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Abstract

In this thesis, the complex dispersion relation (frequency versus complex

wavenumber) of guided, axisymmetric waves in circular cylindrical struc¬

tures is investigated theoretically and confirmed by an extended series of

experiments. The goal of this work is to understand the topology of the

complex wave spectrum for various cylindrical structures, such as elastic

shells containing a viscoelastic core, as well as isotropic and anisotropic
rods with a circular cross-section in order to determine complex material

properties of the structures. In particular, a theoretical model is derived to

calculate the complex dispersion relation of axisymmetric wave modes in

a thin-walled linear elastic shell containing a viscoelastic core. Curvature

and transverse strain cause a coupling between the shell wall bending
and longitudinal motion in an empty cylindrical shell. Therefore the disper¬
sion relation of a system consisting of a shell and a viscoelastic core is

governed by the shell properties as well as the bulk modulus, the shear

modulus, and the density of the core material. By varying the complex
moduli, the core can be modelled as an inviscid fluid, an elastic material,

or anything between these two extremes.

New dynamic metrology is developed to measure complex dispersion
relations in a frequency range of between 1 kHz to 2 MHz with up to 40

travelling wave modes in one single process. With a heterodyne LASER

interferometer, which was partly developed at the Institute of Mechanics,

ETH Zurich, the radial and the longitudinal displacement of the shell sur¬

face is detected. The signals are processed with FFT1 in the time domain.

To decompose the complex wave-number dependence, a complex total

least squares algorithm is used in the space domain. This algorithm, orig¬

inally developed for the signal processing of NMR2 signals, demands

fewer measurements than FFT and allows a lower signal-to-noise ratio. It

extracts both the real and the imaginary part of the wavenumber from the

measured data.

The axisymmetric waves are excited with a radially and a longitudinally-
acting piezo transducer simultaneously. Most of the experiments are per¬

formed using a steel tube with a diameter of 25 mm and a wall thickness

of 0.5 mm. The tubes are filled with water, milk, alcohol, glycerine, silicone

1. Fast Fourier Transform

2. Nuclear Magnetic Resonance



Abstract v

oil, and polyisobutylene.
Linear elasticity can be considered as an extreme case of viscoelasticity

(long relaxation times compared with the deformation cycles). To ascer¬

tain the validity of the theory as well as the computational precision, dis¬

persion curves are also calculated for a shell containing a viscoelastic

material behaving like the elastic shell. These results are compared with

measured curves of an isotropic aluminium rod where excellent agree¬

ment was found.

In the case of the isotropic aluminium rod, the phenomenon of 'backward

wave propagation' in which the group velocity and the phase velocity of

particular modes have opposite signs, is clearly measured.

The method is finally applied in order to determine material properties of

anisotropic materials. In this case, the complex dispersion relation of a

carbon fibre-reinforced epoxy rod with cylindrical cross-section is meas¬

ured. The theory presented by Mirsky in 1965 is implemented and the

influence of the material constants on the topology of the dispersion rela¬

tion is discussed numerically. Using the knowledge of the mode shapes at

specific locations in the dispersion diagram, the five material parameters

describing the dynamic behaviour of transversely isotropic material can

be determined step by step with high accuracy. As the imaginary wave-

numbers are measured as well, the frequency-dependent damping
behaviour of the composite material is discussed on a qualitative basis.



Zusammenfassung

Die komplexe Dispersionsbeziehung (Frequenz uber komplexe Wellen-

zahl) von axialsymmetrischen, gefuhrten, mechanischen Wellen in kreis-

zylindrischen Strukturen ist Gegenstand einer theoretischen und

experimentellen Untersuchung. Das Ziel der Arbeit besteht im Verstand-

nis der Topologie des komplexen Wellenspektrums von verschiedenen

zylindrischen Strukturen wie elastischen Schalen mit viskoelastischem

Kern sowie von isotropen und anisotropen Staben mit Kreisquerschnitt.
Dieses Verstandnis bildet die Basis zur Bestimmung von Materialeigen-
schaften mittels Wellenausbreitungsphanomenen.
Ein theoretisches Modell wird hergeleitet, das die Berechnung der kom¬

plexen Dispersionsbeziehung von axialsymmetrischen Wellen in diinn-

wandigen, linearelastischen Zylinderschalen, die mit einem visko-

elastischen Material gefiillt sind, ermoglicht.
Durch Kriimmung und Querkontraktion der Schalenstruktur entsteht eine

wellenlangenabhangige Koppelung zwischen Longitudinal- und Biegebe-

wegungen. Die Dispersionsbeziehung des Systems bestehend aus

Schale und Kern wird deshalb durch den Kompressionsmodul, den

Schubmodul und die Dichte des Kernmaterials beeinflusst. Die Variation

der komplexen Moduli des Kernmaterials ermoglicht die Simulation eines

inviskosen Fluids, eines linearelastischen Materials Oder jeder beliebigen,
"viskoelastischen" Zwischenstufe dieser beiden Extremfalle.

Zur Messung der komplexen Dispersionsbeziehung wurde eigens ein

Messverfahren entwickelt, das die Detektion von bis zu 40 lauffahigen
Wellenmoden in einem Frequenzbereich von 1 kHz bis 2 MHz ermoglicht.
Mit einem heterodynen LASER Interferometer, das teilweise am Institut

fur Mechanik der ETH Zurich entwickelt wurde, wird die radiale und die

longitudinale Bewegung der Schalenwand gemessen. Im Zeitbereich

erfolgt die Signalverarbeitung mittels FFT1. Die Zerlegung der Messignale
im Ortsbereich in ihre harmonischen Bestandteile wird mit einem Algorith-
mus ausgefiihrt, der auf der Methode der kleinsten, komplexen Fehler-

quadrate beruht. Dieser Algorithmus, der urspriinglich zur Signal¬
verarbeitung von NMR2 Signalen geschrieben wurde, kommt mit weniger
Stutzstellen aus, arbeitet bei einem schlechteren Signal/Rauschverhaltnis

1. Fast Fourier Transform

2. Nuclear Magnetic Resonance (Kemspinresonanz)



Zusammenfassung VII

als FFT und extrahiert sowohl den Real- als auch den Imaginarteil der

Wellenzahlen aus den Messignalen.

Die axialsymmetrischen Wellen werden mit einem radial wirkenden, ring-
formigen und teilweise zusatzlich mit einem longitudinal wirkenden piezo-
elektrischen Transducer angeregt. Die meisten Experimente wurden mit

Stahlrohren von 25 mm Durchmesser und 0.5 mm Wandstarke ausge-

fiihrt. Dazu wurden die Rohre mit Wasser, Milch, Alkohol, Glyzerin,
Silikonol und Polyisobutylen gefiillt.
Lineare Elastizitat kann als derjenige Spezialfall der Viskoelastizitat

betrachtet werden, bei dem die Relaxationszeiten gemessen am zeit-

lichen Zyklus einer Strukturwelle lang sind. Zur Bestatigung der Gultigkeit
des theoretischen Modells und zur Ueberpriifung der numerischen Zuver-

lassigkeit des entsprechenden Computerprogrammes, wurde die Disper¬

sionsbeziehung fur ein Rohr berechnet, das mit einem hypothetischen,
"viskoelastischen" Material gefiillt ist, welches die gleichen dynamischen

Eigenschaften hat wie das Rohr selbst. Diese Dispersionskurven zeigen

hervorragende Uebereinstimmung mit Kurven, die an einem vollen Alumi-

niumstab mit Kreisquerschnitt gemessen wurden.

An diesem Aluminiumstab konnte das Phanomen der "Backward wave

propagation" gemessen werden, ein Bereich einer Dispersionskurve, bei

dem Phasen- und Gruppengeschwindigkeit der Strukturwellen entgegen-

gesetzte Vorzeichen haben.

In einer dritten Phase wurde die oben beschriebene Messtechnik zur

Bestimmung der Materialeigenschaften von anisotropen Materialien ver-

wendet. Dazu wurde die komplexe Dispersionsbeziehung von axialsym¬
metrischen Wellen in einem kohlefaserverstarkten Kunststoffstab mit

Kreisquerschnitt gemessen und mit theoretischen Dispersionskurven ver-

glichen, die nach der Theorie von Mirsky (1965) berechnet wurden. Mit

Hilfe der Kenntnis der Wellenformen an verschiedenen Punkten des

Dispersionsdiagrammes konnten die fiinf Materialparameter, welche das

elastische Verhalten eines transversalisotropen Werkstoffes beschreiben,

schrittweise mit hoher Genauigkeit bestimmt werden. Die Messung der

Imaginarteile der Wellenzahlen erlaubt zudem eine qualitative Diskussion

des frequenzabhangigen Dampfungsverhaltens.
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1 Introduction

Most of the information about our surrounding world is carried to our

sense organs by wave propagation phenomena. Imagine walking in an

unfamiliar room in total darkness; one can easily estimate the size of the
~

room or the height of the ceiling, and one can even say whether or not the

room is furnished. In this case the human body acts as an emitter and

receiver of acoustic waves and most of the information concerning the

surrounding world is connected with the time delay between the emitted

and the received signals, as well as with the frequency spectrum of the

response.

In this investigation, wave propagation phenomena are used to character¬

ize and inspect various cylindrical structures consisting of linear elastic

material, isotropic material, combinations of linear elastic and viscoelastic

materials, and anisotropic material. The common feature of all structures

investigated below is the axisymmetry of the specimen and of the propa¬

gating, guided waves. One of the advantages of the axisymmetry is the

well-defined geometry and the reduction of radiation loss towards support

devices when exciting the structural waves. A further advantage of the

axisymmetry is the fact that the energy carried by the waves is focused

around the longitudinal axis of the specimen, which is of particular impor¬
tance for systems with high damping, such as shells containing highly vis¬

cous fluids. The theoretical and experimental analysis of the dynamic
behaviour of the structure is based on the complex dispersion relation of

propagating axisymmetric wave modes. The complex dispersion relation

can be considered as a dynamic fingerprint of one particular structure

containing information about the geometry and the elastic or viscoelastic

properties of the materials forming the structure.

1.1 Previous work

The various aspects of problems relating to wave propagation in a tube

filled or surrounded by a fluid have been the subject of numerous studies.

Many of these studies pertain to the water hammer effect or to the propa¬

gation of heartbeat in human arteries. Recent work deals with both the

fields of acoustic radiation and wave scattering of submerged cylindrical
shells with various end caps. The aim of the latter is to interpret the
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acoustic far field in order to draw conclusions about the shell geometry.
The history of analytical description of waves in cylindrical structures

dates back to 1876, when Pochhammer [1] published his work. Early
work on the water hammer effect was performed by Joukowsky [2] and in

1956, Skalak [3] published an extension of the water hammer theory. A

brief overview of further significant contributions to this subject is given by
Fuller and Fahy [4]. Heimann and Kolsky [5] contributed to the investiga¬
tion of waves in thin-walled empty shells, both, theoretically and experi¬

mentally in 1966. The problem of a thin-walled elastic shell with a

compressible, inviscid fluid was first solved by Lin and Morgan [6] in

which the results were limited to real wavenumbers. Assuming the fluid to

be inviscid, Fuller and Fahy [4] calculated the dispersion curves for

axisymmetric waves (n=0) and for the first order non-axisymmetric modes

(n=1) in the plane of real wavenumber vs. frequency, the plane of imagi¬

nary wavenumber vs. frequency, and in the space of complex wavenum¬

ber vs. frequency. Guo presented approximate solutions to the dispersion

equation for fluid-loaded shells [7] and has studied the attenuation of heli¬

cal waves in a three-layered shell consisting of elastic and viscoelastic

layers [8]. On the experimental side, Plona et al. [9] analysed waves in a

thick-walled tube which was surrounded and/or filled with water and com¬

pared it with the theoretical results from Sinha et al. [10].
It is generally observed that the number of papers treating this subject

experimentally is rather limited when compared with the various theoreti¬

cal publications which differ mainly in their objectives and assumptions.
This might be due to the fact that the number of travelling modes grows

with frequency and the group and phase velocities of the various modes

are almost equal over wide frequency ranges. Thus the dispersion rela¬

tion can scarcely be detected by means of measuring arrival times of nar¬

row band pulses or by calculating phase differences of propagating
narrow band pulses at two locations, except for the first two modes in a

very low frequency range, as recently presented by Lafleur and Shields

[11]. For a linear elastic cylindrical rod, a simple but more effective

method was used by Zemanek [12]. He was able to measure up to six

symmetric and antisymmetric modes in an elastic cylindrical rod with a

circular cross-section measuring the frequencies of standing waves.

In 1977 Krause, Goldsmith, and Sackman [13] recorded and published
some plots of the strain versus time function of a fluid-filled tube which

was subjected to a longitudinal impact. In addition, these results were
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compared with those of the extended Skalak water hammer theory [3] by
Barez, Goldsmith, and Sackman [14] in 1979.

In the field of anisotropic cylindrical structures, Mirsky [15] published a

theoretical investigation of axisymmetric and non-axisymmetric wave

propagation in a transversely isotropic, hollow rod with circular cross-sec¬

tion. In a companion paper, he provided numerical results [16]. Mirsky's
approach formed the basis for the investigation found in Chapter 5 of this

thesis. On the experimental side, Dual [17] detected the first two axisym¬
metric wave modes in an orthotropic, hollow cylinder and compared it with

the theoretical results of Shulga [18] and Ramskaya [19].

Throughout the duration of this thesis work, two text books covering the

fundamentals of wave propagation have frequently been consulted:

"Wave Propagation in Elastic Solids" by Achenbach [20] and "Wave

Motion in Elastic Solids" by Graff [21].

1.2 Scope and outline of the present work

The original motivation of this thesis was the extension of a dynamic vis¬

cometer which was developed by Dual [17] at the Institute of Mechanics,

ETH Zurich. The principle of this viscometer is the damping measurement

of a submerged cylindrical rod or tube vibrating with one of its lower tor¬

sional modes, an idea which led to a successfully commercialized prod¬
uct. One of the major problems in the application of such sensors is that

most practical, important fluids are viscoelastic in nature. Therefore the

dynamic interaction within a thin-walled cylindrical shell containing a vis¬

coelastic core is extensively studied in this thesis with the aim of finding
effects which could permit the detection of further fluid properties such as

the density and the complex, frequency-dependent shear and bulk

moduli.

In a field 'somewhere' between acoustics, fluid mechanics, and solid

mechanics, many effects and phenomena interfere with each other, and

the borders between these classical disciplines fade with the increasing
generality of the constitutive equations. In fluid mechanics, shear resist¬

ance in a boundary layer is assumed to be proportional to the velocity
gradient, whereas an acoustic fluid is assumed to be inviscid. The various
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motivations, the complexity of the interaction of two wave guides, and the

lack of powerful computers led to diverse assumptions and simplifications
in the past. In this study, a general viscoelastic approach for dilatation and

shear deformation of the core material enables one to calculate the dis¬

persion relation of an empty shell, a fluid-filled shell, a shell filled with a

viscoelastic medium, and a linear elastic rod with circular cross-section by
varying the values of the viscoelastic material properties only.
Many interesting effects have been found in this way, thus forming a basis

for the development of future fluid sensors, as outlined in detail in

Chapter 2.

Another main achievement is the development of a new high resolution

measurement technique for the detection of complex dispersion relations.

Before this method was introduced, the frequency-wavespeed depend¬
ence of waves propagating in one dimension in rods and plates has typi¬
cally been measured with narrow band pulses multiplied by Hanning
windows. The propagating pulses were then recorded at two locations

along the specimen. The phase velocity was calculated from the differ¬

ence of the two phase spectra and the distance between the locations.

This method, however, is completely inadequate if more than one mode

propagating with similar group velocities are present and/or if reflected

pulses from the ends of the specimen interfere with the outgoing pulses.
The new method, introduced in Chapter 3 of this thesis, is based on the

following idea: All modes of interest should be excited simultaneously by
broad band pulses. If the displacement function is recorded at many

points along the specimen during a certain period, a spectrum analysis in

time domain and a spectrum analysis in space domain lead directly to the

dispersion curves, no matter how many modes or reflections are present.
For the signal processing of the experiments in this thesis, the combina¬

tion of FFT, used for the spectrum analysis in time domain, and a total

least squares algorithm, used for the spectrum analysis in space domain,

provided excellent results, while keeping the required computer capacity
at a reasonable level.

The new method, first applied to cylindrical shells containing several vis¬

coelastic liquids, has since been successfully applied to measure the

complex dispersion relation of longitudinal/radial and torsional modes of a

transversely isotropic rod in order to determine the elastic properties of

the fibre-reinforced composite material.



2 Theory of wave propagation in a

shell with viscoelastic core

2.1 Nature and representational forms of dispersion

Constructive interference between P-, SH- and SV-waves and their reflec¬

tions in a three-dimensional medium of finite cross-sectional dimensions

causes so-called 'wave modes' of guided waves in structures. In a limited

interval of frequency and wavenumber, a finite number of propagating
modes regularly exists. In the case of axisymmetric waves in a cylindrical
structure, it is sufficient to consider one-dimensional wave propagation in

the direction of the symmetry axis (x-axis) in order to characterize a three-

dimensional structure.The propagating harmonic waves can be described

as follows:

n = p

X-i i(tot + knx)
_

i(<ot-k„x)

u(x,t) - £(Anel +Bne ) (2.1)

n = 1

in which u denotes the displacement of a surface point of the structure

and p denotes the number of travelling modes in the x-direction. Here co

indicates the frequency and k the complex wavenumber which can be

regarded as 'frequency' in space domain. The imaginary part of the wave-

number k indicates a decaying or a growing wave mode depending on its

sign, whereas the constants An and Bn describe the size of the ampli¬
tudes.

Dispersion diagrams referring to a steel shell with a diameter of 26 mm, a

wall thickness of 0.5 mm, and filled with silicone oil are presented here to

illustrate different representational forms of dispersion. Detailed physical

interpretations of the shapes of the curves are given in Section 2.3.

Regarding Eq. (2.1), the clearest way to represent a dispersion relation is

by drawing curves in the cok plane, as shown in Fig. 2.1. Here R denotes

the mean radius of the shell, h the wall thickness, and cp the velocity of

longitudinal waves in a plate (see Appendix A of this thesis). However,

other forms like phase velocity versus frequency (Fig. 2.2) or group veloc¬

ity versus frequency (Fig. 2.3) are also very common. All diagrams shown

in Fig. 2.1, Fig. 2.2, and Fig. 2.3 represent the same dispersion relation,
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thus providing clarity for those readers who are not familiar with the cok

form. Since the experimental verification directly yields to versus k, the

theoretical dispersion curves will also be represented in the frequency-
wavenumber plane or in the space defined by real frequency and com¬

plex wavenumber in the following.
coR/Cp

0
01 02 03 0 4 05

'long'waves 'short'waves

Fig. 2.1 'Normalized frequency versus normalized wavenumber' representational
form of axisymmetric wave modes in a fluid-filled cylindrical shell.

Cfcp

Fig. 2.2 'Normalized phase velocity versus normalized frequency' representational
form of axisymmetric wave modes in a fluid-filled cylindrical shell.

Cg/Cp

Fig. 2.3 'Normalized group velocity versus normalized frequency' representational
form of axisymmetric wave modes in a fluid-filled cylindrical shell.
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2.2 Derivation of the governing equations

2.2.1 Dynamic shell equations

A model for isotropic thin-walled elastic shells, including effects of shear

deformation and rotary inertia, forms the basis of the dispersion relation.

Despite the fact that torsional modes are axisymmetric as well, they are

not considered in this investigation. Thus the dynamic equilibrium of an

infinite shell element bordering the viscoelastic core is formulated in the

plane defined by the radial and the longitudinal coordinate. In Fig. 2.4 the

forces acting on a differential shell element are shown.

E, Ps,v

Fig. 2.4 Differential shell element and forces involved in axisymmetric wave

propagation.

Nx,x = Pshux,tt + arx (2.2)

N

Qr,x--^ = Pshur.tt + ^rr

f h
-Mx,x + Qr= Ps^.tt + °rx2

(2-3)

(2-4)
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In Eq. (2.2), Eq. (2.3), and Eq. (2.4), of denotes the stress at the interface

between the inner shell surface and the viscoelastic core medium.The

term I indicates the moment of inertia, and % the slope of the cross-section

due to bending. In general, index s designates terms associated with the

shell and index f designates terms associated with the core. Derivatives

are written in the short form: urx denotes the derivative of the radial dis¬

placement ur with respect to x.

According to Timoshenko [22], effects of shear deformation and rotary
inertia of the linear elastic shell are considered. Here the 'wrong' assump¬
tion that the cross-section remains plane is corrected by the factor k. Val¬

ues for k depend on the shape of the cross-section and are chosen from a

publication by Cowper [23]. The limits of the author's approach were eval¬

uated by comparing the results for an empty shell with those of the exact,

three-dimensional theory presented by Herrmann and Mirsky [24]. The

difference between the exact theory and the approximate theory
amounted to less than 1 % for the frequency range considered (see
Appendix B).

Fig. 2.5 and Eq. (2.5) show that the derivative of the deflection ur with

respect to the longitudinal coordinate x consists of a part caused by bend¬

ing (£) and a part caused by shear deformation (y0).

symmetry axis

equilibrium position

of the mid-plane

ur(x)

!
I

"r,x

Fig. 2.5 Deflection of the cross-section of a shell element due to bending and shear

deformation.
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ur,x = ^ + Yo (2-5)

Using the kinematic relations for cylindrical coordinates, Eq. (2.6),

Eq. (2.7) and the constitutive equations for linear elastic shell material,

Eq. (2.8), Eq. (2.9), the stress resultants M, N, and Q are obtained by

integrating the stresses through the thickness of the shell element (see

Eq. (2.10) to Eq. (2.13)).

ex = u -2;y (2.6)

u

e* = r' (2-7)

ox = -L_(ex + Ve#) (2.8)
1 -v

0*= 2<E* + VEx) (Z9)
1 -V

y indicates the integration variable in the shell wall in radial direction, and

higher order terms are neglected.

h

2

Nx= J°xdy =
—pk.x

+
4r) (2.10)

. 2V, x,x p

1 -v
n

N* = J°*dy = ^(sr+vlO (2"11)
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Qr = hGK(urjX-^) (2.12)

Mv = 1 yaxdy
Eh°

12(1-v2)
,x

(2.13)

Substituting the expressions for the stress resultants M, N, and Q into

Eq. (2.2), Eq. (2.3), and Eq. (2.4) and eliminating \, leads to Eq. (2.14)

and Eq. (2.15), a system of two coupled differential equations. In these

equations, D denotes the bending stiffness of a plate

[D := Eh3/ (12(1-v2))] and C denotes the longitudinal stiffness of a plate

[C := Eh / (1-v2)]. It can easily be seen that in the limit R -> °°, Eq. (2.14)

and Eq. (2.15) are decoupled and represent the dynamic equations for

bending waves and longitudinal waves in a thin plate, respectively.

Du
r, xxxx

-l^Ps'K
kG ,

ttxx KGh

( s ^\

f C Ujyxx S

rr, xx pi p x, xxx

psh + ^r^
R KGh

s C

Jr,tt+p

f s

u

Ps'
-°rr + 0"rx>x2 KQh

yj

r s

— + VU„
„

R xx

CTrr,tt + PsnUr,tttt+RVUx,ttx

(2.14)

UX,XX + V-R^ = Psh^tt + Or: (2.15)

The next step in deriving the dispersion relation is the formulation of the

interface stress orr and orx as a function of shell displacement.
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2.2.2 Wave propagation in the linear viscoelastic cylindrical core

To describe the interface stresses between the shell and the viscoelastic

core, wave propagation in the three-dimensional core must be investi¬

gated. For harmonic time functions, the constitutive equation for isotropic
linear viscoelastic material is derived from the equations for linear elastic

material, written in terms of Lame constants X and u., see Eq. (2.16).

*., = *Vkk + 2|ie„ (2-16)

By adding loss moduli to the storage moduli, the whole investigation
becomes complex:

o„ = >t*(co)8ijekk + 2^(co)Eii (2.17)

In Eq. (2.17), X* and u* are complex, frequency-dependent functions

describing the relation between stress ay and strain e-,j. The Kronecker

symbol is denoted by 5,j. In general, the asterisk
*

designates values

which are complex due to viscoelasticity.
In this investigation, Maxwell models are used for both X*(oa) and u,*(co),

represented in Eq. (2.18) and Eq. (2.19), in order to represent the viscoe¬

lastic behaviour of the medium. As illustrated in Fig. 2.6, this model con¬

sists of a spring and a damper on the same axis subjected to the same

force. For high frequency, compared with the reciprocal value of the relax¬

ation time T, this model is governed by the spring and for low frequency

by the damper.

Fig. 2.6 Illustration of Maxwell behaviour for dilatation and shear deformation.
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X* (CO)
X0\li)

ico +1 /Tx

u*(co)
H0ico

ico + 1/T

(2.18)

(2.19)

Eq. (2.19) shows the complex shear modulus u* and Eq. (2.20) the com¬

plex bulk modulus B*.

B*(co) = A* (co) + §u*(co) (2.20)

Eq. (2.21) represents the complex shear viscosity t|* and Eq. (2.22) the

complex bulk viscosity b*, two definitions which help to visualize the prop¬

erties of the core material.

^(co) =
iiLM. (2.21)

ico

D*(co) =^ 2u-(co2
ico 3 ico

A Maxwell model is one of the simplest models used to characterize vis¬

coelastic material behaviour. However, if experimental results show rea¬

son to use a more sophisticated model, this can easily be realized by

modifying Eq. (2.18) and Eq. (2.19).
The displacement field is expressed in terms of derivatives of potentials,
as shown in Eq. (2.23). This form decomposes the displacement field in a

dilatational part, associated with cp, and a rotational part, associated with

uf = Vcp + V x S (2.23)

Since the motion is assumed to be axisymmetric and torsional modes are
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not considered in this investigation, all derivatives with respect to tJ vanish

and the vector field £ is reduced to one dimension, as shown in

Eq. (2.24).

W =

'0>

vo;

(2.24)

The approach used in Eq. (2.23) enables one to separate the dynamic
equation of motion into two so-called Helmholtz equations, Eq. (2.25) and

Eq. (2.26).

-co pfcp- (X*(a>) +2\i* (a>))Aq> = 0 (2.25)

-co pf«P-n* (co) A«F = 0 (2.26)

The potentials <p and *F propagate with the velocities c,p* and c^* ,
as

specified in Eq. (2.27) and Eq. (2.28). k^* and k^,* are the corresponding
wavenumbers. In linear elasticity, the common designations for c * and

Cy* are c-| and c2.

*
_

IX*(co) + 2u*(co)
9 4 Pt

k *
' K<P

k *

CO

v - $a ;
CO

(2.27)

(2.28)

To solve the Helmholtz equations Eq. (2.25) and Eq. (2.26), the following
assumptions are made for waves propagating along the tube:

cp(r,x,t) = f(r)e
i(wt-k*x)

¥(r,x,t) = g(r)e
i(tot-k*x)

(2.29)

(2.30)
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The derivatives of the potential functions Eq. (2.29) and Eq. (2.30) are

expressed in terms of Laplace operators for cylindrical coordinates,

Eq. (2.31) and Eq. (2.32). Substituting these expressions into the Helm¬

holtz equations, the differential equations Eq. (2.33) and Eq. (2.34) for the

unknown functions f(r) and g(r) are obtained.

A(P =

<P,xx+7(P,r + (P,„ (2.31)

A¥ =

'
r

(2.32)

r2f,rr+rf,r+r2(V2-k*2)f = °

r2grr+rgr + [^(k^-k*2) -1]g = 0

(2.33)

(2.34)

For simplicity of notation, the following abbreviations are used:

p\p*
2

:= V
i

- k*
2
and (V2 := kT*2 - k*2

.

According to Abramowitz and Stegun [25], Eq. (2.33) and Eq. (2.34) are

solved by combinations of complex Bessel functions J0, J1f Kq, K^ repre¬

sented in Eq. (2.35) and Eq. (2.36), in which a1,a2,b1,b2 are arbitrary con¬

stants to be determined by satisfying boundary and interface conditions.

HO =a1J0(P(p*r)+a2K0(ip<p*r)

g(r) = ^J^p^rJ+baK^ipV'r)

(2.35)

(2.36)

The displacement field can now be expressed by substituting Eq. (2.29)
and Eq. (2.30) into Eq. (2.37).
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"r = <P,r-^x

"* = 0

UX = 9,x + ,J,,r+7^ (2l37)

If the motion is axisymmetric, the radial motion vanishes on the symmetry
axis and the axial motion must remain finite. Since the values of the Bes¬

sel functions Kq and K-| go to infinity for r going to zero, this condition can

only be satisfied if the values of the constants a2 and b2 are set to zero.

The kinematic relations for the axisymmetric case [Eq. (2.38)],

err _ ur, r ' efl-d ~~

r

£xx= Ux,x: Erx = 2-(Ur,x + Ux,r) (2-38)

combined with the stress-strain relations [Eq. (2.17)], represent the final

step in formulating the problem.

2.2.3 Boundary and interface conditions between shell and core

At the interface between the shell and the viscoelastic core (r = R-h/2),
the radial displacement is equal and the components of the stress vector

are equal with opposite directions. The stress functions in the cylindrical

core, o>rf(r) and a^V). are presented in Eq. (2.39) and Eq. (2.40).
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o|r(r) = e,('Bt-k*x){^J0(p<p*r) [3lk*2X* + a$/(X* + 2u*)] (2 39)

+ J1(Pf*0

-J, (P¥*r)

2a, ^p/
r

^b^u*

+ J0(Pv*r)[2b1ik*pv*n*]

a'rx(r) = el(tot-k*xV*{J1(P<p*02a1ik*P(()*

+ J1(pvi/*r)[b1(k*2-P4,*2)]}

(2 40)

For the shell displacement, the following time- and space-harmonic

approaches are made-

ur = are = ur(r= R-h/2) (2 41)

s i((ot-k*x)
ux = axe (2.42)

Whereas the radial displacement of the shell mid-plane equals the radial

displacement at the core interface, the longitudinal displacement at the

interface consists of both the longitudinal shell displacement and the dis¬

placement caused by the rotation of the cross-section due to shell wall

bending [see Eq. (2.43) and Fig. 2.5].

f
,

_ . .„.
S <. h l(C0t-k*X) »h

ux(r= R-h/2) = ux + ^- = axe' + £- (2.43)

The deflection component £ of the cross-section caused by bending is a

function of wave speed of lateral waves and vanishes for c -> c2Tic. The
variable c2 indicates the velocity of shear waves in the shell material [see

Eq. (2.44)].
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c2 =

2psd+v)
(2.44)

According to Timoshenko's model [22], lateral and longitudinal modes in a

plate can be separated by their mode shapes and the speed limit of lat¬

eral waves is given by c27k. In a shell the relation between longitudinal
and lateral motion is frequency dependent and the wave speed can

exceed c27k due to membrane coupling. For that reason the term I; h/2
in Eq. (2.43) has to be 'switched off' if c> c2 Vic as shown in Eq. (2.45)

f
/ i-> l. /.-.s i(cot-k*x)

ux(r = R-h/2) = axe (2.45)

ICO i(mt-k*x)
—a_e

c r

2 \

'-4-
h 1

22
Sign

V

(Re[c])'

C2K

+ 1

in which Sign[x] = 1 for x > 0, Sign[x] = -1 for x < 0 and Signfx] = 0 for

x = 0. The function Re[c] takes the real part from the complex phase

velocity c.

2.2.4 Dispersion relation

Eq. (2.41) and Eq. (2.43) show the interface condition between shell and

core. Substituting these equations into Eq. (2.37) provides two linear

equations for the arbitrary constants ax, ar, a1( bv Two further equations
are obtained by substituting Eq. (2.39) and Eq. (2.40) into the dynamic
shell equations Eq. (2.14) and Eq. (2.15).

mi1 mi2 mi3 mi4

m2i m22 m23 m24

m31 m32 m33 %

m41 m42 m43 m44

*V

bj

0

0
(2-46)
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This homogeneous system of linear equations for the remaining con¬

stants ax, ar, a-\, b-| [Eq. (2.46)] has non-trivial solutions if the determinant

of the coefficients equals zero. (The coefficients m,j are presented in

Appendix A of this thesis.)

Dettm,,] = 0 (2.47)

Since this condition contains co, k*, as well as all geometrical and material

parameters of the shell and the viscoelastic core, Eq. (2.47) represents
the implicit dispersion relation. Assuming a real co, the corresponding
wavenumbers kn* are calculated with a complex root-finding algorithm
based on Newton's method. Then co is increased by Ato and the wave-

numbers of the former step are used as initial values for the next root-

finding procedure.

2.2.5 Normalized shell displacement

A knowledge of the shell displacement as a function of frequency is of

importance in interpreting the shapes of the various modes. As the shell

displacement can be measured in only one direction, this knowledge is

also very helpful in determining the optimal angle between the shell axis

and the measuring LASER beam.

In general, the relative shell displacement, i.e. the relation between ux

and ur is complex. Hence it contains information of the amplitude and the

relative phase shift between ux and ur of continuously propagating wave
modes. In Eq. (2.48) the complex relative displacement relation is written

in terms of the coefficients m,j found in Appendix A.

ax
— = [(m42m13-m43) (m24m13-m23m14)+ (2.48)
ar

(m23-m22mi3) (m44mi3-rT143mi4)]/

[-m13m41 (m24m13 - m23m14) + m13 (m44m13 - m43m14) ]
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Since ax and ar are complex constants, the shell displacements

[Eq. (2.41) and Eq. (2.42)] can be written as follows:

s i(cot-k*x) +\a,

U* = aJe
'

(2.49)

s , ,
i(cot-k*x) +ia,

ux = |ax|e
x

(2.50)

Now the complex displacement relation can be separated into the ampli¬
tude ratio, Eq. (2.51), and the phase angle between ux and ur, Eq. (2.52).

k ,ar|
= Abs[^xJ (2.51)

Aa= (ax-ar) = Arg^) (2.52)

Numerical analysis of Eq. (2.52) shows that the phase angle is very sen¬

sitive to small differences in the viscoelastic material properties.

2.2.6 Normalized stress field in the viscoelastic core

Another important characteristic feature of the wave modes is their asso¬

ciated stress field. To discuss the penetration depth of the wave propaga¬

tion in radial direction, the normalized stress vectors orrand orx versus a

normalized radial coordinate r are calculated for one particular mode at

one particular frequency.

r := -=-j- (2.53)

R-jj

Transforming the variable r to r in Eq. (2.39) and Eq. (2.40) leads to

Eq. (2.54) and Eq. (2.55). Again, these expressions are complex. The real
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part represents a snapshot of the stress field in the core, the absolute

value represents the highest magnitude ever reached at a specific loca¬

tion during one cycle, and the phase angle between the stress in the core

and the stress at the shell wall is associated with the time delay of the

stress when propagating in radial direction through the viscoelastic mate¬

rial.

<£(?) = -P^- (2.54)
arr(r= 1)

-f ,-.

°rx (0

(?) =

-"v '

(2.55)
°rx(r=1)

Eq. (2.54) and Eq. (2.55), which enable one to calculate the normalized

partial stress due to one travelling mode, are tools for the interpretation of

the mode shapes. However, the real stress situation in a system excited

with one particular frequency consists of the superposition of the stress

fields caused by all travelling modes at that frequency.

2.3 Examples of numerical results

In this research project, the theoretical formulation and the experimental

investigation began at the same time and were carried out simultane¬

ously. The experimental feasibility has a strong influence on the selection

of the parameters being varied in this section. Most of the experiments
are conducted using a steel tube (E = 2.000*1011 N/m2, v = 0.28, ps=

7800 kg/m3) with a diameter of 26 mm and a wall thickness of 0.5 mm, so

R/h = 26. This parameter, as well as the shell material, will remain

unchanged in the investigation below. One of the main interests is the

influence of the shear behaviour of the core on the complex dispersion
relation. The following aspects may help to clarify the influence of the var¬

ious material parameters on the shape of the dispersion curves.

In general, wave propagation in a medium demands elasticity to store
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potential energy and inertia to store kinetic energy. Therefore, discussing
wave propagation in a viscoelastic material deals necessarily with the

principal limits of wave propagation. The core material can either be dom-

inantly elastic or dominantly viscous for dilatation and/or shear deforma¬

tion. A viscous behaviour for dilatation suppresses the propagation of P-

waves which leads to dispersion curves similar to those of an empty shell.

Since no such material was found in reality, this class will not be dis¬

cussed.

Firstly, the dynamic behaviour of an empty shell and of a hypothetical fluid

column of infinite longitudinal extent is discussed. This approach may

help one to understand the dispersion relation of a shell with a viscoelas¬

tic core as a blend of two interacting wave guides.

Secondly, the numerical discussion is divided into three main sections

according to the nature of the shear resistance of the core:

•A shell filled with an inviscid core material (corresponding to an

acoustic fluid)
• A shell filled with a shear dissipative core material (corresponding to a

classical fluid)
• A shell filled with a shear elastic core material

In all cases, the real part of the velocity of P-waves c^* = 1005.66 m/s

[see Eq. (2.27)] and the density of the core pf = 969.00 kg/m3 are kept

constant, the complex bulk modulus [Eq. (2.20)] being dominantly elastic.

The starting point for this numerical investigation are values which have

achieved the best fit of a measured dispersion relation of silicone oil with

high viscosity at low shear velocity. However, to provide a nondimensional

form, the material constants are normalized with the Young's modulus Es,
the shear modulus Gs, and the density ps of the shell material. The relax¬

ation times are normalized with the upper frequency fmax of the consid¬

ered interval, which equals from 1 kHz to 1.0 MHz.
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Normalized

core

parameter

Inviscid

core

Dissipative
core

Shear

elastic

core

tyEs 4.9000 *10"3 4.8840 *10"3 4.4003 *10-3

' X '
max

1.0000* 106 1.0000 *106 1.0000 *106

m/Gs 1.2800 *10-11 5.1200 *10"3 6.4000 MO"4

'
H

*
max

1.0000 MO-1 1.0000 *10'2 4.0000 *101

Pf/Ps 1.2400 *10"1 1.2400 *10'1 1.2400 *10_1

Table 2.1 Normalized parameters for three classes of core material.

Due to numerical reasons, the values can neither be set to zero nor to

infinity, but rather to very high or very low values. For example, a relaxa¬

tion time T^ of 1 second already signifies an 'infinitely' long time in a fre¬

quency range between 1 kHz and 1 MHz, causing primarily elastic

behaviour.

2.3.1 The empty shell

The wave spectrum of axisymmetric wavemodes in the empty cylindrical
shell is comprised of three modes only, for the model considered. The tor¬

sional mode is excluded from this investigation, as mentioned earlier. The

shape of the other modes is either lateral (radial), longitudinal, or both.

The lack of material damping and radiation loss leads to purely real dis¬

persion curves, as shown in Fig. 2.7. This dispersion diagram will be dis¬

cussed beginning with the lowest frequency. For low frequencies and long
wavelength, the waves propagate with the velocity of longitudinal waves

in a bar c0. As soon as the wavelength of membrane waves reaches the

circumferential dimension, an additional mode (mode 1) appears as

explained by Heimann and Kolsky [5]. In that particular frequency range,
a strong coupling between radial and longitudinal motion occurs for both

modes. Whereas mode 0 changes its shape from dominantly longitudinal
to radial, mode 1 arises as a breathing mode transforming to an almost
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purely longitudinal mode. The coupling between radial and longitudinal
motion leads to the interaction of a core material with the shell through its

shear and bulk resistance.

200000

500 1000 1500 2000 2500 3000 3500 4000*6 k[rad/ml

Fig. 2.7 Dispersion diagram of an empty thin-walled shell.

0.001L

mode 1

200000 400000 600000 800000

1. 10

Fig. 2.8 Relation between axial and radial displacement of the empty shell.
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2.3.2 The hypothetical inviscid fluid column with stress-free

boundaries

Even in a weightless environment, a fluid column with stress-free circum¬

ferential boundaries and infinite longitudinal extent would be difficult to

realize. It is nevertheless a good tool for the interpretation of the disper¬
sion relations of a cylindrical core which is surrounded by a material of

greater stiffness. Fig. 2.9 shows the projection of the dispersion relation of

an inviscid fluid column in the k-frq notation. Mode L represents the longi¬
tudinal wave in the fluid column.

frq[Hz]

6

1. 10

800000

600000

400000

200000

500 1000 1500 2000 2500 3000 3500 400tT
"" """'

Fig. 2.9 Dispersion diagram of a hypothetical inviscid fluid column with stressfree

boundaries. (Projection into the real plane).

Unlike all other mainly radial modes which remain in the real plane (see
Fig. 2.10), mode L has a significant imaginary part indicating a relatively
strong attenuation. The reason for this dissimilar behaviour of mode L is

not understood yet by the author and needs further investigation.

a L- r>-3r3 /i
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frq[Hz]

6.

all other modes

-10
Im k[rad/m)

Fig. 2.10 Projection of the dispersion curves of an inviscid fluid column into the

imaginary plain.

As the dispersion diagram drawn in the frq-c notation shows (Fig. 2.11),
the phase velocity of mode L is lower than the speed of sound c,p in the

fluid. The reason for this diminution of the longitudinal phase velocity is

the weakness of the structure in radial direction.

mode L

speed of sound c9

200000 800000
- frq [Hz]

6
1. 10

Fig. 2.11 Dispersion diagram of a hypothetical inviscid fluid column with stress-free

boundaries. (Projection into the real plane)
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Fig. 2.12 shows that mode L is dominantly longitudinal. Lateral contrac¬

tion forces fluid mass to accelerate in the radial direction, thus reducing
the phase velocity of mode L below the speed of sound.

Abs(ax/ar)

10000.

100.

1

0.01

"""""*

200000 400000 600000 800000
«-.i-—j

1. 10

Fig. 2.12 Relation between axial and radial displacement of the circumferential

surface of a fluid column.
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2.3.3 The shell filled with an inviscid core

In contrast to Fig. 2.7 and Fig. 2.9, in which the behaviour of one single

waveguide is presented, all of the following diagrams are determined by a

dynamic interaction between shell and core.

Provided that no energy is emitted from the outer surface of the shell, the

dispersion curves also remain in the plane of real wavenumber versus

frequency when the shell is filled with an inviscid core material, as shown

in Fig. 2.13.

Fig. 2.13 Dispersion curves of the first 24 axisymmetric modes of a shell filled with

an inviscid material (acoustic fluid).

The dispersion curves are calculated from the right-hand side to the left,

starting with the highest wavenumber. Following the graph of one single

mode, a discontinuity in slope appears. As the superposition of the



28 Waves in shells with viscoelastic core (theory)

diagrams for the empty shell and for the shell with inviscid core (Fig. 2.14)
shows, this discontinuity is linked with the flexural mode of the empty shell

(mode 0 in Fig. 2.7). The straight line of the dispersion curves in Fig. 2.14

is associated with membrane waves in the shell propagating in longitudi¬
nal direction with the velocity cp (see Appendix A of this thesis). The cor¬

rect shape of the curves on the left side of the straight line can be

recognized when observing the first five modes. Except for mode 0 and

mode 1, each mode has a cut-off frequency but due to the close proximity
of the curves to each other, the root-finding algorithm jumps from one

mode to the next lowest mode.

mode 1 of the empty shell

Fig. 2.14 Superposition of the dispersion curves for an empty shell and for a shell

filled with an inviscid core material.

In order to explain the different stages of mode shapes along a dispersion
curve of one graph, the letters A to E are added to the dispersion curve of

mode 19 (Fig. 2.15), as well as to the corresponding graph in the dis¬

placement ratio diagram (Fig. 2.16).

Fig. 2.16 shows the absolute value of the normalized complex shell dis¬

placement ratio in logarithmic scale versus frequency. Point A indicates

the cut-off frequency of mode 19 where the shell is breathing simultane¬

ously over its whole length and the motion is purely radial. The next cut¬

off frequency, in terms of growing frequency, occurs roughly as soon as

the ratio formed by the core radius and a half P-wavelength is an integer.
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At point B the longitudinal component of the shell motion is equal to

approximately 20 times the radial motion and remains almost constant in

a small frequency range before it increases again, reaching its maximum

in point C. Following the graph of mode 19 towards higher frequencies
leads to point D where the radial motion is dominant again, and remains

dominant up to point E and beyond.

mode 19

200000

500 1000 1500 2000 2500 3000 3500 4001
e k[rad/mj

Fig. 2.15 Dispersion curves of the first 24 axisymmetric modes in the real plane
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Abs(ax/ar)
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mode 19

Fig. 2.16 Relation between axial and radial shell displacement of the first 24

axisymmetric wavemodes in a cylindrical shell containing an inviscid

material.

Since ax and ar are complex, the ratio ax/ar can be discussed in terms of

amplitudes (see Fig. 2.16) as well as in terms of the relative time delay
between the two components, expressed by the argument of the complex
ratio. For a shell filled with an inviscid, core the phase between ax and ar

jumps from -n/2 to +7i/2 so quickly whenever a mode reaches the area of

the membrane wave, that no vertical lines can be seen in Fig. 2.17. This

situation changes drastically when the core material has shear resist¬

ance. To show the line of the phase graph of mode 19, a dashed line has

been added to the diagram.
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Fig. 2.17 Phase angle between ax and ar for the first 24 modes in a shell filled with

inviscid material according to Eq. (2.52). The dashed line emphasises
mode 19.

2.3.4 The shell filled with a dissipative core

The dissipative shear behaviour of the core causes attenuation of the

shell waves, which results in a negative value of the imaginary part of the

wavenumber. In order to explain the topology of the dispersion curves of

a shell filled with a dissipative core, the quantity 8, representing a dynamic

penetration depth is introduced. Eq. (2.56) shows that a wave motion in

an arbitrary one-dimensional continuum, described by co and complex k*

with a negative imaginary part, can be written in terms of an undamped

travelling wave times an exponential attenuation factor in z-direction.

u (z, t) = ae
i(cot-k*z) i(cot-krz) k:Z

= ae e (2.56)

s
2n

8 =

ikj
(2.57)

According to Eq. (2.57), 8 describes the distance in [m] from the emitting

source to that point in the viscoelastic medium, where the amplitude has
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dropped to about 2 per mill of the initial amplitude, thus providing an

approximate value of the penetration depth of mechanical disturbances in

an attenuating medium. Assuming z to be a radial coordinate in the core,

outgoing from the inner shell surface, the definition of 8 is not valid any

more due to the cylindrical shape of the core, for the following qualitative

discussion, however, it still fits the purpose.

According to Eq. (2.20), the bulk modulus is a function of X* and u* and

therefore a strong shear dissipative behaviour primarily suppresses the

propagation of S-waves as well as the propagation of P-waves. Fig. 2.18

shows the normalized thickness of the boundary layer of P-waves in the

core material discussed in this subsection to be a function of frequency.
One can see that above approximately 700 kHz, 8 reaches the order of

magnitude of the core radius. This means that the P-waves are 'dead'

before they can tell' the shell that the core is cylindrical, a fact which

leads to a dispersion relation similar to the one of an empty shell for

higher frequencies.

am

300
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200

ISO

50

400000 600000 800000
frq [HZ]

Fig. 2.18 Normalized 2 per mill boundary layer characterizing the attenuation of P-

waves in the shear dissipative core material.

Fig. 2.19 shows the complex dispersion relation of a shell filled with a

shear dissipative core. The dot in Fig. 2.19 (mode 9) indicates the mode

and the frequency for which the stress field is calculated, as represented
in Fig. 2.25 to Fig. 2.28 of this section.
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Fig. 2.19 Dispersion curves of axisymmetric modes of a shell filled with a shear

dissipative core material (classical fluid).

Difficulties arose while calculating modeO, in which the root-finding
method jumped into mode 1. Mode 0 is therefore not visible in Fig. 2.19

and Fig. 2.20.

The dissipative nature of the core material and the fact that the density of

the shell material is approximately ten times the density of the core mate¬

rial leads to a dynamic decoupling of the two waveguides in higher fre¬

quency ranges. In terms of growing frequency, this decoupling appears

first in the longitudinal shell mode which is coupled with the core primarily

through the shear modulus u*. Additionally, at higher frequencies the flex-

ural mode of the shell, indicated by the slope-discontinuity of the first 14

modes, arises as a detached mode (mode 15). The two modes in which

the decoupling occurs (mode 15 and mode LS) are drawn individually in

Fig. 2.21.
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Fig. 2.20 Projection of the curves shown in Fig. 2.19 into the real plane.

Fig. 2.21 Dispersion curves of the modes which show the decoupling of the shell and

the core caused by the dissipative behaviour of the core material.

The projection of the dispersion curves into the imaginary plane
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(Fig. 2.22) shows that the detached longitudinal mode (mode LS) has the

lowest damping, followed by the detached flexural mode (mode 15).

mode 15 frq[Hz]

io r
.
mode LS

-300 -250 -200 -150 -100 -50
Im k[rad/m]

Fig. 2.22 Projection of the curves shown in Fig. 2.19 into the imaginary plane.

In Fig. 2.23 and Fig. 2.24, the absolute value and the argument of the

complex displacement ratio are presented.

Abs (ax/ar

1000.
mode LS

200000 400000 600000 800000

Fig. 2.23 Relation between axial and radial displacement of axisymmetric
wavemodes in a cylindrical shell containing a shear dissipative core

material.
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Arg(ax/ar)
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mode LS \ \ \ \ \

mode 15 \ ', \ \

Fig 2 24 Phase angle between ax and ar for axisymmetric modes in a shell filled with

shear dissipative material according to Eq. (2.52).

The following diagrams show the normalized radial stress crrr and the nor¬

malized shear stress an in the core material. Mode 9 and a frequency of

360 kHz are chosen as an example.

Re[arr(r)/arr(R-h/2)]

6 ^

Fig. 2 25 Normalized radial stress arr vs. normalized radius for mode 9 at 360 kHz in

a shear dissipative core.

In Fig. 2.25 and Fig. 2.27, it can be seen that from geometrical reasons
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the radial stress becomes a maximum on the symmetry axis, whereas the

shear stress vanishes Fig. 2.27 shows a quickly-attenuating shear

boundary layer (Stokes layer) followed by a curve with increasing ampli¬

tude towards the centre. This part of the diagram is governed by the radi¬

ally-propagating P-waves. To fulfil the dynamic equilibrium conditions, the

shear stress in the core vn grows with the rate of the normal stress arr.

Re[a„(r)hn(R-hl2)]

lm[orr(r)/arr(R-h/2)]

Fig. 2.26 Real part of the normalized radial stress orr vs. imaginary part of the

normalized radial stress n„ for mode 9 at 360 kHz in a shear dissipative

core.

Fig. 2.27 Normalized shear stress are vs. normalized radius for mode 9 at 360 kHz in

a shear dissipative core.

-0.4 -0.2
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Stokes layer

Pie[oK(r)/oK{B-W2)]

mca(ry<sK(R-W2)]

Fig. 2.28 Real part of the normalized shear stress o„ vs. imaginary part of the

normalized shear stress a^ for mode 9 at 360 kHz in a shear dissipative
core.

The interpretation of Fig. 2.26 and Fig. 2.28 demands further explanation.
In general, the normalized stress functions according to Eq. (2.54) and

Eq. (2.55) are complex and can therefore be written as presented in

Eq. (2.58):

&'(?) = S(~r)eia(?) (2.58)

in which a growing a means that waves are propagating from the inner

surface of the shell through the core towards the centre. In this case, the

graphs of the real stress versus the imaginary stress appear to be more

or less circle shaped. On the other hand, if a remains constant, the shell

'is riding on a steady state core vibration' and the graph appears to be a

more or less straight line. In Fig. 2.28 both phenomena are visible; the

Stokes layer close to the shell wall can be identified as an attenuating,
propagating wave, whereas the rest of the graph represents a standing
wave, i.e. a vibration of the core in radial direction.
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2.3.5 The shell filled with a shear elastic core

The shear elastic parameter set (see Table 2.1) produces the most excit¬

ing results. Careful numerical analysis was carried out to ascertain that

the effects presented in this section have real physical reasons and are

not caused by insufficient accuracy of the root-finding procedure.

In anticipation of Chapter 4 of this thesis (Experimental results versus

theory), it should be mentioned that the curves obtained by this parameter

set come closest to the measured dispersion curves, in shape and magni¬

tude, for the case of a shell filled with silicone oil.

Fig. 2.29 Dispersion curves of axisymmetric modes of a shell filled with a shear

elastic core material.

In Fig. 2.29, modes 0,2, 3, 5, and 6 are not plotted. The dot indicates that

the stress field is calculated for mode 9 at 360 kHz.

As shown in Fig. 2.29, increasing the elastic shear resistance leads to
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dispersion curves which leave the real plane periodically. Therefore the

diagrams for the displacement ratio become very confusing (Fig. 2.30 and

Fig. 2.31).

Abs (ax/ar)
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Fig. 2.30 Relation between axial and radial displacement of all axisymmetric
wavemodes presented in Fig. 2.29.
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Fig. 2.31 Phase angle between ax and ar of all axisymmetric wavemodes presented
in Fig. 2.29 according to Eq. (2.52).
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Since the propagation velocity of p-waves c^ is (almost) equal for all three

classes of core material, the radial stress distribution presented in

Fig. 2.32 is very similar to the one presented in Fig. 2.25.

Re[ar(r)/arr(R-tV2)]

6

r/(R-h/2)

Fig. 2.32 Normalized radial stress <s„ vs. normalized radius for mode 9 at 360 kHz in

a shear elastic core.

Reto^nVo^FWVZ)]

6t

M<s„(r)te„(R-rte)]

Fig. 2.33 Real part of the normalized radial stress orr vs. imaginary part of the

normalized radial stress c„ for mode 9 at 360 kHz in a shear elastic core.
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RelaK(r)loK(R-b/2))

4

r/(R-h/2)

Fig. 2.34 Normalized shear stress o^ vs. normalized radius for mode 9 at 360 kHz in

a shear elastic core.

Re[ora(r)/(5n<(R-h/2)]

4r

Imlo^nVa^R-WZ)]

Fig. 2.35 Real part of the normalized shear stress ore vs. imaginary part of the

normalized shear stress ow for mode 9 at 360 kHz in a shear elastic core.

Since the velocity of P-waves is kept constant for all types of fluids, the

projection of the radial stress to the real plane in the shear elastic core

(Fig. 2.32) is very similar to the corresponding diagram for the dissipative
core (Fig. 2.25). As expected, major differences appear in the diagrams
representing the shear behaviour. When comparing Fig. 2.34 with
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Fig. 2.27, one can see that instead of the thin disappearing Stokes layer,
shear waves propagate through the whole core with increasing amplitude
towards the symmetry axis, focusing the energy.

Considering the scale of the imaginary axis of Fig. 2.33 and Fig. 2.35, one

can see that the graph of the shear stress (Fig. 2.35) is much more 'circle

shaped' than the graph of the normal stress (Fig. 2.33), thus indicating a

wave propagation towards the centre.

2.3.6 Notation of the mode numbering

The numbering of the modes requires several comments. Mode 0 of the

filled shell (see Fig. 2.14) is governed by the 'longitudinal fluid column

mode' (mode L) in Fig. 2.9 and has no cut-off frequency. Mode 1 has no

cut-off frequency either. Mode 2 is the first mode having a cut-off fre¬

quency, at which approximately one P-wavelength in the core equals the

diameter of the core or the radius equals a half wave length. Thus eight
nodes, i.e. eight half P-wave lengths, can be recognized in the diagrams

presenting the radial stress arr of mode 9 at 360 kHz (Fig. 2.25 and

Fig. 2.32).
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2.4 Conclusions

Two wave guides, an elastic shell and a viscoelastic core, have been

combined and some aspects of their interaction have been studied.

A theory for thin-walled elastic shells is applied, which provides good
results as long as the wall thickness is at least three times smaller than

the shortest bending wave length in the shell wall (see Appendix B). In

this investigation, the shortest wave length equals 3.2 times the wall thick¬

ness. Higher sensitivity of the shell waves to the core properties could be

achieved by using a shell material with lower density or a thinner wall

thickness. However, to keep the experimental realisation in mind, it

should be mentioned that it is difficult to obtain thin-walled elastic tubes of

high geometrical accuracy. Therefore shell parameters of a steel tube

which is commercially available have been used throughout this numeri¬

cal investigation.

Among the unlimited number of parameter combinations for the charac¬

terization of the viscoelastic core, three main classes have been studied:

the inviscid core, the dissipative core, and the shear elastic core, thus

establishing three narrow insights into a multi-parametric space.

Since the main interest lies in the dynamic behaviour of the viscoelastic

core, the theoretical model developed in this chapter represents a tool for

a feasibility study on the way towards a measuring instrument for

viscoelastic properties of liquids.
The results can be summarized as follows:

• The projection of the dispersion curves into the plane formed by the

real part of the wavenumber and the frequency as well as the cut-off

frequencies are highly sensitive to the speed of sound in the core

material, which varies in general with the frequency. Thus they can be

used to determine the real part of a complex bulk modulus, provided
that the density of the core material is known.

• From the imaginary part of the dispersion curves in the area of domi¬

nantly radial shell motion, the imaginary part of the complex bulk mod¬

ulus could be determined.
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• A very high sensitivity to the shear resistance of the core material can

be identified on the diagrams showing the phase angle between the

longitudinal and the radial motion (see Fig. 2.17, Fig. 2.24, and

Fig. 2.31). On a future 'fluid' sensor, the time-dependent ratio between

ar and ax could be directly measured with an micro sensor glued on

the shell surface, detecting its acceleration in longitudinal and radial

directions.

In this chapter, complex dispersion relations, shell movements, and stress

fields have been calculated based on given material properies. However,

the practical usage of the phenomena encountered in this way demands

the solution of a final challenging obstacle: the inverse problem, or, in

other words, 'How can the complex material properties be determined

from the measured complex dispersion relations ?'

The extreme complexity of the theoretical model and the fact that many

effects having no clear borders in the parameter space are involved,

impedes an explicit solution.

Therefore the best approach in determining material properties consists

of the following steps:

• Focusing on an area of the dispersion relation in which the curves are

reasonably sensitive to the material constant of interest.

• Measurement of the dispersion relation in that particular range.

• Determination of the material constant by an optimal fit of the meas¬

ured curves in an iterative numerical process.

The last step which is performed 'manually' in this investigation can easily
be automated in the future. In Chapter 5 this procedure is applied to char¬

acterize the material properties of an anisotropic material.
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3 High resolution measurement of

the complex dispersion relation

3.1 Outline of the problem

In this chapter, a new method is presented to determine the complex dis¬

persion relation directly from a series of displacement recordings along a

shell. To explain the metrology, the nature of guided waves propagating

along structures of finite cross-sectional dimensions should be outlined

first. Small disturbances in an elastic or viscoelastic medium produce P-

and S-waves. Constructive interference of these waves and their reflec¬

tions from the boundaries of the structure leads to 'wave modes' propa¬

gating along the structure. These modes may differ in shape, group

velocity, phase velocity, and attenuation. In the case of axisymmetric
waves in a cylindrical structure, the propagating waves can be described

as follows:

n = p

x~i i(cot + k„x) i(tot-knx)

u(x,t) = £(Anel
"

+Bne
"

') (3.1)

n = 1

In Eq. (3.1), u denotes the displacement of a surface point of the structure

and p the number of travelling modes in the x-direction. to indicates the

circular frequency and k the complex wavenumber which can be regarded
as 'frequency' in space domain. The imaginary part of the wavenumber k

indicates a decaying or a growing wave mode depending on its sign. A

dispersion diagram contains characteristic information about geometry,

frequency-dependent material behaviour, and homogeneity of a structure.

It is a special advantage of axisymmetric waves in a cylindrical structure

that no boundary conditions causing radiation loss have to be considered

and that a three-dimensional structure can be inspected or characterized

by measuring dispersion relations of one-dimensional wave propagation.
To measure a dispersion relation in a defined interval of frequency and

wavenumber, a spectrum analysis in time and space domain is required.

Applying discrete spectrum analysis methods, two features determining
the number of samples and the distance between two consecutive sam¬

ples (in time and space) must be observed. Firstly, the highest harmonic



48 Measurement of dispersion relations

component, i.e. the shortest cycle or the shortest wave length, must be

sampled at at least two points in time and space respectively.
The second feature concerns the resolution. The question here is how

many samples are necessary to separate two neighbouring (in terms of

frequency or wavenumber) modes. The resolution of discrete Fourier

transformation methods such as FFT grows linearly with the length of the

interval over which sampled data is available, and is therefore intrinsically
limited by the method. Modern spectrum estimation methods approximate

given signals with a harmonic model. Moreover, highly sophisticated
methods are able to isolate signals of interest from surrounding noise

always present in experimental data. These methods do not have inher¬

ent resolution limits, although the prediction quality grows with the

number of samples.
In this investigation, a combination of discrete spectrum analysis (FFT)
and spectrum estimation (Linear Prediction and Complex Total Least

Squares) is seen to be very effective. FFT is applied in order to obtain the

complex frequency spectrum versus frequency of recorded shell displace¬
ments versus time. In the space domain, a spectrum estimation method is

used to decompose the complex wavenumber dependence. Thus the

number of required samples in the space domain is reduced to less than

a sixth compared with FFT. An additional advantage is the fact that the

wavenumbers are decomposed, including their signs indicating the direc¬

tion of propagation. Thus outgoing pulses can be distinguished from

reflected pulses.

Spectrum estimation methods are a still-growing topic in signal process¬

ing, and improved algorithms are published frequently. Comprehensive
introductions are given by Kay [26], Marple [27] [28], and Hayes [29], as

well as in German by Oestreich [30]. A comparison of several methods

based on singular value decomposition with FFT is presented by Uike et

al. [31]. The algorithm implemented in this investigation, originally devel¬

oped for the signal processing of NMR signals, was published by Tirendi

and Martin [32] and is based on the work of Golub and Van Loan [33] [34].
To the author's knowledge, the work presented in this thesis is one of the

first applications of spectrum estimation methods used in structural

mechanics to characterize dynamic material properties.
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3.2 Experiments

3 2 1 Experimental set-up

The experiments were performed at the Wave Propagation Laboratory of

the Institute of Mechanics ETH Zurich (Fig 3 1)

Fig 3 1 Wave Propagation Laboratory of the Institute of Mechanics ETH Zunch

1 Specimen
2 Pneumatically Isolated Research Table Newport'M

3 LASER Sensor Head Polytec v OFV 300

4 LASER Demodulators Polytec,% OFV 2100 and ETH Zurich

5 Digital Storage Oscilloscope LeCroyIM 9410 Dual 150 MHz

6 Digital Function Generator Krohn-Hite v KH 5920

7 Band-Pass Filter Krohn-Hite,M KH 3202

8 Exertional Signal Amplifier Krohn-HitelM KH 7500

9 Stepping Motor Controller of the LASER Head Positioning System

10 PC Olivetti N 486 Software Asyst
x Version 4 01
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The order of magnitude of the shell displacements amounts to less than

10 nm. In order to detect such movements and to avoid any disturbance

of the travelling waves caused by the measurement itself, the shell dis¬

placement function is measured with a heterodyne LASER interferometer

which represents the most essential part of the experimental set-up

shown in Fig 3 1 The commercial configuration of this interferometer did

not satisfy our resolution requirements in the frequency range, of interest.

Therefore a demodulator for the phase-modulated signal with a 40 MHz

carrier frequency was developed by Dual and Hageli [35] at the Institute

of Mechanics, ETH Zurich This phase demodulator allows the measure¬

ment of surface displacements over a frequency range of from 1 kHz to 8

MHz with a resolution of 10~13 m/jHz.

Fig. 3.2 shows the experimental set-up.

- FFT (Time Domain)
- Spectral Estimation

(Space Domain)
- Graphics

Fig. 3.2 Experimental set-up
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Typically the waves are excited by a ring-shaped piezoelectric transducer

subjected to a linear sweep pulse with a start frequency of 400 kHz, a

stop frequency of 1250 kHz, and a duration of 0.5 ms. This pulse is

applied repeatedly with a trigger frequency of 20 Hz. The displacement of

the shell surface versus time caused by the outgoing pulse and its reflec¬

tions is measured and averaged 300 times before the LASER

interferometer is shifted to the next location. The displacement function is

recorded at up to 160 points along the specimen, depending on the

number of expected modes in the frequency range considered.

A typical signal is presented in the screen print of the digital oscilloscope
in Fig. 3.3. Here the top graph shows the voltage of the excitation signal
and the lower graph the averaged displacement function followed by its

amplitude spectrum.

0.2 0.4 0.6 0.8 1.0 ms

0.2 0.4 0.6 0.8 1.0 MHz

Fig. 3.3 Screen print of the digital oscilloscope displaying:
- Voltage of excitation signal (linear sweep, 400-1250 MHz, 0.5 ms)
- Average of 300 displacement functions (measured at one point)
- Amplitude spectrum of the displacement function above,

(fluid: silicone oil)
- Sampling rate: 5 MHz
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3.2.2 Piezoelectric excitation

Piezoelectric transducers are used to convert voltage into mechanical

stress. Since the ceramic material (lead-zirconate-titanate) is polarized

after firing, transducers are available in various shapes and with various

polarisation directions (Fig. 3.4).

Fig. 3.4 Piezoelectric transducers, discs for longitudinal excitation, rings for radial

excitation.

Fig. 3.5 shows the cross-section of a tube and the attached piezoelectric

ring transducer.

Fig. 3.5 Steel tube with piezoelectric ring transducer acting in radial direction.
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For the excitation of axisymmetric waves in an aluminium rod (Fig 3.6),

the best signals are achieved with a ring- and a disc-shaped transducer

attached at one end of the rod, acting simultaneously.

Fig. 3.6 Excitation unit of an aluminium rod with circular-cross section.

A two component glue is used to fasten the transducers and to fill the

gap between the inner electrode and the cylindrical specimen.

For further information about piezoelectric excitation, the reader is

referred to Dual's dissertation [17], (Appendix B).

1. Hottmger Baldwin Messtechnik, HBM X 60

2. Ferroperm Piezoceramics, Typ PZ 27
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3.3 Signal processing

Fig. 3.7 illustrates the digital data processing leading from the displace¬
ment measurement to the complex dispersion relation.

Four-Dimensional Array:
• Complex Frequency Spectrum
• Frequency
• Location

Piezoelectric Excitation

Cylindrical
Specimen

© J.VoHmanr 1996

Fig. 3.7 Visualisation of the major steps in signal processing.
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3.3.1 Spectrum analysis in time domain

The highly dispersive broad band pulse is propagating to and fro from one

end of the tube to the other until its amplitude has decayed below the

noise level. The best results are obtained when the whole transient

response of the shell to one pulse is recorded to avoid leakage. This

demand is, however, a question of storage capacity of the oscilloscope

and attenuation characteristics of the structure as well as the frequency

range considered. In other words, since the storage capacity of the oscil¬

loscope is limited, one has to balance between a short time window with a

high sampling frequency or a long window with a low sampling frequency

to achieve good measurement over a wide frequency range. Therefore

moderately damped systems are more suitable for broad band frequency
measurement than systems with low damping, even though the situation

of those systems can be improved by windowing.

Typical values for measurements with an upper frequency limit of 1 MHz

and a storage capacity of nt = 8192 samples lead to a frequency resolu¬

tion of approximately 250 Hz according to Eq. (3.2). (1 MHz signal fre¬

quency demands a sampling frequency of at least 2 MHz, thus

^sample50"5 ^s)-

Af =
——!

= 244 Hz (3.2)
ntAtsample

3.3.2 Spectrum analysis in space domain

Sampling the displacement function versus time is an easy task since it is

done automatically by the digital storage oscilloscope. To sample the dis¬

placement function along the shell, the LASER interferometer is moved

from one point to another by a computer-controlled stepping motor.

According to Eq. (3.3), applying FFT in the space domain would require at

least ns = 800 samples along the shell to achieve a wavenumber resolu¬

tion of 10 rad/m for a given upper wavenumber limit of 4000 rad/m

(Axsampie = 0.79 mm). A wavenumber resolution of 10 rad/m represents a

relative resolution which is still 10 times lower than the relative resolution

in the frequency range, but it is sufficient to obtain good results for the
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systems considered in this investigation.

Ak = —— = 10 rad/m (3.3)
ns^xsample

To circumvent the onerous task of recording a minimum of 800 samples in

the space domain, a spectrum estimation method is implemented rather

than FFT. The general concept for these types of methods dates back to

1795 when Prony1 [36] presented a procedure to express an arbitrary
function in terms of a linear combination of exponential functions.

The condition that the shortest wave length of interest must be sampled
at at least two points, thus determining the distance between two consec¬

utive measurements in the space domain, remains indispensable.
As illustrated in Fig. 3.7, the spectrum estimation method is applied for

each frequency given by the discrete Fourier Transform. It consists of two

major steps:

Firstly the discrete frequency spectrum versus location (for one particular

frequency) can be expressed in terms of exponential functions [see

Eq. (3.5)]. This step is called 'Linear Prediction' (LP).
Since the values of the frequency spectrum are available at discrete loca¬

tions only, where the amplitude versus time function is measured, the

location x is described in terms z and Axsampie:

X = Z Axsample (34)

in which z indicates the sampling index along the shell (z = 0,1,2 N-1).

A(z)«C1ji* + C2li2 +
...

+ cX (3.5)

A(z) represents the value of the frequency spectrum at the location z for

one particular frequency, and jx, = e
' !ample. Cj and kj are to be deter-

Riche, Gaspard-Clair-Francois-Marie, Baron de Prony, 1755-1839. French mathe¬

matician and engineer. Director of cadastral survey (1791); as inspector general of

bridges and roads (1805-39), responsible for all civil engineering projects, such as

harbour improvements, drainage of Pontine marshes, and straightening course of

Po River; invented a friction brake (1821).
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mined.

The linear prediction procedure is outlined below according to Hildebrand

[37], For an autoregressive notation of a similar procedure which reaches

the same goal, the reader is referred to Marple [38].

C, +C2+... + Cn = A(z = 0)

C1p1+C2p2+...+Cnu.n = A(z=1)

Cll4? + C2H2+... + Cnji; = A(z = 2)

C1u.t'"1 + C2u.2'1 +
...

+ Cnu^1 = A(z = N-1) (3.6)

Since C; and p; are unknowns, at least N = 2n equations are needed, in

principle, to solve the system presented in Eq. (3.6).
Further steps must be introduced to solve this highly nonlinear system.

Let p.! pn be roots of Eq. (3.7):

(A + oc.,p +a2u. +... + an _1p. + an = 0 (3.7)

To determine the coefficients a-|,..., an, the first equation of Eq. (3.6) is

multiplied by ocn, the second by an_i the nth by a, and the (n+1)th by 1.

All equations obtained in this manner are added. The fact that each p sat¬

isfies Eq. (3.7) allows the result to be written in the following form:

An + a1An-1 +
-

+ anA0 = ° <3-8)

in which An = A(z=n). A set of N-n-1 additional equations can be obtained

in the same way by starting successively with the second, third (N-n)th

equation leading to the linear system shown in Eq. (3.9).
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An + An-1al+An-2a2 + -+A0an = °

An + 1+An«1+An-1a2+- + Aian = °

AN-1+AN-2«1+AN-3a2+-+AN^n-lan = ° (39)

Eq. (3.9) can be written in matrix form:

Aa = b (3.10)

For N = 2n, the matrix A has full rank and the linear system [Eq. (3.10)]
has a unique solution a .which can be directly calculated by inversion of

the matrix A. The values of u.j are then obtained as roots of Eq. (3.7). With

the known values of u_j, the system of Eq. (3.6) becomes linear, which

allows C, to be determined. The 'beauty' of this method introduced by

Prony lies in the fact that the nonlinearity of the problem, which is caused

by the exponential approximation, is concentrated in Eq. (3.7), which can

be easily solved numerically.
The procedure described up to this point is called 'Forward Linear Predic¬

tion' (FLP).
Provided that the values of A; consist of exponential components caused

by propagating waves only, the problem would already be solved by the

procedure described above. The number of required samples N would

then be two times the number of expected modes m, since Cj and u.j must

be determined and the number of expected modes m would equal the

polynomial order n.

In reality, however, the situation is more complicated, demanding a sec¬

ond major step. The signals of interest are hidden in noise and many

more samples than 2n are needed. Moreover, various non-axisymmetric
wave modes are also excited and therefore the number of expected

modes m (prediction order) is not known a priori. In this context, some

questions arise. What polynomial order n, as a function of the number of

samples N, should be chosen for the polynomial introduced in Eq. (3.5) ?

Two cases shall be discussed:
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• n = m and N > 2n. In this case, the linear system introduced in

Eq. (3.10) is overdetermined and can be solved by standard least

squares methods. This approach has no spare parameters to

'describe' the noise and is therefore not providing optimal results by
means of distinguishing harmonic components from surrounding
noise.

• n > m and N > 2m. Here the linear system of Eq. (3.10) might become
underdetermined and an infinite number of solutions exist. The pseu-

doinverse A* of the matrix A provides a unique solution having mini¬

mum norm, which means that the sum of the squares of all entries in

AA#-I, in which / is an identity matrix, is minimized.

a = A#b (3.11)

For the signals analysed in this investigation, a polynomial order n, which

is higher than the number of expected modes m, is seen to provide better

results. Tufts and Kumaresan [39] suggest a polynomial order of n = 3N/4

to achieve best accuracy in the determination of the wavenumbers. This

result was obtained by analysing synthetic data consisting of two expo¬

nential functions and noise. It is also verified by the author of this thesis

for four signal components (sinusoids) with noise and is thus adapted for

the signal processing of this investigation. The author would like to

remark, however, that the optimal polynomial order could depend on the

actual signal-to-noise configuration and therefore demands further inves¬

tigation.
At this point the measured signals consisting of the harmonic components
of interest and the noise are described by a parametric model. The next

step is the separation of the harmonic components from the noise, a task

which is integrated into the calculation process of the pseudoinverse of A.

By applying singular value decomposition, the matrix A can be written in

the following form:

A = UHZV (3.12)

H 1

in which U denotes the Hermitian transpose of the matrix U. Both, U

1. The Hermitian transpose, xH, is the complex conjugate of the transpose of x.
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and Vare row orthonormal matrices. E is a diagonal matrix containing the

singular values Oj of the matrix A.

The pseudoinverse of A is defined in terms of U, I, and l/as follows:

A* = v-V1L/ (3.13)

But before this pseudoinversion is carried out, the singular values o, are

monitored. High values of Oj are associated with the harmonic compo¬

nents of interest, whereas 'small' values of Oj are associated with noise

and are therefore set to zero. The corresponding columns in V and U are

also set to zero, leading to Vq and L/q. In order to realize the quality of the

series of measurements, the decision as to what a 'small' singular value

means is made in an interactive way for all measurements presented in

this thesis, thus determining the prediction order m. With the m remaining

singular values, a new matrix "X containing 'less noise' is rebuilt.

A^=V\T'U^ (3.14)

And finally, Eq. (3.11) is solved with the improved pseudoinverse A
.

The procedure described up to this point is called 'Singular Value Decom¬

position (SVD) of the Data Matrix A '. It provides already very good
results when applied to the decomposition of the wavenumbers from the

data sets treated in this dissertation.

Further improvements are achieved by applying the method of 'Total

Least Squares' (TLS). The main ideas of this method are outlined below:

In a classical linear least squares problem, as presented in Eq. (3.15), a

linear mathematical model is intended to fit to given (measured) data b+e.

Aa = b + e (3.15)

Thus, the random errors e are confined to the right hand side, the 'obser¬

vation side', of Eq. (3.15). The problem of an exponential approximation is

not a linear least squares problem, but it is reduced to one by the linear

prediction procedure. Therefore Eq. (3.10) cannot be discussed in terms
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of a 'mathematical model' on the left-hand side and an 'observation vec¬

tor' on the right-hand side When analysing real measurements, both

sides contain 'model' and 'noisy observation' features and a more appro¬

priate version of Eq (3.10) should be written as shown in Eq. (3.16).

(A + E)a = b + e (3.16)

in which Eand e represent random errors (noise)
The total least squares method provides a solution a of Eq. (3.16) while

fulfilling the following condition [Eq. (3.17)] in order to minimize influence

of the errors on a.

minimize E£||[e,E]||F (3.17)

in which [e,E] denotes an augmented matrix1. ||»||F denotes the

Frobenius2 norm. The Frobenius norm of a m x n matrix M is defined by.

Jm
n

f=1J=1

If a minimizing pair [£,E] is found, then any a satisfying Eq. (3.16) is said

to solve the total least squares problem.
The total least squares problem has been analysed in terms of the singu¬

lar value decomposition by Golub and Van Loan [33] in 1980.

To evaluate the prediction order, singular value decomposition is applied
to the augmented matnx C

C = [b,A] = UEVH (3.18)

1 Signifies a matrix the elements of which are the coefficients of a set of simultane¬

ous linear equations with the terms of the equations entered in an added column.

2 Frobenius, Ferdinand Georg, 1849-1917 German mathematician Professor at

the Eidgenossische Polytechmkum, Zunch (1875) and at the Univ of Berlin (1892)
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To be entirely correct, the evaluation of the prediction order m (number of

singular values of C which are considered to carry information about the

harmonic components) should be made for all frequencies given by the

FFT (see Fig. 3.7). But since the FFT provides thousands of samples, the

prediction order is evaluated in a pre-process for a selection of frequen¬
cies only which are distributed over the whole frequency range by apply¬

ing singular value decomposition of C in an interactive way. Since the

polynomial order is kept constant at n = 3N/4, a wrong prediction order

scarcely affects the accuracy of the decomposition, but it leads to either

modes being omitted or noise being interpreted as a harmonic compo¬

nent, which results in an additional dot on the dispersion diagram.
Then the whole frequency range is subdivided into coherent intervals of

constant prediction order (within an interval) to be finally decomposed for

each frequency. Therefore the vector a [see Eq. (3.16)] is calculated

according to Tirendi and Martin [32].
A complete understanding of this procedure would demand several fur¬

ther steps; however, for briefness, the results only are presented below:

From V, the matrix V2 is formed out of the (m+1) th to the (n+1) th column

v2 = [v,
m + 1 vn + l] (3.19)

(up! is the j th element in the first row of V2 and Vj' is the vector formed by
the remaining elements of the j th column [see Eq. (3.20)].

vi =

0>P,

.

vi'
.

(3.20)

The vector oc can now be calculated as:

n + 1

- I
j = m + 1

w
n + 1

I IWll
= m + 1

vi' (3.21)
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in which («,).,* represents the complex conjugate of (\)}) 1.

Now the coefficients a-|,...,ocn are known and the values pp are the roots of

Eq. (3.7). With the values p„ Eq. (3.6) becomes a linear system for Cj and

the complex wavenumbers k, can be determined.

3.3.3 Confidence and accuracy

A two-dimensional spectrum analysis consisting of FFT for the decompo¬
sition of the frequencies, and a combination of linear prediction and total

least squares for the decomposition of the wavenumbers of propagating
wave modes, enables the simultaneous measurement of a considerable

number of dispersion curves in the space defined by frequency and com¬

plex wavenumber. The following questions concerning the reliability and

accuracy of this new method may arise:

1) Is the method free of systematic errors which reach a level that they
could affect the accuracy of the determination of material properties ?

In statistical terms, is the method biased1, unbiased, or asymptoti¬

cally unbiased ?

2) How do random errors of the input data propagate through the

decomposition process ?

3) What is the lowest signal-to-noise ratio (SNR), the so-called

'threshold', at which the method provides reasonable results ?

4) How does the prediction order m affect the accuracy of the decom¬

posed signals ?

Since spectral estimation methods are generally new, and are applied in

this thesis particularly to parameter ranges where other methods failed to

work, some of the questions above cannot yet be answered on a quanti¬
tative basis and require further investigation.
Evidence that the method appears to be free of systematic errors,

however, is given by dispersion curves which are governed by one or two

1. Bias: Systematic deviation of a statistical estimate from the quantity it estimates.
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material properties which are very well-known, as presented in the follow¬

ing chapters. In other words, wherever the method could be verified, it

showed perfect agreement with other methods and therefore appears to

be unbiased.

Each spectrum analysis (in time or space domain) is an independent

process (see Fig. 3.7), and random errors of the input quantities and the

process itself are therefore directly visible in the dispersion diagram. The

better the dots of the single measurements 'line up' to a continuous

graph, the lower the influence of random errors.

For a detailed analysis of the total least squares method, especially of its

statistical and sensitivity properties, the reader is referred to the work of

Sabine Van Huffel [40],
Another feature, quantifying the quality of a spectrum estimation method,
is the lowest signal-to-noise ratio (threshold) for which the method pro¬
vides reasonable results. The signal-to-noise ratio is defined as follows:

SNR = 10 log10
v2CTnV

(3.22)

in which a represents the amplitude of the signal and a the variance of the

complex Gaussian white noise. The method applied in this thesis (linear
prediction and total least squares) provides reasonable results down to a

SNR level of 7 dB, which means that the amplitude of the signals
amounts to 3.17 times the variance of the surrounding noise. A numerical

analysis of the accuracy of several methods, based on singular value

decomposition as a function of the SNR, is given by Uike et al.[31].
An analysis of the influence of the polynomial order n and the prediction
order m on the detectability and the accuracy of the signals is given by
Tufts and Kumaresan [39].



4 Experimental results versus theory

Numerous combinations of shells and 'fluids' like water, milk, alcohol,

glycerine, silicone oil, and polyisobutylene are investigated in this project.
An extract of these experimental results outlining the main aspects and

phenomena will be presented here. The shell remains unchanged by
means of geometry and material. A steel tube with a diameter of 26 mm, a

wall thickness of 0.5 mm, and a length of 1 or 2 m is used to perform the

experiments.
To verify the theoretical model derived in Chapter 2, as well as the numer¬

ical accuracy of the root-finding algorithm in the parameter range of

strong shear elasticity, dispersion curves of axisymmetric waves in an iso¬

tropic aluminium rod with a diameter of 18 mm are also measured and

compared with the numerical results.

4.1 The empty shell

The properties of the shell material are determined by the longitudinal
mode in an empty shell which is excited with a longitudinally-acting piezo
transducer at one end.

The best fit for the longitudinal mode and for the coupling area is

achieved with the following parameters:

Young's modulus E= 2.000*1011 N/m2

Poisson's ration v = 0.28

Density p = 7800 kg/m3.

A value of k = 0.8 is chosen from [23] for the shear correction factor. The

corresponding theoretical model is presented in Chapter 2.

In Fig. 4.1 the experimental and the theoretical curves are compared,

showing perfect agreement for the longitudinal mode and for the coupling
area.

The slight difference for the flexural mode is probably caused either by a

boundary layer of air diminuating its wavespeed, an effect which is not

considered in this calculation, or by a non-optimal value for k.

The difference could also be caused by a slight elastic anisotropy of the

tube.
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Fig. 4.1 Measured dispersion curves versus calculated curves of axisymmetric

wave modes (excluding the torsional mode) in an empty shell with a

diameter of 26 mm and a wall thickness of 0.5 mm.

4.2 The shell filled with silicone oil in low frequency

range

One of the first series of measurements was performed on a silicone oil

(Dow Coming^ 200 Fluid) with a density of 969 0 kg/m3 and a nominal

viscosity of 60000 mm2/s which means that the viscosity equals roughly

60000 times the value of water at 20°C. The primary question was

whether the dynamic behaviour of the silicone core could be at all

described by the viscoelastic models introduced in Section 2 3 and if so,

whether it could be classified (more or less) as an inviscid, a dissipative,

or a shear elastic core.

At the time these curves were measured, a commercial frequency

demodulator, limiting the frequency range to = 300 kHz, was used.
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Effect of shear elasticity

of the core Im k[rad/m]

Fig 4 2 Measured dispersion curves of the first 9 axisymmetric wave modes in a

cylindrical shell filled with silicone oil with a nominal viscosity of 60000

mm2/s, temperature 24 1 °C

In reference to the diagram in Fig 4 2 and its projection into the real plane

in Fig 4 3, two features should be emphasized The curves in the half

space of positive real wavenumbers represent outgoing waves from the

piezoelectric excitation The strong damping caused by the highly viscous

oil leads to the fact that little information is received from the reflected

waves propagating towards the excitation The steep parts of the disper¬

sion curves are associated with the longitudinal motion of the shell Since
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the density of the shell equals approximately eight times the density of the

fluid, the interaction is relatively weak along these parts of the curves, and

reflected signals can therefore be clearly identified.

Another feature (indicated by the arrow in Fig 4.2) can be observed

regarding the two highest modes Here the curves tend to leave the plane
defined by frequency and real wavenumber periodically. According to

Section 2.3.5, such behaviour is also visible in theoretical results when

the shear elasticity of the viscoelastic core is increased. This effect is

small, however, when compared to the sensitivity of the system to

changes in the velocity of P-waves in the core. Therefore the experimen¬
tal data of Fig. 4.3 were used to determine a first set of parameters for an

inviscid core.

-500 -250
.e k [rad/m]

Fig. 4.3 Projection of the curves presented in Fig. 4.2 into the real plane.
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4.3 The shell filled with silicone oil in high

frequency range

An improved phase demodulator enables one to measure up to 2 MHz.

The validity of the core parameters determined below 300 kHz can now

be verified in a higher frequency range. Fig 4 4 shows experimental dis¬

persion curves for the same shell-core configuration (silicone oil with a

density of 969 0 kg/m3 and a nominal viscosity of 60000 mm2/s).

Fig. 4.4 Measured dispersion curves of the first 25 axisymmetric wave modes in a

cylindrical shell filled with silicone oil with a nominal viscosity of 60000

mm2/s; temperature: 24.0 °C.
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Even at an upper frequency which is more than three times the upper fre¬

quency of the first series of experiments, the inviscid core model still fits

quite well (see Fig 4 4 and Fig. 4.5). Thus the relation between real

wavenumber and frequency is obviously governed primarily by the veloc¬

ity of P-waves cv in the core.

Fig. 4.5 Superposition of the measured dispersion curves of the first 25

axisymmetric wave modes in a cylindrical shell filled with silicone oil with a

nominal viscosity of 60000 mm2/s and theoretical results for a shell filled

with an inviscid core material having the same velocity of P-waves c,p as

silicone oil.

By viewing the data presented in Fig. 4.4 from a different angle and blow¬

ing up the scaling of the imaginary axis, one can visualize the periodically
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alternating values of the imaginary parts of some dispersion curves. This

effect may appear meagre, nevertheless, it is clear evidence for the shear

elastic behaviour of the silicone core, as the comparison between Fig. 4.6

and Fig. 4.7 shows.
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Fig. 4.6 Measured dispersion curves of the first 25 axisymmetric wave modes in a

cylindrical shell filled with silicone oil with a nominal viscosity of 60000

mm2/s; temperature: 24.0 °C, scaled to emphasize the effect of shear

elasticity.
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Im k[rad/m]
Influence of the flexural shell mode

Fig. 4.7 Theoretical dispersion relation of axisymmetric modes of a shell containing
a shear elastic core material having the same velocity of P-waves c, as

silicone oil (Due to numerical reasons, some lower modes could not be

calculated)

The region indicated by the arrow in Fig. 4.7 is connected with the flexural

mode of the empty shell (see Fig 2.14 of Section 2.3.3). The imaginary
part of the curves is very small there, a fact which explains the good

measurability in that particular range.
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4.4 The shell filled with alcohol (low viscosity)

Dispersion curves are also measured for a shell filled with ethyl alcohol

(density 789 kg/m3, nominal viscosity: 1 52 mm2/s at 20°C) Since the

velocity of P-waves cc in this fluid is lower than in silicone oil, the wave¬

length is shorter Therefore more concentric zones of equal pressure are

present in the core at one particular frequency, thus increasing the

number of detectable modes as shown in Fig. 4.8.

Influence of the longitudinal shell mode

Influence of the

flexural shell mode

1000 200C
Re It [rad/m]

Fig. 4 8 Measured dispersion curves (projection into the real plane) of axisymmetric
wave modes in a cylindrical shell containing ethyl alcohol

(density. 789 kg/m ,
nominal viscosity: 1.52 mm2/s at 20°C);

temperature: 23.8°C

Again the curves can only be measured clearly in the region of the flexu¬

ral mode of the empty shell for frequencies above 500 kHz It is most

likely that the complex spectral estimation method reaches its limits by

interpreting the periodically alternating imaginary part of the wavenumber

as noise beyond the region mentioned above.
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4.5 The shell filled with polyisobutylene

(high viscosity)

Not all measured dispersion diagrams can be explained by the theoretical

model introduced in Chapter 2. As an example, the data of a shell filled

with polyisobutylene (BASF5 Opanol" b 10) are presented below

(Fig. 4 9 to Fig. 4.11). Polyisobutylene is a linear, flexible polymer with a

glass temperature of - 65°C. Above this temperature the material can be

considered an amorphous homogeneous melt. According to BASF-, the

density of Opanol
v

b 10 equals 890 kg/m3, the real part of the shear

modulus Re G*(f=100 kHz, t=150°C) = 2
* 105 N/m2, and the imaginary

part Im G*(f=100 kHz, t=150°C) ~ 2 * 105 N/m2.

Im It [ rad/m]

500000

Re k[rad/m]

Fig. 4.9 Dispersion curves of axisymmetric waves in a cylindrical shell filled with

polyisobutylene (BASF" Opanor b 10), measured at 26.0°C.
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Fig. 4.10 Projection of the curves presented in Fig 4 9 into the real plane.
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Fig. 4.11 Projection of the curves presented in Fig. 4.9 into the imaginary plane.
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4.6 The linear elastic aluminium rod

When considering the 'fluids' which have been investigated, it seems that

dispersion curves in the complex space have either a very complicated

shape which is barely describable by a theoretical model with a limited

number of parameters (Fig. 4.9 to Fig. 4.11), or can be detected only very

close to the real plane (Fig. 4.8). An intrinsic requirement of the linear pre¬

diction method is that the amplitude of propagating waves needs to be

sufficient in order to separate them from surrounding noise. Therefore

highly damped modes are difficult to measure.

To the author's knowledge, the mechanical behaviour of fluids subjected
to shear forces alternating with high frequency (MHz range) is not yet
well-known but a fluid with a well-defined, high shear resistance would be

very helpful in order to verify the calculated dispersion curves in this

parameter range. This thought led to the following idea:

Linear elasticity can be considered as an extreme case of viscoelasticity

having long relaxation times compared with the deformation cycles. To

ascertain the validity of the theoretical model as well as the computational

precision, especially in the range of strong shear elasticity, the dispersion
curves of axisymmetric waves in an aluminium rod with circular cross-

section are also measured (Fig. 4.12 and Fig. 4.13). The corrsponding
dispersion relation is calculated by running the same computer program

used for the shell filled with a viscoelastic medium (Fig. 4.14). Therefore

the relaxation times for shear and bulk behaviour of the core material are

set to high values compared with the reciprocal value of the lowest fre¬

quency within the range considered. The thickness of the shell wall h is

set to a very small value (10 urn).
Excellent agreement between material constants received in this manner

and values determined by other dynamic methods is found, thus confirm¬

ing the validity of the theoretical model and the numerical procedure.
The diameter of the aluminium rod (ALUSWISS® Anticorodal-112-hard)
is 18 mm. With a density of 2751.6 kg/m3, a Young's modulus of

7.041 * 1010 N/m2, and a Poisson ratio of 0.35, the best fit with experi¬
mental curves is obtained as presented in Fig. 4.15.
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Fig 4 12 Measured dispersion relation of axisymmetric wave modes of an aluminium

rod with circular cross-section (diameter 18 mm)
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Fig 4 13 Projection of the curves presented in Fig 4 12 into the real plane
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Fig. 4.14 Theoretical dispersion relation of axisymmetnc wave modes of an

aluminium rod with circular cross-section (diameter 18 mm) The curves in

the imaginary plane are not presented in this diagram.

In Fig 4 14 the various modes and branches, which will be discussed in

the next section, are labelled Modes and branches with an index followed

by an apostrophe are associated with energy reflected from the end of the

specimen propagating towards the excitational end The half-circle

shaped curves in the imaginary plane, connecting the upper and lower

parts of mode 3 and mode 3, could not be calculated with the present

model due to numerical reasons The reader is therefore referred to Onoe

et al [41] or Achenbach [20]
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Fig. 4.15 Superposition of the measured dispersion curves of axisymmetric wave

modes of an aluminium rod with circular cross-section (diameter: 18 mm)

and theoretical dispersion curves.

Fig. 4.15 shows excellent agreement between theoretical and experimen¬

tal results for all axisymmetric modes in the frequency range of between

1 kHz and 500 kHz. Apart from axisymmetric waves, the dispersion

curves of several non-axisymmetric modes are also detected, visible in

Fig. 4 15 These modes are always present due to imperfections in the

excitation, the structure itself, or the support devices of the specimen

Fig. 4.16 shows the projection of the theoretical and the experimental

curves of Fig. 4 15 into the imaginary wavenumber versus frequency

plane.
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Fig. 4.16 Projection of the curves presented in Fig. 4.15 into the imaginary plane.
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4.7 Backward wave propagation and boundary
movements

Since the damping of the waves propagating in an aluminium rod is much

lower than in a silicone-filled shell, the dispersion curves of waves

reflected at the end of the rod, which have negative wavenumbers, are

detected as well (see Fig. 4.12 and Fig. 4.13). The fact that energy is

propagating in both directions enables the detectability of the phenome¬
non of 'backward-wave propagation', mentioned by Onoe, McNiven, and

Mindlin in 1962 [41], in which group velocity and phase velocity of one

particular mode have opposite signs in the range of long wavelength (see

Fig. 4.13 and Fig. 4.18). This phenomenon was the subject of extensive

discussions in the early 1960s. In order to outline this phenomenon, the

group velocity of propagating and decaying or growing waves must be

defined.

The group velocity cg, introduced in Eq. (4.1), represents the velocity of

the energy carried by a wave. It is proportional to the slope of the disper¬
sion curves in the frequency-wavenumber diagram.

Group velocity cg: Phase velocity c:

dco

dk -f (4.1)

and since k is complex:

dco dk.

cgr =

dkf + dkf
cgi =

-dco dk,

dkf + dkf
(4.2)

in which cgr, kr are real parts and cgi, k, are imaginary parts of the group

velocity and the wavenumber, respectively.
In Fig. 4.17 the theoretical dispersion relation presented in Fig. 4.14 is

translated into the complex group velocity versus frequency form.
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Fig. 4.17 Group velocity representational form of the theoretical dispersion relation of

axisymmetric wave modes of an aluminium rod with circular cross-section

(diameter: 18 mm).

As Folk [42] explained, the path of a consistent mode, drawn in the wave-

number-frequency plane, cannot change the sign of its slope, but in

Fig. 4.14 the slopes of mode 2 and mode 2' appear to do so. In actual

fact, these modes cease to exist beyond the point where their slopes

reach the zero level (point S and S' in Fig. 4.18) since no energy can

escape from the excitational piezo transducer once the group velocity has

become zero. The four branches (2,3,2',3') leaving the real plane at these

points (point S and S' in Fig. 4.18) represent 'boundary movements' exist¬

ing only very close to the excitational source. Nevertheless, the traces of

branch 2 and branch 3 are measured, as visible in Fig. 4.16 and

Fig. 4.18, a fact which indicates that these boundary movements' are still
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propagating but also strongly decaying waves, otherwise they could not

be detected Of the four branches, only branches 2 & 3 are detectable.

This is in agreement with the general wave approaches made in

Eq (2 41) and Eq (2 42), in which a wavenumber with a positive real part

and a negative imaginary part indicates a decaying wave, propagating

away from the excitation

The two curves between the points S and S' in Fig 4.18 show the area of

backward wave propagation', a name which has obviously been chosen

because of the opposite signs of the phase velocity and the group velocity

of these curves, according to Eq (4.1).

Fig. 4.18 Experimental and theoretical dispersion relation of axisymmetnc wave

modes of an aluminium rod with circular cross-section, scaled to show the

area of backward wave propagation'.
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Close examination of the 'backward wave propagation' of mode 3 in

Fig 4 18 shows that this curve is more easily detected than the corre¬

sponding curve of mode 3' This is due to the fact that the 'backward wave

propagation' of mode 3 represents outgoing waves, coming directly from

the excitational source

The two curves between the points S and S' of Fig. 4 18 become arches

in the group velocity versus frequency form, as shown in Fig. 4 19.

Re cg[m/s]
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mode 2
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belongs to mode 3

backward wave propagation'

olE'q[Hz]DO —
,

210000 215O0

belongs to mode 3'

'backward wave propagation'

branch 2 & 3' \is
mode 2

Fig. 4.19 Group velocity representational form of the theoretical dispersion relation of

axisymmetnc wave modes of an aluminium rod with circular cross-section,
scaled to visualize the area of backward wave propagation'.

A first attempt to measure 'backward-wave propagation' was undertaken

by Meitzler [43] in 1965, and in 1988 Wolf [44] investigated the same phe¬
nomenon in plates However, measuring 'backward wave propagation' by
means of gauging time delays of narrow band pulses is an onerous task

since the wavelength and therefore the pulses become long compared to

the longitudinal dimension of the specimen, impeding a clear detectability
of the arriving pulses and thus reducing the quality of the measurement.

Mention should be made of the notation used by Wolf et al [44]
It is misleading to talk about a 'negative group velocity' since such a

velocity does not virtually exist and leads to the illusion that one could

receive the energy from pulses which would be emitted in the future !
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Imagine a specimen of semi-infinite longitudinal extent with the excita¬

tional source at the only end. In this case all modes and branches indi¬

cated by an apostrophe in Fig. 4.14, Fig. 4.17, Fig. 4.18, and Fig. 4.19

disappear and no negative group velocity can be identified in the real

wavenumber versus frequency plane. What becomes negative is the

phase velocity of the lower part of mode 3. This means that the crest of

the waves of a narrow band pulse flows towards the excitation while the

whole pulse propagates away from it in the particular frequency range of

'backward wave propagation'.
When comparing the topology of the dispersion relation of a linear elastic

rod (Fig. 4.14) with that of an inviscid fluid column (see Fig. 2.9 of

Section 2.3.2), it seems that the appearance of 'backward wave propaga¬

tion' is connected with shear elasticity of the medium, since it does not

occur in the dispersion diagram of the fluid column consisting of an invis¬

cid fluid. Therefore further research efforts should be devoted to the influ¬

ence of the constitutive parameters on the appearance of this

phenomenon.
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4.8 Conclusions

A new contactless measurement technique for structural mechanics has

been developed by combining modern spectral estimation methods with a

high resolution LASER interferometer. Some aspects of dynamic fluid

structure interaction in the high frequency range, where fluid behaviour is

not well-known, are investigated. The validity of a multiparameter model

describing the dynamic behaviour of a thin-walled elastic shell containing
various core materials derived in Section 2.2 is verified for several core

materials. Since the method is based on propagating waves, the detecta¬

bility of a mode decreases with increasing damping. A main advantage of

the axisymmetry is the fact that the system is mechanically highly decou¬

pled from the surrounding world.

The tools developed in this investigation can be used to explore the topol¬

ogy of the dispersion relation of axisymmetric waves in cylindrical struc¬

tures. Thus they form a basis for various applications such as the design
of fluid sensors or fluid providing systems, the development of nonde¬

structive material and structural testing methods, the inspection of coat¬

ings, and so on. If optimal damping of a structure is required, such as for

vibration or noise absorbers, this model can be used to specify a material

which best fits the purpose for a specific frequency range.

The phenomenon of 'backward wave propagation', in which group veloc¬

ity and phase velocity have opposite signs, is clearly measured and partly
explained on a heuristic base. The 'boundary movements' which are con¬

nected with the phenomenon of 'backward wave propagation' are also

detected and explained on a heuristic basis.

Future work at the Institute of Mechanics, ETH Zurich, deals with the

extension of complex spectrum estimation methods to more than one

dimension, as well as with the improvement of the signal-to-noise ratio,
with the aim to increase the detectability of attenuating waves.
The measurement technique is used for determining complex material

properties of anisotropic materials, which is presented in Chapter 5 of this

thesis.



5 Complete elastic characterization

of anisotropic material by guided
waves

5.1 Motivation

The growing application of composite materials demands reliable, nonde¬

structive testing methods in order to evaluate the mechanical behaviour

of new composite materials, as well as for the in-situ inspection of existing
structures.

In this chapter the experimental methods described in Chapter 3 are

applied for the complete elastic characterization of a transversely iso¬

tropic rod with circular cross-section in a frequency range of between

1 kHz to 1 MHz. Transverse isotropy is one of the simplest cases of

anisotropy in which the stiffness of the material differs in only one direc¬

tion. The rod consists of carbon fibres embedded in an epoxy matrix par¬

allel to the longitudinal axes of the rod and has a diameter of 11 mm.

Homogenizing the composition of the two components (fibres and epoxy

matrix) which differ strongly in stiffness, the elastic behaviour of the com¬

posite material is described by a constitutive equation consisting of five

constants. Provided that the wavelength of the guided structural waves

remain 'long' compared with the characteristic length of the inhomogene-

ity caused by the fibres, the analysis of wave propagation phenomena is

an excellent - not to say the only - way to investigate the elastic behaviour

of such structures. Thus the dispersion relation of higher axisymmetric
wave modes, including the torsional modes, has been used to determine

the five material constants.

Based on a theoretical model introduced by Mirsky [15] in 1965, a compu¬

ter program, similar to the program for the fluid-filled shells treated in

Chapter 2, has been written to calculate the dispersion relation of axisym¬
metric waves. The numerical variation of the elastic constants as well as

the analysis of various mode shapes led step by step to the determination

of the real parts of the material constants. As the imaginary wavenumbers

are measured as well, the frequency dependent damping behaviour of

the composite material is also discussed on a qualitative basis.
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5.2 Derivation of the dispersion relation of

axisymmetric wave modes in a transversely
isotropic rod

5.2.1 Constitutive equation of anisotropic material

For the most general case of linear elasticity, the relation between the

components of the two-dimensional stress tensor a and the components
of the two-dimensional strain tensor e is expressed by the four-dimen¬

sional tensor C which contains 34=81 elements. Using Einstein's summa¬

tion convention1 for repeated indices, the generalized Hooke's law can be

written as follows:

°"ij _ C|]klEkl (5.1)

For reason of the symmetry of the stain tensor e and the stress tensor a,

the tensor C is reduced to 36 components. Furthermore, the existence of

a deformation energy reduces C to a tensor of 21 independent compo¬

nents. Thus, the generalized Hooke's law can be written in the matrix

form, as presented in Eq. (5.2).

°11]
°22

CT33
•
_

°23

°31

I o12 J

^1111 ^1122 ^1133 ^1123 ^1131 ^1112

... c2222 c2233 c2223 c2231 c2212

C3333 c3323 c3331 c3312

sym.

^2323 ^2331 ^2312

••' ^3131 ^3112

'1212

-11

l.22

-33

2e,

2e,

I 2e.

23

31

12

(5.2)

Nevertheless, one should keep in mind that both sides of Eq. (5.2) are

actually two-dimensional data structures, a fact which must be considered

when transforming Hooke's law into other coordinate systems.

1. Each index can have the value 1,2, or 3. If an index appears twice, terms must be

added over that index. An index may appear only twice in one term.
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5.2.2 Orthotropic and transversely isotropic material

If the elastic material behaviour is symmetric with respect to three

orthogonal planes, three main directions can be identified and the mate¬

rial is called orthotropic. In this case the following constants vanish:

^1131 = ^1112 = *^2231 = ^2212 = ^3331 = ^3312 = ^2331 = ^2312 = ^

^1123 ~" ^2223 ~ ^3323 ~~ ^3112 "~ " (5.3)

Thus, the elastic behaviour of orthotropic material is described by 9 con¬

stants. Provided that the stiffness of the orthotropic material is equal in

the e-| direction, the e2 direction, as well as in all directions in the plane
defined by e^ and e2, and differs only in the ©3 direction, the material is

called transversely isotropic.

^1111 _ ^2222 ' ^1133 ~~

.2233

^2323 _ ^3131 ' ^1212 _ ^1111_<^11 22 (5.4)

Using Eq. (5.3) and Eq. (5.4) and switching to Mirsky's notation, Eq. (5.2)
becomes:

°"rr C11 C12 C13 0 0 0 Err

°98 ... Cl1 c13 0 0 0 eee

°zz
.

c33 0 0 0
•

ezz

xez C44 0 0 Yez

\z ... sym C44 0 Yrz

\e C66 - Yre >

(5.5)

representing Hooke's law for transversely isotropic material.

For the derivation of the dynamic equations, this representational form of

the stiffness tensor is used. In engineering mechanics, however, it is more
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common to write the relation between stress and strain in terms of the

Young's modulus E, the shear modulus G, and Poisson's ratio v as pre¬
sented in Eq. (5.6). This notation enables one to express simple cases in

a very compact form.

{£} = [S] {a}

1

En

V12

>1
_^13
E33

0 0 0

e11

V12

>1
1

En
_^13
E33

0 0 0

E22

E33
•
_

_y^3
^33

_^13
E33

1

E33
0 0 0

2e23

2£i3
0 0 0

1

G13
0 0

• 2e12 0 0 0 0
1

G13
0

0 0 0 0 0
2(1+v12)

-11

°11

022

a33

°23

°13

I a12 J

(5.6)

The elements Cy of the stiffness tensor [C] are obtained by inversion of the

compliance tensor [S].

[C] = [S] (5.7)
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2

E11 (E33~E11V13)
Ch, =

(1+v12)(E33-E33v12-2E11v^3)

E1l(E33V12+E11V13)
c12 =

(1+v12)(E33-E33v12--2E1lVf3)

E11E33V13
c13 ~

2

E33_E33V12~2E11V13

EI3(1-V12)
C33 _

2

E33_E33V12_2E11V13

C44 = G13

E"
66 Ofi4.«._\

(5.8)

By combining Eq. (5.5) and Eq. (5.8), the elastic behaviour of the trans¬

versely isotropic material is now expressed in terms of E^, E33, G13, v12,
and v13.

5.2.3 Dynamic equations for the transversely isotropic rod

The derivation below is based on Mirsky's investigation. It differs, how¬

ever, in the following points and shall therefore be outlined.

• The numerical handling of Bessel functions with complex arguments
is easier today. Therefore a distinction between real and imaginary

arguments can be omitted and the solutions can be written in a more

compact form.
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• Mirsky's investigation treats hollow rods whereas this investigation is

limited to full rods representing a certain case of Mirsky's investiga¬
tion.

• In contrast to this derivation, Mirsky's solution does not contain the

lowest torsional mode.

Provided that the principal axis of anisotropy ez is parallel to the longitudi-

nal-(symmetry)-axis of the rod, the dynamic equations can be written as

shown in [15], in which u, v, and w denote the displacement components

in the radial, circumferential, and axial direction, respectively.

°"rr, r
+ 7*r9, 6

+ Xrz, z
+
7 Kr

~ °"ee) = PU,tt <5-9)

Vz + 7CT89,9 + 7Tre + Tre,r = PV,tt (5-10)

CTzz,z + 7Xez,e+7Trz + Vr = Pw,„ (5.11)

Substituting Hooke's law [Eq. (5.5)] into Eq. (5.9), Eq. (5.10), and

Eq. (5.11) leads to three coupled differential equations for the displace¬
ments u, v, and w, which can be expressed in terms of the displacement
potentials (p (r, 0) , \f (r, 8) and the arbitrary constant X:

u(r,9,z,t) = f(pr+ -nOcostcot + kz) (5.12)

v(r,e,z,t) = I-q> -*Frlcos(cot + kz) (5.13)

w(r,9,z, t) = tapsin (cot + kz) (5.14)

in which co is the angular frequency and k is the wavenumber. With the

substitution of Eq. (5.12), Eq. (5.13), and Eq. (5.14) into Eq. (5.9),
Eq. (5.10), and Eq. (5.11), a new set of differential equations is obtained:
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2
,
2

2 pco -k c44 + Xk(c44 + c13)
V (p + — —9

'11 /,r

2,2 A

2 pco -k c44
Vi|i + -V

'66

= 0

(5.15)

2
,
2

2 pco -k c^ + kktc^ + c^)
V (p+ (p

'11

2
,
2

2 pco - k c44
V \|/ + -¥

'66 /,r

V2 +

(P°)2~k2c33)>-
= 0

A,c44-k(c44 + c13)

(5.16)

(5.17)

A possible solution of Eq. (5.15) and Eq. (5.16) can be written in the form

of the following conditions which must both be satisfied:

2 .2

2 pco -k C44
V> + - 2ty = 0 (5.18)

2 pco2-k2C44 + a.k(c44 + c13)
V 9+ (p = 0 (5.19)

'11

Eq. (5.17) is identical to Eq. (5.19) if the following additional condition is

satisfied:

(pco -k c33)X pco -k c44 + A,k(c44 + c13)

^•c44 ~ k (C44 + C13)
(5.20)

'11

representing a quadratic equation for the arbitrary constant X. Substituting
the solutions of Eq. (5.20) (Xv X2) into Eq. (5.15), Eq. (5.16), and

Eq. (5.17) leads to the following set of equations for the potentials

\|/(r, 0) andcp, 2(r,6) .
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V2y + qS|/ = 0 (5.21)

V^+pfcp, = 0 (5.22)

V2cp2 + p2cp2 = 0 (5.23)

in which

q2 = (pco2-k2c44)/c66 (5.24)

Pi, 2
= (p02-k2C44 + *-1.2k(C44 + C13))/c11 (5-25)

2
Note that the term p1 2

has opposite signs compared with Mirsky's inves¬

tigation [15]. To solve Eq. (5.21), Eq. (5.22), and Eq. (5.23), functions are

introduced which consist of harmonic components in the circumferential

direction and of the unknown functions f(r), g^r), g2(r).

\|r(r,e) = f(r)sin(n0) (5.26)

•Mr, 6) = g1(r)cos(n0) (5.27)

<P2(r>9) = g2(r)cos(n0) (5.28)

in which n is an integer indicating the number of circumferential waves.

This leads to the differential equations for the functions f(r), g^r), g2(r):

r2frr + rfr+(q2r2-n2)f = 0 (5.29)

r2g1? rr
+ rg1f r

+ (p2r2 - n2) g, = 0 (5.30)

r292, rr
+ r92, r

+ (P21"2 - n2) 92 = ° (5-31)
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The substitution z = rVq2 transforms the equation for f(r) Eq. (5.29) into

a standard Bessel differential equation:

z2f
zz

(z) + zf
z
(z) + (z2 - n2) f (z) =0 (5.32)

The solution of Eq. (5.32) can be written in terms of Bessel functions of

the first kind Jn(z) and Bessel functions of the second kind Yn(z). Resub-

stitution of z leads to the solution of the original equation for the function

f(r):

f(z) = A^'z) +B1Yn(z) => 1(r) =A,Jr[rJq2) + B,Vr[rJ^2) (5.33)

in which A-| and B^ are arbitrary constants. Note that q can also become

negative, leading to Bessel functions with imaginary arguments.
The differential equations for the functions g-| and g2 can be solved in a

similar manner. The results are:

g, (r) = A2Jn(r7p?J + B2Yn(r,/p72) (5-34)

g2(r) = A3Jn(r^p7] + B3Yn(rJp7j (5.35)

5.2.4 Boundary conditions and dispersion relation

The obvious facts that the stress vectors must vanish at the circumferen¬

tial surface of the rod (r = R) and that the stress remains finite on the lon¬

gitudinal axis of the rod (r =0), provide information for the determination of

the constants A| and Bj of Eq. (5.33), Eq. (5.34), and Eq. (5.35). Since the

values of the Bessel functions Yn go to infinity for r going to zero, the sec¬

ond condition can only be satisfied if all constants Bj are set to zero. The

formulation of the stresses at the circumferential surface of the rod leads

to a homogeneous system of linear equations for the constants A^ A2,
and A3. This system [Eq. (5.36)] has non-trivial solutions only if the deter¬

minant of the coefficients equals zero [Eq. (5.37)].
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The coefficients ay are presented in Appendix C of this thesis.

al1 312 313 A,
( \

0

a21 a22 a23 A2 - 0

a31 a32 a33 A3

V 3 )
loj

(5.36)

Det[aN] = 0 (5.37)

Eq. (5.37) represents the implicit dispersion relation for axisymmetric as

well as non-axisymmetric wave modes in a transversely isotropic rod with

circular cross-section.

5.2.5 Special case of axisymmetry

Due to experimental reasons, this investigation is limited to axisymmetric,
longitudinal/radial, and torsional modes.

In the axisymmetric case, n is set to zero and some coefficients ay vanish

(see Appendix C). Eq. (5.36) becomes:

(5.38)

The corresponding dispersion relation can directly be written as:

a3l(ai2a23-al3a22) = ° (5-39)

Eq. (5.39) has two solutions:

a) (a12 a23 ' a13 a22) = °

b) a31 = 0

0 a12 a13

/ ^

^
( \
0

0 a22 a23 A2 = 0

a31 0 0 A3

V 3 )
loj
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In case a) the constants of the displacement potentials become:

1 \ f \

A1 0

A2 = A2

A3

V
3 ) A3

and the potential functions become:

\|/(r) = 0

-2 -2

A2 + A3 = 1 (5.40)

<M0 = AaJ^r^

92 C) = AsJoi,^ (5.41)

It is now obvious that case a) represents the radial and longitudinal wave

motion of the rod, whereas case b) leads to the following constants and

potentials:

v ° J

( \
1

V 0,

\|/(r) = J0(/7q^

<Pi C) = o

(5.42)

q>2(0 (5.43)

which represent torsional wave motion. Regarding the terms of a31 (see

Appendix C), one can see that one solution is of- = 0. According to the
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definition of q2 [see Eq. (5.24)], this leads to the following frequency-
wavenumber dependence:

*
= * = § = § <6-">

representing the wavespeed for the lowest torsional mode. Curiously,
when substituting this solution into Eq. (5.13) all displacements become

zero. Therefore Mirsky has forgotten the lowest torsional mode or was

simply not interested in it. The reason of this contradiction lies in an

assumption which was made when solving the system of differential

equations for the potentials cp and \\r [Eq. (5.15) and Eq. (5.16)]. This sys¬
tem is also solvable when the right hand side of Eq. (5.18) is constant

rather than zero, a fact which does not change the situation until q2
equals zero. Then a new differential equation occurs [Eq. (5.45)] leading
to the deformation potential of the lowest torsional mode [Eq. (5.46)].

V2V = Vrr+rVr + ^Vee = c (5-45)
r

r

\|/(r,6) = ar2 + b92 (5.46)

Since only torsional modes are considered, the constant b must be set to

zero.

The dispersion relation can now be calculated by numerically solving the

implicit dispersion relations found in Eq. (5.39). Numerical results are pre¬

sented in the next section.
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5.3 Influence of the material constants on the

dispersion relation

Provided that the derivation of the dispersion relation above is correct and

that the numerical find-root procedure works accurately, the calculation of

dispersion relations with shapes similar to those of measured dispersion
relations is an almost hopeless task without a rough knowledge of at least

some of the five elastic constants. Fortunately the author could rely on

three values determined by Dual [45] in an earlier investigation.
Dual used broad band pulses (1-150 kHz) as well as phase-locked reso¬

nance measurements to determine the elastic properties of the same

specimen. He measured the following values:

E33= 1.2624 *1011 [N/m2]
v13= 0.32

G13= 6.010 MO9 [N/m2]

p= 1.5735 *103 [kg/m3]
R= 5.5 *10-3 [m]

Since the values for E33 and G13 are determined directly from the reso¬

nance frequencies of longitudinal and torsional vibrations, their accuracy

is considerably high when compared with the other parameters.
In order to obtain a complete set of parameters the following values for

En1 and v12 are estimated:

E11= 1.21 *1010 [N/m2]
v12= 0.30

Despite some uncertainties of the values for E^ and v12, the parameter
set above is used as the starting point for the numerical investigation.
Therefore one parameter after another is varied and the resulting disper¬
sion curves are compared with those of the standard values.

Similar to the cylindrical shells and the isotropic rod, the dispersion dia¬

gram of the transversely isotropic rod (Fig. 5.1) with the values from
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above can be divided into three main areas according to its mode shapes:
The horizontal tangents close to the frequency axis represent the cut-off

frequencies. There the motion is a purely radial breathing motion and the

wavelength becomes infinite in longitudinal direction. The steepest parts
of the curves are connected with longitudinal wave motions

.
In contrast

to a plate where the longitudinal mode is represented by a continuous

line, cylindrical symmetry and lateral contraction of the materials couple
radial and longitudinal motion. Thus the steep line is interrupted. The

more gradual parts of the curves on the right hand side represent domi¬

nantly radial motion.

500 1000 1500 2000 2500 3000
Re k [rad/m]

Fig. 5.1 Theoretical dispersion curves of the longitudinal/radial wave modes in a

transversely isotropic rod with circular cross-section (diameter: 11 mm).

Fig. 5.2 shows the dispersion curves of the torsional modes which are

essential for the complete characterization of the material. The mode

shape of the lowest mode is equal to the static torsional deformation of

the rod. It is not dispersive. To visualize the shapes of the higher modes,

one should consider the rod as a number of concentric shells, twisted



Anisotropic material 101

alternatingly in clockwise and anticlockwise directions (see Fig. 5.3).
Therefore the lowest mode is sensitive to G13 (which equals G23)1 only,
whereas the higher modes are sensitive to G13 and G12, a constant which

is not explicitly varied in this section. Eq. (5.47), however, shows that G12
changes when the stiffness in radial direction E^ and/or the Poisson's

ratio v-|2 is varied.

12"2(1+v12)
(5.47)

200000

500 1000 1500 2000 2500 3000
Re k [rad/m]

Fig. 5.2 Theoretical dispersion curves of the torsional wave modes in a transversely

isotropic rod with circular cross-section (diameter: 11 mm).

The cut-off frequencies of the higher torsional modes can directly be

obtained from Eq. (5.39). Therefore the value for the wavenumber k must

be set to zero, indicating wavelength of infinite longitudinal extent.

1. e1 radial unit base vector

S2 circumferential unit base vector

e3 longitudinal unit base vector
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Eq (5 48) shows the implicit equation for the cut-off frequencies coc The

only deformation that occurs when the wavelength becomes infinite

(k = 0) is shear in the cross-sectional plane Therefore G12 is the only
material constant in Eq (5 48)

If the wavelength becomes finite (|k| > 0) the additional stiffness of G13
will be involved, thus increasing the frequency of the higher torsional

modes

Fig 5 3 Illustration of the mode shape of the second torsional mode in a

transversely isotropic rod with the principal axis of anisotropy £3

Illustration of two kinds of shear deformation associated with the torsional

mode shapes

On the following pages, the black curves show the dispersion relation of

the standard values and the red curves show the dispersion relation when

one parameter is varied
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5.3.1 Variation of the Young's modulus E33

1. 10

800000

600000

400000

200000

500 1000 1500 2000 2500 3001
:e k [rad/m]

Fig. 5.4 Longitudinal/radial modes: variation of E33.

400000

200000

500 1000 1500 2000 2500 300
Re k [rad/m]

Fig. 5.5 Torsional modes; variation of E33.

• A lower value for E33 leads to a lower speed of longitudinal waves.

• Cut-off frequencies, torsional modes, and the areas where the motion

is mainly radial remain unchanged
• A higher value for E33 leads to opposite effects.
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5.3.2 Variation of the shear modulus G13

400000

200000 Gn*0.8

TOO 1000 1500 2000 2500 ^JIX)?6 * Irad/lri1

Fig. 5.6 Longitudinal/radial modes; variation of G13.

400000

200000

500 1000 1500 2000 2500 —0Re k [rad/m]

Fig 5 7 Torsional modes; variation of G13.

• The main effect of a lower shear modulus G13 (which equals G23) is

the lower speed of all torsional modes and of the radial modes for

'short' wavelength
• The radial cut-off frequencies are shifted to lower values.

• A higher value for G13 leads to opposite effects.
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5.3.3 Variation of the Young's modulus Eni

200000

500 1000 1500 2000 2500 ^QRe k [rad/m]

Fig. 5.8 Longitudinal/radial modes; variation of E-n-

200000

500 1000 150C 2000 2500 300
:e k [rad/m]

Fig. 5.9 Torsional modes; variation of E1V

• With a lower value for E^, the cut-off frequencies decrease and the

coupling areas are shifted to lower frequencies (see Fig. 5.8).
• Only the higher torsional modes are affected [see Eq. (5.47)].
• The speed of longitudinal waves remains unchanged.
• A higher value for E^ leads to opposite effects.
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5.3.4 Variation of the Poisson's ratio v12
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Fig. 5.10 Longitudinal/radial modes; variation of v12.
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Fig. 5.11 Torsional modes; variation of v-|2.

• A lower value for v12 shifts the coupling area to lower frequencies.
• According to Eq. (5.47), a lower value for v12 increases the value of

G-|2, resulting in higher cut-off frequencies of the higher torsional

modes.

• A higher value for vi2 leads to opposite effects.
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5.3.5 Variation of the Poisson's ratio v13

400000

200000 v13 * 0.5

500 1000 1500 2000 2500 ^OO* [rad

Fig. 5.12 Longitudinal/radial modes; variation of v13.

200000•
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v-|3 * 0.5
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Fig. 5.13 Torsional modes; variation of v13.

In general, the influence of v13 is minor when compared with the other

constants.

1 Slight changes occur only in the coupling area between radial and

longitudinal motion.

A higher value for v13 leads to opposite effects.
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5.4 Experiments

5.4.1 Longitudinal and radial modes

The experimental procedure for the detection of longitudinal/radial wave
modes is exactly the same as for the isotropic aluminium rod (see

Chapter 3) with the following exception:
The complexity of the material leads to even more difficulties in exciting
axisymmetric wave modes exclusively. Therefore the displacement func¬

tions are measured and recorded at 160 points along one side of the rod.

The rod is then turned around its longitudinal axis by 180c and the dis¬

placement functions are measured again. By averaging the measure¬

ments of two subtended points, at least some non-axisymmetric
components can be eliminated.

Fig. 5.14 Excitation unit for longitudinal/radial wave modes in a transversely isotropic
rod with circular cross-section (diameter: 11 mm).

For the experimental results below, linear sweep pulses with a start fre¬

quency of 300 kHz, a stop frequency of 1200 kHz, and duration of 0.5 ms

are applied repeatedly with a frequency of 20 Hz. In order to detect longi¬
tudinal and radial components of the displacement, the angle between

the LASER beam and the longitudinal axis of the rod is adjusted to 45°. In

contrast to the aluminium rod, the damping appears to be much higher,

resulting in a clear detectability only for outgoing pulses from the piezo-
excitation.
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Fig. 5.15 Measured dispersion relation of longitudinal/radial wave modes in a

transversely isotropic rod with circular cross-section (diameter: 11 mm).

200000

500 1000 1500 2000 2500 ^QRe k [rad/m]

Fig. 5.16 Projection of the curves presented in Fig. 5.15 into the real plane.
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5.4.2 Torsional modes

To excite torsional waves, a longitudinally polarized ring transducer is cut

into four segments The electrodes are attached to the new surfaces,

which occur when cutting the ring Thus the circumferential electric field

causes a circumferential shear deformation of the piezo segments The

technique described above was developed in the PhD thesis of Dual [17].
These segments are glued on a transmission disc as shown in Fig. 5 17.

To be able to excite higher torsional modes, the transmission disc is con¬

nected with the transversely isotropic rod on a narrow ring close to the cir¬

cumferential surface of the rod only. For the excitation of the torsional

waves, the same linear sweep pulses are used as for the longitudinal/
radial excitation (300 kHz to 1200 kHz during 0 5 ms).

Fig. 5.17 Excitation unit for torsional wave modes in a transversely isotropic rod with

circular cross-section (diameter: 11 mm).
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Transversely isotropic rod

Fig. 5.18 Positioning of the LASER beam for the detection of torsional wave modes.

Fig. 5.18 shows the configuration of the measuring LASER beam relative

to the cross-section of the specimen used to measure circumferential

movements. It is obvious that lateral components of the surface displace¬

ment which are always present due to imperfections of the excitation, the

support devices, or the material itself are detected as well.

frq[Hz]

6
1. 10
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600000

400000

. f

200000 '< P
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/'

500 1000 1500 2000 2500 3000^ *lrad/mJ

Fig. 5.19 Measured dispersion relation of waves in a transversely isotropic rod with

torsional excitation (projection of the curves into the real plane).
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5.5 Determination of the material constants from the

measured dispersion relation

The diagrams in Section 5.3 show that each of the five possible variations

leads to characteristic changes in the dispersion curves. Thus the five

elastic constants can now be determined from the measured dispersion
relations by systematic, iterative variations. For the determination of the

constants E^ and v12, the inverse problem, leading from two measured

points directly to the values of the constants, can be solved as outlined

below.

5.5.1 Determination of E33 and G13

G-|3 equals G23, a modulus which can be determined from the lowest tor¬

sional mode. The value presented by Dual [45] can be confirmed in this

manner. The situation for E33, the longitudinal stiffness of the rod, is very

similar, since its variation affects the speed of longitudinal waves only and

the value found for the best fit is equal to the one in Dual's investigation.

5.5.2 Determination of Ein and v12

Regarding Fig. 5.8 to Fig. 5.11, one can see that for lower values of E^
and v12 the curves of the longitudinal/radial modes are both shifted

towards lower frequencies.
The torsional modes, on the other hand, behave different: Whereas a

lower value for E^ results in lower curves of the higher torsional modes,

the same curves rise towards higher frequencies when v12 is reduced.

This effect leads to the following concept:
From the measured dispersion relation two points are chosen, one from a

higher longitudinal/radial mode and one from a higher torsional mode.

Provided that the specific longitudinal/radial curve and the specific tor¬

sional curve of the calculated dispersion relation coincide with the meas¬

ured points chosen, the values of E^ & v12 pairs fulfilling this condition

are calculated for the point on the longitudinal/radial mode as well as for

the point on the torsional mode. This procedure leads to two crossing
curves in the E^ v12 plane (Fig. 5.20); one for the point on the longitudi¬
nal/radial mode (blue curve) and the other for the point on the torsional
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mode (red curve). The cross point in the E^ v12 plane represents the par¬

ticular pair of values (E^ and v12) which fulfils the condition of coinci¬

dence for both points, the one on the longitudinal/radial mode and the one

on the torsional mode In this investigation a point on the third longitudi¬

nal/radial modes (k = 1500 [rad/m], frq = 811±2 [kHz]) and one on the sec¬

ond torsional mode (k = 500 [rad/m], frq = 262±1 [kHz]) are chosen. The

points are indicated by red dots in Fig 5.16 and Fig 5.19.
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Fig. 5 20 Blue: E^ v-|2 pairs which fulfil the longitudinal/radial dispersion relation in

such a way that it coincides with the measured point (k = 1500 [rad/m],

frq = 811 [kHz]).
Red E11 v-|2 pairs which fulfil the torsional dispersion relation in such a way

that it coincides with the measured point (k = 500 [rad/m], frq = 262 [kHz]).

The values at the cross point are:

En = 9.43 *109 [N/m2]
v12

= 0 488

The frequencies of the measured points are given with a certain accuracy

In order to estimate the consequence of the accuracy of E^ and v12, the

curves presented in Fig 5 20 are calculated for the same wavenumbers

and for frequencies which are varied by ± 10 [kHz] Then the accuracy

intervals are calculated by linear interpolation
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En = 9 43
* 109 ±0 1

* 109 [N/m2]
v12 = 0.488 ±0.02
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Fig. 5 21 Blue: E^ v12 pairs for the points k = 1500 [rad/m], frq = 80V811/821 [kHz]
of the longitudinal/radial dispersion relation.

Red. En v12 pairs for the points k = 500 [rad/m], frq = 2727262/252 [kHz] of

the torsional dispersion relation.

5.5.3 Determination of v13

The determination of \'i3 is the final step in fitting the theoretical model

into the measured dispersion relations In Fig. 5 12 and Fig. 5.13 one can

see that a 50% reduction of the value of v13 leads to very small changes
in the coupling area of the longitudinal/radial modes only Magnifying
these areas, however, enables the determination of v13 with an accuracy
similar to the other constants.
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5.5.4 Results for the best fit

The calculated dispersion curves, visible as red curves in Fig. 5.22 and

Fig. 5.23, are based on the following values which provide the best fit:

En = 9.43* 109 ±0.1 *109 [N/m2]
E33 = 1.2624 *1011 ±0.005* 1011[N/m2]
V13

= 0.320 ±0.02

v12
= 0.488 ±0.02

G13 = 6.010* 109 ±0.005 *109 [N/m2]

P = 1.5735 *103 ±0.001
* 103 [kg/m3]

R = 5.5 *10"3 ±0.001
* 10-3[m]

400000

200000 i

500 1000 1500 2000 2500 3000
Re k [rad/m]

Fig. 5.22 Superposition of theoretical and measured dispersion curves of

longitudinal/radial modes in a transversely isotropic rod with circular cross-

section (diameter: 11 mm).
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frq [Hz]

Fig. 5.23 Superposition of theoretical and measured dispersion curves of torsional

modes in a transversely isotropic rod with circular cross-section (diameter:
11 mm).

Despite the fact that many other, probably non-axisymmetric, modes are

present in the diagram in Fig. 5.23, the combination of values above is

the only possible one.

In general, the accuracy of the modes which have been determined by

prior resonance experiments (E33 and G-|3) and which are verified by this

method is very high, followed by the accuracy of E1V Since the sensitivity
of the dispersion curves to changes in the Poisson's ratios is distinctly
lower when compared with the other modes, the accuracy is estimated to

be a few percent.

A detailed quantification of the confidence intervals, however, demands

primarily a systematic investigation of the accuracy of the spectrum esti¬

mation methods applied in this section.
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5.6 Conclusions

The complete set of five elastic constants describing the dynamic behav¬

iour of transversely isotropic material could be determined with considera¬

ble accuracy in a nondestructive way over a wide frequency range. To the

author's knowledge, this is one of the first investigations to provide a com¬

plete nondestructive elastic characterisation of anisotropic material with

high accuracy and reliability.

Applications for the inspection of existing structures are conceivable as

well as the investigation of new types of anisotropic materials to check the

validity of laminate theories.

The extension of the theoretical and experimental methods presented in

this thesis towards the investigation of higher non-axisymmetric modes in

order to evaluate material properties of even more sophisticated systems

such as orthotropic rods or shells is mainly a question of computer capac¬

ity and can therefore be considered very optimistically.

Another aspect concerns the clear detectability of the attenuation of vari¬

ous wave modes (see Fig. 5.24).

Fig. 5.24 Measured complex dispersion relation of longitudinal/radial wave modes in

a transversely isotropic rod (left) and its projection into the imaginary plane

(right).
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Regarding Fig. 5.24 and by comparing it with the corresponding diagram
of an isotropic aluminium rod (Fig. 4.15), the quickly changing imaginary
parts of the propagating wave modes seem to illustrate a highly complex

energy interchange between various modes which is caused by the ani¬

sotropy and/or by the viscoelastic behaviour of the matrix. A similar shape
of the imaginary wavenumbers versus frequency occurs when the disper¬
sion curves of a shell filled with polyisobutylene (high viscosity) is meas¬

ured, as presented in Fig. 4.11. In both cases it can be observed that the

'net' attenuation is growing with the frequency.
Research efforts should therefore be devoted to establishing theoretical

models which permit predictions of the attenuation behaviour of various

fibre-matrix combinations of composite rods. Whether such a step could

be undertaken within the frame of homogenized complex material param¬

eters or whether new complex lamina theories need to be developed is an

open question. A possible experimental approach to this field could be the

investigation of a rod which consists of the matrix material only. Provided

that the viscoelastic material of the matrix can be described by a reasona¬

ble number of parameters, the elastic constants of the anisotropic mate¬

rial could then be extended with frequency-dependent, imaginary

components.
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Research is a continuous flow whereas a thesis has a beginning and an

end, at best providing some starting points for further investigations or at

least new approaches and ideas. With this in mind, the author would like

to outline some aspects in conjunction with future work.

•The tools developed in this thesis enable one to investigate the

dynamic behaviour of any solid materials (including anisotropic mate¬

rials), viscoelastic materials, and liquids in a broad frequency range.

The Maxwell model, used to describe the viscoelastic core material in

Chapter 2, can easily be replaced by another time dependent consti¬

tutive relation between stress and strain.

• Applications in the fields of chemistry and biology in which suspen¬

sions of particles or cells need to be analysed or supervised, are con¬

ceivable as long as the particles and the distances between them are

small compared with the length of the waves. The 'smooth' way in

which the mechanical properties of highly fragile structures such as

suspensions of cells are measured could be a decisive advantage
when compared with other methods.

• Modern spectrum estimation methods have been widely used since

the 1980s in the fields of astronomy, geophysics, communication

engineering, medical imaging and underwater acoustics, just to men¬

tion a few examples. The development of these algorithms as well as

the number of potential applications is strongly connected with the

astounding growth and availability of computer capacities, a process

which is at the beginning rather than at the end.

• In contrast to the well-established Fast Fourier Transform method

(FFT), spectrum analysis with the methods of linear prediction and

complex total least squares, as used in this thesis, can distinguish
between the positive and negative harmonic components of the signal
and, furthermore, can supply information about the attenuation or the

growth of a component by extracting its imaginary part.
These extensions are highly advantageous when analysing structures
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by guided mechanical waves since inhomogeneities such as cracks

can cause reflections, and viscoelasticity or radiation loss in neigh¬

bouring media can cause attenuation.

• In the field of nondestructive evaluation and/or characterization of

materials and structures, the author expects a wide variety of potential

applications. The analysis of guided, attenuating, one-dimensional

waves in various cylindrical structures containing viscoelastic and ani¬

sotropic components shows promising results, thus encouraging the

extension of approaches presented in this thesis.

• One possible direction for future work could be the extension of the

measurement technique towards two-dimensional wave propagation

phenomena. This step would permit the characterization and inspec¬
tion of structures like anisotropic plates, sandwich plates, or ortho¬

tropic shells. In the case of orthotropic shells or rods, higher non-

axisymmetric wave modes could be excited and detected in order to

determine further elastic constants. The present experimental set-up
would be sufficient for a first series of experiments.

• The detectability of the complex harmonic components and therefore

the quality of the dispersion measurements could be improved in

many ways. Excitation methods which are more specific for one par¬

ticular family of wave modes could be elaborated and the angle
between the LASER beam and the surface of the specimen could be

optimized, just to give a few examples.

• Since the LASER interferometer used in this investigation permits the

detection of movements in a frequency range of up to 8 MHz, a higher
storage depth of the digital storage oscilloscope would increase the

interval in which dispersion relations could be measured.

• As far as the results of the spectrum estimation method can be com¬

pared with those obtained by other methods, perfect agreement is

found as shown for the isotropic aluminium rod and partially for the

anisotropic rod. To increase the confidence in these new methods,

however, the author suggests a systematic investigation of their accu¬

racy and resolution limits as a function of the number of samples and
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the signal-to-noise ratio. This investigation, which is of particular

importance in the range of complex components, could be carried out

based on synthetic signals.

• Another aspect concerns the inverse problem. Once the complex dis¬

persion relation for a particular family of waves can be calculated and

measured, the parameters of interest need to be extracted from the

measured dispersion relation in an iterative process. In the rather sim¬

ple case of one-dimensional wave propagation in cylindrical struc¬

tures in which some areas of the dispersion diagram can be identified,

which are governed by one or two parameters only, this iterative pro¬

cess can be performed in an interactive way as presented in

Chapter 5. In future applications with increasingly complex structures

and wave modes, this inversion could become one of the main obsta¬

cles in the way of developing new nondestructive evaluation methods.

Therefore the author suggests the application of neural network meth¬

ods. Based on a theoretical dispersion relation, a neural network

could be trained through the influence of various geometrical and con¬

stitutional parameters on the topology of the complex dispersion rela¬

tion of guided mechanical waves. In a second step, the trained neural

network could then be used to find an optimal fit for the measured

curves, thus providing the structural parameters of interest.

Since the spectral estimation method provides single dots which form

the dispersion curves, parametric modelling algorithms could be

applied in order to reduce the amount of experimental data. The

parameterized dispersion curves could then be used more readily by
the neural network process.

• Apart from detecting dispersion relations of propagating waves, spec¬

trum estimation methods can also be applied to extract the harmonic

components from signals in the time domain. During the writing of this

thesis, a first, successful attempt was made to adapt the methods of

linear prediction and total least squares to modal analysis of the struc¬

ture of a railroad car, with the aim of analysing its dynamic behaviour

in order to reduce the acoustic emission.
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in which Sign[x] = 1 for x > 0, Sign[x] = -1 for x < 0, and Sign[x] = 0 for

x = 0. Re[c] takes the real part of the complex phase velocity c.



Appendix B: Shell theory versus exact

theory

To ensure the validity of the shell theory derived in Chapter 2 the interac¬

tion with the viscoelastic medium can be excluded reducing Eq (2 46) to

0 0 0 °l
(a ^
ax f°l

0 0 0 o| ar 0

m31 m32 0 0 ^ 0

m41 m42 0 0 vbv
toJ

leading to the dispersion condition for the empty shell

m31m42-m41m32
= 0

The results of this equation are compared with a three-dimensional exact

solution published by Herrmann and Mirsky [24] in which several shell

theories for shells of medium thickness are compared

400000

200000

Exact theory

Present shell theory

Experiments

.e k[ rad/m]
500 1000 1500 2000 2500 3000 3500 400

Fig B 1 Present shell theory (red curves) vs exact theory according to Herrmann

and Mirsky [24] (blue dots) vs expenmental results (green dots)
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The curves in Fig. B.1 are based on the following parameters:

Radius of the shell-mid plane R=

12.85

Shell wall thickness

H = 12.85 mm

h = 0.55 mm

E = 2.000*1011 N/m2

v = 0.28

P = 7800 kg/m3.

Young's modulus

Poisson's ration

Density

Timoshenko's factor k = 0.8

The maximum deviation of the phase velocities of the flexural mode at

1 Mhz between the exact theory and the present shell theory amounts to

less than 1 %. Thus the present shell theory appears to be sufficient as

long as neither the frequency range nor the ratio formed by the shell wall

thickness and the shell radius are increased.

The small difference between the theoretical and the experimental curves

for the flexural mode is probably caused by a boundary layer of air dimin-

uating the wavespeed, an effect which is not considered in this calcula¬

tion, or caused by a non-optimal value for k.
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Here the coefficients of the dispersion relation for waves in a transversely

isotropic rod, presented in Eq. (5.36), are listed. The variable n as well as

the index n for the Bessel functions indicates the number of circumferen¬

tial waves, which equals zero for all axisymmetric wave modes.

„ _

2C66n
11

~~

_2 (n-1)Jn(R^/?)-^^Jn + 1(Rj?

a12 =

2 66^ 2

c44k +
—j— (n - 1) - co p - c^kX, JnWPi

2c
66 2

+^-DjPiJn+iiR>;

ai3 =

2 66^ 2

c44k + —j- (n -1) - co p - c^k^
R

Jn(Ripl

a21 - -^Jb(rJ?)

a23 = ^(^2-k)Jn(R^) + C44jpl(k-^2)Jn + l(R^2

a3i =c66fq2 + ^(1-n)]jn(R7?)-^7q_2Jn + 1(Rjq2



128 Appendix C: Matrix an
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