Diss. Nr. 4835

Optimales Rangieren nach Turnieren

ABHANDLUNG
zur Erlangung der Würde eines Doktors der Mathematik
der
EIDGENÓSSISCHEN TECHNISCHEN HOCHSCHULE ZÜRICH

vorgelegt von
WILLI MAURER
dipl. Math. ETH
geboren am 24. November 1941 von St. Gallen

Angenommen auf Antrag von
Prof. Dr. H. Bühlmann, Referent
Prof. Dr. P. Läuchli, Korreferent

$$
\text { Juris Druck }+ \text { Verlag Zürich }
$$

1972

Summary

The thesis grew out of the attempt to show the optimality (in a decision theoretical sense) of a ranking procedure after knockout tournaments which J. A. Hartigan proposed 1966 in his paper "Probability completion of a knockout tournament" (Ann. Math. Statist. 37, 495-503). (He ranks the players according to the mean of the ranking vectors $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ consistent with the acyclic tournament outcome, where $r_{i}=k$ means, that player number i has been assigned to the k -th place in the chosen ranking.)

The mathematical model therefore required a more rigorous definition of things like "game", "tournament plan" and "outcome of a tournament" than it has been done so far. Using graph theoretic language, a "tournament plan" P is interpreted as a mapping of the set \mathcal{T} of all complete digraphs T (with the n players as vertices) into the set D of all digraphs D of order n, such that a) $\rho(T) \subset \mathbb{T}$ and b) $\rho(T) \subset T^{*} \Longrightarrow P\left(T^{*}\right)=P(T)$ for all $T, T^{*} \in \mathcal{T}$. The image $\rho(T)$ of \mathcal{P} applied on T is called a "tournament outcome of \mathcal{P} ". A plan $\bar{\rho}$ is called "equivalent" to the given plan \mathcal{P}, if there exists a permutation of the players (vertices) which transforms all outcomes $\mathcal{F}(T), T \in \mathcal{T}$, into the outcomes $\bar{P}\left(T^{*}\right), T^{*} \in \mathcal{J}$. A plan \wp is called "simple" if all possible outcomes of ९ are isomorphic; they then are acyclic too. (E. g. symmetric knockout plans on 2^{m} players are equivalent and simple.) There exist relations between the number of different plans equivalent to a simple plan P and the number of orders consistent with an outcome of P.

The model describing the ranking problem is the following: One assumes a) that out of a class K of equivalent plans with only acyclic outcomes a plan \mathcal{P} is chosen at random, b) that the relative "strength" of the players is given by an unknown ranking vector r and finally c) that the outcome $F=\mathbb{P}\left(T_{r}\right)$, where T_{r} is the transitive complete digraph representing r, can be observed.

The decision problem then is determined by:
$S_{n}:=\{r\}$, space of all ranking vectors r : parameter space, $\overline{\mathcal{F}}:=\left\{F=\mathbb{P}\left(\mathbb{T}_{\mathrm{r}}\right) ; P \in K, r \in \mathrm{~S}_{\mathrm{n}}\right\}$, space of the outcomes : sample space,
$S_{n}=:\{d\}:$ decision space and the loss function $L(d, r), d, r \in S_{n}$, with $L: S_{n} \times S_{n} \longrightarrow \mathbb{R}_{1}^{+} \cup\{0\}$.

Given a prior distribution $p:=\left(p_{r} ; r \in S_{n}\right)$ and an outcome F
with $R(F)$ the set of all ranking vectors consistent with F, a ranking vector d^{*} is a Bayes solution iff

$$
\sum_{r \in R(F)} L\left(d^{*}, r\right) p_{r} \leqslant \sum_{r \in R(F)} L(d, r) p_{r} \quad \text { for all } d \in S_{n}
$$

Making two obvious assumptions on L concerning monotony and invariance, one can show that $d^{*} \in R(F)$. If L furthermore is separable i. e. $L:(d, r) \longmapsto \sum_{i=1}^{n} f\left(d_{i}, r_{i}\right)$ then there exist "Branch and Bound" procedures for the search of d^{*} and finally if the matrix (f) is of a special form, d^{*} can be found by means of a generalisation of Hartigan's procedure (e.g. if $f(i, j):=v(i)(i-j)$, v monotonically increasing, then d^{*} is the "Hartigan solution" itself.)

Aclass of loss functions, different frome the separable one, leads to a generalisation and unification of procedures which are already well known in order to rank the players in Round Robin tournaments as e. g. the "row sum"-procedure and Slater's principle of "minimum inconsistencies".

Finally an approach is made to find an optimum "seeding" of the players (i. e. an optimum choice of a plan \mathcal{P} out of a given class K) if prior information on the players' strength is available and a ranking procedure is prescribed.

