclature, BB1 is the client and BB2 the server. We used
it to find an upper bound (best performance) for the achievable
accuracy and precision, aimed at the sensor data timestamping
and collection within a HPC infrastructure. Moreover, in this
scenario it is not necessary to synchronize clocks with an
absolute time reference, but instead, it is important that all the
collected sensors data are synchronized between each other
and the rest of the HPC nodes. Therefore, the system clock of
the Beaglebone Black master is used as source of time:

• In the NTP tests, the client system clock is directly
synchronized to server system clock by the daemon ntpd.

• In the PTP tests, the ptp4l application, running on both
Beaglebones, synchronizes the two ordinary clocks (PHC
slave to the PHC master), while the phc2sys program
updates the two system clocks with the respective PHC.
In particular, the phc2sys running on BB1, synchronizes
its system clock taking the time from its PHC. Instead,
the phc2sys on BB2 does the opposite, updating its PHC
taking the time from its system clock.

BB1 (Slave) BB2 (Master)

Oscilloscope

Input Square Wave

System Clock 
BB1 (slave)

PTP4l

PHC2SYS

PTP HW 
Clock (PHC) 

BB1

PHC2SYS

PTP HW 
Clock (PHC) 

BB2

TimeStamp BB2TimeStamp BB1

System Clock 
BB2 (master)

Fig. 7: Testbed setup which sketches PHC and system clock
running on both Beaglebones, master and slave. In the case of
NTP, only the system clock is used.



To have an empirical measurement of the time precision
and accuracy in-between the two embedded devices, we had
to solve two technical problems: (i) the two Beaglebones need
the same triggering event. (ii) We have to measure with an
external reference the actual time when the two devices sense
the triggering event and generate the timestamp.

The idea is to use an input square wave as source of interrupt
for triggering both nodes. The GPIO used as input pin, is then
handled through the Interrupt Service Routine (ISR) within
an ad hoc device driver. As soon as the square wave goes
high, a second GPIO, used as output pin and connected to an
oscilloscope (Agilent MSOX3054A), is driven high. Hence,
in the next instruction a timestamp is generated, taking the
time from the system clock. Figure 8 outlines the oscilloscope
window.

Time1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit-state
(0-1)

GPIO_BB1
GPIO_BB2

Input_wave

Delay_ISR_2 ΔISR

Delay_ISR_1

Triggering
Event

TS_BB2 TS_BB1

Fig. 8: Oscilloscope’s window that shows the several involved
signals (i.e. input wave and the two output GPIOs on both
Beaglebones), and the delays introduced by the interrupt
service routines in-between the triggering event and the actual
moment the timestamp is generated (i.e. Delay ISR 1 and
Delay ISR 2).

The blue line represents the output GPIO on the Beaglebone
slave (GPIO BB1), while the green line the one on the
master (GPIO BB2). As soon as the two Beaglebones receive
the trigger event, they will generate a timestamps (TS BB1
and TS BB2), both with a ISR processing time delay (De-
lay ISR 1 and Delay ISR 2). Therefore, such configuration
allows to take into account the offset between the two ISR
processing time delays (∆ISR), for the final computation of
the system clock time-offset:

System Clockoffset = TSs − (TSm + ∆ISR) (3)

where TSs and TSm correspond to system clock timestamps of
the Beaglebone slave and master, respectively. Moreover, the
offset ∆ISR is here always referred to the master time and
can be either positive or negative depending on which clock
is head of time.

B. Measurement Results

1) Accuracy and Precision: Both values were traced by
measuring the skew between the two system clocks, for
several working frequencies of the previously mentioned Linux

programs (i.e. ntpd, phc2sys, and lastly ptp4l). Regarding NTP,
the ntpd polling period can be set by the two options minpoll
and maxpoll within the range 8s to ~36.4h. Default values
are 64s for minpoll and 1024s for maxpoll. The histogram in
Figure 9.1 shows the master-slave offset obtained by setting
both values to the minimum polling period of 8s.
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Fig. 9: Best tested NTP and PTP synchronization performance
on a Beaglebone Black Board.

The green line on the zero corresponds to the master clock,
while the red curve is the approximated Normal Distribution.
As can be seen in the plot, the measured accuracy (mean
value) over 30k samples is ~17.5us, and the precision (standard
deviation) is ~8.4us. To observe how the percentage of samples
skews from the reference time, the Cumulative Distribution
Function (CDF) is traced in Figure 9.2. Results show that
75% of the samples stay within ~23us, 95% below ~30us,
and finally 99% of the values below ~35us. Note that this
exchanging message rate should not be a problem within
a HPC LAN. Moreover, the scalability factor will be later
analysed.

Figure 9.3 shows the best PTP performance trade-off. The
phc2sys program was used to tune the internal-slave clock
update rate on both Beaglebones, namely the PHC update
rate on BB2 and the system clock update rate on BB1. This
is not related to the frequency of synchronization messages
exchanged over the network, which instead is possible to set
with the ptp4l application. The reason for not altering such a
frequency is that its default configuration in ptp4l is already
set to the maximum value of 1Hz for all the event messages.
Moreover, there would not be any reason to further increase
this frequency as it is the typical best trade-off to achieve
the minimum traffic on the network and the optimal point of
work of the PHC oscillator [12]. The tested frequencies range
from 1Hz to 24Hz with steps of 6Hz. Table I reports such
results, while the CDFs in Figure 9.4 stand out that 12Hz



corresponds to the best trade-off to minimize both frequency
and skew from the time reference. Indeed, results show that
75% of the values are below ~500ns, 95% below ~970ns, and
finally 99% below ~1.32us.

Update-rate µ-offset σ-offset

1Hz -230.8ns 2.01us
6Hz -9.2ns 753ns

12Hz 16.1ns 513.7ns
18Hz 101.6ns 458.7ns
24Hz 23.6ns 488.5ns

TABLE I: PTP performance achieved by tuning the phc2sys
internal-slave clock update rate to several frequencies. Accu-
racy and precision are indicated here by µ-offset and σ-offset,
respectively.

As both protocol implementations are based on free-running
oscillators [14], decreasing the synchronization message fre-
quency over the network it follows in a growth of the time drift
between the master and the slave Beaglebones. Of course, such
a drift is bounded within two consecutive synchronizations and
related to the system clocks in the NTP case, and PHCs in the
PTP (which actually follows in a drift of the respective master
and slave system clocks). The four plots in Figure 10, obtained
by setting the maximum polling period (i.e. ~36.4h) on both
ntpd and ptp4l, give an idea of such a drift.
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(3) PTP: Histogram of the master-slave o set 

      with polling_period =~36h

(2) NTP: Trend of the server-client o set

      with polling_period =~36h

(4) PTP: Trend of the master-Slave o set 

      with polling_period =~36h

μ σ Time

1 ~ 34us ~0.7us 0m

2 ~ -39us ~0.5us 17m

3 ~ -68us ~0.7us 30m

4 ~ -155us ~0.7us 53m

μ σ Time

1 -63.3us 2.7us 0m

2 -20.5us 2.7us 11m

3 125.5us 2.6us 27m

4 268.4us 2.8us 46m

5 364.9us 2.7us 59m

6 468.7us 2.7us 70m

7 629.7us 2.7us 90m

8 1005.9us 2.7us 122m

Fig. 10: Linear drift between the two Beaglebone free-running
oscillators.

In particular, Figure 10.1 and Figure 10.3 reports the several
histograms for NTP and PTP, respectively. The error bars
in Figure 10.2 and Figure 10.3 show instead the almost
linear trend of both drifts. Indeed, the x-axis represents the
elapsed time between the first test and the others, and the fact
that the trend is growing in a positive or negative direction
depends on which clock was ahead of time during the initial
synchronization.

In light of the achieved results, the Network Time Protocol
running on a Beaglebone Black Board allows a time-
synchonization for a fine grain HPC monitoring, and further

events correlation, with an accuracy of ~17us and precision
of ~8.4us. Such values decrease to ~16ns and a ~513ns,
respectively, using the Precision Time Protocol. Furthermore,
the results track an upper bound of ~35us and ~1.32us on
NTP and PTP, respectively, for 99% of cases.

2) Scalability: Looking at the message exchange patterns,
it is possible to quantify, for both protocols, how the master
scales with the number of connected devices. In particular,
considering N clients, the NTP server (bottleneck) has to deal
with 2N packets per time update (a pair query-reply). In the
NTPv4, the query consists of 90Bytes (42B for the header and
48B for the payload), while the reply involves 94Bytes (46B
the header + 48B the payload) [5]. Therefore, with a polling
period of 8s (our best tested performance) the NTP server data
rate corresponds to 23B/s per client, where of course the best
case in terms of such a data rate corresponds to the client-
server point-to-point link.

Focusing on the PTP multicast messages exchange model,
the master has to handle 2 + 2N packets per time update. In
other words, setting a polling period of 1s for all the synchro-
nization messages, there is a fixed component of 180B/s (90B/s
for the Sync + 90B/s for the Follow Up), and a scalable com-
ponent of 186B/s per slave (86B/s for the Delay Req + 100B/s
for the Delay Resp) [6]. To be precise, PTP provides other
general messages with the view to handle the PTP network.
These messages are sent with a lower frequency and mainly
contribute to the fixed component only, reason why they do
not undermine the scalability. Such considerations are valid for
network topologies with transparent clocks (or generic non-
PTP devices) between the two nodes master and slave. Again
the best case in terms of such a data rate corresponds to the
master-slave point-to-point link, which could be achieved, for
instance, using boundary clocks between the two nodes.

With the goal to synchronizing devices within a monitoring
infrastructure, we can finally assert that both protocols are
not critical in terms of scalability. Indeed, considering a
Fast Ethernet, which support the bit rate of 100Mb/s (e.g.
the 10/100 RJ45 of the Beaglebone Black Board), in our
best performance configuration the NTP server uses only
~0.000184% of the network bandwidth per client, while the
PTP master only ~0.001488% of the network bandwidth per
slave (where in case of a network with only boundary clocks
between the several nodes there is only one slave per master).
In theory, using only 10% of the bandwidth a NTP server
could handle up to ~54k nodes, while each PTP master port
up to ~6.7k nodes. Moreover, using a Gigabit Ethernet these
values decrease to ~0.0000184% and ~0.0001488% for the
NTP server and PTP master, respectively. As before, in theory
this would correspond to handling up to ~540k nodes for each
NTP server and ~67k nodes for each PTP master port.

C. Baglebone Black Board - NTP-PTP Settings
In this final section we describe a short ”how-to”, based on

the experience gained in this work, in order to achieve our best
time synchronization results on the BBB. Table II summarizes
the main settings of both ntpd and phc2sys, for NTP and PTP,
respectively.



Program Server (Master) Client (Slave)

ntpd minpoll 3 maxpoll 3
fudge stratum n

minpoll 3 maxpoll 3
fudge clock IP stratum n

phc2sys -R12 -R12

TABLE II: Ntpd and Phc2sys settings to achieve our best
accuracy and precision on a Beaglebone Black Board.

In the NTP configuration file (/etc/ntp.conf) it is possible to
set the polling period of both client to its server, and server
to its time-reference. Furthermore, the option fudge allows to
specify the stratum number (from 0 to 15) associated to the
source of time in both client and server. Regarding PTP, the
-R parameter allows phc2sys to set the polling rate of the
internal-slave clock (PHC or System Clock). Moreover, it is
possible to generate the System Clock timestamp using the
clock gettime family of calls. In particular, within the device
driver do gettimeofday() was used. Otherwise, in a user-space
program the gettimeofday() call can be used. Note that, using
instead clock gettime() along with the CLOCK REALTIME
tag, results in a performance deterioration. Indeed, such
timestamp is generated by the Real-Time Clock previously
described, which is updated with a lower frequency than the
system clock. Finally, if synchronization with an absolute-
time reference is needed, we suggest the use of a GPS at
the top of the hierarchical topology, instead of using a cluster
of servers outside the LAN. Indeed, this could decrease the
performance due to the jitter introduced by typical store-and-
forward networking devices. We remark that our analysis is
based on synchronization with a relative-time reference as we
are interested in application and sensor data correlation of
devices within a HPC infrastructure LAN, and not outside of it.

V. CONCLUSION

Solutions for accurate and fine-grain monitoring are cru-
cial for the growth of large-scale green HPC infrastructures.
These large scale systems require a distributed monitoring and
thus the time-granularity, at which architectural and physical
events can be correlated and analysed, is bounded by the
monitoring devices’ time-synchronization. In this work we
evaluate the achievable synchronization performance in terms
of accuracy, precision and scalability of two widely adopted
time synchronization protocols: the Network Time Protocol
and the Precision Time Protocol, both running on a state-of-
the-art embedded monitoring platform, namely the Beaglebone
Black Board. Our results show that the NTP achieves, in our
best configuration, an accuracy of ~17.5us and a precision
of ~8.4us, while the PTP decrease such values to ~16.1ns
and ~513.7ns respectively. In 99% of the performed tests, the
timestamp offset calculated between the monitoring device and
its time reference is not greater than ~35us for the NTP and
not greater than ~1.32us for the PTP. Furthermore, in 75%
of the cases, such a timestamp offset decreases to ~23us for
the NTP and ~500ns for the PTP. Finally, given these values
of time synchronization, these protocols are not critical to the
monitoring system scalability.

As a result, our study demonstrates that both NTP and PTP,
as well as low-cost embedded monitoring devices, can be used
for fine-grain measurement of HPC systems. Furthermore,
such results can be applied in any context of performance
monitoring within a LAN that takes advantage of a Beaglebone
Black (more in general that uses the TI Sitara AM335x
processors’ Family) and PTP-HW enabled devices for PTP.
We also expect that using different processors as monitoring
devices, as long as they are PTP-HW enabled, will not change
the order of magnitude of the results. Finally, as the state-of-
the-art of some built-in HPC performance monitoring sensors
(e.g. power sensors) do not have a sub-milliseconds resolution,
our study shows that synchronization is not a boundary factor
for application and sensor data correlation. Moreover, in our
future work we plan to investigate faster power monitoring
strategies and their implication in large scale systems.
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