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Abstract

Several model selection criteria which generally can be classi�ed as the penalized

robust method are studied in this paper� Particularly we derive a criterion based

on Rissanen�s stochastic complexity� Some asymptotic properties concerning strong

consistency of selecting the optimal model by these criteria are given under general

conditions� Other features like robustness against outliers and e�ect of signal�to�noise

ratio are also discussed� Finally� examples and simulations are presented to evaluate

their �nite sample performance� The robust procedure used in this paper considers the

gross error in both the response and the independent variables through a generalized

Huberization�

Key words and phrases� model selection� robust regression� stochastic complexity�

consistency� AIC� BIC� cross validation� signal�to�noise ratio�

� Introduction

Choosing a model is often an important goal of a statistical analysis	 Clearly
 exploratory

investigations and subject knowledge are important parts for the formulation of model
classes	 But once the possible model classes have been set up
 it is most useful to have

an e�cient and objective criterion to derive model selection from the data alone	 In this
paper we study the model selection problem in robust linear regression	 Compared with

the rich literature on robust estimation and testing
 only few papers have been devoted to
this so far	 See Ronchetti �����
 Hampel ������
 Machado ������
 Ronchetti and Staudte
������
 and Ronchetti
 Field and Blanchard ������ where robust versions of AIC
 BIC
 Cp

and cross�validation are proposed	

It is widely known that in linear regression model selection based on least squares
 AIC
and the cross�validation method with a �xed size of the associated validation sample are
not consistent in selecting the true model if it can be �nitely parameterized� they tend to

choose a model with too many independent variables	 On the other hand
 BIC and the
cross�validation method with an increasing validation sample size �cf	 Shao ������� are
consistent if a true model with a �nite number of independent variables exists	 However

the penalty term in both BIC and AIC depends only on the number of independent

�



variables	 They ignore for instance how large the contribution of an independent variable

to the predictor is and how closely related the independent variables are	
We think that when proposing a model selection procedure in robust linear regression


we should consider at least three issues	 First
 the criterion proposed should take into
account the possibility that both response and predictors of some observations may contain

gross errors	 Therefore the criterion should not choose a complicated model in order to �t
also a small number of outliers	 The second issue is that the criterion proposed should be
consistent if a �nite dimensional true model exists
 and it should possess some asymptotic

optimality properties if the true model is in�nite dimensional	 The third one concerns the
e�ect of the signal�to�noise ratio on the empirical performance of the criterion	 Here
 the
e�ect of the signal�to�noise ratio means that a model selection criterion is not likely to
pick out a term in a regression model whose coe�cient is relatively small compared to the

dispersion parameter of the model	
In this paper
 we consider model selection procedures based on penalizing robust �tting

errors	 We will call them penalized robust deviance procedures	 They include many of
the procedures considered previously as well as a new one based on the ideas of stochastic

complexity of Rissanen �����
 ����
 �����	 In order to describe them
 we introduce the

following framework	
Suppose the observations �xt�� y��� � � � � �xtn� yn� with xi � Rp and yi � R are i	i	d	 fol�

lowing an unknown distribution F��x� y�
 such that the usual regression model is satis�ed�

yi � xti� � ri with E�rijxi� � �� ��	��

Thus �i � E�yijxi� � xti�
 and the ri�s are i	i	d	 with E�ri� � � and cov�xi� ri� � �	
Note that we do not assume that ri is independent of xi	 In particular
 the variance of ri
may depend on xi	 For simplicity of presentation
 we assume that the p components of
x contains all independent variables available in the data so that many components of �
may be zero	 Then ��	�� also gives the full model	 Clearly the set of all possible models
can be identi�ed with A � f� � any non�empty subset of f�� � � � � pgg	 Each �
 of size p�

in A corresponds to a predictor xt��� and vice versa	 Here x� is a sub�vector of x indexed
by � and �� is similarly de�ned	 Given a vector �
 A can be divided into two subsets�
�	 Ac � f� � �i � � for any i �� �g�
�	 Aw � f� � �i �� � for some i �� �g	

Clearly Aw represents all the wrong predictors and Ac represents all the correct predictors	

But many models in Ac include irrelevant variables and thus are too complicated	 The
optimal model is de�ned as a correct model in Ac with the smallest dimension	 For
simplicity we assume that such an optimal model is unique	 It is easy to see that this is
the case if the components of x are linearly independent	

For the above setup
 we study procedures to select a predictor of the following form

�� � argmin
�

�
nX
i��

�fw�xi�
�
�yi � xt�i

����g� C�n� ��

�
� ��	��

Here C�n� �� is a penalty term measuring the complexity of a model �
 w�x� � ��� �� is a
weight function measuring the outlyingness of the independent variable x
 � measures the

scale of w�xi�ri and ��� is the M�estimator corresponding to the robust deviation ����	 It
is de�ned by

��� � arg min
��Rp�

nX
i��

�fw�xi�
�
�yi � xt�i��g� ��	��

�



Choosing this estimator implies that the �rst term in ��	�� is the robust �tting error

of a model �	 In particular
 it guarantees that this robust �tting error decreases when
additional independent variables are included in the model	 The problem is then to choose
a penalty term C�n� �� as the model complexity so that the resulting model selection
criterion ��	�� performs satisfactorily with respect to the three issues we just discussed	

In practice
 � will be estimated with a robust estimate obtained by using essentially
Huber�s proposal � �Huber ����
 p	���� or Hampel�s median absolute deviation �Hampel

����
 p	���� in the full model	 The weights w�xi� will also be based on the full model


see section � below	 The robust function ���� used in this paper will be Huber�s function
de�ned as

�c�t� �

�
�
�t

�� jtj 	 c
cjtj � �

�c
�� jtj � c

�

This function was chosen not only because of the minimax property of the associated
least favorable distribution for the gross error model �cf	 Theorem � and its corollary of

Huber�������
 but also because it allows an information theoretic interpretation for one of
the criteria derived later	 From ��	�� it follows that the M�estimator ��� is also the MLE
in a contaminated normal model with heteroscedastic errors whose scale depends on the
independent variables
 compare ��	�� below	

In section � we will discuss di�erent choices of the penalty term and their relationship
with robust versions of AIC
 Mallows Cp
 cross�validation and BIC methods	 One par�
ticular choice will be derived using the stochastic complexity theory of Rissanen �����

�����	 This will give a more general and precise formulation comprising such features of

the model as robustness
 design matrix and signal�to�noise ratio	 In section � we study the
robustness property for the M�estimator ��� and selection of the weight function w���	 In
section � we provide some asymptotic properties of the penalized robust deviance criterion

in terms of selecting correct models and the optimal model	 Only very weak conditions
are required for these results to be true	 In section  other aspects of our model selection
procedure like the e�ect of letting one response observation go to �� and the breakdown
property are discussed	 It is found that the penalized robust deviance criterion behaves

well in the presence of outliers	 We further present a simulation study in section � to show
the e�ectiveness of our robust procedure	 Finally
 all the proofs are given in the appendix	

� The Penalty Term and Model Complexity

��� Robust AIC� BIC� Mallows Cp and Cross�Validation

A basic di�culty in model selection comes from the fact that by using more and more com�
plex models
 the �t for the available data improves
 but the predictive power for future data
gets worse after some point	 Clearly
 the robust �tting error

Pn
i�� �cfw�xi��yi�xt�i ����
�g

will decrease if additional independent variables
 including those with corresponding �
components equal to zero
 are included in the model	 Thus the robust �tting error alone

cannot serve as a model selection criterion	 When a model is estimated from the available
data
 whether or not to accept this model should depend on its ability to predict future

data	 Akaike �����
 ����� used the relative entropy between the true probability density
and the estimated one as a measure of predictability	 He showed that an asymptotically
unbiased estimator of an essential part of this relative entropy can be obtained as the

negative log�likelihood plus a penalty term equal to the dimension of the parameter in
the estimated model	 This is the familiar AIC criterion
 which is also equivalent to Mal�
lows ������ Cp statistic	 For the ordinary linear regression case
 this relative entropy is

�



equivalent to the true error rate of the predictor which is de�ned and studied by Efron

�����
�����	 The above estimator becomes unbiased for the true error rate in this case	
In robust regression the linear model ��	�� is considered with the error ri following

Huber�s least favorable distribution
 conditional on the independent variables xi	 Applying
the idea underlying AIC to this distribution and using an asymptotic equivalence derived

by Stone ������
 but taking expectations under the standard normal model
 Ronchetti
����� obtains the following asymptotic unbiased estimator which is a robust version of
AIC �Actually w�x� � � is used in his paper
 but the general derivation is basically the

same	��

RAIC��� �
nX

i��

�cfw�xi�
�
�yi � xt�i

����g� E��
�
c

E��
�

c

p� ��	��

where

�c�t� � ��c�t� �

���
��
�c� t � �c
t� jtj 	 c
c� t � c

� ��c�t� �

�
�� jtj 	 c

�� jtj � c

and � is the standard normal distribution function	 Hampel ������ suggests a di�erent
penalty term based on heuristic arguments	 His robust version of AIC is as follows�

HAIC��� �
nX

i��

�cfw�xi�
�
�yi � xt�i

����g� �
�

�
E��

�
c

E���c
�

E��
�
c

�E���c�
�

�
p�� ��	��

The criteria ��	�� and ��	�� can also be regarded as robust versions of Mallows Cp statistic
due to their equivalence for c � �	 In section � we will prove that under quite general
conditions

nX
i��

�cfw�xi�
�
�yi � xt�i

����g �
nX

i��

�cfw�xi�
�

rig � jO�log log n�j a	s	

if � is a correct model	 This implies that the robust AIC or Cp as de�ned by ��	�� or ��	��
is likely to select a model with super�uous variables
 since the penalty term C�n� �� here
is of the form const � p� which is smaller than jO�log log n�j in magnitude	
In order that the selected model does not over�t the data
 the penalty term C�n� ��

should be an increasing function with respect to p� and must be greater than O�log log n�
in magnitude	 Schwarz ������ uses a Bayesian approach to derive a penalty term of the
form �

�p� log n for general parametric models	 The resulting model selection criterion is

usually called BIC or SIC	 Machado ������ derives a robust version of BIC based on
objective functions de�ning M�estimators for a parametric model	 Its special case called
Huber SIC for robust regression model is de�ned by

RBIC��� �
nX
i��

�cfw�xi�
�
�yi � xt�i

����g� �
�
p� log n ��	��

with w�x� � �	 It is an obvious extension if we also consider robustness against outliers

in the independent variables by allowing w�x� � ��� ��	 While we will see later that the
robust BIC criterion de�ned by ��	�� is consistent in selecting the optimal model
 it is a bit
unsatisfactory that the penalty term is simply determined by the dimension of the predictor
and the sample size	 This form cannot provide detailed information about the e�ect of

the selected model on the predictability of future data	 Below we will present a penalty
term with more comprehensive information about the model
 based on a newly developed
theory of stochastic complexity �Rissanen �����
 �����
 Qian and K�unsch �������	

�



Cross�validation gives a di�erent estimator for the predictability of the selected model

on future data	 A robust version of cross�validation statistic can be de�ned as

RCV ��� �
nX

i��

�cfw�xi�
�
�yi � xt�i

���i�� �g ��	��

where ��
�i�
� is the M�estimator based on all the observations except �xti� yi�	 We will not

study this criterion rigorously in this paper	 However
 by the heuristics of the in�uence
function IF �Hampel
 �����

��� � ���i�� 	 �
n
�IF �xi� yi�� �

n� �
X
j ��i

IF �xj� yj���

we expect that asymptotically

nX
i��

�cfw�xi�
�
�yi � xt�i

���i�� �g �
nX

i��

�cfw�xi�
�
�yi � xt�i

����g� O��� a	s	 ��	�

if � is a correct model and the M�estimator has a bounded in�uence	 Thus cross�validation
is expected to behave similarly as the robust AIC	 For recent work on robust regression
model selection by cross�validation
 we refer to Ronchetti
 Field and Blanchard ������	

��� A Stochastic Complexity Criterion

Stochastic complexity assesses the �t of statistical models by their ability to compress the
data	 This is measured by the length needed to encode the data by the instantaneously
decipherable code which is optimal for a model	 The associated principle of minimum

description length states that the shorter the code length the better is the selected model	
The optimal codes are obtained in two steps� In the �rst step one encodes the parameters
of the model and in the second step one encodes the data conditional on the employed

parameter	 The shortest code length obtained in a model class is called the stochastic
complexity of the data relative to this model class	
For a class of parametric densities M � ff�znj��g where � � � 
 Rk
 Qian and

K�unsch ������ obtained the following approximation of the stochastic complexity of zn

relative toM

SC�znjM� � � log f�znj��� � k

�
log �n� �

�

�
log jIn����j�

kX
i��

log�j��ij� n������ ��	��

Here �� is the maximum likelihood estimate of ��

In��� � E�

�
�� log f�znj��

��t

�

is the expected Fisher informationmatrix and �n� is the maximal eigenvalue of In����
� �

�Jn�z
n�

In����
� �

� where

Jn�z
n� � �

� log f�znj��
��t

j����

is the observed Fisher information	 The derivation of ��	�� is motivated by Rissanen
�����
����� which showed the important role played by the Fisher information in deter�
mining the optimal quantization of the parameter space	 The �rst term of ��	�� is the





optimal code length of the data for a chosen member in M	 The remaining terms are
called model complexity	 They are obtained by encoding the parameter � to a certain
precision by the optimal quantization	
The result ��	�� can be readily extended to the regression model	 For the regression

model ��	��
 the stochastic complexity of Yn � �y�� � � � � yn�t relative to Xn � �x�� � � � � xn�t
can be obtained from ��	�� by using the conditional distribution of Yn given Xn and � � �	
However
 the stochastic complexity obtained in this way is not useful in practice for select�
ing an optimal predictor
 since it depends on the unknown �conditional� density function

of the errors ri	 We could try to estimate this density either parametrically or nonpara�
metrically	 But then we would have to include additional penalty terms representing the
complexity of the model estimation for the distribution of the errors	 We prefer a simpler
procedure where we employ Huber�s least favorable distribution instead of the unknown

true distribution	 This means that we do not attempt to �nd the shortest possible encod�
ing of the data	 But this is presumably not necessary for the purpose of �nding the best
predictor	 Note that the expression ��	�� is an approximate code length for arbitrary data
zn
 not only for those which are typical under a model distribution	 The possibility that

the data are not generated by a model distribution is taken into account by computing

�n� in ��	��	
The essential point when choosing a �conditional� error distribution is that the corre�

sponding MLE should be robust because otherwise there is no chance to obtain a robust
model selection procedure	 In particular
 assuming a �conditional� normal distribution is
not possible	 We choose Huber�s least favorable distribution because of its minimax prop�
erty �Huber ������� although other choices might be possible	 It is likely that this choice

leads to a code which is not much longer than the optimal code for a wide range of error
distributions which might underly the data	 In order to obtain protection against outliers
in the independent variable x
 we have to let the scale of the least favorable distribution
depend on x	 We consider the following density of ri given xi�

f�ri� � ��� ���
p
������w�xi� expf��c�w�xi�ri

�
�g � w�xi�

�
f	�

w�xi�ri
�

�� ��	��

where f	�r� � �� � ���
p
����� expf��c�r�g
 � 	 � 	 �
 �c��� is the Huber function and

�c��� its derivative	 The constants � and c are connected by ������� � ���c�������c�
c
where � is the density of the standard normal distribution function �	 It easily follows
that E�rijxi� � � and

var�rijxi� � ��

w��xi�
��� ������c�� � � ���

c
�
�

c

���c��g�

Thus
 ri has a �conditional� variance in�ated by a factor �
w
��xi�	 The choice of w�x�

depends on how the corresponding x acts on the regression estimator	 Apparently we
want to properly weigh down those x points with large in�uence	 At the time being we
assume that w�x� is a function determined by the distribution of x in the full model	 We

will discuss the choice of w�x� and its estimation from the data in more detail in the next
section	
To �nd the stochastic complexity of the data
 we need the log�likelihood for the re�

sponse observations conditional on Xn
 which is by ��	�� and ��	��

��YnjXn� �� �� � n log������ n

�
log ���n log ��

nX
i��

logw�xi��
nX

i��

�cfw�xi�
�
�yi�xti��g�

��	��

�



We also need the expected Fisher information matrix In��� relative to the least favorable

distribution ��	��	 To �nd In���
 note that

�

�
�
�

�

nX
i��

�cfw�xi�
�
�yi � xti��gw�xi�xi

and
��

��t
� � �

��

nX
i��

��cf
w�xi�

�
�yi � xti��gw��xi�xix

t
i�

Thus one can readily verify that

In��� � �E� ��

��t
� � E�

�

�

�

�t
� �

�

��
�Ef��

�
c�X

t
nW

�
nXn� ��	��

where Wn � diag�w�x��� � � � � w�xn��	 When there is no risk of confusion
 we will write for
simplicity E�c

� instead of Ef��
�
c	 With a little calculation we see that

E��c � E��
c �

���c�� �
���c�� � � �c����c� � ��	���

Note that the expectation in ��	�� is taken with respect to the assumed model and not with
respect to the unknown true distribution
 in accordance with the criterion ��	��	 Because
��c is bounded by �
 �n� in ��	�� is always bounded by a �nite number if E�jjw�xi�xijj�� 	
�	 We thus omit this term in the following	
Denoting the maximum likelihood estimator relative to the �conditional� least favor�

able distribution ��	��
 we obtain from ��	�� to ��	��� the following approximation to

the stochastic complexity of Yn relative to the predictor Xn� and the �conditional� least
favorable distributions for Rn

SC�YnjXn� � ���YnjXn� ��� �� �
�

�
log jIn� ���j�

pX
i��

log�j��ij� n�����

�
nX

i��

�cfw�xi�
�
�yi � xti

���g� p

�
logEf��

�
c

�
�

�
log jXt

nW
�
nXnj� log

pY
j��

j ��j j� n����

�

� terms negligible for model selection	 ��	���

Now we give some interpretations for ��	���	 The �rst term in ��	��� is the robust �tting

error which shows the goodness of the robust regression for �tting the observations	 The
second to the fourth terms give a cost of using the robust procedure and the employed
model
 which we call the model complexity	 It is interesting to note that because E�

�

c 	 �
if c is �nite
 the second term is negative and thus the robusti�cation of the procedure

reduces the whole stochastic complexity	 This might seem controversial
 but it is virtually
in accord with the philosophy of robust statistics� It avoids a precise modeling of the
error distribution which would have to be highly complex and impractical	 Rather the
simple least favorable gross error model is used which gives a good description of the data

for many possible error distributions	 In addition to being a�ected by the robustness of
the procedure
 the model complexity is also dependent on the weighted magnitude of Xn

de�ned as jXnW

�
nXnj
 and the �generalized� signal�to�noise ratio �j��jj�n�����
�	 It thus

�



allows a more detailed quanti�cation of model complexity than those criteria which just

consider the number of parameters	 Note that for small values of j��jj
� the last term acts
as a small bonus for the more complex models which include the j�th component	 But
including this component increases the penalty in jXnW

�
nXnj
 and the latter is dominant

asymptotically	 We know that BIC and cross validation with validation sample size com�

parable to the total sample size tend to under�t because of their insensitivity to variables
with small signal�to�noise ratios �Rissanen ������
 Wei ������
 Qian �����
 Section �	��
while AIC
 cross validation with small size of the validation sample and Mallows Cp tend

to over�t	 The use of the last term in ��	��� for model selection
 which is derived by a
stochastic complexity idea
 o�ers a compromise over the two extremes	
Note that we do not set aside any code length for describing the scale parameter �	

This is because we treat it as nuisance parameter for our model selection purpose	 In

practice � can be replaced by a robust estimate using
 for instance
 Huber�s proposal � or
Hampel�s median absolute deviation with a little modi�cation for the full model	 Namely

estimate � by �nding a stationary point of

nX
i��

��
cf
w�xi�

�
�yi � xti��g � �n� p���c�

with respect to �
 where the constant ��c� is chosen for Fisher�consistency of � at the
normal distribution
 so ��c� � E��

�
c �Z� � ���c�����c��c���c������c��� or estimate �

by �������medianifjw�xi��yi�xti��jg where the constant is obtained again by considering
the Fisher�consistency at the normal distribution	

From the above derivation it follows that ��	��� holds for any model � in A	 By the
principle of minimum description length
 a criterion for predictor selection in robust linear
regression can be proposed based on the stochastic complexity ��	���� Select the model �
so that

SC�YnjX�n� �
�� �

nX
i��

�cfw�xi�
�
�yi � xt�i

����g� p�
�
logEf��

�
c

�
�

�
log jXt

�nW
�
nX�nj� log

p�Y
j��

j ���jj� n����

�
��	���

is minimized	 Here X�n consists of the columns of Xn indexed by �	

��� Invariance of the Stochastic Complexity Criterion

Amodel selection criterion should be invariant under linear transformations of the response

and�or some independent variables	 We assume that the weights w�xi� are invariant under
linear transformations	 This holds for our choices of w�x� we will discuss in the next
section	
First we consider the e�ect of shift transformations of y and�or x	 If all models contain

an intercept
 i	e	 xi�� � �
 then ���� � � � � ��p� as well as the quantities
Pn

i�� �cfw�xi��yi �
xt�i
���
�g and jXt

�nW
�
nX�nj are invariant	 Hence we obtain an invariant criterion if we

drop the factor with j � � in the last term of ��	���	

We assume that under a scale transformation of y
 �� changes accordingly	 Then we
obtain an invariant criterion if we replace the last term in ��	��� by log

Qp�
j���j����j�j
� �

n�����	 Finally
 in order to obtain a criterion which is invariant also under scale transfor�

�



mations of x
 we replace this term by

log
p�Y
j��

fj
����j�j
�

� const s�x��j��
��n����g�

where s�x��j��
� is a weighted estimate of the variance of the j�th component of x��

s�x��j��
� �

Pn
i��w

��xi��x��j�i � �x��j���Pn
i��w

��xi�
� �x��j� �

Pn
i��w

��xi�x��j�iPn
i��w

��xi�
�

Concerning the choice of const there is some freedom	 One possibility we use here is to take
const � ����n����� ��
n����	 The factor � is motivated by the fact that ��
s�x��j� is the
critical value for testing �j � � when one uses least squares and only the j�th component of

x is in the model	 The other factor is motivated by the fact that s�x��j�
�����n�������
n����

is the upper bound of a ��������� con�dence interval for the inverse standard deviation
of x��j for normal variables	 In practice we usually take � small
 say �	���
�	�� or �	�	
From the above considerations we propose a modi�ed criterion

SC
�

�YnjX�n��� �
�� �

nX
i��

�cfw�xi�
�
�yi � xt�i

����g� p�
�
logE��c

�
�

�
log jXt

�nW
�
nX�nj� log

p�Y
j��

	 j����j�j
�

� ����n����� ������s�x��j��
��n�
��



� ��	���

Under the assumption that in all our models x����i � � for all i � �� � � � � n
 S�

��� is invariant
under both scale and shift transformations of x and y	
However
 neither SC��� nor SC �

��� are invariant under orthogonal transformations of
x�
 since

Qp�
j��

����j�
� is not invariant under such a transformation even though

Pn
i�� �cfw�xi�� �yi�

xt�i
����g and jXt

�nW
�
nX�nj are	 One may argue whether this is an unpleasant feature of

the stochastic complexity criterion or not	 In most model selection problems
 each inde�

pendent variable has a speci�c meaning and there is no physical reason to consider linear
combinations of these variables	

� Robustness of ��� and choice of w	x


From ��	�� it follows that the M�estimator ��� can also be obtained by solving

nX
i��

w�xi�

�
�cfw�xi�

�
�yi � xt�i���gx�i � �� ��	��

For the special case with w�x� � �
 this is just the Huber estimator	 With general weights
it belongs to the class of M�estimators considered in Hampel et al	 �����
 Section �	��


namely it is of the type proposed by Hill and Ryan �see Hill
 �����	 In contrast to the
more popular proposals by Mallows and Schweppe
 it is a maximum likelihood estimator
in a regression model ��	�� which is essential for the stochastic complexity criterion	

Corresponding to ���
 let T ���F�� be the functional de�ned as the solution of the
equation Z

w�x�

�
�cfw�x�

�
�y � xt�T ���F���gx�dF��x� y� � �� ��	��

�



We assume that T ���F�� � �� if � is a correct model
 which is called Fisher consis�

tency	 Note that T ���F�� � �� is a solution of ��	�� if � is a correct model and

EF���cfw�x�r
�gjx� � �	 Strong consistency and asymptotic normality of ��� follows
from the general results in Maronna and Yohai ������ under mild regularity conditions on
F� 	

Now let us see how outliers in response and independent variables a�ect ���	 From

formula ��	�	�� of Hampel et al ������
 the in�uence function of T ���F�� is given by

IF �x� y�T� �� F�� �
w�x�

�
�cfw�x�

�
�y � xt�T ���F���gM�����w� F��x�� ��	��

where

M���w� F�� �

Z
w��x�

��
��cf

w�x�

�
�y � xt�T ���F���gx�xt�dF��x� y��

When � is a correct model
 it follows that M���w� F�� � EF��
w��x�
�� ��cfw�x�� rgx�xt�� does

not depend on �	
It follows from ��	�� that if kw�x�xk is bounded
 then IF �x� y�T� �� F�� is bounded	

Here k � k indicates the Euclidean norm	 Thus the M�estimator ��� obtained by ��	�� is
robust against outliers of both response and independent variables if w�x� is selected so
that kw�x�xk is bounded	
We now turn to the choice of the weights w�x�	 The �rst decision to be made is

whether one wants to determine weights individually for each model
 or whether one

wants to determine them only once from the full model and then use the same weights
for each model	 We have opted here for the second choice because it is simpler and it
guarantees that the robust �tting error always decreases when the model contains more
independent variables	

Ideally we would choose the weight function w��� based on the full model so that ��
has some optimality property like minimizing the asymptotic variance	 Such results for

the Schweppe� and Mallows� type M�estimators can be found in Hampel et al	 �����


section �	�b�	 However
 it seems rather di�cult to do so for our case	 But the results for
the Schweppe� and Mallows� type M�estimators suggest that we can reasonably restrict
w�x� to be of the form

w�x� � wb�kBxk� where wb�t� � min���
b

jtj�

with b chosen a priori and B a non�singular matrix to be determined	 We will chose B such
that �� obtained from ��	�� in the full model has a bounded self�standardized sensitivity
��s � bc	 The self�standardized sensitivity is de�ned in section �	�b of Hampel et al	 ������

as
��s � sup

x�y
��tEF� !��

t��������

where ��x� y��� � wb�kBxk��cfwb�kBxk��y� xt��
�gx
�	 Because

sup
x�y
kB�k� � c�

��
sup
x
wb�kBxk��kBxk� � c�b�

��
�

it follows that ��s � bc will hold if EF� !��
t� � ����BtB���	 This means B is the solution

of

EF� !wb�kBxk���cf �
�
wb�kBxk�rg�xxt� � �BtB���� ��	��

��



Since the distribution F� is unknown
 we can again use the least favorable distribution ��	��

to represent the distribution of r conditional on x	 Then using ��	��� and the empirical
distribution for x
 ��	�� can be written as

���c�� �
���c�� � � �c����c�

�

n

nX
i��

wb�kBxik��xixti � �BtB���� ��	�

This can be solved for B with a recursive procedure taking
 e	g	 b � p and c � ����	 In

case we assume that r has a normal distribution N��� ��� conditional on x
 we obtain by
an easy calculation from ��	�� the following equation

�BtB��� �
�

n

nX
i��

f�c�wb�kBxik�� � wb�kBxik�� � �wb�kBxik���wb�kBxik�� � c�� �

��
c

wb�kBxik��� �cwb�kBxik�
�� c

wb�kBxik��gxix
t
i� ��	��

Equations ��	� or ��	�� can be solved for B with a recursive procedure once we �x b

and c	 Note that b and c are not uniquely determined through the bound on the sensitivity	
Usually we take c � ���� and b � p or b � ���p
 For �xed b and c
 ��	� and ��	�� may
not have a solution or have more than one solution	 Of course when b is large enough


��	� and ��	�� have solutions
 but all the associated weights equal � if b is too large	
Using the weight w�x� determined by ��	��
 it can be shown by some algebraic calcu�

lation that ��� also has a bounded self�standardized sensitivity if � is a correct model	
Rather than using an implicit method to �nd a proper w�x�
 we could use the following

weight function which is easy to calculate and intuitively a natural way to guard against
aberrant observations without losing too much e�ciency	 This weight function is de�ned
as

w�x� �
�b�kx� akg�
kx� akg � min���

b

kx� akg �� ��	��

where b is some positive constant and a is a centering vector
 and k � kg denotes a norm	
In practice a and b may be determined by some diagnostic techniques �e	g	 leverages

standardized di�erence of �tted values DFITS
 etc	
 refer to Staudte and Sheather �����

section �	��� based on the least square �t	 For example
 suppose we �nd the leverage

values for x��� � � � � x�q are greater than ���p
n among the n observations	 So we suspect they

may seriously a�ect the robustness of ��	 Then we could choose

a �
�

n� q

X
xi ��fx

�

� �����x
�

qg

xi

as the central point of those points not singled out	 Similarly b � maxxi ��fx�� �����x�qg kxi�akg
�or with a slight di�erence
 b � min��i�q kx�i �akg� where kxk�g

def
� xt�X�t

n X
�
n�
��x and X�

n

is the sub�matrix of Xn obtained by removing x
�
�� � � � � x�q	

We propose the above three ways of de�ning a weight function but still do not have
a universal criterion to say which is the best	 Instead
 we use them as rules of thumb	 It
is found
 through the examples later in this paper
 that weight functions de�ned by ��	�


��	�� and ��	�� all weigh down those in�uential points and do not show a big di�erence
in the situation where only a small number of points are away from the main body of x
observations	 They all work quite well in this situation	 It should be kept in mind
 however

that it is a di�cult task to detect a large proportion of outliers in high dimensions	

��



� Asymptotic Properties

In this section we study asymptotic properties of the Robust AIC and BIC
 and the
stochastic complexity criterion derived in Section �	 It has been seen that all these criteria
are based on minimizing a statistic of the common form

nX
i��

�cfw�xi�
�
�yi � xt�i

����g� C�n� ��� ��	��

where the �rst term is the robust �tting error of model � and the second term is the com�
plexity of model �	 In the following we give some results about the asymptotic expansion
on the robust �tting error
 the proof of which is deferred to the Appendix	 Based on these
asymptotic expansions we can obtain a strong consistency property of the model selection

criteria using ��	��	

Theorem ��� Assume �xti� yi� �i � �� �� � � �� are i�i�d� and follow the regression model

������ Let w�x� � ��� �� be a �xed weight function and � a �xed scale parameter� Suppose

the following conditions are satis�ed�

�A���� E�w�x��jjx�jj� 	��

�A���� jjT ���F��� ���jj � o��� a�s� for any model � � A�
�A���� E!�cfw�x��r�
�gjx�� � � a�s��
�A�	�� P �jr�j � ��	jx�� � � a�s� for some �	 � ��� c��
�A�
�� P �xt�u � �� 	 � for any u �� � in Rp�

Then for any model � � A
nX

i��

�cfw�xi�
�
�yi � xt�i

����g �
nX
i��

�cfw�xi�
�
�yi � xt�iT ���F���g � jo�n�j a�s�� ��	��

Moreover� for any incorrect model � � Aw

lim inf
n�	

�

n

nX
i��

�
�cfw�xi�

�
�yi � xt�iT ���F���g � �cfw�xi�

�
rig
�
� � a�s�� ��	��

Theorem ��� In addition to conditions �A���� �A��� and �A�	�� suppose that the following

conditions are satis�ed�

�A���� supx w�x�jjxjj 	��

�A��� P �y� � ajx�� � � a�s� for any a � R�
Then for any correct model � � Ac

nX
i��

�cfw�xi�
�
�yi � xt�i

����g �
nX

i��

�cfw�xi�
�

rig � jO�log log n�j� a�s�� ��	��

The proofs are given in the Appendix	 Note that the conditions above are rather weak	
That �A	�� holds
 follows from the general results in Maronna and Yohai ������	 From
Theorems �	� and �	� the following results are obviously true	

��



Corollary ��� If C�n� �� � o�n� a�s�� then under conditions in Theorem 	�� the model

selection criterion de�ned by �	��� will select a correct model in Ac almost surely as n�
�� Accordingly� the same is true for RAIC� HAIC� RBIC and SC de�ned in Section ��

Corollary ��� If in addition
C�n���
log logn � � a�s� and C�n� �� is an increasing function

with respect to p�� then under conditions in Theorem 	��� the optimal model in Ac will be

selected using �	��� almost surely as n��� Accordingly� the same is true for RBIC and

SC�

� Robustness of the Selection Procedure

Since �c�t� is a strictly increasing function of jtj
 the change in the value of the criterion
��	�� is not bounded when one y�value changes arbitrarily	 Nevertheless
 the in�uence due
to an arbitrary change of one observation on the model selection procedure minimizing
��	�� is bounded	 This can be seen as follows	 Assume that y� � xt��

��� � c��
w�x�� for

any � � A	 Then for any y�� � y�

�cfw�x��
��
�y�� � xt��

����g � �cfw�x��
��
�y� � xt��

����g � c�

But the equations for ��� and �� in Huber�s proposal � involve only ��w�xi��yi�xt�i���
��	
Thus when the estimates are unique
 they are unchanged if we change y� to y��	 The

same result is also true if �� is Hampel�s median absolute deviation and y� is su�ciently
large	 But if the parameter estimates are unchanged
 then the criterion changes by c�y���
y��w�x��
�� for any � � A	 Therefore the selected model does not change if we change y�
to y�� � y� and y� is large enough	 A similar result holds also if y� is small enough	 Hence

the robustness of the parameter estimates together with the linear growth of � in the tails
makes the model selection procedure robust	

The same argument works also for more than one outlier as long as the estimators are

unique	 But typically the outliers must be very large until we reach the point where the
selected model does not change any more	 This is related to the well known problem of
the low breakdown point of M�estimators if the number of independent variables is large	
One way out is to use a bounded function � in ��	��	 The problem then is to compute

the estimator ��	��� There will be many local minima
 and we will have to �nd the global
one	 A di�erent
 but equally di�cult approach would be to use squared errors like for least

squares
 but to sum in ��	�� only over a subset containing say �� of the data and to extend
the minimization also over this subset	 This would be the most direct implementation of

the idea that one wants to �nd the model which �ts best for the majority of the data	
But this raises a number of questions like computation and stability which are beyond the
scope of this paper	

� Examples and Simulation Study

We will illustrate in this section the following four aspects� choices of weight functions
w�x�
 behavior of robust parameter estimators
 e�ect of small signal to noise ratios and
robustness properties of the model selection both in the case of a single outlier and in the
case of heavy�tailed errors	 Two types of regression models are employed in our examples	

In the �rst
 the full model is a quadratic� y � �	 � ��x� � ��x
�
� � r	 The second one

contains two groups with a dummy variable x� for the second group 
 and the full model

��



contains all interactions y � �	 � ��x� � ��x� � �
x�x� � r	 There are �� observations

for every sample used in this section	 The independent variable x� is generated from a
uniform distribution on !�� �� except that the �rst observation is an outlier equal to ����	
The variable x� is generated from a Bernoulli distribution	 The data for x� and x� are
shown in Figure � and Figure �	

Choosing the weight function w�x�� For the quadratic full model
 the weight of the
observation at x� � ���� is �	���
 �	� and �	��� respectively for each of the three weight
functions ��	�
 ��	�� and ��	��	 The weights of other observations are all equal to � no
matter which of the three weight functions is used	 It is seen that the results for the three

di�erent methods are very close	 For the interaction full model
 the weight of the �rst
observation at x� � ���� is �	��� and �	��� respectively for each of the methods ��	� and
��	��
 while the other weights all equal to �	 So these two methods also yield very similar
results	 But when we use the method ��	��
 the weights for the interaction full model are

�	���
 �	��
 �	���
 �	�� and �	��� respectively for observations �
 
 �
 �� and ��
 and �
for all others	 This signi�cant di�erence is caused by the fact that �ve points are labeled
high leverage by the detection rule used in method ��	��	 When applying ��	�
 we set

b � p and c � ����
 and when applying ��	�� we set b � ���p and c � ����	 The iterative
procedure with b � p did not converge in the case of equation ��	��	

Parameter estimation and model selection� Suppose the true regression model is

y � � � �x� � r ��	��

where r is a standard normal random variable	 We generate a random sample of size ��
for y and replace the �rst observation y� by ��� so y� may be regarded as an outlier	 Now
we �t a straight line model to the values of y and x� according to ��	��	 The weights for
independent variables are computed from the quadratic full model and by ��	�
 where
c � ���� and b � p	 The scale parameter � is estimated by the modi�ed Huber�s

proposal � given in Section �	�
 which gives �� � �����	 We also �t a quadratic model and
a quadratic model without the �rst order term
 using both the robust method ��	�� and
least squares method	 The results are shown in Figure �
 in which LS denotes for least
squares �t and RLS for the robust �t	 It is seen that the robust parameter estimates for

the straight line model are quite close to their true values	
Based on the above robust estimates we proceed with the model selection from four

candidate models� constant
 straight line
 full quadratic and quadratic without the �rst
order term	 Values of the four criteria RAIC ��	��
 HAIC ��	��
 RBIC ��	�� and RSC

��	��� are computed for the four candidate models	 Note that here �� used is �	���
 which
is obtained based on the quadratic full model	 The model selection results are listed in
Table �	

From Table � we see that all the four criteria select the same and also the true model	
The second best model selected by the stochastic complexity criterion is the full model so
also a correct one	 But the other three criteria select a wrong model as the second best
model	
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True model y=2+3x1
LS  y=-5.64+5.68x1
RLS y=1.69+3.06x1
LS  y=-5.69+9.23x1-1.17x1^2
RLS y=3.02+1.86x1+0.24x1^2
LS  y=2.37+0.8x1^2
RLS y=5.14+0.6x1^2

Figure 1. Comparison between Robust and Least Squares Fit

If the data are generated from the following regression model

y � � � �x� � �x� � r ��	��

with r being a standard normal random variable and y� � ��� being regarded as an
outlier
 the corresponding results for robust parameter estimation and model selection
are given in Figure � and Table �	 Note that in getting these results we assume the
interaction full model but the other settings are the same as those for ��	��	 We see that

similar conclusions can be drawn	

Table �� Criteria Values of Model Selection for Model �����

Criteria Values
Candidate Model RSC RAIC HAIC RBIC

�	 ��	�� ��	�� ��	�� ��	��
�	 � ��x� �optimal� ��	�� �	� �	�� ��	�

�	 � ��x� � ��x
�
��correct� ��	�� �	�� ��	�� ��	��

�	 � ��x
�
� ��	�� �	� �	�� ��	��

�



Table �� Criteria Values of Model Selection for Model �����

Criteria Values

Candidate Model RSC RAIC HAIC RBIC

�	 ��	�� ��	� ��	� ��	��
�	 � ��x� ��	�� ��	� ��	� ��	�

�	 � ��x� � ��x� ��	�� ��	�� ��	� �	��

�	 � ��x� � ��x� � �
x�x� ��	�� ��	�� ��	�� ��	�
�	 � ��x� � �
x�x� ��	�� ��	� ��	�� ��	��
�	 � ��x� ��	�� ��	�� ��	�� �	��

�	 � ��x� � �
x�x� �	�� �	�� �	� �	��
�	 � �
x�x� ��	�� �	�� �	� ��	��
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+ x2=1
x x2=0

True model z=2+3x1+4x2
RLS z=4.63+2.79x1
RLS z=1.34+3.21x1+4.20x2
RLS z=1.44+3.17x1+4.03x2+0.06x1x2

Figure 2. Robust Fit Using  x1 and x2

Consistency� robustness and e�ect of small signal to noise ratio� To see the
performance of the di�erent model selection procedures
 we run a series of simulations to
compute the empirical probability distributions of selecting di�erent candidate models by
the four criteria	 To carry out such a simulation we use an original regression model to

generate a set of data
 then contaminate the data by changing one y�value at a certain
x�value	 Table � gives an overview about the true models used in our simulation study
 the
x�values at which the data are contaminated
 the corresponding full models which are used
in the selection and the identi�cation number of each situation	 Note that x��� � ���� so
far	 But we will change it to �	� in some cases for a more comprehensive evaluation	

��



Table �� Overview of Original Models Used in Simulation

Outlier Position

Full model True Model x��� � x���� � x���� �
��	� �	� �	�

�	 � ��x� � ��x
�
� E�y� � � � �x� �i�

E�y� � � � �x� � ��x
�
� �ii�

E�y� � � � �x� �iii�
E�y� � � � �x� �iv�

�	 � ��x� � ��x� � �
x�x� E�y� � � � �x� � �x� �v�
E�y� � � � ��x� � ��x� �vi�
E�y� � � � �x� � �x� �vii�

E�y� � � � �x� � �x� �viii�

There are in total � original models in Table �	 For each of these � models
 �� observa�

tions of y are generated from a normal distribution with variance � for a total of � times

to get � samples of y	 Then we replace the observation yi with i � � or i � �� depending
on the corresponding outlier position value in Table � in each of the � samples with one
value from the set fE�yi� � �k� k � ������� � � � � �g which has ��� points	 We conduct
a model selection by both robust and non�robust procedures for each of the � true models
and for each of the � times ��� data sets generated in this way	
Note that models �ii� and �vi� are very di�erent from the other models in the sense that

there is a term with small signal�to�noise ratio for these two models	 As a rule of thumb we
know the ratio statistic ��
s�� 
 a quantity closely related to the signal�to�noise
 roughly has
a normal distribution and can be used to test H	 � � � � against its alternative	 Without
loss of too much precision we can use s��i � ���X

tW �X���ii 	 With this setting we can get

� ���
s��� �
���
s���� � ������ ������ and ��	���
�	���� respectively for models �ii� and �vi�

relative to the full model	 So model selection for these two models are much more di�cult

than for the other six models	 When data are generated from model �ii� one should choose
model �ii� itself as the optimal model	 But when data are generated from model �vi� it
seems also reasonable in practice to choose �	 � ��x� as the optimal model	

In our model selection the candidate models are all submodels of the full model which
contain the intercept term	 The model selection criteria used are non�robust stochastic
complexity criterion �NSC�
 AIC
 BIC
 stochastic complexity criterion �RSC�
 Ronchetti�s

robust AIC �RAIC�
 Hampel�s robust AIC �HAIC� and robust BIC �RBIC�	 Note that in

computation all non�robust criteria here can be regarded as special situations of the robust
criteria by setting the tuning parameter c equal to � and the weight function w�x� � �	
The simulation results for the model selection are shown in Table � and Figures � to ��	
In each bar�plot in Figure � to Figure ��
 there are ��� bars	 The x�coordinate of

each of these bars is used to indicate the outlier value of y� �or y���	 Each bar gives
the distribution in terms of frequency of selecting each candidate model �or a group of
them� based on the data having the indicated outlier and by the criterion indicated by

the title	 Note that cases �i�
 �ii�
 �iii� and �iv� share the same class of candidate models
indicated by the legend in Figure �� and cases �v�
 �vi�
 �vii� and �viii� share another set
of candidate models indicated by the legend in Figure �	 Because the results for non�
robust model selection are generally bad
 we plotted them only for cases �i� and �v�	 The

marginal frequency refers to the summation over the x�axis of the frequencies of selecting

��



a candidate model	 So Table � gives a measure of overall performance against an outlier

of y by di�erent methods	 Figures � to �� and Table � support the following arguments�

���	 The robust methods give a signi�cant improvement over non�robust methods in
terms of the number of times of selecting correct models	

���	 For all cases except �ii� and �vi�
 i	e	 whenever the signal to noise ratio is signi�cantly
large
 all robust methods have quite high frequencies �marginal frequencies between

�� and �� � of selecting the optimal models
 and quite low frequencies �marginal
frequencies less than �� � of selecting incorrect models	

���	 For case �ii� where the term x�� has a small signal�to�noise ratio but the test statistic
mentioned above is still quite large
 the stochastic complexity method is much better

than the other robust methods in terms of the number of times of selecting the
optimal model and of selecting an incorrect model	

���	 For case �vi� where the term x� has both a small signal�to�noise ratio and a small
test statistic value
 it is quite di�cult to compare the four methods with each other	
On the one hand
 they select the optimal model for approximately the same number

of times	 The di�erence is less than  	 On the other hand
 the stochastic complex�

ity method tends to not select the term x� in the model
 which is consistent with
the analysis of signal�to�noise ratio and hypothesis testing and seems to be more

reasonable in practice	

��	 In general
 the robust AIC methods are likely to over�t the model and the robust
BIC is likely to under�t the model	 The stochastic complexity method seems to take
account of the information given by the signal�to�noise ratio and hypothesis testing

It thus falls between the two extremes	

���	 All the four robust methods are competitive with each other	 None of the methods
is universally better than the others	

Regarding a model selection procedure as a way of �nding a model with the best
prediction ability
 one can compare the four robust model selection methods in terms of
their �nal prediction error �FPE� on response observations excluding the outliers	 Namely

use
P
�

i���E�yi�� �yi������ for all the cases except �iii� and �vii� and
P

i�����E�yi�� �yi������
for cases �iii� and �vii�
 where �� represents the model selected by one of these four criteria	
The comparison is possible since here we know the values of E�yi��s	 The comparison

results for cases �i�
 �ii�
 �v� and �vi� are plotted in Figure ��
 where the x�axis represents
the outlier position
 and the y�axis gives the di�erence of the average FPE�s between one
method and the stochastic complexity method	 The average FPE is obtained from the �
simulations running at each outlier position	 From Figure ��
 we also see that the four

model selection methods are very competitive with each other	

Robustness against non�normality� Consider the two models y � � � �x� � �x� � r
and y � � � �x� � r where the signal�to�noise ratio for every term is signi�cantly large
under normality assumptions as indicated previously	 We study how the four robust

model selection methods are a�ected if r is from a distribution having thicker tails than
those of the normal distribution	 The y observations are obtained by generating r from
standard normal
 student�s t with � d	f	
 Cauchy �t����
 lognormal with mean � and scale
� which is asymmetric
 slash which is a standard normal divided by a uniform on !�
��


��



and contaminated normal ���N��� �� � ���N��� ��	 We conduct model selection for these

cases based on ���� simulations	 The results are given in Tables  and �	 For cases where
r is from standard normal
 t�
�
 lognormal or contaminated normal
 all the four methods
perform very well and about the same conclusions as from the previous examples can be
obtained	

It is interesting to note that model selection on those cases where r is generated from
the Cauchy or the slash distribution does not perform as well as expected	 A possible
explanation may be
 as indicated in Ronchetti et	 al	 ������
 that under slash or Cauchy

errors the t�values for the non�zero � parameters are much smaller than under normality	
So the evidence for the true parameters in the data may be very weak	

� Conclusion

We have discussed a class of penalized robust criteria for model selection in linear regres�
sion	 Particularly
 we have derived one such criterion using the newly developed stochastic

complexity theory	 We have proved that under very general conditions the penalized ro�
bust criteria have a strong consistency property	 We also show that the in�uence on these

criteria by a small number of outliers is bounded	 The simulation results give further
support for our model selection procedure	

Appendix� Proof of Theorems �	� and �	�

We start with a Lemma which bounds the error in linearizing �	

Lemma A�� For any � � ��� c� there exists an � � ���� � � such that

�c�"� h�� �c�"�� h�c�"� � �I�j"j � ��min�jhj� h��

for any " and h in R� Here I��� is the indicator function�

Proof� We classify all the possible values of " into three subsets� j"j � �
 � � " � �
and �� � " � �	 Then we prove the inequality for each subset	
By the convexity of �c
 �c�"�h���c�"��h�c�"� � � which covers the case j"j � �	
If � � " � �
 we classify all the possible values of h into three categories j"� hj 	 c


" � h � c and "� h � �c	 Then when j"� hj 	 c
 we have

�c�"� h�� �c�"�� h�c�"� �
�

�
�" � h�� � �

�
"� �"h � �

�
h��

When "� h � c
 h � � and thus we have

�c�" � h�� �c�"�� h�c�"� � c�" � h�� �
�
c� � �

�
"� �"h

� �c�"�h� �
�
�c�"�� � �

�
�c�"�h � �

�
�c� ��h�

When "� h � �c
 h 	 � and thus we have

�c�"� h�� �c�"�� h�c�"� � �c�"� h�� �
�
c� � �

�
"� �"h

� ��c�"�h� �
�
�c�"�� � ��

�
�c�"�h � �

�
cjhj�

��



For the situation �� � " � �
 we can use the same arguments as in the situation
� � " � �	 Then the lemma follows if we de�ne � � minf�� � ���c� ��g	

�

Next we prove the law of the iterated logarithm for the Huber estimator of location	
For this we de�ne

��z� h� �
�c�z�� �c�z � h�

h
�h �� ��� ��z� �� � ��

Then we have

Lemma A�� Let Zi �i � �� �� � � �� be i�i�d� with E!�c�Zi�� � � and P !Zi � �c� � �� If

f"ng is a sequence of solutions to
Pn

i�� �c�Zi �"n� � � which converges to � a�s�� then

�

n

nX
i��

��Zi�"n�� P �jZij � c� a�s��

If in addition P !jZij � c� � �� then

"n � O�

s
log log n

n
� a�s��

Proof� First we note that j��z� h�j � � for all z and all h and ��z� h� � I�jzj � c� if
jhj 	 jz � cj and jhj 	 jz � cj� Hence

j��z� h�� I�jzj � c�j � �fI�jz � cj � h� � I�jz � cj � h�g�
Let

N
k � f�j �
n

nX
i��

I�jZi � cj � �
k
� �� P �jZi � cj � �

k
�g

and

N	 � f�j �
n

nX
i��

I�jZij � c� �� P �jZij � c�g  f�j"n �� �g�

Because P �
S	
k��	Nk� � � 
 it is su�cient for the �rst part to show that for � ��S	

k��	Nk

�
n

Pn
i�� ��Zi�"n� converges to P �jZij � c�	

Let � � � be given	 Then choose k such that P �jZi � cj � �
k � � � �which is possible

because P �Zi � �c� � ��	 Now choose n	 such that for all n � n	�

j"nj � �

k
�

j �
n

nX
i��

I�jZi � cj � �
k
�� P �jZi � cj � �

k
�j � ��

�

n

nX
i��

I�jZij � c�� P �jZij � c�j � ��

This implies that for n � n	

j �
n

nX
i��

��Zi�"n�� P �jZij � c�j

� j �
n

nX
i��

��Zi�"n�� �
n

nX
i��

I�jZij � c�j� j �
n

nX
i��

I�jZij � c�� P �jZij � c�j

� �

n

nX
i��

I�jZi � cj � �
k
� �

�

n

nX
i��

I�jZi � cj � �
k
� � �

� �P �jZi � cj � �
k
� � �P �jZi � cj � �

k
� � � � ���

��



For the second part
 note that by the de�nition of ��Z� h� and "n we have

nX
i��

��Zi�"n� �

Pn
i�� �c�Zi��

Pn
i�� �c�Zi �"n�

"n
�

Pn
i�� �c�Zi�

"n
�

Thus form the �rst part it follows that

"n �

Pn
i�� �c�Zi�Pn

i�� ��Zi�"n�
�

�
n

Pn
i�� �c�Zi�

P �jZ�j � c�
a	s		

Since j�cj � c
 the second part follows by applying the law of the iterated logarithm to

�c�Zi� �i � �� � � � ��	
�

For the proofs of Theorems �	� and �	�
 we may and will assume without loss of gen�
erality that � � �	

Proof of Theorem ���� By de�nition of ���
 we have for any � � A
nX

i��

�cfw�xi��yi � xt�i
����g �

nX
i��

�cfw�xi��yi � xt�iT ���F���g � �� �a	��

Now write "i � w�xi��yi�xt�iT ���F��� and hi � w�xi�x
t
�i�T ���F��� ����	 By Lemma A	�


it follows that

nX
i��

�cfw�xi��yi � xt�i
����g �

nX
i��

�cfw�xi��yi � xt�iT ���F���g �
nX

i��

�c�"i�hi�

Since j�jc � c
 we obtain by applying the Cauchy�Schwarz inequality

j
nX

i��

�c�"i�hij � c
nX

i��

jhij � cjjT ���F��� ���jj
nX
i��

w�xi�jjx�ijj�

Then by conditions �A	�� and �A	�� and the strong law of large numbers
 the last term in

the above inequality is of order o�n� a	s		 From this and inequality �a	��
 it follows that
��	�� is true	
To prove ��	��
 we write h

�

i � w�xi��x
t
i� � xt�iT ���F��� � w�xi�x

t
iu��� where u��� �

� � T ����F�� and T
����F��j � T ���F��j for j � � and T ����F��j � � for j �� �� Note

that u��� �� � if � � Aw
 i	e	 � is an incorrect model	
By applying Lemma A	� with � � �	
 it follows that for some ���	� � �


�

n

nX
i��

h
�cfw�xi��yi � xt�iT ���F���g � �cfw�xi�rig

i
� �

n

nX
i��

�cfw�xi�righ�

i

����	�
�

n

nX
i��

I�jw�xi�rij � �	�min�jh�

ij� h
��
i �

def
� T� � T�� �a	��

For given xi�s
 each term in T� has conditional mean zero by condition �A	��	 Moreover

because of j�cj � c and the Cauchy�Schwarz inequalityE�j�c�w�xi�ri�h
�

ij� � cE�w�xi�jjxijj�jju�jj
which is �nite by condition �A	��	 Hence by the strong law of large numbers T� � o���
a	s		
For T�
 observe that

E�I�jw�xi�rij � �	�min�jh�

ij� h
��
i �� � E�P �jw�xi�rij � �	jxi�min�jh�

ij� h
��
i ���

��



Now by �A	�� and �A	� PfP �jw�xi�rij � �	jxi�min�jh�

ij� h
��
i � � �g � �	 In addition


E�P �jw�xi�rij � �	jxi�min�jh�

ij� h
��
i �� 	 � by the Cauchy�Schwarz inequality and condi�

tion �A	��	 Thus by the strong law of large numbers
 we have a	s	

lim
n
T� � E�P �jw�xi�rij � �	jxi�min�jh�

ij� h
��
i �� � ��

Hence we have proved ��	��	
�

Proof of Theorem ���� By using Lemma A	�
 we get

�cfw�xi��yi � xt�i
����g � �cfw�xi�rig � �cfw�xi�rigw�xi�xt�i��� � ����

for any correct model � � Ac	 Note that x
t
�i�� � xti� if � � Ac	 From this inequality and

equation ��	�� and ��	��
 it follows that

� �
nX

i��

�cfw�xi�rig �
nX

i��

�cfw�xi��yi � xt�i
����g

�
nX

i��

�cfw�xi�rigw�xi�xt�i� ��� � ���

�
nX

i��

h
�cfw�xi�rig � �cfw�xi��yi � xt�i

����g
i
w�xi�x

t
�i�
��� � ���

�
nX

i��

�fw�xi�ri� w�xi�xt�i� ��� � ���g�w�xi�xt�i� ��� � ����
�

� B�jj ��� � ��jj�
nX

i��

�fw�xi�ri� w�xi�xt�i� ��� � ���g

where B � supi w�xi�jjxijj 	 � by �A	��	 The last inequality is a consequence of the
Cauchy�Schwarz inequality	 Applying similar arguments as used for Lemma A	�
 we see

that under conditions �A	��
 �A	��
 �A	�� and �A	��


�

n

nX
i��

�fw�xi�ri� w�xi�xt�i� ��� � ���g � E!P �jw�x��r�j � cjx��� a	s		

In the same way we have also jj��� � ��jj � O�
q

log logn
n � a	s	 under conditions �A	�� to

�A	�� and �A	�� to �A	��	 This implies that

� �
nX

i��

�cfw�xi�rig �
nX

i��

�cfw�xi��yi � xt�i
����g � O�log log n� a	s	


which proves ��	��	
�
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Figure 3. Empirical Distributions of Model Selection for Model (i)
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Figure 4. Empirical Distributions of Model Selection for Model (ii)
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Figure 5. Empirical Distributions of Model Selection for Model (iii)
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Figure 6. Empirical Distributions of Model Selection for Model (iv)
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Figure 7. Empirical Distributions of Model Selection for Model (v)
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Figure 8. Empirical Distributions of Model Selection for Model (vi)
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Figure 9. Empirical Distributions of Model Selection for Model (vii)
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Figure 10. Empirical Distributions of Model Selection for Model (viii)
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Figure 11. Comparison in Terms of Mean Final Prediction Error

��



Table �� Marginal Frequencies of Model Selection Based on 
�
� Simulations

non�robust robust methods

Selected Model NSC AIC BIC RSC RAIC HAIC RBIC

Model �i�� E�y� � � � �x�
�	 � ��x� �� �� �� ���� ���� ���� ����
�	 � ��x� � ��x

�
� ���� ���� ���� ���� ��� ��� ��

�	 � ��x
�
� �� � � ��� ���� ���� ����

Model �ii�� E�y� � � � �x� � ��x
�
�

�	 � ��x� ��� �� ��� ���� �� �� ��
�	 � ��x� � ��x

�
� ���� ���� ���� ���� ��� ���� ���

�	 � ��x
�
� � � � ���� ��� ���� ����

Model �iii�� E�y� � � � �x�
 x���� � ���

�	 ���� ��� ���� � � � �
�	 � ��x� ���� ���� ���� ���� ���� ���� ���
�	 � ��x� � ��x

�
� �� �� �� ���� ��� �� ��

�	 � ��x
�
� � �� � ��� �� ��� ���

Model �iv�� E�y� � � � �x�
 x��� � ���

�	 � ��x� �� �� �� ���� ���� ���� ����
�	 � ��x� � ��x

�
� ���� ���� ���� ���� ��� ��� ��

�	 � ��x
�
� �� � ��� �� ���� ���� ����

Model �v�� E�y� � � � �x� � �x�
other models ���� ���� ���� � � � �

�	 � ��x� � � � � � � �
�	 � ��x� � ��x� ��� ��� ��� ���� ���� ���� ����
�	 � ��x� � ��x� � �
x�x� ��� ���� ��� � ��� ��� ���
�	 � ��x� � �
x�x
 � ��� �� �� �� �� ��

Model �vi�� E�y� � � � ��x� � ��x�
other models ���� ��� ��� �� � � ��

�	 � ��x� �� � � ��� �� � ���
�	 � ��x� � ��x� ��� ��� ��� ��� ���� ���� ����
�	 � ��x� � ��x� � �
x�x� ��� ��� �� �� ��� �� ���
�	 � ��x� � �
x�x
 ��� ��� ��� ���� ��� ��� ���

Model �vii�� E�y� � � � �x� � �x�
x���� � ���

other models ���� ���� ���� � � � �
�	 � ��x� �� �� ��� � � � �
�	 � ��x� � ��x� ��� ���� ��� ��� ���� ��� ����
�	 � ��x� � ��x� � �
x�x� �� �� � �� � �� ���

�	 � ��x� � �
x�x
 � �� �� ��� ��� �� ���

Model �viii�� E�y� � � � �x� � �x�
 x��� � ���

other models ���� ��� ��� � � � �
�	 � ��x� � � � � � � �
�	 � ��x� � ��x� �� ��� ��� ���� ���� ��� ����
�	 � ��x� � ��x� � �
x�x� ��� �� ��� �� �� ��� ���

�	 � ��x� � �
x�x
 ��� ��� ��� ��� �� �� ��
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Table � E�ects of Some Thick�tail Error Distributions

for model y � � � �x� � �x� � r based on ���� simulations

Distributions
Candidate Models Normal t�
� Cauchy Log N Slash ��Normal

Robust Stochastic Complexity Criterion

�	 � � �� � � �
�	 � ��x� � � �� � ��� �

�	 � ��x� � ��x� ��� ��� �� ��� �� ���
�	 � ��x� � ��x� � �
x�x� �� � �� �� � ��
�	 � ��x� � �
x�x� �� �� ��� �� ��� ��
�	 � ��x� � � � � � �

�	 � ��x� � �
x�x� � � �� � �� �
�	 � �
x�x� � � �� � �� �

RAIC

�	 � � � � � �
�	 � ��x� � � �� � �� �

�	 � ��x� � ��x� �� ��� �� ��� �� ���
�	 � ��x� � ��x� � �
x�x� ��� �� ��� �� �� �
�	 � ��x� � �
x�x� �� � ��� � ��� ��
�	 � ��x� � � � � � �

�	 � ��x� � �
x�x� � � �� � � �
�	 � �
x�x� � � � � �� �

HAIC

�	 � � � � �� �
�	 � ��x� � � �� � �� �

�	 � ��x� � ��x� ��� ��� ��� �� ��� ��
�	 � ��x� � ��x� � �
x�x� ��� �� �� ��� �� ���
�	 � ��x� � �
x�x� �� �� ��� �� ��� �
�	 � ��x� � � � � � �

�	 � ��x� � �
x�x� � � �� � �� �
�	 � �
x�x� � � �� � �� �

RBIC

�	 � � � � � �
�	 � ��x� � � �� � �� �
�	 � ��x� � ��x� ��� �� ��� ��� ��� ��

�	 � ��x� � ��x� � �
x�x� �� �� �� �� �� �
�	 � ��x� � �
x�x� �� ��� ��� �� ��� ��
�	 � ��x� � � � � � �

�	 � ��x� � �
x�x� � � �� � �� �
�	 � �
x�x� � � �� � � �
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Table �� E�ects of Some Thick�tail Error Distributions

for model y � � � �x� � r based on ���� simulations

Distributions
Candidate Models Normal t�
� Cauchy Log N Slash ��Normal

Stochastic Complexity Criterion

�	 � � � � �� �

�	 � ��x� �� ��� ��� ��� ��� ���
�	 � ��x� � ��x

�
� ��� ��� �� ��� ��� ���

�	 � ��x
�
� � � ��� � ��� �

RAIC

�	 � � � � � �
�	 � ��x� � ��� ��� ��� ��� ���

�	 � ��x� � ��x
�
� �� � �� � �� ���

�	 � ��x
�
� �� ��� ��� ��� �� ���

HAIC

�	 � � � � � �
�	 � ��x� ��� ��� ��� �� �� ���

�	 � ��x� � ��x
�
�  � �� �� �� ���

�	 � ��x
�
� �� ��� ��� ��� ��� ���

RBIC

�	 � � � � �� �
�	 � ��x� ��� ��� ��� ��� ��� ���
�	 � ��x� � ��x

�
� � �� ��  �� �

�	 � ��x
�
� �� ��� �� ��� ��� ���
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