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ABSTRACT: We demonstrate the stabilization of the localized
surface plasmon resonance (LSPR) in a semiconductor-based core−
shell heterostructure made of a plasmonic CuS core embedded in an
amorphous-like alloyed CuPdxS shell. This heterostructure is prepared
by reacting the as-synthesized CuS nanocrystals (NCs) with Pd2+

cations at room temperature in the presence of an electron donor
(ascorbic acid). The reaction starts from the surface of the CuS NCs
and proceeds toward the center, causing reorganization of the initial
lattice and amorphization of the covellite structure. According to
density functional calculations, Pd atoms are preferentially accom-
modated between the bilayer formed by the S−S covalent bonds,
which are therefore broken, and this can be understood as the first
step leading to amorphization of the particles upon insertion of the
Pd2+ ions. The position and intensity in near-infrared LSPRs can be
tuned by altering the thickness of the shell and are in agreement with the theoretical optical simulation based on the Mie−Gans
theory and Drude model. Compared to the starting CuS NCs, the amorphous CuPdxS shell in the core−shell nanoparticles
makes their plasmonic response less sensitive to a harsh oxidation environment (generated, for example, by the presence of I2).

■ INTRODUCTION

The emergence of localized surface plasmon resonances
(LSPRs), not only in nanosized metals but also in semi-
conductors, has attracted significant attention in the past several
decades.1−20 The plasmon modes arise from the collective and
coherent oscillations of the free carriers (i.e., electrons or holes)
in resonance with the incident light frequency on the surface of
metal or semiconductor nanoparticles (NPs). The plasmon
absorbance of NPs can be located in various regions of the
spectrum, depending on the particle composition, size, shape,
and surface functionalization.21−23 Plasmon resonances of
metallic NPs have already found a multitude of applications
in fields ranging from surface-enhanced Raman spectroscopy,
photothermal therapy for biomedicine, imaging, and cataly-
sis.1−4 Colloidal semiconductor nanocrystals (NCs) of binary
copper chalcogenides (Cu2−xE, where E = S, Se, or Te) have
also emerged as a new set of plasmonic materials, because of
their unique and tunable LSPRs in the near-infrared (NIR)
region,5−19 which makes them suitable for various applications,
as well.24−36 The interest in these materials started when Zhao
et al. attributed the NIR optical absorbance band of Cu2−xS

NCs to a plasmon resonance effect15 and then when Luther et
al. investigated in more detail the plasmonic properties of
Cu2−xS NCs.5 In Cu2−xE NCs, the density of free carriers,
hence the spectral position of the NIR plasmon resonance,
depends on the density of Cu vacancies (i.e., x), which in turn
can be strongly influenced by the surrounding environment.
For instance, by exposure of the NCs to oxidizing agents such
as air, iodine, or a Ce(IV) complex15,19,37 or to reducing agents
such as diisobutylaluminum hydride (DIBAH),7 their Cu
stoichiometry can be altered. This is currently understood to
proceed through the concomitant extraction of electrons and
Cu+ ions in an oxidizing environment or the opposite process
in a reducing environment, each involving a change in the
plasmonic response. Despite the very recent success in
stabilization of NIR LSPRs of Cu2−xS NCs with a surface
layer of tetrathiomolybdate (MoS4

2−) by ligand exchange,38 the
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precise control over plasmon properties remains an important
issue.
Covellite (CuS) NCs make up another class of plasmonic

materials that have recently come under scrutiny. Here, the
metallic behavior of bulk covellite and the LSPR in NCs is not
due to the presence of Cu vacancies but arises from the peculiar
electronic structure of the material.9 On one hand, covellite
NCs therefore raise problems similar to those of the Cu2−xE
NCs. On the other hand, they exhibit a reactivity completely
different from that of Cu2−xE NCs when they are exposed to a
reducing environment in the presence of metal cations, as
reported in a previous paper of ours.40 Most notably, they can
incorporate various metal cations, without releasing Cu+ ions in
exchange, a feature that can be used for the recovery of heavy
metals.40

As a noble metal, Pd occurs in ores in nature and can be
associated with mineral covellite deposits, but no known
compounds with a ternary Cu−Pd−S composition have been
reported to date.41 In the work presented here, we show that,
by reaction of covellite NCs with Pd2+ ions in a reducing
environment in solution, Pd is slowly incorporated into the
particles, transforming their outer regions into an amorphous
CuPdxS shell that grows in thickness depending on various
parameters (reaction time, amount of Pd precursor, and
temperature), until all the NCs are amorphized. The
intermediate core−shell NCs preserve a covellite core, and
their overall NIR absorbance can be spectrally tuned depending
on the thickness of the amorphous shell. Most importantly,
their plasmonic response becomes relatively insensitive to the
external redox environment, and the resulting NCs are much
more stable than the initial covellite NCs, especially under
strongly oxidizing conditions, for example, when they are
exposed to agents such as I2. These observations are appealing
not only for noble metal recovery but also for the fabrication of
semiconductor-based core−shell heterostructure with tunable
and stable plasmon properties.

■ EXPERIMENTAL SECTION
Materials. Copper chloride (CuCl, anhydrous, 99.99%), palladium-

(II) acetylacetonate [Pd(ac)2, 99%], ascorbic acid (AA), oleylamine
(OM, >70%), and octadecene (ODE, 90%) were purchased from
Sigma-Aldrich. Elemental sulfur (99%) was from Strem Chemicals,
and ethanol (anhydrous, 99.9%), methanol (anhydrous, 99.9%), and
toluene (anhydrous, 99.8%) were from Carlo Erba reagents. All
chemicals were used as received without further purification.
Synthesis of Covellite Nanocrystals. Covellite CuS nanoplates

were synthesized according to a modified protocol reported previously
by us.42 Briefly, a sulfur solution was prepared first by degassing a
mixture of 0.160 g (5 mmol) of sulfur, 25 mL of ODE, and 25 mL of
OM in a 100 mL three-neck flask at 130 °C under vacuum for 30 min.
The as-formed clear yellow solution was cooled to room temperature
(RT) under a N2 atmosphere, followed by addition of 0.248 g (2.5
mmol) of CuCl and degassing at RT for an additional 60 min. The as-
obtained dark green solution was then heated to 200 °C with a ramp
of 8 °C/min, and the reaction mixture was kept at this temperature for
30 min. A resulting dark green solution was collected after the mixture
had been cooled to RT, cleaned twice with a methanol/acetone [1:1
(v:v)] mixture, and finally dispersed in toluene for further character-
ization and reaction.
Synthesis of CuS@CuPdxS Core−Shell Heterostructure. The

CuS@CuPdxS core−shell NCs were prepared by reacting covellite
CuS NCs with Pd2+ cations in the presence of AA. The reactions were
performed in a N2-filled glovebox. Typically, Pd

2+ (in toluene) and AA
(in methanol) solutions were prepared by dissolving Pd(ac)2 in
toluene at around 45 °C for 30 min and AA in methanol at RT,

respectively. The concentrations of Pd2+ and AA solutions were 0.02
and 0.1 M, respectively. Then, 0.05 mL of OM, 1.65 mL of AA, and
1.65 mL of Pd2+ solutions were added to a vial with 3.0 mL of the
covellite NC dispersion (0.033 mmol of Cu+ cations, in toluene) while
being magnetically stirred. Aliquots of the NC solution (1.0 mL) were
collected at different reaction times to monitor the evolution of
morphologies, optical spectra, compositions, and other features. The
aliquots, as well as the final sample collected after reaction for 24 h,
were precipitated by addition of 0.5 mL of methanol and
centrifugation at 3000 rpm for 20 min. The supernatant was then
carefully collected for elemental analysis (see below), and the
precipitates were dispersed in toluene for one additional cleaning
cycle. The final precipitate was redispersed in toluene (0.5 mL) for
subsequent characterization, including elemental analysis.

Oxidation/Reduction Experiments. To test the stability of the
as-synthesized covellite NCs and the CuS@CuPdxS core−shell
nanostructure upon oxidation, we monitored the evolution of the
optical spectra by exposing the samples to air or an I2 solution. The
oxidation experiments with I2 were performed in a N2-filled glovebox,
and the optical spectra were tracked with dose of I2. Typically, different
portions of an I2 solution (0.05 M, in toluene) were added to a cuvette
containing 3 mL of a colloidal NC solution. The cuvette was then
sealed, and the mixed solution was taken out of the glovebox to record
the optical spectra 5 min after the addition of I2. The stability of the
various samples upon reduction was also monitored in the glovebox,
following a similar procedure of the oxidation by I2 except that
diisobutylaluminum hydride (DIBAH) was now introduced. Different
volumes of a DIBAH solution (0.05 M, in toluene) were added to a
cuvette containing 3 mL of a NC solution. The mixed solution was
then taken out of the glovebox for optical characterization. In the
typical morphological and structural characterizations of the oxidized
and reduced NCs, 1 mL of I2 (0.05 M, in toluene) or a DIBAH
solution (0.05 M, in toluene) was added to a dispersion of CuS or
CuS@CuPdxS NCs while being stirred at RT. The I:S and DIBAH:S
molar ratios were both fixed to 3:1. The precipitate was collected after
addition of 2 mL of ethanol and centrifugation and was redispersed in
toluene. Drops of the resulting nanoparticle solution were deposited
on carbon-coated grids for transmission electron microscopy (TEM)
analysis or on a Si substrate for X-ray diffraction measurements.

Transmission Electron Microscopy (TEM). Low-resolution
TEM measurements were taken on a JEOL JEM-1011 microscope
operating at an acceleration voltage of 100 kV. The samples were
prepared by drop-casting NC solutions on carbon-coated 200 mesh
copper grids. High-resolution TEM (HRTEM) analysis was performed
with a JEOL JEM-2200FS microscope equipped with a field emission
gun working at 200 kV, a CEOS spherical aberration corrector in the
objective lens allowing for a spatial resolution of 0.9 Å, and an in-
column Ω energy filter. Image simulation was performed with xHREM
software (HREM Research, Inc.). The chemical composition of the
NCs was determined by energy dispersive X-ray spectroscopy (EDS)
performed in large-angle annular dark field scanning TEM (HAADF-
STEM) mode on a Bruker Quantax 400 system with a 60 mm XFlash
6T silicon drift detector, using the Cliff−Lorimer method. For
HRTEM and STEM-EDS analyses, the samples were prepared by
drop-casting NC solutions onto ultrathin carbon-coated 300 mesh
gold grids, which were then placed in a high-vacuum pumping station
to let the solvent evaporate completely and preserve the NCs from
oxidation.

X-ray Diffraction (XRD). XRD measurements were performed on
a Rigaku SmartLab X-ray diffractometer operating at 40 kV and 150
mA. The diffractometer was equipped with a Cu source and a Göbel
mirror to have a parallel beam, and it was used in 2θ/ω scan geometry
for the acquisition of the data. The specimens were prepared in a N2-
filled glovebox by drop-casting the concentrated NC solution onto a
zero-background silicon substrate followed by drying. PDXL software
of Rigaku was used for phase identification.

Elemental Analysis. Inductively coupled plasma optical emission
spectroscopy (ICP-OES) was performed on an iCAP 6000
spectrometer (ThermoScientific) for quantification of the elemental
composition of NC samples and of the supernatant solutions. The
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samples were decomposed in aqua regia [3:1 (v:v) HCl:HNO3]
overnight prior to ICP-OES measurements.
X-ray Photoelectron Spectroscopy (XPS). The samples were

prepared in a N2-filled glovebox by drop-casting a few microliters of
NC solutions onto a graphite substrate (HOPG, ZYB quality,
NTMDT) and then transferred to the XPS setup in an ad hoc
transfer vessel to prevent air exposure. Measurements were taken on a
Kratos Axis Ultra DLD spectrometer, using a monochromatic Al Kα
source (15 kV, 20 mA). Wide scans were acquired at an analyzer pass
energy of 160 eV. High-resolution narrow scans were performed at a
constant pass energy of 10 eV in 0.1 eV steps. Photoelectrons were
detected at a takeoff angle Φ of 0° with respect to the surface normal.
The pressure in the analysis chamber was maintained below 7 × 10−9

Torr for data acquisition. Data were converted to VAMAS format and
processed using CasaXPS version 2.3.16. The binding energy scale was
internally referenced to the C 1s peak (BE for C−C of 285 eV).
Optical Spectroscopy. Raman spectra were recorded on a Jobin

Yvon HR800 spectrometer. The NCs were deposited on silicon
substrates under N2. Data were acquired at a λ of 632.8 nm with a 50×
objective using a nominal power of 25 mW and an integration time of
30 s. UV−Vis−NIR extinction spectra of the NC solutions were
recorded on a Varian Cary 5000 UV−Vis−NIR spectrophotometer in
the range of 350−2000 nm.

■ RESULTS AND DISCUSSION

In an initial series of experiments, the CuS NCs were mixed
with Pd2+ ions alone (with no addition of AA). This produced a
damping and red-shift of their NIR surface plasmon
absorbance, most likely because of the surface passivation by
Pd species, but no significant incorporation of Pd in the NCs
was recorded, as the Pd:Cu molar ratio in the resulting sample,
after cleaning, was only around 0.05:1 (determined by ICP
analysis). Also, no noticeable change in the diffraction pattern
or in the morphology of the particles was observed (see Figure
S1). When instead the CuS NCs were mixed with both Pd2+

ions and AA, their NIR LSPRs experienced a much more
pronounced red-shift and damping (this aspect will be
elucidated in depth below). Such behavior bears analogy with
our previously reported reaction of covellite NCs with Cd2+ and
Hg2+ in the presence of AA.40 Here, while there was no
noticeable change in the overall morphology or size of the
particles (Figures S2a−g and S3), the differences in contrast
within many individual NCs, as seen by conventional TEM
analysis (for example, Figure 1b and Figure S2b−g), pointed to
a core−shell structure.
According to XRD analysis, there was a progressive loss of

crystallinity of the NCs, as the initial covellite pattern evolved
to one characterized by only broad features (ranging from 24°
to 40°) that could not be assigned to PdS or to Cu2−xS phases
(Figure 1d and Figure S2h). Instead, the broad XRD feature in
the range of 20−50° was also observed by Wang et al. in their
recently reported amorphous Cu−Pd−S nanostructure ob-
tained by reacting CuS NCs with Pd species at 150 °C (a
temperature much higher than RT used in our reactions).43 We
can therefore speculate that this feature arises from the quasi-
amorphous Cu−Pd sulfide regions. The change in the relative
intensities of the various peaks might indicate different
amorphization speeds along different directions. For example,
one can see from Figure 1d that, at 4 h of reaction, the relative
intensity of the diffraction peak at 31.8° [indexed to the (103)
planes] has decayed faster than that of the peak at 47.9°
[indexed to the (110) planes] (see the details in the Supporting
Information). On the other hand, we cannot rule out the
possibility that some XRD peaks are more intense than others
because of preferential orientation effects.

We investigated the evolution of Raman spectra and XPS
spectra in the Cu 2p, Pd 3d, and S 2p regions, for the most
representative samples, namely, the initial covellite NCs and
samples collected at various times after the start of the reaction
(see Figure 1e,f, Figure S4a−c, and Figure S5). As the
incorporation of Pd2+ in CuS in the presence of AA proceeded,
the main Raman mode at around 472 cm−1, which is ascribed to
the covalent S−S stretching vibration (A1g mode) of the two
tetrahedral CuS4 units in covellite CuS,44 broadened and red-
shifted (to around 450 cm−1), and its intensity decreased,
signifying the breaking of an increasing fraction of S−S bonds.
The S−S A1g mode faded almost completely after reaction for
24 h, indicating almost no S−S bonds in the final NCs. Here, as
in our previously reported reaction of covellite NCs with Cd2+

and Hg2+ ions, the broad feature at 220−400 cm−1 in the
Raman spectra was probably due to the overlapping vibrational
modes of Cu−S and Pd−S bonds and a contribution from a
Si−Si vibrational mode from the substrate (Figure 1e).40 If
these samples were annealed at 100 °C under a N2 atmosphere
for 1 h, their Raman spectra evidenced new peaks at 323, 346,
and 386 cm−1 (Figure S4d−f), which are due to Pd−S
vibrational modes.45,46

Progressive breaking of the S−S bonds of the initial covellite
lattice was also proven by high-resolution XPS analysis (Figure
1f and Figure S5). The evolution of characteristic peaks
observed in the S 2p region, which permits the discrimination

Figure 1. Representative TEM images of the (a) as-synthesized
covellite NCs and (b and c) CuS@CuPdxS core−shell nanostructure
collected at 4 and 24 h, respectively, by reacting covellite NCs with
Pd2+ cations at RT in the presence of AA. The scale bar is 20 nm. (d)
Evolution of the experimental XRD patterns, (e) Raman spectra, and
(f) high-resolution XPS spectra of the S 2p region from the as-
synthesized CuS NCs and from representative core−shell nanostruc-
tures collected at different reaction times.
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between sulfides and disulfides (S−S covalent bonds), indeed,
confirmed the gradual fading of the S−S signal as the shell grew
progressively thicker. Therefore, as the vast majority of S−S
bonds in the starting CuS NCs were broken in the reacted
NCs, we expect a significant reorganization of the initial crystal
lattices. This reorganization of the lattice framework led to the
release of a fraction of Cu and S species from the initial CuS
NCs to the solution phase, as found by ICP elemental analysis
of the supernatant (after reaction and centrifugation) and EDS
analysis on the resulting core−shell NCs. However, this loss
was never greater than ∼10% of the total amount of Cu and S
of the starting NCs.
The core−shell structure of the intermediate samples

collected within 24 h (i.e., before the incorporation of Pd2+

ions was extended to the whole NCs) was evident from
HRTEM analysis (Figure 2). Indeed, we noticed that an

appropriate choice of the defocus value makes the S−S layers of
covellite appear bright in the image from the side view (Figure
2a,b), which has been used to identify a reduction in size or
damage of the covellite core upon reaction with Pd2+. The
analysis revealed an amorphous structure of the shell and
crystalline core still maintaining the covellite structure, i.e., the
inner region of the NCs that most likely had not yet been
reached by the Pd species. The core undergoes a reduction in
size as seen either in top-view images from nanodisks lying flat

on the carbon support film (Figure 2c−e) or in side-view
images from disks lying edge-on with respect to the substrate
(Figure 2f−h). Additional HRTEM images in false colors are
displayed in Figure S6.
To understand the parameters that influence the reaction, we

also tailored the precursor Pd:Cu molar ratios and the reaction
temperature to monitor the evolution of the morphologies and
the NIR plasmon absorbance (Figures S7 and S8). An increase
in the amount of Pd precursor yielded a thicker shell and a
concomitant red-shift of the NIR plasmon absorbance. Also,
increasing the reaction temperature to 50 or 80 °C facilitated
the Pd incorporation and led to complete fading of the NIR
absorbance after reaction for 4 h (Figure S8f). Unlike the recent
reported reaction of covellite NCs with Pt2+ ions at 130 °C,
which generated hybrid Cu1.1S−Pt NCs,47 and the reaction
with Pd2+ at 150 °C, which produced Janus-like hetero-
structure,43 in our case the reaction of CuS with Pd2+, even at
temperatures of ≤80 °C, led instead to the formation of
amorphous-like ternary CuPdxS nanoplates (with an overall
shape and size almost the same as those of the initial CuS NCs)
as well as to the side nucleation of smaller metallic Pd NCs that
also contained a minor fraction of S and Cu (Figure S8b−e).
According to our density functional theory calculations (see

the Supporting Information for the details), the insertion of one
Pd atom per unit cell between the S−S layer is much more
energetically favorable than other options, for example, the
replacement of Cu with Pd (see Figure S9 and Table S2 for a
complete list of all the possible modes of insertion of Pd atoms
that were tested). Figure S10 shows the relaxed unit cells of
pure CuS and Pd-intercalated NCs (CuSPd0.167@1). The
localization of Pd between the S−S layers induces significant
cell expansion (see Table S3 for details). Concomitantly, the
S−S bonds break, and both Cu−S−Cu and S−Cu−S angles
change. We further modeled a 2 × 1 supercell, into which four
Pd atoms were inserted (i.e., with a final composition of
Cu12S12Pd4) at three different locations in the supercell (Figure
S11). The comparison of the formation energies at the different
sites further confirmed that insertion of Pd between S−S layers
is more energetically favorable than elsewhere (see also Table
S6). Assuming that any site on the surface of the parent CuS
NCs is a possible entry point for Pd2+ ions, the formation of
core−shell architectures indicates that such ions cannot diffuse
to regions that are much farther from their entry point, and that
the diffusion proceeds gradually from the surface toward the
center of the NCs as the reaction progresses. The limited
mobility of Pd2+ ions is probably a consequence of the fact that
Pd2+ has a completely different coordination geometry with the
sulfur anions compared to that with the Cu+ ions, and
additionally, it tends to form strong bonds with the sulfur
anions, to an extent that further diffusion of Pd2+ ions through
the regions affected by this change is limited. This could explain
the formation of CuS@CuPdxS core−shell heterostructure with
a shell thickness that depends on the reaction time. Overall, the
reaction of CuS NCs with Pd2+ ions is different from our
previously reported cases of reaction with either Cu+, Cd2+, or
Hg2+ ions,40,42 as in none of those cases were core−shell
structures or progressive amorphization of the NC lattice seen;
instead, crystalline domains were formed. This can be explained
by hypothesizing a diffusion of Cu+, Cd2+, and Hg2+ ions in the
covellite structure faster than that of Pd2+.
We have characterized the tunable optical spectra of the

various CuS@CuPdxS core−shell NC samples [prepared by
tailoring either the reaction time or the precursor Pd:Cu molar

Figure 2. (a) Experimental image (defocus −34 nm, spherical
aberration −26 nm) and simulated image from a [210] side view of
a covellite NC. At this defocus value, the intensity is transferred to the
S−S planes (yellow dotted lines), as seen in the intensity profile (b).
This feature was used to determine the covellite core size reduction
during exposure to Pd2+ ions. (c−e) Top-view and (f−h) side-view
HRTEM images of the CuS@CuPdxS core−shell heterostructures
with different shell thicknesses, at 1 h (c and f), 4 h (d and g), and 24 h
(e and h) of reaction of CuS with Pd2+ ions at RT, in the presence of
AA. The yellow dashed lines mark approximately the covellite core.
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ratios (see Figures S2i and S7f)]. The formation of a very thin
amorphous layer already led to a significant red-shift and
damping of the NIR plasmon absorbance, which was more
marked in NC samples with thicker shells (Figure 3a). Notably,

the shell formation resulted in a significant broadening of the
NIR resonance. While in previous works the surface of covellite
NCs was modified by ligand exchange to tune their LSPRs,39

here the optical response was well modulated by a trans-
formation of the outer layers of the NCs into an amorphous
shell. To further elaborate on these observations, we performed
simulations (Figure 3b) to describe the optical properties of the
typical core−shell NCs. We implemented a core−shell
approach within the framework of the Mie−Gans theory
describing oblate particles (see the Supporting Information for
details).48 The core dielectric function of CuS was obtained by
fitting the extinction spectrum of the parent CuS nanodisk
sample (d = 19.5 nm, and h = 5.5 nm) with the Drude model
and by extracting the Drude parameters (see Figure S13). The
estimated high-frequency dielectric constant (ε∞ = 8.4), the
plasmon frequency (ωp = 5.3 eV), and the damping constant (γ
= 0.3 eV) are in close agreement with previous works on
covellite CuS.9,13 The spectrum has a contribution by two
overlapping resonances, the longitudinal LSPR, found around
1060 nm and the less intense transverse LSPR appearing as a
slight shoulder to the blue of this resonance, similar to the
results found by Xie et al.9 We simulated our structure with
varying shell thicknesses by choosing a constant refractive index
of the amorphous shell. This is a reasonable assumption, as we
do not expect a large variation of the refractive index in the
investigated wavelength range in the NIR by an amorphous
compound. The core and shell dimensions used for the optical
simulation were extracted from HRTEM measurements and are
listed in Table S8. As it is well-known, the addition of a shell
layer with a different refractive index to the core leads to a shift
of the LSPR, which has been widely evidenced in nanosized
core−shell heterostructures.49−53 Indeed, we implemented
various different representative values for the refractive index
of the shell (between 1.6 and 2.2), illustrating that a further red-
shift is obtained by increasing the refractive index (Figure S14).
From these calculations, we can conclude that the exact value
plays a minor role versus the effect of the layer thickness.54

Notably, by just taking into account the formation of a shell
layer, we were not able to capture the broadening of the LSPR
as observed by us experimentally. Indeed, to get a better
agreement with the experiment, we also had to vary the Drude
damping parameter. An increase in carrier damping generally
leads to LSPR broadening and can have several reasons. An

important one is the additional surface scattering due to the
minimization of the nanostructured dimensions. In our case in
particular, the height of the oblate structure is reaching values at
which surface scattering is playing a more important role55,56

and was observed previously in CuS nanodisks.9 Simulations in
which we took into account the anisotropic variation of the
damping term along the height of the oblate nanostructure
showed an only minor influence by this parameter, as it is
mostly affecting the transverse mode, which is weaker and
mostly overlapped by the much stronger longitudinal
resonance. This is valid for both cases, with and without the
formation of a shell (see Figure S15). Indeed, the only
reasonable way to reproduce the optical spectra of our NCs was
by varying the damping term in all directions of the oblate
nanostructure. The results are given in Figure 3b and show
reasonable overlap between experiment and simulation. The
discrepancy observed might be due to a heterogeneous size
distribution and a refractive index (which in our case has been
fixed to 1.7) slightly different from that chosen by us. The
increase in the damping term in all three directions excludes the
effect of additional surface scattering. We therefore believe that
this additional scattering is occurring in the core of the CuS
nanostructure. This might be due to the incorporation of extra
Pd within the CuS core, acting as additional scattering centers
or adding to carrier localization.10

Interestingly, the addition of the amorphous layer not only
tuned but also stabilized the NIR plasmon absorbance of the
resulting core−shell nanostructure, by making it less sensitive
and thus protecting it from the external environment,
compared to the starting covellite NCs. This was proven by
exposing these NCs to typical redox environments (see Figure
4, Figure S16, and Figure S17). For instance, even after
exposure to air for 31 days, little change in the NIR plasmon
absorbance was observed on the core−shell nanostructures
with an amorphous shell thicker than 2.8 nm [i.e., with a core
size of 2.9 nm × 13.9 nm (see Figure 4a, Figure S16b,c, and
Tables S8 and S9 for details)]. To further investigate the

Figure 3. (a) Experimental and (b) simulated optical spectra for four
representative core−shell structures with increasing shell thickness
from blue (pure covellite) to orange to yellow to purple. The core
sizes are given in the legend for the height and the diameter (h × d).

Figure 4. (a) Evolution of optical spectra of the CuS@CuPdxS core−
shell nanostructure over time upon oxidation by exposure to air. (b
and c) Evolution of the optical spectra of the CuS@CuPdxS core−
shell nanostructure over the amounts of I2 added. The shell of the
sample in panel c is thicker than that in panel b. (d) Evolution of the
optical spectra of CuS@CuPdxS core−shell nanostructure over the
amounts of DIBAH added.
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stability of NIR plasmonic properties, we performed a test of
oxidation reactions using I2 and reduction reactions using
DIBAH (both reagents are commonly used to tune the NIR
plasmon absorbance of Cu2−xE NCs7). Only minor shifts were
observed on the NIR plasmon properties of the core−shell
NCs in these tests (Figure 4b−d), with samples having thicker
shells undergoing less pronounced shifts. The absorption peak
around 495 nm in panels b and c of Figure 4 is ascribed to the
absorbance of I2 dissolved in toluene (see Figure S17d). It is
also noteworthy that the core−shell NCs could preserve their
overall morphologies, as well (Figures S18 and S19).
For comparison, we also explored the optical stability of CuS

NCs upon redox reactions by exposure of the as-synthesized
CuS NCs to I2 and DIBAH (see the details in the SI). Although
no noticeable change of phase and optical spectra was observed
upon mixing of CuS NCs by DIBAH (Figures S20a and S21 of
the SI), the broadening and red shift of the NIR plasmonic
resonance as well as the slight etching of the CuS NCs in the
presence of I2 could not be ignored (see Figures S20b and S22
of the SI). These observations indicate that the as-synthesized
covellite NCs were sensitive to the oxidation environment in
the presence of I2, while both the NIR plasmon resonances and
the morphological properties could be retained when an
amorphous CuPdxS shell was present.

■ CONCLUSION

We have demonstrated that the synthesis of core−shell
heterostructures by reaction of the as-synthesized covellite
CuS nanoplates with Pd2+ cations is a valid tool for tuning and
stabilizing the NIR LSPRs of the initial NCs. Pd incorporation,
in the presence of an electron donor (i.e., AA), most likely
starts by breaking the S−S layers and overall amorphizes the
covellite structure. Importantly, the resulting core−shell NCs
with a fixed shell thickness preserve their morphology and the
NIR plasmon properties by exposure to I2. Our approach
demonstrates the fabrication of a prototype core−shell
nanostructure with a stabilized NIR LSPR.
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