Die Klippengruppe Buochserhorn-Musenalp und ihre Unterlage

Von der

Eidgenössischen Technischen Hochschule in Zürich

zur Erlangung der

Würde eines Doktors der Naturwissenschaften

genehmigte

Promotionsarbeit

vorgelegt von

H. Knecht, dipl. Fachlehrer

Referent: Herr Prof. Dr. H. Schardt Korreferent: Herr Prof. Dr. L. Rollier

Nr. 373.

BASEL 1925 Buchdruckerei Emil Birkhäuser & Cie.

Die Klippengruppe Buochserhorn-Musenalp und ihre Unterlage.

Von H. KNECHT (Zürich).

Mit 4 Tafeln (X-XIII) und 8 Textfiguren.

Inhaltsverzeichnis.

Vorwor	t					:	290
I. Ei	nleitung						291
	1. Abgrenzung und orographische Orientierung					:	291
	2. Bodengestaltung (Quartärbildungen)						291
•	3. Geschichte der geologischen Erforschung						
	4. Ausführung der vorliegenden Arbeit						302
II. Di	e Klippen (Das Buochserhorn-Musenalpge	e bi	iet)				304
A.	Stratigraphie						304
	1. Obere Trias						304
	2. Rhät-Unterer Lias p. p						
	3. Unterer Lias p. p						307
	4. Mittlerer und Oberer Lias p. p						307
	5. (Oberster Lias?)-Unterer und Mittlerer Dogs	ger					308
	6. Oberer Dogger-Unterer Malm						308
	7. Malm p. pUntere Kreide			-			310
	8. Obere Kreide						311
В.	Tektonik						
	Detailbeschreibung (Lokaltektonik und -stratigra						
•	1. Der S-Schenkel der Buochserhornmulde	-r-		•	:		312
	a) Der südwestliche Abschnitt						
	b) Der mittlere Abschnitt						
	c) Der nordöstliche Abschnitt	•			Ĭ		318
	2. Der N-Schenkel der Buochserhornmulde und d						010
	antiklinale						321
	3. Die Alpelischolle						
	4. Die Bleikischolle						
	5. Die Musenalpfluhscholle						
,	6. Die Musenalpgipfelscholle	•		•	·	·	326
D.	Zusammenfassung	•	• •	•	•	•	327
	1. Tektonik	•	•	•	•	•	327
	2. Stratigraphie	•	• •	•	•	•	328
	3. Die Beziehungen zu den benachbarten Klipp	en.	• •	•	•	•	331

III. Die Unterlage (Das Brisen-Haldigratgebiet):
A. Stratigraphie
B. Tektonik
C. Die Beziehungen zwischen Klippen und Unterlage 340
IV. Die Beziehungen der Buochserhorn-Musenalpgruppe zu den übrigen Gebieten der Klippendecke 341 1. Stratigraphische Beziehungen
Tabelle I. Stratigraphisches Sammelprofil des Buochserhorns 344 Tabelle II. Stratigraphisches Sammelprofil der Bleikialp und Musenalp 344 Tabelle III. Stratigraphisches Sammelprofil des Stanserhorns 344 Tabelle IV. Stratigraphisches Sammelprofil des Arvigrats und Miseren-
grats
Literaturverzeichnis
Tafeln.
X. Tektonische Karte der helvetischen Unterlage des Buochserhorn mit Deckblatt: Tektonische Karte der Unterwaldnerklippen.
XI. Die Form der Giebelschichten-Basisfläche in der Umgebung de

Vorwort.

XIII. Geologische Karte der Klippengruppe Buochserhorn-Musenalp.

Buochserhorngipfels.

XII. Feldkarte der Gipfelregion des Buochserhorns.

Durch Herrn Prof. Dr. H. Schardt wurde ich zu vorliegender Arbeit veranlasst. Nach einer vorläufigen Orientierung im Sommer 1921 begann ich mit der Kartierung des Gebietes im August und September 1922. Im Mai bis September 1923 wurde die Feldarbeit zu Ende geführt und im darauffolgenden Winter ausgearbeitet. Als topographische Unterlage wurden Messtischblätter im Masstab 1:5000 benützt (Buochserwald und Sammelgebiet des Lielibaches), oder wo solche fehlten, die auf diesen Masstab vergrösserte Siegfriedkarte. Auf die Untersuchung des gesamten Gebietes verwendete ich 138 Beobachtungstage, wovon 117 Tage auf das nördliche Teilgebiet die Klippen entfallen.

Herrn Prof. Dr. H. Schardt und allen, die meiner Arbeit Interesse entgegenbrachten, spreche ich hier meinen besten Dank aus; insbesondere auch Herrn Prof. Dr. L. Rollier für die freundliche Hilfe beim Bestimmen der Fossilien und Herrn Dr. A. Tobler für die Überlassung seiner Feldbücher.

I. Einleitung.

1. Abgrenzung und orographische Orientierung.

Die Grenzen des Untersuchungsgebietes sind:

im N: der Vierwaldstättersee, im W: die Engelberger-Aa,

im S: Seklisbach-Haldibach-Brisen, im E: Schimberg und Lielibach.

Dieses ca. 49 km² grosse Gebiet ist dargestellt auf Sektion 4, Blatt XIII, No. 382 der schweizerischen Kartenwerke.

Morphologisch und geologisch zerfällt es in zwei Teilgebiete, welche im E-W verlaufenden Tale des Buchholzbaches aneinander grenzen:

- 1. im N das Gebiet der Klippen (ca. 29 km²); beherrscht vom Buochserhorn, dessen Gipfel ungefähr die Form einer dreiseitigen Pyramide aufweist. Die Musenalp, ein ringsum steil abfallendes Plateau, liegt in der Verlängerung des südöstlichen Buochserhorngrates;
- 2. im S das Gebiet des Brisen, mit dem dachförmigen Haldigrat; ein Ausschnitt der Oberbauen-Brisenkreidekette.

2. Bodengestaltung (Quartärbildungen).

Am Fuss der Klippenberge häufen sich gewaltige, zusammenhängende Schuttmassen. Sie bedecken fast dreiviertel des nördlichen Teilgebietes. Die Form der Berge scheint in ihren Hauptzügen schon vor der Risseiszeit herauserodiert worden zu sein, denn die mächtigen Moränen der letzten und vorletzten Vergletscherung erfüllen die Hohlformen derselben (Rübigraben, Unter-Spis, Nieder-Rickenbach). Als Nunataker mag der Gipfel des Buochserhorns nur wenige hundert Meter aus den Eismassen hervorgeragt haben; denn Moränenrelikte finden sich noch bis auf 1400 m Meereshöhe (20; 53)1). Kristalline Erratika fand ich im Buochserhorngebiet noch auf 900 m Höhe (oberhalb Sassi; im Rübigraben). Die weit ausgebreiteten Moränenmassen, welche das hügelige Wiesenland am N- und E-Fuss des Buochserhorns (zwischen Buochs und Büren) bilden. bezeichnen die Stelle, wo einst Reuss- und Engelbergeraagletscher zusammenflossen. Am Ennerberg sind die Glazialablagerungen wohl geschichtet, mit 150-250 NE fallend; im allgemeinen liegt aber ungeschichtetes Moränenmaterial vor.

^{1) (20; 53) =} Nummer und Seite des Literaturnachweises; vgl. p. 343.

Einzelne Moränenwälle lassen sich als kleine Hügelzüge oder Terrassen noch erkennen. Häufig sind sie aber unterbrochen und verschwemmt. Sogar charakteristische Talformen durchschneiden den Glazialschutt. Das schönste dieser Gebilde ist das Teuftal; eine breit "U-förmige", gewundene, heute trockene, ca. 2 km lange Talrinne. Auch östlich unterhalb Obersassi tritt der Abschluss eines solchen Tälchens auf. In dieses letztere mündet von rechts her (bei 600 m ü. M.) der Träschlibach ein; die breite U-Talform ist aber auch von hier an abwärts vorläufig noch erhalten geblieben. Der steile Talabschluss in der Nähe der Auflagerungsfläche der Klippen, das Fehlen eines Einzugsgebietes und von Nebentälern, lässt vermuten, dass diese Rinnen von Klippenquellbächen herrühren, welche später versiegten.

Die rezenten Wildbäche schaffen sich steile "V-förmige", enge Rinnsale und bildeten erhebliche Schuttkegel (Buoholzbach, Delta des Träschli- und des Lielibaches). Die beiden Klippenquellen (bei Ursprung und Ober-Sassi) besitzen keine Täler. Der Ursprungbach fliesst über einen bedeutenden Tuffkegel. Grössere Tuffmassen finden sich auch am S-Hang des Hüetlerentobels bei ca. 900 m ü. M.

3. Die Geschichte der geologischen Erforschung.

A. ESCHER VON DER LINTH war wohl der erste, der Notizen über die lokalgeologischen Verhältnisse des Untersuchungsgebietes gemacht hat. Auf seinen äusserst zahlreichen Reisen berührte dieser Forscher mehrmals diese Gegend.

Als er, im Oktober 1839 von Kriens her über Stans nach Engelberg hinauf wanderte, fiel ihm die helle, schroffe Kalkwand auf, welche sich als mächtiger Felsabsturz hoch oben unter dem N-Grat des Buochserhorns hinzieht. Von der W-Kante des Berges an, fällt dieses Felsband gegen S rasch ab und nähert sich oberhalb Büren-Dallenwil schon sehr dem Talboden, um dann jenseits des Buoholzbaches unter dem Namen Wandfluh wieder langsam anzusteigen. Nach dem Verlauf dieser Kalke erschien das Tal des Buoholzbaches als typisches Synklinaltal. Es enthält in seinem Kern junge tertiäre Flyschgesteine, also Sand- und Mergelkalke mit Fucoïden; ferner Dolomit, bunte Mergel, Rauhwacke und Gips (wie ein kleiner Abstecher in das, die Mulde gegen W fortsetzende Steinibachtal ergab). Das Buochserhorn liess sich demnach als ein Antiklinalgipfel einer zwischen Brisen und Bürgenstock sich erhebenden Kreidefalte deuten.

Zwei Jahre später traf es sich, dass Escher wieder, diesmal zusammen mit Studer und Désor dieses Gebiet durchquerte, um von Beckenried nach Ober-Rickenbach zu gelangen. Beim Aufstieg über Unterspis-Alpelen zeigte sich recht wenig Anstehendes; nur unten in dem Bachtobel die grauen Flyschmergelschiefer und dann oben bei Alpelen neben Dolomiten die einförmigen, grauen flyschähnlichen, kieseligen Sandkalke des Buochserhorn-Osthanges. Gross war aber das Erstaunen, als sich auf der Höhe des Bleikepässchens unvermutet ein helles, schrattenkalkartiges Gestein (Urgon?) fand. Die darunterliegenden flyschähnlichen Sandkalke konnten demnach nicht dem Flysch (Tertiär) angehören, denn erst oben auf dem Gipfel der Musenalp fanden sich die bunten Mergel und Rauhwacken, d. h. die erwarteten Gesteine des Kernes der Niederrickenbach-Wiesenbergmulde, deren Axe also sehr rasch gegen E anzusteigen schien. Umsonst aber suchten sie über dem hellen schrattenkalkartigen Kalke der Musenalp die Gesteine des Gault und Seewerkalkes, welche ja am gegenüberliegenden Hang über dem Schrattenkalk des Brisen typisch ausgebildet sind.

Im Jahre 1859 wird Escher durch eine forstwirtschaftliche Exkursion (von Stans über Niederrickenbach-Emmetten nach Stans zurück) veranlasst, dem Südfuss der Musenalp zu folgen. Da bemerkt er, dass die Seewerschiefer und der Flysch unter die Kalke der Musenalp einfallen. Sonderbar! Dann ein Vorkommnis von Flysch im Lielibachtobel, tief unterhalb den viel älteren, den normalliegenden schrattenkalkähnlichen Gesteinen der Musenalp; dasselbe Rätsel! "Wie die Flyschmulde von Rickenbach (gegen E) endet, ist mir nicht recht klar . . ", sind Eschers letzte Worte über diesen Gegenstand.

B. STUDER hat seine Ansicht über die geologischen Verhältnisse des Buochserhorngebietes in seiner "Geologie der Schweiz" (2; 175) kurz angedeutet. Das Buochserhorn schien ihm eine schwach S-fallende Platte von Neocomkieselkalk, die Musenalp eine steilstehende Platte von Schrattenkalk zu sein. Beide stellen nach seiner Ansicht zusammenhanglose Schollen dar, welche zwischen den ausgedehnten Kreidemassen von Brisen und Bürgenstock liegen, während ihre Bruchflächen von Rauhwacke und bunten Mergeln begleitet sind.

Studer vertritt noch die zu jener Zeit herrschende Ansicht vom wirren Schollenbau der Kalkalpen. Auf das Klippengebiet angewendet, erscheint sie zufällig richtiger, als der ihr überlegene Gedanke Eschers vom Faltenbau der Alpen. Grundlegend für die weitere Erforschung des Buochserhorngebietes sind aber nicht die genannten Detailbeobachtungen dieser beiden For-

scher, sondern ihre Förderung der Alpengeologie im allgemeinen, vor allem ihre Anregung zur Herstellung einer geologischen Karte der Schweiz im Masstab 1:100.000; ein Unternehmen, welches seinerseits wieder zur systematischen Erforschung der Geologie der ganzen Schweiz veranlasste.

F. J. KAUFMANN machte im Jahre 1871 mehrere private Exkursionen in die Gegend von Buochs und Beckenried. Er hielt sich meist nur am Fusse des Buochserhornes auf und besuchte die Tobel des Lieli- und Träschlibaches. Die gewaltigen Moränen- und Gehängeschuttanhäufungen liessen ihn ausser Flyschgesteinen wenig Anstehendes finden. "Weisse schrattenkalkähnliche Gesteine, jedoch ohne Miliolithen und oft jurassischen Kalken gleichend", welche kleine Abstürze am bewaldeten E-Hang des Hörnli bilden, liessen weder in der Nähe noch aus der Ferne ihre Schichtlage erkennen. Erst auf einer letzten Exkursion nach dem N-Grat des Buochserhorns beobachtete Kaufmann, dass in der Umgebung von Oberspis dunkle Kieselkalke, vermutlich Neocom, zum E-Hang des Berges parallel liegen. An dem hellen Felsband, wohl Schrattenkalk, welches am W-Hang unterhalb diesem Neocom liegt, konstatiert er dasselbe SE-Fallen. Wie er aber auf dem schmalen Grat weiter gegen das Buochserhorn ansteigt, findet er nochmals eine weisse schrattenkalkähnliche Fluh (Alpeli), ähnlich der unteren. "Was ist nun aber das ziemlich breite grasige Band, welches sich zwischen diesen beiden Fluhbändern hinzieht?", fragt sich Kaufmann. Nebel und Regen zwingen ihn heimzukehren und Jahre vergehen, bis ein weiteres Ereignis von neuem seine Aufmerksamkeit auf das Buochserhorngebiet lenkte.

Escher, der neben Kaufmann, Moesch und Gutzwiller an der geologischen Bearbeitung des Blattes IX der Dufourkarte beschäftigt war, starb (1872), und Kaufmann erhielt den Auftrag, in die entstandene Lücke einzuspringen.

Es schienen namentlich an den Mythen noch Aufnahmen notwendig, um Eschers Notizen zu ergänzen. Kaufmann war durch seine Arbeiten am Pilatus, Rigihochfluh usw. mit der Stratigraphie der alpinen Randzone vertraut geworden. Bei der Untersuchung der Mythen, stösst er nun auf so viel Unterschiede in Gesteinscharakter und Schichtfolge gegenüber den nahen Kalkketten, dass er am Kreidealter dieser Gesteine zu zweifeln beginnt. Umsonst sucht er nach Fossilien um Gewissheit zu erlangen. Schliesslich erinnert er sich, dass ihm auf seinen Exkursionen anno 1871 im Buochserhorn-Klewengebiet schrattenkalkähnliche Gesteine aufgefallen waren, welche den hellen Mythenkalken ähnlich waren. Da ihm die Alp Hüetleren

am Buochserhorn als ergiebiger Fundort geschildert wurde und ihm vorgelegte belemnitenführende Gesteinsproben von dort mit dem schwärzlichbraunen Mythenkalk einige Ähnlichkeit zeigten. entschloss er sich, dort die Lösung der Frage zu suchen. Sein erster Besuch (1874) galt Kaplan Joller in Dallenwil, einem eifrigen Sammler. Diesen hatten die Älpler auf die sonderbaren "Hüetleren-Gigel", (Belemniten) aufmerksam gemacht, die in den Baugruben der Hüetlerenalphütten (1844) zum Vorschein gekommen waren. Kaplan Joller hatte dann diese Fundstelle aufgesucht und noch viele andere Fossilien gefunden. Diese Sammlung (Verzeichnis derselben s. 9:65 und 66) zusammen mit ergänzenden Funden Kaufmanns wurde P. de Loriol zum Bestimmen übersandt und ergaben, dass die Hüetlerenschichten zur Zeit des mittleren Lias abgelagert worden seien. Eine Terebratula insignis aus den hellen Riffkalken der Musenalp liess jene Gesteine als oberjurassisch erkennen.

Dem grossen Eindruck, den diese umwälzende Entdeckung in Geologenkreisen hervorrief, verleiht B. Studer in einem Brief (vom 13. April 1874) auf Kaufmanns diesbezügliche Mitteilung folgende Worte: "... Ihr Gedanke, den ganzen Mythen, Buochserhorn und Stanserhorn aus der Kreide, den Jurassiern einzuschliessen ist mir schreckbar, denn auf die genannten Gebirge würde sich diese Annexion nicht beschränken...". Die weiteren Folgen solcher Annexionen waren noch unabsehbar, doch mochte Studer vielleicht ahnen, dass sie geeignet waren, die Ansichten über den Bau der Alpen, die er an der Spitze der Geologen seiner Zeit sich errungen hatte, ins Wanken zu bringen.

Durch den Erfolg ermutigt, verbrachte Kaufmann noch einige Tage im Buochserhorngebiet. Er erkannte, dass die Rauhwacken, Quarzite und roten Mergel des Musenalpgipfels einer normalen, annähernd horizontalliegenden Riffkalkplatte aufliegen. Aus diesem Grunde konnte er seinem Kollegen Moesch, der, vom Triasalter dieser Gipfelschichten überzeugt. ihn während ein paar Tagen begleitete, in dieser Frage nicht vorbehaltlos zustimmen. Lieber hätte er jene roten Mergel mit den roten Kalkschiefern des Grossmythengipfels und den ihnen ähnlichen Schichten, welche er am N-Hang des Buochserhorns entdeckt hatte (3; 19. Juli 1874 — 5; 12), verglichen. Er wagte aber nicht, diese Vermutung auszusprechen, da er in den roten Musenalpmergeln vergebens nach Foraminiferen gesucht hatte. Die Tektonik des Buochserhorns blieb ihm vollends ein Rätsel. Die vom Engelbergertal (zwischen Stans und Wolfenschiessen) aus sichtbare Malmfelswand (Giebelfluh) schien, wie die darüberliegenden Trias- und Lias-Schichten und

der von Triaslagern begleitete Malmzug von Bleike, welcher sich zwischen Buochserhorn und Musenalp einschiebt, einer einheitlichen gegen S einfallenden Platte zu entsprechen. Die Beziehungen der Gesteine dieser seltsamen Gebilde zu den umliegenden Gesteinen der Kreideketten erklärt Kaufmann, indem er darauf hinweist, dass alle diese fünf "Jurassier" (Mythen, Buochserhorn, Stanserhorn — — — — und Rotspitz) ungefähr in einer Geraden, parallel zum allgemeinen Streichen der Alpen liegen, mit folgenden Worten (5; 31): letzteres scheint auf einen einstigen Zusammenhang zu deuten, wohl etwa ein oder mehrere jurassische Ketten, die wir als Bindeglieder zwischen den Juraschichten der Walenseegegend und denen des Stockhorngebirges (Préalpes) anderseits auffassen können. Die nachfolgenden Krei e- und Eocänbildungen hatten alsdann den grösseren Teil dieser Ketten bedeckt, nur unsere Inseln schauten als stumme Zeugen der grossartigsten Veränderung über das Kreidemeer und die tertiären Gewässer empor; selbst die letzte Hebung der Alpen haben sie überstanden.

Vermutlich ist dies Kaufmanns ureigenster Gedanke und unabhängig von Studers "nördlichem Randgebirge". Dieser sah sich zu der Annahme von "Gebirgsgruppen, die früher den N-Rand der Alpen, wie jetzt noch den S-Rand begleitet haben müssen und durch das später erfolgte Zusammenpressen und Überschieben der Kalkgebirge oder durch ihre eigenen Trümmer bedeckt worden sind (2; 359)", veranlasst, um die Herkunft der Gerölle südalpinen Charakters in den Flyschbreccien und in der miocänen Nagelfluh zu erklären. Kaufmann dagegen sucht die Strandbildungen seiner Jurassierinseln in deren unmittelbaren Umgebung und bringt sie in keinen Zusammenhang mit

der miocänen Nagelfluh.

C. Moesch führte die Untersuchungen Kaufmanns weiter und nahm das Gebiet im Auftrag der Schweiz. geol. Kommission im Masstab 1:100.000 geologisch auf. Auch Moesch ist der Ansicht, dass die Jurassier Kaufmanns Überreste eines einst zusammenhängenden Gebirges sind. Die stratigraphischen Verhältnisse erinnerten ihn an den östlichen Schweizerjura. Hier wie dort beobachtet er die Anwesenheit von bunten Triasmergeln und fossilreichem Lias, das Fehlen von Kreidegesteinen. "Da von den älteren Kreidegesteinen nichts bekannt ist, muss angenommen werden, dass die Wangschichten den Malm überlagern; eine Kontaktstelle ist bisher nicht aufgefunden worden (9; 100)". "Resultatlos verlässt man die tiefausgespülten Schluchten am N-Fuss der Musenalp. Anstatt hier die erwartete Anlagerung von Eocängesteinen zu finden, steht man im losen

Schutt der durch die Brandung von den Klippen losgelösten Trümmer. Erst weit unten am Berghange, in der wilden Lielibachschlucht finden sich eocane Schiefer. Das Eocan in dieser Entfernung fällt aber für die Kontaktfrage nicht mehr in Betracht, indem seine Niederschläge bereits ausserhalb des Uferstriches liegen (9: 78)."

Wie im Jura, so schien auch hier Faltenbau vorzuliegen, denn am Buochserhorn werden E- und W-Hang, selbst ein Teil des N-Hanges von Schichtflächen gebildet. Die Trias auf dem Musenalpgipfel liess sich ebenfalls nur als Kern eines aufgebrochenen kuppelförmigen Gewölbes deuten. Wie ein Mantel schien die normal liegende Folge der jurassischen Schichten um die mächtigen Keuperkerne dieser beiden Gebirgsstöcke gelegt. "Und rings an den Flanken dieser Gewölbe liegt der lose Schutt, dessen Ablagerung in Form steiler terrassenförmiger Wellen vermuten lässt, dass er schon unter dem Wasserspiegel des unteren Eocänmeeres abgelagert wurde (9; 79)." Die starke Verfaltung der Kreideschichten im S des alten jurassischen Klippengebirges mochte von der Stauchung herrühren, welche diese Sedimente zur Zeit der tertiären Auffaltung der Alpen an dessen starren Rumpf erfuhren.

U. Stutz, aufmerksam gemacht durch eine Publikation Kaufmanns (4; 390), unternahm eine Exkursion ins Buochserhorngebiet (im Sommer 1878), um sich den Hüetlerenlias anzusehen. Bei dieser entdeckte er den Fundort von Rhät-

fossilien an der untern Grenze der Hüetlerenalp.

Schon seit Jahren hatte sich Stutz mit besonderem Interesse dem Studium der "Kontaktzone" zugewandt, jenem ununterbrochenen Band von Triasbildungen, das sich längs der "aus kristallinen Gesteinen bestehenden Zentralmasse der Alpen" hinzieht, diese von dem "nördlichen Kalkgebirge" trennend. Als er vernimmt, dass am N-Rand der Kalkzone eine Reihe von Jurassiern auftreten, angeordnet in der Streichrichtung der Apen und begleitet von Trias-Sedimenten, scheint ihm dies auf einen grossartigen Zusammenhang zu deuten. Möglicherweise liess sich der Triaszug der Vierwaldstättergegend jenseits des Brienzerrothorns verfolgen und mit der Triaszone des Thunersees und dann weiter, durch das ganze Oberland hindurch mit dem grossen Triasbecken von Bex verbinden. Dann würde sich am Aussenrande der Kalkalpen ein ebenso konstantes Keuperband nachweisen lassen, wie am Innenrand; also würde die Gesamtheit der aus Jura-, Kreideund Eocänbildungen bestehenden, durch Absenkungen in zahllose Schollen zerlegten nordseitigen Kalkalpen in einer gewaltigen Triasmulde liegen.

7	Senennung der	Schichten des L	Benennung der Schichten des Buochserhorn-Musenalp Gebietes inden Jahren 1841 bis 1924.	Musenalp Gebie	etes in den Jahre	n 1841 bis 1924	
	Escher u. Studer Kaufmann	Каигтапп	Stutz	Moesch	Tobler	Kneth!	
Ξ	1			(Birmensdorfer harizant)	Couches rouges	Couches rouges	Н
ر ر		Seewerähnliche Kalke (ob. Malm!)		Flechenhalh (*Janitorkalk) (Malm)	Flechenkalk (Neocom)	Stockhornkalk	ď
5	Diceraskalk (urgon) =Rudistenkalk (urgon)	Schraftenartige Kalke (-mythenartig) (bb. Malm)	Hinghauser Kalk (* Auseralpter Kalk) (Corallien, meiser Lura)	Jnwaldkalk (Timon)	Riffkalk (* Feisenhaik) (*Châlelkalk) (ob. Maim)	Felsenkalk	ם
				Murchisonae Schichten	C. Alemadolomico (Oxford)	Studfluhschichten	_
44	Faule Platten Spatangenerage (Wexcom)	Wang-Kieselartige Schiefer	Wedelsandstein (braunerJura)	Oxfordschiefer Parkinsoni Schichten	P!lanzensandkalk (- finderalpschichten)	Rinderalpschichtender	L.
لــــــــــــــــــــــــــــــــــــــ	(Neocom ?)	Aptartiges Gestein	Siebeneichersandslein ("Giebeichein) (braunerJuna)		Giebelschichten (eb.Dogger)	Giebelschichten g	
L			Unterer Risestein (brauner Jura)	Posidonien-Schiefer	Cancellophycos - Dogger (• Klausschichten)	Unte	<u></u>
	J		ŀ	Angulatus-Horizont po	Spishalk Hensigs	Spishalk	
ع	1				Posidonienschieler (Toarcien)		٥
_ د	1	Gaultáhnliches Gestein = Hüetteren Gestein (mitt. Lias)	Belemnitenkalk (Lias)	Ягіетел Катке	Hüellerenschichten (mitt.Lias)	Hüetlerenschichten	2
Ü	1			Planorbishorizonf	Hettangienoolith	Рестепнати	ပ
	-				Rhatsandstein	Müllerbodensandstein	
8	1	_	Ostreenmergel		तिरुड्ड hallelojahsumssma finalelojahsumssma	ခိုင် မြောက်မျှကျော်များကယ်အကျ	80
	-	_		Kössenerschichten (Anät)	Яћа! На 14е	S a syleyuallection	
Н	Flysch (Terliär)	(Keuper ?od. Eocán ?)	(Trias)	Vans Kalk (Triasu.mät) Keupermergel	Rötiartiger Dolomit (Abrias) Bunte Mergelu Rauhwacke	Bunte Mergel u. Schichten Schichwacke	Paihlas
		Artimos					l

Fig. 1.

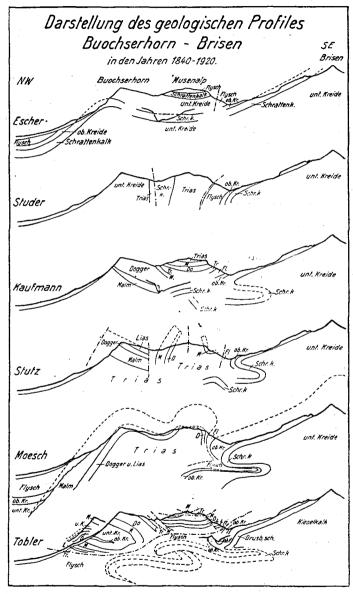


Fig. 2.

Masstab 1: 100 000

Das "Keuperbecken am Vierwaldstättersee" schien allerdings einige Unregelmässigkeiten aufzuweisen. Während an den Mythen die Keupersedimente wirklich am Alpenrand liegen. tauchen weiter westlich merkwürdigerweise als Grenzwall gegen die Molasse S-fallende Kreideschichten auf. Dadurch scheinen die übrigen "Keupergruppen" in einer Kreidemulde zu liegen. "Es versteht sich von selbst, dass die beiden Kreideränder unter dem Keuperbecken hindurch nicht als Mulde zusammenhangen können, sondern bloss beiderseitig gegen dieses Becken eingesunken sind." Fast immer halten sich die Keuper- und Juragruppen hart an die N-wärts einfallenden Schichten der dritten Kalkkette (Frohnalp-Brisen), im übrigen aber weicht ihr Bau gänzlich von demjenigen der umgebenden Kreideketten ab. Jedes der drei Reviere (Mythen, Buochser- und Stanserhorn, Giswilerberge) bildet eine Gruppe von kleineren Gebirgsstöcken, von denen jeder als unabhängige, durch Rauhwacke von den andern getrennte, sehr verschobene Scholle erscheint.

Der Buochser-Stansergypsstock zerfällt geologisch in drei Schollen: Klewenstock, Musenalp und die Kette Buochser-Stanserhorn. An der Musenalp sind infolge Auslaugung des unterteufenden Gypses die Juraschichten allmählich nach allen Seiten hin abgerutscht, bis sie in den weniger mobilen Keupermergeln und Sandsteinen sitzen blieben. So bilden sie heute eine Felsenkrone um das riesige Keuperhaupt des mächtigen Gypsstockes. Die Buochser-Stanserhornscholle ist eine bei der Senkung umgekippte und nun verkehrt gelagerte, langgestreckte Sedimenttafel, welche nachträglich noch von der Engelbergeraa

entzweigeschnitten wurde.

Dieser zweiten Geologengeneration, Kaufmann, Moesch und Stutz, kommt das Verdienst zu, die Existenz von Triasund Jurasedimenten inmitten jüngerer Gesteine am N-Rand der Alpen entdeckt und in den Umrissen erforscht zu haben. Die verschiedenen Gesteine sind durch sie — bis auf einige wenig verbreitete Bildungen — bekannt geworden. Im Detail gingen die Ansichten über den Gebirgsbau und das Alter der Gesteine noch stark auseinander. Noch allgemein galt aber die Ansicht, dass die Klippen älteren, triasischen und vortriasischen Sedimenten aufruhen, dass sie "wurzeln."

A. Tobler. Jahre eifrigen Forschens vergingen ehe man erkannte, dass die Klippen "wurzellose" Massen seien, unterlagert von Wildflysch, aufgeschoben auf die Kreideschichten des Alpenrandes. Von diesem Zeitpunkt an konnte man sie genetisch nicht mehr von den exotischen Blöcken im Flysch trennen, denen sie auch faciell glichen. Das "Klippengebirge"

Kaufmanns und Moeschs und das "Randgebirge" Studers wurden synonym. Später identifizierte man es mit dem "vindelicischen Gebirge", welches Gümbel supponiert hatte, um die am N-Rand der bayrischen Alpen auftretenden faciellen und tektonischen Discontinuitäten zu erklären. Dieses vindelicische Gebirge schien in der Westschweiz (Préalpes romandes) als zusammenhängende Gebirgsmasse noch erhalten geblieben zu sein, während man es östlich des Thunersees versunken und von seinen eigenen Denudationsrelikten bedeckt glaubte. Als Zeugenberge waren hier nur noch die schollenartig dem Flysch aufliegenden Klippen und Blöcke zu finden; Erosionsrelikte einer, von dem nördlich vorgelagerten vindelicischen Gebirge gegen S, auf helvetisches Gebiet aufgeschobenen Gesteinsdecke (Quereau Lit. 18).

Schon kurze Zeit später zeigte H. Schardt, dass auch die ganze Gebirgsmasse der Préalpes romandes mit Triassedimenten dem Flysch aufruht, demnach ebenfalls wurzellos ist wie die Klippen und Blöcke. Eine grosse Überschiebungsdecke schien vorzuliegen, welche sich östlich des Lac d'Annecy über das Stockhorngebirge ausdehnte und, wie die Klippen und exotischen Blöcke zwischen Thunersee und Rheintal bewiesen, einst auch die Unterwaldner-, Schwyzer- und Glarneralpen überdeckt haben musste, sich in dem Gebirge des Rätikon fortsetzend. Die Heimat der exotischen Gesteine dieser Decke sucht Schardt im Gebiete südlich der alpinen Zentralmassive.

Infolge dieser Neuorientierung der Alpentektonik schien es notwendig, die Klippen am Vierwaldstättersee erneut zu untersuchen. Diese Aufgabe übergab die Schweizerische geologische Kommission 1897 an A. Tobler, welcher sich schon vorher mit der Bearbeitung der legatweise an das Naturhistorische Museum in Basel übergegangenen Sammlung von U. Stutz beschäftigt hatte. Den Aufnahmen wurden die Siegfriedblätter 1:25.000 oder, wo diese fehlten, die zu diesem Masstab vergrösserten Blätter 1:50.000 zu Grunde gelegt. Die sehr sorgfältig durchgeführte Feldaufnahme ergab, dass das Buochserhorn die östliche Fortsetzung des Stanserhorns bilde und wie dieses den Bau einer liegenden Mulde aufweise. Arvigrat und Musenalp schienen sich ebenfalls in jeder Hinsicht zu entsprechen. Im Buochserhorngebiet wurden noch wesentliche Komplikationen erkannt. Zwischen Buochserhorn und Musenalp schiebt sich noch eine steilstehende Scholle ein (Bleike). Die Triasmergel des Musenalpgipfels, in deren Liegendem Liasechinodermenbreccien aufzutreten scheinen, mochten einer verkehrt gelagerten höheren Schuppe angehören. Darüber finden sich auf

dem Gipfelgrätchen Malmblöcke, welche einer noch höheren Schuppe anzugehören schienen. Gestützt auf stratigraphische Vergleiche ordnete Tobler die Klippen den entsprechenden stratigraphischen Zonen der Préalpes zu und zeigte, dass auch in der Buochserhorn-Stanserhorngruppe die Kreidesedimente nicht fehlen. Ein Teil der von Stutz und Tobler gesammelten Fossilien wurde in Wien von Trauth, Oppenheimer und Schmidt bearbeitet.

Daten der bisherigen Untersuchungen.

Das Buochserhorn-Musenalpgebiet und seine nächste Umgebung wurden untersucht von:

Bernhard Studer (geb. 21. 8. 1794 — gest. 2. 5. 1887) im Jahr 1841,

während einem Beobachtungstag:

ARNOLD ESCHER VON DER LINTH (geb. 8. 6. 1807 — gest. 12. 7. 1872) in den Jahren 1839 (1 Tag), 1841 (1), 1859 (1) und 1861 (1), im ganzen während ca. 4 Beobachtungstagen;

Franz Joseph Kaufmann (geb. 15. 7. 1825 — gest. 19. 11. 1892) in den Jahren 1871 (3) und 1874 (27); im ganzen während ca. 30 Beob-

ULRICH STUTZ (geb. 15. 11. 1826 — gest. 9. 6. 1895) in den Jahren 1878 (6), 1879 (7), 1880 (2), 1881 (11), 1882 (5), 1883 (1), 1886 (2), 1887 (2) und 1888 (6), im ganzen während ca. 42 Beobachtungstagen; CASIMIR MOESCH (geb. 15. 1. 1827 — gest. 18. 8. 1898) in den Jahren

1873? (?), 1874 (6), 1882? (?) und 1883? (?);
AUGUST TOBLER (geb. 29. 4. 1872 —) in den Jahren 1895 (12), 1897 (9), 1898 (7), 1899 (26), 1905 (8) und 1906 (21), im ganzen während ca. 83 Beobachtungstagen.

In Textfigur 1 und 2, die unsere geschichtlichen Rückblicke in manchem Punkt ergänzen, sind die wichtigsten stratigraphischen und tektonischen Resultate der aufgeführten Autoren zur Darstellung gebracht.

4. Ausführung der vorliegenden Arbeit.

Die Feldaufnahme: Nachdem ich mich an Hand der bestehenden Literatur über die Geologie des zu untersuchenden Gebietes orientiert und die Schichtfolge an einigen Aufschlüssen studiert hatte, begann ich mit der eigentlichen Feldaufnahme.

Es wurde das Ausstreichende jeder Zyklengrenzfläche sorgfältig verfolgt und der Verlauf der Grenzlinien, der Verwerfungen usw., so weit er sich an Ort und Stelle mit Sicherheit erkennen liess, in die Karte eingetragen. Die Schichtlage wurde an möglichst zahlreichen Punkten ermittelt, indem im Umkreis von einigen Metern an mehreren Stellen der Geologenkompass an die Schichtfläche angelegt und die Stellung der Magnetnadel und des Klinometers abgelesen wurde. Die Lage dieser Punkte wurde durch Kompasspeilungen und mit Hilfe des Höhenbarometers bestimmt. Geologische Details, welche sich infolge ihrer geringen Dimensionen nicht in die Karte eintragen liessen, wurden durch Skizzen oder Photos festgehalten. Über Aufschlüsse, welche in ungestörter Folge das Liegende und Hangende eines stratigraphischen Zyklus enthielten, wurde mit dem Messband ein kleiner Polygonzug gelegt und die verschiedenen Gesteinsbänke, Silexlagen, Fossilhorizonte usw. als Zwischenpunkte eingemessen.

Eine erste Verarbeitung des so gewonnenen Tatsachen-

materials bestand darin, dass:

die eingetragenen Punkte kontrolliert (die Barometerhöhen korrigiert und die Visuren ausgeglichen) und dann ihre Lage durch Koordinaten angegeben wurde;

die Mittelwerte der Schichtlagemessungen pro Punkt und

der mittlere Fehler dieser Messungen ermittelt, und

die Messbandmasse der stratigraphischen Detailprofile in

normale Schichtmächtigkeiten umgerechnet wurden.

Auf diese Weise wurden innerhalb des Untersuchungsgebietes ca. 1000 Punkte bestimmt und ca. 40 Detailprofile aufgenommen. Jedem Punkt entsprechen 1 bis 20 Schichtlagemessungen mit einem mittleren Fehler von 1° bis 5° bis 20°. Die Genauigkeit der Mächtigkeitsangaben der Detailprofile beträgt ca. 2 bis 5°/₀.

Die Tafel XII zeigt als Beispiel einen Ausschnitt aus der Feldkarte. In dieser wird die Schichtlage durch Pfeile angedeutet, deren Richtung die Fallrichtung und deren Länge die Grösse des Fallwinkels angeben (sie ist gleich a. ctg Q, wenn der Fallwinkel Q grösser als 45° (\mathfrak{T}), und gleich a. tg Q wenn er kleiner als 45° ist (\mathfrak{T}); \mathfrak{T}); \mathfrak{T} 0 a = Aequidistanz der Höhenkurven im Masstab der Karte).

Die Ausarbeitung: Die auf der Feldkarte XII zusammengestellten Beobachtungen erlauben zunächst die Konstruktion einer "tektonischen Karte", indem man eine Grenzfläche nach der andern für sich allein betrachtet und ihre Form durch Isohypsen darstellt, z. B. die Basisfläche der Giebelschichten auf Taf. XI. Es ist hier nicht der Ort, um auf die Einzelheiten der Konstruktion näher einzugehen. Zur Erklärung der Tafel sei nur an folgende geometrische Beziehungen erinnert:

Die Richtung der Schichtniveaulinie ist gleich der Streichrichtung der Schichtfläche.

Der Abstand zweier aufeinanderfolgender Schichtniveau linien ist gleich a. ctg Q (wo a = Aequidistanz und Q gleich Fallwinkel).

Die Schichtniveaulinie schneidet sich mit der entsprechenden topographischen Isohypse auf der Schichtgrenze (dem Ausstreichenden der Schichtfläche).

Mit Hülfe solcher geometrischer Überlegungen lässt sich aus dem Verlauf der Schichtgrenzen die Lage der Schicht und aus der Angabe der Schichtlage der Grenzverlauf ermitteln und so die Feldkarte ergänzen und vervollständigen.

II. Die Klippen (Das Buochserhorn-Musenalpgebiet).

A. Stratigraphie. Vgl. Textfigur 3 und 6.

Die Sedimente der Buochserhorn-Musenalpklippen lassen sich auf Grund ihrer Schichtverbände in acht Gruppen (Zyklen) einteilen. Ich bezeichne sie in der ganzen vorliegenden Arbeit mit den Buchstaben A bis H. Auf die Diskussion des geologischen Alters einzelner Schichten wird nur dann näher eingegangen, wenn ihre bis heute bekannt gewordene Fauna eine sichere Bestimmung erlaubt. Meine eigenen Funde sind unter den Lokalprofiltypen des Abschnittes C angeführt. Die übrigen Altersangaben stützen sich auf stratigraphische Vergleiche. Die Mächtigkeiten sind in Textfigur 3 und Tab. II angegeben. Über Vorkommen und Verbreitung der Schichten orientiert Tafel XIII.

1. Obere Trias.

Diese Gruppe umfasst vorwiegend helle, dolomitische Gesteine. Die Schichten sind meist tektonisch sehr stark gestört, so dass die Art ihrer Verbände nicht mit Sicherheit beurteilt werden kann. Es lassen sich unterscheiden:

Konglomeratbänke und Schlieren mit gerundeten gelben und grauen Dolomitgeröllen, grauen und bunten Mergelbrocken, eingebettet in dunkelgraue sandige Mergel (im Hüetlerentobel bei 1440 m). An anderen Stellen findet sich ein schwammigzelliges, tuffartiges Gestein, die typische Rauhwacke. In deren Umgebung erscheinen meist auch bunte Mergel, grau, rot oder grünlich; daneben oft ein bankiger Dolomit. Dieses helle, homogene, dichte Gestein, oft mit gelblicher Anwitterung und wie bestäubt aussehend, ist an der Basis feinbankig (10 bis 20 cm) mit hellgrauen Mergelzwischenlagen. Nach oben nimmt die Mächtigkeit der Dolomitbänke zu (bis 100 cm). Gyps wurde nicht beobachtet.

Fossilien wurden innerhalb des Untersuchungsgebietes in diesen Gesteinen noch nie gefunden. Die Dolomite werden von einzelnen Autoren (Jeannet, Christ) dem Norien zugerechnet.

		Stratigraphische Uebe • der Schichtreihe rom Buochserhorn-Musenalp-Gebiet (h	P.F.S.I Tippen	icht odeche)		
Zyklus	Maching heil m	Facies	m	Alter	1	m
Н	50	Couches rouges	50	Obere Kreide	1 d e p.p.	
G	230	Tucădeńschieler Słockhornkalk	160	Untere Kreide	1.10	30
		Felsenkalk Sludlluhschichten	40-90 20-60	Oberer Malm Argorien ?	m / e M	20
F	180	Rinderalpschichlen Sooshu	60-90	Oxfordien ? Callorien Oberes Balhonien	2 9 6 7	250
Ε	1-100	Spishalk		Bajocien Malenien ob Toarcien	0 0	
D	30-40	3-10 10-25 6-10 Huetlerenschichten Dituminöse Schi Kieselkalk	efer	Lias Bu. Lias y	S	
С	0-25	0-25 Peclenkalk		Unteres Sinemurien		80
В	0-18	Müllerbodensandstein prossmit Nassenerschichten Tital	ischelpt. scheilenk.	Hellangien pp	1	4
A	60	Bolomil Raibler Schichlen Bunte Mergel Rauhmache		Norien ? Carnien	Irias p.p.	
				<u> </u>		_

Fig. 3.

Masstab 1:6000

2. Rhät - Unterer Lias p. p.

Facies: Durch eine 2-3 cm mächtige, sandige, graue Mergelzwischenlage von den genannten hellen Dolomiten getrennt. folgen dunkelgraue bankige (20-90 cm) Lumachellenkalke. In den kieseligen, körnig bis spätigen Kalken der Basisbänke finden sich häufig Dolomitfragmente von bis 2 mm Durchmesser, ferner Anhäufungen von Muschelschalen. Die höheren Bänke bestehen aus dichten dolomitischen blaugrauen Kalken. hie und da mit eingestreuten dunkeln feinen Ooïden. Sie werden nach oben dünner bis plattig und durch Mergellagen voneinander getrennt. Ihre Schichtflächen sind oft übersät von Brachiopoden- und Lamellibranchiersteinkernen: Toblers "Muschelplatten". Die Platten werden nach oben rasch kieselig, später sandig und zeigen auf den braun anwitternden Schichtflächen kriechspurenartig verschlungene Wülste, daneben hie und da auch Muschelabdrücke. Nach und nach werden die Mergellagen ersetzt durch feinsandige glimmerreiche Zwischenlagen und verschwinden schliesslich. Die Bänke werden gröber (bis 100 cm) und bestehen aus einem sehr harten hellgrauen, homogenen oder gebänderten Ouarzsandstein, der nach seinem Vorkommen Müllerbodensandstein genannt sei. Er ist stellenweise bis 5 cm tief gelblichbraun sandig angewittert und enthält vereinzelte Austernschalen, hie und da auch kohlige Pflanzenreste.

Alter: Die Muschelplatten und ihre angrenzenden Partien enthalten eine reiche Fauna. Als deren bezeichnendste Formen seien genannt:

Terebratula gregaria Suess. Myope Rhynchonella cornigera Schafh. Lima Spiriferina uncinata Schafh. Lima Plicatula intusstriata Emm. Avicua Ostrea Haidingeriana Emm. Avicua Ostrea Koessenensis Winkl. Gervila Chemnitzia spec.

Myophoria inflata Emm. Lima punctata Sow. Lima subdupla Stopp. Avicula contorta Portl. Avicula gregaria Stopp. Gervilia spec.

Diese Fauna entspricht der Rhätfauna der Kössenerschichten der Ostalpen (17; 208 und 212). Die vollständigen Fossillisten finden sich aufgezeichnet in 17; 203 und 204: Aufsammlungen von Tobler und Stutz, aufbewahrt in Basel, Bern und Stans; und in 9; 63: Aufsammlungen von Moesch, Kaufmann und Joller, aufbewahrt in Engelberg. Die hier angeführten Namen sind in beiden Listen enthalten.

3. Unterer Lias p. p.

Unmittelbar über dem Müllerbodensandstein erhebt sich der massige bis grobbankige (100—500 cm) Pectenkalk. Er ist grau, meist erfüllt von hellgrauen (bis 1 mm grossen) Ooïden. An der Basis ist der Kalk dunkler, oft etwas rötlich gefärbt spätig oder brecciös und enthält Anhäufungen von Pectenund Austernschalen sowie Dolomitfragmenten.

Schalenabdrücke von Pecten valoniensis Befr. sind nicht selten.

4. Mittlerer und Oberer Lias p. p.

Facies: Die Hüetlerenschichten erhielten ihren Namen nach ihrem Vorkommen auf Hüetlerenalp (Kaufmann 5; 8). Es sind dunkle, zähe Kalke, gegen unten oft grobspätig werdend und eckige und gerundete Dolomitfragmente einschliessend; gegen oben sich in knollige Lagen mit glaukonitischen, von Belemniten erfüllten Mergellagen auflösend.

Der Glaukonitgehalt nimmt nach oben rasch wieder ab. Dunkle, dichte Kieselkalke mit schwarzen Silexknollen treten auf und bilden eine monotone Folge dünner Bänke. Nach und nach werden die scharfen Schichtfugen undeutlicher. Lagen bräunlich-samtartig anwitternder Mergel verbinden die Kalkbänke. Die Mergel werden allmählich mächtiger und lassen die harten Partien nur noch als Knauerlagen erkennen. Schliesslich setzt der Kieselkalk ganz aus, die Mergel werden schwarz und stark bituminös.

Alter: In dieser Schichtgruppe enthalten der Glaukonithorizont der Hüetlerenschichten und sein Liegendes zahlreiche Fossilien, z. B.:

Spiriferina rostrata Schloth.
Rhynchonella variabilis Schloth.
Terebratula punctata Sow.
Pecten priscus Schloth.
Belemnites paxillosus Schloth.
Belemnites elongatus Mill.
Lytoceras fimbriatum Sow.

Aegoceras capricornu Schloth.
Aegoceras (Dumortieria) Jamesoni Sow.
Aegoceras (Cycloceras) Maugenesti d Orb.
Amaltheus margaritatus Montf.

Diese Fauna — welche nach F. Trauth (15; 431) ein mitteleuropäisches Gepräge mit ganz schwachem alpinem Einschlag an sich trägt — lässt erkennen, dass es sich um Liasablagerungen handelt. Es sind vertreten Petrefacten aus dem Oberen Sinémurien (Lias β , Lotharingien Roll.) und dem Unteren Charmouthien (Lias γ , Robinien Roll.).

Die vollständigen Fossillisten sind aufgezeichnet in (15; 423) und (9; 68). Die oben angeführten Namen sind in beiden Listen enthalten.

5. (Oberster Lias ?) — Unterer und Mittlerer Dogger p. p.

Facies: Über den bituminösen Schiefern liegen unvermittelt die wechselvollen Spiskalke. Stellenweise sind es dichte, stark eisenschüssige rote Gesteine. In dieser Ausbildung sind sie besonders auf der Alp Oberspis am E-Hang des Buochserhorns verbreitet, daher von Tobler so genannt (vgl. Geolog. Vierwaldstätterseekarte). Nicht selten sind die Spiskalke gespickt mit gelben Dolomitbrocken von bis 20 mm Durchmesser. Grobe Echinodermenbreccien, bunt oder hellgrau, meist von Limonitkrusten durchsetzt folgen; oder graue, sehr hell anwitternde Kalke mit oolithischen oder glaukonitischen Nestern. Diese leiten rasch über zu mausgrauen, bankigen, dichten Mergelkalken. Letztere werden nach oben rasch dünnbankig (10 bis 20 cm), zeigen im frischen Bruch dunkle Flecken und bilden, in Wechsellagerung mit Mergelschiefern die einförmige, mächtige Serie der Unteren Zoophycosschichten. Diese entsprechen Toblers "Dogger, untere Zone" 1899 (12; 10) und Christs "Zoophycosdogger" 1919 (20; 36).

Alter: Die Fossilfunde aus diesen Schichten sind sehr spärlich. Möglicherweise stammt der von Trauth (15; 424) genannte Dactylioceras commune Sow. aus Spiskalken. Moesch zitiert aus den Unteren Zoophycosschichten Ammoniten des Parkinsonihorizontes (9; 70). Die Fundorte dieser Fossilien konnten nicht mehr ermittelt werden. Auch sind keine neuen Funde gemacht worden. Dagegen sind am Stanserhorn in den entsprechenden Schichten Ammoniten der Humphriesi-, Blagdeni-, Garanti- und Tripartitumzone gesammelt wurden.

6. Oberer Dogger — Unterer Malm.

Facies: Die Oberen Zoophycosschichten entsprechen Toblers "Dogger, Obere Zone" und "Oxford" (12; 10), welche er später ganz zum unteren Malm rechnet (vgl. Profile zum Exkursionsprogramm 1905, Lit. 13 und Profile zur geologischen Vierwaldstätterseekarte) und darin Giebel-, Rinderalp- und Studfluhschichten unterscheidet. Diese Namen wurden nach Lokalitäten am Buochser- und Stanserhorn gewählt; die damit bezeichneten Gesteine jedoch z. T. nur als lokale Faciesänderung derselben Schicht aufgefasst. Christ hat in seiner Arbeit über

das Stanserhorn diese Gesteine als verschiedene Horizonte auseinandergehalten. Auch im Gebiet des Buochserhorns sind sie zu unterscheiden.

Die Giebelschichten sind blaugraue, massige, sandige oder spätige Kieselkalke. Gegen ihre Basis treten häufig Schlieren voll Dolomit- und Quarzkörnchen (von 1 bis mehrere mm Durchmesser) auf, oder dunkle reine Echinodermenbreccie (südlich oberhalb Alpelen). Unmittelbar über der stets sehr scharf ausgeprägten Basisfläche finden sich nicht selten grössere gerundete Quarzkörner oder Brocken von Fleckenkalk der unteren Zoophycosschichten; an anderen Orten stellen sich in diesem Niveau glimmerreiche Sande, erfüllt von kohligen Pflanzenresten (Aarhölzli), oder eine sandig-mergelige Bank voll Ammonitenbruchstücken (Hüetlerentobel bei 1000 m) ein.

Nach oben werden die Giebelschichten feinsandiger und gehen allmählich über in die schiefrigen Rinderalpschichten. Im allgemeinen sind diese leicht kieselig, sandig, meist stark glimmerhaltig, hie und da mit Pflanzenspuren, lokal voll Cancellophycos scoparius (Musenalp); stellenweise aber auch kalkigmergelig und dann den Unteren Zoophycosschichten sehr ähnlich (Musenalp, unterhalb Hohenstollen).

Nach oben wird das Gestein allmählich wieder grobbankig, kieselig, lokal gelblich und wie bestäubt anwitternd, dicht (Musenalp), oder wie die typischen Studfluhschichten blaugrau feinkörnig, glatt anwitternd mit vorstehenden sandigkieseligen Knauern (Buochserhorn). Auch oolithische Kalke, sandig-spätige Kalke mit Dolomitfragmenten (Gubern), lokal mit schwärzlichen eckigen Einschlüssen, z. T. in rötlich gefärbter Grundmasse (Musenalp) können auftreten.

Alter: Canaliculate Belemniten und Pflanzenreste sind in den Oberen Zoophycosschichten verbreitet, andere Fossilreste selten, die unbestimmbaren Ammonitenreste der Giebelschichtenbasis und vereinzelte Schalenfragmente ausgenommen.

Aus einem "schwärzlichen, glimmerreichen Sandkalk" zitiert Oppenheimer (16; 490) von der Buochserhornspitze u. a. Stephanoceras Blagdeni Sow. und zahlreiche Lytoceras tripartitum Rasp. und aus einem sehr ähnlichen Gestein bei Trogmatt Parkinsonia Parkinsoni Sow. Tobler hat wohl aus diesem Grunde die Sandkalke des Buochserhorn-Osthanges und der Musenalp mit den Unteren Zoophycosschichten parallelisiert (vgl. Geol. Vierwaldstätterseekarte). Der Verlauf der Schichtgrenzen zwischen Oberen und Unteren Zoophycosschichten und die Transgressionserscheinungen an der Basis der Giebelschichten lassen

mit aller Sicherheit feststellen, dass jene den Oberen Zoophycosschichten angehören. Die genannten Fossilien stammen vermutlich aus der Aufbereitungszone an der Basis der Giebelschichten, also aus sekundärer Lagerstätte (vgl. 20; 38 und diese Arbeit, p. 35).

7. Malm p. p. — Untere Kreide.

Facies: Helle massige Felsenkalke überlagern den dunkeln, vorwiegend sandigen Komplex der Oberen Zoophycosschichten. Ähnlich wie der Schrattenkalk in den benachbarten Bergen bilden die Felsenkalke im Klippengebiet hohe Felsabstürze; daher auch der Name (Tobler benützte diese Bezeichnung in seinem Feldbuch).

Die Grenze gegen das Liegende ist meist recht scharf. Die Basis bilden mächtige, massige Riffkalke, korallogen, hie und da brecciös erscheinend, stellenweise mit Linsen von hellem Spatkalk. Gegen oben wird der Kalk dichter, es erscheinen Kieselknollen, später Schichtfugen. Der splittrige Bruch wird glatter, muschelig, die Farbe dunkler, mausgrau, die Bankung rasch dünnbankig bis plattig. Der Kalk ist hier oft stark kieselig, durchsetzt von Silexbändern; vereinzelte dunklere Flecken zeigen sich auf der grauen Bruchfläche. In den höheren Bänken werden sie deutlicher und häufiger, die Kalke werden mergeliger, Silex tritt zurück. Nach und nach erscheinen graue Mergellager zwischen den 10-30 cm mächtigen Fleckenkalkbänken. Es folgt eine mächtige, einförmige Folge von wechsellagernden Fleckenkalken und Mergeln, die Stockhornkalke Studers (vgl. Index der Stratigraphie). In den obersten Partien beginnen die Kalkbänke zu vermergeln. Sie werden gelblich oder grünlichgrau und enthalten dunkle, grosse, verschwommene Flecken und scharf begrenzte, schwärzliche Fucoiden (Kuhplätzgraben, Herdmattligraben).

Alter: Aus den Felsenkalken zitiert Oppenheimer (16; 501) neben einer grösseren Korallenfauna: *Lima rigida Desh.*, ferner Terebrateln, Rhynchonellen, Mytilus, Nerineen, Belemniten und Crinoiden.

In den Stockhornkalken fand Tobler am Buochser- und Stanserhorn (12; 11):

Pygope diphyoides Pict. Aptychus Didayi Coqu. Holcostephanus div. sp. A. angulicostatus Peters. Pseudobelus bipartitus Bl.

8. Obere Kreide.

"Couches rouges", rote mergelige Kalke und Schiefer mit Foraminiferen, scheinen auf der Musenalp nicht vorzukommen. Am Buochserhorn treten sie entweder unvermittelt über Stockhornkalken auf, indem eine plötzliche Rotfärbung der Mergelkalke eintritt ohne Änderung des Gesteinscharakters; oder an anderer Stelle scheinen sie aus den schwarzen Fucoidenschiefern allmählich hervorzugehen. In den höheren Lagen der Couches rouges treten rote und grüne Hornsteine auf.

B. Tektonik. Vgl. Textfigur 5 und 7.

Die Klippenberge Buochserhorn-Musenalp betrachten wir im Sinne der Deckenlehre als Erosionsrelikte der die Falten der Drusbergdecke überlagernden und selbst ebenfalls verfalteten Klippendecke. Die Erosion ist schon so weit vorgeschritten, dass die Sedimentmasse des Untersuchungsgebietes von den umliegenden Klippen gänzlich losgelöst ist (mit Ausnahme der Bleikischolle im Lielibach) und infolge Abtrag der Stirnumbiegungen die zurückgebliebenen Faltenteile als isolierte, verbogene Schollen erscheinen (vgl. Taf. II, Profil Tobler).

Über die Grössenverhältnisse der sechs, nach Örtlichkeiten benannten tektonischen Einheiten des Gebietes, orientiert folgende Tabelle:¹)

Scholle	Volumen	flä	erungs- che	streiche	driss der enden Ob	erfläche
		Abgewickelt	Grundriss	Total	Unbedec	kter Teil
	km³	km²	km²	km²	km²	in %
Rotimatt	-	-	_	-	0,4	_
NSchenkel		-		3,2	0,3	22
Buochserhorn	2,5	12,3	10,5	9,8	5,3	57
SSchenkel	1,3]	(4,0)	_	6,6	5,0	75
Alpeli	0,005	0,1	0,1	0,1	0,1	100
Bleiki	0,33	3,4	2,7	1,5	0,4	27
Musenalpfluh .	0,27	2,0	2,0	2,0	1,0	50
Musenalpgipfel .	0,005	0,3	0,3	0,3	0,3	100
Total	3,1	32,1 28,1	15,6	13,7	7,4	54

Demnach umfasst das Buochserhorn-Musenalpgebiet ca. 3 km³ Sedimente der Klippendecke, angehäuft auf einer Grundfläche von ca. 14 km² und zur Hälfte von Schutt bedeckt. Die

¹) Obige Flächen- und Hohlmasse wurden mit Planimeter aus der photographisch in den Masstab 1:5000 vergrösserten Siegfriedkarte 1:50000 bestimmt.

sechs z. T. verfalteten oder übereinander geschobenen Schollen würden, auseinandergebreitet eine Fläche von ca. 32 km² bedecken. Das würde, wenn eine mittlere Mächtigkeit von 600 m vorausgesetzt wird, einer Sedimenttafel von ca. 20 km³ Inhalt entsprechen. Von dieser Sedimenttafel, welche selbst kaum der Hälfte jenes Stückes der Klippendecke entspricht, welche einst das nördliche Teilgebiet bedeckt hat, ist heute nur noch etwa der siebente Teil in Form unserer Klippenberge erhalten geblieben.

C. Detailbeschreibung (Lokaltektonik und Lokalstratigraphie.)

1. Der S-Schenkel der Buochserhornmulde.

In erster Annäherung kann man als Bauplan des Buochserhornes eine liegende, gegen N geöffnete Mulde annehmen, mit horizontaler, bei ca. 900 m ü. M. liegender, N 37° E streichender Axe.

Wir unterscheiden einen oberen, höher liegenden S-Schenkel der Mulde mit umgekehrter Schichtlage und einen darunter liegenden N-Schenkel mit normalgelagerten Schichten. In der Oberflächengestalt des Berges verrät sich dieser Muldenbau kaum. Der z. T. durch die darauf geschobene Rotimatt-Scholle verdeckte N-Schenkel wird durch die Moränen und Gehängeschutt-Anhäufungen noch vollständig maskiert. Der S-Schenkel allein gibt dem Berge seine charakteristische Pyramidenform. Seine Schichtflächen bilden den SW- und den E-Hang, die NW-Seite zeigt die Schichtköpfe. Die Muldenumbiegung ist nirgends vollständig aufgeschlossen.

An diesem stratigraphisch und tektonisch recht komplizierten S-Schenkel unterscheide ich drei nebeneinander liegende Abschnitte, welche durch zwei ungefähr senkrecht zur Muldenaxe verlaufende Verwerfungen (Herdmattli- und Lauiverwerfung) gegeneinander abgegrenzt sind. Die topographischen Grenzen dieser Abschnitte sind:

Südwestlicher Abschnitt: Felswände oberhalb Büren nid dem Bach; Buochserhorn-Westgrat; westliches Stück der Linie P. 821 (Herdmattli)—P. 1542 (Ochsenweid); Linie durch P. 1165 parallel zu "Hüetlerentobel".

Mittlerer Abschnitt: Linie P. 821—P. 1542; "Buochserwald" Isohypse 900 m; Linie P. 752 (Stöckmatt)—P. 1778 (Alpelen); P. 1393 (Alpetli)—P. 1384 (Hüetleren).

Nordwestlicher Abschnitt: Linie P. 752—P.1778; NW- und NE-Hang Isohypse 900 m; Träschlibach.

Die beiden äusseren Abschnitte sind in ihren Hauptteilen schief gestellte Schichttafeln. Die Neigung ist bei beiden im Mittel ca. 35°, das mittlere Streichen des nordöstlichen Abschnittes ist parallel zur Muldenaxe, der südwestliche Abschnitt dagegen streicht senkrecht dazu. Der mittlere Abschnitt verbindet die beiden äusseren durch eine Schichtumbiegung und bildet so eine gegen N 13° E mit ca. 23° ansteigende Antiklinale.

a. Der südwestliche Abschnitt des Buochserhorn-Südschenkels.

Die Geländeoberfläche des Buochserhorn-Südwesthanges verläuft auf grössere Strecken ungefähr parallel zur Lage der Giebelschichten. Dadurch kann man auch in der Topographie das Bild der im wesentlichen W 37° N streichenden, stark geneigten Schichtplatte unschwer erkennen (Buochserhornscholle von Stutz). Die in den zentralen Teilen der Plattenfläche den Giebelschichten aufliegenden älteren Gesteine bilden ein fast isoliertes Erosionsrelikt, von dem besonders der kleine Grat in die Augen fällt, der sich dem S-Rand der Platte entlang zieht. Wir können ihn auffassen als einen der Giebelschichtenbasisfläche aufgesetzten schief gestellten Hügelzug, der in der Gegend von Müllerboden seine grösste Mächtigkeit von 140 m erreicht.

Bei Obermüllerboden, P. 1373, finden sich auf dem Dolomit dieses "Hügelzuges" noch Blöcke von hellen, dichten (? Felsen-) Kalken mit Silexlagen und Knollen, ferner tektonische Breccien, welche vorwiegend aus solchen hellen Kalken bestehen und daneben auch dunklere Gesteine (? Obere Zoophycosschichten) und Dolomitbrocken enthalten. Möglicherweise handelt es sich um Überreste der Bleikischolle.

Die Schichten des Bleikigrätchens weisen im grossen und ganzen die gleiche Lage auf wie die Giebelschichten. Durch zahllose Verwerfungen von meist nur wenigen Metern Sprunghöhe, welche diese Gesteinslager in allen Richtungen durchsetzen, können lokal erhebliche Abweichungen von dieser Lage auftreten, z. T. auch infolge primärer Diskordanz der Schichten. Durch Zusammenfassung der Beobachtungen an den kleinen aber zahlreichen Aufschlüssen erhielt ich folgendes stratigraphisches Profil:

ohne Uebergänge.

L	Lauf. No.				
	$\begin{bmatrix} 17\\16 \end{bmatrix}$	Graue, mergelige Kalkschiefer, übergehend in 16 Wechsellagerung spröder, dichter Kalke mit dunkleren Flecken und Mergelschiefern	} 1—25		
E	15 14 13	(wie 16), Kalke vorwiegend, Bänke mächtiger (20-50 cm) Harte dichte Kalke mit Schwärmen dunkler Ooide, mit Kalkgeröllen (bis 50 mm Durchmesser) und eisenschüssigen Lagen (bis 30 mm)	0,4—1		
	, 12	Schwarze bituminöse Mergel	7		
	11	Bankige, dunkle Kieselkalke	15		
	10	Grünliche, glaukonitische Mergel mit Kieselkalkbänken. Mit Pleurotomaria cf. solarioides Sow. und Amaltheus margaritatus Montf.			
	9	Kieselkalklagen und -knollen mit belemnitengespickten Mergelzwischenlagen. Mit Lina (Plag.) gigantea Sow., Pleurotomaria cf. principalis Goldf., Dactylio- ceras Davoei Reynès, Aegoceras capricornu Schloth.,	2		
	l	? Grammoceras striatulum Sow., Lillia sp., Pachy-			
D	8	teuthis brevis Blainv., Megateuthis cf. armatus Dum. Dunkelblaugraue, zähe Spatkalke meist mit Dolomitfragmenten, bankig (20—100 cm), mit vereinzelten Silexlagen. Mit Spiriferina rostrata Schloth., Rhyn-	}		
	-	chonella plicatissima Quenst., Zeilleria arietis Opp., Zeilleria perforata Piette	} .		
,	7	Grobes Dolomitkonglomerat mit Quarzkörnern (1 bis 20 mm Durchm.), stellenweise mit Lagen und Schlieren heller, grober Echinodermenbreccie und roten eisenschüssigen Schlieren. Lokal Lagen von fladenförmigen Dolomitgeröllen (bis 200 × 50 mm gross). Mit grossen Belemniten, ferner Brachiopoden, Fischzähnchen	0,5—4		
	6	Groboolithische Kalke (Oolithe bis 1 mm gross). Mit Pecten valoniensis Defr., Ostrea sp	0—25		
C	5	Schwach kieseliger, brauner Kalk mit Crinoidenfrag- menten, stellenweise bänderig, schlierig, voll Muschelschalen, Dolomitbrocken	1-2		
	. 4	meist plötzlicher Gesteinswechsel. Quarzitsandstein rötlich-gelb, sandig verwitternd, hie			
	(*	und da mit kohligen Flecken, homogen oder ge- bändert. Mit Ostrea sp	} 2		
В	3	Plattiger Kalk mit dünnen Mergellagen, stellenweise voll Brachiopoden und Lamellibranchierschalen. Mit Terebratula gregaria Suess, Spiriferina lata Martin.	10		
	2	Pecten cf. valoniensis Defr., Mytilus minutus Goldf. Körnige Kalke, dunkelgrau; stellenweise mit Anhäufungen kleiner Zweischaler, hie und da Dolomitfragmente (bis 3 mm Durchmesser)	} 6		
	_	Schichtfuge. Sandig-mergelige Zwischenlage.			
· A	1	Dichte, homogene, helle, bläulichgraue Dolomite			

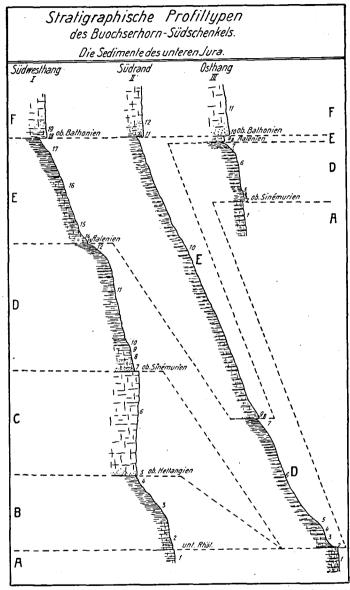


Fig. 4.

Masstab 1:1000

Die peripheren Teile unserer Schichtplatte sind stark verbogen: Der S-Rand der Platte biegt rasch nach unten. Die Schichtlage nähert sich der Senkrechten und wird parallel der Muldenaxe (N 37° E). Der Steilhang in der westlichen Hälfte des S-Randes (W-Hang des Hüetlerentobels) wird durch die Schichtflächen der Giebelschichten gebildet; die östliche Hälfte trägt noch den Mantel der älteren Gesteine; die Fortsetzung des (oben beschriebenen) Schichthaufens von Müllerboden, welcher nahe der Plattenmitte liegt.

Die Stratigraphie dieses Mantelstückes, welches südlich der Linie P. 1171 (Giebel) — P. 1348 (Hüetleren) — P. 1542 (Ochsenwald) die südwestliche, obere Hälfte der Umbiegung der Buochserhornmulde umkleidet, ist in folgendem Profil dargestellt:

Profiltypus II: Buochserhorn-Südrand; vgl. Textfigur 4, II.

Zyklus D diskordant auf A; E mächtig, wenig denudiert. Lauf No. Mächtigkeit 12 Sandiger, rauh anwitternder Kalk . Sandig-glimmriger Kalk, gelblich anwitternd. Auf der F Basisfläche viele Ammonitensteinkerne aus grauer oder ziegelroter toniger Substanz. Canaliculate Belemniten, Zweischaler Grauer schiefriger Mergelkalk mit dunkleren Flecken 10/120 Spätige, helle Kalke mit Dolomitfragmenten . . 0,4Schwärzliche Mergelkalke mit Dolomitbrocken... 0,05 Schwarze, bituminöse Schiefer . . .5 Rötlich anwitternde, dichte Kieselkalke... 20 Folge von knolligen Kieselkalkbänken (10-20 cm) mit mergeligen, z. T. glaukonitischen Mergelzwischenlagen (bis 20 cm), mit Belemniten 4 D (wie 5), Kieselkalk, z. T. spätig (wie 5), jedoch ohne Mergellagen

A 1 Homogene, bläuliche, dolomitische Kalke

Die Tektonik dieser Schichten wird durch sehr zahlreiche Brüche, lokale Quetschungen und kleine Fältelungen kompliziert. Im südlichen Seitenast des Hüetlerentobels erscheinen u. a. bei 1260 m und 1410 m in den Dolomitbänken deutliche

Echinodermenbreccie mit eingelagerten Dolomitbrocken und Quarzkörnern, stellenweise konglomeratisch. Mit Zeilleria quadrifida Lam., Pleurotomaria amalthei Quenst., Aegoceras Jamesoni Sow.

Scharfer ebener Kontakt, Zahlreiche Bohrmuschellöcher¹),

¹⁾ Die Löcher sind mit einer schwarzen Masse ausgefüllt, welche oft Dolomitfragmente enthält und auch als wenige Millimeter dicke Schicht sich auf der Schichtfläche ausbreiten kann.

E-W streichende Gewölbeumbiegungen, welche einer Faltenhöhe von ca. 2—5 m entsprechen mögen. Sie scheinen in den tiefer liegenden Schichten in Verwerfungen überzugehen. Die auffallendste lokaltektonische Erscheinung des S-Randes ist die quer zur Muldenaxe verlaufende "Verwerfungszone von Giebel". Sie setzt sich aus mehreren steil gegen NE einfallenden Rutschflächen zusammen:

Lage der Verwerfung ¹)	Schichtlage ¹) (Giebelsch.)	Aufschlüsse im Hüetlerentobel
50/80 44/79 30/63 26/69	 134/73 135/78 	1168 m ü. M. — unterhalb Weg Giebel- Nied. Rickenb. (ca. 200 m östl. Giebel) 945 m ü. M. — oberhalb des Wasserfalls 930 m ü. M. — unterhalb des Wasserfalls 940 m. ü. M. — rechter Hang, unterhalb des Wasserfalls

W- und N-Rand der Platte des südwestlichen Abschnittes sind nach oben gebogen. Dadurch werden im westlichen Teil die Schichten horizontal; im nördlichen Teil dreht sich die Fallrichtung von SW gegen S. Die Schichtköpfe der Giebelschichten bis zu den Felsenkalken bilden die topographisch ausgeprägten Steilränder. Verfolgt man die Grenze zwischen Studfluh- und Felsenkalken, so trifft man zahlreiche Schichtbrüche. Bei einigen liess sich die Lage der Verwerfungsfläche messen:

	Lage der Verwerfung	Schichtlage	Aufschlüsse in der Grenzfläche Studfluh-Felsenkalk
	249/61	118/22	1010 m ü. M. — Weg Schwanden-Trog-
	247/60	114/37	1065 m ü. M.
	$245/74 \\ 206/80$	$124/20 \\ 125/24$	1100 m ü. M. 1150 m ü. M.
l	222/60	-	1200 m ü. M.
		125/24 — —	1150 m ü. M. 1200 m ü. M. 1310 m ü. M. — 50 m nördl. P. 1278(Ligg)

Die Verwerfungen durchsetzen die spröden Felsenkalke und dringen auch in die liegenden Stockhornkalke hinein.

Zusammenfassung: Es ergibt sich das Bild eines aufgekrempten, durch Querrisse gefransten Randes.

Bezeichnung der Lage einer Ebene, z. B.: 134/73.
 134 = Azimut der Fallrichtung (von Nord über Ost gemessen);
 73 = Fallwinkel.

b. Der mittlere Abschnitt des Buochserhorn-Südschenkels.

Im E findet die Platte des südwestlichen Abschnittes ihren morphologischen Abschluss erst im S-Grat des Buochserhornes. Hier ragen aus den steilen Abstürzen dunkle, schwach S-fallende Felsbändchen, das sind die Schichtköpfe der oberen Zoophycosschichten (Studers "Neocomschichten" des Buochserhornblockes). Die Geländefläche des unteren, bauchig vorgewölbten Teiles des E-Hanges wird im Gegensatz dazu von den Schichtflächen der genannten Gesteine gebildet. Der antiklinale Bau des mittleren Abschnittes ist aus der Topographie kaum ersichtlich; nur der antiklinale Verlauf des Felsenbandes auf der W-Seite des Berges deutet darauf hin. (Eschers "Schrattenkalkgewölbe".) Innerhalb des mittleren Abschnittes ist zwar die Aufwölbung der Felsenkalke sehr gering, da sie jederseits durch eine Verwerfung ersetzt wird:

im SW durch die "Herdmattliverwerfung", ausstreichend in der Richtung P. 821 (Herdmattli)—P. 1542 (Ochsenweid); Lage 150/72 und Sprunghöhe ca. 100 m, gemessen im Herdmattligraben bei 1450 m ü. M.,

im NE durch die "Lauiverwerfung", ausstreichend in der Richtung P. 605 (Unter-Aglistal)—Schnittpunkt der Isohypse 1730 mit der Gratlinie des Buochserhorn-Nordgrates; Lage konnte nicht gemessen werden, Sprunghöhe ca. 30 m.

In den schlecht gebankten Gesteinen des Buochserhorngipfels wird nirgends eine Schichtumbiegung direkt wahrnehmbar. Die scharfe Transgressionsfläche der Giebelschichten, deren Ausstreichendes fast lückenlos aufgeschlossen ist, ermöglicht es aber, die Gewölbeform, welche diese Fläche durch die erlittene Faltung erhielt, mit grosser Genauigkeit konstruktiv zu ermitteln. Die Faltenaxe unserer Antiklinale biegt nach unten scharf ab, dadurch erscheint das Gewölbe in jenen Teilen flacher ausgebreitet und im Sinne der aufsteigenden Axe höher werdend und schliesslich gegen E überliegend. Die Darstellung auf Tafel XII erübrigt weitere Worte.

Die Schichtfolge des mittleren Abschnittes entspricht dem Profiltypus III (vgl. p. 24), jedoch mit Konglomeratbank an der Basis der Hüetlerenschichten.

c. Der nordöstliche Abschnitt des Buochserhorn-Südschenkels.

Die topographische Oberfläche des Buochserhorn-Osthanges wird vorwiegend von den Oberen Zoophycosschichten gebildet. Weiter gegen NE streichen die jüngeren Gesteine zutage; die älteren sind der Erosion zum Opfer gefallen und mit ihnen fehlen die zahlreichen charakteristischen Schichtglieder. Dieser Umstand, ferner auch die starke Bewaldung, die Schroffheit und Weglosigkeit dieses Gebietes erschweren die geologische Untersuchung sehr. Zur Besprechung teilen wir diesen Abschnitt zweckmässig in drei Teile:

Südwestlicher Teil.

Grenze: P. 1517 (auf Buochserhorn-Nordostgrat) — P. 1110 (Scheidegg, östl. Gubern).

Mittlerer Teil.

Grenze: P. 614 (Rotimatt) - P. 951 (Brunni).

Nordwestlicher Teil.

Der südwestliche Teil erscheint, für sich allein betrachtet, als eine gegen N 65° W mit ca. 25° ansteigende flache Mulde (vgl. Taf. XI). Im Zusammenhang mit den angrenzenden Teilen betrachtet, bildet diese Mulde den Übergang des mittleren Abschnittes zum mittleren Teil des nordöstlichen Abschnittes. In ihrem oberen Teil liegt die Alpelischolle. Die unter dieser Scholle vor Erosion geschützt erhalten gebliebene Schichtfolge der Trias bis Doggergesteine ist im folgenden Profil wiedergegeben:

\mathbf{Pr}	ofilt	ypus III: Buochserhorn-Osthang; vgl. Textfigur	4, III.
T.	auf. N	(Zyklus D diskordant auf A; E stark denudiert).	Jächtigkeit
	I		m
_	11	Dunkelgrauer kieseliger Sandkalk, hie und da mit canaliculaten Belemniten und mit Dolomitfrag- menten	x
F {	10	Dunkle, grobe Echinodermenbreccie mit eingestreuten Kalkgeröllen; z. T. mit roten Krusten umgeben (bis 70 mm Durchmesser)	0—1
	9	Grobes Kalkkonglomerat mit roten Adern, Schlieren von Echinodermenbreccie, z. T. ganz rot, mit Dolomitbrocken.	1
E {	8	Helle Dolomit- und Echinodermenbreceie und heller, dichter Kalk, z. T. mit Nestern schwarzer Ooïde und schwarz-glänzenden Knollen, mit schlierigen Limonitkrusten und zerstreuten Dolomitfragmenten	1
	. 7	Schwarze bituminöse Schiefer	2
	6	Wohlgeschichtete dichte Kieselkalke mit feinsandigen Mergelzwischenlagen	10
	5	Feine Echinodermenbreccie mit glaukonitischen Mergellagen	12
\mathbf{D}	4	Grobe, bläulichgraue Echinodermenbreccie. Schlierige Lagen mit viel Belemniten, unregelmässig heraus- witternd	2-4
	3	Kieselkalk mit Belemniten und Zweischalern, bröcklig, mit Phosphatknollen; vereinzelte Dolomitfragmente	0,3
	2	Dünne, kohlige Lage mit Pflanzenresten, in die Fugen von 1 eindringend, mit Dolomit- und Quarz- körnchen.	0-0,02
		Fläche mit Bohrmuschellöcher.	
A	1	Gelblich anwitternde homogene bankige Dolomite	

Der mittlere Teil repräsentiert die, den ganzen dritten Abschnitt charakterisierende, schiefgestellte, der Buochserhorn-Muldenaxe parallel streichende Schichtplatte. In der Gegend der südwestlichen Grenze bewirken steil einfallende Verwerfungen von 2—5 m Sprunghöhe das Hervortreten von Felsenkalkzonen auf der sonst ganz von den dunklen Studfluhschichten gebildeten Oberfläche. Gegen NE bildet der sich quer den Hang hinunterziehende Felsenkalkabsturz den Plattenrand. Diese deutliche morphologische Grenze scheint durch eine ungefähr senkrecht zur Axe der Buochserhornmulde verlaufende Verwerfung bedingt zu sein.

Der nordwestliche Teil (das Gebiet des Beckenrieder Hornes P. 1301) wird durch die "Litzeverwerfung" in zwei Stücke zerlegt, ein inneres, südwestlich dieser Fläche gelegenes, und ein äusseres, im NE. (Lage der Litzeverwerfung 122/80 Rutschschrammen ungefähr horizontal verlaufend; gemessen bei 900 m ü. M. am N-Hang des Tobels nördl. Katzenstrick. Durch die Verwerfung entsteht an jener Stelle ein anormaler Kontakt von Rauhwacke mit Felsenkalk.)

Das "innere" Stück wird morphologisch durch ein von Verwerfungen unregelmässig zerstückeltes Felsenkalkband charakterisiert (welches 200 m westl. oberhalb Katzenstrick, bei 1030 m ü. M. beginnend, sich schräg hinaufzieht bis unterhalb die Spitze des Beckenriederhorns). In seinen unteren Teilen scheinen die Felsenkalke nahezu senkrecht zu stehen, so dass man glaubt, den Beginn der Umbiegung der Buochserhornmulde vor sich zu haben, besonders da im weiteren Verlauf des Felsbandes nordwestl. gerichtetes Fallen aufzutreten scheint. In den obersten Teilen (östl. unterhalb dem Beckenriederhorn-P. 1301, bei 1200 m ü. M.) lässt sich die mit 40° gegen NW einfallende Felsenkalk-Studfluhkalkgrenzfläche nachweisen. Das Fallen wird rasch steiler gegen unten, dann senkrecht und biegt schliesslich gegen SE um. Es scheint hier der Rest einer nach NW überliegenden Antiklinale vorzuliegen. Die Bänke der Stockhornkalke zeigen denselben Verlauf, jedoch mit zahlreichen Verfältelungen.

Das "äussere" Stück (welches das Litzegrätchen zwischen Obersassi und Katzenstrick bildet) zeigt (am NE-Hang in der Höhe von 900 m) deutlich den Beginn zur Umbiegung um die Muldenachse des Buochserhorns. Ein kleiner Rest von Felsenkalk und Studfluhgestein liegt in der Nähe der Litziverwerfung mit einem Streichen von N 4° E über den weiter nordöstlich im Mittel N 60° S streichenden Stockhornkalken. Ich kann

diese Änderung der Streichrichtung nur als Schleppung dieses stark gegen NW vorgeschobenen äussersten Teilstückes deuten.

2. Der N-Schenkel der Buochserhornmulde und die Rolimattantiklinale.

Über den N-Schenkel des Buochserhorns, der vom Schutt und von der Rotimattantiklinale fast überall bedeckt ist, lässt sich nur aussagen, dass seine Schichten normal gelagert sind und eine ungefähr horizontale Schichtplatte bilden.

Horizontal gelagerte Stockhornkalke, an der Basis mit Übergang zum Felsenkalk, beobachtet man am N-Fuss des Beckenriederhorns oberhalb Obersassi und Rotimatt bei 750 m ü. M. Das einzige Couches rougesvorkommen im Herdmattliund Kuhplätzgraben zwischen 970 und 1060 m ü. M. orientiert über die Lage des Kerns der Buochserhornmulde. Die Basis des Nordschenkels (die Überschiebungsfläche der Klippe) ist nur im Buoholzbachtobel, am Fusse der Giebelfluh 700 m ü. M. gut aufgeschlossen. Ungefähr auf gleicher Höhe findet man auch im Rietlitobel über anstehendem Flysch gequälte Felsenund Stockhornkalke. Die Gesamtmächtigkeit des N-Schenkels wäre demnach ca. 300 m. Diese Mächtigkeit ist bedeutend geringer als selbst die stratigraphisch am stärksten reduzierte Mächtigkeit des S-Schenkels. Es scheint daher, dass der N-Schenkel auf seiner ganzen Fläche in ähnlicher Weise tektonisch reduziert ist, wie man dies an den beiden letztgenannten Aufschlüssen beobachtet, wo Felsenkalke oder Studfluhschichten dem Flysch direkt aufsitzen oder stellenweise mit einer dazwischen eingeklemmten Lage von ausgewalzten Triasgesteinen.

Als Anhängsel des N-Schenkels findet man am N-Fuss des Buochserhorns hie und da Schichtflächen von Studfluhoder Felsenkalken in den Lücken der Schuttbedeckung der Rotimattantiklinale. Anordnung und Lage dieser Gesteine deuten auf eine der Buochserhornmulde vorgelagerte Aufwölbung: Rotimattantiklinale. Infolge Überschiebung des N-Schenkels dieser Rotimattantiklinale gegen SE und nachträgliche Erosion der Schenkelbasis erscheinen die zurückgebliebenen Reste als isolierte Schollen.

Einzelheiten der Stratigraphie oder der tektonischen Form können nicht mehr in ihren Zusammenhängen beobachtet werden. Ich muss mich damit begnügen, die wenigen Aufschlüsse zu nennen und zu beschreiben.

Aufschlüsse zwischen Buoholzbach und Rietlitobel: am W-Fuss der Giebelfluh türmen sich glatte Felsenkalkplatten

(Lage 100/80). Darüber erscheinen Stockhornkalke, erst steil E-fallend, dann horizontal, wie die darüberliegenden Felsenkalke vom W-Rand des SW-Abschnittes des Buochserhorn-Südschenkels. Am rechten Ufer des Buoholzbaches, ca. 15 m über dem Bach, auf der Isohypse 960 m, lässt sich die Grenzfläche zwischen Studfluh- und Felsenkalk bachabwärts auf eine kurze Strecke verfolgen. Die Schichten liegen normal übereinander (70/12) und biegen dann sehr rasch nach oben um (100/80). Im weitausgedehnten Buoholz erscheinen nur wenige Entblössungen von Felsenkalk oder gequältem Stockhornkalk. Erst oberhalb Ursprung erscheinen in der Umgebung der Klippenquelle auch Studfluhgesteine.

Aufschlüsse zwischen Rietlitobel und Herdmattli: Wenn man von Winterswil gegen Aarhölzli über den Ausläufer des Buochserhorn-Westgrates (Geissholz) hinansteigt, beobachtet man in der Höhe von 900 m die Grenze zwischen Felsenund Studfluhkalk. Im weiteren Ansteigen trifft man dann oberhalb 940 m plötzlich Stockhornkalke in der Lage 135/50. Die Lage der Felsenkalke lässt sich im steilen Wald südlich des Grätchens bestimmen, im Mittel zu 280/80. Der tektonische Kontakt zwischen Studfluh- und Stockhornkalk ist dort an mehreren Stellen aufgeschlossen und lässt sich noch weiter

gegen S bis in die Nähe von P. 858 verfolgen.

Aufschlüsse zwischen Herdmattli und Hörnli: Im Hardund Grütetenzug (zwischen P. 812 und P. 1190, Hörnli) sind in der Höhe von 1000-1100 m stellenweise die Schichtflächen von Studfluhkalken entblösst. Im südlichen Arm des Grütetenzuges findet man wenige Meter oberhalb des Wegleins bei 1120 m einen anormalen Kontakt von Studfluhkalken mit Stockhornkalk. Verfolgt man diesen Kontakt gegen NW, so findet man schon im nördlichen Arm des Grütetenzuges, 30 m über dem Weglein, Linsen von Felsenkalk eingeklemmt. Die Lage der daran angepressten Stockhornkalke ist 330/80. Weiter nordwestlich ist der Felsenkalk mächtiger und bildet einen zusammenhängenden Komplex. Stark laminierter Stockhornkalk liegt auf dem Hörnli-Westgrat, bei 870 m mit ca. 35° gegen SW fallend. Die hohen glatten Felswände nordöstlich unterhalb P. 1190 werden von senkrecht stehenden N 20° streichenden Stockhornkalken gebildet.

Es lassen sich diese Beobachtungen folgendermassen deuten: Teile des inneren, südöstlichen Schenkels der Rotimattantiklinale in ihrem Zusammenhang mit dem N-Schenkel der Buochserhornmulde zeigt der Aufschluss im Buoholzbachtobel. Die Überschiebung des äusseren Schenkels auf die Stockhornkalke des

Buochserhorn-Nordschenkels beobachtet man oberhalb Winterswil; Teile des zerrissenen inneren Schenkels nördlich des Rotimattzuges. Der äussere Schenkel ist im Rotimattzug am deutlichsten erhalten. Spuren der tektonischen Beeinflussung der Gesteine des Buochserhornmuldenkerns durch die Rotimattantiklinale in Form von Aufbiegungen und Quetschzonen sind in den Stockhornkalken, besonders deutlich am Hörnli-Westgrat, ferner in der Kontaktzone im Grüteten- und Hardzug und am Fuss der Felswand oberhalb Ursprung. Als Beweis für die einstige weitere Verbreitung der Falte kann das Vorherrschen von Studfluhkalkschutt im Rübigraben angesehen werden und die kubikmetergrossen Blöcke von Rinderalpgestein, welche in der Gegend von Schwanden und Buochserwald vereinzelt vorkommen.

3. Die Alpelischolle.

Dem südwestlichen Stück des nordwestlichen Buochserhorn-Südschenkelabschnittes aufsitzend, bildet die kleine Alpelischolle auf der Strecke zwischen 1540 m und 1700 m denN-Grat des Buochserhorns. Die hellen, senkrechten Felsenkalkabstürze auf der NW-Seite des Grates sind morphologisch die auffälligsten Teile der im übrigen ganz mit der topographischen Form des Buochserhorns verschmolzenen Gestalt dieser Scholle (vgl. 4; Kaufmann, Mittlgn.). Die Auflagerungsfläche ist ungefähr parallel zu den Giebelschichten des Buochserhorn-Südschenkels (vgl. Taf. XII) und etwa zu vergleichen mit einer schiefgestellten, gegen E offenen Schüssel.

Die Alpelischolle besteht beinahe ausschliesslich aus Oberen Zoophycosschichten. An der Basis beobachtete ich helle Spiskalke mit der charakteristischen scharfen Transgressiongrenze gegen die Giebelschichten stossend. Ältere Schichten habe ich nicht beobachtet; wahrscheinlich fehlen sie infolge Abschürfung. Von den jüngeren Gesteinen blieb nur Felsenkalk als eine kleine Kappe erhalten.

4. Die Bleikischolle.

In der Einsattelung des Grates zwischen Buochserhorn und Musenalp bilden Stockhornkalke und Felsenkalke ein kleines Hügelchen P. 1597. Im S und N desselben streichen auf dem Grate Triassedimente aus. Gegen SW zieht sich von diesem Punkte aus ein scharfes Grätchen, dessen SE-Abdachung die Hütten der Bleikialp P. 1385 trägt. Die Alp liegt auf den Schichtflächen der Stockhornkalke der Bleikischolle. (Das Grätchen war schon Escher und Studer aufgefallen; Stutz deutete es als abgesessene Scholle der Musenalp; Moesch fasste

es als N-Schenkel einer Buochserhorn mit Musenalp verbundenen Doggermulde auf; Kaufmann hat entdeckt, dass im S und N desselben Triassedimente auftreten; Tobler deutete es als Teil einer selbständigen Scholle.)

Die Gesteine der Bleikischolle sind sehr schlecht aufgeschlossen, entweder überdeckt von ihrem eigenen Schutt oder demjenigen der darüber liegenden Musenalpscholle. Im allgemeinen sind nur Stockhornkalke und Felsenkalke, seltener auch Obere Zoophycusschichten, entblösst; ältere Schichten kenne ich nur von Sattel nördlich P. 1597.

8	trat. Sammelprofil IV: Bleikischolle; vgl. Tabelle II.
Lauf.	No. Mächtigkeit
$G \left\{ \begin{array}{c} 9 \\ 8 \end{array} \right.$	Graue, dichte Fleckenkalke mit Tonhäuten (150) Grobschuppige, splittrige, helle Kalke 60
	Ebene, messerscharfe Kontaktfläche.
F 7	Graue, sandig-schiefrige Kalke 40
$D = \begin{cases} 6 \\ 5 \end{cases}$	Weiche, schwarze, bituminöse Kalke . } 6 Feinsandige, dunkelgraue Kieselkalke . } 1 Helle Echinodermenbreccie mit Belemniten
$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	Helle Echinodermenbreccie mit Belemniten
	Dolomit Rauhwacke (40)
	(Mächtigkeiten z. T. tektonisch reduziert.)

In der Umgebung des P. 1597 erscheint die normalliegende Schichtserie angepresst an die Form des mittleren Buochserhorn-Südschenkelabschnittes. Eine Anzahl Verwerfungen (mittlere Lage 200/50) durchsetzen die Stockhornkalkbänke des Bleikialpgrätchens, welche gegen SE mit 30°—60° einfallen. In den südlicheren Teilen der Scholle wird die Schichtlage flacher, annähernd horizontal. Es sind fast ausschliesslich gequälte Stockhornkalke, welche zutage treten (Seewli und Oberboden P. 1447). Am N-Hang des Bachtobels (Alpelibach) nördlich Niederrickenbach auf der Höhe von 1260 m beobachtet man in den Übergangsschichten von Stockhornkalk zu Felsenkalk eine deutliche E-W streichende Schichtumbiegung.

Die Bleikischolle erscheint demnach als normalliegende, im Mittel ca. 300 m mächtige Schichtplatte. Sie ist besonders an ihrem N-Rand unregelmässig verbogen und von Verwerfungen durchsetzt; der S-Rand zeigt eine scharfe Aufbiegung.

5. Die Musenalpfluhscholle.

Die Gestalt des Musenalpplateaus lässt leicht erkennen, dass eine mächtige, nahezu horizontale Felsenkalkplatte das formgebende Element dieser Scholle ist. Die älteren und jüngeren Schichten sind, die oberen Zoophycosschichten ausgenommen, sehr untergeordnet und schlecht aufgeschlossen. Die stratigraphischen Befunde lassen sich zu folgendem Sammelprofil zusammenstellen:

Lauf.		trat. Sammelprofil V: Musenalp; vgl. Tabelle IV	ächtigkeit
Laui.	110.	n.	m
	19	Dunkelgraue Kieselkalke mit mergeligen Zwischenlagen	 ×
	18	Quarzitische Kalke mit breiten Silexlagen, rötlichgrau	1-30
	17	anwitternd	0-4
(?H)	16	Gelbliche Kalke mit dunkeln Einschlüssen (brecciös, ähnlich wie 10)	0-0,3
	15	Grobschuppiges, helles, quarzitisch aussehendes Ge-	0-2
	14	stein, sandig anwitternd	0-0.2
	`	Plötzlicher Gesteinswechsel.	0 0,2
	$\binom{13}{}$	(wie 12) dünnbankig, mit sehr viel Silex, dunkeln Flecken und Tonhäuten	0—30
G	12	Dichter grauer Kalk, gegen oben bankig mit wenig	10—20
	11	Silex	60—80
		Plötzlicher Gesteinswechsel.	
	9	Schlechtgebankter, gelblich, staubig-anwitternder Kalk (dolomitähnlich); hie und da körnig oder spätig oder mit dunkeln Einschlüssen (brecciös?) mit vereinzelten Pflanzenspuren und Schalenfragmenten. Dichter bis feinspätiger Kieselkalk mit dunkleren, eckigen oder knolligen, z. T. rostrot anwitternden	6
	8	Einschlüssen; Silex	3
F	7	Feinsandige graue Mergelkalke und Schiefer. Mit Posidonomya alpina Gras, Pecten cf. cingulatus Philipps, Perisphinctes (Grossouvria) Balinensis	
	_	Philipps, Perisphinctes (Grossouvria) Balinensis Neum	100
		Cancellophycos scoparius	J
	5	Dunkle Kieselkalke, grobbankig (120—250 cm), mit Silexlagen, vereinzelte Belemniten, Pyritflecken,	
,	•	Pflanzenspuren	30
	$\begin{pmatrix} 4 \\ 3 \end{pmatrix}$	Graue Mergelkalke mit Coeloceras Blagdeni Sow Grauer dichter Kalk mit plattigen Lagen grober	10
E	$\begin{bmatrix} & & & & & & & & & & \\ & & & & & & & & $	Grauer, dichter Kalk mit plattigen Lagen grober Echinodermenbreccie mit Dolomitfragmenten Grobschuppiger, z. T. spätiger Kieselkalk; an der Basis	10
		mit Dolomitfragmenten erfüllt (Korndurchmesser bis 10 mm)	15

Mächtigkeit

Lauf. No.

D 1 Rötliche, samtartig anwitternde Kalke und Kieselkalke mit schwarzglänzenden Kieselknauern . .

Im Detail wird das Bild der horizontalen, normal gelagerten Scholle durch sehr zahlreiche Verwerfungen kompliziert. Im allgemeinen stehen die Bruchflächen nahezu senkrecht; die Streichrichtungen scheinen regellos zu sein. Die Sprunghöhen erreichen selten mehr als 50 m, meist sind sie viel geringer. In der Karte konnten nur die wichtigsten Verwerfungen eingetragen werden. In der nordwestlichen Ecke ist die Platte nach unten eingeknickt. Die Depression verläuft in der Richtung E-W (ungefähr dem Tälchen zwischen P. 1723 und P. 1779 entlang).

6. Die Musenalpgipfelscholle.

Die auffälligen roten Mergel, Rauhwacken und Dolomite auf dem Musenalpplateau sind ausnahmslos sehr stark gestört und mit dem darunterliegenden Stück der Felsenkalkplatte der Musenalpscholle an der entsprechenden Stelle eingesunken.

Schon Escher und Kaufmann betrachteten diese Gesteine als aufliegend, hielten sie aber für jünger als der liegende Felsenkalk. Stutz und Moesch, welche sie als Trias erkannten, erklärten sie tektonisch als Kern eines Gewölbes. Erst nachdem die Deckentheorie anerkannt und die Existenz gewaltiger Unterschiebungen glaubhaft wurde, durfte man es wagen, diese Gipfelschichten als älter und trotzdem aufliegend zu betrachten. So stellte sich Tobler diese Partie als Rest einer auf die Felsenkalkplatte der Musenalp aufgeschobenen höheren Scholle vor.

Christ, welcher anlässlich seiner Untersuchung des Stanserhorngebietes auch die Musenalp besuchte, gibt für die Gipfeltrias der Musenalp folgende Schichtfolge (topographisch von oben nach unten) an (20; 7):

Rauhwacke und graue Mergel mit einzelnen Dolomitbänken.

Bunte Mergel (vornehmlich rot).

Quarzitische Sandsteine mit Pflanzenresten.

Feinkristalline Dolomite mit Bivalven und Gastropoden, darunter Myophoria Whatelyae v. Buch.

Rötiartige Dolomite.

Die über dem Felsenkalk liegenden Echinodermenbreccien betrachtet er mit Tobler als zur Triasfolge gehörenden Lias; die ganze Schichtserie demnach als verkehrt gelagert. Auch Prof. H. Schardt ist, auf Grund der Beurteilung meiner diesbezüglichen Handstücke, dieser Meinung.

Mir hingegen scheinen diese Echinodermerbreccien kretazisch zu sein (vgl. p. 346) und zur Musenalpfluhscholle zu gehören. Die quarzitischen Sandsteine mit Pflanzenresten gehören vermutlich ebenfalls der Musenalpsockelscholle an (vgl. p. 325; Profil V, No. 18). Dolomite mit Myophoria habe ich nicht aufgefunden. Es bleibt nach Eliminierung dieser beiden Schichtglieder die Reihenfolge:

Rauhwacke. Bunte Mergel. Rötiartige Dolomite.

Diese Folge scheint im Vergleich mit der Triasserie des Buochserhorns für verkehrte Lagerung zu sprechen; die Schuppennatur dieses Triaskomplexes liesse eher normale Lagerung erwarten. In Textfigur 5 habe ich letzteres angenommen, betrachte aber die Frage noch als ungelöst.

Auf dem Diagonalgrat der Musenalp beobachtet man zwischen den Punkten P. 1789 und P. 1779 verkarrte Felsenkalkpartien inmitten roter Triasmergel. "Wie ist der Kalk hierher gekommen?" fragten sich schon Kaufmann und Moesch, als sie am 22. September 1874 über die Musenalp wanderten. "Glazial??" Da aus dem steilen NE-Hang des Grates nur Rauhwacke und bunte Mergel hervorschauen, scheinen diese hellen Kalke wirklich darauf zu schwimmen. Moesch fand später eine glückliche Lösung, indem er sich dieses Vorkommen als Erosionsrelikt des Gewölbescheitels erklärte. Stutz beobachtete diesen Kalk erstmals am 20. August 1882. "Er sieht etwas fremdartig aus, ist aber doch wohl ein dislozierter Fleck weisser Jura", notierte er in sein Feldbuch. Tobler erklärt dieses Vorkommen als Erosionsrelikt einer höheren, über die verkehrte Triasgipfel-Schuppe aufgeschobenen Scholle. Ich vermute, dass es sich um ein von den bedeckenden Triasmergeln entblösstes Stück der Musenalpfelsenkalkplatte handelt, dessen Fortsetzung etwas weiter südöstlich, kaum 20 m tiefer zutage tritt, im Anschluss an das grosse Karrenfeld des nordöstlichen Teiles der Musenalp.

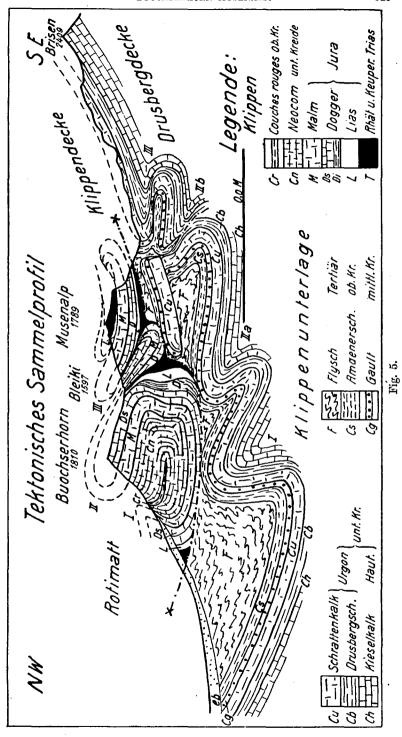
D. Zusammenfassung.

1. Tektonik; vgl. Textfiguren 5 und 7.

Die sechs Schollen des Buochserhorn-Musenalpgebietes gehören vier Falten der Klippendecke an (vgl. Textfigur 6):

Hangender, normaler Schenkel	Falten- stirn	Liegender, verkehrter Schenkel
Musenalpgipfel	III II I	(? Musenalpgipfel) Buochserhorn-Südschenkel Rotimatt (innerer Schenkel)

Die nächst höhere südlichere Falte erscheint jeweils stärker überliegend; die höchsten Falten sind schuppenartig überschoben.


Von den Faltenstirnen ist nur wenig erhalten geblieben. Als einen Teil der Stirnumbiegung der Falte I betrachte ich die senkrecht stehenden Stockhornkalke nördlich unterhalb P. 1190 (Hörnli). Ein Stück der Faltenstirn II bildet den Gipfel des Beckenriederhorns (P. 1301). Die Muldenumbiegungen sind schlecht aufgeschlossen; Mulde III—II südlich Niederrickenbach (Alpelibach) bei 1260 m ü. M., ca. N 80° E streichend; die MuldeII—I ist sichtbar an der Giebelfluh, teilweise im Hüetlerentobel, ferner oberhalb Katzenstrick und Obersassi, bei 900 m ü. M., ca. N 40° E streichend.

Die Schichtlagen und der Verlauf der Schichtgrenzen zeigen an, dass die Axen dieser Falten nicht gerade verlaufen. Die Synklinalaxe II—I scheint an ihrem südwestlichen Ende (Wandfluh) rasch gegen W umzubiegen, die Antiklinalaxe II schon in ihrer Mitte (in der Gegend der Buochserhornspitze P. 1810). Diese Axenverbiegungen erschweren das Verständnis der Tektonik ungemein. Die Knickung der Falte II bedingte jene Zwickelbildung, wodurch die Alpelischolle vor Abtrag verschont blieb. An der Knickfalte, welche keilförmig gegen Staucht (etwa in Lage und Richtung des Buochserhorn-Südgrates), scheinen sich die höheren Falten III und IV hoch aufgestaut und verschuppt zu haben.

Die merkwürdige, gegen S überliegende Rotimattantiklinale, die tektonische Reduktion des Buochserhorn-Nordschenkels und die nicht einheitliche Klippenüberschiebungsfläche, lassen vermuten, dass nicht nur eine, sondern mehrere Schubphasen diese Verhältnisse herbeigeführt haben.

2. Stratigraphie; vgl. Textfiguren 6 und 7, sowie Tabellen I—IV.

Denken wir uns das ca. 14 km breite Stück der Klippendecke, welches innerhalb des Buochserhorn-Musenalpgebietes in vier Falten gelegt auf ca. 5 km Breite zusammengedrängt

ist, auseinandergezogen und in eine Ebene abgewickelt. (Voraussetzungen für die Näherungskonstruktion der Abwicklung auf Textfigur 7: Faltenaxen horizontal und gerade, Falten um volle 180° umgelegt gedacht und durch einen Knick ersetzt.)

Durch die sechs unzusammenhängenden Stücke wird nur ein kleiner Ausschnitt aus dem Sedimentationsraum der Klippendecke repräsentiert. Die Hauptglieder der Schichtreihe: Stockhornkalk, Felsenkalk und Zoophycosschichten zeigen daher in ihrer Ausbildung nur sehr geringe Veränderungen, etwa in dem Sinne, dass im Gegensatz zum Buochserhorn an der Musenalp die Felsenkalke mächtiger, deutlicher korallogen und die Oberen Zoophycosschichten ausgesprochener mergelig-kalkig werden. Deutlichere Faziesveränderungen zeigen die Giebel-, Spis- und Hüetlerenschichten, indem darin - seitlich ohne scharfe Grenze — grobklastische oder eisenschüssige Bildungen auftreten, die übrigens nur von geringer Mächtigkeit sind. Die Giebel-, Spis- und Hüetlerenschichten überlagern die älteren Gesteine diskordant. Der Transgressionswinkel berechnet sich für die Giebelschichten, bezogen auf die Unteren Zoophycosschichten zu sechs Grad; für die Couches rouges auf den Stockhornkalken zu 21/20 (demnach wäre schon 2-3 km südlich der Musenalp, z. B. in der Schichtfolge der Musenalpgipfelscholle kein Felsenkalk mehr zu erwarten). Der Transgressionswinkel der Hüetlerenschichten in bezug auf den Dolomit mag im Mittel auch etwa 3-6° betragen. Lokal können starke Abweichungen auftreten. So schneiden sich z. B. südöstlich unterhalb Hüetleren (Punkt No. 52, vgl. Taf. XII) die Transgressionsfläche der Pectenkalke und diejenigen der Hüetlerenschichten unter einem Winkel von 40°. Die groben Konglomerate der Hüetlerenschichtenbasis, welche am E-Hang des Buochserhorns und am S-Hang des Hüetlerentobels fehlen, scheinen vorzugsweise in der Umgebung der Denudationsgrenze der Pectenkalke aufzutreten. Dieser Umstand und der ungewöhnlich grosse Transgressionswinkel lassen vermuten, dass der Pectenkalk zur Zeit des Obersten Sinémurien als schroffe Steilküste aus dem Meer emporragte, und dann zu Beginn des Unteren Charmouthien allmählich überflutet wurde. Die beobachteten Denudationsgrenzen (der Pectenkalke, der Unteren Zoophycosschichten und der Stockhornkalke) scheinen innerhalb des Untersuchungsgebietes weder unter sich noch mit den Faltenaxen parallel zu verlaufen.

3. Die Beziehungen zu den benachbarten Klippen.

Tektonische Vergleiche: Südlich des Stanserhorns, dessen horizontale N 77° E streichende Muldenaxe nicht verbogen, wohl aber in der Gegend des Engelbergertales gegenüber der Axe der Buochserhornmulde um 1½ km nördlich vorgeschoben ist (ursprünglich wohl mit ihr durch eine Verbiegung verbunden), öffnet sich eine breite Mulde. Denkt man sich dle Schuppen südlich des Buochserhorns zu einer entsprechenden Mulde auseinandergezogen, dann würde etwa die Bleikigratscholle in die Lage des Arvigrates gerückt. Die Ähnlichkeit zwischen Arvigrat und Musenalp ist nur eine äusserliche, morphologische. Der N-Schenkel des Stanserhorns ist stark tektonisch reduziert; der Rotimatt entsprechende Bildungen wurden nicht beobachtet.

Die Bleikischolle scheint gegen E ihre Fortsetzung in der Bachscheitidossen-Stollenscholle zu finden, mit der sie im Lielibachtal (zwischen Stockboden P. 1275 und Steinstössi P. 1244) noch zusammenhängt und welche einen synklinalen Bau aufzuweisen scheint. Der hangende Schenkel wäre demnach hier nicht zerrissen, wie dies im Buochserhorngebiet der Fall ist. Der Musenalp entspricht die Klewenschuppe.

Stratigraphische Vergleiche: Vor allem sei auf die Tabellen I—IV verwiesen. Aus dem Klewenstollengebiet sind zurzeit noch keine Lokalprofile veröffentlicht worden.

Die Schichtfolgen von Stanserhorn (Tabelle III) und Buochserhorn (Tabelle I) zeigen weitgehende Übereinstim-Immerhin sind einige Unterschiede zu konstatieren: Die spätige und dolomitbrecciöse Basis der Hüetlerenschichten scheint am Stanserhorn ca. sechsmal mächtiger zu sein und drei ausgeprägte Breccienhorizonte zu enthalten neben Einlagerungen spätiger, oolithischer und dichter Kalke. - Über den schwarzen bituminösen Schiefern des mittleren und unteren Toarcien treten am Stanserhorn nochmals Kieselkalke auf. welche nach oben spätig werden und schliesslich von einer Kalkbreccie mit darüber folgender Glaukonitbank (vermutlich Spiskalk) überlagert werden. — Dei Mergelkalke der Unteren Zoophycosschichten werden gegen oben allmählich härter. die Bänke (mit Lytoceras tripartitum) nehmen an Mächtigkeit zu, während die Mergellagen langsam verschwinden; schliesslich geht das dicht bis kieselig-kalkige Gestein in feinspätig-kieseligen Kalk und endlich in grobspätigen Kalk über, der am Steinberg (Stanserhorn-Westhang) erbsen- bis eigrosse Gerölle enthält (Dolomite, dunklere Kalke, Quarzite und rote oder dunkel-

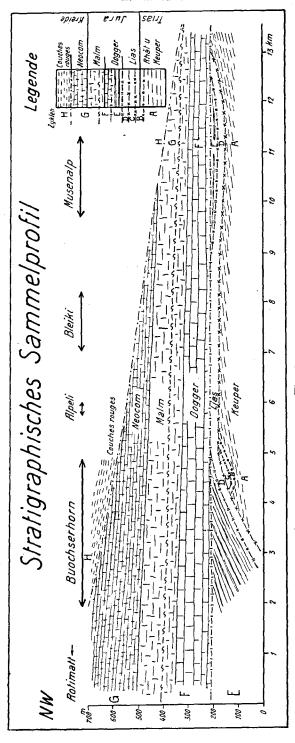
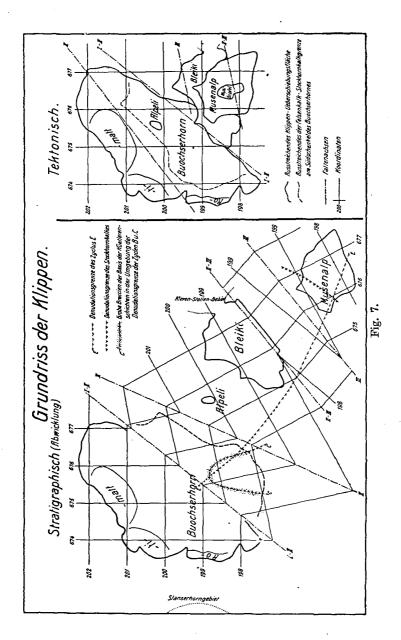



Fig. 6.

grüne Quarzporphyre), stellenweise nur vereinzelt, stellenweise aber so dicht beieinander, dass die Schicht ein richtiges Konglomerat darstellt. Eine scharfe Grenze zwischen Konglomerat und reinem Spatkalk ist nicht zu beobachten. Verfolgt man dieses Konglomerat gegen E, sieht man die Gerölle seltener und kleiner werden. Bis haselnussgross erscheinen sie nordöstlich der Krinne, an der Basis der Spatkalke, wo sie mit scharfer Grenze (auf der Schichtfuge häufig mit schönen Pyritwürfelchen) den Mergelschiefern aufliegen. Die härteren chailleartigen Bänke des Lytoceras tripartitumhorizontes fehlen hier. An deren Stelle findet sich eine 5-10 cm dicke Bank von sandig feinspätigem Kalk, ganz durchsetzt mit kantigen oder gerundeten Einsprenglingen von quarzitischem Kalk und teilweise gerollten Fossilien (Lytoceras tripartitum u. a. m.). Die obere Fläche der Bank zeigt Bohrmuschellöcher. Noch weiter östlich (Ober Kneuplanken und Blattialp) beobachtet man ebenfalls einen raschen Gesteinswechsel; Erhärtungsfläche und Konglomerate scheinen dort jedoch nicht mehr typisch aufzutreten (vergl. Lit. 20, 38). Ein prächtiges Beispiel für die Veränderung einer Zyklengrenze vom allmählichen Schichtübergang zur Denudationsfläche! Am W-Hang des Buochserhorns fehlt schon mehr als die Hälfte der Unteren Zoophycosschichten, am E-Hang fehlen sie ganz. (In diesem Sinne nimmt das Buochserhorn nicht nur geographisch, sondern auch stratigraphisch eine Mittelstellung ein zwischen Mythen [wo die Giebelschichten auf Trias transgredieren] und Stanserhorn [mit der vollständigen Schichtfolgel.)

Am Stanserhorn liegen an der Basis der Felsenkalke in dichtem bis feinspätigem grauen Kalk drei Zonen einer unregelmässig mächtigen, grauen Kalkbreccie mit schwach gerundeten, knollig anwitternden Elementen (calcaire concrétionné, Lit. 20, 44). Ähnliche Bildungen sind mir am Buochserhorn nur selten begegnet (Trogmattritt), wenig mächtig und nach ihrem Schichtverband den Studfluhschichten angehörend; wahrscheinlich sind sie auch an der Musenalp vertreten (vgl. p. 325, Profil V, No. 9 und 10).

Der Arvigrat (Tabelle IV) zeigt, verglichen mit dem Bleikigrat (Tabelle II), eine vollständigere Schichtreihe. Die Basisbreccie der Hüetlerenschichten liegt dort diskordant auf wenig mächtigen Pectenkalken, während sie am Bleikigrat auf Dolomit liegt. Die unteren Zoophycosschichten erscheinen am Arvigrat sehr mächtig; an der Bleikischolle konnten sie nicht aufgefunden werden (möglicherweise fehlen sie infolge Ausquetschung).

Im Klewengebiet hat Tobler keinen Lias aufgefunden, was darauf hindeutet, dass dort die Oberen Zoophycosschichten schon auf tiefere Horizonte, möglicherweise auf Raiblerschichten,

transgredieren.

Unter der Voraussetzung, dass die vorgeschlagene tektonische Parallelisierung richtig ist, ergibt sich, dass innerhalb der Unterwaldnerklippen die Denudationsgrenzen nicht parallel zueinander und nicht parallel zu den Falten verlaufen; dass also bei Parallelisationsversuchen auf Grund stratigraphischer Merkmale grösste Vorsicht geboten ist.

III. Die Unterlage. (Das Brisen-Haldigratgebiet.)

Sämtliche zentralschweizerischen Klippen liegen in einer breiten Flyschzone, welche geographisch durch die Linie Brunnen—Buochs—Stans—Kerns mit Gersauerbecken des Vierwaldstättersees und Sarnersee bezeichnet ist. Es entspricht dieser Zone eine muldenartige, in der Umgebung von Buochs schüsselförmig erweiterte Einsenkung zwischen den nach N steil ansteigenden helvetischen Kreideschichten der Randkette (Rigihochfluh-Bürgenstock) und den im S sich hoch übereinander türmenden Falten der Drusbergdecke.

Die vier den S-Rand der Mulde bildenden Falten, welchen die Klippen auf- oder anliegen, sind:

Bezeichnung und Name	Urnersee- Kulmination	Engelbergertal- Depression	Unterschied
	m	m	m
III Oberbauenfalte	2000	1100	900
II/b Niederbauenfalte		900	1000
II/a Hammenfalte	1050	400?	650?
Í Seelisbergerfalte	1000	?	?

(Mittlerer Horizontalabstand: Kulminationspkt./Depressionspkt.=1400 m.)

Bezeichnung und Benennung sind den "Profilen zur geologischen Vierwaldstättersee-Karte" entnommen. Bei der Konstruktion der tektonischen Karte (Taf. X) ergaben sich Unstimmigkeiten, welche mich zur Vornahme folgender Änderungen veranlassten: Als westliche Fortsetzung der in Profil 3 zur geologischen Vierwaldstättersee-Karte mit II bezeichneten Niederbauenfalte betrachte ich die auf Profil 4 nicht bezeichnete Antiklinale von Hohberg-Eiberg, und nicht das Hammengewölbe. Dieses letztere scheint eine selbständige, eng geschlungene Falte von geringem Ausmass zu sein. Im Bereich der Urnerseekulmination

ist sie bis zur Unkenntlichkeit ausgewalzt. Ein Schrattenkalkband zwischen Gault am südlichen Ufer des Seelibergerseeli und oberhalb Morschach deuten auf ihr Vorhandensein. Oberhalb Erlen (bei Emmeten) taucht das Hammengewölbe westwärts unter Flysch und erscheint erst wieder an der Melchaa bei Züben (Schiebloch)-Ranft, als eine zwischen Flysch eingeschaltete Seewerkalkschuppe.

Unsere vier Falten streichen ungefähr N 65° E und fallen zwischen Urnersee und Engelbergertal im Mittel mit 2—4° gegen W. Über dem Urnersee ist eine deutliche Kulmination, in der Gegend des Engelbergertales eine Depression der Falten

zu konstatieren (vgl. obige Tabelle).

A. Stratigraphie.

Die Schichtreihe dieses südlich von Buochserhorn und Musenalp anschliessenden Gebietes helvetischer Facies weist keinen wesentlichen Facieswechsel in lateralem Sinn auf. Eine Übersicht über die Faciesänderung in vertikalem Sinn gebe folgende Zusammenstellung (vgl. Textfigur 8):

Strat. Sammelprofil: Brisen-Haldigrat. Helvetische Kreide (Drusbergdecke).

Amdenerschichten: Graue Mergel und Schiefer.

Scharfe Grenze, Oberfläche des Liegenden stellenweise von Pyrit übersät.

Seewerkalk: Hellgrauer, dichter Kalk, bankig, an der Basis mit zerstreuten Glaukonitkörnern (Turrilitenschichten).

Knollenschichten: Knolliger Kalk mit Glaukonitsandstein-Nestern. Lochwaldschichten: Spätiger glaukonitischer Kalk voll Schalenfragmenten.

Scharfe Grenze.

Brisisandstein: Dunkler Glaukonitsandstein, plattig bis bankig.

Luitereschichten: Blaugraue, dunkle Schiefer; an der Basis Fossilhorizont mit Douvillèiceras Martini.

Scharfe Grenze, unregelmässige Fläche.

Gibbsischichten: Heller, körniger bis spätiger Kieselkalk mit Pyritkonkretionen; mit rauhen, auf der Anwitterungsfläche vorstehenden organogenen Einschlüssen.

Sammtmergel: Dunkle Schiefer, häufig mit Pyritknollen, stellenweise etwas glaukonitisch; oben feinsandig mit kohligen Resten.

Harte, grobe Echinodermenbreccie, braun anwitternd, unregelmässig gebankt (10-30 cm); Bruch dunkelblaugrau.

Schrattenkalk: Dichter bis spätiger, grobbankiger, heller Kalk, oben z. T. groboolithisch.

Drusbergschichten: Regelmässige, dünnbankige (10-20 cm) Kalke mit Schieferzwischenlagen.

Altmannschichten: Hellgrauer, dichter Kalk, in den untersten Lagen stark glaukonitisch mit Pyritnestern, Belemniten.

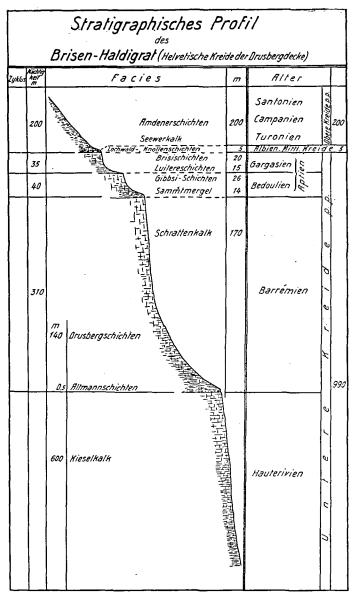


Fig. 8.

Masstab 1:6000

Kieselkalk: Zäher, dunkler, kieseliger Kalk, sandig anwitternd, oben grobbankiger werdend, zu oberst stellenweise glaukonitisch oder spätig; unten feinbankig.

Schiefer der Kieselkalkbasis: Mehr oder weniger kieselige, dunkelgraue Kalkschiefer.

B. Tektonik.

Der weite, flache N-Hang des Brisen- und Haldigrates (zwischen Gigi-Waseneggli und Schienberg-Bärfallen) wird grösstenteils von Schrattenkalk des hangenden Schenkels der Oberbauenfalte gebildet. Das Streichen der Schichten ist nahezu konstant N 75°E, das Fallen beträgt in den mittleren Teilen dieses Ausschnittes 28°N und wird gegen S und N steiler. Mehrere, nahezu senkrecht zur Schichtlage verlaufende Verwerfungen von geringem Ausmass durchsetzen die Schichtplatte. Die grösste dieser Verwerfungen streicht etwas östlich der Linie P. 1879 (Gigi) und P. 1136 (Wiegerts) aus, die Verschiebung beträgt normal zur Schichtlage gemessen etwa 15 m. Die übrigen Verwerfungen sind kaum zwei Meter mächtig.

Am E-Hang des Engelbergertales, zwischen Dallenwil und Wolfenschiessen, sind die Falten III und II/b angeschnitten.

Die Stirnumbiegung der Falte III ist am besten an den Altmannschichten zu verfolgen. Steigt man dem Bächlein, welches von Oberlütschgen P. 1530 nach dem Zegligraben fliesst, entlang hinunter, beobachtet man folgende Veränderung der Schichtlage:

_			
_	Höhe ü. M.	Schichtlage	-
	1330 1300 1280	329/48 341/64 340/87	
-	1270	156/48	$_{ m Umbiegungs}$ stelle

Viel weniger übersichtlich erscheint die Umbiegung der Schrattenkalk-Gaultgrenzfläche, da die Gesteine hier stark zerrüttet sind. Im liegenden Schenkel der Falte III, welcher zwischen Hütti und Brändlen an die Oberfläche tritt, ist die ganze Schichtreihe in ähnlicher Weise gestört. Die Mächtigkeit der Schichten des Barrémien ist gegenüber 500 m an der Umbiegungsstelle hier auf weniger als 100 m ausgewalzt. Schichtverlauf und Schichtlage lassen trotzdem noch erkennen, dass mehrere Querbrüche die Falten durchsetzen, wobei die

östlichen Teile jeweils um 20—60 m weiter gegen N vorgeschoben sind. An der Umbiegungsstelle der Mulde III—II/b ergaben Messungen der Schichtlage nahe der Altmannschichten (auf dem Weglein von Brändlen P. 984 nach Käppelistutz P. 820 zwischen 900 m und 930 m) ein Streichen von N 62 E; im Schrattenkalk (40 m über P. 989) N 57 E. Die Mächtigkeit des Barrémien beträgt hier 550—600 m.

Der Schrattenkalk des hangenden Schenkels der Falte II/b (Niederbauenfalte) bildet die nahezu horizontale, sich oberhalb Wolfenschiessen erhebende mächtige Vesperfluh. Die Mächtigkeit der Schichten des Barrémien erscheint hier normal, 310 m. Nennenswerte Störungen wurden nicht beobachtet. Der frontale Teil der Falte II/b ist dagegen äusserst kompliziert gebaut. Das auffallendste Glied dieser Stirnzone ist die Schrattenkalkplatte der Wandfluh (östlich Dallenwil), welche mit ausserordentlich scharfer, ebener, mit 10-200 gegen N einfallender Verwerfungsfläche die Schichtreihe des liegenden Schenkels abschneidet. Am N-Ende ist deutlich eine mit N 80 E streichende Schichtumbiegung zu erkennen. Etwa 30 m südlicher (im Walde ob Füglisloh) ist nochmals ein steil stehendes Gaultriff zu beobachten, welches anzeigt, dass auch diese Falte durch Querbrüche gestaffelt ist, ähnlich der Falte III. Die Stirnumbiegung der Altmannschichten ist ca. 1250 m südlich zurückgeblieben und tritt jenseits des Hummligenbaches bei 660 m zutage. Die Schrattenkalkplatte der Wandfluh stösst mit ihrem S-Rand auf die Amdenerschichten des Muldenkerns III—II/b. Dünne, wenige Meter mächtige Linsen von Gaultgesteinen schieben sich dazwischen (sichtbar in dem südwestlich unterhalb Unterrütti P. 1139 in den Hummligenbach einmündenden Seitenbächlein bei 1000 m). Der N-Rand des Schrattenkalkes der Vesperfluh liegt tiefer, bei 900 m und weist eine scharfe Umbiegung nach unten auf. Die darunter liegenden Drusbergschichten fallen schwach gegen N. der nördlichen Seite des Hummligenbaches sind sie horizontal oder bis 30° S-fallend, durchsetzt von einer Schar annähernd paralleler, N 80° E streichender, mit 40-50° S-fallender Gleitflächen. Der Schrattenkalk, welcher den Hügel bei Wigerts P. 1136 bildet, scheint die östliche Fortsetzung des S-Randes der Wandfluhschrattenkalkplatte zu sein. Die Kalkbänke fallen im Mittel mit 50° nach N 50 W. Weitere Aufschlüsse finden sich im Buoholzbachtobel, zwischen 800 m und 840 m. wo ein flacher Antiklinalscheitel vorzuliegen scheint, vermutlich ein Teil der Stirnumbiegung der Wandfluhplatte. Die tektonischen Zusammenhänge sind infolge starker Schuttbedeckung und lokaler Störungen schwer zu überblicken.

Der liegende Schenkel der Falte II/b, welchem das unterhalb Hüttismatt gegen S einfallende mächtige Felsband angehört, scheint von annähernd normaler Mächtigkeit. Verfolgt man die obere Schrattenkalkgrenze, dann beobachtet man bei 670 m und 720 m Querbrüche von ca. 10 m und 20 m Sprungweite. Die Schichten streichen N 75—80 E, das Fallen beträgt ca. 60° und wird gegen unten flacher. Die Muldenumbiegung II/b—II/a und die übrigen Falten II/a und I treten nicht mehr zutage.

Zusammenfassung: Die beiden Falten (Ober- und Niederbauenfalte), welche im Gebiet des Brisen und Haldigrates beobachtet werden können, zeigen an den Umbiegungsstellen ein starkes Anschwellen der Schichtmächtigkeit. Ihre liegenden Schenkel sind sehr stark reduziert oder gar zerrissen. Die Faltenhöhe ist gering:

Falte	Umbiegungsstellen der Schichtgrenzfläche Kieselkalk Drusbergschichten	Horizontal- Dist	anz
TII TII II/h		+	m
$\begin{array}{c c} III = III - II/b \\ II = III - II/b \end{array}$	Plütschgen Kappelistutz Kappelistutz Hummligen	720 1600	300 350

Die Stirnumbiegungen sind durch zahlreiche Querbrüche gestaffelt. Die Loslösung des überschobenen Stirnteiles der Falte II/b (Wandfluhplatte) und die damit in Zusammenhang stehenden Schichtverbiegungen scheinen darauf hinzudeuten, dass der heute vorliegende Faltenwurf in mehr als einer Bewegungsphase erreicht wurde.

C. Die Beziehungen zwischen Klippen und Unterlage.

Das Buochserhorn liegt über der Seelisberger- und Hammenfalte; die Musenalp über der Niederbauenfalte und berührt mit ihrem südlichsten Ende noch die Stirn der Oberbauenfalte.

Aus Taf. X ist ersichtlich, dass im Bereich der Faltendepression des Engelbergertales, in welcher die Reste der Klippendecke wohl infolge ihrer tiefen geschützten Lage vor gänzlicher Denudation verschont geblieben sind, die Stirnteile der Falten der Drusbergdecke gegen N stark ausgebuchtet, vorgeschoben sind. Es scheinen jedoch keine engeren Beziehungen zwischen den Faltenformen der Drusberg- und Klippendecke zu bestehen. Dieser Umstand lässt vermuten, dass die Knickfalten der Klippendecke erst später, nach der helvetischen Phase, gebildet wurden; vielleicht zur Zeit der

insubrischen Phase, als die helvetischen Decken gegen das Molasseland aufgeschoben wurden und infolge der Aufstauung an der Riginagelfluh sich die Urnerseekulmination bildete (wobei die Sedimente im Kern der Depression wohl auch seitlich zusammengedrängt worden sind). Leider kennen wir weder die Details der vorliegenden Faltenformen noch die Beziehungen zwischen Form, Festigkeit der Gesteine und wirkenden Kräften genügend, um näher auf diese Fragen eingehen zu können.

Der Flysch, der die Schichtserie der Drusbergdecke von den Gesteinen der Klippendecke trennt, besteht aus z. T. glimmerführenden Sandkalken und Schiefern (welche oft kaum von den Rinderalpschichten zu unterscheiden sind), ferner Sandsteinen und polygenen Breccien. Die Aufschlüsse sind innerhalb des Gebietes selten, die Gesteine tektonisch (mechanisch) sehr stark gestört, daher für das Studium der Stratigraphie dieser Schichten nicht geeignet.

IV. Die Beziehungen der Buochserhorn-Musenalpgruppe zu den übrigen Gebieten der Klippendecke.

Die Überreste der Klippendecke der Zentral- und Westschweiz lassen sich geographisch folgendermassen einteilen:

 Die zentralschweizerischen Klippen (zwischen Linth und Aare).

1. Schwyzerklippen:

Ibergerklippen (Roggenstock, Schynberg, Laucheren, Mördergrube);

Mythen (Gross- und Kleinmythen), Rotenfluh.

2. Unterwaldnerklippen:

Klewen, Stollen; Buochserhorn, Bleiki, Musenalp;

Stanserhorn, Arvigrat.

3. Obwaldnerklippen:

Giswilerstöcke (Stock, Schafnase, Rossfluh), Alphoglerberg, Rotspitz.

II. Die Préalpes romandes (zwischen Aare und Arve).

1. Stratigraphische Beziehungen.

Die grosse Ähnlichkeit zwischen den Gesteinen (z. B. Stockhornkalk, Couches rouges usw.) der Klippen und der Préalpes, hat dazu geführt, sie als Ablagerungen ein und desselben Sedimentationsraumes aufzufassen. Einen Überblick über diese Einheit bietet die zusammenfassende Darstellung nach A. Jeannet: "Das romanische Deckengebirge, Préalpes

und Klippen" (25, 589). Die Arbeit von Christ (20), in welcher die der Buochserhornserie sehr nahe stehende Schichtserie des Stanserhorns mit den entsprechenden Schichten der Préalpes verglichen werden, erübrigt es, den Vergleich für das Buochserhorn zu wiederholen. Es könnte gezeigt werden, dass auch die Art der Schichtverbände entsprechender Sedimente im Bereich der Klippendecke dieselbe bleibt (z. B. dass innerhalb der Klippendecke Felsenkalk und Stockhornkalk stets allmählich ineinander übergehen; die Basis der Hüetlerenschichten ausnahmslos durch eine scharfe Schichtgrenze vom Liegenden getrennt ist, usw.).

2. Tektonische Beziehungen.

Die morphologischen Ähnlichkeiten zwischen den scharfen Gräten und Hörnern des Stanserhorn, Buochserhorn und Mythen einerseits und den südlich anschliessenden plateauartigen Erhebungen Arvigrat, Musenalp und Rotenfluh andererseits, reizen zu Vergleichen; tatsächlich fehlen auch tektonische Analogien nicht: im N herrscht Muldenbau, im S finden sich flachgelagerte Schuppen. Auch die Mulde des Stollen mit der daraufgeschobenen Klewenschuppe lässt sich unschwer dieser Reihe einfügen; die Iberger und Obwaldnerklippen dagegen widersetzen sich diesem Schema.

Die genauere Betrachtung zeigt jedoch sofort, dass die morphologischen Ähnlichkeiten im Detail trügerisch sind. Für die Unterwaldnerklippen ergibt sich folgende tektonische Zugehörigkeit.

	Musenalpgipfel	
	Musenalpfluh .	Klewer
Arvigrat	Bleiki Alpeli	Stoller
Stanserhorn	Buochserhorn	
·····	Rotimatt	

Es erscheint zurzeit unmöglich, auch die Schwyzer- und Obwaldnerklippen in dieser Weise zu parallelisieren. Ebensowenig werden sich derartige tektonische Vergleiche mit den Préalpes romandes, selbst wenn die tektonischen Formen jenes Gebietes in ihren Einzelheiten und in ihren Zusammenhängen besser bekannt sein werden, wohl kaum je durchführen lassen.

Literaturverzeichnis.

Beitr. = Beiträge zur geologischen Karte der Schweiz.

Bull. soc. vaud. = Bulletin de la Société vaudoise des sciences naturelles.

Ecl. = Eclogae geologicae Helvetiae.

N. J. f. M. = Neues Jahrbuch für Mineralogie etc.

Mitt. d. g. Ges. Wien = Mitteilungen der geologischen Gesellschaft in Wien.

Verh. d. S. N. G. = Verhandlungen der Schweizerischen naturforschanden Ge-= Verhandlungen der Schweizerischen naturforschenden Gesellschaft.

a. Literatur über das Klippengebiet Buochserhorn-Musenalp.

1. A. ESCHER VON DER LINTH, Tagebücher aus dem Nachlass (Manuskript); Bd. IV, p. 226 u. 227, Bd. V, p. 256-258, Bd. Xa, p. 2436 u. 2437, Bd. Xb, p. 3121, aufzewahrt im Escherarchiv der E. T. H. Zürich.

1a. 1896. Alb. Heim, Erinnerungen an A. Escher v. d. Linth; Verh.

d. S. N. G., Bd. 79, p. 1—24.

2. 1853. B. Studer, Geologie der Schweiz; Bd. 2, p. 174 u. 175.

2a. 1887. L. RÜTIMEYER, Bernhard Studer; Verh. d. S. N. G., Bd. 70, p. 177—204.

3. F. J. Kaufmann, Journal NW (Nidwalden) (Manuskript); Bd. 2, p. 1—120. Aufbewahrt im Naturhistorischen Museum Bern.

3a. 1893. B. Amberg und J. Bachmann, Dr. Franz Joseph Kauf-

mann, sein Leben und seine Werke, p. 1-57.

4. 1875. F. J. Kaufmann, Mitteilungen an Prof. G. Leonhard; N. J. f. M., p. 389-391.

5. 1875. F. J. Kaufmann, Fünf neue Jurassier; Jahrbuch des schweiz.

Alpenklubs, Bd. 11, p. 45—74.
6. U. Stutz, Tagebücher (Manuskript). Aufbewahrt in der Uni-

versitätsbibliothek von Basel. 6a. 1895. C. Schmidt, Ulrich Stutz; Verh. d. S. N. G., Bd. 78, 197—204.

7. 1879. U. Stutz, Die Contorta-Zone der Urschweiz usw.; N. J. f. M.,

8. 1890. U. Stutz, Das Keuperbecken am Vierwaldstättersee; N. J.

f. M., Bd. III, p. 99-140. 9. 1894. C. Moesch, Die Buochserhorn-Musenalp-Clevenklippen, aus: Beitr. Die Kalk- und Schiefergebirge zwischen dem Reuss- und Kiental; Bd. 24, III, p. 59-78.

9a. 1900. A. Baltzer, Casimir Moesch; Verh. d. S. N. G., Bd. 82, p. IX—XVII.

10. 1894. С. Моекси, Geologischer Führer usw., р. 95—101.

11. 1898. A. Tobler, Protokoll der Sektionssitzung für Geologie; Ecl. Bd. V, p. 476 u. 477.

11a. A. Tobler, Tagebücher (Manuskript). In Privatbesitz.

12. 1899. A. Tobler, Vorläufige Mitteilungen über die Geologie der

Klippen am Vierwaldstättersee; Ecl. Bd. VI, p. 7—14.

13. 1905. A. Tobler u. A. Buxtorf, Programm der Exkursion der schweiz. geol. Ges. in die Klippenregion am Vierwaldstättersee; Ecl, Bd. IX, p. 13.

14. 1905. A. Tobler u. A. Buxtorf, Berichte über die Exkursion

der schweiz. geol. Ges. usw.; Ecl. Bd. IX, p. 19.

15. 1905. F. Trauth, Über den Lias der exotischen Klippen am Vierwaldstättersee; Mitt. d. geol. Ges. Wien, Bd. I, p. 412-485.

16. 1908. J. Oppenheimer, Dogger und Malm der exotischen Klippen am Vierwaldstättersee; Mitt. d. geol. Ges. Wien, Bd. I, p. 486-503.

17. 1909. W. Schmidt, Einige Rhätfaunen aus den exotischen Klippen am Vierwaldstättersee; Mitt. d. geol. Ges. Wien, Bd. II, p. 203-212.

(Fortsetzung siehe Seite 352).

Tabelle I.
Stratigraphisches Sammelprofil (Jura und Kreide) des Buochserhorn.
(Von H. Knecht).

Rote Kalke und Schiefer mit Hornsteinlagen Gouches rouges Obere Kreide	Zyklus	Ħ	ರ	F4
Mahiijkeit m 30 Rote Kalke und Schiefer mit Hornsteinlagen 20 Schwarze, tonige Mergel und Fleckenkalke mit Fucoiden 50 Helgraue, dichte, glatte Kalke, bankig 50 Massigc helle Kalke 60 Feinspätige, dunkelgraue Kalke mit Belennites hastatus und 81 Sandige Kalke und Schiefer voll Glimmerschüppchen; Pflanzen- 120 Feinspätige, dunkelgraue Kalke mit Belennites hastatus und 82 Sandige Kalke und Schiefer voll Glimmerschüppchen; Pflanzen- 12 Feisen 13 Stock 14 Sandige Kalke und Schiefer voll Glimmerschüppchen; Pflanzen- 14 Feisen 15 Sandige Kalke und Schiefer voll Glimmerschüppchen; Pflanzen- 16 Feisen 17 Transgressionsfläche 17 Transgressionsfläche	Stufe	Obere Kreide	Néocomien Oberer Malm	Argovien Oxfordien Callovien Ob. Bathonien
Maxim. Machtigkeit m 30 30 120 50 60 60 80	Facies	Couches rouges Musenalpgipfelschichten	Stockhornkalk Felsenkalk	Calcaire concrétionné Studfluhschichten O bere Zoo phy coss chi ch ten Rinderalpschichten Giebelschichten Rämsibreccie
		Rote Kalke und Schiefer mit Hornsteinlagen	Schwarze, tonige Mergel und Fleckenkalke mit Fucoiden Fleckenkalke und Mergel, grau Hellgraue, dichte, glatte Kalke, bankig Massige helle Kalke	Feinspätige, dunkelgraue Kalke mit Belemnites hastatus und sandig-kieseligen Knauern Sandige Kalke und Schiefer voll Glimmerschüppchen; Pflanzenresten Grobe, rauh anwitternde, sandige Spatkalke, z. T. dolomitbrecciös Transgressionsfläche
T C Minos	Maxim. Machtigkeit	30 30	20 120 50 50	60 40 80
	Zikius	Ħ	ひ	Ţ r i

		В в в в в в в в в в в в в в в в в в в в	ERHORN-MUSENALP.	М	
		Toarcien Charmouthien Sinémurien	Hettangien	Rhät	Carnien
	Spiskalk	Huetlerenschichten	Pectenkalk Müllerbodensandstein	Kössenerschichten	Raiblerschichten
Mergenkaike una Semeter, z. 1. meckig	Grobe, z. T. eisenschüssige Echinodermen- und Dolomitbreceie	Schwarze, bituminöse Schiefer Bankige Kieselkalke Kieselige, oben glauk.; unten grobspätige, dunkle Kalke, mit Amaliheus margaridaus Quarzitische, z. T. eisenschüssige Dolomit- und Echinodermen- breccie, mit Agocerae	Emersionsfläche Groboolithische, massige Kalke, oben dichter, mit Pecten valoniensia Kieselige Kalke mit sandigen, dolomitbrecciösen Schlieren	Quarzitsandstein, hell, homogen oder gebändert Sandige Kalke, grobbankig bis plattig Dichte, dünnbankige, dolomitische Kalke und Mergel Dunkle, z. T. spätige Kalke mit Dolomitfragmenten; Lumachellen	Bankige Dolomite, dicht, z. T. gelblich anwitternd Bunte und graue Mergel; Rauhwacke und Mergel
120	67	10 20 10	30	2 4 9 9	
<u>运</u>	- 1	А	Ö	В	V

Tabelle II.
Stratigraphisches Sammelprofil (Jura und Kreide) der Bleiki u. Musenalp.
(Von H. Knecht).

Zyklus	Ħ	\bullet \tau	(H
Stufe	Obere Kreide (?Mittl. Kreide)	Néocomien Oberer Malm	Argovien Oxfordien Callovien Ob. Bathonien
Facies	Couches rouges Musenalpgipfelschichten	Stockhornkalk Felsenkalk	Calcaire concrétionné Studfluhschichten Ob. Zoophycosschichten Rinderalpschichten Giebelschichten Rämsibreccie
	Dunkle, kieselige Schiefer Dunkelgraue Kieselkalke, z. T. spätig, oft mit Dolomitfragmentchen und Silex, Belemniten Grauer, brecciöser Kalk oder sandiger Quarzit	Flockenkalke, dünnbankig mit Kiesellagen Grobbankige, dichte Kalke Massige, helle Kalke, z. T. korallogen	Dichter, kieseliger Kalk, z. T. spätig, gelb, dolomitähnlich anwitternd, lokal mit Kalkbreccien Feinsandige Kalke und Mergel mit Glimmerschüppchen und Zoophycos Bankige Kieselkalke mit Silexlagen, Pyritknollen, Pflanzenresten
Naxim. Mächtigkeit	m 30	40	100
Sykius	н	_ უ	দ

Tabelle III.
Stratigraphisches Sammelprofil (Jura und Kreide) des Stanserhorn.
(Nach P. Christ).

Musenalpgipfelsehichten Peates Stute	Zyklus	H	<u> </u>	Fa
Mantingfeil In Machtigkeil In Machtigkeil In Machtigkeil In Fleckenkalke und Mergel mit Astierien, Aptychen usw. Helle Riffkalke mit Trochiten und Korallen; Pseudobreccien Helle Riffkalke mit Trochiten und Korallen; Pseudobreccien Biblioter bis feinspätiger Kalk mit Lagen einer grauen Kalkbreccie Feinspätige kieselige Kalke, im Bruch dunkelgrau Sandige Kalke und Schiefer mit Glimmerschüppchen und Pflanzenresten Grobe, rauh anwitternde Spatkalke mit Konglomeratbank	Stufe	Obere Kreide (?Mittl. Kreide)	Néocomien Oberer Malm	Argovien Oxfordien Callovien Ob. Bathonien
Maxim. m m 150 70 95 180 120	Facies	Couches rouges Musenalpgipfelschichten	Stockhornkalk Felsenkalk	
			Fleckenkalke und Mergel mit Astierien, Aptychen usw. Hellgraue, dichte, glatte Kalke mit seltenen Aptychen Helle Riffkalke mit Trochiten und Korallen; Pseudobreccien	Dichter bis feinspätiger Kalk mit Lagen einer grauen Kalkbreccie Feinspätige kieselige Kalke, im Bruch dunkelgrau Sandige Kalke und Schiefer mit Glimmerschüppchen und Pflanzenresten Grobe, rauh anwitternde Spatkalke mit Konglomeratbank
snjyáz H 55 F4	Maxim. Māchtigkeit	ш	150 70 95	35 180 50 120
	Zyklus	Ħ	ŭ	দ

	·	<u> </u>	1	V
四	<u> </u>	0	<u> </u>	V
Bajocien	Toarcien Charmouthien Sinémurien	Hettangien	Rhät	Carnien
Unt. Zoophycosschichten Spiskalk	Huetlerenschichten	Pectenkalk Müllerbodensandstein	Kössenerschichten	Raiblerschichten
Dichte Kieselkalke, oben feinspätig, ohne Mergellagen Mergelkake und Schiefer, chaille-artig verwitternd, mit Lytoceras tripartium Mergelkalke und Schiefer, stark mergelig, mit Cosmoceras garantianum Mergelkalke mit Schieferzwischenlagen, kalkig, mit Steph. Blagdeni, Schwach sandige bis kieselige Kalke mit Ludwigia Murchisonae Sandige Schieferkalke, stark glaukonitisch Schiefrige, sandige Kalke; graue Kalk-Breccie (Korngr. 2—30 mm)	Harte, kieselige, spätige Kalke Kieselige Schieferkalke mit Mergelzwischenlagen Schwarze, tonige, etwas bitum. Mergelschiefer, mit Pos. Bronni Kieselkalk, stellenweise mit Mergellagen Kieselige bis grobspätige, oben glauk. Kalke mit Mergellagen Arietiten und Phosphoritknauern Quarzitische Dolomit- und Echinodermenbreccien mit Einlagerungen spätiger und dichter Kalke	Helle, glatte, dichte bis feinspätige Kalke Graue, spätige, oolithische Kalke mit Pecten Kieselige bis leicht sandige Kalke mit Pecten	Sandige Mergel; quarzitische Sandsteine Sandige Kalke mit Psiloceras planorbis und vielen Bivalven Lumachellenkalke Dolomitische bis feinspätige Kalke mit Brachiopoden und Korallen Dichte Kalke; untere Hälfte dolomitisch mit Mergelzwischenlagen Mergel mit wenigen Kalkbänken Kalke und Mergel; Lumachellen, Bonebeds	Dolomit, kompakt, gebankt oder mit Mergelzwischenlagen Bunte Mergel; Rauhwacke; Gips und Mergel
250 100 2 6	80 20 40 8 8 65	20	7 4 1 10 10 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2	,
ह	Д	. 0	В	. V

Tabelle IV.
Stratigraphisches Sammelprofil (Jura und Kreide) des Arvigrat — Miserengrat.

)		
	Christ).	
	ь.	
	(Nach	
)		

Zyklus	#	<u> </u>	<u>F4</u> .
Stufe	Obere Kreide (?Mittl. Kreide)	Néocomien Oberer Malm	Argovien Oxfordien Callovien Ob. Bathonien
Facies	Couches rouges Musenalpgipfelschichten	Stockhornkalk * Felsenkalk	Calcaire concrétionné Studfluhschichten Obere Zoophycosschichten Rinderalpschichten Giebelschichten Rämsibreccie
		Heller Kalk, massig	Spatkalk, oft echinodermenbreccien-artig
Maxim. Mächtigkeit	a .	120	08
Syklus	Н	Ö	হেব

	,	SERHORN-MUSENALP		351
<u></u>	А	D D	. м	V
Bajocien	Toarcien Charmouthien Sinémurien	Hettangien	Rhät	Carnien
Unt. Zoophycosschichten Spiskalk	Huetlerenschichten	Pectenkalk Müllerbodensandstein	Kössenerschichten	Raiblerschichten
Kalke und Mergelschiefer Massige, kieselige Kalke, an der Basis dolomitbrecciös	Schwach sandige bis kicselige, bankige Kalke Dunkler, kicseliger, z. T. grobspätiger Kieselkalk; Fossilbank mit Brachiopoden; oben mit feinknaueriger Anwitterung Quarzit- u. Dolomitkonglomerat (bis 2 mm Korndurchm.) u. Echinodermenbreccie; oben feiner, bankig, sandig anwitternd	Emersionsfläche Graue, glatte, z. T. oolithische Kalke, massig Hellgraue quarzitisch-breceiöse Kalke mit Dolomit- und Echinodermenfragmenten	Bräunlich-grauer, quarzitisch-sandiger Kalk mit Austern Dunkelgrauer, dichter Kalk; oben feinkörpig mit viel Zweischaler- d rchschnitten Dunkelgrauer, dichter Kalk; oben etwas dolomitisch, fossilleer Feinsandige und dolomitische Kalke und dunkelgraue Mergel (verdeckt)	Helle Dolomite
50	09	∞	84 73 4 C	
田	D	Ç	д	A

b. Neuere Literatur über die zentralschweizerischen Klippen.

18. 1893. E. Quereau, Die Klippenregion von Iberg; Beitr. Bd. XXXIII, p. 1—151.

19. 1897. C. Schmidt, Die geologische Struktur der Buochserhorn-

Klippe in Beziehung zu den Mythen; Ecl. Bd. V, p. 10.

20. 1920. P. Christ, Geologische Beschreibung des Klippengebietes

Stanserhorn-Arvigrat; Beitr. Bd. XXXXII, p. 1-62.

21. 1921. G. L. SMIT SIBINGA, Die Klippen der Mythen und Rotenfluh; Diss. Univ. Zürich, p. 1-52.

22. 1923. L. VONDERSCHMIDT, Die Giswilerklippen und ihre Beziehung zur Unterlage; Beitr. Bd. LXXX, p. 1-37.

c. Literatur über das Gebiet der Brisen-Bauenkette.

23. 1905. J. J. Pannekoek, Geologische Aufnahme der Umgebung

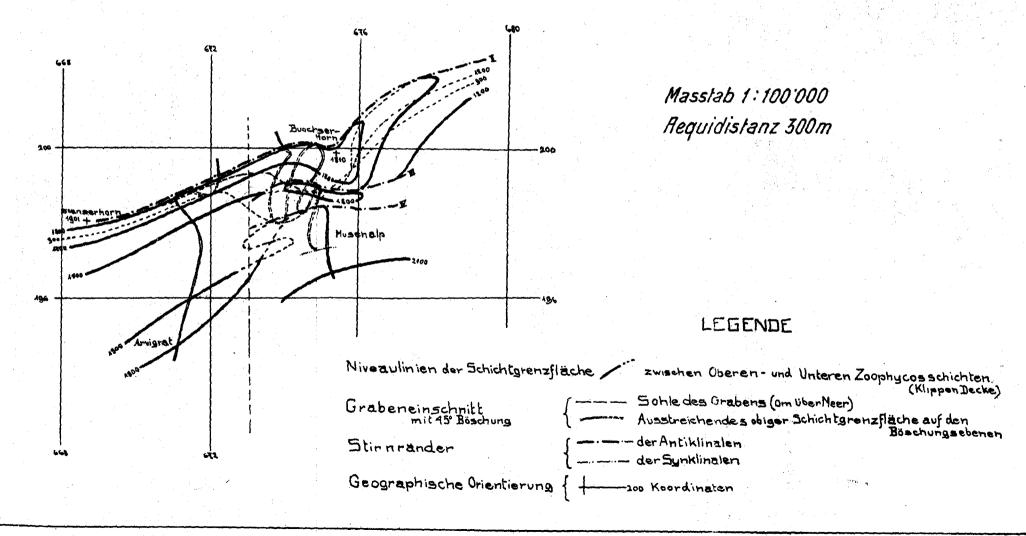
von Seelisberg; Beitr. Bd. IIIL, p. 1—25. 24. 1907. A. Buxtorf (u. C. Schmidt), Führer zu den Exkursionen

der deutschen geologischen Ges., p. 27-38.

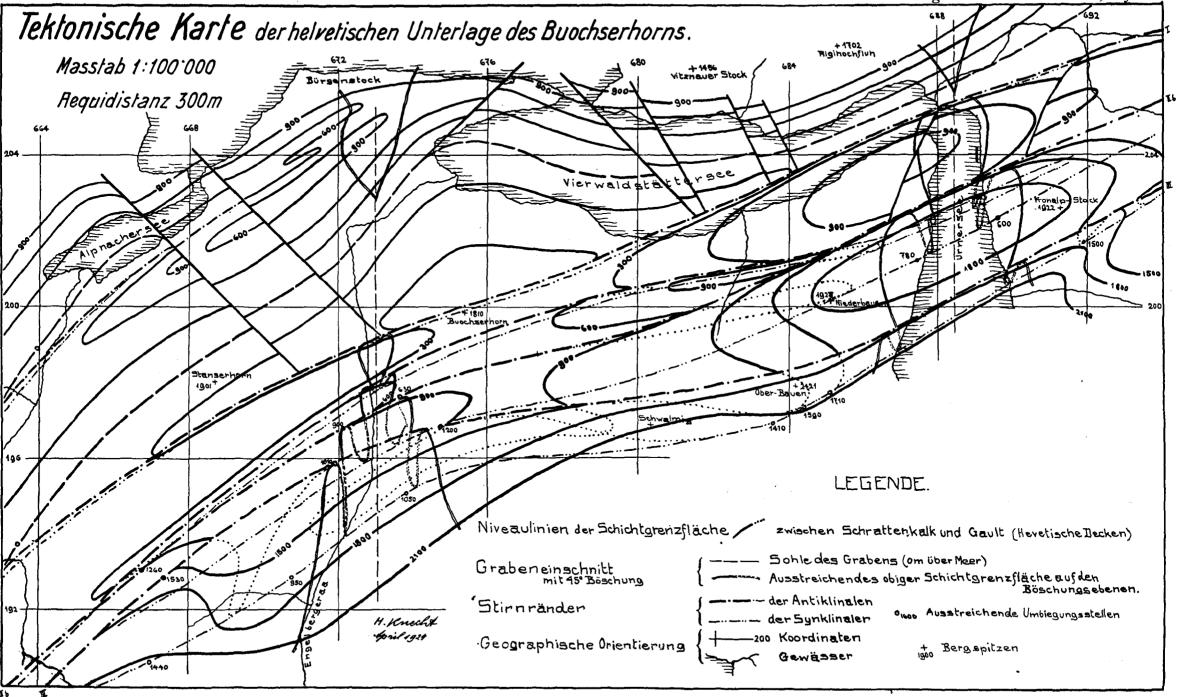
25. 1921. Alb. Heim, Geologie der Schweiz; Bd. II, p. 422 u. 423.

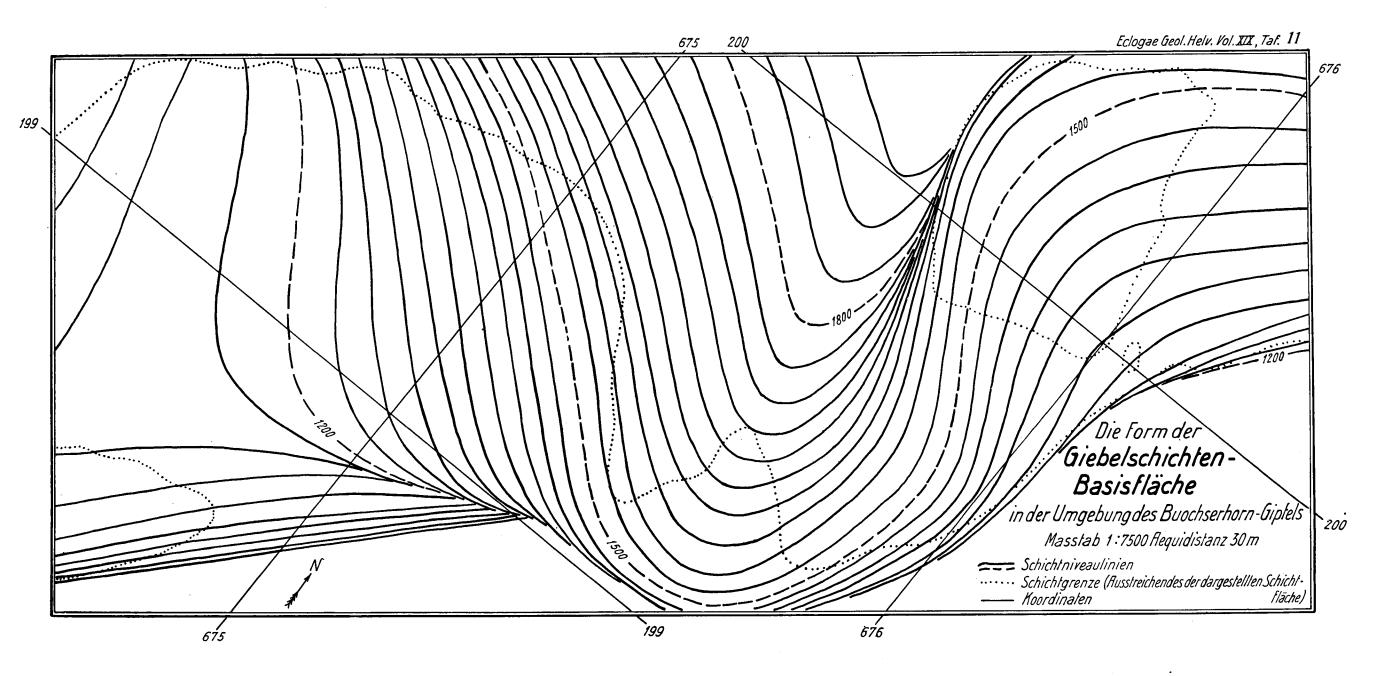
Abriss des Lebens- und Bildungsganges.

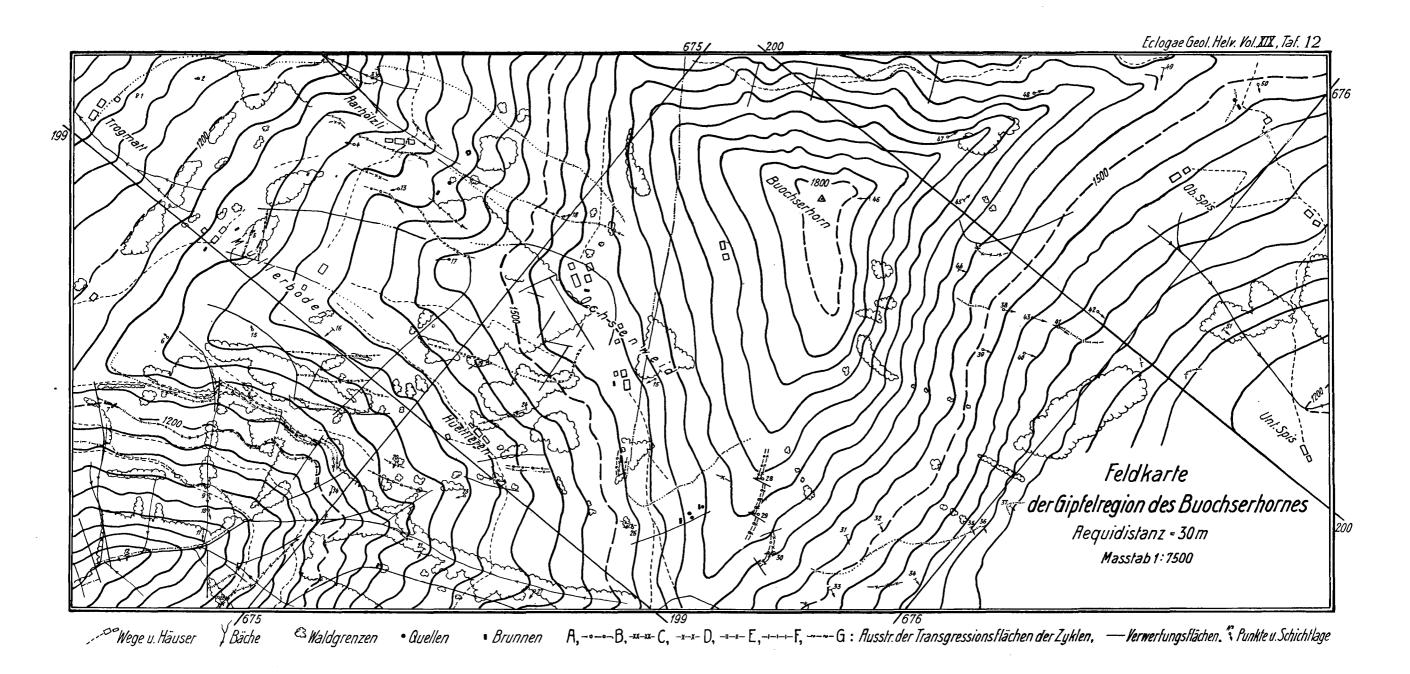
Am 31. August 1898 in Zürich geboren, besuchte ich daselbst die Volks-, Mittel- und Hochschule:


- 6 Jahre die Primarschule in Zürich, vom April 1905 bis April 1911;
- 3 Jahre die Sekundarschule Zürich, vom April 1911 bis April 1914;
- 4¹/₂ Jahre die Kantonsschule (Obere Realschule), vom April 1914 bis Oktober 1918;
 - 4 Jahre die Eidg. Techn. Hochschule in Zürich, vom Oktober 1918 bis Juli 1922.

Am 20. Dezember 1922 erhielt ich das Diplom als Fachlehrer in naturwissenschaftlicher Richtung. Das Thema der Diplomarbeit lautete: "Stratigraphie der Klippen zwischen Aare und Rhein im Anschluss an die westlichen Praealpen und die ostalpinen Decken." Die vorliegende Promotionsarbeit wurde im April 1924 der Eidg. Techn. Hochschule eingereicht.


Tektonische Karte


der Unterwaldner-Klippen


Darstellung der tekt. Formen des Vierwaldst:see-Gebietes in kotierter Normalprojektion durch Jsohypsen der Gault-Schrattenkalk-Grenzfläche und der Grenzfläche zwischen oberen und unteren Zoophycosschichten.

Eclogae Geol, Helv. Vol. XIX, Taf. 10

