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Abstract 1

Abstract

The use of a computer to solve control engineering problems is state of the art in

today's automatic control community. Numerous software packages have been devel¬

oped in recent years. A few of them are commercially available today and some are

even regarded as a de-facto standard in computer aided control systems design
(CACSD).

The advantage of CACSD software is the large number and the quality of the pro¬

vided algorithms. However, developments concentrated on numerical rather than on

user interface aspects. Until very recently, most of these packages required textually
entered commands and provided rudimentary two-dimensional line graphs.

Recent developments in computer science have removed the limitations of older sys¬

tems. Data and software visualization are applied to various fields of science and engi¬

neering, and most computers can be operated using a graphical user interface.

In this thesis, we explore the application of graphical methods in computer aided con¬

trol systems design. With increasing emphasis we will discuss the following aspects of

visual interfaces:

- Data visualization: Data resulting from either experiments or algorithm execution

(i.e. computer simulations) are mostly displayed in two dimensional graphs. The

use of more complex, higher dimensional displays is discussed. Examples of three

dimensional displays, moving data visualization and interactive manipulation of

algorithms at runtime are presented.
- Visual programming: The technique to show the interaction of sub-systems in

block diagrams is well known in control engineering. Their similarity to visual pro¬

gramming languages helps us to not only display data visually, but also to design

computer programs or controller implementations using visual methods. Available

visual programming languages are presented in control applications.
- Graphical user interface to the control systems design cycle: As we have seen

above, the emphasis of today's CACSD packages is in the availability of sophisti¬
cated algorithms. Little or no emphasis has been put on the support of the design

cycle as a whole. With the 'Leporello' package we present a new software tool,

which visualizes all the work done during a design session. All algorithms which

were used to reach a successful controller implementation are stored and displayed
in the 'action tree', together with their parameters and results. Intermediate data

items are collected consistently in control data objects. The possibility to use exter¬

nal packages for the implementation of algorithms allows a fully graphical user in¬

terface for control systems engineering using the whole range of algorithms

provided by other applications.

The methods and tools presented are used to solve one of the example plants from the

student laboratory. By using the 'Leporello' tool we demonstrate its use and range of

application.
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Kurzfassung

Die Verwendung von Computern zur Losung von regelungstechnischen Problemen

ist heutzutage Stand der Technik. Mehrere Softwarepakete wurden in letzter Zeit

entwickelt. Einige von ihnen sind heute kommerziell erhaltlich, und davon haben sich

einige zu einem faktischen Standard im Computer-unterstutzten Reglerentwurf
entwickelt.

Die Vorteile der heute verfiigbaren Programmpakete liegen hauptsachlich in der gros-

sen Vielfalt und Qualitat der unterstiitzten Algorithmen. Bei deren Entwicklung
wurde jedoch dem Entwurf der Benutzerschnittstelle wenig Beachtung geschenkt. Die

Moglichkeiten dieser Pakete erschopften sich bis vor kurzem in alphanumerischen

Befehlseingaben und zweidimensionalen Liniengraphen.

Neuste Entwicklungen im Bereich der Computertechnik haben die technischen Ein-

schrankungen fruherer Systeme beseitigt. Daten- und Softwarevisualisierung hat in

vielen Gebieten Einzug gehalten, die graphische Benutzerschnittstelle hat sich zur

Bedienung von Computern durchgesetzt.

In dieser Arbeit werden die Moglichkeiten der Anwendung graphischer Methoden im

Bereich des rechnerunterstiitzten Reglerentwurfes untersucht. Mit zunehmender

Gewichtung werden die folgenden Bereiche diskutiert:

- Datenvisualisierung: Messwerte oder Resultate von Algorithmen (z.B. Simulations-

resultate) werden heute meist in zweidimensionalen Graphen dargestellt. Durch
die Verwendung hoherer Dimensionen kann jedoch anfallenden Datensatzen mehr

Information entnommen werden. Dreidimensionale oder animierte Darstellungen
sowie die interaktive Beeinflussung von Algorithmen zur Laufzeit werden anhand

von Beispielen gezeigt.
- Graphische Programmierung: Die Verwendung von Blockdiagrammen zur

Darstellung der Relationen zwischen Teilsystemen ist eine dem Regelungstechni-
ker vertraute Methode. Die Ahnlichkeit dieser Diagramme zu graphischen Pro-

grammiersprachen legt die Anwendung solcher Sprachen zum Entwurf von

regelungstechnischen Algorithmen und Reglerimplementationen nahe. Verfugbare

Umgebungen zur graphischen Programmierung werden jeweils mit Beispielen aus

der Regelungstechnik vorgestellt.
- Graphische Benutzerschnittstelle fur einen integralen Entwurfsprozess: Wie weiter

oben gezeigt, liegt das Schwergewicht bei den heute erhaltlichen Software-Paketen

auf der Implementation ausgereifter Algorithmen. Wenig oder gar keine Beachtung
wird dabei der Unterstiitzung des gesamten Entwurfszyklus geschenkt. Das in

dieser Arbeit vorgestellte Programmpaket 'Leporello' visualisiert diesen

Entwurfsprozess. Samtliche zur Losung eines Problems verwendeten Algorithmen
werden zusammen mit den Algorithmusparametern und den resultierenden Daten

gespeichert und im 'Action Tree' (Arbeitsbaum) dargestellt. Anfallende Daten wer¬

den jeweils in regelungstechnischen Datenobjekten zusammengefasst und konsis-
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tent verwaltet. Die Moglichkeit, von 'Leporello' auf externe Programmpakete
zuzugreifen, verwirklicht eine rein graphische Benutzeroberflache zur Losung

regelungstechnischer Probleme unter Verwendung der Algorithmenvielfalt der ex-

ternen Pakete.

Anhand eines einfachen Beispiels aus der Regelungstechnik werden die vorgestellten
Methoden demonstriert und die Einsatzmoglichkeiten von 'Leporello' anschaulich

dargestellt.
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Introduction I

1.1. Pictures

The world today is influenced by pictures Wherever attention needs to be drawn to,

images make the deepest impressions in the quickest way Graphics are used to visu¬

alize complex relationships, and movies are made from every book worth it Even the

works of Swiss author Friednch Durrenmatt are published in comic strip form

This is basically due to the fact, that real-time image processing is one of the great

strengths of the human brain We are able to recognize a familiar face under difficult

conditions, a task that machine vision is still unable to do

On the other hand, reading text requires additional mental activities the characters

displayed on the 'text picture' need to be recognized and interpreted in words and

sentences The language read then has to be transformed into imagination, very often

we there and then create pictures and scenes from text A situation which illustrates

this effect is somebody watching a movie after reading the book The scenery previ¬

ously imagined is replaced by the impressions of the pictures on screen We then real-

5



6 Introduction

ize that the text left a large range of possible interpretations, whereas the movie

scenery shows exactly one scene from that range, leaving no uncertain areas to the

imagination of the viewer. Many people do not like their fantasy being destroyed by

pictures, in technical specifications however we want to transmit ideas and concepts
as clearly as possible without leaving any part of it to the imagination of the reader.

Another situation where a diagram is clearly superior to a textual description is a map

(like the one in Fig. 1.1). Imagine the situation when you have to give directions to

somebody looking for a specific place. Your textual instructions reflect your personal
view of the route, and only your route. A detour on the way or a missed intersection

leaves the reader without help. The diagram of the city (commonly known as a map)
however does not force the viewer to look at the route the way you describe it. She

may choose whatever angle she likes to look at the map and is free to interpret the

signs on the paper to her own liking. She is free to count intersections or go by route

number signs.

This shows one great advantage of pictures: We access them randomly, i.e. the eyes

sweep them freely and fix important or marked points instantly. Access to text how¬

ever is sequential. If we start reading in the middle of the page we hardly ever get the

context of the text. By choosing special fonts or pagination for titles or highlighted
words, we are nevertheless able to draw the reader's attention to the points we want,

but by doing this, we force him to switch to 'pictorial mode'. His eyes do not capture

Figure 1.1: Two-dimensional graphical display of landscape data, i.e., a map.

Reproduced with permission of the Swiss Federal Office of Topography of I.Nov. 1994
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the important words, but the area of the page which is darker than the rest and sur¬

rounded by a larger border of white. He then focuses on this point and reads the key¬
words indicated there.

Wherever a message has to be taken up quickly, i.e., a warning or an alarm, we use pic¬
torial shapes instead of words. Traffic signs, for example, transmit their message with¬

out text being read1.

If messages have to be read by people speaking different languages, pictures are also

an appropriate means to display information. Directions at airports are mostly indi¬

cated by icon-type signs which are similar all over the world. This allows us to quickly
find the departure hall in Kuala Lumpur or the toilets in Reykjavik.

These signs mostly contain a simplified picture which is associated with the place they
are directing us to. A piece of luggage directs us to the baggage claim, where we hope¬

fully find objects of the type displayed, the sign with a bus leads us to a place where

busses stop. In some cases however, we would like to explain some abstract function

using a picture. Since there is no physical object to be displayed, we have to display an

object which is associated with the abstract situation we would like to describe. If a

sign shows a man running towards a door with flames behind him, we interpret the

flames as 'emergency' and the man running toward the door as 'exit'. Without actually

showing it, the displayed concept inherits some properties or functionality of the

object used as its metaphor. If the cursor in a graphical user interface of a computer
turns into a hand, we automatically assume that we can now touch something on

screen (buttons, etc.) or move things around. Well chosen graphical representation of

otherwise abstract concepts can so transmit a complex behavior in a very compact
form which is easily understood.

The strong visual orientation of the human mind allows us to conclude that people
retrieve information from pictures much faster than from written text. Graphical rela¬

tions, easily recognized shapes and objects are identified at a much higher rate than

from a textual description. In the following, we will see whether the use of pictures
and graphical representations in control engineering helps designing and understand¬

ing software used for control systems design.

1.2. Visual Engineering

Since the appearance of the graphical user interface on computers, the importance of

graphics in computer science has been steadily increasing. Workstations present win¬

dows with high resolution color images, and even movies are being seen on computer
screens. Publishing has moved from the typesetter to the desktop and with this move

has changed the whole printing business. To design, manipulate and improve pictures

1. This applies to European signs, most of the American signs contain their message written in

plain text
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on screen is no problem with today's computer power. Computer-developed movies

are being produced today, and even virtual actors are under development.

But the engineers and programmers who designed all these graphical applications did

this mostly by writing pages and pages of text, programs written in a programming
language. The tools they create are very rarely available to ease their own job. They are

not the only ones. Computer tools in many other fields of engineering require typed
text, although graphics mostly do play an important role in these domains.

Since the early days of engineering, graphics have been used to specify and analyze

systems of all kinds. Leonardo da Vinci left a countless number of plans and drawings
of his inventions [8]. While his textual descriptions on the drawings are hardly legible

today, the sketches give an excellent insight into the principles of his machines. Even

today it is much easier for a mechanical engineer to specify the details of his design in

plans and drawings, rather than to describe them in words to the people in charge of

the manufacturing. The electrical engineer draws elements and connections of a logic
board; a textual list describing the interconnections does not show the board layout

clearly enough. Even when designing or explaining concepts and ideas an engineer
uses graphics, and many lunch time discussions in an R&D department end up with

someone sketching out his ideas on a napkin.

1.3. Graphics in Control Engineering

A control engineer is no exception herein. He uses block diagrams to specify control

systems, and his analysis is very often based on the graphical interpretations of curves

and signal displays (Bode-, root locus-diagrams).

Since the computer entered engineering sciences, these working methods have

changed more and more. Algorithms used in computer aided control systems engi¬

neering (CACSD) shifted from graphical interpretations of curves to numerically diffi¬

cult matrix manipulations not feasible in the days of paper and pencil calculations.

This development required control problems to be formulated by means of computer

statements, mostly in Fortran. Frequently used algorithms were collected in libraries

(IMSL, Eispack, Linpack, RASP [13], etc.). Later, these libraries were combined and

given a user interface to create software packages closer to the needs of CACSD

(Ctrl-C, Matlab [51]). Such packages are still among the most widely used. They allow

interactive analysis and design of control systems, and their built-in support of matrix

manipulations and large libraries of well-tested algorithms ease control engineering

very much. Still, even in those packages, programming of new algorithms or data

manipulations require textual input of command lines, and graphical data analysis is

mostly limited to a simple two-dimensional plot window. Graphical design of control

systems has only lately been introduced by simulation packages equipped with a

block diagram editor. The 3D or color capabilities are slowly being added, but when it

comes to the implementation of either algorithms or real-time control systems, most
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control engineers become the programmers of the old days and start writing computer
software, where 'writing' is still using textual commands of a programming language.

One reason for this is found in the history of software engineering. The user interface

of the early computers were hexadecimal LED displays with a keyboard which

included just a few keys more than were necessary to type hexadecimal numbers.

After a period of time where punched cards or teletype terminals were the main

means of computer input, the CRT brought the possibility to see a whole page of text

at a glance. Software engineering then evolved more and more towards developing

programming languages, which could still be entered on an alphanumeric terminal.

The idea of operating a computer by entering commands on a keyboard was estab¬

lished and is still accepted even in so-called graphical user interfaces which mainly
consist of a window displaying the commands entered on that same keyboard.

This is not necessarily so. Already in 1977, Smith presented in his Ph.D. thesis a proto¬

type of a visual language system (PYGMALION, [33]) which allowed software engi¬

neering by drawing interconnected boxes on screen by means of a graphics input
device (mouse). Many systems and approaches have been presented since then

(FUGA [4], BALSA [6], Pict [12], and a survey of several approaches in [1] and [7]), but

none is rivalling any of the popular textual programming languages.

With the improving graphics capabilities of today's computer systems and the sys¬

tems to come, the computer aided use of visual methods becomes more and more fea¬

sible. Using graphics and diagrams instead of text to visualize complex ideas and

relationships is an attitude common to most engineers. There have been developments
in software engineering which try to display the mostly complex behavior of a com¬

puter program in diagrams. Different aspects are visualized depending on the view¬

point of the programmer. These diagrams are then turned automatically into

executable code, which justifies the term 'visual (graphical) programming languages'.
Block diagrams of some sort are used very often to show either control or data rela¬

tionships.

Direct code generation from computer aided design sketches or diagrams removes

one source of errors: the translation of the drawings into code 'by hand'. Concept

changes or improvements can be made directly in the design diagrams, the code is

adapted automatically. The software design cycle is sped up significantly.

The control engineer's experience in using block diagrams suggests the use of this sort

of visual programming languages when designing software in control engineering,
but might also be a starting point for the development of new visual languages, based

on methods used in automatic control.
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1.4. Structured Visual Control Systems Design

In the course of this thesis we will illuminate another aspect of graphics in control

engineering. To fully design a control system for a given plant, several problems have

to be solved:

- Measurements: Data sets have to be acquired from the plant to get an idea about its

behavior.

- Modeling: If the physics of the plant is known, a model has to be developed.
- Identification: The parameters of the model have to be estimated.

- Controller design: An appropriate controller structure has to be chosen. Its parame¬

ters are then optimized to guarantee the required design parameters.
- Simulation: The controller is to be tested on a plant simulation to prove its behavior.

- Implementation: The controller is implemented in hardware or on a real-time sys¬

tem and tested with the real plant.

Although few, there are some applications available which do provide visual methods

to approach the mentioned design steps. However, little or no importance has been

put on the design process as a whole.

Designing a control system is very rarely done in one single step. Many methods and

algorithms need to be first selected and then applied correctly to the appropriate data

sets. In current tools, this is mostly done by typing command lines on a computer key¬
board. Parameters are set by the user and results are returned by the chosen algo¬
rithms, mostly in form of named matrices. These results are evaluated with respect to

some design criterion. If this criterion judges the solution to be not satisfactory, some

part of the design has to be repeated, with either different algorithms or different

parameters. Previous results are revisited and in the end compared to each other in

order to find the best design. The amount of data produced during a design session is

immense, and people rarely have the discipline to name their results in a consistent

manner in order to still be able to distinguish them after a few hours of experimenting.

In [36], Ravn and Szymkat look at this design cycle under the aspect of a software

engineering perspective. One of their conclusions is that there are currently no

CACSD packages available which support the designer in the iterating design task.

The Leporello package is addressed to that problem. Leporello was designed to bring
order into data and algorithms used in the control systems design cycle, the order

which in other tools has to be maintained by personal discipline of the user.

Special emphasis was put on a fully graphical user interface. The advantages of visual

data and program representation should not only be used in single algorithms as this

is done with other visual methods in software engineering. During the control system

analysis and design iteration, the user builds the data history graph interactively on

screen. The abstract data objects (systems, signals, etc.) are displayed together with the

algorithms which produced them, and the algorithms which were applied to them.

The resulting tree structure (action tree) is one of the central parts of Leporello.
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This tree is not only the visualization, but the user interface of the package. Parts of it

can be automatically reproduced, which may be regarded as a sort of visual program¬

ming by example. The Leporello package as it exists today allows a fully graphical
interactive controller design, which contains a whole range of different visualization

techniques.

1.5. Scope, Contributions and Organization

1.5.1. Scope

In this thesis we will take a look at visual methods found in both software and control

engineering. Useful techniques are evaluated by asking the following questions:

- What visual methods are used in automatic control?

- Where do we need software in automatic control?

- What visual methods are used in software design?

Fig. 1.2 shows the following (numbered) areas where we will be looking for answers:

1. Visual methods used in automatic control which might of interest in software engi¬

neering.

2. Visual software design methods which may give additional insight into control

algorithm structure and behavior.

3. Visual methods used in both engineering fields.

All applications and examples using visual languages for their implementation are

aimed at solving singular problems during the control systems design cycle. The

Leporello package presented in this thesis is located in the area labelled '4' in Fig. 1.2.

By presenting a visual representation of the design process as a whole, we extend

Figure 1.2: Scope of this thesis
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areas 1,2 and 3 to cover some parts of area 4 which has not yet been a target for graph¬
ical display (The sizes of the rectangles are not intended to reflect any quantitative or

qualitative judgements).

1.5.2. Contributions

1. The successful use of the concepts of scientific visualization and visual languages in

automatic control applications is shown in Chapter 2. The examples presented
show an interesting future of these disciplines in CACSD.

Furthermore, the main contributions of the Leporello package presented in Chapters 3

and 4 are:

2. The storage of the complete computer aided design process in a tree shaped data

structure, the action tree, similar to an engineering data base. All information neces¬

sary to create any stored result are contained to the extent, that any step can be re-

executed automatically. The automatic task repetition is one of the great advantages
of the Leporello package.

3. A new user interface is proposed for a CACSD package. The display of the action

tree on screen gives the user full overview over the whole design project. In addi¬

tion to the presentation of the results, the action tree display provides structured

access to all tasks necessary for a complete controller design, including measure¬

ments, identification, design, and implementation.

1.5.3. Organization

The thesis is divided into the following chapters:

Chapter 2: We will show several approaches to software visualization. Data visualiza¬

tion is covered as well as the graphical display of programs. We will present some soft¬

ware packages currently available which are suited to solve selected control problems.
We end this chapter with a brief discussion of the use of visual languages in general
and in control engineering in particular.

Chapter 3: This chapter shows the main ideas behind the Leporello package. Its visual¬

ization of the design cycle is presented as well as some basic object oriented tech¬

niques which were used for the implementation.

Chapter 4: The Leporello action tree and its main features are in the focus of this chap¬
ter. Several tasks needed in control systems design are available in the tree, each one is

presented shortly. We will give an overview over implementation details and we will

show how the task is visualized in the tree picture.

Chapter 5: Leporello was used to solve a controller implementation problem. Together
with the steps taken in the action tree we will give some examples of user interface

details.

Conclusions: In this chapter we will briefly review some of the advantages of visual

methods in automatic control as well as the advantages gained in the Leporello pack-
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age. We do not consider its implementation to be complete, we will therefore indicate

a few directions of further work. Some propositions show missing features which only
need little additional programming effort, other propositions open wide fields of con¬

cepts which are still to be developed.
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Visual Aspects of Software in Automatic Control

It is commonly undisputed that visual techniques play an increasing role in computer

science. We have seen in the introduction that graphical representations do have sev¬

eral advantages over sequential text in many areas of engineering. What we are now

looking for is a picture oriented view on some selected problems from software engi¬

neering, especially from software engineering in automatic control.

First we have to resolve a possible ambiguity in the term 'software wsualization' itself. Is

it the visual representation of software programs or is it the visualization of general
data by use of software? Both interpretations are possible, and both are worth being
looked at. We will divide our investigations into the following two parts:

• Scientific visualization: Visualization of any sort of scientific data by computer soft¬

ware. This includes anything from two dimensional line plots to animated virtual

reality environments.

• Visual programming: Design of computer programs by drawing diagrams on screen.

These diagrams show different aspects of a program and visualize its functionality
and structure. Furthermore, executable code is automatically created from the

graphical display. Visual languages should allow easier programming and better

understanding of complex software systems.

Mixed forms of these two areas are possible. If we look at a computer program as

being a special kind of data, scientific visualization includes visual programming. On

the other hand, programs which create visualizations of data could well be pro¬

grammed visually (e.g. Example 3). We will therefore try to investigate how software

can be used to create pictures from raw data, and how pictures can be used to create

software.

Another question will help us to approach the problem in order to support control

engineering best: where does a control engineer use computers, now and in the

future? The search for visual methods in these areas of software engineering will

therefore produce the results the most usable in CACSD.

15
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on-line/real-time off-line

analysis measurement signal and system analysis

design controller implementation controller design and simulation

Table 1: Software use in control engineering

Computer use in automatic control in general may be divided into the areas shown in

Table 1. The alert reader might argue that there are many more tasks to be done for a

successful control system design. Modelling and identification for example are not

mentioned in this table. These tasks, which all consist of transforming or generating
control system representations, are included in the 'design' row of Table 1. We will

mention this again in more detail in Chapter 3.2.

If we compare Table 1 to our previous distinction of software visualization, we see that

there is a correspondence between scientific visualization and analysis on the one

hand, and visual programming and design on the other hand. The quality of a control¬

ler design or a system identification is very often judged by looking at simulation

results or measured signals which are compared to each other. The control systems

design cycle on the other hand mostly consists of the application of algorithms, or in

the case of the controller implementation of real-time code to be executed. In both sit¬

uations the control engineer is forced to write his own code to achieve these results, at

least if there are no libraries available which provide the necessary algorithms. For

control systems design this is very often the case with modern CACSD tools; the

implementation mostly has to be done l>y hand', by implementing the control law in

C or some other programming language.

We will therefore put special emphasis on control engineering requirements in the

course of the discussion of both scientific visualization and visual programming.
There might be other approaches and methods in these fields - if their application in

control engineering is not feasible, they merit very little mention in the chapters to

come.

2.1. Scientific Visualization

One area where computers are most useful in science is visualization. With today's
computer power we are able to simulate a wide variety of physical phenomena. Simu¬

lations often replace costly experiments and are even able to show data otherwise not

accessible by sensors. These results contain a lot of information which, if not displayed
otherwise, is concealed in long lists of numbers which are hard to interpret. Scientific

visualization (the graphical display of data by computers) is needed to show these

results on the computer screen in order to reveal as much information as possible.
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The amount of information revealed may be regarded as the information transmitted

to the reader (or viewer) by a picture. Miller [29] uses the terms known from informa¬

tion theory to calculate the channel capacity of different human senses by psychologi¬
cal experiments. He there shows that an increase in stimuli dimension augments the

channel capacity, therefore increases the information perceived. Two-dimensional pic¬
tures are capable of providing more information than one dimensional data.

In recent years, these pictures have become more and more sophisticated. Simulations

from meteorology or fluid dynamics (just to name two examples) are displayed in

images which can hardly be distinguished from photographs. Virtual reality even goes

one step further and simulates the real world in order to deliberately fool the viewer

into believing it. In future visualizations we may come to the point where we will be

able to walk through parameter space and explore simulation results.

2.1.1. One-Dimensional Displays

Today's visualization methods used in control engineering are still quite far from the

aforementioned ideas. In many areas, the dimension of a visual display is simply one.

In these visualizations, the value of a monitored variable is shown by the length of a

bar, or the angle of a needle. The advantage of these instruments is the quick qualita¬
tive information they provide, not only about the depicted variable, but also about its

rate of change. Whenever these informations are to be read by an operator at a quick

glance, one dimensional displays are widely used and still unsurpassed.
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Figure 2.1: One dimensional data visualization devices (examples from LabVIEW)

2.1.2. Two-Dimensional Plots

In pre- and early computer days control engineers used two dimensional diagrams of

all sorts for control systems analysis and controller design. For most of these diagrams
(Bode, root locus, etc.) approximative methods are available which allow their qualita¬
tive drawing on a sheet of paper with very little calculation effort, but also with lim¬

ited precision. Other results (measurements, simulations) were available in form of

voltages and could therefore be displayed on an oscilloscope or an x-y plotter. Like
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diagrams in most other fields of engineering, these drawings were limited to two-

dimensional line graphs.

Early CACSD packages were able to calculate those diagrams more precisely. How¬

ever, graphics output was limited to the capabilities of an alphanumeric display.
Advanced graphics of today's desktop computers allow more precise drawings with

additional features. Automated axis scaling and labelling, multiple plots, and different

line styles and colors are just a few of them which are considered state-of-the-art in

control design packages.

However, since most of these packages are command-driven, all graph features as

well as the plots themselves are created and accessed by textually entered commands.
A simple Bode diagram displayed in Matlab requires the piece of code shown in

Example 1 (excerpt from the Bode script from the Matlab control toolbox).

Example 1: Bode plot in Matlab 3.5 V

subplot(211)
semilogx(w,20*logl0(mag),w,zeros(1,length(w)),'w:')
grid

xlabel('Frequency (rad/sec)'), ylabel('Gain dB')

subplot(212)
semilogx(w,phase,w,phasel80*ones(l,length(w)),'w:')
xlabel('Frequency (rad/sec)'), ylabel('Phase deg')
grid
subplot(111)

A

Each change of a plot parameter (everything from grid display to the text of an axis

label) requires full re-entering of the lines of Example 1, or, if this piece of code is con¬

tained in a script, a change in the script file and its re-execution. Furthermore, if we

want to read exact values from the display, we have to do additional programming
which requires extensive Matlab scripting experience.

We started looking at two-dimensional plots with the traditional, curve based visual

tools of control systems engineering. Now that we see how these graphs are brought
to screen, we realize that they can mainly be used to look at, not to work with. In order

to restore their 'tool' character we need easier (interactive) access to graph features.

Common tasks in plot windows are:

- read an exact value from a curve

- enlarge parts of the graph (zoom)
- change axis scaling
- show/hide plots
- show/hide a grid
- change curve line styles and colors

All these modifications should be accessible directly in the graph.
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Example 2 Interactive signal plot tool in Lab VIEW V

The plot tool displayed in Fig 2 2 was programmed m LabVIEW and is used to dis¬

play curves from within the Leporello application It is an example of an "intelligent"

plot device described above Axis scaling is changed interactively using the controls to

the left of the graph frame The buttons just below allow zooming into and out of the

graph The probe m the center of the graph (+) may either be moved by dragging it, or

its position may be entered in the display below the graph Axis ranges are changed by
either dragging the probe outside the graph, or by selecting the axis labels and typing

the new bounds directly

Figure 22 LabVIEW tool to display two dimensional plots in Leporello

A

2.1.3. Three-Dimensional Plots

Although some planar graphs lack the ease of use of other features of graphical user

interfaces, these plots are nevertheless integrated components of today's CACSD

packages On our way to extract more information from control data, we now have a

look at higher dimensional plots

The step mto three dimensions is the most obvious There are many situations where a

third dimension proves useful An evident case is given when data sets are themselves

three dimensional Examples are trajectories of three state variables or the variation of

three parameters with respect to the fourth variable Plots of this kmd are one dimen¬

sional lines in three dimensional space Other parameter variations produce two
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Time [s] Re[dom. poles]

Figure 2.3: Mesh plot of step response vs. pole location produced in Matlab 4.1

dimensional planes. An example of this kind is a graph where simulation results are

plotted in two dimensions, the real part of the dominant pole location is used for the

third dimension (Fig. 2.3).

The complexity of three dimensional shapes is unlimited. Stability regions for systems
with parameter uncertainties may be candidates for display as well as geometrically
complex robot arm trajectories. However, these displays are still rarely seen in auto¬

matic control.

CACSD packages do have limited capabilities for three dimensional plots (the exam¬

ple in Fig. 2.3 was produced in Matlab 4.1). These limitations are similar to the ones

previously mentioned for two dimensional graphs, although interactive manipula¬
tions are even more important for spacial displays. Choosing the right viewing angle
to look at the picture should be possible by dragging the picture itself into the correct

location instead of typing numbers which indicate the viewing direction. Some math¬

ematical packages (Maple, Mathematica, and in its latest version Matlab) include tools

to handle these more complex plots.

2.1.4. The Use of the Fourth Dimension

Difficulties increase if our imagination has to deal with dimensions exceeding three.

Spacial objects are usually displayed by just projecting their third dimension on the

two-dimensional drawing plane. To include a fourth dimension in a picture needs

more abstract concepts. A few of these ideas will be shown here.
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In some cases it is possible to use a color scheme to indicate a fourth variable on a three

dimensional object. Examples are temperature, pressure, or similar measurements on

a surface in 3D-space. The same idea is sometimes used to display the altitude of a

three dimensional surface (z'.e. a landscape) on a planar map.

Dynamical pictures: Another method to show four dimensions is the use of time in

screen drawings, i.e., to display moving objects. This approach is obvious if the fourth

dimension to be displayed is the time itself. If we want to display the transient move¬

ment of a membrane in three dimensional space over time, a movie of the membrane

is certainly giving the most appropriate information about its behavior.

Apart from time, other variables may be mapped onto the time instances of a movie.

Such a movie shows how the displayed shapes move or behave as a given parameter
changes. The surface in Fig. 2.3 could be animated by moving the imaginary parts of

the poles in addition to the real parts. We could so watch the change of the oscillation

frequency in the moving surface.

The information contained in the static surface could also have been displayed as a

movie of a two dimensional step response graph which changes with pole locations.

In both the two- as well as the three dimensional moving images the parameter varia¬

tions do not necessarily have to be predefined. The user could as well modify them

interactively on screen and watch the effect of the alterations on the picture displayed.
With the appropriate interactive controls (sliders, knobs, etc.) the impacts of continu¬

ous parameter changes are intuitively visible on screen.

Animated Pictures: Very often, simulations are used to investigate the movement of

some physical objects in space. A bouncing ball or the famous ejector seat simulation

are just two popular examples of this sort. If the results of such simulations are just
displayed as two dimensional plots, their interpretation requires some imagination to

see the correspondence between curves and the real world system. The behavior of

this system is perceived much easier, if we display its picture and animate it using the

simulation results. Instead of just looking at several curves we could actually see a

robot arm move in space, or a pilot being ejected from a plane.

Interactive algorithms: In automatic control, dynamic pictures are not only an excellent

tool for system and signal analysis, they are also well suited as a user interface for

other algorithms. Many of the algorithms in use today are easily expanded to display
the behavior of some internal parameters as the calculations proceed. Instead of just
being presented with an inappropriate result at the end of lengthy calculations, the

user is able to detect algorithm misbehavior earlier, and to take measures against it. As

an example, the state of an optimization algorithm could be displayed in parameter

space.

The measures mentioned are either stopping the algorithm and starting it again with
different settings, or interactive parameter tuning by the user. This is closely related to

the algorithms previously mentioned, which allow interactive parameter adaptations.
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Example 3 Interactive Lead-Lag controller design V

The LabVIEW instrument in Fig 2 4 shows an example of an mteractive algorithm It

was used with the Leporello example described in Chapter 5 The Bode diagram of the

plant is displayed together with the diagram of the open loop controlled system The

controller parameters on the left of the instrument can be manipulated interactively
The resulting controlled system and its Bode diagram are instantly calculated and dis¬

played The user can so monitor the influence of the controller parameter changes on

the Bode diagram In addition, critical frequency, amplitude margin and gam margin

are calculated, displayed numerically and marked in the diagram with a vertical bar

p-» 1 aj

jLead-laq conl ollp | I

Figure 2 4 Interactive lead-lag controller design in the Bode diagram

A

2.1.5. Summary

The methods presented in this chapter all served to present the information contained

in scientific data in an intriguing manner By choosing the appropriate display, the

solution of a given problem is often found by just looking at the resulting graphics
These visual methods to analyze systems or signals have always played an important
role in control engineering With today's computer power we not only have the means

to display the necessary pictures, but also to work with them Including more dimen-
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sions in pictures increases the amount of information displayed, and in addition often

reveals data relationships which are not perceived otherwise.

Dynamic pictures and interactive algorithms present a new way of working with a

computer. The user is involved more directly in algorithm execution and has therefore

greater influence on its behavior. Experimenting with parameter variations becomes

easier and allows quicker evaluation of alternative solutions. Without question, these

methods will enhance computer usage in automatic control.

2.2. Visual Programming

From the visualization of numerical data sets we now come to the pictorial display of

a program itself. Like traditional, textual programming languages, visual languages
are used to create executable code. A visual program is designed on screen using

graphical elements (typically lines, icons and boxes) by use of a graphical input device

(mostly a mouse). Graphical programming paradigms are very often based on tradi¬

tional visual representations of software or on visual methods traditionally used in the

domain where the program is going to be used. On our quest for visual language

applications in automatic control we will therefore not only look for language imple¬
mentations, but also for visual methods in general which might serve as paradigms
for a visual language. These paradigms usually display one single aspect of an imple¬
mentation. However, very often a visual language emerged from one of these dia¬

grams and added views on parts of the program which are not displayed by the initial

method.

In some way, visual programming may be regarded as a special case of scientific visu¬

alization, with the following differences:

- The data displayed are computer programs. Compared with the relatively unstruc¬

tured simple numerical data sets displayed in the examples of Chapter 2.1, a pro¬

gram is of much higher complexity. Although it is available in computer memory
like any other kind of data, the information it contains is much more intricate. De¬

pending on the purpose of the program, different aspects may be important to be

visualized.

- The data set, in this case the program, is not only visualized by, but created from

the graphics. The data sets mentioned earlier were produced by another source

(measurements, simulations, etc.) and displayed only by visual software. Besides

displaying diagrams of an existing program, visual programming languages are

designed to create an executable program and to support the programmer in this

task.

The basic effect of visual programming however is almost the same: by using graphics
we would like make use of our image processing capabilities and get more informa¬

tion from the software itself. The functionality of a piece of code should be presented
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more clearly; its behavior should be seen from the program's graphical representation.
Furthermore, similarities to concepts or diagrams from the programmer's own

domain should ease program development and understanding.

Syntacticalformatting: Increasing the display dimension to transmit more information

holds also in the case of visual programming. Conventional textual programming lan¬

guages are basically one dimensional, a character stream like any other piece of text.

To get an idea of what a program is doing is close to impossible if it is displayed as

unformatted text. An unstructured code segment is shown in Example 4.

Example 4: Unstructured stream of code: V

si; if cl then s2; repeat s3 until c2 else if c3 then while

c4 do s4 end else if c5 then s5; end; s6; end;

A

The use of syntactical formatting increases code readability drastically. Program lines

of the same syntactical unit (IF, REPEAT, FOR statements, etc.) start at the same inden¬

tation level. This is done either by hand or by using a so called pretty-printer, a tool

which parses the source code and inserts line breaks and tabulators where necessary.

The code in Example 4 is much easier to read after its formatting, which is done in the

example continuation.

Example 4 (continued): Syntactically formatted code V

SI;
IF Cl THEN

S2;
REPEAT

S3

UNTIL C2

ELSE

IF C3 THEN

WHILE C4 DO

S4

END

ELSE IF C5 THEN

S5;

END;

S6;

END;
A

By doing this, we introduce a higher dimension to our otherwise linear textual display.

Although the plain text itself contains all the information necessary for the computer
to execute the example, we add extra graphical information to the layout in order to

transmit this information not only to the computer, but also to the human who wants

to work on this program. Even though the program does spread over the two dimen¬

sions of a page, we do not consider it an example of fully two-dimensional program¬

ming. In addition to the one dimensional text flow, the position of the formatting
characters make for part of another (fractional) dimension. Since it is more than one-
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dimensional but not two-dimensional, the definition of dimension 1.5 for this repre¬

sentation could be thought of.

Higher dimensional programs: At the time the popular programming languages were

developed, one dimension was adequate. A computer program mostly executed

sequentially, along the path specified by the compiled code. The sequence of state¬

ments laid out in the program text was always traversed in an order only depending
on a limited number of conditions, i.e., given a limited number of information (pro¬

gram input), program flow could fully be traced from the source code only. During
user interaction, for example, all other processing was stopped and resumed after the

user finished the input.

Today, many popular software design techniques abandon the formerly linear pro¬

gram flow. Although a single processor still executes programs sequentially, the order

of execution cannot be traced from the source code. One example where this is obvi¬

ous is real-time software with parallel processes. Program execution mostly depends
on the inter-reaction of concurrent processes, which in turn depend on external events

such as interrupts or time events. Timing of these events may be crucial to program

execution.

Another very popular paradigm is object oriented programming1. Program flow in an

object oriented environment is not specified by a sequence of procedures and func¬

tions, but by objects exchanging messages and the receiver of a message reacting on it.

This reaction may initiate messages to other objects; a whole message passing scheme

is established at runtime. If messages are not only created by objects but by external

events (user interaction, interrupts), we get the same software complexity as with par¬

allel processes. Today's graphical user interfaces (Macintosh OS among others) are all

based on an event processing loop, which reacts on any user interaction (mouse move¬

ment, keyboard events, etc.). In the Leporello project, in addition to the user interac¬

tion event handling, asynchronous message passing is implemented in the

communication links to externally accessed numerical packages. With these packages
located on remote computers, in the current state of development Leporello supports

up to four interacting processors (if we simply reduce the user to an external proces¬

sor). This produces situations where parallel processes and object oriented design are

mixed (see Chapter 4.1, "Algorithm Node Execution ", on page 4.1.).

Higher dimensional programming languages: The inherent parallelism of the aforemen¬

tioned examples is very difficult to show in textual program descriptions. Visual lan¬

guages, which make use of dimensions two or higher, present themselves as an

appropriate means to portray these concepts. The additional dimensions offer the pos¬

sibility to display various views on a program which are not easily to be seen in a tex¬

tual description. A natural depiction of parallel processes for example could be in

parallel columns next to each other. For object relations, there are several aspects to be

1. In the introduction to the Leporello project (Chapter 3.3.1) we will give an overview over the
most important concepts of object oriented software design.
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visualized: message passing schemes could be shown in a graph, subclass relations or

object hierarchies are best represented in trees (cf. Fig. 3.4 on page 64 or Fig. 4.2 on

page 78).

In the history of visual programming the following software aspects have proven to be

candidates for visualization1:

- Control flow, showing the sequence of operations
- Data flow, showing what happens to data sets

- Data structure, showing how data sets are specified
- Topology, showing how parts of the program interact.

The decision which part of a software concept to emphasize in a given graphical pro¬

gramming environment is governed by its designated range of application, which in

our case is automatic control. In Table 1, "Software use in control engineering", on

page 16 we have seen that there are primarily two circumstances where a control engi¬
neer not only uses, but also writes software: One is the programming of new algo¬
rithms necessary for control systems design (a situation more common in research

environments than in everyday work in industrial development) and the other one is

the implementation of digital control systems on a real-time target computer system,
where control laws have to be turned into software. In the latter case, drawing block

diagrams for controller specification is one of the traditional visual methods in auto¬

matic control. The use of a visual language in this situation is evident; we will show

some examples in the chapters to come.

We will now take a closer look at control flow and data flow descriptions, the more

important aspects of automatic control software.

2.2.1. Control Flow Descriptions

The emphasis in control flow descriptions is on the sequence of operations in a pro¬

gram. The diagram shows the conditions necessary to execute each statement. Basi¬

cally this is just following a linear sequence. More complicated situations may also

include branches, loops and possibly parts which indicate parallel execution. Control

flow descriptions are an appropriate visualization in situations, where the emphasis is

placed on an agent. Instructions directing a robot to complete a desired task are an

example which is readily visualized in a diagram which indicates the sequence of

movements and possible events calling for reactions (sensor signals, etc.).

Nassi-Shneiderman diagrams: Avery early, and also very popular description is given in

[32] by Nassi and Shneiderman, who propose a box notation of structured programs.

Fig. 2.5 shows the Nassi-Shneiderman diagram of Example 4.

We see that block descriptions of this sort have little analogy to methods traditionally
found in control engineering. This limits their applicability. The use of "box-and-line"-

1. Please note that these are topics which are important for software development. Visualization

of data at runtime was presented in the previous chapter and is not considered a subject of

visual programming.
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notations is more common in this field. A survey of possible software specification
schemes, which basically use boxes, lines, or both, is found in [46]. Most of them have

been proposed as graphical software specification tools and not as visual languages.
Some of them do show similarities to the block diagram description popular in auto¬

matic control; we will have a closer look at selected examples later.

Flowchart descriptions: One notation dating from the times of assembly language is the

flowchart description. Analogous to assembly language, its only control structure is a

branch statement. In Fig. 2.6, Example 4 is laid out in a flowchart. The flow of the pro¬

gram can easily be traced; it is obvious which statement depends on which selection

statement or is contained in which loop.

Although this sort of diagram is very popular for sketching software design details on

paper, its use as a visual language is limited. Compared to high level programming

languages, it does not support their concepts of data abstraction and their more disci-

Figure 2.6: Flowchart description of Example 4
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plined control structures (FOR-, WHILE-loops). However, extended flowcharts may be

a possible control flow visualization in a language supporting different views on pro¬

grams (see the GenT approach described in Chapter 2.3.4).

If we look for control flow diagrams in control applications, we see that especially in

the field of discrete event dynamic systems (DEDS) there are some methods being
used which illustrate this program aspect.

State diagrams: One of these descriptions is the state diagram. A directed graph is used

to depict system behavior. Discrete system states are connected by directed branches

which define state transitions. A state transition is triggered by the corresponding
event. The action executed as a reaction to this event is either assigned to the branch or

to the new state reached, depending on the chosen topology.

Example 5: Automatic garage door controller V

To illustrate control flow specifications we will use the example of an automatic

garage door. It consists of a door, a motor, an 'open' and a 'closed' sensor. The user can

issue open or close commands, the door stops automatically when reaching the open

or closed position. In the discussion of the example we will not handle irregular events

(open command when the door is open, closed signal when the door is opening, obsta¬

cles, etc.).

In Fig. 2.7, we see the state diagram of this door. It shows the commands the motor

receives upon user request or sensor signals.
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Figure 2.7: State diagram of an automatic door

A
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Since a pure state diagram tends towards very high complexity (exploding number of

system states), it is not likely to be used to fully describe software. Nevertheless there

are some visual languages which have their roots in these diagrams (e.g. [6], [16]).

Petri nets: Another method widely used in DEDS is the Petri net. Its appearance is sim¬

ilar to the state diagram, its operation however is quite different. The elements of Petri

nets are places (s-elements, circles), transitions (t-elements, bars or rectangles) and

tokens (bullets). Places are connected to transitions by directed branches (arcs) and

vice versa, connections cannot exist between elements of the same types. The system
state is indicated by the distribution of tokens, called marking. State changes occur

when tokens are moved to other places by firing transitions. The transition then

removes one token from each input place and sends one token to each output place. A

transition is allowed to fire if tokens are available on all its input places.

Example 5 (continued): Petri net description of the garage door V

The state diagram of the garage door example in Fig. 2.7 is transformed almost identi¬

cally to the Petri net in Fig. 2.8. The state of the door is defined by the one token posi¬
tioned on the 'open' place; the token (and therefore the control of the door) flows

clockwise around the main circle, triggered by the external sensor and request events

(grey places).
closing door closed

door open opening

Figure 2.8: Petri net of the automatic door of Example 5

A
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If we compare Petri nets to state diagrams, we find a number of analogies: the places
of a Petri net maybe compared to the states of a state diagram, the transitions are sim¬

ilar to events. The difference is in the definition of the system state: the state of the

Petri net is given by the marking of the net, i.e., if several tokens are circulating all the

positions of these tokens form the current state. In the state diagram, the state of the

system is given by one position in the net. If one token only is available in a Petri net,

both descriptions are quite similar.

The possibility of multiple tokens circulating independently is the great advantage of

the Petri net over the state diagram. It allows the display of the control flow of multi¬

ple processes, each described by its own token. This makes the Petri net one of the pre¬

ferred tools for real-time software specification and analysis.

Both the state diagram and the Petri net can not be used as a visual language or to rep¬

resent uniquely a piece of code, since they do not provide enough information. Data

relations and manipulations are not shown at all. Besides their names, the state dia¬

gram does not show anything about the actions triggered by the state transitions.

Additional views on the displayed code are necessary. However, in applications which

emphasize discrete states of one ore more agents these diagrams may not only be used

to specify the control flow of a program, but also to animate it at runtime. Tokens mov¬

ing in a Petri net show clearly where a discrete supervisory control algorithm is wait¬

ing on process interaction or is running in an endless loop.

2.2.2. Data Flow Descriptions

One of the software aspects missing in control flow diagrams, data relations and

manipulations, is emphasized by data flow diagrams. The examples presented in

Chapter 2.2.1 did show quite clearly which statement was executed at what time or

under which conditions. They did not show any effects of the statements other than a

general 'state change' of the system displayed. In particular, data objects or elements

and their manipulations did not show in any of the views.

The garage door example only displayed the discrete state of the door (closed, open¬

ing, etc.). We did not have any quantitative information about the door, like its current

opening angle or its velocity. In order to simulate the continuous door movement, we

could introduce a counter variable and the increase or decrease operation which is

executed repeatedly until one of the limits is reached.

The data flow diagrams we want to take a look at are "box-and-line" diagrams like the

ones displaying control flow. Nodes of a data flow graph represent operations; data

elements are passed on the connecting directed branches from the output of one oper¬

ation to the input of another. An operation node is ready to be executed as soon as it

has received data on all its inputs, it passes its results to all the operations connected to

its outputs, which in turn may become executable. Data objects are so passed through
a network of operations.
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This description of the principles of data flow graphs reminds us of the firing mecha¬

nism of Petri net transitions. And in fact, there are Petri nets which may not only be

regarded as control flow graphs. Their extensions contain elements which allows their

interpretation as data processing networks.

High level Petri nets [9]: In addition to the specification of ordinary Petri nets, the ele¬

ments of these extended nets can contain attributes and commands, which influence

transition firing and introduce attribute manipulation code. Tokens not only indicate

the current system state by the place which contains them, they can also hold data

records and transport them through the net. Transitions and arcs receive two addi¬

tional features:

- By assigning a condition to a transition or one of its input arcs, it does not only
need tokens on each of the input places in order to be enabled for firing, the tokens

on these places must also fulfill these additional conditions.

- By assigning an action to a transition or one of its output arcs, the data records of a

token passing this transition or the assigned arc are changed.

A high level Petri net which makes use of these extensions may literally be regarded as

a data flow diagram, since the tokens loaded with data records are 'flowing' along the

arcs through places and transitions.

Example 5 (continued): High level Petri net of the garage door V

Let us review the automatic door example (Example 5). We mentioned the missing
information about its current door angle. All we knew was the time instance when the

door touched one of the sensors. If we define the door angle to be an attribute of the

token which is reflecting the state of the door, we can monitor the increasing or

decreasing value of the door position and detect its open or closed state. If we make

use of the timing facilities available, the simulation is already a little closer to reality.

The extended net shown in Fig. 2.9 contains these changes. It was created using

SystemSpecs [54], which accounts for the square transition nodes. The door state

token moves from its "door open" place to the "door closing" position as soon as the

"close door" event occurs. Contrary to the standard net displayed in Fig. 2.8, it does not

wait for the sensor event to be signaUed. Both transitions containing the condition

label could now be reached from the current state, their condition statements (x > 0

and x <- 0) specify exactly which one is to fire next. The token still containing the

value 10 is passed as variable x to the upper transition; x-1 is returned to the "door

closing" place. The token oscillates between place and transition until its value has

reached zero. The lower transition then receives the token and passes it on to the "door

closed" place.

We will later discuss the SystemSpecs visual language and its mixed control and data

flow aspects.
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"door opening" "open door"

Figure 2.9: High level Petri net of the automatic door with modelled door position

A

Block diagrams: Another form of data flow descriptions very popular in control engi¬

neering is the block diagram. As it is the case with Petri nets, this method of visualiz¬

ing control problems has been used long before the appearance of computers in the

field. However, limited graphical capabilities and computer power banned it from the

electronic desktop until recently. Even the standard textual simulation package ACSL

[47] now ships with a block diagram editor in its latest version.

General block diagrams display a system whose main components are represented by
boxes; their relationship is indicated by connecting lines. In automatic control, these

relationships are directed signal flow paths. The direction of these paths is well

defined. Each one has its source and one or more recipients. The data types passed
along these connections are numerical values, signals. They are passed on directed

branches between systems which, by using the input values and some internal states,

produce their output values.

So far, this corresponds to the general description of a data flow diagram. The differ¬

ence is in the very specific structure of the control flow in block diagrams. The control

systems represented are not designed to handle single numerical values. The variables

passed are continuous or discrete signals, i.e., a whole series of numerical values are

sequentially processed. The main (and in most tools the only) control flow feature is

therefore the loop which repeatedly evaluates the diagram.
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Example 6: Primary control of a synchronous generator V

As an example when discussing block diagram structures, we will use the primary
controller of a motor-generator group at the power network simulation plant in use at

the Automatic Control Lab. Both frequency and active power are used to generate the

torque control signal. By changing the kl/k2 ratio we are able to influence which of

the values (frequency or power) is to be favored. Depending on the type of the turbine

the frequency is allowed to vary in a smaller or larger interval. The block diagram of

this controller is shown in Fig. 2.10. We will re-use this controller structure in the next

chapter as an example for controller implementation.

freq.

fRef- ^ * kp

k1

PRef- rQ

active

power -

k2

6 -torque

K>- kl

Figure 2.10: Controller structure used for primary control in the power network simula¬

tion plant

A

The execution order of a series of discrete blocks follows the forward data path, which

does not cause major difficulties (as long as all sampling times involved share a com¬

mon divider). However, we must keep in mind that feedback loops within our model

do add an additional delay of one sampling period, i.e., the value calculated in one

pass is only available at the input of the loop in the next pass.

More problems arise if continuous or mixed systems are modelled as differential equa¬

tions and put together in one block diagram. Signals between sub-systems are now

continuous. Since digital computers always operate on quantized time instances, the

straight forward evaluation of the blocks involved is not possible. In this case, the con¬

trol flow does not necessarily follow the signal paths. In most simulation packages,

sub-systems are collected and sorted to form an integral description of the system as a

whole. The simulation of either the compound system or the series of sub-systems is

controlled by an integration algorithm which takes care of the correct evaluation of the

system description. This includes the proper calculation of feedback loops.
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To achieve this, integration algorithms require the simulated systems to supply some
of the following additional information:

- continuous systems: state derivatives, dX/dT.
- discrete systems: discrete states, X(n+1).
- discrete systems: next time interval for update
- system outputs

During one integration step, system evaluation does not follow continuous time.

Some integration algorithms first calculate the boundaries of one time interval and

then compute values in between (e.g. the Runge-Kutta45 algorithm).

This rather complex implicit flow of control is specific to simulation languages. It does

not correspond to the natural signal flow in the simulated system, it is therefore hid¬

den from the user1. Other system inherent control structures (state dependent events,

switching events, etc.) are rarely seen in simulation languages in general, and not

available at all in tools which provide a graphical block diagram. Although ACSL does

support timed and state events in its textual implementation, these features are not

available in its graphical user interface.

Limitations: There are several problems in automatic control which can not be solved

using pure data flow descriptions. They all require some sort of control flow specifica¬
tions. One example is an optimization algorithm which optimizes some system

response: The system to be tuned is simulated repeatedly. After each simulation, the

results are compared to the desired output and some system parameters are adjusted.
This loop is difficult to display in a pure data flow environment. Other problems
where control flow structures are required are exception handling in real-time applica¬
tions or user input and output.

2.2.3. Summary

Most of the visual methods presented have been used as basic paradigm for the imple¬
mentation of a visual language. However, in order to serve as a 'grown up' visual lan¬

guage which allows complete design of a general program used to solve automatic

control problems, these methods need to be extended. This results either in mixed

structures, where several software aspects are combined in one diagram (see the

SystemSpecs and LabVIEW examples in the next chapter), or in different views on the

same program, each displaying one specific aspect (the GenT example).

On the other hand, the use of a well known visual paradigm as the starting point for a

visual language implementation eases its learning by people who are familiar with

this visualization. These people often developed a thorough comprehension of sys¬

tems modelled using this method. They can then adapt this knowledge to get a better

insight into the domain specific software produced by these tools. Furthermore, the

direct creation of executable code from the graphical design sketches removes one

1. The perception of dynamical systems and processes is known to be a difficult task for

humans.
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source of error and speeds design adaptation. Minor changes in a concept can be

applied to the drawings directly, and automatic code generation keeps the whole

implementation consistent with the changed concepts.

2.3. Tools

In the run of this chapter, we will discuss some of the software packages providing
features which may in one or the other respect be regarded as visual programming.
Some of them are applications only used in control engineering. Some others are

developed to solve problems from related fields of engineering but may as well be

used to handle control problems. Each of the packages presented here has particular
features worth looking at. The examples are picked from a larger number of similar

applications, they all were available at the Automatic Control Lab at the time of writ¬

ing.

For each package, we will discuss the following aspects:

Type

Origin

Dataflow

Controlflow

Data types

Data visualization

Program animation

Hierarchical diagrams

Code analysis

Code generation

Code extension

Real-time capability

Similar tools

Example

Discussion

Visual method the package is based upon

Original domain of the package

Data flow handling

Control flow specification methods

Data types supported, data type specification

Graphical display of data at runtime

Possibilities to monitor program behavior at runtime

Ability to break programs into parts

Methods available to analyze the diagram (completeness, cor¬

rectness, etc.)

Availability of code generation facilities

Externally compiled code inclusion

Real-time execution features

Related tools with similar features

Solution of a simple automatic control problem

Remarks about the usability of the tool in automatic control

The chapter is closed with a discussion about the advantages of visual programming.

2.3.1. SystemSpecs

Type: SystemSpecs is a tool which allows graphical specification and animated simula¬

tion of high level Petri nets [54].
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Origin: Petri net simulation.

Dataflow: As described when we introduced high level Petri nets (cf. Chapter 2.2.2),
data flow is visualized by tokens holding data records. These tokens are passed
through the net, thereby observing transition firing rules. Data elements are manipu¬
lated by transition inscriptions. These inscriptions are small pieces of textually pro¬

grammed code written in SpecsLingua, a Pascal-like programming language.

Controlflow: Basically, control flow is visualized by the net itself. The current state of

the program is reflected in the token distribution. In addition, transitions and

branches can be inscribed with additional firing rules, depending not only on the net

topology, but also on the data values of the input tokens. A Specs net which makes use

of extended firing condition was shown in Fig. 2.9.

Data types: The type of the data records assigned to tokens can be chosen from either

the standard data types available in SpecsLingua (boolean, integer, real, etc.) or they
can be structured and combined by declaring enumeration types, arrays or records.

These structures are defined by writing SpecsLingua scripts. Visual specification of

data types is not available.

Data visualization: Specs contains a special element class for user interaction (data
visualization and user input) at runtime: the I/O elements. They are displayed as tran¬

sitions which either produce or consume tokens depending on whether they have

been designed as input or output I/O element. At runtime, their I/O window can be

opened, where output I/O elements display the values of the tokens consumed and

input I/O elements process user input. Once the user operates a control input element

(presses a button or drags a slider) a token is released which carries the value the I/O

element was set to (true or false with buttons, numerical values with other basic ele¬

ments or records with several I/O elements contained in the same window). Examples
of Specs I/O transitions and windows are displayed inFig. 2.11.

Program animation: Visualization of program execution in Petri nets is obvious: tokens

are animated and move along the graph branches. They display the current value of

their data inscription. Fig. 2.11 shows two tokens currently in motion. Transitions

whose firing conditions are satisfied are marked. For reasons of speed the animation

can be turned off.

Hierarchical diagrams: A connected group of places and transitions can be coarsened

into one element. Depending on whether the net was cut around places or around

transitions the new hierarchical element is turned into a channel (sub-net contained in

a place) or into an agency (sub-net contained in a transition.). Channels and agencies
are indicated by grey net elements (see Fig. 2.9).

Code extension: By making channels or agencies reusable, Specs allows the creation of

user-defined libraries, which can be used in nets other than the one where they were
created. The link to the original specification is retained, changes in the original net

affect all the reused nets.
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In addition to graphically programmed libraries, there are textually programmed
libraries which contain SpecsLingua scripts. Functions defined there can be used in

any transition inscription.

Code analysis. In order to be simulated, a given net needs to be translated first. This is

the moment when the net consistency is checked (correct data type passing and syntax

check of inscriptions).

Furthermore, SPECS provides Petri net analysis tools which do not check the net 'syn¬

tax', but the net topology. Conflicts and invariants can be calculated and displayed,
transitions can be monitored and token statistics can be collected and displayed.

Code generation: The full version of SystemSpecs allows code generation for faster sim¬

ulation and prototype implementation. In addition to C source code, there is an option

to create code which can be executed on a signal processor.

Code extension: SystemSpecs scripts can call externally compiled C code

Real-time capability. In real-time software development, Petri nets already are a popu¬

lar tool. Specs therefore provides a useful tool not only for real-time software simula¬

tion and analysis, but also for the implementation. The necessary timer access is

available, the inherent parallelism of a Petri net does not require special language con¬

structs to specify parallel processes. However, the speed requirements of a real time

system can only be reached with the compiled code.

Similar tools: none known

Example: The garage door controller was shown in Fig. 2.9.

Discussion: Being a Petri net simulation tool, SystemSpecs has its strong points if a

given problem is easily expressed with Petri nets. Direct code generation from the net
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Figure 2.11: SPECS program animation: I/O transitions, windows and animated to¬
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specification allows rapid prototyping and interactive debugging using the animated

net. Problems which are not naturally modelled with Petri nets can be solved with

SystemSpecs. However, these solutions tend to be very complicated. A discrete trans¬

fer function simulation implemented to experiment with SystemSpecs's data flow fea¬

tures filled a whole page. The same simulation in a more suitable environment

(Simulink or LabVIEW) can be realized much easier.

2.3.2. Simulink

Type: Simulink is a Matlab extension, which provides drawing and simulation facili¬

ties to create and execute continuous and discrete block diagrams. It may not be

regarded as a general purpose visual language. We present it to show the similarity of

the more general languages to tools well known in automatic control. It was chosen

from a series of packages which provide similar capabilities [53].

Origin: Simulation

Dataflow: We have already discussed the data flow properties of a block diagram.
Simulink does not provide any further data flow elements. The blocks used to build a

Simulink diagram are taken from libraries, which contain most of the commonly used

control systems structures, including non-linear, discrete or continuous parts as well

as data visualization and data exchange blocks (take data from or return data to Mat-

lab).

Controlflow: The control flow in a Simulink model is controlled by the chosen integra¬
tion algorithm. Any control flow mechanisms going beyond that are not provided.
This causes difficulties with simulations which depend on the correct handling of state

events (zero-crossing of variables, etc.). For example a system which contains friction

cannot be simulated correctly using Simulink.

Data types: Being a Matlab-based tool, Simulink only provides two-dimensional

matrix structures.

Data visualization: Some of the Simulink library blocks support data visualization fea¬

tures. The simulation can be monitored on scopes or Matlab graph displays which

show the current state of the simulation variables (the scope in Fig. 2.12 is continu¬

ously updated at runtime).

Program animation: Simulink does not provide any process monitoring features which

display anything else than the contents of variables.

Hierarchical diagrams: Any part of a Simulink diagram can be collected in a single sub¬

system and included in a user defined library. By creating empty blocks which are

completed later, bottom-up development is also possible.

Code analysis: A Simulink block diagram can be analyzed under several aspects of con¬

trol system analysis. Algorithms available are conversion into a linear system or

steady state analysis. In addition to system analysis, the diagram is checked for syn-
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Figure 2.12: Simulink block diagram and scope output

tactical inconsistencies. However, certain error situations (missing Matlab variables,

etc.) are only detected at runtime.

Code generation: A C-code generator is shipped with the latest version of Simulink on

UNIX workstations. The compiled code is much faster than the Simulink simulation. It

can also be ported to another target system, for example a signal processor based real¬

time system. In conjunction with such an external system, Simulink can be used as a

prototype development environment for real-time digital control systems.

Code extension: The same rules apply for Simulink as they do for Matlab. It is possible
to define parts of a block diagram by either writing Matlab script files or MEX-files.

The latter are externally programmed subroutines which can be incorporated into a

Matlab environment. They not only allow data passing between Matlab and the exter¬

nal code, they can also access Matlab functions from within C-code (The Leporello
communication extension to Matlab depends on that feature).

Real-time capability: The generation of C-code from a Simulink model allows its execu¬

tion in real-time. The compiled code contains the appropriate routines to assure cor¬

rect timing, which are not available from within the block diagram editor. The

necessary analog input and output routines can be included in the real-time code as

well as in the block diagram by programming MEX-files.
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Similar tools: ACSL/Graphic modeler, Easy5, MatrixX

Example: The example in Fig. 2.12 shows the simulink implementation of the generator
controller from Example 6. Simulation results are displayed in the scope windows and

are returned to Matlab in variable V and 'P', where they can be processed further. The

simulation can either be controlled interactively by specifying the integration algo¬
rithm and a simulation duration in the Simulink model window, or by a textual com¬

mand entered on the Matlab command line.

Discussion: In its native domain (simulation), Simulink provides easy to use facilities

to quickly design and test a control system. Its incorporation in Matlab does allow

additional control flow programming, but only in text scripts. Its C-code generator
also permits its use as a rapid prototyping tool for controller implementation. Any

algorithms other than simulation are not feasible.

2.3.3. BlockSim

Type: Another block diagram drawing and simulation tool is BlockSim, developed at

the Automatic Control Lab by Kolb and Rickli [20], [48].

Origin: Simulation and controller implementation in control education.

Dataflow: As in Simulink, block diagrams may be drawn on screen. Its library of avail¬

able blocks is limited to a few standard elements (signal generators, system descrip¬
tions and on PC analog I/O modules).

Controlflow: The sequence of execution of the blocks connected in the block diagram is

not derived from the diagram itself as this is done in other simulation tools. The user

has to define the sequence before the first simulation. This is done on screen by click¬

ing the blocks in the order the user wishes them to be executed.

A special feature is available because BlockSim does not require all blocks on screen to

be contained in a sequence: Different block diagrams can exist independently in the

same file. By assigning sequences which only contain blocks of one or the other dia¬

gram, simulations can easily be compared without switching files (This feature may

also be regarded as a weak point: the completeness of a sequence cannot be checked

and provides another source of errors).

Data types, data visualization, program animation and hierarchical diagrams: Being a public
domain educational tool, BlockSim does not provide any of these features.

Code analysis and generation: Both features are not available.

Real-time capability: The implementation on IBM PC compatible computers does pro¬

vide real-time features. A timer, analog input and output blocks are available. In addi-

tion to the simulation done for a limited number of samples, controller

implementation may be tested indefinitely by using the infinite loop feature which

allows real-time simulation until user interaction.
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Figure 2.13: BlockSim example ofa simple control system. It shows simulation control

window, the block diagram, the simulation sequence and the plot window

Code extension: New blocks can be created only if the BlockSim source code is avail¬

able. Like subclasses in object oriented frameworks, each block available has a number

of necessary procedures which are called by the simulator. Any block added in

Modula-2 requires a full rebuild of the package.

Similar tools: Education tools with similar features are rare.

Example: Fig. 2.13 shows a small example where a plant has been simulated with the

corresponding Pi-controller. The three blocks contained are evaluated in the order

indicated by the simulation sequence (Fig. 2.13: window 'Sequence: seq'). The signals
labelled in the block diagram are plotted in the plot window after the simulation.

Discussion: BlockSim was developed to teach the behavior of discrete systems. It is

based on FPU, a package which provided the same functionality as BlockSim. Its user

interface however was menu driven and not very friendly.

The capabilities of BlockSim are quite limited compared to commercial tools of that

sort. However, it was one of the first visual block diagram editors available. We men¬

tion it because in addition to the block diagram defining the data flow, the control flow

is specified by the user. Although this is a negative aspect when it comes to judging its
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user friendliness, this feature is particularly interesting in our discussion of visual

tools.

BlockSim has its range of applicability. If the control problem can be solved using only
the built in blocks, this is done very quickly.

2.3.4. GenT

Type: GenT presents a fully graphical user interface to software development. Every

aspect mentioned in Chapter 2.2 is displayed graphically: control and data flow of a

program are presented in form of flow charts, data types are displayed as hierarchical

iconic lists, and topological views are available in library windows. In addition to

other general purpose languages, GenT contains a large set of structures necessary for

real-time programming.

The GenT prototype used in this project was developed at the ABB corporate research

center [40], [49].

Origin: General purpose software engineering tool. Its designated application domain
is software development for automation.

Dataflow: Similar to the block diagrams in Simulink and BlockSim, the data flow of a

program (i.e. module or procedure) is drawn in form of a data flow graph. Like in the

other data flow diagrams discussed earlier, the results of a given block are passed

along its output connection to the inputs of the blocks it is linked to. The instance

when this happens, however, is not specified in the data flow graph (i.e. the execution

of a block does not depend on the availability of all data elements at its inputs). Simi¬

lar to BlockSim, the control flow is specified in another diagram which will be dis¬

cussed later. GenT blocks are either hierarchical procedures available in GenT
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libraries, textually programmed libraries, expressions or local variables (a construc¬

tion normally not available in data flow only languages). Blocks may be connected

without any topological restrictions, feedback is allowed. The connections are tested

on type compatibility, if an output of a block is wired to an input of another block with

different data type, an error is signalled immediately.

Controlflow: A second diagram is needed to be set up for each program module, the

control flow diagram. This diagram is basically a flowchart, which indicates on which

conditions and in which sequence the operation blocks defined in the data flow graph
are executed. Each operation block in the data flow has its corresponding description
in the control flow, where it must appear at least once. In addition to these data manip¬
ulation statements, GenT provides a number of elements which define the control

flow.

Among the basic statements are case structures, which branch on given conditions. In

addition to plain flowcharts, GenT's case statements allow different conditions to be

tested in the same call. By wiring the output of a control flow block to the input of a

previously called block, GenT allows programming of loops.

In addition to these basic elements already known from flowcharts, GenT supports a

few structures which particularly ease software design for real-time applications.

- Parallel flows: Different paths of the control flow may be defined to execute in par¬

allel.
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- Interrupt handling: Interrupt signals may be used to trigger a program part previ¬

ously assigned to wait for this signal.
- Synchronization: A synchronization mechanism is available to synchronize pro¬

cesses which are executing in parallel.

Data types: GenT allows all data types known from high level programming lan¬

guages. They are specified in a dialog window and later displayed in a list form,

which resembles the syntactically formatted type definitions in high level languages.

Data visualization: Unlike SystemSpecs or Simulink, GenT does not allow code execu¬

tion directly from the diagram, it always requires code generation and compilation in

order to run a program. Visualization tools for runtime data object instances have to

be included in the generated code, they are not available directly from the tool itself.

Program animation: The same holds for program animation. Once the program is in a

state to be run, it does no longer have any connection to GenT. Neither of them knows

anything about the state of the other, therefore GenT is not capable of monitoring the

behavior of the created program.

Hierarchical diagrams: Like in high level textual languages, libraries of user defined

procedures and data types may be created. The GenT design direction is bottom up,

single procedures are connected to form a more complex hierarchy. Parts of a complex

procedure may not be selected and turned into subroutines as this is possible in

SystemSpecs and Simulink.

Code analysis: GenT allows code analysis with respect to syntactical correctness. Type
checks are done immediately as the user tries to improperly connect two elements

which differ in data type. More inconsistencies (unwired blocks, undefined procedure
code, etc.) are detected once the user chooses to either check module completeness or

generates code.

Code generation: In order to run a GenT program, the user has to generate code. Pascal,

C, and Modula-2 may be chosen as target languages. The generated code is executed

independently from GenT after it is properly compiled and linked on the target sys¬

tem. This system need not necessarily be the one GenT is running on.

Code extension: Interface modules from other languages may be incorporated in GenT

libraries. The external definitions are parsed and turned into graphical displays like

the definitions specified from within GenT.

Real-time capability: Real-time execution of programs generated by GenT is the main

emphasis of this package. Since high level language code is generated, the target sys¬

tem need not be known at the time the program is designed.

Similar tools: none known

Example: The primary controller presented in Example 6 has been implemented in

GenT, its data flow graph is shown in Fig. 2.14. The controller is defined as a device, a

stand-alone process, which communicates only via read-only variables (reference val-
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ues fRef and PRef) with its environment. The diagram contains one variable (Inte¬

grator), several expressions and function calls. The similarity to the plain block

diagram is obvious, only the integrator had to be replaced by a numerical algorithm.

Some of the control structures are contained in the control flow graph of the primary
controller example (Fig. 2.15). The control loop is triggered by a timer interrupt, the

control flow of the loop is therefore synchronized with the interrupt. The analog-in
converters may require some delay, reading the current values from them is executed

in parallel. Finally, some anti-windup measures are taken, the integrator is bounded

depending on its value. These bounds are set in a CASE statement.

Discussion: The features offered by GenT make it a preferred tool for real-time imple¬
mentations. Programming in different views needs some time to get used to. Once

familiar with its concepts, GenT diagrams reveal some properties of the program

being designed, which are otherwise not visible. Superfluous program parts or too

complicated structures are easily seen on screen. If the GenT diagrams could also be

used to run animated prototype implementations before code generation, this would

certainly allow even more insight into program behavior.

Unfortunately, the unstable state of the GenT implementation did not allow its testing
on a larger scale.

2.3.5. LabVIEW

Type: LabVIEW provides a data flow language (called 'G') to specify the functionality
of a graphical user interface with a data flow graph. Each program (or procedure)
called 'virtual instrument' (VI) consists of a user interface part (front panel) and of a

diagram part [50].

Origin: Software instrumentation. The main user interface elements were designed to

display oscilloscopes and other measurement equipment.

Dataflow: Each LabVIEW virtual instrument is programmed by drawing its data flow

graph. Elements of the graph are other Vis (hierarchical structures) or built-in opera¬

tions like expressions, record or array element access. Similar to the high level Petri

net, data tokens are passed between the data flow nodes. Different than in the Petri

net, these tokens cannot flow in loops. A data flow path cannot be dependent on one of

its results. This result is not available when the loop is executed for the first time. In

the Petri net, this problem is solved by the initial marking (initial conditions), which

provides the data elements to be taken for the first execution. G however introduces

structured data flow (presented in [19]), which mixes plain data flow with control

structures.

Controlflow: Control flow in a G diagram is defined by special elements. Each of them

is accessed like a data flow element, i.e., it is entered as soon as all its input connections

are evaluated. Connections leaving the control flow element become active the
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Transformation into

Figure 2.16: LabVIEWdiagram of a discrete, timed simulation of a plant and a Pl-con¬

troller

moment its execution is completed. Some of the G control flow elements are shown m

Fig. 2.16: The control loop is implemented in a WHILE-loop.

The WHILE-loop also shows the implementation of feedback loops: shift registers

( f3k| ) are used to store the state variables between the loop executions.

Data types: LabVIEW allows the definition of structured data types known from tex¬

tual high-level programming languages. Arrays of any dimension and any element

type are possible as well as record structures (clusters in G) of arbitrary complexity.
Data types are specified visually by combining elements of the required types on the

VI front panel. On the exemplary front panel shown in Fig. 2.17, the Pi-controller

parameters are collected in a single cluster.

Data visualization: Front panel data elements can be accessed throughout diagram exe¬

cution, therefore providing animated data capabilities. A variety of interactive data

Figure 2.17: Front panel of the diagram shown in Fig. 2.16
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manipulation elements are available, ranging from simple buttons to complex two-

dimensional graphs. All these elements can be customized by replacing parts of them

with pictures. This allows a user interface which very much visualizes the actions of

the program. Similarities to processes known from the real world can be shown. In

addition, data passed to a sub-VI can be watched by opening its own front panel.

Program animation: The execution of a VI diagram can be monitored by switching to

highlighted execution mode. Data elements are then displayed as tokens similar to the

Petri net animation. Their current values can be traced by assigning probes to data

branches.

Hierarchical diagrams: In G there is no distinction between main program and subrou¬

tines. AnyVI can be turned into a callable sub-VI. This is done by assigning some or all

of the user interface elements on the front panel to be included in the VI's connector

(the parameter list in a high level language). If the VI is later used as a sub-VI in

another diagram, these connections need to be wired.

The sub-VI is still executable as top level VI. It can therefore still be operated from its

own front panel, which allows development and debugging of smaller parts of a com¬

plex hierarchical VI setup.

Code analysis: LabVIEW provides on-line syntax checking of its diagrams. Missing or

invalid connections are dashed. The error is explained upon request or before the VI is

compiled.

Code generation: LabVIEW does not provide code generation in a high level program¬

ming language. However, its Vis are portable, and utilities are available on the desig¬
nated target to create a stand-alone application from any diagram. These applications
do not require the LabVIEW development system to be available. There also exists a

signal processor library which allows execution of library routines on a signal proces¬

sor.

Code extension: Program parts written in C can be incorporated and accessed from a

diagram through a code interface node.

Real-time capability: The inherent parallelism of data flow graphs is supported. Timed

execution is possible as well as analog input and output facilities. With the latest ver¬

sion, process synchronization by semaphores has been introduced.

Similar tools: There are several tools available today which provide graphical program¬

ming of user interface instrumentation (Workbench [55] et ah). None has yet reached

the capabilities of LabVTEW.

Example: An example VI is shown in Fig. 2.16 (VI diagram) and Fig. 2.17 (VI front

panel). It simulates a continuous plant with a Pi-controller. Both systems are con¬

nected and converted into the discrete state space form. The control loop is timed

appropriately and the simulation results of the closed loop system are displayed on



48 VisualAspects of Software in Automatic Control

screen. The user can experiment on-line with different set-point changes; repeated
execution of the VI also allows changes of the Pi-controller parameters.

Discussion: LabVIEW has proven to be the most mature graphical programming pack¬

age of the ones being discussed. A wide range of control problems was successfully
solved. The very advanced user interface suggests its use as a teaching tool, which

allows easy experimenting with a physical process. LabVIEW has been used in our

Lab by several students in their semester projects, requiring only a short training time.

These projects showed the advantageous use of LabVIEW in applications which are

based on data flow principles.

2.4. Text or Pictures?

In addition to the examples mentioned in the previous chapters, several other prob¬
lems from software design in automatic control were solved using one of the visual

languages mentioned. After the discussion of those languages, we are now about to

ask: Where did we get? Did we find the ultimate tool for software design in automatic

control? Apart from the fact that the field of automatic control is too wide to be cov¬

ered by one tool only, the answer is still: No. Did we gain anything by using visual lan¬

guages at all? To this question, the answer is yes: there are situations where the use of

a visual language is beneficial for the control engineer who is about to write software

for the solution of a problem. Other situations are still better approached using tradi¬

tional textual took.

What are these situations? To get an answer to this question, have a brief look at

Fig. 2.18a (try not yet to look at b): Only few readers probably recognize the function

displayed by the LabVIEW program at first sight. In the formula node in Fig. 2.18b

however, the function is easily identified: the two lines of C-like code calculate the

roots of a quadratic equation. Its textual description is much closer to our idea of this

Figure 2.18: LabVIEW data flow diagram and formula node of the same equation
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formula than the graphical data flow representation. The use of graphics in this exam¬

ple is questionable.

Example 7: Adaptive controllers in LabVIEW V

During a semester project, students at the Automatic Control Lab tested the use of

LabVIEW for the implementation of adaptive controllers [38]. They chose the self-tun¬

ing controller structure displayed in Fig. 2.20. The controller was a deadbeat control¬

ler, the identification was done using the recursive least squares algorithm which

calculated estimated system parameters © according to the following equations (for a

thorough discussion of these or related equations please refer to Milek's overview in

[28]. They are shown here to give an impression of formula visualization, understand¬

ing is not necessarily required):

§(*+l) = &(k) +y(Jfc) [y(k+l) -<p'(fc + l)&(*)]

w«
=

P(*)q>(* + 1)
1K '

q>'(ifc+l)jP(lfc)q>(*+l)+l

P(k+l) = \i[I-y(k)y'(k+l)]P(k)

These formulas were programmed in LabVIEW which resulted in the diagram shown

in Fig. 2.19. It is quite obvious that the graphics do not contribute to the understanding
of the algorithm.

The top-level control loop shown in Fig. 2.21 however shows its relation to the struc¬

ture of the diagram in Fig. 2.20. The center of the diagram shows the control loop
(plant, controller, identification, and controller design). Due to the LabVIEW imple¬
mentation of feedback, the controller design is placed on the right of the identification

instead of the left. In addition, the diagram contains other control blocks necessary for

Figure 2.19: Recursive identification update programmed in LabVIEW
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estimated plant parameters

J ' 1

Controller

design

Parameter

identification

controller
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Figure 2.20: Adaptive controller scheme

the simulation. Limiter, noise generator, and random binary source are not shown in

Fig. 2.20, they are shown, however, in the LabVIEW VI.

Figure 2.21: Adaptive controller loop programmed in LabVIEW

A
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From the quadratic equation example and the adaptive controller implementation we

get an indication about where to use textual program specifications, and where to

switch to graphical programming languages.

Wherever our program already is defined by a text, conventional languages are best

suited to solve the problem. Mathematical formulas mostly find their implementation
in a direct conversion to textual program code, be it directly in one of the high level

programming languages, or via specification in a mathematical package (Maple,
Mathematica, Matlab). Since most controller design1 algorithms today are expressed
in pages of formulas, the numerical details of a 'control toolbox' are best implemented

using one of these textual languages or mathematical packages. These packages con¬

tain large libraries of mathematical algorithms (matrix arithmetic, Fourier series, etc.),

which eases algorithm implementation2.
An obvious domain for the application of visual language is given when parts of the

design was done using visual methods. If the controller design is done by drawing a

block diagram, the use of a block diagram editor with simulation and code generation
facilities is preferred.

Another example where an advantage of visual languages is shown is the adaptive
control loop in Fig. 2.21. Data flow between complex sub-systems or control flow

behavior in a larger context are easier perceived in a graphical form. At a higher level

of abstraction, where function blocks containing implementation details and library
functions are connected on screen, visual languages show program structure and

other details of the implementation more clearly than textual languages do.

Between numerical details and overall system behavior there are more levels of

abstraction, where the advantage of graphical or textual display needs to be judged
anew with each implementation problem. In the optimal implementation of a complex

application, both textual as well as graphical parts are probably used. The following
discussion is intended to show some advantages of one or the other specification. It

also indicates some weak points of visual languages which, once removed, could

increase the usefulness of graphical programming.

2.4.1. Visual Languages Discussion

Development system: If we want to compare textual and visual languages, we cannot

restrict the discussion to the language definition alone. It is also the qualities of the

development system as a whole we need to look at. The independence from a fixed

development system is one great advantage of textual languages. A textual program

can be written in any text editor, on any computer system which need not necessarily
be the target system. In contrast to this, visual languages are always closely linked (or

bound) to the development system, and therefore to the supported computer hard-

1. Once again, we include all algorithms used in the design cycle (identification, design, etc.)
2. Following this principle, the RASP control library written in FORTRAN was incorporated

into LabVIEW in order to access stable numerical algorithms from within a visual language
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ware. This development system not only contains the graphical editor, but also the

code generator, and very often some sort of a user interface design tool.

This close linkage between the language and its development system does imply some
of the advantages of visual languages mentioned below. However, if some feature is

not available in a visual development tool, there is no alternative tool which does pro¬

vide the desired feature. With the large number of available text editors on different

platforms, there is a chance to find an alternate editor which suits the needs of the pro¬

grammer.

Betterfeedback during programming: Since the language specifications are known to the

visual development system, it can continuously monitor program correctness. Pro¬

gram development using graphics passes less inconsistent states than textual pro¬

gramming. A WHILE-loop entered in a LabVIEW diagram does not cause any

inconsistencies. If the same loop is typed in a textual language (e.g. Pascal), the pro¬

gram is inconsistent from the 'W' at the beginning of the loop until the programmer

enters the';' after the final 'END'.

The remaining programming errors in the visual language can be flagged immedi¬

ately. LabVIEW draws dashed connections in case of data type conflicts, GenT dis¬

plays an alert when the faulty connection is wired.

Code analysis: The analysis features available in Specs even allow more error detection.

By using Petri net analysis algorithms, some conclusions about program correctness

are possible. By using graph analysis algorithms a graphical program can be searched

for infinite loops or other faulty parts. Simulink detects algebraic loops in block dia¬

grams, and the data flow topology in LabVIEW does not allow un-initialized variables

to be used.

Debugging by program animation: Animated visual programs show their behavior more

clearly than this is possible with textual debuggers. Token animation in LabVIEW and

SystemSpecs give a good impression about program execution and misbehavior.

In addition to the flowing tokens, LabVIEW allows independent testing of any of its

sub-Vis. Each VI (subroutine) provides a front panel (user interface). Values passed in

the flow of program execution can be monitored on the open front panel, or the VI can

be operated independently from its calling program and tested by operating it from its

own front panel.

Layout: The layout of a textual program does not cause any problems. It is usually
done by pretty-printer tools which add the necessary formatting characters. Tools of

this sort are not available in any of the visual languages used.

The layout of a visual program can illustrate the program behavior. This is not guaran¬

teed by the program just being graphical, this quality has to be designed by the pro¬

grammer. This task is not trivial. According to our experience, most students are

aesthetically challenged using graphical programming tools. All the advantages of

visual languages are lost if a program is represented by a screen full of badly placed
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objects and wires. An automatic layout and routing facility could help much in order

to improve this.

Subroutines, graphical and textual: The requirement for hierarchical diagrams in visual

languages is obvious. No serious program development tool can be used in larger

projects without libraries of re-usable code. The tools presented all support this fea¬

ture.

In addition to graphical libraries, the possibility to incorporate textually programmed
code extensions should also be provided. We have seen that most numerical algo¬
rithms are still more clearly expressed in conventional programming languages. By

allowing the inclusion of their textual implementation, we are free to choose the

appropriate tool for each part of our project.

Code maintenance: Although the visual languages discussed provide a highly interac¬

tive programming environment, code maintenance is sometimes more difficult than in

textual environments. A cross reference tool which is available for most textual lan¬

guages was not found in the graphical implementations. Operations which are very

simple in text processors impose difficulties in a graphical editor. A global find or

replace operation is not provided. If the number of parameters of a procedure

changes, each use of the function needs to be traced Tjy hand', the replacement is done

by deleting the old function call and connecting the new one. Although LabVIEW pro¬

vides a 'replace' operation, automatic connections are rarely correct after the replace¬
ment. Changes in a complex diagram always need a rearrangement of the diagram, a

routing tool mentioned earlier would save much time otherwise used for moving

parts of the diagram and repositioning wires.

2.4.2. Summary

Both textual and visual languages have their strong and weak points. Still, visual lan¬

guages are limited to a narrow range and size of applications, mostly within their

native domain. If we take into account the long history of the development of textual

languages, there are more general visual development tools to be expected. Together
with graph analysis algorithms, graphically developed software could be tested for

completeness or topological errors, which increases software stability.

In our opinion, working with visual languages shows the edge of a powerful
approach towards computer programming, which is definitely worth to be watched in

the years to come.
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Leporello
Visual Representation of the Design Process

In the previous chapters, the targets of our aim to visualize software were single algo¬
rithms. The adaptive controller example (Example 7 on page 49) contained visually

programmed identification and controller design algorithms, the interactive design in

the bode diagram (Example 3 on page 22) showed the advantage of an animated algo¬
rithm user interface, and block diagrams in Simulink (Fig. 2.12) provided a good
example of how visual programming has always been present in modelling and simu¬

lation.

However, programming algorithms, whether visually or textually, is not a very fre¬

quent task in a control engineer's work. Control systems design mainly requires

choosing an algorithm on a previously selected set of data, executing it and afterwards

judging the results. The examples from Chapters 2.3.4 and 2.3.5 only contained the

'executing' part of that work. Selecting an algorithm or data was not supported at all.

In fact, these self-contained algorithms left us in a situation very common a decade

ago: the whole design cycle had to be programmed and compiled, data were passed
on files, and interactive experimenting with data and algorithms was awesome, if not

impossible. If we want to do a full design cycle in LabVTEW alone for example, a fea¬

sible way is to add file handling capabilities to each algorithm in the library, and then

pass intermediate results on files. Direct passing of parameters between instruments

requires additional programming, which results in very inflexible solutions.

We therefore need a tool to combine all these visually programmed (and other) algo¬
rithms to allow their convenient selection and application to well-organized data sets.

Staying within the concepts of visual programming we look for a tool which satisfies

these requirements in a graphical user interface.

This is where we started the Leporello project. An overview over different aspects of

the project has been presented in [10], [11] and [21].

55
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3.1. The Leporello Project

It is not only the visual examples we presented which have their drawbacks when it

comes to full design support, it is also commercial packages. As an example, we take a

look at the weaker points of Matlab, a package which due to its widespread use may

be regarded as a de facto standard in computer aided control systems design.

Matlab's popularity is mainly based on its following advantages:

- It contains a large number of algorithms. There are many toolboxes that combine

numerical methods from specific fields of electrical engineering. Its particular

strengths besides linear algebra lie in signal processing and control systems design.
- All those algorithms can be accessed interactively by entering commands. This

makes the package very flexible. Experimenting with different algorithms and pa¬

rameter sets is very easy.
- Algorithms developed in house can be added easily by writing scripts in the same

language the commands are entered.

But since the average user is far from being perfect, some of these advantages may in

some cases turn into disadvantages:

- The command line interface also provides a very powerful tool for entering errone¬

ous commands. The user has to remember the exact spelling of algorithm and vari¬

able names even to get help about some topics. Misspellings or typing errors result

in cryptic error codes, and parameter dimensions are very easily mixed up (row vs.

column vector, ordering of polynomial coefficients, etc.).
- Finding the appropriate algorithm which solves a given problem is not very easy

because of their large number or their peculiar spelling. Few users know all the de¬

tails about available features. Algorithms are sorted by name and toolbox, addi¬

tional information is only available in help texts. Again, the user has to know

exactly how to spell a command and how to choose its parameters to execute it.

- As mentioned with the positive points, experimenting with various algorithms and

parameter sets is very easy. It is also very easy to completely mix up the results. If

the user forgets names of variables, data may be lost or mixed up and misinterpret¬
ed. The user's mind is the only place where additional information about data

items (algorithm and parameters which produced them) is stored (One exception is

the theta-format used in the identification toolbox by L. Ljung. It stores the name of

the algorithm which produced it. Further history is not recorded).

In the Leporello package, structuring of data and algorithms is a key feature. The con¬

cepts of object oriented programming are providing powerful features for the imple¬
mentation of the necessary constructions. Special emphasis was put on the following

topics (the numbers correspond to the numbered labels in Fig. 3.1):

1. Algorithm structures: Algorithms include the information about their required

input data types {i.e. whether the algorithm acts on a state space system description

or on a discrete transfer function), which parts of the input data are used for the cal-
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Figure 3.1: Leporello package overview

culations, number and dimensioning of the parameters, and the type of output data

they produce. This allows structured algorithm selection and execution.

2. External algorithms: To access the large number of algorithms available in software

tools today, Leporello is equipped with communication facilities to execute algo¬
rithms externally and transfer parameters and results. Currently, Matlab and

LabVIEW are supported as external packages.

3. Object oriented design: External algorithms as well as control data items are

mapped onto Leporello objects. These objects are then organized by the kernel and

can be accessed through their individual user interfaces. By combining simple data

items (matrices, vectors) to control data objects we achieve a higher level of data

abstraction.

4. Design history: The history of each data object is kept not only for information pur¬

poses, but also to repeat previous work, either on different sets of data, or on the

same set with changed parameters. This allows more structured experimenting

with modified algorithm settings. Results of different algorithms or experiments

can easily be compared to each other.

5. Graphical user interface: The use of a fully graphical user interface reduces the pos¬

sibility of entering erroneous data. The organization and the structure of algorithms

prevent their application on improperly shaped data sets. Their results are always

stored in a consistent high level data object.
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In the following chapters, we will first give an introduction to the concepts of Lepo¬
rello. We will then present the main features along with some details of the implemen¬
tation and some objects involved

.
User interface examples are provided where

necessary.

3.2. The Design Cycle

To be able to ease data management and algorithm selection in the design process, we

will first have a closer look at this process. We will look for data and control structures

which are obvious candidates for visualization.

Control systems design is performed in a design cycle like many other designs in engi¬
neering. We always have what we call a design target, the object which is to be

designed. In the case of CACSD these are control systems or their elements (signals,
systems, etc.). Some work is done on selected data elements, the results are judged by
how they match the design goals, and then either some previous step is repeated using
different methods or better parameters, or the results are used for further processing.
Almost everybody who writes about CACSD (e.g. [34], [37]) shows a diagram of this

design cycle. We follow this tradition in Fig. 3.2.

The loop starts with an experiment executed on a physical plant to obtain some mea¬

surement data. Modelling and identification algorithms use these to produce a numer¬

ical model. We then run design algorithms to get a controller, which is later

implemented in some microprocessor system first to be simulated, and then to be

tested on the plant. Each step produces a set of control data, signals, systems, or any

combination thereof. These are rated, rejected, or stored to be used for further calcula¬

tions.

3.2.1. Action Tree Basics

The amount of data in the cycle however is not limited to one item per data node

shown in Fig. 3.2. Results are not always discarded, but very often kept for documen¬

tation, to be compared to other items produced by other algorithms, or just to leave

some design options. In Leporello, we will therefore store all intermediate data in data

nodes. Each of these nodes may be regarded as the root of a tree-like structure. Each

time the user returns to this node and applies another algorithm to it, a new branch is

created with the new results as its leaf. This may again be regarded as root of further

calculations. The loop in Fig. 3.2 is hence decomposed into a tree shown in Fig. 3.3.

Data objects are now tree nodes, the algorithms applied are the connecting branches.

1. Certain aspects of Leporello, especially the basic data structures will be mentioned very

briefly. These parts have been developed by P. Kolb and are discussed in greater extent in his

thesis [22] (which unfortunately is in German) or in short in [21].



The Design Cycle 59

f Phys. System J

\ T3afa '!

l,„,4£9!S"5'i/2S.-»--i

( Measurements J 5 Analysis j-

Identification 'p-

1
f System Model J J Analysis J-»-

Design

I
f Controller ) 5 A?a/ys»s »-

znz;
! Implementation p

f Control System J { Analysis J-
Algontttm

( System desc. J

F/gure 3.2: Control systems design cycle

Since this tree is an image of the actions taken during the design process, we call it the

action tree.

The action tree structure holds control objects in its nodes, the information about the

algorithms which produced them could be stored in corresponding branch objects.
This algorithm information not only contains the name of the algorithm, but also all

the information necessary to reproduce the results. Keeping in mind that a visual rep¬

resentation should give an impression about the displayed object, we did not like the

idea that all this algorithm data were contained in the branch line only. We therefore

introduced algorithm nodes. But not only user interface considerations led to this node

definition: there are situations when an algorithm node can produce several result

data nodes1. This is more clearly visualized by an algorithm node which has several

children than with a branch leading to different data nodes, or with different branches

bearing the same algorithm. Since an algorithm cannot result in or be applied to

another algorithm and a control data object cannot produce another data object with-

1 The motivation for this approach will be shown later, the reader may keep the picture of algo¬
rithm branches in mind to get an idea of the data relations in the tree
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Figure 3.3: Action tree draft

out a transforming algorithm; node types on each tree layer are alternating. A layer
containing data nodes is always followed by one containing algorithm nodes.

3.2.2. Tree-structured Data Bases

Storing data in a tree-structured database is not a new idea. Any process which

involves returning to previous results and applying changes may be organized in a

tree.

Kierulf [18] uses the idea in his database for two dimensional games (chess, Othello,

etc.). He stores game variations in trees, where the moves form the branches and the

board situations the nodes. He can return to previous situations (take back moves),
look for alternatives or replay famous games.

Apple's Macintosh Programmer's Workshop [52] (and other document management
tools) contains a database for source code revisions, the Projector Tool. Each file has its

own revision-tree. Contrary to Kierulf, not every action is stored, but only selected

stages of the document designated by the user.

The Andecs package by Grubel et. al. [14], [17] uses a structure similar to the one pro¬

posed by Kierulf for their control engineering database. Their 'moves' are not general
actions taken, but are formed by three design strata. The resulting tree therefore has

only three levels: dynamics model, performance measures, and design.
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In these examples of tree structures, nodes mainly contain what was produced. In

Leporello we also store how it was produced; together with the data it was applied to

and the results, we store all the information necessary to execute an algorithm. This

includes its name, parameters, and details on how it can be accessed or executed exter¬

nally. In addition to just being a database of the design process, the action tree thus

becomes a tool to manage algorithm selection and execution. Algorithms can be

started and monitored, and by reapplying parts of the tree to other nodes, parameter
variations can easily be applied. The tree is created directly on screen by selecting
nodes and algorithms to be executed.

Another difference to other tree-structured databases is that they all have their tai¬

lored user interfaces and use the tree structure only as a database. It is then accessed

like any other database in form of lists and text displays. In Leporello, the picture of

the action tree constitutes its main user interface, where the user decides which algo¬
rithm to apply next and monitors its results. The display is updated on-line, com¬

pleted algorithms immediately display new nodes containing their results.

In the following chapters we will develop the object and user interface structure of the

tree. Before we continue to the description of the tree elements and the actions on

them, we will look for an object oriented data description for control data and algo¬
rithms.

3.2.3. Graph Theory

But let us first take a short excursion into graph theory to see that the design process

described above does comply to the definitions for tree-shaped graphs.

First, we see that the graph describing the design process is directed: Branches connect

either source data nodes with the algorithm node applied to it, or an algorithm node
with its resulting data node.

In the IEEE standards dictionary [15] we find the definition of a directed tree {arbores-

cence):

An abstract hierarchical structure consisting of nodes connected by branches, in

which:

(a) each branch connects one node to a directly subsidiary node,

and

(b) there is a unique node called the root which is not subsidiary to any other node,

and

(c) every node besides the root is directly subsidiary to exactly one other node.

In [42] we find the same requirements in a more analytic description, including the

corresponding graph theoretic definitions and proofs. In the following discussion

however, we will keep with the more linguistic explanations cited above.
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To show that the action tree is in fact a directed tree according to graph theoretic defi¬

nitions, we need to show three parts:

i) there is exactly one root node

ii) every node has exactly one parent, which is divided into

iia) every data node has exactly one parent

iib) every algorithm node has exactly one parent.

i) may be assumed without loss of generality. We define the root node to be an algo¬
rithm node which produces data objects to which the design process is applied. An

algorithm of this sort may be reading from a data file or performing a measurement

experiment which returns its results in data vectors. We only allow one generating
root node in a tree document. Using data sets from different generating algorithms
(on-line measurements and data read from file) requires two separate trees.

iia) is also quite obvious. A data item must be the result of exactly one algorithm. The

cases where two algorithms produce exactly the same result (symbolically as well as

numerically) are very rare. If they exist, we will handle this situation as if the results

were different and leave the fact, that they are indeed identical to be remembered by
the user1.

iib) is much trickier as it limits the available algorithms to those, who act on one data

item alone. This may sound too strong a limitation, but remember that a data item is a

highly abstract control data object, i.e., a system or a signal on which the design is

focused. Although we restrict algorithms to having one of these items as their input

(which may contain any number of sub-objects and parameters), we do allow addi¬

tional parameters to control algorithm execution which are not taken from the tree,

therefore not adding branches, which would destroy the tree structure.

However, incorporating algorithms which combine two data objects (e.g. connect

them in a block diagram) is not allowed. We will later show (Chapter 4.6), how these

connection algorithms fit into the action tree concepts. For now we do limit the algo¬
rithms available for use in the action tree to the ones which act on exactly one source

data item. We will see that their number is significant enough to justify the concepts

presented in the chapters to come.

3.3. Basic Data Structures in Leporello

As stated in Chapter 3.1, one of the drawbacks of CACSD packages like Matlab is their

lack of data structures more complex than two-dimensional matrices. Information

about a system given in state space representation is contained in four matrices with

interrelated dimensions. The user has no means, other than choosing appropriate

1. Since we want to ease algorithm selection, it is not reasonable to supply two algorithms which
do exactly the same thing.
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names, to indicate that these four matrices are part of a common structure. It is also

impossible to pass a complete system to an algorithm, all four matrices have tobe sup¬

plied individually. This limitation dates from the time when FORTRAN was still the

number one language for scientific computing. In his ADA-based implementation of

IMPACT, Rimvall introduces structured data types [37]. He composes a state space

system from single matrices and then passes this one system variable to an algorithm.
With today's tools and languages available, there is no reason not to follow Rimvall's

ideas.

3.3.1. The Object Oriented Approach

Since the times when ADA and Modula-2 became popular, another concept has

entered software engineering and has surpassed a popularity reached for example by

fuzzy systems in automatic control: Object oriented programming (OOP). Although the

main ideas ofOOP are widely known, we will summarize some key features.

Contrary to a conventional program, a program developed using object oriented con¬

cepts consists of interconnected software objects rather than sequential code. The ele¬

ments of these objects are fields which store data, and methods which operate on these

data. The declaration (similar to the type declaration in Pascal or Modula-2) is called

the class, the instance of a class is called an object of this class (Pascal variables).

In a proper object oriented environment, the data fields are referenced directly only for

reading, writing is permitted through methods. The program execution is then con¬

trolled by messages exchanged between objects (i.e. method calls). These messages are

initiated by user interaction or other asynchronous events, or as a reaction to other

messages.

A very important feature of an object oriented language is inheritance. It allows sub¬

classing of existing object classes. The subclass then inherits the fields and methods of

the basic class. It can be extended by adding more fields and methods, or by overwrit¬

ing methods defined in the superclass, therefore adding special functionality to previ¬

ously declared tasks. When using a specialized object, its exact composition does not

have to be known. A client object just calls the appropriate method contained in the

base class, and the object itself knows, how to handle this call, whether it can satisfy
the request itself or whether the appropriate method of one of its ancestor classes is the

one to be called.

The following object definitions (systems, parameters and algorithms) are only
described briefly since these parts are extensively discussed by Kolb in [22].

3.3.2. Control Data Objects

Returning to our initial problem of designing data structures for control systems and

algorithms, we see that system descriptions are obvious candidates for an object ori¬

ented implementation. If we look at the elements used in a block diagram, we see a set

of interconnected system boxes. Each box takes its inputs, does some calculations and
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produces the outputs (see Chapter 2.2.2). Details of these calculations may be influ¬

enced by parameters. If we apply object oriented concepts to the design of data struc¬

tures for systems, we get the following structure:

Connections A system has inputs and outputs, which may also be objects
of some 'connection'-class

Parameters It has a list of parameters which can be accessed by the inter¬

nal calculations as well as by the user who wants to influence

system behavior.

Internal behavior The calculations which perform the transformation of the in¬

puts to the outputs. This part is subclassed by specialized ob¬

jects to define systems of various kinds (nonlinear, linear,

parametric, nonparametric, etc.)

The advantages and the popularity of object oriented programming have led to sev¬

eral papers describing system objects (e.g. [3]). Some of them are discussed by Macie-

jowski in [25]. All solutions proposed share this structure of connections, internal

representation and parameters1. In addition, a system object contains elements which

ease its administration (name, date created, etc.) or other tasks it is used in.

Omola, presented in [27] by Matsson, puts its emphasis on modelling and simulation.

The features shown in the paper guarantee a consistent connection of sub-systems.
Connection items therefore include information about Sl-units and type of connection

(electrical, pipe, etc.).

I TObject |- 7EDC

1 simple numerical data classes

TSIq

Signal classes

TSignal

TSiqnalGroup

System classes

75ns

TParamSvs

TtJonParamSvs

TFrgMagPhase

{ TFrnRelm

TTransterFunction

TZeroPotes

TStaleSpace

TMTestSvs

TSelSvs

TFroResponseSys

TTimeRBsponseSvs

TE/rorCDC
Administration classes

Figure 3.4: Control data class tree

1. One day we might even see a standard for object oriented CACSD structures. It is currently

being discussed



Basic Data Structures in Leporello 65

The system representation chosen in Leporello is very similar to the one presented by
Matsson. However, since our focus is not only on building interconnected systems but

mainly on manipulating data items, we do not limit control objects just to systems.
Data items required during the control cycle are alio signals (measurements and sim¬

ulation results in the time domain, spectra in the frequency domain) and in some cases

numerical elements (polynomials, matrices, etc.). These structures are added to the

tree of control data classes (Fig. 3.4). This tree has its root in the abstract control data

class (CDC), which does not contain any structural information. Since we allow any

kind of control elements in the action tree, a tree node is designed to hold basic CDC

objects. Due to object oriented concepts, it is then allowed to contain any subclass of

the CDC.1

Control data class?

TCDC = OBJECT(TObject)

Control data objects used in Leporello.

Fields

fName Name given by the user

fUsedAs The purpose the object is used for

fFixedPropList List of class properties (i.e. linear, parametric, etc.)

fDynamicPropList List of object properties and numerical attributes (stable,
fRatingList controllable, system order, etc.) depending on parameter

values

fComponentList List of elements of this object (sub-systems, etc.)

fParameterList List of parameters and numerical data

Methods

GetName Retrieve information from the object
GetParameterList

HasDynProperty

Getlnfo Display information window

According to object oriented concepts, these fields are inherited by systems and sig¬
nals. In addition, a system receives a list of inputs and outputs:

1. Please note that a CDC signifies the control data class, whereas a CDC object denotes an

instance of that class. For algorithm execution, we check if the algorithm can be applied to a

given data class, but the numerical values then taken for execution are taken from the CDC

object of this data class.

2. For the format of class definitions please refer to Appendix C.
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System

TSys = OBJECT(TObject)

System class

Fields

flnputsOutputs List of connections

Methods

AddNewInput

AddNewOutput

Add inputs or outputs to the system

3.3.3. Parameter Lists

One important part of a CDC object and one of the central classes in Leporello are

parameters and parameter lists. A parameter is a numerical element (scalar, vector,

matrix) which determines numerical values specific to one object instance.

All parameters of a CDC object are collected in a parameter list. The parameter list of

a system in state space representation contains its four matrices, if it is discrete, it also

contains a scalar indicating the sampling time. Each parameter in the list is identified

by its name. This name is used when the parameter list is displayed on screen, or

when an algorithm looks for the parts of a CDC object required for its execution (this
will be shown in the next section). Its close relation to numerical control data classes

suggests making parameters a technical subclass1 of the numerical data CDC. Param¬

eter subclasses include all forms of numerical data, from integer, real or complex sca-

lars to matrices of the respective numerical formats. The parameter class tree is shown

in Fig. 3.5.

We will later see that parameter lists are also essential to the algorithm execution

mechanism.

1 ^H TCmnlxDouhlnMatm I
TnouhleMatnxParam rV, i 1

1 TFmmThPfl/amfltor I

rnoubleParameter I I TCmobtDoubleParamd

ILenalntParameter I

TlntaaerParanteter \

Figure 3.5: CDC and algorithm parameter class tree

1. By the term technical subclass we want to indicate, that the parameter was made a CDC sub¬

class only because of the convenient inheritance, not because it can ever be regarded as a CDC

itself. It is therefore not included in Fig. 3.4.

< TVatueParameter

] [WaL I I TParameter

1 TNameParameter

I TPealParameter
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3.3.4. Algorithms

Now that we have defined the control data classes we can take a second look at algo¬
rithms. When we laid out the structure of the action tree, we met two kinds of algo¬
rithms. Their individual behavior is shown in Fig. 3.6.

CDC algorithms The algorithms which form the action tree. They take a CDC ob¬

ject and a parameter list to create another CDC object. The object

produced is different from the source object.

Rating algorithms In the design cycle description in Fig. 3.2 these algorithms were
contained in the 'analysis' boxes of the cycle. They perform
some operations on a CDC object to derive some properties or

rating figures. The results of these algorithms are attributes of

the source object and are stored in its object properties list.

Since algorithms, as we define them, are closely linked to the source CDC structure,

object oriented principles suggest to define them as methods of the CDC.

parameter list

_

A7

target CDC

object

parameter list

_

__\7

source CDC

object

CDC

Algorithm

target CDC i

object '

rating

Algorithm

Figure 3.6: Algorithm structures: a) CDC modification and b) rating algorithm

We remember: methods access or modify an object of the class they were defined for. If

some functionality is achieved differently in a subclass, the method is overridden; if

the subclass does not require a different implementation, it is inherited. Algorithm
definitions could benefit from this feature: Each system class for example could have a

method to test a system's stability. The user does not need to know which algorithms
test stability, the appropriate one is chosen automatically.

There is one severe drawback of this implementation: a method call is determined

before compilation. This does not facilitate package extension. New algorithms are

easily added to increase the functionality of Matlab, and a package which has to be

recompiled to add a new algorithm or to modify an existing one is not considered very

useful. Since we are providing external package support, addition of new algorithms
should be as easy as in their native packages. This permits skilled users who develop
their own algorithms to implement them in some external package and have them

available in Leporello with little extra effort.

To allow the algorithm query facility to display a list of algorithms which can be

applied to the CDC object selected by the user, it needs the possibility to search for

algorithms. If we ask which identification algorithm can be applied to a series of mea-



68 Leporello Visual Representation of the Design Process

surements and returns a state space model, searching object classes for appropriate
methods is not practicable.

We therefore decide to define algorithm access classes independent from the CDC

they are applied to. We distinguish between an algorithm information object (in Lepo¬
rello TAlgHead class: objects which store all the information about an algorithm, also

referenced to as the algorithm head) and the algorithm execution object (TAlg, an object
which executes and stores an applied algorithm, i.e., source and target CDC objects,

parameters applied etc.). Each available algorithm is listed in one algorithm informa¬

tion object. If an algorithm is applied to several CDC objects, there exist multiple algo¬
rithm execution objects, each referring to the same algorithm information object {i.e.
the same algorithm) but with distinguished parameter lists, source CDC objects and

result objects.

Algorithm information objects contain information which is necessary to select an

algorithm. Properties of the required source CDC are contained as well as properties
of the algorithm itself, its purpose and its classification based on control theoretic

viewpoints. Its GenAlgorithm method creates an algorithm executor which is capa¬

ble of controlling the execution of this algorithm.

Algorithm execution objects contain the information necessary to successfully execute

the algorithm. They contain the algorithm's source CDC, the algorithm parameters
and the information how the algorithm is executed. After algorithm completion, the

resulting CDC is also available in the algorithm executor. In addition to its capability
to run an algorithm, the algorithm executor can also be used as an algorithm history

object, to store all the information about one specific execution.

Algorithm information object

TAlgHead = OBJECT (TObject)

Object which contains all the information necessary to execute an algo¬
rithm.

Fields

fAlgC1assName Name of the algorithm

fDemandsPropList Class and required properties of the source CDC object

fProducesPropList Class and produced properties of the target CDC object

fAlgParamTypes List of parameters the algorithm requests

Methods

Getlnfo Displays a window showing the algorithm information

IsExecutable Returns true if this algorithm can be applied to the sup¬

plied CDC object

GenAlgorithm Creates an algorithm executor object.
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The algorithm information of externally accessed algorithms include some additional

information about the package they use.

External algorithm information

TExtAlgHead = OBJECT (TAlgHead)

Information about externally accessed algorithms.

Fields

fAppSig Signature of the package used

fCommandName Name of the command transmitted to the external pack¬

age

Algorithm execution object

TAlg = OBJECT (TObject)

Executable algorithm instance object.

Fields

fAlgHead Reference to the algorithm information object

fDemandsCDC Source CDC object the algorithm is applied to

fProducesCDC Target CDC object which contains the algorithm results

fAlgParams List of parameters

Methods

Getlnfo Displays a window showing the algorithm information

and parameters

SetDemandsCDC Access methods to set and retrieve the required input
SetParameterList and output objects
TakeAwayProducesCDC

ModalAskParameters Displays a dialog box to ask the parameters

Execute Executes the algorithm on the current source CDC object

using the parameters available.

The external algorithm executor class contains an override of the Execute method

which controls the transmission of the parameters and the correct classification and

ordering of the results.

3.3.5. Algorithm Execution

Once an algorithm execution object is created and all necessary fields are set (source
CDC object and parameter list), an empty target CDC object is created. The algorithm
executor then collects the necessary parameters from the source CDC and the parame-
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ter list and calls the algorithm code. This is mostly an external Matlab or LabVIEW

function, but may also be an internal piece of code. The target CDC parameters are

then filled with the algorithm results, and if necessary, with some parameters of the

input CDC and the algorithm parameters. If the algorithm does not return a CDC

object but a property or a rating, no target CDC object is produced and the result is

appended to the appropriate list of the source CDC object.

Communicating with an external package imposes special problems. The server appli¬
cation may be located on the same computer as the Leporello client. Leporello there¬

fore has to release the processor in order to allow processing in the other application.
All externally accessed algorithms therefore must be executed asynchronously. We

will later see that these restrictions require some special programming techniques.
Certain tasks cannot simply be executed in a statement sequence, they must be sched¬

uled.

This is a very short summary of the algorithm execution mechanism in Leporello. For

a complete description please refer to [22].



The Action Tree:

Functionality and Object Definition

With the definition of the objects from Chapter 3.3 we have reached a stage where we

can reproduce the basic functionality of Matlab (execute an algorithm on some data).
We can now start to describe the key features specific to Leporello. We will concen¬

trate on the tree related elements: data storage and algorithm execution in the tree.

Other elements (algorithm query and extensibility) are described, once again, by Kolb

in [22].

The tasks supported when working with the tree not only allow storing the design his¬

tory. Algorithms appearing in the history may be executed repeatedly to observe the

influence of parameter variations on the results, or to apply a successful algorithm to

another object in the tree. These tasks need to be organized and up to a certain degree
automated.

Tasks explained in the forthcoming chapters are as follows:

• Algorithm execution

- select and execute an algorithm using CDC and algorithm nodes;
- execute an algorithm node on different CDC nodes;
- reapply an algorithm repeatedly to the same CDC object with different parame¬

ters and create a multi-object node;
- reapply an algorithm to a multi-object node.

• Managing multi-object nodes (nodes which contain a list of CDC objects resulting
from the same algorithm):
- create subset nodes (split a multi-object node into several nodes);
-

merge subset node (merge two previously split nodes).
• Managing tree complexity:

- copy and paste operations;
- delete objects;
- mark deleted nodes

71
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• Automatic subtree execution:

- make a subtree consistent (automatic re-execution of partial trees);
- hierarchical algorithm (create a new algorithm from a branch of algorithms).

• Special automated tasks:

- parameter sweep (automated parameter variations);
- optimization (optimize parts of the tree).

• Hierarchical systems

Each task is described in three parts, each focused on of the following aspects:

Task A short description of the task. The purpose of this feature during con¬

trol systems design is explained.

Objects To implement the feature presented the tree object structure possibly has
to be extended. Additional or modified objects are introduced where the

newly added feature shows the purpose or the use of the object best.

Display This part shows how the task is represented in the user interface and

how it is performed.

4.1. Algorithm Node Execution

4.1.1. Selecting and Executing an Algorithm

Task

The most elementary operation in the tree is the execution of a single algorithm on a

single CDC object. We choose a CDC node (a node which contains CDC objects)
whose CDC object will become the algorithm's source data object. We then select an

algorithm which is executable on this object, i.e., which contains its class information

in its 'required CDC field. To ease this selection, the list of algorithms is filtered in

order not to display algorithms which can't be applied. The children of the CDC node

are searched for an occurrence of the chosen algorithm, and if none is found (the algo¬
rithm has not yet been applied to this node), an algorithm executor is created and is

included in a new algorithm node. The algorithm executor then asks for parameters in

its parameter window and runs its algorithm. On completion, it creates a new node

containing the target CDC object. If we do find an instance of the selected algorithm
within the children of the CDC node, the algorithm is reapplied. This procedure is dis¬

cussed in Chapter 4.1.3.

This is the normal execution sequence of an algorithm which generates CDC objects.
As we have seen in Chapter 3.3.5, rating algorithms do not produce a target object.
They add their result information (property true or false, rating value) to the corre¬

sponding list in the source CDC object.
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Objects

The first class we need to define in order to set up the action tree are the tree nodes.

Following the definitions we found in graph theory, each node may have an unlimited

number of children and is connected to exactly one parent. The tree is fully defined if

each node just contains a list (on dynamic lists please refer to Appendix D) of its chil¬

dren. To allow traversing the tree in both directions we also include a reference to its

parent.

A tree node also contains a reference to the graphical object displayed on screen which

allows faster reflection of node state changes on screen.

Tree node

TTreeNode = OBJECT (TLList1)

Arrange data in tree format. Each node contains a list of its children. A full

tree is accessed by its root.

Fields

fParentNode Parent node

fDisplayShape Object on screen which displays this node

(Since TTreeNode is a subclass of TLList, children can be stored in the object itself.

For details please refer to Appendix D)

Methods

InsertChild Tree construction/destruction methods

RemoveChild

GetLeftBrother Access methods to reach related nodes

GetRightBrother

GetParentNode

GetCommonParent Methods which analyze node relations

IsAncestor

IsDescendant

The action tree resulting from the data relations of the design cycle presented in

Chapter 3.2.1 has a special structure. The action tree node types containing CDC or

algorithm executors differ in both data contents and functionality. We therefore sub¬

class the general tree node object to declare a CDC and an algorithm node class.

We keep in mind that we want to store the full working history in such detail that we

can reproduce part of the tree from the data stored. We therefore need to be able to

retrieve a source CDC object, an algorithm executor and parameter lists from the tree

1. TLList is a subclass of the MacApp TList class which implements a general list of

objects. The Leporello subclass of this list includes a special object management mechanism to

introduce some sort of garbage collection. See Appendix D for details.
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and store the target CDC object therein. The basic structures of the CDC and the algo¬
rithm node classes follow immediately (they will later be extended as we add more

features).

Algorithm node

TAlgATNode = OBJECT (TTreeNode)

Tree node which contains algorithm information. It has two main purposes:

It controls the algorithm executor, i.e., it applies the source CDC object, ac¬

quires parameters before execution, starts execution and stores the result

correctly in the appropriate CDC node.

It stores the algorithm run information, which is necessary to reproduce the

target data from the source data (algorithm executor and parameter lists).

Fields

fAlgorithm

fCurrentAlgParamSrc

fAlgParamList

an algorithm executor object

current source of parameters (TParameterSource

object, explained later)

a list of former parameter sets (we will later see that one

set is not sufficient, since we would like to apply the

algorithm with several different parameter settings)

Methods

NodeExecution

AlgorithmCompletion

StoreResults

Initiates the execution of the algorithm. Tasks included

contain source CDC acquiring, algorithm execution and

result storage. The procedure has one parameter, the

object which is in charge of supplying parameter sets (a

parameter source described below).

Actions necessary after algorithm completion.

Handles result storage properly, i.e. selects an appropri¬
ate target CDC node and stores the results.

Rating algorithms and other algorithms which do not return a result CDC are handled

quite similar. Their node structure is the same, but since they do not produce a result

object (rating algorithms add their result to the CDC object they are applied to) we do

not create a target CDC node either. Algorithms of this sort are the only algorithm
leaves of the action tree. All other functions (e.g. re-execution) are supported. We will

therefore not mention this special algorithm class in the chapters to come.
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CDC node

TCDCATNode = OBJECT (TTreeNode)

Tree node which stores algorithm results and supplies them to the algo¬
rithms which are applied to it.

Fields

fCDCList List of CDC objects supplied by various executions of

the parent algorithm. Like the list of previous parameter
lists in the algorithm node, considerations which are dis¬

cussed later will show that we need a list here instead of

just one CDC object stored.

Methods

StoreResults

GetFirstCDC

GetNextCDC

Called by the StoreResults procedure of the parent

algorithm node. It adds the supplied CDC object to its

list.

These and similar methods may be used to retrieve each

CDC object contained in the list.

What rests to be denned is an object which supplies parameters to the algorithm.
There might arise several situations where parameter sets for an algorithm have to be

composed following varying objectives (one single list entered by the user, a previ¬

ously applied list, a series of lists, etc.). We therefore define a class which returns

parameter lists on request. This class is then subclassed to handle different modes of

execution of the algorithm node.

Parameter source

TParameterSource = OBJECT (TLListSource)1

Object which is responsible for supplying appropriate parameter sets to an

algorithm executor.

Fields

Defined in subclasses

Methods

GetFirstParameterSet

RequestNextSet

MoreSets

Procedures to retrieve the parameter lists from this

source

The first specialized subclass of the parameter source is an object, which allows inter¬

active input of one parameter set. A call to the parameter requesting procedures results

1. The TLListSource parent class is a list of TLList objects.
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in the display of a window where all parameters of an algorithm can be entered. To

achieve this, the ModalAskParameters method of the algorithm executor is called.

Parameter input

TParameterlnput = OBJECT (TParameterSource)

This subclass of the parameter source was designed to ask parameters from

the user.

Fields

fAlg reference to the algorithm executor whose

ModalAskParameters will be called

Methods

ReguestNextSet Override to display the parameter window.

Algorithm execution on the tree level now looks as follows: The algorithm selection

window returns the algorithm information object of the algorithm selected by the user.

The children of the selected CDC node are searched for an algorithm of that type. If

none is found, a new algorithm node is created which is properly connected to its par¬

ent CDC node, i.e., the parent CDC object is made the new algorithm executor's source

CDC object.

The command initiated from the user interface (execute algorithm) then creates a

parameter input source and makes it the current source of the algorithm node. The

node then triggers its algorithm executor to start the algorithm as described in

Chapter 4.1. On return, it creates a new target node and stores a copy of the algorithm
executor's target CDC object therein.

Diagrams of the algorithm execution will be shown once we have described all differ¬

ent node execution modes (in Chapter 4.1.4).

Tree root: As we have seen in the graph theory chapter (Chapter 3.2.3), the action tree

root must contain an algorithm which produces a CDC object without requiring an

input CDC object. This may be a file access algorithm, some data acquisition proce¬

dures or a request to the user to enter any desired CDC object on screen.

To comply to the algorithm definition (CDC objects as input and output objects), we
define a special CDC which represents no CDC object (this does not mean 'which does

not represent a CDC object', but 'which does represent a CDC object which is not

there'). Any algorithm acting on such a TNoCDC object may become an action tree root.

An empty document always contains an invisible TNoCDC object, which is automati¬

cally selected to allow the ordinary algorithm selection mechanism.

Display

The elements described in this and the following 'Display' chapters show the reflec¬

tion of the features described in the action tree display1. This display is a part of the
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F/grure 4.7: Algorithm selection window. The algorithms displayed are applicable to a

selected node containing a state space system in file "Balance project"

Leporello document window, which will be presented in detail in Chapter 5.2.1 The

buttons on the top row of this window (Fig. 5.4) are also where the commands and

actions described are initiated.

The first thing to do when beginning a new tree is selecting the algorithm which cre¬

ates the first CDC object. This is done in the algorithm selection window shown in

Fig. 4.1.

1. For better quality of the drawings, the action tree drawings are all shown in their black and

white version. On color displays, action tree nodes vary in color and in shading. Pictures of

both versions are contained in Appendix B.
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Make CDC
object

Figure 4.2: Action tree example with different algorithm node states

The selected algorithm appears in an empty algorithm node (Fig. 4.2, node Al)

labelled with the name of the algorithm and ready to be executed. The user then starts

the algorithm, which asks for parameters in the algorithm parameter window (A
detailed description of parameter windows is given by Kolb in [22]). The node is then

marked executing (Fig. 4.2, node A2). A horizontal bar (status bar) appears in the node

and fills as the algorithm proceeds. Upon completion, the target CDC node is created

(Fig. 4.2, node C2). It shows the name of the CDC object it contains. The algorithm
node takes the picture of the completed node (Fig. 4.2, node A3).

Both the contents of the algorithm and the CDC node may be viewed after completion

by opening an information window which displays all the relevant information avail¬

able. This window allows changing the name of the CDC object (a sample window is

shown in Fig. 5.5 on page 116).

4.1.2. Execution of an Algorithm on Different CDC Nodes

Task

If an algorithm has successfully been applied to a CDC node, we can try it on other

nodes. If we are working on a continuous time model and would like to carry on the

design in discrete time, we need to apply a discretization algorithm on all nodes we

continue to use in further calculations. Using the technique presented in the last chap¬
ter, we would have to choose the same sampling algorithm for each of the selected

CDC nodes. We would then execute each of them, therefore entering the same param-
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eter value to specify the sampling time over and over. This may end up being a very

tiresome task.

Since for the desired algorithm an executor is contained in an algorithm node after its

first application, we would like to choose it not from the algorithm list, but directly
from the tree. We can thus mark an existing algorithm node for re-execution on a

selected CDC node.

If the selected CDC object conforms to the requested input CDC of the algorithm, it

can be applied directly. We proceed as if the algorithm information came from the

algorithm list, and create a new algorithm node if necessary. Since the original algo¬
rithm node already contains valid parameters, we are asked whether to re-use them or

whether we want to supply new ones.

We see that the discretization example is sped up significantly by this feature. If, as we

will see in the next chapter, an algorithm node contains parameters from several exe¬

cutions, re-application of algorithms will become very handy.

Objects

Re-applying an algorithm on a different source CDC object varies in two aspects from

the standard case: the algorithm is not chosen from the algorithm selection window,

and there are previous parameters available.

The first point requires us to test the applicability of the algorithm to the selected CDC

prior to performing the task. Since the algorithm selection window only displays algo¬
rithms which can be applied to the selected CDC object, this was not necessary in the

previous task. Algorithm node allocation then proceeds the same way as described

there. The algorithm information object is taken from the algorithm node which is

marked for re-execution instead from the algorithm selection window, but this does

not make any difference.

Using the parameters available from previous executions does not impose any limita¬

tions, they may be applied to the new algorithm node for execution. To achieve this

most easily, we extend two of the classes presented earlier:

The TParameterSource class is given the ability to not only supply parameter sets,

but also to store them. Its methods are modified as follows:

Parameter Source (continued)

Extended object definition to contain item storage methods.

Methods

GetFirstParameterSet The parameter retrieval methods all return the corre¬

RequestNextSet sponding elements in the list. A counter is introduced to

MoreSets point to the current parameter set in the list.

InsertSet Stores a parameter set in the list.
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Now that the parameter source is defined as a more specialized list of parameter sets,

we may easily take an object of type TParameterSource instead of a simple list

object to store the previous parameter sets of the algorithm node. We therefore have a

parameter source which upon request will return all the parameters used with the

algorithm we would like to reapply. We may simply use its fAlgParamList and sup¬

ply it as the current parameter source to the NodeExecutionmethod of the new algo¬
rithm node.

Display

In order to be re-applied, an algorithm (Fig. 4.3, node Al) has to be marked. This is

done either by command-clicking on the algorithm node, or by pressing the corre¬

sponding toolbar button. The node mark is displayed as a line on the left side of the

algorithm node box (red on a color display). A marked algorithm may be applied to a

selected CDC node if it can be executed on this CDC object (node C2).

©Ell
Figure 4.3: Algorithm scheduled for re-execution

The selected CDC node receives a new algorithm child (if the marked algorithm has

previously been applied, its node is selected). If the user chooses to reapply the param¬
eters of the marked algorithm, they are connected to the newly created node (node
A2). This is reflected by showing the empty status bar in this node. This also indicates

that the node is now inconsistent and needs to be re-executed. As this is done, the sta¬

tus bar fills and vanishes as soon as the node reaches consistency (all source CDC

objects have been processed with the new parameter source).
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4.1.3. Creation of Multi-object Nodes

Task

When an algorithm is executed, choosing appropriate parameters is not always an

easy task. There are several situations where algorithm parameters have to be varied

to get adequate results.

Wherever the design step involves setting some weighting parameters, this choice

often requires engineering experience. It may be necessary to apply several design

parameters to achieve satisfying results. One example of this kind is a controller

design using the LQR method. Selecting weighting matrices Q and R is left to the

user's experience.

Other methods explicitly require parameter variations during the design process. In

system identification the order of the model is not known beforehand. Engineering
skills are necessary to choose a range of possible orders. An identification algorithm is

executed for each order and the resulting models are compared afterwards. This pro¬

cedure is clearly shown by Ljung in his example of Chapter 17.2 in [23]. Similar situa¬

tions exist with model reduction or in some cases when choosing the order of a

controller.

If we store each algorithm result in a separate node, the use of parameter variations

rapidly leads to an explosion of the tree. Although the action tree was initially

designed to organize experiment results, a large number of nodes may also be a source

of user confusion.

Multi-object nodes: We consider parameter variations to be a very useful feature of

Leporello, which deserves additional attention. Therefore the CDC nodes of the action

tree are extended. The results of an algorithm applied repeatedly to the same source

CDC object are collected in a single node: a multi-object node. All CDC objects in this

node share the same structure (object class, name, etc.), but differ in their parameter
lists. They maybe regarded as particular numerical variations of the same CDC object.

Objects

Parameter variations may be achieved in two different ways: we may either apply sev¬

eral parameter sources to an algorithm node, each providing a single parameter list, or

we may use a parameter source which returns a whole series of parameter lists.

Both ways do not require special precautions. Upon node execution, the algorithm
node retrieves the first parameter set from the applied source and continues to process

each consecutive set. After processing, these parameter lists are stored in the node's

fAlgParamList field. This loop is repeated each time the user supplies a new param¬

eter source (i.e. enters a new set of parameters, etc.).

We already prepared the object structure of the CDC node to contain a list of CDC

objects. However, this may lead to consistency problems. We have seen that all CDC

objects in a node share their structural information. If, for example, the user changes
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the name of a CDC object contained in the node, we need to change all the names in

the list. We therefore split up the CDC object list into one current CDC object contain¬

ing the name and other administrative information, and a list of its varying parts

(parameters, object properties, ratings). This new construct needs special management
to always keep the current CDC in a coherent state. This is done in a special class. The

occurrence of a list of parameter sets in this object suggests the use of a subclass of

TParameterSource. The supply of a whole list of CDC objects to an algorithm pre¬

sented in the next chapter justifies this decision.

CDC object source

TCDCSource = OBJECT (TParameterSouce)

Stores and supplies a set of CDC objects all sharing the same structural in¬

formation.

Fields

fCurrentCDC Current CDC object. It contains the structure informa¬

tion

fDynamicProperties List of tested object properties of each CDC object

fRatings List of ratings applied to each CDC object

(the parameter lists are handled by the inherited methods and fields)

Methods

GetFirstCDC Methods to store and retrieve CDC objects similar to the

GetNextCDC corresponding methods of the parameter source.

InsertCDC

The first CDC object to be stored in the list supplies the structural information. Its

parameters, properties and rating lists are the first items in the corresponding source

lists. Any subsequent CDC objects loose their structure information1, their object
attributes are copied to the source lists.

Display

All multi-object operations are shown in Fig. 4.7. Node A2 shows an algorithm which
has been executed repeatedly on the same CDC node (node CI). This is reflected in the

multi-object bar on the right of the algorithm node A2 (green on a color display). To

stress the idea of multiple objects being fed from the algorithm to the CDC node, the

branch coimecting the target CDC node is wider than one leading to a single CDC
node. This target node C2 also receives a multi object marker on its right side.

1. We will later see that this information must be the same as the one in any previously stored

CDC object in order to share the same node.
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4.1.4. Application ofan Algorithm to a Multi-object Node

Task

In some cases we would not only like to see the effects of an algorithm applied with

varied parameters, but also the impact of a single parameter setting on a series of CDC

objects. We have seen that the decision about a parameter selection may be postponed
until we see its consequences. If the decision cannot be made even then, we would like

to apply further algorithms to the whole bunch of CDC objects.

Consider the following example: We have tried an identification algorithm within a

certain order range and would then like to design a controller for the model found.

Rating functions tell us that the identification gives satisfying results with model

orders 3 and 4. It may be reasonable to complete the whole controller design with both

models and decide only afterwards whether to take the controller derived from the

third or fourth order model for implementation.

Multi-object subtrees: In Leporello this task is achieved by applying an algorithm to one

of the multi-object nodes developed in Chapter 4.1.3. The results of this action satisfy
the conditions for building a multi-object node (all CDC objects have the same struc¬

ture and result from the execution of the same algorithm on the same CDC node). The

application of an algorithm to a collection of CDC objects therefore describes a second

way to form multi object nodes. With this structure we can build whole subtrees con¬

taining multi-object nodes (multi-object subtrees). This gives us the ability to compare

alternative solutions in a large range.

Multiple algorithm children: The possibility of building multi-object subtrees adds a

requirement to a multi-object node. If we want to apply an algorithm to a whole list of

CDC objects, each of them must conform to the algorithm's requirements, i.e., it must

be of the object class which is contained in the algorithm information object's required
CDC field. Therefore, all CDC objects contained in a multi-object node must share the

same class and class properties. If an algorithm produces CDC objects of several

classes, we have to store objects with different class properties in different multi-object
nodes. The algorithm node then has more than one child.

We now see the motivation for defining algorithm nodes in the tree: if we had denned

the algorithms to be stored in the tree branches, multiple leaves for one single branch

would not be possible. With algorithms defined as nodes this is feasible.

Limitations: The flexibility gained by the introduction of multi-object nodes may also

be a source of problems. If we repeatedly vary the parameters of an algorithm applied
to a multi-object node, the number of CDC objects in the resulting node explodes.
Even in the highly structured environment of Leporello the vast amount of data may

become confusing. This requires us to limit the flexibility of multi-object subtrees. In

order to apply parameter variations to a multi-object node, the user first is asked to

decompose the node. This task will be the next feature described in Chapter 4.2.1.
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Consistency: Managing multiple objects in tree leafs does not cause great difficulties in

maintaining consistency. Problems may arise if we modify parameters of an algorithm
node already contained within a subtree (more algorithms have been applied to the

result CDC nodes). In that case, the target node of the modified algorithm node con¬

tains an additional CDC object to which all children algorithms of this CDC node have

not yet been applied. All these algorithms (and their descendants) have to be re-exe¬

cuted in order to have a consistent subtree (an automated task to do this will be pre¬

sented later).

Target CDC node: Again, this may cause consistency problems. Consider the case

where parameter variations have been previously applied to an algorithm node in the

subtree of the inconsistent node. Rendering its parent (source CDC node) consistent

implies adding another CDC object, therefore making it a multi CDC node. We now

have the situation, where a parameter variation has been applied to a multi-object
node; the limiting condition imposed previously is violated. We conclude that the par¬

ent CDC node of a multi parameter algorithm node should not be used as target CDC

node of its parent algorithm. Automatic subtree re-execution will therefore not store

any results in a node which was previously involved in a parameter variation opera¬

tion.

Twin CDC node: To allow these variations nevertheless, we add a new child to the par¬

ent algorithm mentioned. It contains the same CDC structure information as the first

target node (we will therefore call it twin node). Contrary to the original target, it does

not have any children but is a multi-object node which contains the results of all but

the first execution of its parent (which stays is the original node). This node may then

be used like any other node in the tree, i.e., it may also be merged (see Chapter 4.2.2)
with the original node. Although the result is the same as if we had kept the original

target, this explicit node operation forces the user to be aware of the increasing prob¬
lem complexity.

Objects

The definition of the CDC source class in the Chapter 4.1.3 proves to be useful, now

that we want to apply an algorithm node to all the CDC objects contained in its parent
node. The CDC source was equipped with the appropriate methods to retrieve the

whole series of CDC objects contained. These methods (GetFirstCDC, GetNextCDC)

replace all object attribute information (parameters, object properties and ratings) of

the structure CDC object by the corresponding items from the appropriate lists. Access

through these methods always provides a consistent current CDC object.

The algorithm node parameter loop presented earlier is carried out for each CDC

object retrieved from the source CDC node. The whole state transition diagram of an

algorithm node is shown in Fig. 4.4. The diagram illustrates the algorithm node behav¬
ior when one parameter source is supplied to the NodeExecution method. Each

parameter set it returns is applied to each of the CDC object contained in the parent.
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Figure 4.4: State transition diagram of an algorithm node

The algorithm node is ready after its creation. Algorithm execution is initiated by a call

to the NodeExecution method to which a parameter source is supplied. This source

is then asked for parameters and the node waits asynchronously for the parameter list

to be processed (state param req.). As soon as the parameters are available, the algo¬
rithm executor is triggered for the algorithm execution; the node is again put on hold

until the asynchronous termination of the algorithm (state Alg running). Comple¬
tion of the algorithm executor triggers storage of the results which includes the alloca¬

tion of a new node. Depending on whether more parameters are available, the next

parameter set is processed, or the parameter source is reset and the next CDC object is

requested. These nested loops continue until all parameter lists supplied by the source

are applied to all CDC objects given by the parent node. Temporary objects used for

the execution cycle are cleaned up afterwards; the node is again in its ready state to

receive further execution requests.

CDC object history references: In the context of the action tree, the history of a data node

can easily be traced. However, details of the origin of a single CDC object contained in
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a multi CDC node may still be lost. The algorithm which produced the object is obvi¬

ous, but exactly which of its grandparent multi node's elements, or which of the

parameter sets of its parent algorithm node was used, is not visible. We therefore store

a reference to each the parent and the grandparent item in addition to the result CDC

object.

The objects which store these links are mainly lists of integer numbers, indicating the

list index of the referenced object in the respective node list of the parent or the grand¬
parent. In addition to the index list, the index object also contains an entry which

points to the original list.

With a single method override we can add another feature to this reference list, which

might prove useful. Retrieving an object from a simple list as it is implemented in

MacApp (TList. At) is shown in Fig. 4.5a. The address of the list element is calcu¬

lated from its index and the base address of the object, then dereferenced, and the

resulting object is returned. With our index list, we can easily implement a masked list

just by overriding the dereferencing method. The functionality of the new method is

shown in Fig. 4.5b: Instead of using the supplied index for the address calculation, we

use the index list element. Since each list operation accesses this dereferencing
method, we do not see that the objects retrieved are no longer in a sequential list but in

arbitrary order.

a)
"
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Figure 4.5: Leporello list access: a) direct access in MacApp, b) indirect list access

Subclasses of this indirectly referenced list could sort a given Ust without changing the

order of the original list, or they could access a subset of the list without actually creat¬

ing a new list and copying all the elements in the subset.
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Indirectly referenced list

TDbllndexParamSource = OBJECT (TParameterSource)

Parameter source which re-maps access of another source. Elements of the

mapped source are remapped onto the local index scheme.

Fields

flndexList

fParameterSource

List of the indices

Reference to the list which contains the original objects

Methods

At

Insertlndex

Deletelndex

Override to implement the indirect index calculation

Methods to add or remove an index reference in the list

Twin node structure: The twin nodes introduced are ordinary CDC nodes with identical

CDC object structure. To reflect the fact that their structure information would allow

their collection in a single CDC node, we link them together by introducing twin refer¬
ences to the CDC node. These links form a chain connecting all twin nodes of the same

structure. We will later see that single CDC objects contained in any of the twin nodes

may be freely moved to another twin which may receive additional CDC objects {i.e.

may become target). To check whether all these CDC objects do share their structure

information, or whether a newly created object may be stored in the same node, the

CDC node class contains a method which calls the appropriate test of the CDC

(EqualCDCStrueture).

Including the history reference lists and the twin node entries in the CDC class, we get
the following extended definition.

CDC object node (continued)

Extended definition to include references to parameter lists which were

used to create the CDC objects in the node. Additional extensions to man¬

age twin nodes.

Fields

fAlgParamReference

fCDCParamReference

fLeftTwin

fRightTwin

Indirectly referenced lists of ancestors

Adjacent twin nodes, NIL if none
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Methods

EqualCDCStructure Check if a given CDC has the same structure as the CDC

objects already contained in this node.

InsertRxghtTwm Twin node management.
GetLeftTwin

GetRxghtTwm

The full internal structure of the action tree node classes as it has been developed in

the last few chapters is shown in Fig. 4.6. The diagram displays the object states and

connections when a parameter source is being processed, i.e., a parameter source is

available, the target node is allocated and all connections are set up properly.

Figure 4.6: Action tree node structures and object relations
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Figure 4.7: Multi-object operations examples

Display

In Fig. 4.7 all multi-object features are combined. The tree displayed was created in the

following order:

1. Algorithm Al is executed, which creates CDC node CI.

2. Algorithm A2 is executed once, this creates CDC node C2.

3. Algorithm A3 is executed on the CDC object in C2. This creates the CDC node C3.

4. Algorithm A2 is executed a second time. C2 receives a second CDC object and node

A3 becomes inconsistent. This is indicated by the shown status bar in A3. The

multi-parameter node A2 prevents CDC node CI from becoming target (to avoid

automatic parameter size explosion). This is shown by the 'O'-mark (red on a color

display).

5. Algorithm Al is executed again, the result has the same structure as the CDC object

already contained in CI. Since CI cannot automatically become target {i.e. not

receive any further objects), a new twin node with equal structure is created (C4).
This new node receives the result of the second execution of Al. Its close relation to

CI is shown by the twin branch which connects CI and C4. Since there are not yet

any multi-parameter algorithms applied to C4, it may still receive additional CDC

objects. This is shown by the target mark (•, red on a color display).
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6. Algorithm Al is executed for the third time. We assume, that the result has a differ¬

ent structure this time than the objects in CI and C4. A new sister CDC node (C5)
receives the result. Any further results with the same structure may be stored in this

new node; it therefore receives a target mark.

4.2. Managing Multi-object Nodes

4.2.1. Extract a Subset Node from a Multi-object Node

Task

Multi node operations presented earlier helped to accumulate data. Parameter varia¬

tions are supported to evaluate the best result from a whole range of algorithm param¬
eters. However, once we decide which CDC object to choose for further calculations,

we have not yet the means to separate this chosen object from the multi-object node.

We need a task to break a multi-object node into subsets.

In the previous section (Chapter 4.1) we have prepared the structures to support this

operation: Separating CDC objects from a multi-object node may be achieved using
the twin CDC node introduced there. A series of twin nodes all contained the same

CDC information (name, class properties etc.), but the CDC object information

(parameters, object properties) resulted from several executions of its parent algo¬
rithm. Instead of just storing different algorithm run results in various twin nodes as

previously shown, we may also fill one multi-object node with all the results and dis¬

sect it later in a separate task.

Once again, working on a tree leaf does not impose any problems. Creating a twin

node is merely a matter of moving items from one node to another. The task becomes

more complicated if we choose a CDC node with children. If we just move items

between the node and its new twin, all results derived from the moved CDC objects
loose their ancestors.

Twin subtrees: To keep the tree consistent we have to transfer all descendants of the

objects now contained in the twin node too. Descendants of the twin node are

removed from the original subtree and added to the twin's subtree. All tree references

are then up to date.

If we just create a twin node to remove a CDC object history from a subtree (if we are

not interested in the work done on the moved CDC objects), we can decide whether or

not to copy the subtree. If we do not, all selected items are moved into the twin node,

their descendants are deleted.

Target selection: If we re-execute the algorithm which is parent to a series of twin nodes,

the question arises which one of the twins will receive the new results. There is no

automatic solution to this problem. We therefore let the user choose a target twin to

contain further algorithm results. If no target is set, the algorithm node automatically



Managing Multi-object Nodes 91

assumes we do not want any of its children to receive additional results and creates a

new twin node, which automatically receives the target mark.

Objects

We have already introduced the twin node extension of the CDC node class which is

used to break up multi-object nodes. We merely have to include methods to move

CDC objects between twin nodes. These methods do not simply remove the CDC

object from one node and put it into the twin node. The moved object may take its pre¬

viously applied subtree with it, which imposes some problems. The descendants of

the moved object have to be identified and transferred to the corresponding new node.

The indirectly referenced lists are used to accomplish this, they have in turn to be re¬

mapped.

Target tag: The current target twin is marked by a simple boolean tag. The SetTarget

method sets the mark if the node is allowed to become target and removes it from the

previous target twin.

The CDC object node is now extended by the following fields and methods:

CDC object node (continued)

Object definition extended to manipulate twin nodes.

Fields

fTargetMark Flag to mark the target twin node

Methods

MoveToTwin Moves the indicated CDC objects to a given twin node

IsTarget Target management
SetTarget

GetTargetTwin Get twin node which is target

CanBecomeTarget True, if this node is allowed to become target

The algorithm node is adapted to look for a target child to store its results upon com¬

pletion. If none is found it continues as if it did not have any children, i.e., it creates a

new child.

Display

A pair of twin nodes has already been shown in Fig. 4.7. The case where twin nodes

are created not because one of them may no longer become target, but by user selec¬

tion, is not much different. Now each of the twins may receive the target marker. We

therefore allow it to be moved by the user. Setting the mark (by a command-click or by

pressing the corresponding button when the designated target is selected) removes it

from the previous target to assure that the node which receives more results from its
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parent is well defined. The target mark is removed from the twin group if the target is

command-clicked.

An example has been shown in Fig. 4.7: Nodes CI and C4 could have been created by
first executing algorithm Al twice (which creates CI as a multi-object node), then per¬

forming all the actions described in Chapter 4.1.4 and finally moving the second result

of Al to a new twin node without copying its subtree.

4.2.2. Merge Subset Nodes

Task

To complete the operations on twin nodes, we need to add a task which merges two

previously separated twin nodes.

Both CDC nodes need to be in the same twin group in order to be merged. This is eas¬

ily done if both nodes are leaves, i.e., do not have any algorithms applied to them. The

resulting node contains all CDC objects previously stored in the merged twin nodes.

The task becomes more complicated if one node is parent to a subtree, i.e., has algo¬
rithms applied to it. After the merge operation, the node contains a number of CDC

objects to which its children algorithms are not yet applied (the node is inconsistent).

The whole subtree has to be rendered consistent before any subsequent operations are

applied to it.

Limitations: Merging nodes becomes almost impossible, if both nodes have algorithm
children. Merging both subtrees results in a large number of inconsistent nodes, incon¬

sistent in different respects. Some algorithms have been applied to one of the merged
nodes only. Some others have been applied to both of them, but with partly equal

parameter sets (Unfortunately, we cannot recognize two identical parameter sets). To

circumvent these problems, we only keep the subtree of the target node which receives

the CDC objects of the source node. The source node's subtree is discarded. If it does

contain data which are to be kept, its algorithms need to be applied to the target node

prior to the merge (see Chapter 4.1.2).

Objects

Merging to twin nodes does not require any additional fields or methods in any of our

classes. The CDC node method which moved some CDC objects from one node to one

of its twins serves also to move the items back. The complications we may run into

when we merge two subtrees we avoid by discarding the subtree of the source CDC

node.

Display

The display elements used when merging two twin nodes have all been introduced

before. The target mark is used to indicate the node into which the selected CDC node

is copied and the shown status bar of its children algorithms indicates their inconsis¬

tency.
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4.3. Managing Tree Complexity

All the operations described up to now helped to accumulate data and to expand the

action tree. If a given project (tree) may be clearly divided into subtasks, we might
want to perform them in different tree documents. Copying results from one tree and

pasting it into the other is a handy operation then. In some situations we would also

like to be able to clean up parts of the tree. Some procedures applied may not lead to

satisfactory results. The branches and subtrees containing these procedures may be

removed from the tree. This leaves the successful (and also the interesting) parts of the

tree in the final design tree of the project for further work or for documentation.

4.3.1. Copy and Paste Operations

Task

Copying objects and pasting them somewhere else is a standard operation in today's
user interfaces. In Leporello, general copy/paste operations are only possible with

limitations, depending on the copied objects and the location where they are pasted to.

Posting to other applications: In addition to the Leporello related data the copy opera¬

tion puts a picture of the selected part of the tree to the Macintosh clipboard. From

there, it can be pasted into any other application which handles pictures (all tree pic¬
tures in this thesis were treated that way).

Pasting within Leporello: This task is not feasible for all possible situations. One limita¬

tion is imposed by the fact that the target tree must conform to all Leporello con¬

straints after the paste operation, i.e., it must be a proper tree as defined in

Chapter 3.2.3. Hence, we only allow one connected subtree to be copied. The location

where this subtree is copied to is always a single node. The root of the copied subtree

will become a new child of the selected target. We therefore encounter different situa¬

tions depending on the class of the copied root, the number of copied nodes and the

class of the node which receives the pasted subtree.

Copy one algorithm node: Copying a single algorithm node is handled like as if a re¬

applied algorithm node were produced (cf. Chapter 4.1.1). The node's algorithm must

be executable on the designated target, which must therefore be a CDC node. If this is

possible, the copied node is treated like the marked algorithm node in the re-applying
task described in Chapter 4.1.1. If the algorithm has previously been applied, this pre¬

vious algorithm node receives the parameter source of the copy to be applied later.

Copy the subtree ofan algorithm node: Since the root algorithm receives a new parent
with the paste operation, all data available in the copied subtree's CDC nodes become

invalid. The paste operation therefore copies empty, inconsistent CDC nodes to the

target. These pasted nodes need to be rendered consistent afterwards.

Copy a CDC node: We recall that the ancestors of a CDC node contain its history. If we

copy a CDC node to another parent outside its history path, this quality is lost. There
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is no possible explanation of a copy operation of this sort, we don't consider it reason¬

able and therefore necessary to be implemented in general. However, it may be neces¬

sary to copy the results of a lengthy operation to an empty tree to continue working on

it. Since each tree needs to be rooted in an algorithm node we introduce a paste algo¬
rithm. A node with this algorithm is automatically created to receive the results of the

paste operation as its children.

Copy the subtree ofa CDC node: Contrary to the algorithm node's subtree, the nodes of a

CDC node's subtree keep their valid reference to their ancestor data up to the copied
CDC root. After a successful paste operation, the whole connected subtree may be

attached to the pasted root.

Objects

The copy/paste operations within Leporello require the following object adaptations:

Copy one algorithm node: No extension is required. The necessary structures have been

introduced when we allowed to reapply an algorithm to another CDC node.

Copy the subtree ofan algorithm node: We will later show how a series of allocated nodes

can be executed in sequence (hierarchical algorithm, Chapter 4.4.2). The subtree of a

pasted algorithm node is handled similarly.

Copy a CDC node: The paste algorithm created with the operation has quite a different

behavior compared to other algorithms. It receives its source CDC objects not from its

parent node but instead it takes them from the clipboard. The execute operation only
passes these objects to the result node where they are stored in the run of the algorithm
completion operations.

The simplicity of the operation and the special behavior of the algorithm led to the

decision to support the paste operation not by introducing a special algorithm, but a

special algorithm node: the TPasteNode subclass of the TAlgATNode class.

"Paste CDC objecf-algorithm node

TPasteNode = OBJECT (TAlgATNode)

Special node which creates a CDC node which contains the CDC objects on

the clipboard.

Methods

AlgorithmReady Override to return true if the correct node is on the clip¬
board.

NodeExecution

DoParameterRequest

ReceiveParameters

Overrides to organize the correct passing of the CDC

node on the clipboard into the target CDC node.

Cleanup
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Display

The pasted nodes do not receive special attention in the display. A pasted algorithm
can not be distinguished from an algorithm selected with any other method. The

pasted CDC also shows no difference to ordinary CDC nodes. In order to reflect the

fact that the CDC node history, which was lost by the paste operation, contained a

sequence of algorithms, the paste CDC node is displayed as a hierarchical algorithm.

4.3.2. Delete Nodes

Task

Any node in the tree may be removed from the project. Its subtree looses the connec¬

tion to the tree root and is therefore deleted too.

Objects

The Free methods of both the CDC node and the algorithm node classes sufficiently

manage the task. Since we always delete the whole subtree connected to a node, the

complicated update of indirect references mentioned in Chapter 4.2.1 is not necessary.

Display

A deleted node is removed from the display. Showing an empty tree display would

certainly add some humorist touch to this thesis, however, we refrain from that in

order to save space.

4.3.3. Mark Deleted Subtree

Task

Deleted node objects: In a complete design documentation it may also be interesting to

see which tests and algorithms did not produce adequate results. If we remove these

paths entirely, the information about the inadequacy of the results is lost. If the tree is

still being worked on and someone tries to follow the same misleading path when try¬

ing to improve the design, it may be helpful to get a warning.

To store the information about the deleted subtree, we insert a specially marked node

at its root. This deleted algorithm node contains the information about the root algo¬
rithm which was deleted. Instead of algorithm parameters, the node contains the rea¬

son, why this subtree was deleted. This information is asked from the user.

Reactivating deleted nodes: If a deleted algorithm is again chosen for execution, we get a

warning indicating the reason for discarding this path. If we then still want to repeat
this algorithm, the node is reactivated and may be used as normal. However, previous

parameters and subtrees have been removed when the tree was marked deleted; they
are no longer accessible.
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Objects

The information we want to store about a removed algorithm node is the name of the

algorithm and the reason, why this algorithm did not produce any satisfying results.

To achieve this, we do not need a new node class, we simply replace the executed algo¬
rithm executor witha 'deleted algorithm' object. The deleted algorithm is a subclass of

the algorithm executor class. It therefore contains the same fields as the algorithm
which is replaced by the deleted algorithm. Two differences are introduced to imple¬

ment the deleted algorithm: It can not be executed and a text parameter containing the

reason for its deletion is made its only parameter.

In all other respects the algorithm node behaves the same as any other algorithm
node. If the deleted algorithm is again chosen in the algorithm selection window, the

deleted node is selected, and if the user tries to get information about the node, the

parameter list of the algorithm describes the reason for the node deletion.

Deleted algorithm

TDeletedAlg = OBJECT (TAlg)

An algorithm removed from the tree.

Fields

(deleted reason) The reason for deletion does not require a field of its

own, it is made a parameter and inserted into the param¬

eter list.

Methods

Execute Override to disable algorithm execution. Instead, the

user is asked whether to reactivate the algorithm. The

deleted algorithm is then replaced by the algorithm
which used to be contained in the node before its dele¬

tion.

Display

An algorithm node marked deleted keeps the algorithm name in its display. The node

itself is crossed out by a bar line (red on color displays). An example of such a node is

shown in Fig. 4.8.

4.4. Automatic Subtree Execution

In the preceding chapters we have seen many examples where previously applied

algorithms are re-executed. Since we store all the information necessary, this may not

only be done step by step initiated by the user, but also automatically. We will now

show a few procedures which provide automatic execution of a series of algorithms.
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Figure 4.8: Algorithm node marked deleted

4.4.1. Make Subtree Consistent

Task

We encounter the first motivation for a series of algorithms to be automatically re-exe¬

cuted when an intermediate algorithm node becomes inconsistent, i.e., when its parent
CDC node receives additional CDC objects. This intermediate algorithm has to be

repeated with its previous parameter lists on all newly added CDC objects. In turn, all

its grandchildren become inconsistent. Maintaining consistency in a whole subtree

can easily be automated.

If we choose to automatically keep a subtree consistent, each inconsistent grandchild
of an algorithm is scheduled for re-execution as soon as the algorithm terminates.

Objects

Since the algorithm execution cycle contains several asynchronous calls (cf.
Chapter 3.3), scheduling a series of algorithms is not as easy as calling one after

another. The next algorithm to be applied may only start after its predecessor has fin¬

ished. This event is not synchronously detectable. We therefore have to introduce a

new object class: the algorithm scheduler. This object is activated on algorithm com¬

pletion and can then start another algorithm.

Algorithm scheduler

TAlgScheduler = OBJECT (TObject)

Object which schedules algorithms and algorithm sequences

Fields

Fields are added as required in the subclasses.
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Methods

ExecuteNextAlgorithm This method is called after algorithm completion. It may

initiate the next algorithm execution.

In order to be able to signal completion, an algorithm node includes an algorithm
scheduler object whose ExecuteNextAlgorithm method is called after completion.

Algorithm node (continued)

Additional definitions to include algorithm scheduling facilities.

Fields

fNextAction Algorithm scheduler which schedules the next algo¬
rithm.

Methods

AlgorithmCompletion If the fNextAction field is not nil, its ExecuteNext¬

Algorithm method is called.

Maintaining consistency in a subtree requires a subclass of the algorithm scheduler

which tests all grandchildren of the algorithm node for inconsistency. A new consis¬

tency scheduler is allocated for each inconsistent node and they are all connected to

form a dynamically linked list. Each consistency scheduler removes itself from the list

and starts its successor.

Consistency scheduler

TConsistentScheduler = OBJECT (TAlgScheduler)

Scheduler which executes each inconsistent grandchild of its owner.

Fields

fFirstAlgorithm

fNextAlgorithm

The owner of the scheduler, i.e., the node which triggers
the next algorithm upon completion.

The next node to be executed. This node contains the

next consistency scheduler and therefore links the list.

Methods

ExecuteNextAlgorithm Override to detect inconsistent grandchildren and

schedule them for re-execution.

Upon creation, the consistency scheduler enters itself in the fNextAction field of the

algorithm node it is assigned to. If this field is already occupied by another scheduler,

this scheduler is linked to the consistency scheduler.
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Display

Automatic consistency update does not show in the display. Inconsistent nodes are

marked by a visible status bar. One after the other changes its state to executing and

finishes. The algorithms which are rendered inconsistent by this operation are marked

in turn and executed later. Depending on the algorithm complexity (the time spent in

the external package) this process may be monitored on screen (very short algorithms

manage to terminate before the state change is visible).

4.4.2. Hierarchical Algorithm

Task

If during a design cycle one branch contains a series of algorithms which could be

used repeatedly in the same order, it would be convenient to automate this execution

sequence.

Since we rely on Matlab running in the background, one possible solution is to leave

Leporello, write a Matlab file containing the algorithm sequence and add it to the set

of available algorithms in Leporello. However, this task is far too complicated and

imposes problems if Matlab is accessed on an external server or some algorithms
involved in the sequence access other packages or internal algorithms.

Hierarchical algorithm: Once the sequence has been executed in a tree, the branch con¬

taining it is available on screen. We use this branch to define a new algorithm which

applies the branch sequence to another CDC node. Once this hierarchical algorithm is

defined, it is available in the algorithm list like any other algorithm. A branch which

contains a hierarchical algorithm may therefore be used to define another hierarchical

algorithm, hence allowing nested hierarchies in algorithm definitions.

Hierarchical algorithm classification: In order to fit into the algorithm ordering and selec¬

tion mechanism, we need to provide the same information which is available for other

algorithms, i.e., what type of source CDC it needs and what CDC type it produces.

This information can be taken from the algorithms combined in the hierarchical algo¬
rithm. The new parameter list contains the parameter lists of each single algorithm.
Once defined, the user does not see any difference between a hierarchical algorithm
and an ordinary one.

Objects

When we discussed the automatic tree update in Chapter 4.4.1, we introduced all the

mechanisms to schedule and execute a series of algorithms. This allows us to define a

hierarchical algorithm (a series of algorithms) as a tree branch re-executed automati¬

cally. We therefore need two additional classes:

Algorithm information object: First we need to define a new algorithm information

(algorithm head) object which contains enough information to classify the algorithm
and create an algorithm executor. This is done in a subclass of the TAlgHead class.
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The hierarchical algorithm head inherits the algorithm information fields (cf.

Chapter 3.3). Their data are copied from the corresponding fields of the algorithm

sequence combined in the hierarchical algorithm. The source CDC and properties are

the same as in the first algorithm in the sequence, the produced CDC information is

taken from the last algorithm in the sequence. The name of the new algorithm is sup¬

plied by the user.

The sequence is stored in a list of algorithm head references.

Hierarchical algorithm information

THierarchAlgHead = OBJECT (TAlgHead)

Store information about a hierarchical algorithm

Fields

fAlgSequence List of the TAlgHead references of the algorithm

sequence.

Methods

CreateParamList

GenAlgorithm

Overrides to create a hierarchical algorithm executor

object.

Hierarchical algorithm executor: The hierarchical algorithm executor which is created by
a THierarchAlgHead object mainly consists of a tree branch which has the algorithm
nodes filled with the algorithm sequence, and the CDC nodes allocated, but empty.

The root of the branch is an empty CDC object. Setting the source CDC object of the

executor (SetDemandsCDC method) copies it into this empty root node. The target
CDC object of the last algorithm is made the target of the hierarchical algorithm, i.e., it

is returned by the TakeAwayProducesCDC method.

When a series of algorithms is defined as a hierarchical algorithm, we assume that the

user is interested in the final result of the series only. This allows us to clean up the

intermediateCDC objects after each execution. Intermediate algorithm parameters are

contained in the parameter list of the hierarchical algorithm executor. They are stored

there for later reference and do not have to be stored with the intermediate nodes.
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Hierarchical algorithm executor

THierarchAlgHead = OBJECT (TAlgHead)

Algorithm executor which controls the sequence of algorithms combined in

a hierarchical algorithm.

Fields

fFirstCDCNode Root CDC node of the local algorithm branch.

fFirstAlgNode First algorithm node of the sequence.

fLastAlgNode Last algorithm node of the sequence.

fScheduler Algorithm sequence scheduler.

Methods

SetDemandsCDC Overrides to correctly access the corresponding items in

SetParameterList the algorithm sequence.

TakeAwayProducesCDC

Execute Override to schedule the whole sequence.

The sequence is scheduled by the hierarchical algorithm scheduler object contained in

the fScheduler field. Contrary to the consistency scheduler presented earlier, there is

only one scheduler for the whole algorithm sequence. It does not derive the next algo¬
rithm from consistency evaluation, but retrieves it from the algorithm list.

Hierarchical algorithm scheduler

THierarchAlgScheduler = OBJECT (TAlgScheduler)

Object to schedule hierarchical algorithm execution

Fields

fHierarchAlg

fCurrentAlgorithm

fLastAlgoritbm

Reference to the hierarchical algorithm executor.

Current algorithm node being processed.

Last algorithm node to be processed.

Methods

ExecuteNextAlgorithm Override to schedule the next algorithm node in the

sequence.

To hold a hierarchical algorithm executor, we do not want to change the structure of

the algorithm node. The parameter passing mechanism (parameter source structure)

should be maintained as well as the user interface (get info window). This requires the

hierarchical algorithm executor to contain only one parameter list. It includes the

parameters of all algorithms contained in the algorithm sequence. Upon execution,

these parameters need to be distributed to their corresponding algorithm nodes.
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The object responsible for this feature is the extracting parameter source, a subclass of the

parameter source. Each algorithm in the sequence has its own source assigned perma¬

nently, contrary to the other parameter sources. Once the hierarchical algorithm
receives a new parameter list, it is assigned to each of the sub-algorithm nodes's

extracting sources, which then supply the correct parameters to the algorithm execu¬

tor contained in the node1.

Parameter extracting source

TExtractParamSrc = OBJECT (TParameterSource)

Object to retrieve a parameter subset from a given parameter list.

Fields

fSuperParameterList

fFirstParameterIndex

fLastParameterIndex

Parameter list of the hierarchical algorithm executor.

Index of the first and the last parameter of the sub-algo¬
rithm node's parameters in the super-parameter list.

Methods

SetSuperList Set a new parameter list of the hierarchical algorithm
executor.

The internal structure of a hierarchical algorithm executor is shown in Fig. 4.9. Please

note that on display is a single algorithm executor, not an algorithm node. The corre¬

sponding structure in Fig. 4.6 is the box in the centre labelled 'Algorithm executor'.

The other node items (parameter sources and adjacent nodes) are not contained in

Fig. 4.9.

Display

A tree node containing a hierarchical algorithm is displayed in Fig. 4.10 (node A4). It

contains the sequence of marked algorithms in the left part of the picture. Although
the special display is not necessary for operational reasons, the larger node picture
indicates that the execution of this node may require more processing time than ordi¬

nary nodes. It also represents the fact that the algorithm was declared locally, that it

may not be available in other documents without copying it first.

Hierarchical algorithms are also handled separately in the algorithm selection win¬

dow. They are stored with the tree document they were defined in and do not use the

file access mechanism which is needed by globally available algorithms (built-in and

external algorithms). The list of available algorithms therefore shows an item with the

locally defined algorithms. This item changes when the user selects another document

for on-line algorithm query (see [22] for details of the algorithm query window).

1. The indirectly referenced list presented earlier may not be used here. The list returns a param¬

eter list, whereas the algorithm node requires a parameter source for execution. Object Pascal

does not allow multiple inheritance, wetherefore need to define a new class, which is adapted
to suit its purpose better.
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Figure 4.9: Internal structure of a hierarchical algorithm

The local nature of hierarchical algorithm definitions also requires an addition to the

paste operation of algorithm nodes. If a branch containing a hierarchical algorithm
node is pasted into another document, the hierarchical algorithm information has to

be pasted into the target document's list of local algorithms. This allows us to re-use a

successful design branch in other documents.
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4.5. Special Tasks

In the previous chapters we have presented the action tree structure and have shown

some automated tasks which are available in the current version of Leporello. In the

following we present a few extensions which indicate a possible direction in which

Leporello's functionality may be enhanced. All tasks described in this chapter are not

yet implemented.

Key classes which are likely to be subclassed to provide extended features are the

parameter source and the algorithm scheduler. We have already seen some implemen¬
tations, two more are now presented.
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4.5.1. Parameter Sweep

Task

The parameter variations presented earlier were always explicitly specified by the

user. Each parameter set applied to an algorithm was entered from the keyboard

parameter by parameter. However, there are situations where we encounter system¬
atic parameter variations which follow a given pattern. If we want to execute an iden¬

tification algorithm with model orders 3 to 7 we do not necessarily want to enter 3,4,

5,6, and 7 in sequence. Giving the bounds and an increment would be much easier.

Objects

A special parameter source which manages these variations automatically is very eas¬

ily specified.

Parameter sweep source

TParameterSweep = OBJECT (TParameterSource)

A special parameter source to automatically vary parameters in a given

range.

Fields

fFirstSet

fLastSet

flncrementSet

Range of the parameter sweep.

Parameter increment.

Methods

RequestNextSet Override which calculates the next parameter set from

the last set and the increment.

The user interface asks all three sets (first, last and increment) instead of one in the

parameter input window.

4.5.2. Parameter Optimization

Task

A more complex task where a subclass of the parameter source is useful, is the param¬

eter optimization problem. An optimization algorithm varies algorithm parameters
and adjusts them according to some evaluations on the result. An optimization com¬
bines several of the tasks presented previously: parameters are applied to an algo¬
rithm on a given CDC object. After algorithm execution, a rating algorithm is applied
to the result (performance index) and according to the value returned the new param¬

eters are derived.
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Objects

The optimization source subclass of the parameter source requires more complicated
extensions. First of all, calculating the next parameter set cannot be as easily done as in

the case of the parameter sweep source. Instead of just adding the increment to the last

value applied we need to calculate a new parameter set from the results of the cost

function.

The number of algorithms available to do this is quite large. Optimization algorithms
exist for all kinds of situations and function properties. This variety leaves us with two

implementation alternatives: We could decide on one special algorithm to be used in

one subclass of the optimization source (other methods then require new subclasses),

or we could leave the algorithm used to be determined at runtime as we do it with

external algorithms.

The optimizer needs some information about the algorithm, its result (the target CDC)
and the cost function. All these objects are already available within Leporello; the opti¬
mization source contains one of each.

Automatic parameter optimizer

TParameterOptimizer = OBJECT (TParameterSource)

Fields

fAlgorithm Algorithm to be optimized.

fTarget Target CDC object to be used with the cost function.

fRatingAlgorithm Cost function.

Methods

GetFirstParameterSet Initialization of the optimizer.

ReguestNextSet Evaluation of the cost function to determine the next

parameter set.

MoreSets True, if the desired accuracy is not yet reached.

Since we do not need to keep all intermediate results of an optimization process, the

target CDC node only stores one CDC object per source CDC object and optimization.
The information whether each parameter set results in a CDC object to be stored or not

is given by the parameter source. The classes currently available contain this feature,

they all require storage of each result.

Display

The user interface of the optimizer requires a dialog which allows the selection of a

cost function and some other optimization parameters or even optimization routines.

During runtime, parameter modifications could be displayed on screen and the user

could interact to increase optimization speed, all depending on the chosen algorithm.



Hierarchical Systems 107

4.6. Hierarchical Systems

One task which has consequently not been mentioned until now is systems interconnec¬

tion. Building a system by connecting sub-systems is a very frequent task in control

engineering. As we have seen in Chapter 2.3, working with block diagrams to achieve

this is one of the visual methods already quite well supported by commercial tools. A

CACSD package which does not provide any systems interconnection and simulation

facilities can not support all tasks necessary for a full controller design.

In its current state of development, Leporello does not. This is not a problem of incom¬

plete concepts, this is mainly a problem ofmissing manpower and time. We will in this

chapter describe how the concepts of hierarchical interconnected systems fit into the

Leporello environment. The ideas expressed here may be regarded as an indication of

further research in this direction.

4.6.1. Hierarchical Systems Class Definition

By hierarchical system we denote a system which is composed of one or more sub-sys¬
tems which are interconnected. In general, the resulting system is nonlinear. Basically,
hierarchical systems are systems like the others presented earlier. They are therefore

defined as a subclass of the system class. The original CDC specification on page 65

already contained the necessary structures: the fComponentList was introduced to

hold a list of constituting sub-objects. This list is not yet used in the implementation of

the current system classes. To access it in a hierarchical system, access management
methods need to be defined. The following discussion of concepts will show the neces¬

sity of some special access methods. The hierarchical system's parameter list needs to

be mapped to the individual parameter lists of the sub-systems, a reference which can

be implemented similar to the parameter extracting source introduced in the defini¬

tion of hierarchical algorithms. We will not go into further details describing hierarchi¬

cal system classes; the definition of control data objects is not part of this thesis.

Our interest lies primarily in the handling of hierarchical systems in the action tree.

4.6.2. Block Diagram Editor andAction Tree Operations

The preferred tool to create and modify hierarchical systems is a block diagram editor.

We have previously shown two implementations of block diagram editors (Figures
2.12 and 2.13). If we assume a Leporello editor to be available, the blocks which are

interconnected (and are therefore the components of a hierarchical system) can basi¬

cally be divided into two parts:

- System blocks: These sub-systems are subject to some design work. Examples are a

system model which has been estimated from measurements, or a controller who's

parameters need to be optimized to satisfy some design requirements on a given
plant. The design of these system blocks is reflected in their respective action trees,

modifications are stored therein.
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- Library blocks. These elements are too simple to be contained in an action tree of

their own. They either do not contain any parameters which could be modified

during a design, or their modification is only reasonable in the context of the block

diagram. Examples of the first kind are sum, multiplication, etc. Example of the

second kind are single gain values, noise amplitudes, etc.

A very simple and also a widely used block diagram structure consists of a controller,

a plant, and unit feedback, as the one shown in the lower part of Fig. 4.11 (labelled

'Block diagram'). It contains two system blocks (controller and plant) and a library
block (sum). Both system blocks were designed in the same action tree (Tree A in

Fig. 4.11). This tree has its roots in measurements of the real plant. It contains the iden¬

tification routines, the identified plant parameters, the controller design algorithms
and the controller.

In order to fit this closed loop system into the Leporello concepts, we need an action

tree node where it can be placed. The first idea is to insert it in the tree of the plant and

the controller. We could decide to make it a descendant of the node which contains the

identified plant, with a 'connection' algorithm node to produce it and the designed
controller as one of the algorithm's parameters. Vice versa the hierarchical system
could be made descendant of the controller node, with the plant as an algorithm

parameter. Another option is to make the block diagram a descendant of both nodes.

All these solutions share the same disadvantage: they destroy the tree structure of the

action tree, making it a trellis. In addition to contradicting the tree concepts, this

causes inconsistencies in most methods previously presented which rely on the tree

structure. Another solution would be beneficial.

Let us take a closer look at the 'connection' algorithm mentioned above: It connects

the controller, the plant model and some library blocks to form a new, the closed loop

system. It is therefore justified to regard it as a CDC creation algorithm which is used

in a new tree root. The hierarchical system is hence manipulated in its own action tree

(Tree B in Fig. 4.11). However, its close links to CDC objects contained in other action

trees require special access and modification techniques.

Numerical algorithms applied to block diagrams: Numerical algorithms applied to block

diagrams (i.e. nonlinear systems) are rare in the engineering practice; today's research

in this field does not show a mainstream, a generalized theory is not available at the

time of writing. The most common algorithms applied to nonlinear block diagrams
are simulation, linearization, steady state analysis, etc. These algorithms can be imple¬
mented like the algorithms applied to other CDC objects. Their handling and execu¬

tion is done as described earlier (Chapter 4.1.1).

Topology changes: Changing the block diagram topology (connections or blocks con¬

tained) interactively is regarded as a modification algorithm. The algorithm node does

not have any parameters, the resulting CDC node contains the modified block dia¬

gram. Since the block diagram passes a number of inconsistent states during interac¬

tive modifications, the user is responsible to declare the modifications to be
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Figure 4.11: Leporello block diagram and associated trees

completed. This can be done by explicitly pressing an 'ok'- button to store the current

block diagram in the tree, or by applying another algorithm (simulation, linearization)

to the diagram.

Sub-system variations: One of the advantages of the action tree is its possibility to com¬

pare different designs and parameters. In our simple control loop example there were

several controllers calculated. The PID controller was designed interactively with

varying parameters (nodes A3, C3). As an alternative, a deadbeat controller was calcu¬

lated (nodes A4, C4). The plant, which in the diagram is a linear system in transfer

function representation, stands for a laboratory plant which was used to get some

measurements (nodes Al, CI). With these, a linear model was derived, its parameters
were identified by a series of algorithms combined in the hierarchical algorithm node
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labelled 'Identification' (node A2). This linear model (node C2) was then used to

design the controllers mentioned.

The different controllers should now be judged by simulating them with the model.

Similar to the algorithm execution on a multi object node which was discussed in the

action tree chapters, we can here simulate the closed loop system with the whole series

of PID controller parameters available in the multi object PID controller node (node

C3). The CDC node C6 ('PID loop') in tree B of Fig. 4.11 shows a possible interpreta¬
tion of this situation. The node is marked being a multi object node. The series of CDC

objects contained in this special multi object node is created by replacing the PID con¬

troller parameters by the whole series of parameters contained in the PID controller

node (node C5) in sequence. By an appropriate design of the parameter mapping
mechanism which assigns sub-system parameters to parameters of the hierarchical

system, this is achieved with only minor adaptations of the tree storage mechanisms.

The simulation algorithm (node A7) applied to the block diagram node in Fig. 4.11

(node C6) therefore is executed for all PID controllers contained in the 'PID controller'

node (node C3) in tree A. The results of this simulation are all contained in the multi

object node C8. If several block diagram elements originate from multi object nodes,
the variation of all parameter lists easily leads to data explosion. The selection of the

parameter sets used in parameter variations is left to the user. With the current tree

manipulation mechanisms this is done by extracting the CDC objects as described in

Chapter 4.2.1. Other user interface features to control this selection more easily are

probably required to convince the user of the quality of this feature.

Sub-system exchange: If we not only want to compare the influence of sub-system
parameter variations but also different sub-systems, the automatic multi object node

creation mentioned above is not appropriate. If we exchange the PID controller with

the deadbeat controller of node C4 of tree A, the structure of the block diagram
changes. Its parameter list does not contain the PID parameters anymore. This place in

the list is now occupied by the deadbeat controller parameters. The number and struc¬

ture of the hierarchical system's parameter list changes, which clearly is a structural

change. It is also not a priori known which nodes of tree A are to be used in a compar¬

ison of simulation results. They need to be chosen by the user. Both the structure

change and the replacement selection require the sub-system exchange operation to be

regarded as an algorithm. In our control loop example, the controller block was

exchanged twice: first to contain the PID controller, and second to hold the deadbeat

controller. The structural difference of the two resulting block diagrams is indicated by
the second child (node C7) of the block replace algorithm (node A6).

A possible user interface feature is indicated by the block diagram markers of nodes

C2 and C3 (block diagram icons on the lower right of the nodes): The block replace

algorithm does not necessarily need to be called like other algorithms (algorithm
selection and later execution), it could be initiated by dragging the marker to another

node in the tree (arrow labelled a6'). The contents of this new node will then replace
the original bearer of the block diagram mark in the block diagram.
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After the presentation of the concepts and features of Leporello, we will in this chapter
describe the use of the Leporello prototype implementation to solve a selected control

problem. The plant chosen is a Mettler electronic balance [5], one of the control exper¬

iments used in the laboratory courses for students at the automatic control lab of the

ETH. The reader who is familiar with current research in automatic control will soon

realize that the algorithms applied in this example are at most state of the art. In order

to concentrate on the presentation of the Leporello working mechanisms and features

we did not put much emphasis on the incorporation of methods currently under

development in research.

Figure 5.1: Photograph of the laboratory balance. Weighting hardware is on the

right, the box on the left contains additional electronics.

Ill
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5.1. Plant and Hardware Description

5.1.1. Electronic Laboratory Balance

The balance used with the Leporello prototype application is utilized in the student

labs to teach typical control mechanisms and effects. In particular, there are three

experiments available which show various controller implementations and require
different information about the plant [41].

- Experiment A19: Continuous PI controller design based on step response experi¬
ments (Ziegler-Nichols, etc.).

- Experiment A20: Digital controller design using analytical design methods based

on a transfer function estimate of the plant.
- Experiment A23: Lead-lag controller design using a measured Bode diagram for

the design in the frequency domain.

Balances of the type discussed are used where the weight measurement needs to be

precise and fast. A schematic display of the balance is shown in Fig. 5.2. The bar posi¬
tion is measured opto-electronically It is controlled by the current in the inductivity.
The weight is regarded as a disturbance which needs to be rejected. For small varia¬

tions of the bar position, the relation between anchor current of the inductivity and the

weight of the probe can be assumed to be linear.

/ bearing

4-XZ7T-

weight
inductivity

m

photoelectric

coupling

Y/////A bar position control signal

Figure 5.2: Schematic display of the laboratory balance

The controller to be designed is used to speed up the weighting process. It should

therefore comply to the following requirements:

- After a change of weight the bar should be brought to its initial position as fast as

possible with a minimal stationary error.

- Overshoot should be low. If there are overweight alarms connected to the balance,

they could be triggered by a high overshoot signal.
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Although a simple controller structure (Pi-controller) does give satisfactory results

we will make use of Leporello s advantages to quickly compare different approaches
to the problem

5.1.2 Computer Hardware

The Leporello prototype application used m the following examples was programmed
on an Apple Macintosh using MPW and the MacApp object library The Leporello

application and the Matlab server were installed on a Macintosh Quadra 700 com

puter the real-time experiments were conducted on a Macintosh fx computer

equipped with a LabNB analog I/O board from National Instruments which has been

extended with a voltage converter to transform the ±5 V of the board to the ±10 V

required by the plant The software used for the real-time experiments was pro¬

grammed m LabVIEW The use of a dedicated computer for real-time experiments

was possible due to the Leporello networking facilities The whole experiment setup is

shown in Fig 5 3

Figure 5 3 Experiment setup The balance is connected via an analog I/O board to

the Macintosh fx computer
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5.2. Working with Leporello

In this chapter we will try to give some ideas about how we think a user will work

with Leporello. Most pictures shown are screen dumps or printouts of one of the pack¬

ages used. However, most two dimensional signal plots were generated by saving the

data from Leporello to a file. This file was then read into Matlab, where the graphs
were created 'by hand'. This was necessary because the Leporello signal display facil¬

ities are not available in the current version, and because the LabVIEW procedures
used instead (see Fig. 2.2 on page 19 for example) were designed to provide interac¬

tive graph handling features and not to print out nicely.

The numerical algorithms used in the balance example are all implemented in Matlab.

They access one of the toolbox routines, mostly with some interface file which handles

parameter conversion between the Leporello object parameters and the Matlab

parameters. These Matlab algorithms are not mentioned in the text to come. We only
describe the experiments and methods used. However, the reader who is interested in

algorithm details can find the Leporello algorithms used in the action tree pictures.
The algorithm nodes are labelled with the Leporello name of the algorithm. A list of

Leporello algorithms, the package they access, and the package command file they
execute can be found in Appendix A.

5.2.7. Leporello User Interface

Before we concentrate on the balance problem, we will give a short overview of the

Leporello user interface features which are not related to the action tree display (and

which therefore have not yet been described in the previous chapters).

Communication setup: The limited number of algorithms built into Leporello requires
communication facilities to other packages as mentioned in Chapter 3.1. For each of

the packages accessed (Matlab and LabVIEW) we provide a communication interface

based on the Program-to-Program Communication Toolbox built into Macintosh Sys¬
tem 7. The connections are controlled in the respective window in each packages.
External links can be established on the local computer or on a remote server accessi¬

ble on an AppleTalk network. All external communication handlers are set up to auto¬

matically restore the communication after its failure. The connection is then re¬

initiated from Leporello, there is no need for manipulations on a remote computer.

Action tree manipulation: The action tree access and modification tasks described in

Chapter 4 are all controlled from the toolbar available in the action tree document

window (Fig. 5.4). Tool-buttons are disabled if an action is not possible (mostly, if no

appropriate node is selected). Disabled buttons can still be pressed. A message win¬

dow is then shown, which explains the reason why the desired action is temporarily
not available.

The check-boxes below the tool-buttons allow to set some task preferences. If one of

them is not checked, a dialog box is displayed which allows the user to select the
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Balance project
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Figure 5.4: Leporello document window with toolbar, preferences and tree display

desired task behavior. The arrow button to the right of the toolbar shows or hides the

preferences area.

The action tree display itself allows a number of interactions. Pressing the command

and arrow keys exchanges the position of the selected node with its neighbor, pressing
command and clicking on a node toggles its mark. If the mouse button is pressed dur¬

ing mouse movements starting at a node (dragging), nodes which are directly related

to the first node are highlighted. Dragging between an algorithm node and one of its

twin children sets the target to this child, dragging between two twin nodes selects the

first twin and sets the target to the second. This allows an immediate node merge in

the dragging direction.

Node information: Full information about a node's contents will be displayed by the

'Get Info'-button or by clicking the same node twice (double-click). The window,
which shows this information for one of the nodes containing identified models in the

example to come, is shown in Fig. 5.5. Name and purpose fields of the CDC object can
be modified, all other information boxes can be shown or hidden. Algorithm node
information is.displayed similarly.

Another Leporello window (algorithm selection window) has already been shown on

page 77 (Fig. 4.1). Parameter windows are extensively discussed by Kolb in [22].
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Figure 5.5: Information window of node C1 of Fig. 5.11 which contains the identified

model of the balance, calculated from the Bode diagram

5.2.2. Balance Measurements and Interactive Controller Design

Step response: The first steps on our way to a successful controller design are selected to

become accustomed with the plant behavior in characteristic situations. The first

experiment applied to the balance is the measurement of its step response. The Matlab

plot of these measurements is displayed in Fig. 5.6. At first sight, one dominant pole
on the negative real axis can be assumed, some faster dynamics can be guessed from

the behavior in the first sampling intervals.

Bode diagram measurements: More insight mto plant dynamics can be retrieved from the

Bode diagram. For its measurement we designed a LabVIEW interactive tool which
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Open loop balance step response

0.4 0.6

Time [s]

Figure 5.6: Balance step response. Measurement of the bar position after a change
in the anchor current. Sampling time: 20 ms

allows to record the frequency response of a plant by sequentially feeding sine waves

in the desired frequency range to the plant and measuring the plant responses. Since

we assume that this response is approximately sinusoidal, we calculate amplitude and

phase of each point at the peak amplitude of the Fourier transform of the input and

the output signals with removed trends. The VI front panel is shown in Fig. 5.7. The

parameters are asked from the user in Leporello and are sent to the LabVIEW VI. Each

measured sine wave is shown, 'abnormal' results (too much noise, no signal, etc.) can

be detected immediately and the experiment can be repeated with improved settings.
After the responses over all selected frequencies are recorded, selected measurements

can be repeated to remove erroneous samples or to achieve increased precision.

Interactive lead-lag controller design: Based on the experimentally obtained Bode dia¬

gram we can use the interactive controller design tool shown in Fig. 2.4 on page 22.

The required Bode diagram margins are taken from the description of Laboratory

Experiment A23:

static gain: 20dB

phase margin: (p > 100 deg

critical frequency: 10 < (Orj < 20 s"1
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lower Frequency [Hz] JBMWBIMl current poirrt||22 111 4732 | current frequencul

Figure 5.7: LabVIEW VI front panel of the swept sine tool applied to the balance

The lead-lag parameters are now tuned interactively by the user until the above

requirements are met. An exemplary controller is expressed in the following equation:

(l + TlS)(l+T2s)
G(s) = k

(1+01^5) (l + a2T2s)

with Tj = 0.1, ax = 0.75, T2 = 0.16, a2 = 9.68 and k = 3.3.

This transfer function is transformed mto discrete state space representation assuming
a sampling interval of 20 ms. A faster implementation (10 ms) is possible on the con¬

figuration used (Macintosh fx, LabVIEW 3), but the faster rate does not allow any

interactive user operations.

Looking at the controller poles we see, that the sampling time and the fastest pole are

conflicting The continuously designed controller should be sampled at approximately
ten times its fastest time constant or faster. We therefore try the following:
- complete lead-lag implementation at 20 ms

- complete implementation at 10 ms without user interaction

- lead-lag controller at 20 ms after model reduction

- pure lag controller at 20 ms

Controller implementation test. All four controllers were tested on the real plant. The

measured step responses of the closed loop systems are displayed in Fig. 5.8. We see
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Controlled balance step response (lead-lag)
T 1
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Figure 5.8: Step responses of the plant controlled by lead-lag controllers.

that the idea to just remove the faster pole resulted in a clearly slower controller. The

reduced controller is still slower than the full implementation, its overshoot is also less

than with the pure lag. Althoughwe sample too slow, the full controller containing the

fast pole still gives the fastest responsiveness.

Doubling the sampling frequency does reduce raise time and overshoot, the steady
state position is reached much later.

All four controllers tested did comply to the initial specifications. However, the ques¬

tion may be raised whether stronger specifications could be reached by applying some
of the more complex design algorithms. We will therefore not only continue to investi¬

gate the methods used in the laboratory experiments, but also try out other algorithms
accessible in the Leporello environment.

Leporellofeatures: The tree which was used for the lead-lag design is shown in

Fig. 5.9. The initial node contains the balance analog I/O channels used for measure¬

ments and control. It serves as root for the step response and the Bode diagram mea¬
surements. We include all analysis algorithms (plot, etc.) as an example of a tree

'under construction'. To reduce tree complexity, these nodes are removed in most

other diagrams shown on the next few pages.

One very useful Leporello feature is not visible in the tree picture: once an algorithm is

applied to a data node (i.e. all the step response nodes), it is easily reapplied to all

other nodes which are to be compared. This guarantees equal parameter settings
(equal step height and length) and eases algorithm selection without switching win¬

dows and repeatedly searching algorithm lists.

E0.8
0
o

| 0.6

a

E

<0.4

0.2

1 Pure lag 20 ms

2 Lead-lag reduce
3 Full lead-lag, 2C

4 Full lead-lag, 1G
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Figure 5.9: Lead-lag design tree including Bode diagram measurement.

Another feature shown is the use of a separate target node for different algorithm
results. The branch containing the full controller with the 10 ms sampling time (sub¬

tree to algorithm node A4) was created by removing the target mark from the node

containing the 20 ms sampled controller. The discretization algorithm was then exe¬

cuted, which created the new branch.

The same technique was used to create the pure lag controller (right subtree to algo¬
rithm node A3): The lead-lag design algorithm (node A2) was executed the second

time after the faster and the reduced implementations were done. The pole/zero cal¬

culations (node A2) were updated automatically, the transformation to state space cre¬

ated the second twin branch since we removed the target mark from the first CDC

node prior to the execution. The whole subtree of node A4 was therefore not repeated

automatically, the algorithms were re-applied individually.
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5.2.3. Identification of a Continuous-time Model

Most controller design algorithms require the presence of a plant model of some sort,

found through the use of appropriate identification algorithms.

Least squares transferfunction estimation: Since we are already in possession of Bode

diagram measurements, we can first apply an identification algorithm which acts on

the frequency response of the system. This algorithm estimates the transfer function of

assumed order using the least squares method. From the Bode diagram and the open

loop step response we expect to receive model orders of 2 or 3, with no or one zero. All

four combinations are evaluated, by visual comparison of the Bode diagrams calcu¬

lated from the estimations we keep the model with order 2 and one zero, and the

model with order 3 and no zero. Both models are kept for further evaluation during
controller design. They are first transformed into discrete state space description using
a sampling time of 20 ms.

The measured Bode diagram with the diagrams calculated from the transfer function

estimations is shown in Fig. 5.10.

Leporello features: The tree as it is displayed in Fig. 5.11 was created mainly in one

single tree containing all identified models. After the selection of the models men-

Bode diagram, measured and estimated
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Figure 5.10: Measured Bode diagram and diagrams calculated from estimations
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tioned above, the tree was divided into two subtrees, one containing the discarded

models and the related results. If we continued to work on this tree, the unused branch

would be clipped drastically.

In the far right branch in the tree picture, the selected models are transformed to dis¬

crete state space. This node (node CI) is later copied into a new document to keep the

tree pictures within the size of a page.

5.2.4. State Feedback Controller Design

Deadbeat controller design using pole placement: We start experimenting with the second

order model derived from the Bode diagram. Since the state feedback controllers all

vary in size with the model order, we can not automatically reuse algorithm parame¬
ters for models of different orders.

The first controller we would like to design is a deadbeat controller. This type of con¬

troller imposes deadbeat behavior on the controlled plant; the number of steps

required to bring the error to zero is equal to the system order. In our case, we should

therefore be able to eliminate an error in two steps, i.e., within 40 ms.

A discrete time system with deadbeat behavior has all its poles at the origin. The

desired poles of the control system were accordingly all placed at zero (The state feed¬

back controller can only force equal poles in the number of system control inputs. One

of the poles is hence slightly displaced). The simulated step response in Fig. 5.12

shows perfect results, the setpoint is reached in two steps as desired.

Controlled balance step response (deadbeat)

1.6

1.4

>1-2
CD 1

1.0.8
E

<0.6

0.4

0.2

J]

i

\- i

I

-i
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/

i

I

O1-^

1 Simulated closed loop
2 Implementation

0.2 0.4 0.6

Time [s]

0.8

Figure 5.12: Simulated and measured step responses of the closed loop deadbeat

system
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Since we can not measure a second state at our balance plant, we need to design an

observer. The observer poles are also placed in the origin with small displacements,
the step response simulation shows the same perfect results we expect (the curve is

not shown in any of the graphs, we kindly ask you to believe this).

Controller test and implementation: The most important test is the controller implemen¬
tation. The sampling time of the controller is 20 ms. We see in the measured step

response in Fig. 5.12 that the raise time of this controller is faster than any of the lead-

lag controllers's. The stationary error is smaller, but the increased performance is

payed by a much higher overshoot. We will try to handle this effect by a LQR-design.

LQR-design: The popular LQR-design is also applied to the second order model of the

balance derived from the Bode diagram. This algorithm is well suited to be used in the

Leporello environment: its design parameters, matrix Q for state weighting and R for

control signal weighting are subject to engineering experience and may therefore

cause several retries of the design ('fine-tuning')-

The initial settings (randomly chosen Q = I, R = 1) do not return appropriate results.

The step response of the controlled system derived from these parameters is not faster

than the uncontrolled plant, yet we do get the desired stationary gain. Different

parameter settings do not show the desired improvement (Fig. 5.13, curves A).

The reason is the difference in magnitude of the state signals and the control signal.
Since the chosen state space representation does not have any physical meaning, we

may as well balance it prior to the controller design. The same algorithms applied to

the balanced balance representation show immediate improvement even with the ini¬

tial settings of both design parameters Q and R (Fig. 5.13, curves B: Q = I, R = 1 and

Q = 0.2*1, R = 1). The step response of the resulting closed loop control system is a little

slower than the one with the deadbeat controller, we can expect less overshoot in the

implementation.

Controller and observer implementation: As with the pole placement algorithm, the state

feedback designed by the LQR algorithm requires an observer to be implemented
with the balance SISO system. The observer is also designed to have its poles at the

origin, i.e., to be as fast as possible. The test simulation shows the same behavior as the

original state feedback system (not shown in any graph either).

The implementation of this controller with the same sampling time of 20 ms does

show much less overshoot than the deadbeat controller. Little modifications in the Q

weighting matrix eliminates overshoot, the measured step response of the controlled

system (Fig. 5.13, signal C) is now very similar to the simulation.

The most successful experiments are afterwards repeated with the third order model

with comparable results. These approaches are contained in the action tree in Fig. 5.14.

Leporello features: To reduce the size of the example tree, the models derived from the

measured Bode diagram are copied to a new document which is then used for the con¬

troller design and verification (Root in Fig. 5.14).
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1.2

Controlled balance step response (LQR design)

Various Q,R settings:

A Simulation unbalanced
B Simulation balanced

C Implementation of B

0.4 0.6

Time [s]

0.8

Figure 5.13: Step responses of the state feedback controllers designed using the LQR

methods

The controller design subtree structures (one for the deadbeat and one for the LQR)

show the increasing complexity of the controller from left to right. For each of the

design objectives, the pure state feedback simulation, the simulation with the

observer, and the implementation with the physical plant are contained in separate
branches of the tree.

This structure is not optimal. If the Leporello block diagram editor were available at

the time of writing, the three branches would be contained in the tree of the closed

loop block diagram.

5.2.5. Discrete-time ARX-model Identification

It is well known that state feedback design requires a very adequate model of the

plant. If we consider the fact that the sub-optimal results presented up to now may be

caused by an error in the model, we may get better results by an improvement of the

identification. We will in this approach try a discrete ARX model identification deter¬

mined using the LS method and pseudo random binary sequence system responses.

Plant excitation experiments: An experiment very popular in system identification is the

measurement of the system response if fed with random binary signals (signals which

jump between two voltage levels at randomly chosen time instances). These signals
are known to excite the plant in a broad spectrum (persistent excitation) and are there¬

fore well suited as a starting point for identification methods. Three signals with dif¬

ferent bandwidths are generated and used to feed the plant.



t
r
e
e

i
m
p
i
e
m
e
n
t
a
t
i
o
n

a
n
d

design
o
b
s
e
r
v
e
r

a
n
d

f
e
e
d
b
a
c
k

S
t
a
t
e

5
.
1
4
:

Figure

0
2

1
x
5
0
x
0

s
t
e
p

c
o
n
t
r
o
l
l
e
d

e

0
2

1
x
5
0
x
0

r
e
s
p
o
n
s
e

s
t
e
p

step
loop

c
l
o
s
e
d

r
e
s
p
o
n
s
e

step

*

0
2

1
x
5
0
x
0

r
e
s
p
o
n
s
e

s
t
e
p

r
e
s
p
o
n
s
e

step

1 c
o
n
t
r
o
l
l
e
r

d
e
a
d
b
e
a
t

w
m
o
d
a
l

loop
c
l
o
s
e
d

I
o
o
d

c
l
o
s
e
d

p
l
a
c
e
m
e
n
t

pole

I o c



Working with Leporello 127

The experiments applied to the balance include all three signals at a sampling rate of

10 ms and the second signal only at a sampling rate of 20 ms.

ARX-model identification: Based on the system responses to the random binary signals,
a discrete transfer function is estimated. The algorithm used automatically tests a

range of numerator and denumerator polynomial orders given by the user. Each pos¬
sible pair of orders results in an optimized transfer function. They are all simulated

with the same input signals, and the difference between the simulation and the mea¬

surements results in a performance index. The best function is returned.

This algorithm is first tested on the '20 ms'-signal. To obtain adequate results, the data

must have zero mean value. We therefore first remove any offset from the measure¬

ments. We then apply the automatic ARX identification with both polynomials evalu¬

ated at orders one to five. The result is a fourth order system in the identification

toolbox Theta format. This format is then transformed into a discrete state space

description.

Inspecting the zeros and poles of this system we see two near pole/zero cancellations.

It is therefore apparent that similar modeling could be achieved by a second order sys¬

tem. The ARX identification is applied again, this time only with the desired orders

two of both polynomials. The resulting distribution of poles and zeros shows the can¬

cellation of two of the poles. The other ones are left almost unchanged.

automatic ARX identification, orders 4/4

1

0

Real Axis

fixed order (2/2) ARX identification

1

Real Axis

Figure 5.15: Poles and zeros of the automatically identified system and the one with

fixed orders

The same experiments are then applied to the faster measurements. Again we receive

higher order systems with pole/zero cancellations, the final systems are all second

order.
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Controller design: The design of the same deadbeat and LQR controllers which were

previously (Chapter 5.2.3) derived from the continuous identification based on the

Bode diagram did not produce any improved results.

Leporellofeatures: The tree which contains the ARX experiments shows some addi¬

tional features of Leporello not previously used in the example.

The tree shown in Fig. 5.17 is based on the one shown in Fig. 5.11: the resulting docu¬
ment is to contain all identification results. The previous results are hidden, the root of

the subtrees fully shown in Fig. 5.11 are here left with a fat bottom line which indicates

the hidden subtree. This not only simplifies the tree on the screen, it also significantly
speeds up screen redrawing.

The identification experiments were all first applied to the one signal sampled at

20 ms. The algorithm sequences used there were then applied identically to the faster

signals. To repeat the whole branches more easily, we created two hierarchical algo¬
rithms from the branches rooted in node CI. They were then applied to the rest of the

signals contained in node C2.

Finally, all identified systems were simulated with the last of the test signals (Proper
identification would require a different signal for model validation. Choosing one of

the input signals we only violated this rule for one of the systems). The 'compare'
algorithms shown in the tree diagram call a LabVIEW instrument which allows inter¬

active comparison of not only the signals themselves, but also of their differences,

cross correlations and other operations. Interactive signal comparison is not yet possi-

Measured and simulated signal response

-10 ' ' ' ' =LJ

0 12 3 4 5

Time [s]

Figure 5.16: System response to random binary signals, measurements and simula¬

tions
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ble in this printed version, we can therefore only display them in a static graph.

Fig. 5.16 shows the measurements and two of the simulations.

5.2.6. Remarks

The examples shown on the last few pages do only represent a small amount of the

work done with Leporello during these experiments. The application did indeed moti¬
vate many different parameter settings, algorithms and variations which would not

have been used by the author if only confronted with Matlab and a pile of manuals.

The action trees displayed only reflect the static result of the work. Their real advan¬

tage is during work, when they are used as a dynamic tool. Different results are easily

compared, and algorithms are quickly applied to other versions of measurements or

results.

Working with Leporello clearly proved the advantages of the concepts proposed, I

really enjoyed it (if you allow me this very personal remark).
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The contents of this thesis can be summarized as follows:

• We have briefly shown how scientific visualization is used today and what further

development and advantages may be expected in the future for its application to

automatic control.

• We have presented visual programming languages in general and specific imple¬
mentations to be used in algorithm development and controller implementation in

the field of automatic control.

• We have presented the Leporello tool which provides a new graphical representa¬
tion of the control systems design process as a whole.

The conclusions to be drawn from the different aspects handled up to now are sum¬

marized in this chapter. We will then give our ideas about further work and research

possible in the directions indicated in this thesis.

6.1. Conclusions

The graphical methods and examples presented in the different parts of this thesis all

served the same ultimate goal: to reveal more information about the problem being
solved with the computer. The graph which shows data trends, the visual language
which presents data flow dependencies and the Leporello action tree which displays a

complete controller design all help to present information which is otherwise hidden

from the user. The contribution of this thesis is summarized in the following key

points:

6.1.1. Scientific Visualization

• The interactive creation of higher dimensional data display turns out to be an

important tool in the analysis of signals and systems.

232
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• Many algorithms benefit from an interactive graphical user interface. The display
of important internal state variables or the development of iterative or recursive

results does offer additional insight into algorithm behavior. Interactive modifica¬

tions of variables controlling algorithm behavior allow the quick investigation of

alternatives. Engineering parameters otherwise chosen intuitively or by experience
can be found or tuned faster and in a more intriguing manner.

6.1.2. Visual Languages

• In selected areas of control engineering, visual languages do ease software devel¬

opment. The most obvious case is the use of a block diagram editor and simulation

language which allows real-time code generation and therefore facilitate the proto¬

type implementation of control systems.
• Apart from their special advantages in control engineering, visual languages speed

up software development in general. If done on the computer using one of the

visual languages presented in this thesis, design sketches can be turned into exe¬

cutable software with only little more effort. Changes in these sketches are instantly
reflected in the program itself. Drawings and implementation are always in a con¬

sistent state.

6.1.3. Visual Control Systems Design in Leporello

• The Leporello package presented in this thesis provides a fully graphical user inter¬

face for a complete control system design cycle. This user interface is based on the

graphical display of the action tree, a tree description of the design history which

contains all data and information which have been used in the design. Besides

being a data base of all intermediate results of the design process, the action tree is

also displayed on screen and as a part of the user interface allows interactive modi¬

fication of any part of the design.
• The complete information stored for each algorithm allows an automatic repetition

of experiments and algorithm sequences on modified data. The influence of alter¬

nate algorithm parameters or plant parameter modifications can thus be investi¬

gated easily.
• The incorporation of commercial software packages for algorithm implementation
and their access from within Leporello provides an unified user interface for all

external packages used. The Leporello user does not need to handle different data

formats and command syntaxes. By the integration of Matlab and LabVIEW, Lepo¬
rello benefits from their advantages: the large number of available algorithms and

the ease of extension in Matlab and the graphical user interface and the visual real¬

time language of LabVIEW.

• Strict data and algorithm classification ease the search for the proper method which

is to be used in a specific situation. The advantages of this approach are described

and summarized by Kolb in [22].
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• The Leporello prototype implementation has successfully been applied to the con¬

troller design of an electronic balance (described in this thesis) and of a servo sys¬

tem (described in [22]).

6.2. Further Work

Throughout this thesis we have often mentioned possible extensions and further

research and development. These points are summarized in the following.

The research in scientific visualization and visual languages is in process, both sub¬

jects are far from being investigated to their full extent. Results from both fields are

worth being applied to automatic control problems.

6.2.1. Leporello Concept Extensions

Apart from the technical application improvement, which is necessary anyway at this

stage of development, several concept extensions have already been proposed in the

run of this thesis. The most important and significant are:

• Parameter administration. Two additional parameter handling facilities have already
been proposed in chapters 4.5.1 and 4.5.2: the parameter sweep and the branch

optimization. Other methods to generate algorithm parameter sets can be thought
of, which may require an improved parameter administration concept.

• Hierarchical systems concepts. This is where most research work still needs to be done

since engineering jobs contain some part where things are put together. In control

engineering, this is done using a block diagram editor or a similar tool. Although
we did present the concepts to represent the 'system assembly' in an action tree,

this is only the first step. There must be better solutions to this common engineer¬

ing problem. Exchanging different parts of a design and watching the effects on the

overall behavior of the system is a basic experimenting technique frequently used.

An improved action tree could maybe handle problems of this sort. Investigations
in this direction may be very fruitful.

• Package incorporation. Many of the tasks described could be achieved more effi¬

ciently if Leporello had closer access to the internal structures of the external pack¬

ages used. The current implementation can only execute algorithms in one step,
interactive modifications on an algorithm user interface can not be traced. We think

that the incorporation of the Leporello user interface and concepts in one of the

mathematical packages currently in use in the control systems community would

be beneficial to both.

• Design data base. In the beginning of the project, the incorporation of a data base

into the Leporello environment was planned. Successful designs and typical prob¬
lems could be stored there and could be retrieved systematically. The incorporation
into Leporello would then allow the re-execution of solutions found in the data
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base similar to the hierarchical algorithms presented. Project descriptions could

also contain many more comments and textually added information as well as

other related documents (plant pictures or even project submissions and invoices).

The direction pointed to by the Leporello tool does still show some great improve¬
ments of user interfaces not only in CACSD, but also in other fields of engineering.

6.2.2. Future Leporello Development

Whether the Leporello project will be continued is not fully our decision. However, we

do consider it interesting and bearing challenging aspects. Since the Leporello proto¬

type was designed mainly to prove the usefulness of the action tree and data abstrac¬

tion concepts, further development on the chosen path will probably prove not to be

the easiest solution. Elaborate tools which are available today should be used to create

a portable, more efficient implementation of Leporello. To produce a commercial tool

or to continue research in this area, at least partly redesign will be necessary.

Still, we hope that the ideas expressed throughout this thesis will find their way to the

control community one day.
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Appendix A: List of available Leporello algorithms

The following tables contain a list of currently available algorithms. These lists are

thought to provide the necessary information about the algorithms appearing in

action tree displays in Chapter 5.2.

The columns contain algorithm names as they are used in Leporello, the external pack¬

age which executes the algorithm, the interface file which is called by the Leporello

algorithm and the file which contains the algorithm code.

Table 2 contains a colomn which indicates whether the algorithm provides an interac¬

tive user interface, whether real-time and I/O facilities (an I/O card with on-board

timer) is required and whether the user interface allows local storage of algorithm
results for later comparison (these properties are currently available only in LabVIEW

algorithms). The last column of Table 3 indicates, whether the indicated algorithm is a

property (CDC object does or does not have the tested property) or a rating (numeri¬
cal information about the tested CDC object) algorithm.

Leporello name Pka interface called algorithm file pr-b
ARX identification

automatic ARX identification

balanced realization

bode diagram
bode diagram

Mtl

Mtl

Mtl

Mtl

Mtl

LARX

autoARX

lbode

ldbode

arx

arxstruc, selstruc, arx

balreal

bode

bode

dose with Simulink model

dosed loop step
dosed loop with (-1)

dosed loop with lqi
dosed loop with lqr

Mtl

LV

Mtl

Mtl

Mtl

xclose

RTControlStep

dlqrftndClose

lqrflndciose

linmod

RTCtlStep.vi

cloop

dlqr

lqr

r

dosed loop: obs. + state Ctrl.

dosed loop: place obs. + Ctrl.

compare

controlwith plant model

controllability form

Mtl

Mtl

LV

Mtl

Mtl

dlqrObsAndClose

dPlaceObsAncElose

SignalGroupConpare

dlqrObsJmdModel

dlqr

place

2D signal compare

lqr

ctrbf

i,m

create signals for identific.

extract contin. linear system

frq.resp. to TF

impulse response

impulse response

Mtl

Mtl

Mtl

Mtl

Mtl

Larxfreqs

Ldimpulse

Liitpulse

makelOsignal

linmod

arxfreqs

dimpulse

impulse

impulse response experiment
InOutModel->SS

InOutModel->TF

interactive Pi-design
Ld-lg design

LV

Mtl

Mtl

LV

LV

ImpExperiment

Lth2tf

PIDesign

LLDesign

WaveGen

th2SS

th2tf

PIDesign.vi

LL design/bode.vi

i.r

i

Ld-lg design
lqr designed controller

lqr designed controller

lqr with observer

LV

Mtl

Mtl

Mtl

LLDesignBode

ldlqr

llqr

llqrObs

LL design/bode.vi

dlqr

lqr

lqr

1

Table 2: Leporello Algorithms
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Leporello name Pka interface called algorithm file pr.b
lqr with placed observer Mtl dlqrObsPlace lqr, place

make contmuous

make contmuous

make discrete

make discrete

make lin/discrete system

Mtl

Mtl

Mtl

Mtl

Mtl

d2cTF

c2dTF

d2c

d2cm

c2d

c2dm

dlinmod

Make new CDC object
minimal realization

model reduction

model reduction

Modify CDC object

Lllo

Mtl

Mtl

Mtl

Lllo

dSSreduct

SSreduct

internal

nunreal

dbalreal, dmodred

balreal, modred

internal

nyquist diagram
nyquist diagram

observability form

P-controlled closed loop
P-controller

Mtl

Mtl

Mtl

Mtl

Mtl

dnyquist

nyquist

obsvf

PandClose

PController

Pi-controller

place Ctrl and observer

plot

plot

plot

Mtl

Mtl

LV

LV

LV

dPlaceObs

FreqMagPhasPlot

SignalGroupPlot

SignalPlot

PIController

place

BodePlot

2D signal graph

2D signal graph

i,m

i,m

i,m

pole placement closed loop

pole placement controller

poles/zeros plot

pseudolnverse
random cont SS

Mtl

Mtl

Mtl

Mtl

Mtl

placeAndClose

lplace

Lzpplot

place

place

zpplot

pinv

rmodel

random cont TF

random discrete SS

random discrete TF

real time control

remove constant trends

Mtl

Mtl

Mtl

LV

Mtl

RTControl

Ldtrend

rmodel

drmodel

drmodel

RTController vi

dtrend

x,r

remove linear trends

robust controller

signal response

simulate Simuknk diagram
SS2TF

Mtl

Mtl

LV

Mtl

Mtl

LdtrendLin

FileExperiment

dtrend

robustctrler

WaveGen

rk45

SS2TF

r

SS2ZP

state space identification

step response

step response

step response experiment

Mtl

Mtl

Mtl

Mtl

LV

SSIdentPEM

Ldstep

Lstep

StepExperiment

SS2ZP

petn

dstep

step

WaveGen r

swept sine measurement

TF2SS

TF2ZP

y-feedback compensator
Z/Pplot

LV

Mtl

Mtl

Mtl

LV

SweptBode Swept Sine

TF2SS

TF2ZP

WaageConpensator

ZPPlot

i,r

1

ZP2SS

ZP2TF

Mtl

Mtl

ZP2SS

ZP2TF

Table 2: Leporello Algorithms

a Algonthm package
LV UbVIEW, Mtl Matlab

b. Algonthm properties i interactive user interface, r: real-time and I/O required, m multiple
results compared locally
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Leporello name Pk interface called algorithm file tp.a
# samples

asympt. stable

asympt. stable

asympt. stable

asympt. stable

Mtl

Mtl

Mtl

Mtl

Mtl

cSSstable

cTFstable

sigsize

cZPstable

dZPstable

eig

roots

rt

pr

pr

pr

pr

asympt. stable

asympt. stable

bode margins
controllable

eigenvalues

Mtl

Mtl

Mtl

Mtl

Mtl

dSSstable

dTFstable

bodemargins

controllable

eigval

eig

roots

margin

ctrb

eig

pr

pr

rt

pr

rt

eigenvectors
min/max y

observable

regularMatrix

signal length

Mtl

Mtl

Mtl

Mtl

Mtl

eigvect

observable

eig

sigminmax

obsv

regular

sigLength

rt

rt

pr

pr

rt

static gain
static gain

system order

system order

system order

Mtl

Mtl

Mtl

Mtl

Mtl

dcgain

dcgain

orderTF

orderZP

rank

rt

rt

rt

rt

rt

Table 3: Property and Rating Algonhtms
a. Algorithm type:

rt: Rating, pr: Property
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Appendix B: Action tree node states and pictures.

Node State black and white color

CDC nodes

The picture contains a multi-object
marker and the target mark. The text

line contains the name of the CDC

object contained in this node.

transfer function

•

tranSFSnctJcm "

*

Algorithm nodes

Allocated node: This node's algorithm
has not yet been applied. A visible sta¬

tus bar indicates a parameter source

ready to be executed.

The text line contains the name of the

algorithm assigned to this node

Istepresponse j 1 Step response |

Executing node: The algorithm assigned
to this node is currently being executed.

The status bar fills gradually.

1 Step response 1 I Step response

^^ "

Completed node: This node contains algo¬
rithm parameter lists of previous execu¬

tions. The multi-object marker on the

right of the node indicates multiple

parameter sets.

In case the status bar is shown in this

situation, either the parent CDC node or

the parameter source contain objects
which have not yet been applied (incon¬
sistent node).

Step response J Step response

Deleted algorithm node: This algorithm
has previously been applied but was

deleted later. A reason for deletion can

be given or retrieved in the information

window of this node.

jfiii»**r |S^yg^^|

Hidden subtree indicator: The wide bar at

the bottom of this node indicates a hid¬

den subtree. This mark can also appear

on a CDC node.

Step response | Step response 1

Table 4: CDC and algorithm node pictures
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Appendix C: Object syntax and naming conventions

In Object Pascal, an object is declared as follows:

TYPE

TMyObject = OBJECT(TObject)

fFirstField: INTEGER;

fSecondField:INTEGER;

PROCEDURE TMyObject.Initialize; OVERRIDE;

{ initializes the object }

PROCEDURE TMyObject.Free; OVERRIDE;

{ frees the object from memory }

PROCEDURE TMyObject.IMyObject(firstltem, secondltem:

INTEGER);

{ supplies necessary initial values }

FUNCTION TMyObject.GetFirstltem: INTEGER;

END;

The class defined by this statement is a subclass of TObj ect. In addition to the fields

of TObject it contains the two integer fields fFirstField and fSecondField. It

inherits all the methods of the TObject class and adds the two methods IMyObject

and GetFirstltem. Of the inherited methods, it overrides Initialize and Free.

A new object of the TMyObject class is created in the following short code sample:

VAR

aNewObj ect:TMyObj ect;
value: INTEGER;

BEGIN

NEW(aNewObject);{ allocates a new object and calls

its Initialize method }

aNewObject.IMyObject(3,5);{ initializes the fields of

the object }
value := aNewObject.GetFirstltem;{ call of an object

method }
value := aNewObject.fFirstField;{ access to an object

field }

END;
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Naming conventions:

To have the kind of an item reflect its name, we follow the naming conventions pro¬

posed by MacApp:

Library units:

Classes:

Fields:

Methods:

initialize method:

Constants:

Command numbers:

global variables:

ULibraryllnit

TClassName

fFieldName

no convention

IClassName

kConstantName

cCommandNumber

gVariableName

Classes presented throughout the thesis are listed in tables of the following form:

Class name

Object_name = OBJECT(TSuper_Class)

The code excerpt above shows the declaration header of the class. It con¬

tains the name of the class used in the code and the name of its superclass.

This paragraph contains a short description of the object functionality.

Fields

fFieldl Short description of the fields

Methods

Methodl Short description of selected methods
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Appendix D: Managing Dynamical Data Structures.

D.I. Variable Size Data Structures

Any scientific software package has to deal with the problem of variable size data

structures. In control applications, the main structures are matrices of arbitrary size.

The matrices of a state space representation vary with the system order and input and

output numbers, measured signals vary in the number of points stored.

Today's programming languages all support n-dimensional arrays, but the array sizes

have to be known at compile time. Most languages do support variable size array

parameters in procedures, but all of them limit variations to one dimension.

Dynamic memory allocation on the other hand is well supported in the common pro¬

gramming languages. Memory blocks of arbitrary size can be allocated and decollated

without any problems. The missing part is only the calculation of the address of a

given element from its array indices.

The Macintosh memory management even takes the idea of dynamic memory alloca¬

tion one step further. To gain increased flexibility in the organization of the available

memory, access to dynamic data structures is done through handles instead of point¬
ers (handles are pointers to so called master pointers). This allows a given memory
block to be moved. The pointer is adjusted to point to the new location. The handle

however still points to the same location since the pointer did not move.

The objects created with Apple Object Pascal make use of this indirectly addressed

memory access: all objects are dynamically allocated and referenced to by handles.

This is done fully transparent, the programmer never needs to dereference handles in

order to access objects or object fields. By hiding this implementation, the object and

the handle data structures can differ and therefore hide some data necessary for object

management. The first two or four bytes of the dereferenced handle (depending on the

compiler switches used) contain an internal object identifier, which can not be

Object memory block

Obj. ID Object field data Dynamic data area

,

_

L

Handle Master Object GetDynamicPtr

Pointer Reference

Figure 6.1: Pascal object memory structure
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accessed using the object description of the same data structure. This object identifier

is used to correctly access the object's methods. Fig. 6.1 shows this structure.

Since the object size does not correspond to the handle size because of the extra word

added at the beginning of the object anyway, we can make use of this technique to get
additional memory space at the end of the object. By resizing the handle which points
to a larger area than the object data fields require, we get additional dynamic memory

space where we can store data which vary in size.

The TObj ect class of MacApp provides the methods to access the necessary structure:

Methods

GetDynamicPtr

SetDynamicSize

Returns a pointer to the dynamic memory area at the

end of the object.

Sets size of dynamic memory area (this sets the addi¬

tional size, not the size of the handle).

Management of this additional memory area is done in the MacApp TDynamicArray

class. It contains methods which provide direct access to data elements located in the

dynamical area. Classes which are derived from this class are:

Object list

TList = OBJECT(TSortedList)

MacApp class which implements a list of objects. The object handles are

stored in sequence. Objects can be inserted or removed from the list.

Methods

Insert

At

DeleteAt, etc.

List access methods.

Tree node

TTreeNode = OBJECT(TLList)

Leporello class which implements a tree node. In order to save space and

inherit list management functions, the tree node does not have a list of chil¬

dren, its children are stored directly in its dynamical memory area. The

management of this area is done by the inherited list functions.

Abstract numerical array class

TVector = OBJECT(TDynamicArray)

Due to a design limitation, the MacApp dynamical array only allows ele¬

ment sizes which are a power of two. In order to store numerical data

(which can be of size 10 or 12 in case of the extended format), the limiting
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methods of the dynamic array are overridden to allow other element sizes.

This is done by a small speed sacrifice).

TVector is an abstract class, objects of that class should not be created.

Numerical two-dimensional complex matrix

TMatrix = OBJECT(TVector)

While lists and tree nodes all contain object references in their dynamic

memory area, the matrix contains numbers. The TMatrix class allows stor¬

age of two-dimensional matrices. Its subclasses are used to store parame¬

ters and other Leporello numerical data. It can either contain real or

complex elements. If it is complex, the imaginary parts of its contents are lo¬

cated in a consecutive memory block after the real values. Its methods con¬

tain element access as well as matrix manipulation methods (sub-matrix

extraction, matrix merge, column and row-access).

Methods

element access methods are provided in subclasses where the element type is fixed.

InsertRowsBefore Sub-matrix access

DeleteRows

InsertColsBefore

DeleteColumns

GetSuhMatrix

SetSubMatrix

Sub-classes of TMatrix are TIntegerMatrix and TDoubleMatrix. Their elements

are accessed by the methods GetElement and SetElement.

Note: During the implementation of the Matlab communication and file exchange
facilities of Leporello we realized that in the internal data structure of Matlab, matrices

are still stored transposed, i.e. in Fortran notation (column-wise). Although the world¬

wide non-Fortran software community uses row-wise matrix storage format, we

decided to adapt the Matlab notation in order to ease communication and file storage.

D.2. Garbage collection

It is generally known, that garbage collection (removal of objects which are not used

anymore) is a problem in object oriented environments. Very often an object can not be

assigned to a fixed owner. It is therefore not a priori knownwho is responsible for free¬

ing it from memory. The most crucial situation occurs if the critical object is pointed to

from several other objects. They all start using the object, the order in which they stop

using it is not defined. If some of the owners wants to free it, the other owners should
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be either asked for permission or at least be notified. It is mostly not possible to detect

an invalid reference to the freed object.

One solution to that is the implementation of a use-counter. This technique has been

used with the lists used in Leporello .

We introduced the TLList class, a subclass of MacApp's TList class.

Leporello list class

TLList = OBJECT(TList)

TLList overrides several of the TList methods to suit our needs (i.e. read

and write not only move the list's data fields but also all elements in the

list).

In addition to that, it includes a garbage collection mechanism.

Fields

fUsedCount Number of objects which use this list

Methods

StartUse

StopUse

Functions which update the use count of the object

If the list is to be used by another object, it is not assigned to a variable by using the

Pascal ':=' operator, this is done by a call to StartUse:

BEGIN

fStoredList := someList.StartUse;
END;

The StartUse method returns SELF, the fUsedCount field is incremented. If the

object is no longer needed, the owner calls the StopUse method, fUsedCount is dec¬

remented, and if this causes it to reach zero, the list is freed. StopUse returns NIL.

This technique requires all objects accessing a shared list object to use this mechanism.

All use-calls must be symmetrical, i.e., each object which called StartUse must call

the StopUse method.

1. The best place to implement this functionality would be the TObject class. However, we did

not want to change MacApp code. The most general class of all the classes which needed this

garbage collection was the list class.
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Glossary

Abstract class: (OOP)1 A class which is not used to create object instances, but to pro¬

vide a set of fields and methods which are overridden in specialized subclasses.

Action tree: (L) A tree structure which contains the history of a design process.

Action tree root (L) An algorithm node whose algorithm produces CDC objects (i.e.

reads them from file, asks them from the user or performs measurements)

Algorithm: (general) A prescribed set of well-defined rules or processes for the solu¬

tion of a problem in a finite number of steps.

(Software) A finite set of well-defined rules which gives a sequence of operations for

performing a specific task. [15]

Algorithm node: (L) An action tree node which contains all information about the exe¬

cution of an algorithm: a reference to the algorithm information and the parameter list.

Block diagram: A diagram of a system, a computer, or a device in which the principal

parts are represented by suitably annotated geometrical figures to show both the basic

functions of the parts and their functional relationships. [15]

CDC object node (CDC node): (L) An action tree node which contains the CDC object
which resulted from an algorithm execution. A CDC object node is always child to an

algorithm node and vice versa.

Consistent algorithm node: (L) An algorithm node whose parameter sets have been

applied to all the CDC objects contained in its possibly multi-object parent node.

Data flow diagram: A graphic representation of a system, showing data sources, data

sinks, storage, and processes performed on data as nodes, and logical flow of data as

links between the nodes. [11]

Grandchildren: (L) Children of one of this node's children.

- of a CDC node: the results of the algorithms applied to this node

- of an algorithm node: the algorithms applied to its results

Grandparent: (L) Parent node of this node's parent.

1. Entries marked (OOP) are terms used in object oriented programming. Entries marked with

an (L) contain terms which were used and defined for the Leporello package.
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- of a CDC node: the CDC node its parent algorithm node was applied to

- of an algorithm node: the algorithm node which produced its parent CDC node

Leporello: (L) The servant of Don Giovanni in Mozart's opera with the same name

[31]. In the first act of the opera, he is to tell all the adventures of Don Giovanni to

Donna Elvira. He reads from his 'catalogo', where he is carefully keeping track of all

these adventures. He knows their exact numbers ('Ma in Espagna, son gia milk tre') and

other details. Our CACSD package Leporello is supposed to do exactly that: keep
track of what we did during a control design cycle.

Multi-parameter node: (L) An algorithm node whose algorithm has been applied

repeatedly to the same CDC object. It contains a list of all parameter sets used

Multi-object node: (L) A CDC node which contains the results of an algorithm node

executed repeatedly, either with several parameter sets on the same CDC object or

with one parameter set on another multi-object node. All CDC objects collected in a

multi-object node are the results of the same algorithm node and share the same struc¬

ture.

Multi-object subtree: (L) Part of the action tree which was created by applying algo¬
rithms to a multi-object node. Each node of the multi-object subtree is a multi-object
node.

Override: (OOP) A method inherited from a superclass which is changed by a sub¬

class is called overridden.

Parameter: (mathematical) A variable that is given a constant value for a specific pur¬

pose or process.

(physical) One of the constants entering into a functional equation and corresponding
to some characteristic property, dimension, or degree of freedom.

(control systems) A quantity of property treated as a constant but which may some¬

times vary or be adjusted. [15]

Sister Node: (L) Tree nodes with the same parent node.

- of an algorithm node: an algorithm applied to the same CDC node

- of a CDC node: a CDC node which contains results of the same algorithm node,

but which have a different structure. -> twin node

Subclass: (OOP) A class which inherits all the fields and methods of its superclass.
Additional fields and methods can be added, or inherited methods can be overridden

System: (automatic control) A collection of interconnected physical units or mathemat¬

ical equations or operations. [15]
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Twin nodes: (L) Multi-object node which was split up into several nodes. All twin

nodes therefore contain results of the same algorithm node and share the same struc¬

ture. They may have different children.

Target CDC node: (L) The twin node to receive the results of the next execution of its

parent algorithm. If this result does not match the structure of CDC objects contained

in the twin, a new CDC node is created.
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