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Abstract

Assessment of protein assembly prediction in
CASP12 & Conformational dynamics of integrin

α-I domains
Aleix Lafita

Protein structures are key to understand the details of biological pro-
cesses and disease mechanisms. Computational modeling of protein
structures is present in different areas of biological studies: structure
determination from experimental data, structure prediction from the
amino acid sequence, and the study of protein dynamics. This the-
sis covers two different applications of protein structure modeling: the
prediction of protein assemblies and the study of the conformational
dynamics of a globular domain.
The first part of this thesis covers the assessment of protein assembly
predictions in the CASP12 experiment. Protein assemblies have been
included for the first time as a prediction category in the 12th edition of
the CASP experiment. As part of the assessment, quaternary structure
models have to be scored based on their similarity to their reference
structures (targets) and the predictor groups have to be ranked based
on their performance. First, we describe the procedure for assigning
the biological assembly of target experimental structures, including the
contributions to the EPPIC software. Next, a novel scalable quaternary
structure alignment algorithm is developed and used to compare pre-
diction models with their target assemblies. Finally, similarity scores
are defined to quantify the quality of the assembly models and gain
insights into the prediction methods. The algorithms and scores have
been integrated into the CASP evaluation pipeline and all the results
and rankings, presented and discussed at the final CASP meeting, are
available through the Prediction Center web site.
The second part of this thesis is about the modulation of integrin sig-
naling though allosteric inhibition. Integrins are heterodimeric trans-
membrane protein receptors involved in bidirectional signaling across
the cell membrane. The C-terminal helix of the I-domain of the α sub-
unit is involved in the integrin signaling mechanism. An allosteric in-
hibition pocket of the I-domain has been discovered for the subunit
type αL, which involves a conformational change in the C-terminal he-
lix. The pocket has not yet been described for any other type of inte-
grin, although it would also be of pharmacological interest. To investi-
gate the universality of the allosteric inhibition mechanism among the
I-domains of integrin α subunits, molecular dynamics simulations are
used to study their metastable states. Although the results are incon-
clusive about whether the mechanism of allosteric inhibition is present
in other types of α-I domains, we propose further research lines to con-
tinue the investigation.
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Chapter 1

Protein structure

Proteins are composed by a linear sequence of amino acids linked together
with peptide bonds. Therefore, proteins are a specific type of polymers,
called polypeptides, where the residues are amino acids.

In a process known as protein folding, the linear sequence of amino acids
adopts a three-dimensional shape at physiological conditions via residue-
residue interactions, the protein structure. In their folded state, proteins
participate in biological processes. Thus, knowledge about their structure is
often necessary to understand their function at the molecular level.

This chapter is a brief introduction into the most important concepts of pro-
tein structures: the levels of structural organization in proteins; the evolu-
tion, classification and comparison of protein structures; and experimental
structure determination techniques.

1.1 Structural levels
Primary structure

The primary structure of a protein is a one-dimensional feature, defined by
the linear sequence of amino acids in the polypeptide chain, from N- to C-
terminal. It represents the composition of the protein and the order in which
the amino acids are bonded together.

Secondary structure

The secondary structure of proteins is also a one-dimensional feature, de-
fined by the sequence of recurrent sub-structures in the polypeptide chain.
Each amino acid in the protein sequence can be in one state from a discrete
set of possible secondary structure states. The two main types of secondary
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1. Protein structure

structure states, α-helix and β-sheet, were suggested years before any pro-
tein structure could be experimentally determined (Pauling and Corey 1951).
Shortly after the publication of the first protein structures, methods to as-
sign secondary structure were developed. One of the most popular methods
is DSSP (Kabsch and Sander 1983). The method uses the patterns of hydro-
gen bonding between backbone atoms to determine the secondary structure
elements of a protein.

Tertiary structure
The tertiary structure is the three-dimensional coordinates of all the atoms
in a protein chain. The tertiary structure can also be represented by the rel-
ative position and orientation of the secondary structure elements of a pro-
tein chain. Local segments of tertiary structure, known as structural motifs,
are also recurrent in a large number of protein structures. Some structural
motifs are the greek key, the helix-turn-helix or the α-β-α.
In addition, parts of protein chains, known as structural domains, are be-
lieved to be able to fold and function independently from the rest of the
protein chain. Integrins, proteins with a complex domain architecture (do-
main composition and interactions) key in their biological function, will be
described in section 6.1.

Quaternary structure
The quaternary structure of a protein, also called biological unit or biologi-
cal assembly, is the complete functional structural unit in the cell. It is de-
fined by the number, type and arrangement of protein subunits (polypeptide
chains) that participate together in a biological function.
Three identical DNA clamp chains bind together to form a ring around the
double stranded DNA helix. It is, therefore, required for DNA clamps to be
oligomers to carry out their biological function, since it would be mechani-
cally much more challenging for a single-chain ring to circle the DNA helix.
Since it is one of the main topics of interest of this thesis, quaternary struc-
ture will be described in further detail in section 2.1.

1.2 Structure evolution
Proteins can evolve through the accumulation of single amino acid substitu-
tions, also known as point mutations, caused by underlying nucleotide sub-
stitutions in the DNA. Proteins can also evolve by insertions or deletions in
their amino acid sequence, which can range from single amino acid residues
to full protein domains. One example of is the insertion of the I-domain in
some types of integrin α subunits, described in section 6.1.

2



1.2. Structure evolution

(a) Primary (bottom) and secondary (top) structure are one dimensional features of proteins.

(b) Tertiary structure of a single domain (left) and that of multiple repeats
of the same domain in a protein chain (right).

(c) Quaternary structure formed by the interaction of three protein chains
(left) and its binding to the DNA double helix (right).

Figure 1.1: Levels of protein structure of native human PCNA (1VYM), a DNA clamp.
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1. Protein structure

From the point of view of protein structure, point mutations can either be
neutral, if they do not alter the structure of the protein, or disruptive, if
they change any of the structural properties of the protein. The structure
of proteins is more conserved than their amino acid sequence. Therefore,
the structural similarity of two proteins can be inferred by their sequence
similarity. Some bioinformatics resources, like Pfam (Finn et al. 2016b) or
Interpro (Finn et al. 2016a), allow the prediction and classification of protein
structures using their amino acid sequences.
Relevant for the first part of the thesis is that quaternary structure is less
conserved than secondary or tertiary structure, with known examples of di-
vergence at high sequence similarities. The explanation is the fact that the
free energy of protein binding is not uniform across the surface, but dis-
tributed among a few residue hotspots (Clackson and Wells 1995).

1.3 Structure classification
The most popular classification of protein structures is done at the domain
level. Therefore, the first step to classify a protein chain is to split it into its
component domains. These are then classified in different levels of similar-
ity, following a classification tree. As an example, the coarsest level of the
tree could be the types of secondary structure content in the domain, sub-
sequent levels could reflect the content of some small structural motifs, and
the finest level of the tree could use the evolutionary relations between the
domains. Popular protein domain classification resources are SCOP (Murzin
et al. 1995), CATH (Sillitoe et al. 2015) and ECOD (Cheng et al. 2014).

1.4 Structure comparison
The superposition of two structures is their transformation in three-dimensions
such that an objective function of the distance between their equivalent po-
sitions, e.g. the RMSD, is minimized. We can distinguish two types of protein
structure comparison metrics: superposition dependent and superposition
independent.
Superposition independent metrics use features extracted independently
from each of the structures, like their inter-residue contact map. Some met-
rics of this type will be introduced in section 5.2 in the context of the CASP12
assessment.
Superposition dependent methods require first, as the name implies, a su-
perposition of the structures prior to measuring their similarity by, for ex-
ample, the distance between the corresponding residues. The most popular
examples types of metrics are the RMSD, described in section 6.2, or the TM-
score (Zhang and Skolnick 2004).
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1.5. Structure determination

Until now we have assumed the knowledge of the corresponding residues of
the structures being compared. However, when comparing two protein struc-
tures, the corresponding residue positions are often not known. Structural
alignment methods compute the equivalent positions of two proteins using
their three-dimensional shape and conformation (Bourne and Shindyalov
2003). In chapter 4, a novel structural alignment algorithm at the quaternary
structure level will be introduced to compute efficiently the corresponding
chain and residue positions of two protein assemblies.

1.5 Structure determination
Structure determination aims at obtaining an accurate high resolutionmodel
of a protein structure using experimental data. The three main techniques
used are: X-ray crystallography, nuclear magnetic resonance (NMR) and cryo-
electron microscopy (Cryo-EM).

X-Ray crystallography

X-ray crystallography requires the formation of protein crystals, the most
challenging step. Atoms in the crystals diffract a beam of incident X-rays into
many specific directions, known as the diffraction pattern, which allows the
reconstruction of their three-dimensional electron density. The positions of
the protein atoms can be then fitted to the electron density map to produce
an atomic model of the protein structure (Smyth and Martin 2000).

NMR

NMR is a spectroscopic technique to obtain information about the structure
and dynamics of proteins in solution. The result of the experiment is a set of
NOEmeasurements, which can be converted into intermolecular distances of
protein residues (Wüthrich 2003). This information reduces significantly the
number of possible protein conformations, which are explored using sam-
pling techniques, like molecular dynamics simulations, to produce a set of
plausible models fulfilling the experimental spatial constraints.

Cryo-EM

Single particle cryo-EM produces a three-dimensional reconstruction of the
protein by combining several transmission electronmicroscopy (TEM) images
of similar particles at cryogenic conditions. If the reconstruction reaches
atomic resolutions, the positions of the protein atoms can be fitted in a
similar manner to X-ray crystallography to generate an atomic model of the
protein structure (Jonic and Vénien-Bryan 2009).

5



1. Protein structure

Structure database
The Protein Data Bank (PDB) is a database for the storage and annotation of
experimentally determined protein structures (Berman et al. 2000). At the
time of this thesis, the percentage of structures in the PDB solved by X-ray
crystallography was 89%, by NMR 9% and by cryo-EM 1%.

Structure Prediction
The number of protein structures that can be determined experimentally is
limited, due to the cost and time scale of the techniques. Structure predic-
tion methods aim at broadening the protein structure knowledge using prin-
ciples extracted from the already determined protein structures. An overview
of the field and some of these methods will be described in section 2.2, as
an introduction to the first part of this thesis.

Protein dynamics
Proteins are not static rigid molecules. Oftentimes, the three-dimensional
structure alone is not sufficient to understand their mechanism of action.
An example is the signaling mechanism of integrins described in section 6.1,
the subject of study of the second part of this thesis. Some experimental
techniques, like NMR, can characterize the dynamics of protein structures.
Another approach is to study protein motions in silico using molecular dy-
namics simulations, a topic that will be covered in section 6.2.
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Assessment of protein assembly
prediction in CASP12
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Chapter 2

Introduction

This chapter is an introduction into protein quaternary structure and protein
structure prediction, with emphasis on the CASP experiment

2.1 Protein quaternary structure

Protein chains associate in macromolecular complexes to carry out their
functions in the cell. Hence, a detailed knowledge of the molecular partners
and mode of association is key to understand the mechanism of activity of
a protein.

The stoichiometry is a representation of the composition of a protein assem-
bly, specifying the type and number of subunits participating in the complex.
The symmetry of a protein assembly describes the arrangement of the sub-
units in the three dimensional space (Levy and Teichmann 2013).

2.1.1 Classification

Quaternary structures can be classified based on different properties: sta-
bility, affinity and composition (Keskin, Tuncbag, and Gursoy 2016). Stabil-
ity wise, protein assemblies can be obligate, if the individual subunits are
unstable outside the assembly, or non-obligate, if they can exist indepen-
dently. Regarding affinity, quaternary structures can be permanent, if they
never dissociate in vivo conditions, or transient, if they associate and dis-
sociate temporarily in the cell. Finally, from the composition point of view,
assemblies can be homomeric, if they are formed by a single type of subunit
(entity), or heteromeric, if they are composed of multiple entities.

9



2. Introduction

2.1.2 Biological relevance
Quaternary structure is relevant in a wide variety of protein functions. We
have seen an example in section 1.1 with the importance of the DNA clamp as-
sembly in binding to the DNA double helix. Other examples of the quaternary
structure relevance in protein function are cooperativity (Monod, Wyman,
and Changeux 1965), like in the oxygen binding of hemoglobin, localization
of multiple functions in the cell, like in the Acetyl-CoA carboxylase, or the
encapsulation of material, like in viral capsids. In section 5.4, two CASP tar-
gets with a quaternary structure relevant for their function will be presented,
together with an assessment of the biological relevance of their predicted
models.

2.2 Protein structure prediction
2.2.1 Structure prediction problem
Protein structure prediction aims at inferring the three-dimensional struc-
ture of a protein, primarily from its amino acid sequence, but also using
other information and resources.

Anfinsen's dogma
The Anfinsen's dogma, also known as the thermodynamic hypothesis of pro-
tein folding, postulates that a protein native structure is solely determined
by its amino acid sequence (Anfinsen 1972). The implication is that, at the
physiological conditions of the cell, the native protein structure must be a
unique, stable and kinetically accessible minimum of the free energy land-
scape. Evolution might play a role in selecting for proteins whose structures
obey this rule, the major exception being intrinsically disordered proteins.

Levinthal's paradox
If the thermodynamic hypothesis is valid, no other information apart from
the amino acid sequence is needed to predict the structure of a protein.
However, there is still a challenge to be addressed, known as Levinthal's
paradox.
In a thought experiment, Cyrus Levinthal noted that, due to the very large
number of degrees of freedom in a polypeptide chain, proteins have an as-
tronomical number of possible conformations (Levinthal 1969). However,
proteins manage to fold in the millisecond or microsecond time scale, so
they do not have time to exhaustively explore the entirety of their conforma-
tional space, hence the paradox. The conclusion is that proteins must follow
a folding pathway, that is, sample only a small fraction of all the possible
conformations in a series of steps from the unfolded to the folded state.

10



2.2. Protein structure prediction

The implication for protein structure prediction is that, even if the energy for
any particular protein conformation can be accurately estimated, it is impos-
sible to sample all possible protein conformations. Efficient conformational
sampling methods or simulations of the folding pathway have to be used to
circumvent this problem.

2.2.2 Structure prediction approaches
Based on the available information for a particular protein, the prediction of
its structure can be divided into two categories: homology modeling or de
novo modeling.

Homology modeling, also called comparative modeling or template-based
modeling, is a technique to extract structural information from homologous
structures (templates) in order to predict the three-dimensional structure of
a protein (target) from its amino acid sequence (Marti-Renom et al. 2000).
Key steps are the identification of remote templates through sophisticated
sequence alignment methods, the accurate alignment of the target to the
template and the modeling of mismatches and missing segments (Biasini
et al. 2014).

For about two thirds of protein sequences, homology modeling is not pos-
sible. The prediction of the three-dimensional structure for these proteins
has to be done without structural information. There are three main ap-
proaches to de novo protein structure prediction: ab initio folding, fragment
based methods and co-evolution methods. Ab initio protein folding uses
thermodynamic principles (force fields) to score and sample protein confor-
mations. Fragment based methods use statistical potentials derived from
the frequencies of protein structural features in the databases (Simons et
al. 1997). Co-evolution methods use multiple sequence alignments of the
target and its sequence homologs to infer the spatial proximity of residues
in the three-dimensional structure (Marks et al. 2011).

2.2.3 Protein assembly prediction
Themethodsmentioned in the previous section are focused in the prediction
of protein tertiary structure, particularly small protein domains. However, as
it was described in section 1.1, the functional unit of proteins involves mul-
tiple protein domains and chains in close interaction. Methods that predict
protein assemblies bring together in the three-dimensional space the struc-
tures of component domains and chains of a protein in order to recreate the
full functional unit.

The protein assembly prediction problem is related to the protein-protein
docking problem. In protein-protein docking, two chains, called ligand and

11



2. Introduction

receptor, are known to interact with an unknown interface. The main differ-
ence is that docking is a pairwise problem, where a single interface between
two chains has to be predicted, while protein assembly prediction involves
an arbitrary number of protein chains with an unknown number of interfaces
between them.

2.3 The CASP experiment
2.3.1 History
CASP is a world-wide community-based experiment to independently assess
the state of the art of protein structure prediction techniques and drive their
further development. The experiment is held every two years since the first
edition in 1994 (Moult et al. 1995).
CASP has historically focused on the prediction of tertiary structure. In re-
cent years, however, the awareness in the community of the importance of
quaternary structure in the interpretation of the models has grown signif-
icantly. The effectiveness of predicting protein assemblies from the amino
acid sequence was first explored in CASP9 (Mariani et al. 2011), as part of the
template based assessment category. After a second attempt in CASP11 in
collaboration with CAPRI (Lensink et al. 2016), the CASP organization decided
to include protein quaternary structure prediction as a new assessment cat-
egory for CASP12, with Dr. Guido Capitani as the lead assessor.

2.3.2 Organization
The CASP experiment is organized in two phases: prediction and assessment
(figure 2.1). The prediction phase of the experiment runs from beginning of
May until the end of August. Target protein sequences are released through
the Prediction Center web site every week, around a total of a 100 for edi-
tion. Server groups have a short time to submit the models, around 72 hours
per target, while human groups have a longer time period to submit their
predictions, around 3 weeks. The assessment phase of the experiment runs
from the end of the prediction phase until the final meeting of the experi-
ment in December. During that time, assessor teams come up with metrics to
evaluate the quality of the models and rank the groups by their overall per-
formance. Every edition of the experiment concludes with a final meeting,
where predictor groups and assessor teams present and discuss the results
together.
There are two types of predictor groups participating in CASP: server and
human. Server groups are automatic prediction pipelines, without human
intervention. Human groups are provided the server results, and may use
human experience and external resources to guide the modeling process.

12



2.3. The CASP experiment

Protein  
sequence 

Experimental 
structure 

Prediction 
method 

CASP 

Structure  
model 

Experimentalist 

? 

Assessment Prediction 

Figure 2.1: Organization of the CASP experiment. The sequences of target proteins are re-
leased to predictor groups previous to the release of their experimental structures in the
prediction phase. The prediction models are then compared to the experimental structures
in each of the categories of the assessment phase.

Usually, each group participating in CASP uses a single prediction method
or pipeline, although there are groups using a combination of the results
of other severs. Predictor groups are allowed to submit up to 5 models for
each target protein, for which the amino acid sequence and some additional
information, like the oligomeric state, are released by the CASP organization.
The assessment part of CASP is done independently by an assessor team for
each prediction category. The assessor teams are usually research groups
experts in the specific topic. They can also be predictor groups who per-
formed well in previous CASP editions. The assessor teams are responsible
for evaluating the quality of the prediction models and ranking the predic-
tor groups by their overall performance within the category. In order to keep
the assessment independent from the prediction and encourage new ideas,
assessor teams are different every edition.

2.3.3 The CASP12 edition
The CASP12 experiment took place in the year 2016. The prediction phase
started on the 2nd of May and ended on the 8th of August. The assess-
ment phase, with a first checkpoint on the 11th of September with a meeting
for assessors and organizers in Basel (Switzerland), finished at the CASP12
meeting from the 10th to the 13th of December in Gaeta (Italy).
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2. Introduction

The 12th edition of CASP was divided into the following 8 prediction cate-
gories, with their associated assessment teams:

1. Contacts: Alexandre Bonvin (University of Utrecht, Netherlands)
2. High accuracy modeling: CASP organizers
3. Topology: Matteo Dal Peraro (EPFL, Lausanne, Switzerland)
4. Assembly (quaternary structure and complexes): Guido Capitani (Paul

Scherrer Institute, Switzerland)
5. Data assisted prediction: Matteo Dal Peraro (EPFL, Lausanne, Switzer-

land)
6. Refinement: Francesco Luigi Gervasio (University College London, UK)
7. Biological relevance: Russ B Altman (Stanford University, US), Sean

Mooney (University of Washington, US), Francesco Luigi Gervasio (Uni-
versity College London, UK) and Guido Capitani (Paul Scherrer Institute,
Switzerland)

8. Accuracy estimation: CASP organizers

A total of 189 groups participated in CASP12, submitting a total of 54,970 mod-
els for the 82 released targets. All the information about the CASP12 experi-
ment can be found at the Prediction Centerweb site: http://predictioncenter.
org/casp12. The publication of a CASP12 special issue with articles for the
results in all prediction categories is expected to be released in 2017.

14

http://predictioncenter.org/casp12
http://predictioncenter.org/casp12


Chapter 3

Assignment of quaternary structure
from protein crystals

This chapter introduces the quaternary structure assignment problem, which
was relevant for the generation of the target assemblies (references) from
their experimental crystal structures during the CASP assessment. An evo-
lutionary approach to the problem is presented and used in CASP12.

3.1 The assignment problem
Quaternary structure assignment consists in defining the assembly compo-
sition and mode of association of protein chains under the physiological
conditions in the cell. As described in section 2.1, quaternary structures can
be transient. Therefore, the assignment from crystal structures has the aim
to identify the biological assembly represented in the crystal lattice.
As mentioned in section 1.5, the majority of protein structures are deter-
mined by X-ray crystallography. Crystallographic techniques solve for a lat-
tice of protein subunits, formed by the interaction of multiple biological
units, i.e. forming crystal contacts. Recovering the biological assembly from
the lattice can be a non-trivial task. Some of the challenges faced in qua-
ternary structure assignment from crystal structures will be presented in
section 3.3.

Assembly composition
The composition of a protein assembly can be obtained by experimental
techniques. Popular techniques are size exclusion chromatography (SEC)
(Fekete et al. 2014) and analytical ultracentrifugation (AUC) (Schuck 2013). A
comprehensive list of the experimental techniques available is provided in
the review by Dr. Capitani (Capitani et al. 2015).
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3. Assignment of quaternary structure from protein crystals

Mode of association
The mode of association of a protein assembly is defined by the protein-
protein interfaces between the subunits of the complex, known as engaged
interfaces. To describe the exact mode of association of a quaternary struc-
ture, the tertiary structure of each of the subunits in the assembly has to
be known at a reasonable resolution. In addition, a careful analysis of the
protein-protein interfaces in the crystal lattice is needed to distinguish be-
tween engaged interfaces and crystal contacts (Capitani et al. 2015).
Some experimental techniques, like SAXS or cross-linking, allow the study of
protein association. Recently, a number of computational techniques, like
EPPIC (Duarte et al. 2012) or PISA (Krissinel and Henrick 2007), have been
developed to help in studying the problem. A detailed description of the
most recent developments in the EPPIC software will be given in section 3.2.

3.2 Probabilistic biological assembly assignment
3.2.1 Interface classification problem
In crystallography, distinguishing between interfaces present in physiologi-
cal conditions and crystal packing ones is known as the interface classifica-
tion problem (Capitani et al. 2015). One approach to the problem is to use
evolutionary information.

EPPIC
EPPIC is an evolutionary protein interface classifier that uses three types of
scores: geometry, core-rim and core-surface (Duarte et al. 2012). The geome-
try score relies on the calculation of solvent accessible surfaces to estimate
the number of fully buried residues upon interface formation. The prin-
ciple is that stronger interfaces have a higher number of buried residues.
The two evolutionary scores, core-rim and core-surface, rely on the prin-
ciple that residues at the biological interfaces have a higher evolutionary
pressure than the rest of the residues at the protein surface. Both scores
compare, using multiple sequence alignments of close homologs, the evo-
lutionary conservation of the fully buried residues in the interface against
the conservation of other residues at the protein surface or at the interface
rim (partially buried residues). In addition to the three scores, EPPIC also
reports the interface area.
In previous versions of EPPIC, each of the scores produced a binary inter-
face call, either biologically relevant or crystal contact, using a hard decision
threshold optimized using benchmark datasets of interfaces. The final clas-
sification decision wasmade via amajority voting scheme of the three scores
described. The major limitation of this classification scheme is that reliable
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3.2. Probabilistic biological assembly assignment

assignments cannot be distinguished from the unreliable ones, either due
to missing information or because of scores near the decision boundary. We
develop a classification confidence in this section, which will be part of the
upcoming new version of the method.
EPPIC is available both as a web application (http://eppic-web.org) and a
command line tool (https://github.com/eppic-team/eppic). The official
release of EPPIC 3.0 is scheduled by mid 2017.

Benchmark datasets
Over the past years, datasets of protein-protein interfaces and biological
assemblies have been created to benchmark the performance of interface
classifiers and methods for biological assembly assignment. The following
three datasets will be relevant for this section:

• Duarte-Capitani interface dataset (Duarte et al. 2012): collection of weak
biological interfaces and strong crystal contacts in the difficult to clas-
sify region.

• Many dataset (Baskaran et al. 2014): large collection of biological in-
terfaces and big crystal contacts.

• Ponstingl assemblies dataset (Ponstingl, Kabir, and Thornton 2003):
homomeric and heteromeric symmetric biological assemblies between
one and six protein subunits. A dataset of biological interfaces and
crystal contacts can be derived from this assembly dataset.

3.2.2 Towards interface classification confidence
From a user perspective and in general for any classification method, it is
important to distinguish between reliable and unreliable predictions. The
current EPPIC classification scheme only provides a binary call: biological
interface or crystal contact. The potential of adding a confidence together
with the EPPIC call is to warn users about difficult to classify interfaces and
suggest further investigation only in the cases strictly required.
In order to estimate the confidence of EPPIC classification calls we need to
introduce a probabilistic classifier. Interface classification is binary, with two
possible states: biological interface or crystal contact.
Let us define two variables associated with a particular interface:

• p = probability of the interface being biologically relevant
• q = probability of the interface being a crystal contact

Because it is a two-state problem, and the probabilities need to sum up to
1 for all possible outcomes, it follows that q = (1 − p).
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3. Assignment of quaternary structure from protein crystals

We can also define the log-odds ratio of an interface being biologically rel-
evant as:

Log odds = log
(

p
q

)
(3.1)

Logistic regression
One of the standard methods in machine learning for probabilistic classifi-
cation is logistic regression. The logistic function H(x) is defined as:

H(x) =
1

1 + e−x (3.2)

It is a sigmoid function with a single inflexion point at H(x) equal to 0.5. At
large values of the independent variable x, the function approaches asymp-
totically 1, and at small values of x it approaches asymptotically 0.
The main assumption of logistic regression is that the variable x is linearly
dependent on the log-odds ratio of the two state probabilities. To check for
this condition, the best logistic function fit to each EPPIC score and the inter-
face area was computed (figure 3.1) with the generalized linear model fitting
function (glm) of the stats package in R (Heiberger, Chambers A. And Freeny
R. 1992), and using the Many benchmark dataset. Because dataset contains
only big interfaces, interface areas below 600Å2 are not sampled. However,
literature has shown that interfaces of these sizes are predominantly crystal
contacts (Baskaran et al. 2014), and the logistic function fit agrees with the
fact.
The fraction of biological interfaces for each EPPIC score bin correlates well
with the estimated probability of interfaces being biologically relevant, in
the score bins with enough samples to reliably compute the fraction. All
scores, thus, are suitable features for a logistic regression classifier. However,
we can also observe that the peak of all the score distributions falls close
to the decision boundary of the logistic function, when the probability is
0.5. Therefore, no single score alone is a reliable interface classifier, so a
combination of scores is needed to improve the classification accuracy and
reliability (Duarte et al. 2012).

Model training
The independent variable of the logistic function, x in equation 3.2, can also
be another function:

H(x) =
1

1 + e−F(x1,x2,...,xn)
(3.3)
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3.2. Probabilistic biological assembly assignment
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Figure 3.1: Probability of an interface being biologically relevant (BIO) or crystal contact (XTAL)
for each of the EPPIC scores and interface area. On top of each subplot, bars are the binned
frequencies of BIO and XTAL classes in the Many dataset and lines show the best logistic
function fit. On the bottom of each subplot, the underlying score distributions are shown as
black histograms.
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3. Assignment of quaternary structure from protein crystals

Figure 3.2: Correlation between the EPPIC scores and interface area in the Many dataset.

Here, x1 to xn are the features of the model. We will use a linear combina-
tion of the features, so the problem becomes a linear regression, where the
weight wi for each feature xi has to be determined.

F(x) = w0 + w1x1 + w2x2 + ... + wnxn (3.4)

First of all, we would like to consider the correlation between the EPPIC
scores, shown in figure 5.4. We observe that interface area and geometry
score are highly correlated. This is expected, since bigger interfaces can ac-
commodate a higher number of fully buried residues. Another observation
is that the core-rim evolutionary score is uncorrelated to interface area and
geometry scores, and weakly correlated with the core-surface score.
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3.2. Probabilistic biological assembly assignment

We trained the model like previously described, using the generalized lin-
ear model fitting function (glm) of the stats package in R. We used the Many
interfaces dataset, removing the interfaces without evolutionary score pre-
dictions due to insufficient sequence homologs. We also removed the inter-
faces that are present in any of the other datasets, so that we can safely use
those other datasets for the validation of the model.

In the training process, we used 10-fold cross-validation splitting randomly
the dataset to estimate the out of sample error. This allowed us to select the
scores to use as features for the model and prevent overfitting.

The logistic classifier, using the three EPPIC scores and the interface area as
features, trained in the Many interfaces dataset obtained a cross-validation
accuracy of 90%. Removing the interface area from the model did not have
an effect on the accuracy, and the weight of the feature was redistributed
among the other scores, mainly to the geometry score. This is consistent
with the score correlation analysis. The coefficient of the fitted model for
core-rim score turned out to be positive. This contradicts the expected sign
of the coefficient, since lower values of the score should be indicative of
biological relevance. We attribute this failure to the fact that the score is a
ratio, so that differences close the value 0 are smaller than the differences
at larger values. Removing the core-rim score from the model did not have
an effect on the cross-validation accuracy.

We decided to use only the geometry and core-surface scores for the final
logistic classifier. The coefficient of the geometry score (gm) is 0.31, that of
the core-surface (cs) score is -2.1, and the intercept is -3.9.

p(gm, cs) =
1

1 + e−(−3.9+0.31gm−2.1cs)
(3.5)

Treatment of missing evolutionary information

For some interfaces, there are not enough sequence homologs in the database
to compute a reliable evolutionary score. We would like to account for the
missing information in the estimation of the classification uncertainty.

Our approach is to calculate the most uncertain value of the core-surface
score, i.e. the one that yields a probability of 0.5, and set this value to the
interfaces with missing evolutionary scores. This can be understood as the
score providing no evidence to the prediction, thus the lower classification
confidence reported.

To calculate the most uncertain value of the core-surface score we need to
solve for a system of linear equations. The logistic function is equal to 0.5
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3. Assignment of quaternary structure from protein crystals

Table 3.1: Benchmarking statistics for interface classification using a probabilistic score.
Dataset Accuracy Sensitivity Specificity MCC Brier score
Many 0.90 0.90 0.91 0.81 0.08
Ponstingl 0.92 0.84 0.97 0.83 0.07
Duarte-Capitani 0.82 0.92 0.71 0.65 0.15

when the exponential term x is equal to 0, so we need to solve for the values
of the geometry and core-surface scores in:

−3.9 + 0.31gm +−2.1cs = 0 (3.6)

We add the condition that both scores have the same importance to be able
to have a unique solution to the previous equation:

0.31gm = −2.1cs (3.7)

The most uncertain value of the core-surface score is -0.93. This value also
corresponds to the most uncertain value of the classifier trained using only
the core-surface score (figure 3.1). Missing core-surface scores due to the lack
of evolutionary information are set to this value for probability calculation
purposes.

Benchmarking

To validate the probability estimation we check two properties: the calibra-
tion and distribution of probabilities. First, the probabilities should be cor-
rectly calibrated; for instance, predictions assigned probability 0.9 should
be correct about 90% of the time. Second, predictions should be as cer-
tain as possible (close to either 0 or 1). Figure 3.3 shows these two proper-
ties for each of the three interface benchmarking datasets described before.
We observe that the probabilities are well calibrated for the three bench-
mark datasets, and that the probability distribution is maximal at the two
extremes, which means that most interfaces were classified with high confi-
dence.
The Brier score measures the accuracy of probabilistic predictions by com-
puting the average of the squared probability differences for all the predic-
tion events (Brier 1950). The score ranges from 0, the best score achievable
by predicting always with maximal confidence without error, to 1, the worst
score possible achieved by predicting always with maximal confidence the
wrong class. The Brier scores for each of the benchmarking datasets are
shown in table 7.1, together with other standard performance measures.
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3.2. Probabilistic biological assembly assignment
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Figure 3.3: Probability distributions and calibration curves for interfaces in the DC (left), Many
(middle) and Ponstingl (right) datasets.

3.2.3 Probabilistic assembly scoring
Assemblies as graphs
Protein assemblies can be defined by protein chains and the interfaces be-
tween them. In a graphical representation of assemblies, protein chains
are nodes connected by the interfaces between them, the edges (figure 3.4).
An interface that is part of an assembly is known as an engaged interface
for that assembly. An interface is induced in an assembly if it is engaged,
but removing it does not change the assembly composition. In graphical
terms, removing an induced interface edge from the assembly graph does
not change the number of components in the graph.

Assumptions
In deriving a score for individual assemblies in a crystal, we make the fol-
lowing assumptions:

1. There is exactly one biological assembly per structure.
2. The biological assembly is preserved in the crystal.
3. Interfaces engaged in an assembly are independent of each other.
4. Assembly formation is driven by the minimum number of interfaces

required to maintain the assembly.

The first two assumptions are general for any quaternary structure assign-
ment procedure from crystal structures. The first assumption is not valid
when the biological assembly of the protein involves transient interactions.
The second assumption is not valid if the crystallization conditions disrupted
the biological assembly of the protein. The third assumption means that
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3. Assignment of quaternary structure from protein crystals

Figure 3.4: Example of an assembly representation as a graph, where nodes are protein chains
and edges are interfaces. The graph represents a homomeric dihedral D2 assembly, where 8
copies of a chain A interact through 3 different types of engaged interfaces. All the interfaces
in the assembly are induced, since removing one of them does not change the assembly
composition (number of graph components). However, at least two of them are required to
maintain the protein assembly.

the introduction and evolution of another interface does not depend on the
other interfaces in the assembly. This assumption allows the simplification
of probability calculations. The last assumption is related to the concept
of induced interfaces, and it means that an assembly is maintained only by
the biggest interfaces. Other interfaces not required for the assembly, the
induced interfaces, are thus a direct a result of the formation of the bigger
interfaces.

Assembly scoring algorithm

In a protein crystal structure, we can define the set of all protein interfaces
as S. Each possible assembly in the crystal is defined by a subset Sa ⊆ S of
the set of crystal interfaces. Thus, each protein assembly can be defined by
a boolean vector of length |S|, where entry si is true if interface i is engaged
or false if the interface is not engaged in the assembly.
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3.2. Probabilistic biological assembly assignment

For each interface in the crystal, we have computed a probability of the in-
terface being biological relevant, p, and the associated probability of the in-
terface being a crystal contact, q. If we consider each interface as a random
event the probability of an assembly is the joint probability of the individual
interface events.

P(assembly) = P(s1, s2, ..., sn) (3.8)

We know the required outcome of each interface in the crystal to define
a particular assembly, and we have assumed complete independence be-
tween the interface events (assumption 3). Therefore, we can use the chain
rule to split the joint probability into the product of the individual interface
probabilities. For a pair of interfaces the joint probability can be expressed
as:

P(s1, s2) = ps1 ps2 (3.9)

By definition, a set of engaged interfaces with or without an induced inter-
face defines the same assembly. Therefore, if there are induced interfaces
in the assembly, multiple subsets of the crystal interfaces S define the same
assembly. To compute the probability of the assembly we add the probabil-
ities of all the subsets that define the same assembly.
The probabilities of all possible combinations of interfaces in the crystal (all
subsets of S) sum up to 1, since they defines the entire probability space.
Thus, the score for each assembly in the crystal is also a probability, since it
is a fraction of the total probability density.
Some combinations of crystal interfaces lead to assemblies that do not re-
semble the biological assemblies. These assemblies are known as invalid
assemblies, and there is a set of rules to define valid biological assemblies
in a crystal lattice (publication in preparation). Invalid assemblies also ac-
count for a fraction of the probability space, but from a theoretical point of
view, their probability should be 0, since they do not obey the rules of biolog-
ical assemblies and should always be crystallographic artifacts by definition.
Therefore, once all the possible and valid assemblies of a crystal structure
are generated, we add a normalization step so that the sum of the probabil-
ities of all the valid assemblies sums up to 1.

Benchmarking
To validate the score for quaternary structure assignment, we used the Pon-
stingl assemblies dataset. We performed a similar analysis to the interface
probability validation. The probability distribution and calibration plots are
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3. Assignment of quaternary structure from protein crystals
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Figure 3.5: Probability distribution and calibration curves for the Ponstingl assembly dataset
using non-normalized (left) and normalized (right) scores.

shown in figure 3.5. The calibration curve has an associated Brier score of
0.09 for the non-normalized scoring and 0.08 for the normalized one. Both
the probability calibration and the distribution are better for the normalized
scoring, suggesting that the assumption of invalid assemblies having zero
probability of being biologically relevant is valid, at least for this dataset.

Evaluating the accuracy of assembly assignments is more difficult than for
interfaces. For each structure, there is a single biological assembly from a
variable number of possible assemblies. Once the method chooses one as-
sembly as positive, the biologically relevant, all the other ones are automat-
ically assigned as negative. This implies that the number of false negatives
will always be equal to the number of false positives. Therefore, the preci-
sion measure alone suffices to evaluate the performance of the method as a
classifier. In the Ponstingl assemblies dataset the precision of EPPIC is 75%.

However, assignment errors can be of different severity and this is not taken
into account by precision. For instance, the assignment of monomer as the
biological assembly of a tetramer is worse than a dimeric assignment. A con-
fusion matrix of the properties of actual and predicted assemblies is needed
for that purpose. In figure 3.6 the symmetry and macromolecular size con-
fusion matrices of the EPPIC assignment in the Ponsingl datatset are shown.
In the figure, we observe that errors are more frequent in higher oligomeric
assemblies, especially those with dihedral symmetry. This is probably due
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3.3. Quaternary structure assignment in CASP12
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Figure 3.6: Confusion matrix plot for macro molecular size (left) and symmetry (right) of
assembly assignments in the Ponstingl dataset.

to the fact that one of the two required interfaces of dihedral symmetries is
generally weaker and, thus, a borderline interface classification.

3.3 Quaternary structure assignment in CASP12
The first step of the CASP assessment is to define the standard of truth that
predictions should aim at reproducing, i.e. the target structure models. An
accurate quaternary structure assignment protocol has to be defined in or-
der to minimize the possible annotation mistakes in the targets.

3.3.1 Challenges
Structures obtained by electron microscopy (EM) or nuclear magnetic reso-
nance (NMR) were considered to be in the correct quaternary structure state.
On the other hand, the biological assembly assignment of crystal structures
was carefully analyzed, since it can be sometimes challenging.
For some target proteins, the composition of the biological assembly was
unknown. The authors of the structure could not provide experimental ev-
idence, so we had to rely entirely on the computational evaluation of the
assemblies in the crystal to produce the target structure model.
For other target proteins, the authors provided experimental evidence for
a particular assembly composition. However, the crystal lattice contained
more than one possible biological assembly with the same stoichiometry.
An example is target T0871o, shown in figure 3.7, for which size exclusion
chromatography showed evidence of a dimeric quaternary structure, but the
crystal lattice contains two possible dimeric assemblies with a different in-
terface.
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3. Assignment of quaternary structure from protein crystals

Figure 3.7: Two contiguous asymmetric units (orange square) of the crystal structure of target
T0871o. There are two possible dimeric assemblies in the lattice.

Figure 3.8: Asymmetric unit of the crystal structure of target assembly T0875o (left) and su-
perposition of AB (green, cyan) and DF (orange, yellow) dimers (right). The superposition
RMSD is 1.6Å.

The presence of more than one possible assembly in the crystal is an under-
determination problem, while the presence of multiple copies of the same
assembly is an overdetermination problem. In the latter, one of the assem-
blies has to be selected as the reference structure, since there can be dif-
ferences between the assemblies due to crystal packing or modeling effects.
One such example is target assembly T0875o (figure 3.8). Three copies of the
dimeric assembly are present in the asymmetric unit of the crystal, and their
superposition reveals an RMSD of 1.6Å.

3.3.2 Assignment protocol
The main computational tool we used to assign and produce the quater-
nary structure of the CASP12 target proteins was EPPIC (Duarte et al. 2012),
with the new features described in section 3.2. For EPPIC assignments with
low confidence, we additionally analyzed the structures with PISA (Krissinel
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3.4. Conclusions

and Henrick 2007), which uses a thermodynamic approach complementary
to the evolutionary approach of EPPIC. Sequence and structural homologs
were also checked, if available.
In all cases, we requested experimental evidence for the oligomeric state of
the target proteins from the authors of the target experimental structures.
All the experimental evidence we obtained came from size exclusion chro-
matography (SEC) data.
The experimental information and the computational tools were never in-
compatible, although some cases had unreliable computational assignments.
In those cases, we requested confirmation from the experimentalists after
describing the computational analysis.
If multiple copies of the biological assembly were present in the asymmetric
unit, we selected the stronger assembly, in terms of the strongest computa-
tional evidence for being biological.

3.3.3 Target assemblies overview
The quaternary structure of the oligomeric targets of the CASP12 edition is
shown in table 3.2. The assemblies were representative of the PDB in macro-
molecular size, symmetry and number of entities.
The prediction difficulty of target assemblies was assigned to one of the
following categories:

• Easy: templates with detectable sequence similarity and the same qua-
ternary structure exist. Equivalent to tertiary structure template-based
modeling.

• Medium: partial templates, sharing a subset of chains and interfaces
with the target and with detectable sequence similarity, and/or struc-
tural templates with no sequence similarity exist.

• Hard: no quaternary structure templates exist (novel assembly). Equiv-
alent to tertiary structure free modeling.

3.4 Conclusions
In this chapter we have presented the contributions to EPPIC, a computa-
tional method to assign the biological assembly of proteins from their crystal
structures. The estimation of the assignment confidence developed in this
thesis is a valuable information for crystallographers, because it suggests
additional investigation for unreliable cases only.
In this chapter we have also combined experimental information and com-
putational tools in a protocol to assign the reference biological assemblies
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3. Assignment of quaternary structure from protein crystals

Table 3.2: Overview of CASP12 target assemblies.
Target Name Stoich. Sym. Difficulty
T0860o Raptor adenovirus fibre head A3 C3 EASY
T0861o-T0862o-T0870o Cysk-Toxin-Immunity Complex A2B2C2 C2 MEDIUM
T0866o MlaD A6 C6 HARD
T0867o Lizard adenovirus 2 fibre 1 head A3 C3 EASY
T0868-T0869 CdiA-CT and CdiI complex AB C1 HARD
T0873o TtnD A4 D2 MEDIUM
T0875o LV4 2A2 A2 C2 HARD
T0880o Mouse adenovirus 2 fibre head A3 C3 MEDIUM
T0881o Goose adenovirus 4 fibre head A3 C3 EASY
T0884-T0885 CPX19 CdiAtox-CdiI2 complex AB C1 HARD
T0888o Lizard adenovirus 2 fibre 2 head A3 C3 MEDIUM
T0889o D-sorbitol dehydrogenase A4 D2 EASY
T0893o CckA histidine kinase DHp-CA A2 C2 EASY
T0894-T0895 CDI204 E1-E2 complex AB C1 HARD
T0897-T0898 ANL-KT U1-U2 complex AB C1 HARD
T0903o-T0904o LGN-Inscuteable complex A2B2 C2 MEDIUM
T0906o Fructose biphosphatase A8 D4 EASY
T0909o LH3 A3 C3 EASY
T0912o BT1002 A2 C2 HARD
T0913o F4ZCI3 A6 D3 HARD
T0914-T0915 CPX209 complex AB C1 HARD
T0917 Red sea protein A2 C2 EASY
T0921-T0922 ScaB Cohesin-Dockerin complex AB C1 EASY
T0929o AP205 capsid coat protein A2 C2 HARD
T0930o STRA6 retinol uptake receptor A2 C2 HARD
T0931o DM77-3428 A2 C2 MEDIUM
T0932o TIPRL A2 C2 HARD
T0933o FliD A6 C6 HARD
T0934o Bd0886 A2 C2 HARD
T0945o DPAGT1 A2 C2 HARD

of CASP12 target proteins. Since it was the first CASP edition with a quater-
nary structure prediction category, we had to design the protocol and face
some unexpected challenges, but we hope that our work can be useful for
the quaternary structure prediction assessments of future CASP editions.
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Chapter 4

A scalable algorithm for the alignment
of quaternary structures

This chapter describes a novel approach to align quaternary structures that
is scalable with the number of chains. We analyze the algorithm complex-
ity and performance for a few example protein assemblies. In addition, we
provide the source code and an executable of the algorithm implementation
used in the CASP12 assessment pipeline.

4.1 The alignment problem
The alignment of quaternary structures requires building sets of equiva-
lences both at the protein chain and residue levels. This is due to the possi-
ble different chain ordering in the input structure files of the alignment. The
chain equivalences are used to input the same chain ordering for the two
structures to a regular structure alignment algorithm in order to obtain the
alignment at the residue level.

The main open challenge is, thus, the calculation of the optimal chain equiv-
alences, since regular tertiary structure alignment algorithms can be used for
the residue equivalences.

4.1.1 Brute force approach
The brute force approach is to try all possible chain permutations of one
structure, equivalent to evaluating all possible equivalences between the
chains of the two aligned structures. The chain mapping that yields the
largest number of aligned residues is selected as the result.

Although this is a valid approach, the number of chain mappings that have to
be evaluated scales exponentially with the number of chains of the smallest
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4. A scalable algorithm for the alignment of quaternary structures

structure. If we define n as the number of chains of the smallest structure,
the possible number of chain permutations is n!.

Although the number of chains of protein assemblies is usually small, al-
gorithms using the brute force approach will fail to evaluate a significant
portion of the assemblies in the PDB due to its poor scalability. As an esti-
mate, the alignment of two assemblies with 10 chains would take 3.6 million
evaluations, or around 20 days at an average time of 1 second per structure
alignment evaluation. A quick search in the PDB reveals over 4,000 structures
with biological assemblies with 10 chains or more. Therefore, a different ap-
proach with better scalability is needed to do database wide comparisons
of quaternary structures. This need also applies directly to the CASP exper-
iment, were tens of thousands of models are evaluated every edition.

Popular algorithms to align protein assemblies use the brute force approach
to generate the optimal chain equivalences between the structures. They
recognize that the scalability of the algorithms is the main disadvantage and
propose it as a future research line.

VAST+ (Madej et al. 2014) is entirely a web-based tool, so it could not be
considered as an option for the CASP model evaluation pipeline. MM-align
(Mukherjee and Zhang 2009) does have a command line tool that could have
been incorporated into the CASP model evaluation pipeline, but we realized
that the tool does not perform the alignment at the chain level (the com-
binatorial approach described in the article), and the final alignment is in-
complete if the chains of the structures are not in the same order. Therefore,
there was a big need for an efficient command line tool to align quaternary
structures.

4.1.2 A simplifying observation
When we consider the transformation matrix needed to superpose two pro-
tein assemblies, we can make an observation: each chain of the assembly
is transformed by the same operation in order to superpose to its equiva-
lent chain in the other assembly. Therefore, it is possible to approximate
the optimal global transformation matrix by using the local transformation
matrix from a single chain pair superposition. Applying the local transfor-
mation matrix to each other chain of the assembly will superpose them to
their equivalent chain in the other assembky, so a measure between two
chains (like RMSD or centroid distance) can be used to select the pairs of
closely superposed chains and generate the optimal chain equivalences.
Figure 4.1 graphically shows the idea: only a single pair of equivalent chains
is needed to uniquely determine all other chain equivalences, given that the
local transformation operation is a good approximation of the global one.
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4.2. The QS-align algorithm

(a) Toy 2D geometric complex, in two different orienta-
tions rotated by 90◦ to each other.

(b) Superposition of the complexes using the global centroid (left)
or the local centroid of a single chain pair (right). A 90◦ rotation
applied to either of the two centroids results in the same super-
position of all the chains in the complex.

Figure 4.1: Schematic representation of the global transformation operation approximated
by the local superposition of a 2D geometric complex.

4.2 The QS-align algorithm
The QS-align algorithm exploits the observation mentioned in the previous
section to efficiently build a quaternary structure alignment.1 Since we have
no intitial indication about a correct chain pair, all the possible pairs of
equivalent chains between the two assemblies are tried as a starting point.
If the number of chains in each structure is n, the possible starting chain
pairs is (n

2), so the number of evaluations scales quadratically with the num-
ber of chains. This is a huge improvement in efficiency over the brute force
approach, which scales exponentially.
For each starting point, the algorithm increments the number of equivalent
chains by iteratively adding pairs at a close distance (measured with RMSD,
chain centroid distance or chain orientation), until no more matchings are
possible. The final alignment reported is the one with the maximum number
of aligned chains, while having a lower RMSD. QS-align uses the Combina-

1Not to be confused with the QS-score (Bertoni submitted) discussed in 5.3.2
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4. A scalable algorithm for the alignment of quaternary structures

Table 4.1: Quaternary structure alignment examples with QS-align. Abbreviations: N. Ch./Res.
Number of Chains/Residues; A. Ch./Res. Aligned Chains/Residues
Name Structures N. Ch. N. Res. A. Ch A. Res. RMSD Time
PCNA 3hi8+3ifv 3+3 741+741 3 639 1.78 6s
PRC 1dxr+2jiy 4+3 1190+849 3 718 1.57 48s
Phycocyanin 2vml+2bv8 12+12 2004+2004 12 1920 1.24 8s
Cytochrome 1bcc+1kb9 9+11 2048+2180 8 1561 2.25 124s

torial Extension (CE) algorithm (Shindyalov and Bourne 1998) to perform the
structural alignments at the residue level, using the Cα atoms as represen-
tative points for each residue.
Example alignments of quaternary structures are shown in table 4.1. We can
observe that the calculation times are reasonable given the complexity of
the problem. The slowest alignment is the bacterial cytochrome, which takes
around 2 minutes to complete. All the chain equivalences are correct and
complete in the alignments, compared to their manual alignment.

4.2.1 Scaling performance
To evaluate the scaling of the algorithm implementation as a function of the
number of chains per input assembly we use a series of alignments between
two phycocyanin structures (2BVL and 3JDB), dihedral pseudosymmetric het-
erododecamers. The comparison of these two assemblies is interesting be-
cause they are big heteromers with inconsistent chain naming and ordering,
so the alignment at the chain level is needed and the brute force approach
would not be feasible.
We generated computing times as a function of the number of chains re-
moving pairs of equivalent chains of the input structure files (figure 4.2). The
computing time scales almost linearly up to 12 chains per input structure and
the time required to align two assemblies with 12 chains is only double the
amount of computational time for the alignment of two single chain struc-
tures. These results show that the alignment is scalable (low complexity)
and efficient (low scaling factor).
The computing time of the brute force approach on 12 chains Tb f (12) can
be theoretically extrapolated from the QS-align computing time Ts(12), the
number of evaluations of the brute force approach Eb f (12) and the QS-align
approach Es(12):

Tb f (12) =
Ts(12)− Ts(1)

Es(12)
Eb f (12) =

4.5s
(12

2 )
12! > 1000 years (4.1)

Therefore, the comparison of these two assemblies can only be done using
the QS-align approach, since the brute force approach would not finish in
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Figure 4.2: Scalability of the QS-align algorithm. Scaling factor compared to the alignment
of two single chain complexes (left) and absolute computing time (right) as a function of the
number of chains per input structure. The phycocyanin alignment (2vml vs. 2bv8) was used
for the calculation.

a reasonable time. Unfortunately, we could not compare the scaling perfor-
mance against any of the algorithms using the brute force approach, since
the command line version of MM-align does not try all the possible chain
combinations (mentioned in section 4.1) and the alignment is thus incom-
plete.

4.2.2 Availability
An implementation of the QS-align algorithm has been included in the Bio-
Java library (Prlić et al. 2012), since version 5. BioJava is the leading open-
source structural bioinformatics library, hosted on GitHub (https://github.
com/biojava/biojava). Further documentation about the algorithm and
how to use it programatically is available and kept up to date in the Bio-
Java tutorial (https://github.com/biojava/biojava-tutorial).

Running the algorithm programatically in Java, using the source code, al-
lows users to customize the parameters, like the score thresholds, and op-
tions, like the choice of distance measure or structure alignment algorithm,
and create their own output format. However, many users might not have
the time or skills to learn to use the algorithm programatically. Therefore,
a simple command line tool that uses the default parameter options and
outputs a summary tab-delimited line of the result is also provided. The
tool can be downloaded from the releases section of the repository: https:
//github.com/lafita/qs-align.

Java 8 is required to run the executable JAR file, which requires a query and a
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4. A scalable algorithm for the alignment of quaternary structures

target structure, with an optional output file for the results. This is specified
by the help message of the tool:
usage: java -jar QsAlign.jar [options]
-h,--help Print usage information
-t,--target <file> Model of the first Structure [required]
-q,--query <file> Model of the second Structure [required]
-o,--output <file> Path to the output file [default: stdout]

As an example, to align a query structure against a target, we need to run:
java -jar qs-align.jar -t target.pdb -q query.pdb -o result.tsv

Applications in CASP12
This tool has been successfully used in the CASP model evaluation pipeline
to characterize systematically the assembly models. The number of equiv-
alent chains (chain coverage), the length of the residue alignment (residue
coverage) and the RMSD of the alignment were useful information for the as-
sessment. The results of the tool for all CASP12 models are available on-line
at the Prediction Center web site, inside the CASP12 multimer results page:
http://predictioncenter.org/casp12/results.cgi?tr_type=multimer.

4.3 Conclusions
In this chapter we have developed a new algorithm for the alignment of
quaternary structures based on an additional assumption that reduces the
complexity of the problem. The algorithm allows efficient comparisons of
protein assemblies, as we have demonstrated with examples, and is scalable
as a function of the number of chains. We have also created and made
available an implementation of the algorithm, which has been successfully
used for the CASP12 quaternary structure prediction assessment.
As with sequence and tertiary structure alignment algorithms, the applica-
tions of this algorithm are very diverse. It allows systematic searches over
large databases of quaternary structures. On the other hand, the chain
matching produced by the algorithm can be used as input to other algo-
rithms that need the chain equivalences between structures to operate.
We plan to continue the maintenance and development of the algorithm in
the BioJava library. We would also like to improve the command line tool,
adding more options and parameters available to the user for customization
of the alignments. Other possible future developments include the creation
of a graphical interface, or even a web interface, in order to show the align-
ment of the assemblies directly in a molecular viewer.
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Chapter 5

Quality assessment of quaternary
structure models

This chapter introduces scores to evaluate the quality of the assembly pre-
diction models. The scores are computed for every model submitted to the
CASP12 experiment using an evaluation pipeline and the results are used to
assess the performance of the prediction methods.

5.1 Assessment goal
The goal of the CASP assessment is to (i) quantify the quality of the prediction
models in a relative and global scale, (ii) evaluate to what degree are models
useful to understand the protein function compared to the experimental
structures, and (iii) provide insights into the prediction methodologies to
identify established and promising approaches.

5.2 Model quality scoring
5.2.1 Interface representation
Protein-protein interfaces can be represented as a bipartite graphs of residue
interactions (figure 5.1. Edges are defined with a measure of the interaction
of two residues, for example a distance cutoff. From the interface graph two
sets can be defined:

• R: set of contacting residues, nodes of the graph.

• C: set of residue-residue contacts, edges of the graph.

Quality measures of assembly prediction models can be defined as the ac-
curate reproduction of the two sets in the target assemblies.
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..A1. A2. A3. A4. A5.

B1

.

B2

.

B3

.

B4

Figure 5.1: Interface as a bipartite graph. Orange squares represent residues in chain A,
while white squares are residues in chain B. Edges represent geometric proximity between
the residues.

Figure 5.2: Visual comparison of interface patches. Dimeric target T0917o (top), chain A (bot-
tom left) and corresponding chain of a model (bottom right). Interface patches of the target
and the model are highlighted. Although the overall position of the patch is correctly pre-
dicted, some differences can be appreciated.

5.2.2 Interface patch score

An interface patch is defined as the set of residues R of one chain with at
least one heavy atom within a distance threshold (5Å) to a heavy atom of
another chain. We would like to measure how different the interface patches
of the model RM and the target RT are. A visual representation of the score
is shown in figure 5.2.

We used a common set comparison metric, the Jaccard distance, which for
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5.2. Model quality scoring

Figure 5.3: Visual comparison of interface contacts. Backbone representation of dimeric
target T0917o (left) and its best model (right), colored by chain. The contacting residues at
the interface of each dimer are shown in lines.

the comparison of a model M against the target T can be defined as:

JD(M, T) = 1 − |RM
∩

RT|
|RM

∪
RT|

∈ [0, 1] (5.1)

The interface patch score, thus, is a measure of the dissimilarity between
residues at the interface. The score can have a value between 0 and 1, and
lower values mean that the model reproduces more accurately the residues
at the target interface (higher quality).

5.2.3 Interface contact score
The interface contacts C are defined as the set of residue-residue pairs be-
tween different chains with at least one heavy atom closer than a distance
threshold (5Å). An example of the differences measured by the score is
shown in figure 5.2.
We used a common performancemetric for binary predictions, the F1-measure,
which is the harmonic mean of the precision and recall of contact predic-
tions of the model compared to the target.
The precision P is the fraction of contacts in the model CM that are actually
present in the target CT .

P(M, T) =
|CM

∩
CT|

|CM| (5.2)

The recall R is the fraction of target contacts CT that are correctly reproduced
by the model CM.

R(M, T) =
|CM

∩
CT|

|CT|
(5.3)
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The contact similarity score combines the precision and recall of contact
predictions with a harmonic mean, called F1 score, defined as:

F1(M, T) = 2 · P(CM, CT) · R(CM, CT)

P(CM, CT) + R(CM, CT)
· 100% ∈ [0, 100] (5.4)

The interface contact score, thus, is a measure of the similarity between
residue contacts in the interface. The score can have a value between 0 and
100, where higher values mean that the model reproduces more accurately
the interface contacts of the target (higher quality).

5.2.4 Interface score comparison
Interface patches are easier to predict than specific contacts at the chain
interfaces. Therefore, although both scores are correlated, the contact score
reflects the high resolution details and the patch score coarser features.

The actual correlation between the two interface scores for all the submitted
models is shown in figure 5.4. We can observe that for high accuracy models
(lower right), the two scores are highly correlated. However, for low accuracy
models (top left), most of the difficult targets, the patch score can still be an
informative measure while the contact score is too low to discriminate the
better models.

An example of the discriminative difference between scores are models sub-
mitted to dimeric target assembly T0945o. As shown in figure 5.5, the contact
score for the model cannot distinguish between completely wrong assembly
predictions and those that identify the interface patch correctly and only fail
in the chain orientations.

5.2.5 Symmetry deviation
We used the quaternary structure symmetry detector algorithm from Bio-
Java (Prlić et al. 2012) to determine the symmetry axes of the assemblies. A
description of the algorithm can be found in the symmetry chapter of the
BioJava tutorial: https://github.com/biojava/biojava-tutorial/blob/
master/structure/symmetry.md.

The symmetry deviation measure is defined as the RMSD between the chains
of an assembly constrained to the symmetry axes. In other words, chains are
rotated using the symmetry axes and superposed to a single chain position
(figure 5.6).
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Figure 5.4: Correlation of interface patch (Jaccard distance) and interface contact (F1) scores
for all the oligomeric models submitted to CASP12. Models colored by target difficulty. Black
lines indicate the threshold values at which, at the left of contact score and at the top of
patch score, score differences are considered uninformative.

Figure 5.5: A model with significant patch score but insignificant contact score. Superposition
of target dimer T0945o (blue/cyan) and its best model (red/orange) based on a single chain
(left). The non-superposed chains, as seen from the interface (right). The model reproduces
accurately the binding patch of the chain (JD = 0.52). However, the interface is rotated, so
the contact score is in the uninformative region (F1 = 5.4).
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5. Quality assessment of quaternary structure models

Figure 5.6: Example of the symmetry deviation measure. Cyclic symmetry axis and box of
target T0867o (left) and superposition of the three chains constrained to the symmetry axis
(right).

5.3 Prediction performance
5.3.1 Performance per target
The scores defined in section 5.2, together with some other metrics, were
calculated for all the prediction models in the CASP evaluation pipeline. The
scores for each model are available on-line at the Prediction Center web-
site, at the CASP12 multimer results page: http://predictioncenter.org/
casp12/results.cgi?tr_type=multimer.

An interesting analysis is to plot the distribution of scores of the models for
each target, to identify those targets that could be successfully modeled and
those for which no good predictions were submitted.

Reasonable quality predictions of the interface patch score are achieved for
the majority of targets, even for some of the difficult ones (figure 5.7). On
the other hand, no reasonable quality predictions of the interface contacts
were submitted for the hard targets (figure 5.8), which shows the extreme
difficulty of the problem.

5.3.2 Baseline performance
The comparison of the performance of the prediction methods against a
baseline performance, represented by a very simple or easy to implement
solution to the problem, has proven to be very useful for the analysis of
method sophistication in the past. In CASP9, only one server group per-
formed better than a naive predictor baseline, defined as copying the qua-
ternary structure of the highest sequence similarity protein to the target
(Mariani et al. 2011). In CASP11, groups improved over the sequence similar-
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5.4. Biological relevance assessment

ity baseline for almost all targets, and the improvement was significant for
some of the subset of difficult dimers (Lensink et al. 2016).

To define a performance baseline we used the QS-score metric. QS-score
is an interface similarity score, like the interface contact score described
in section 5.2, but developed specifically to search and cluster for quater-
nary structure similarity among protein assemblies (Bertoni submitted). The
method performs an alignment of the sequences of the equivalent chains
of the two input assemblies and computes a weighted fraction of shared Cβ

contacts in all the interfaces. We computed a baseline performance using
the QS-score of the top scoring sequence template, as determined by HH-
Search, for each target.

In the assembly prediction category of the CASP12 edition we observe that
most groups perform consistently over the baseline, with few exceptions
(figure 5.9). Furthermore, the improvement over the available templates for
some targets is very impressive, like T0917o or T0860o. As observed in CASP11,
CAPRI groups manage to predict acceptable models in the harder targets,
while CASP methods still struggle in the prediction of oligomeric assemblies
when no templates are available. This can be explained by the fact that CAPRI
groups are specialized in the docking problem, while the predominant focus
of CASP groups continues to be tertiary structure prediction.

5.3.3 Symmetry constrains
An important property of quaternary structure is symmetry. We wanted to
analyze how prediction methods consider symmetry in the generation of
their assembly models. We plotted the symmetry deviation of all the models
submitted by each group, without checking for the correct assembly or sym-
metry. From figure 5.10 we can identify (i) groups that constrain the models to
be perfectly symmetric (e.g. Grudinin), (ii) groups that never produce asym-
metric models, but that allow differences (flexibility) in the tertiary struc-
ture of the subunits (e.g. FONT), and (iii) groups that do not consider sym-
metry in their modeling, allowing some asymmetric assembly models (e.g.
Bates_BMM).

5.4 Biological relevance assessment
The goal of the biological relevance assessment is to identify targets where
the quaternary structure has a clear biological relevance, and evaluate to
what degree are models useful to understand the function of the protein,
compared to the experimental structure. Because biological relevance is
hard to quantify, we focused our assessment in two target assemblies with
a particular functional relevance of their quaternary structure.
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5. Quality assessment of quaternary structure models

5.4.1 CckA histidine kinase
Target T0893o is a histidine kinase, known as CckA. Histidine kinases are
dimeric bifunctional enzymes, mediating both phosphorylation and dephos-
phorylation of downstream targets. The function of the enzyme switches by
domain rearrangements (Dubey et al. 2016).

The quaternary structure of histidine kinases is well known, with many ex-
perimental structures available. The catalytic core contains a dimerization
domain, called dimerization histidine phosphotransfer (DHp) domain, that
includes a conserved histidine position acting as a phosphate acceptor (au-
tophosphorylation). The connectivity of the four helices of the DHp domain
and its interactions with the catalytically active (CA) domain of the protein
determine the mechanism of action of the enzyme (Bhate et al. 2015).

The four helical dimer of the DHp domain can be in two different connec-
tivity types: helix B left of helix A, or helix B right of helix A. In addition, the
conserved histidine phosphate acceptor (H322) can be in two different ge-
ometries: cis, if the ATP of the same subunit is close, or trans, if the ATP of
the dimeric partner is close (Bhate et al. 2015).

The CckA has a DHp connectivity of helix B right of helix A, similar to CpxA,
but an unusual cis histidine phosphate acceptor geometry. The authors of
the experimental structure indicate that this might be due to distinct crystal
contacts, since the CA domain is very flexible (Dubey et al. 2016), but we will
also include this feature in our assessment. Finally, we will consider the
exposure of histidine H322 in both subunits (not part of the DHp interface)
as a fundamental requirement for a functionally valid model.

We manually looked at the best quaternary structure models of each group
and annotated the important functional features we identified. The results
showed some predictions reproducing correctly the DHp connectivity and
others with the right histidine geometry, but no model reproduced both fea-
tures from the experimental structure. The target structure and some rep-
resentatives models are shown in figure 5.11.

5.4.2 STRA6 Receptor
STRA6 is a dimeric integral membrane receptor for retinol uptake. It binds
the retinol binding protein (RBP), which transports the highly hydrophobic
retinol through the bloodstream and translocates the molecule into the lipid
bilayer (Chen et al. 2016).

The STRA6 receptor generates a cleft in the dimeric interface of its assembly.
Inside the cleft, the outer membrane layer is bended outwards, generating
a space inside which the retinol molecule can be inserted (figure 5.12). In
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5.4. Biological relevance assessment

a) Target T0893o
H322 exposed, B right of A, cis

b) YASARA
H322 exposed, B right of A, trans

c) BAKER-ROSETTASERVER
H322 exposed, B left of A, cis

Figure 5.11: Quaternary structure of target T0893o and its representative models, with func-
tional feature annotations. Structures colored from blue (N-terminal) to red (C-terminal).
Helix A is in blue, helix B is in cyan.
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5. Quality assessment of quaternary structure models

Figure 5.12: Side view (left) and top view (right) of the STRA6 receptor outer cleft. Two mea-
surements between the same residues of each subunit are shown in yellow dashed lines.

addition, the coordination of residues from both subunits in the dimer is
needed to form the RBP-binding motif (Chen et al. 2016).

The two most important functional features related to quaternary structure
are the geometry of the outer cleft and the position of the RBP-binding mo-
tif residues. We have measured in the experimental structure the distances
between the same residues in the two subunits of the dimer facing the in-
side of the outer cleft. For example, the phenilalanines of the top of the
outer cleft (involved in the RBP-binding motif) are separated by around 30Å.
Good models should reproduce as close as possible the cleft geometry of
the experimental structure.

STRA6 had no sequence similarity to any knownmembrane transporter, chan-
nel or receptor at the time of the CASP12 experiment. Thus, the prediction of
its structure was very difficult and none of the groups produced acceptable
tertiary structure models. The quaternary structure prediction was totally
unsuccessful, with none of the groups predicting a single correct interface
contact and with interface patch scores always below the acceptable base-
line of 0.75. With the given quality of the models, a functional assessment
could not be done for this particular target, in spite of its particularly inter-
esting functional relevance.
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5.5 Conclusions
As first assessors of the quaternary structure prediction category of CASP,
we established a set of scores and analysis tools for the quality evaluation
of protein assembly prediction models. We have also analyzed the overall
performance of the predictions and the added value of the methods using a
baseline performance to account for the prediction difficulty of each target
assembly. Finally, we described the biological relevance of two oligomeric
targets and evaluated the functional relevance of the models, where possi-
ble.
The two scores we used for model quality evaluation captured all the spec-
trum of prediction accuracy, thanks to their different levels of detail. They
also correlated with our visual assessment of the models. The overall per-
formance of the methods was consistently higher than the baseline per-
formance, with a few outstanding performances that were discussed in the
CASP12 final meeting. Although there is still room for improvement, the in-
creasing participation and the discussion of promising new ideas and ap-
proaches to the problem are good signs.
We hope that CASP continues to encourage the prediction of protein assem-
blies and that our work in the model evaluation pipeline can be used by the
future assessor teams.
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Part II

Conformational dynamics of
integrin α-I domains
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Chapter 6

Introduction

This chapter is an introduction to the basics of integrin biology, the struc-
ture of integrins and the use of molecular dynamics simulations to study
conformational dynamics of proteins.

6.1 Integrins
Integrins are integral transmembrane receptors involved in cell signaling.
They mediate interactions of cells with the extracellular matrix and other
cells. Some of their ligands are fibronectin, collagen and laminin (Humphries
2000). They signal across the membrane in both directions, using long-
range allosteric conformational changes (Hynes 2002), and trigger intracel-
lular pathways, allowing to respond quickly to changes at the cell surface.
One example of their function is platelet signaling to initiate coagulation.

6.1.1 Integrin structure
Integrins are obligate heterodimers, composed of subunits α and β. They
consist of a head piece formed by the head domains of both subunits, from
which two legs emerge and end in a single transmembrane helix and a
short cytoplasmic tail (figure 6.1). The integrin head piece comprises a seven
bladed propeller, the α-P domain, in close interaction with the β-I domain
(Gullberg 2014).
There are 18 types of α subunits and 8 types of β subunits. For each type of
α subunit, there can be one or multiple possible types of β subunit partners,
and vice versa. For example, the lymphocyte function-associated antigen 1
(LFA-1) is an integrin formed by the αL and the β2 subunits, while the very
late antigen 1 (VLA-1) integrin is formed by the α1 and β1 subunits. The α1
subunit always oligomerizes with the β1 type, while the partner of αL subunit
is always β2 (Srichai and Zent 2010).
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6. Introduction

Figure 6.1: Schematic representation of an integrin structure. The two subunits, α (blue) and
β (green), with different domain architecture, form a heterodimer with close interaction at
the head piece.

6.1.2 The α-I domain

In humans, 9 out of the 18 integrin α subunit types, including α1 and αL,
contain an additional domain, called α-I or αA domain, inserted on top of
the α-P propeller domain (figure 6.1). The α-I domain plays a central role in
ligand binding and specificity.

The domain is categorized as a member of the von Willebrand Factor (vWF)
A domain superfamily. It contains a central parallel β-sheet of 6 strands
surrounded on both sides by 7 amphipathic α-helices. On top of the central
β-sheet there is a ligand binding site, called MIDAS (Metal Ion-Dependent
Adhesion Site), where a metal ion is coordinated by three residues coming
from different loops and three water molecules. (Gullberg 2014).
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6.2. Molecular dynamics simulations

Inactive state Active state Activated state

Figure 6.2: The three relevant conformational states of the C-terminal helix of theαL-I domain
described in the literature. Alternative names for the states in the literature refer to their
ligand binding affinity, from left to right: allosterically inhibited (AI), low affinity (LA) and
intermediate affinity (IA). Also from left to right, PDB codes: 1ZOO, 1ZON and 1MQ8.

6.1.3 Allosteric modulation of the α-I domain
It has been described in the literature that ligand binding alters the confor-
mation of α1-I, α2-I and αL-I domains in the same way. A switch in the ion
coordination of the MIDAS upon ligand binding causes a downward move-
ment of the C-terminal helix (helix-7) of about 10Å, which is responsible for
transducting the signal. The conformational change corresponds to the tran-
sition between the active and activated states, shown in figure 6.2 (Gullberg
2014).

For the αL-I domain, an allosteric inhibition mechanism that involves a sec-
ond conformational change of the C-terminal helix was discovered (Kallen
et al. 1999). A small molecule, lovastatin, can be inserted inside the domain,
between the central β-sheet and the C-terminal helix, stabilizing the inac-
tive state (figure 6.3). The inhibitor binding involves, however, an opening
of the pocket, which is closed in the active and activated states. The cur-
rent biological model is that the activated state of the αL-I domain can only
be reached from the active state of the domain, so the inhibitor effectively
disables the signal transduction even if the natural ligand binds (figure 6.2).

Since the discovery of the allosteric pocket, more inhibitors for the αL-I do-
main have been found. However, screenings for inhibitors for the other types
of α subunits have been unsuccessful. A scientific question derived from
these observations is whether the allosteric modulation mechanism present
in the αL-I domain is universal among the other types of α subunits.

6.2 Molecular dynamics simulations
Some molecular motions of protein structures happen at short time-scales
and small sizes (figure 6.4). These events are difficult to study experimen-
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6. Introduction

Figure 6.3: Allosteric inhibitor (lovastatin) bound to the αL-I domain (1CQP).

0.2 nm 10 nm

Atom and group
vibrations

Motions of structural 
elements Domain motions

1 nm

10-12 s 10-8 s10-15 s

Figure 6.4: Time and spatial scales of protein molecular motions. The conformational change
involved in the integrin αL-I domain corresponds to the motion of a structural element (mid-
dle box).

tally, due to the time and spatial resolutions of the measurements. Com-
puter simulations can offer the level of molecular detail needed in study-
ing these types of protein dynamics. However, abundant and sophisticated
computational resources are usually needed, especially to reach significant
statistical sampling.

Molecular dynamics simulation is a computational method for studying the
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physical behavior of a molecular system. The atomic interactions and move-
ments are computed for a limited period of time, resulting in a dynamical
evolution of the system. In the most common version, the simulation is
performed using Newton's equations of motion for a system of interacting
particles, where potential energies are defined using molecular mechanics
force fields (Karplus and McCammon 2002).

Molecular dynamics simulations have been extensively applied to the mod-
eling of biomolecules, especially proteins. In the present study, molecular
dynamics simulations will be used to characterize the conformational states
of integrin α-I domains and their transitions, with special focus on the C-
terminal helix.

6.2.1 Integrin simulation precedents

Studying integrin structures using molecular dynamics simulations has been
done before. There are two relevant articles worth mentioning in this intro-
duction, because their focus is also the conformational dynamics of the α-I
domain.

Jin, Andricioaei, and Springer 2004 used short molecular dynamics simula-
tions of the α-I domain with a pull spring at the C-terminus of the helix-7 to
study the activation mechanism, the transition between the active and ac-
tivated conformations. They compared the αL, αM, α1 and α2 subunit types
and found some differences in the dynamics, which involved an interme-
diate state in subunits αL and αM, but not in α1 or α2. They justify these
differences in the dynamics with a Phe to Glu substitution at the top of the
helix.

Kukic et al. 2015 used replica-averagedmetadynamics (RAM) simulations with
NMR restraints of the αL-I domain to quantify the relative population fre-
quencies of the three known conformational states of the helix-7 (figure 6.2).
However, when they remove the restraints from the simulations, they do not
observe any transition events between the states, indicating that either the
time scales of these events are much larger than the simulations or that they
do not occur spontaneously (i.e, ligand binding is required).

These two studies use additional (unphysical) forces to induce the confor-
mational changes of the α-I domain. Because we would like to observe spon-
taneous transitions between the conformational states, we use unrestrained
molecular dynamics.
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6. Introduction

6.2.2 Trajectory analysis
Monitoring
In order to monitor the evolution of the system along the simulation trajec-
tory, properties can be followed as a function of time.
The root mean square deviation (RMSD) between two sets of points is a
measure of the average distance (d) between corresponding positions. The
RMSD of a set of N pairs of corresponding positions between two point sets
is defined as:

RMSD =

√√√√ 1
N

N

∑
i=1

d2
i (6.1)

In order to compare two protein structures using the RMSD, the set of rep-
resentative atoms has to be chosen. This is usually the Cα atom of each
amino acid residue, but it can also include Cβ atoms or other heavy atoms.
Then, a superposition of the two structures need to be performed, using the
chosen representative atoms, in order to account for shifts and rotations in
the reference frame. Once the structures are superposed, the distances be-
tween the corresponding atomic positions can be computed to obtain the
final RMSD. One particularity of the superposition dependent measures, like
the RMSD, is that the superposition and the measure can be done on dif-
ferent sets of atoms. In our study case, the α-I domain, the changes in the
C-terminal helix are both internal and rigid-body movements with respect
to the rest of the protein, so we can perform the superposition on the pro-
tein backbone excluding the helix and compute the RMSD only for the helix
backbone.
The solvent-accessible surface (SAS), or accessible surface area (ASA), is the
area of a molecule that is accessible to the solvent. SAS is calculated using
a sphere of a particular radius to probe the surface of the molecule. This
measure is useful to analyze changes in the orientation of side chains or
the opening of pockets, accessible to water or potential ligands.
Interatomic distances can also be defined to describe the relative move-
ments of the parts of the structure like, for example, salt bridges or specific
conformational changes.

SAPPHIRE plot
The SAPPHIRE (States And Pathways Projected with HIgh REsolution) plot of
a molecular dynamics trajectory provides a picture of the kinetically distinct
states (termed basins) of the system (Blöchliger, Vitalis, and Caflisch 2013).
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6.2. Molecular dynamics simulations

The method relies on a the choice of a metric, a definition of a pairwise dis-
tance between snapshots of the system, to reorder the original trajectory in
a new progress index. The progress index is plotted against the number of
transitions between two partitions, defined by a cut function, of the entire
snapshot collection. The idea is that transitions within a basin are more fre-
quent than transitions between basins, so that the final curve will resemble
the free energy profile of the system.
The SAPPHIRE plot has been successfully applied to analyze molecular dy-
namics trajectories of biomolecules (Blöchliger, Vitalis, and Caflisch 2014).
For the purposes of this study, the SAPPHIRE plot is a key tool for its power
to summarize long molecular dynamics trajectories into a small set of rep-
resentative states of the system, minimizing the risk of missing relevant in-
formation.
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Chapter 7

Molecular dynamics simulations of
integrin α-I domains

7.1 Goal of the simulations
The modulation of LFA-1 signaling though the allosteric pocket in the C-
terminal helix of the α-I domain, as it was described in section 6.1, is well
studied and widely accepted. However, attempts to find small molecule lig-
ands that can allosterically modulate the signaling of other types of integrins
have been unsuccessful. The main goal of this study is to evaluate whether
the allosteric mechanism of signal modulation of LFA-1 is also possible in
other types of integrins. In particular, we will study the I-domain of the α1
subunit and compare its dynamics with the I-domain of αL. More specifically,
we would like to know if the allosteric pocket opening, which corresponds
to the transition from the active to the inactive states, can happen sponta-
neously without the presence of the inhibitor.

7.2 System preparation
The preparation of the system is the most important and time consuming
part of molecular dynamics simulations. The setup of a protein simulation
consists in the following steps: choosing a starting structure, usually exper-
imentally determined, and processing it; recreating the physiological envi-
ronment by adding a solvent and other relevant molecules, usually water
and ions; parameterizing the system with a force field; relaxing the system
with an energy minimization scheme; and equilibrating the system at the
physiological conditions of temperature and pressure.

There is software available to help and automatize the preparation of molec-
ular dynamics systems. For the preparation of the integrin α-I domain sys-
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Table 7.1: Summary of the properties of the two solvated α-I domain systems.
System alpha-1 alpha-L
Structure 1QC5 1ZOO
Box volume (nm3) 499 486
Number of atoms 50039 48278
Water molecules 15640 15077
Ions 38 Na + 36 Cl 38 Na + 36 Cl

tem, we used the tools provided with the GROMACS package (Berendsen,
Spoel, and Drunen 1995).

Starting structure

From all the integrin α-I domain structures, we decided to use the structure
1QC5 for the α1-I domain and 1ZOO for the αL-I domain with the open helix
conformation stabilized by a crystal contact at the C-terminal. Both are APO
structures with a Mg2+ ion at the MIDAS site. The chain A of the asymmetric
unit was selected for both structures.

Since there were no missing residues in the structures, modeling of missing
protein segments was not needed. The processing steps required were the
addition of hydrogen atoms to all residues and capping groups to the N and
C terminal residues of the structure.

Both structures were processed using GROMACS pdb2gmx command. An
acetyl group was selected for the N-terminal and an amine group for the C-
terminal capping. Hydrogens were added with the default GROMACS settings,
which assigns negative charges to acidic residues and positive charges to ba-
sic residues in order to resemble the neutral pH conditions. Histidines are
kept neutral and protonation positions are assigned based on their chemical
environment.

Solvation

The α-I is a cytoplasmic domain of the integrin structure. Since it is a solu-
ble globular domain, the physiological environment consists mainly of water
molecules and ions.

A cubic solvation box at a minimum distance to the protein of 1.2 nm was
created, with the spc216 starting configuration and the modified TIP3P water
model to be used with Charmm. Next, chloride and sodium ions were added
to account for the ionic strength and neutralize the charges of the protein.
A summary of the properties of the two systems after the solvation step is
shown in table 7.1.
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7.2. System preparation

Parameterization
For the system parameterization, we used the CHARMM36 force field (Huang
et al. 2016).
The α-I domain contains the MIDAS site with an ion in a octahedral coordi-
nation, carrying out a key function in the activity of the domain. Force fields
are not able to parameterize correctly this type of interactions, so the orig-
inal coordination would be lost in the simulation if additional restrains are
not applied. Therefore, we applied position restrains of 1000 kJ mol−1nm−2

for the entire simulation to the 7 atoms involved in the octahedral coordina-
tion: 3 water oxygens, the Ser-42 and Ser-44 side-chain oxygens, one of the
Asp-143 side chain oxygens and the magnesium ion.

Energy minimization
The initial state of the system has not been optimized for the force field used
in the simulation. Therefore, it is likely that some parts of the system are in a
high energy state, as defined by the physical parameters of the force field. If
the simulation were started immediately, those parts of the system with high
energy would create very high and unphysical forces that could potentially
break the simulation.
The energy minimization is a procedure to relax parts of the system with a
very high energy. It can be thought as an initial fitting of the system to the
force field. The procedure iteratively reduces the forces acting on the atoms
of the system (equivalent to reducing the energy), until all the forces are
below a maximum force threshold.
We used the steepest descent minimization. Less than 200 steps for both the
α1-I and the αL-I system were required to achieve a maximum force below
the threshold, indicating that the initial systems had no problematic regions
from a physical point of view.

Equilibration
Equilibration consists in applying position restraints to the protein heavy
atoms, while allowing the solvent and other molecules to move freely so
that they can adapt to the protein. We used two steps of equilibration: a
first one at fixed volume (NVT) and a second one at fixed pressure (NPT)
conditions.
For the NVT equilibration, we used the V-rescale (a modified Berendsen ther-
mostat) temperature coupling scheme with two coupling groups, protein and
non-protein, with a time constant of 0.1 ps and a reference temperature of
300 K. For the NPT equilibration, we used the Parrinello-Rahman pressure
coupling scheme, with a time constant of 2 ps and a reference pressure of 1
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MIDAS 

C-terminal 
helix 7 

Leucine 217 

Distance helix 7 
to beta sheet 

Figure 7.1: Properties of the α1-I domain followed in the simulation: MIDAS site, Leucine at
position 217, C-terminal helix-7 and distance between the helix-7 and the central β-sheet.

bar, in addition to the same temperature coupling scheme as the NVT equi-
libration. Both equilibration steps converged fast, on the order of 10 ps, to
the desired reference temperature and pressure.

Production simulations

The production simulations were carried out at NPT conditions, with the
same parameters described for the NPT equilibration. For the long range
electrostatics, we used the Particle Mesh Ewald (PME) and a cut-off for the
short-range Van der Waals and electrostatic interactions of 1 nm.

7.3 Simulations of the conformational dynamics
7.3.1 Simulations of α1-I domain
The goal of the following simulations is to observe a spontaneous opening
event of the binding pocket between the C-terminal helix and the central
β-sheet of the domain.
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7.3. Simulations of the conformational dynamics

Long simulation

The first simulation that was performed was a sequential and long simula-
tion, starting from the energy minimized and equilibrated system. The evo-
lution of some system properties is shown in figure 7.2. The RMSD of the
protein backbone stays more or less constant throughout the simulation,
while the RMSD of the C-terminal helix increases for about 300 ns and goes
back to the initial conformation. The Leucine 217 is at the middle of the C-
terminal helix and facing inside the hydrophobic pocket. As it can be seen
in the plot, neither the SAS of the residue nor the distance of the C-terminal
helix to the central β-sheet increase, indicating that the allosteric pocket did
not spontaneously open at any point of the simulation.

Simulations from snapshots

Two snapshots of the long trajectory with high RMSD to the starting structure
were used as starting conformations of two other simulations. The idea was
to increase the sampling of alternative conformations reached in the previ-
ous simulation. To select the snapshots, a preliminary SAPPHIRE plot of the
long trajectory was generated, and representative snapshot configurations of
the structure were selected. The SAPPHIRE plot contained two basins, from
which the representative snapshots were located at the original trajectory
times of 210.6 and 292.4 ns.

The evolution of the properties of both simulations is also shown in figure
7.2. As before, the C-terminal helix goes back to the starting conformation
at the end of the simulation, and there are no signs of the opening of the
pocket.

Distributed parallel simulations

If we assume a single free-energy barrier for the transition between the
closed and open helix-7 conformations of the α-I domain, we can compute
the probability of observing an event in our simulation (Paci et al. 2003). The
transition event t is exponentially distributed, with the distribution parame-
ter being the half-life (t1/2), λ or τ:

P(t) ∼ exp(λ) (7.1)

t1/2 =
ln(2)

λ
= τln(2) (7.2)
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7.3. Simulations of the conformational dynamics

Table 7.2: Probability of observing at least one transition event in 40 parallel simulations for
different lengths (columns) and estimated half-lifes (rows).

10 ns 50 ns 100 ns 200 ns
1 us 0.24 0.75 0.94 1.00
10 us 0.03 0.13 0.24 0.43
100 us 0.00 0.01 0.03 0.05

The probability of a transition event t being observed in a single simulation
of time x is computed as:

P(t ≤ x) = 1 − e−λx (7.3)

If we run N independent simulations in parallel, starting from the same struc-
ture but generating random starting velocities, the probability of observing
at least one transition event in any of the simulations is:

P(t ≤ x|N) = 1 − (1 − P(t ≤ x))N (7.4)

Shown in table 7.2 are the probabilities for different estimates of simulation
length and half-life. The probability of observing a transition if the half-life
of the event is in the order of magnitude of 100 µs is very low. However, if it
were in the order of magnitude of 10 µs or lower, the likelihood of observing
such an event with the distributed approach is reasonable.

We ran 32 simulations of 200ns and 2 simulations of 100ns each, for a total of
6.6 µs ofmolecular dynamics simulation. Visual inspection of the trajectories
with the help of similar plots to figure 7.2 indicated that no opening event of
the allosteric pocket at the C-terminal helix had occurred. In spite of that,
the simulations can be used, together with the other trajectories, to generate
a SAPPHIRE plot and study other properties of the conformational dynamics
of the domain.

SAPPHIRE plot analysis

All the trajectories of the α1-I domain, summing up to a total of 8.5 µs of
simulation time, were subsampled to a snapshot every 100 ps and concate-
nated to create the SAPPHIRE plot shown in figure 7.3. The pairwise distance
measure selected to compare snapshots is the RMSD of the Cα atoms of
the C-terminal helix (residue indexes 207 to 221), after superposition on the
Cα atoms of the rest of the protein structure. For the clustering step of the
progress index construction we used a tree with eight levels, a threshold
radius of clusters of 1Å and a coarsest level in the tree of 2Å.
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7. Molecular dynamics simulations of integrin α-I domains

The SAPPHIRE plot contains three metastable states. The first and biggest
one corresponds to the starting configuration of the C-terminal helix, con-
sisting of the closed pocket with a kink in the middle of the helix. The second
basin in the middle of the plot is very similar to the first one, but the kink
in the helix is replaced by a wider helix turn, as it can be appreciated in the
DSSP annotation changes. The third basin at the right of the plot maintains
the helix conformation at the C-terminal end of the helix, but the top part of
the helix unfolds completely. The first and second basins are sampled mul-
tiple times throughout the simulations,while the third one is only sampled
once (the recurrence observed is due to the restart of the trajectory).

7.3.2 Simulation of the αL-I domain
The goal of this simulation is to follow the dynamics of the open allosteric
pocket. We start with the structure of the αL-I with the C-terminal helix in
the open conformation (PDB code 1zoo).
The evolution of the properties of the system is shown in figure 7.4. We can
observe how the allosteric pocket closes after 100ns of simulation: the RMSD
to the closed conformation decreases to less than 2Å, the SAS of the Leucine
facing inside the pocket falls below the 20Å2 and the C-terminal helix gets
closer to the central β-sheet. However, after 300ns, the C-terminal helix
adopts a conformation different to the open or closed pocket ones, since
the RMSD to both of the conformations is high.

7.4 Conclusions
We have not observed a spontaneous transition of the C-terminal helix of
the α1-I domain from the closed to the open pocket conformations in a cu-
mulative sampling of nearly 10 µs of molecular dynamics simulation. There-
fore, the question that initially motivated this study remains unanswered:
we could not determine whether the pocket for allosteric signal modulation
exists in other types of integrins other than the LFA-1. However, we have
observed two other metastable states of the C-terminal helix conformation,
one robustly sampled and another sampled a single time, that could be rel-
evant for further integrin studies.
Two possible reasons could be behind our inability to observe the opening
of the C-terminal helix: sampling and ligand induced fit. Sampling enough
of the conformational space of proteins is challenging because it requires a
lot of computational time. As presented in the previous section, the likeli-
hood of observing slow molecular motions is very small in the time scales
of our simulations. It can be that the length of the individual simulations
is not enough for the time scale of the pocket opening event. The other
possible reason could be that the ligand that binds in the pocket can play
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7.4. Conclusions

Figure 7.3: SAPPHIRE plot of all α1-I domain (1QC5) simulations. Secondary structure (top),
simulation trace (middle) and SAPPHIRE plot (bottom). Trajectory saved every 100ps. Red
horizontal lines in the simulation trace indicate break points, where trajectories are concate-
nated, for a final simulation time of 8.5 µs. The cartoon representations of each basin are
from the snapshots at the minimum value of the SAPPHIRE plot within the basin. 71



7. Molecular dynamics simulations of integrin α-I domains
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accessible surface (SAS) of the Leucine 302. Trajectory saved every 100ps of simulation. An
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a central role in inducing the pocket opening. This would challenge our as-
sumption that spontaneous transitions between the conformations happen,
but it would be consistent with previous molecular dynamics studies that
could not see the transition without the use of restraints and our obser-
vation of the rapid pocket closing of the αL subunit in the absence of the
ligand. Therefore, an alternative hypothesis could be that, in solution, the
pocket opens only in the presence of the ligand.

In the future, an enhanced sampling technique could be used to sample
a bigger fraction of the conformational space of the C-terminal helix. One
option could be the Progress Index-Guided Sampling (PIGS) (Bacci, Vitalis,
and Caflisch 2015), which is an automated method to do what we manually
recreated by restarting two simulations from two high RMSD snapshots of
the trajectory. Another option could be umbrella sampling with an initial
targeted molecular dynamics simulation to force the opening of the pocket.
Finally, introducing small hydrophobic molecules near or inside the pocket
could be tried to recreate the exact conditions of the ligand binding at the
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7.4. Conclusions

pocket and allosteric inhibition.

73





Appendix A

Publications

A.1 Assessment of protein assembly prediction in CASP12

The results obtained during the assessment of quaternary structure predic-
tion models in the CASP12 experiment were presented at the CASP12 meeting
in Gaeta, Italy. A publication will be submitted as part of a special issue on
CASP12 in Proteins. This will cover the methods and results presented in
chapters 3, 4 and 5.

A.2 Finding valid quaternary assemblies in protein crys-
tals

The new features and improvements of the EPPIC software and web applica-
tion, including the part described in section 3.2, will be published following
the official release, scheduled for the end of March of 2017. The publication
is currently in preparation.

A.3 BioJava 5

The contributions to the open-source BioJava library since version 4, includ-
ing the algorithm described in chapter 4 together with the contributions
made by other developers, will be presented in a common publication fol-
lowing the release of the version 5 of the library, scheduled for the first half
of the year 2017.
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A. Publications

A.4 Exploring internal symmetry and structural repeats
with CE-Symm

Although this work has not been presented in this thesis, since it was carried
out during an earlier internship also at Dr. Capitani's lab, we are preparing a
new research article of the CE-Symm tool (Myers-Turnbull et al. 2014), used
to analyze internal symmetry in protein structures. A modification of the
algorithm was used to analyze the symmetry deviations of the quaternary
structure models, presented in section 5.3.
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