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Abstract

At present, the W boson is investigated experimentally at LEP2 via its pair production. In
order to achieve precise theoretical predictions for the measurement of the W-boson mass
and the non-abelian triple-gauge-boson couplings, the inclusion of radiative corrections
is required. Since the W bosons decay very rapidly into light fermion pairs, the actual
processes under investigation are ete™ - 4 fermions.

The full O(«r) corrections to these processes are not available at present. Since the
main contributions originate from diagrams with two resonant W-boson propagators, an
expansion of the amplitude around the poles of the two resonant W bosons is a reasonable
approach, which is also gauge-invariant. In the double-pole approximation, the contribu-
tions are classified in factorizable and non-factorizable corrections. The amplitudes of the
factorizable corrections are composed of those for the on-shell W-pair production and the
on-shell W-decays multiplied by the two propagators of the resonant W bosons. All other
corrections are called non-factorizable, because they do not factorize into a simple product
of W-pair production and W decays.

As a first step of this work, the non-factorizable corrections of the processes ete™ —
4 fermions are calculated in double-pole approximation. The non-factorizable corrections
are implemented into an existing Monte Carlo program and various distributions are stud-
ied. It turns out that the non-factorizable corrections are negligible with respect to the
experimental accuracy of LEP2; however, they should become relevant for a future linear
collider with higher luminosity.

A further building block of the radiative corrections to four-fermion production are the
bremsstrahlung processes e™e™ — 4 fermions-+~. These processes are of physics interest in
their own right. For instance, the radiative processes can be used to obtain information on
the quartic-gauge-boson couplings yyWW, ~ZWW, and yyZZ, which are part of the tree-
level amplitude. The tree-level helicity amplitudes for the processes ete™ — 4 fermions and
ete” — dfermions+ + for all possible final-state fermions are calenlated. A multi-channel
Monte Carlo program for both classes of processes is constructed. This is a particularly
difficult task owing to the very complex peaking structure of the differential cross section.

In order to include radiative corrections into the Monte Carlo program, the infrared and
collinear singularities must be extracted from the bremsstrahlung process. This is done
by applying the dipole-subtraction method to four-fermion production. This subtraction
method has already been worked out in massless QCD for dimensional regularization. In
the Electroweak Standard Model it is more convenient to regularize the amplitude with
an infinitesimal photon mass and small fermion masses. Hence, the subtraction method
is reformulated for mass regularization.
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Finally, the doubly-resonant virtual corrections are implemented into the Monte Carlo
program for the processes ete™ — 4fermions(+7v). Therefore, the results of the non-
factorizable corrections and the already existing results of the on-shell W-pair production
and on-shell W-decay are used. For the real corrections the complete bremsstrahlung
process ete™ - 4 fermions + 7 is taken into account. All results are combined in a four-
fermion generator, which is the first Monte Carlo generator including the complete (o)
corrections to the processes efe™ — W*W~ — 4 fermions in double-pole approximation.
This generator is used to produce numerical results for the total cross section, angular,
and invariant-mass distributions.



Zusammenfassung

Am Beschleuniger LEP2 wird zur Zeit die W-Paar-Produktion experimentell untersucht.
Um genaue theoretische Vorhersagen fiir die Bestimmung der W-Boson-Masse und die
Untersuchung der Drei-Eichboson-Kopplungen zu erhalten, miissen Strahlungskorrekturen
beriicksichtigt werden. Weil die W-Bosonen sehr schnell in je zwei leichte Fermionen
zerfallen, werden in Wirklichkeit die Prozesse ete™ — 4 Fermionen untersucht.

Die vollstandigen Strahlungskorrekturen in O(«) sind zu diesen Prozessen noch nicht
bekannt. Der Hauptbeitrag stammt von Diagrammen mit zwei resonanten W-Boson-
Propagatoren. Deshalb besteht ein naheliegender und auch eichinvarianter Ansatz darin,
die Amplitude um die Pole der beiden W-Bosonen zu entwickeln. In dieser Doppelpol-
naherung konnen die Strahlungskorrekturen in faktorisierbare und nicht-faktorisierbare
Korrekturen klassifiziert werden. Die Amplitude der faktorisierbaren Korrekturen setzt
sich aus den Amplituden der W-Paar-Produktion, den beiden Amplituden der W-Boson-
Zerfalle und den zwei Propagatoren der resonanten W-Bosonen zusammen. Alle iibrigen
Korrekturen werden mit nicht-faktorisierbar bezeichnet, weil sie nicht aus einem einfachen
Produkt von Beitragen zur Produktion und zu den Zerfillen geschrieben werden kénnen.

In einem ersten Schritt wurden in der vorliegenden Arbeit die nicht-faktorisierbaren
Korrekturen zu den Prozessen e™e™ — 4 Fermionen in Doppelpolniherung berechnet. Sie
wurden in ein existierendes Monte-Carlo-Programm eingebaut, und verschiedene Verteil-
ungen wurden studiert. Dabei zeigte sich, dass diese Korrekturen vernachlissighar gegen-
tiber dem experimentellen Fehler von LEP2 sind. Jedoch werden sie fiir einen zukiinftigen
Linearbeschleuniger mit hoherer Luminositat voraussichtlich wichtig.

Ein weiterer notwendiger Bestandteil der Strahlungskorrekturen zur Vier-Fermion-Pro-
duktion sind die Bremsstrahlungsprozesse ete™ — 4 Fermionen + v. Mit diesen Prozessen
kénnen auch die Vier-Eichboson-Kopplungen vy WW, vZWW und ~yyZZ studiert wer-
den, die auf Born-Niveau enthalten sind. Die Helizitits-Amplituden zu den Prozessen
ete™ — 4 Fermionen und e"e™ — 4 Fermionen+ fiir alle Endzustinde wurden berech-
net, und ein Monte-Carlo-Programm fiir beide Klassen von Prozessen geschrieben. Die
Schwierigkeit lag dabei in dem sehr komplexen und stark variierenden Verhalten des dif-
ferentiellen Wirkungsquerschnittes.

Um Strahlungskorrekturen mit Hilfe eines Monte-Carlo-Programms zu berechnen, miis-
sen die infraroten und kollincaren Singularitdten vom Bremsstrahlungsprozess abgespalten
werden. Dazu wurde die Dipol-Subtraktionsmethode auf die Vier-Fermion-Produktion
angewandt. Diese Subtraktionsmethode existierte in der Literatnr fiir masselose QCD
und dimensionale Regularisierung. Fiir das Elektroschwache Standardmodell werden nor-
malerweise die Singularititen mit einer infinitesimalen Photonmasse und kleinen Fermion-



massen regularisiert. Daher wurde die Subtraktionsmethode fiir die Massenregularisierung
umgeschrieben.

Alle doppeltresonanten virtuellen Korrekturen wurden in das vorher erwahnte Monte-
Carlo-Programm fiir die Prozesse ete™ - 4 Fermionen(+7) eingebaut. Dazu wurden die
nicht-faktorisierbaren Korrekturen und die schon existierenden Ergebnisse fiir die W-Paar-
Produktion und W-Zerfalle verwendet. Fiir die reellen Korrekturen wurde der komplette
Bremsstrahlungsprozess e™e™ — 4 Fermionen-+v berticksichtigt. Dieses Programm ist der
erste Monte-Carlo-Generator, der alle Strahlungskorrekturen in O(«) zur Vier-Fermion-
Produktion in Doppelpolnaherung beinhaltet. Mit ihm wurden numerische Ergebnisse fiir
den totalen Wirkungsquerschnitt, Winkelverteilungen und invariante-Massen-Verteilungen
erzeugt.

VI



Chapter 1

Introduction

The Glashow-Salam-Weinberg model [1], known as the Electroweak Standard Model
(SM), is very successful in describing electroweak phenomena. Since the SM is a spon-
taneously broken gauge theory, it is renormalizable [2] and hence observables can be, in
principle, calculated to any finite order in perturbation theory.

An important feature of the SM lies in the appearance of elementary gauge-boson-self-
interactions resulting from the non-abelian structure of the gauge group. The yYWW and
ZWW vertices can be studied in detail at the e*e™ collider LEP2 [3]. Beside the investi-
gation of the triple-gauge-boson-couplings, LEP2 also allows for a precise determination
of the W-boson mass. Two methods are used [4, 5]: the measurement of the total cross
section near threshold and the reconstruction method, where the Breit-Wigner resonance
shape is reconstructed from the decay products of the W bosons.

LEP2 is operating above the W-pair production threshold and produces about 10?
W pairs. Hence, the typical experimental accuracy is of the order of one to a few per
cent. The accuracy of the W-boson mass measurement is expected to be S b0 MeV at
LEP2 [4] and about 15MeV for a future linear collider [6]. This experimental accuracy
should be matched or better exceeded by the precision of the theoretical predictions. Since
W bosons decay very rapidly into light fermions, the actual reaction under investigation
isete” — WTW~ — 4fermions.

Figure 1.1: Diagrams with two resonant W-boson propagators contributing to eTe™ — 4f



In the LEP2 energy region, the lowest-order cross section is dominated by the diagrams
that involve two resonant W bosons, as shown in Fig. 1.1. All other lowest-order diagrams
are typically suppressed by a factor I'y/My =~ 2.5%, but may be enhanced in certain
phase-space regions. Since all these contributions are required at the one-per-cent level,
the complete lowest-order matrix element has to be taken into account.

Furthermore, the implementation of the finite width of unstable particles, such as
the W bosons, has to be done properly. A finite width is necessary in the phase-space
region where the unstable particle becomes resonant, i.e. nearly on shell, otherwise the
cross section has a non-integrable unphysical singularity. The finite width is naturally
introduced via Dyson summation, where the width arises from the imaginary parts of the
resummed self-energy diagrams:

‘““_4\/ IZM ) 1 )
= > ) 1.0.1
- ’\[0) WX'; [A’ — Mg k2 — ME + Sy (k?) ( )

where Mj symbolizes the bare mass of the unstable particle, and Sy denotes the one-
particle-irreducible self-energy.

However, since only a part of higher-order corrections are included in this way, the
whole result is gauge-dependent, and wrong results can be obtained in certain phase-space
regions [7, 8, 9, 10]. The reason is that Ward identities are violated and, hence, gauge
breaking terms can be amplified in the presence of small scales, or unitarity cancellations
do not take place properly. Ward identities are, in particular, crucial for processes with
nearly on-shell virtual photons or for the production of longitudinal polarized gauge bosons
at high energies.

For the calculation of the tree-level processes ete™ — 4f and eTe™ —» 4fv, three
schemes for the implementation of the finite W-boson width are compared in Chapter 2:
the constant-width scheme, where the imaginary part of the self-energy is replaced by a
constant, the running-width scheme with the naive running T'(k?) = Dv0(k*)k? /M2, and
the complex-mass scheme, where the boson masses are replaced by complex masses in all
couplings and propagators and, in particular, in the definition of the weak mixing angle.
In general, the first two schemes violate Ward identities [9, 10], while the third scheme
fulfils all Ward identities.

A gauge-invariant approach for the introduction of the finite width is the pole expansion
[11, 12] outlined in the following. The complete matrix element for a process, with an
unstable particle in the intermediate state, can be written as

= I -+ n, (1.0.2)
where the residue is denoted by r, and the mass of the unstable particle by M. The
symbol n summarizes all terms that are regular at 2 = AM?. Both the location of the
complex pole, which corresponds to the mass of the unstable particle, and the residue are
gauge-invariant quantities. For stable particles the mass lies on the real axis, for unstable
particles in the complex plane.

In perturbation theory, the complex mass M is determined by the location of the pole
after Dyson summation (1.0.1):

M? = M7 — Sy (M?) = ME — 1My Ty, (1.0.3)
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where I'y and My denote the finite width and the real mass of the unstable particle,
respectively. After expanding the self-energy about M?, the inverse propagator reads

E = MJ o+ S (k) = [L+ Sy (M) = M) + O (R — M*)?),

and the matrix element can be rewritten in the form [12]:

— R(Az 0> h 2 — P(*/\[Q) 9)
- k‘z — A]OZ .__,\ (]‘ ) + ‘V<]<L 7€)> - Efl ,_4\](1\1’2)]@7{2 o A/[z)
R(k”,0) R(M?, 0)

o ]
M S LS ()R _M?J TN, (104)
where N includes the non-resonant diagrams, and # summarizes all kinematic variables,
except for the invariant mass k? of the unstable particle. Since the complete amplitude
is gauge-invariant, the single terms of the Laurent expansion about the squares of the
complex mass are also gauge-invariant. The first term on the right-hand side of (1.0.4)
corresponds to the leading term in a Laurent expansion about 4% = M?, and dominates the
cross section in the resonance region. The remaining terms are finite in the limit k2 — M2
Therefore, a reasonable and gauge-invariant approximation is to neglect the non-leading
terms and to keep only the resonant term. This simplifies the calculation considerably,
since all obviously non-resonant diagrams can be left out from the calculation from the
beginning.

In Chapter 3 and 4, the pole scheme is applied to the radiative corrections of four-
fermion production. Radiative corrections are, in general, required in the theoretical
predictions for four-fermion production, in order to match the accuracy of LEP2 of about
one per cent. The full O(a) calculation involves 10%-10* diagrams and is, therefore, ex-
tremely complicated. Since the non-doubly-resonant radiative corrections are of the order
of al'wIn(...)/(mMw) ~ 0.1%, the restriction to the doubly-resonant corrections is a
reasonable approach.

After the introduction of the finite W-boson width, the matrix element reads

Ry_ (K2, k2. 0) Ry(k2, k2, 0)  R_(k2,k2,0)

,!..

M= a0 —am T R e

+ N(k3, k2, 0), (1.0.5)
where ki are the momenta of the resonant virtual W= bosons and the factor [1+ ¥4 (M?)]
is already included in the definition of Ry, R, and R_*. In double-pole approximation,
the matrix element is expanded about the squares of the W-boson masses and all non-
doubly-resonant terms are neglected:

Ry (M M2, 0)
(5 = 2)(E = 217)

MPPA = (1.0.6)

The double-pole approximation simplifies the calculation considerably, since only dia-
grams with two resonant W-boson propagators have to be calculated. Furthermore, a

'We use the the on-shell renormalization scheme of Ref. [13], where Re{4,(M2)} = 0. In this renor-
malization scheme, the deviation of the self-energy at the complex pole X{.(1/7) yields only O(a?) cor-
rections. Hence, the factor [1 -+ X{, (A/7)] is neglected in the following chapters.




large part of the doubly-resonant radiative corrections are included in the factorizable cor-
rections. The factorizable corrections are composed of the on-shell W-pair production, the
two resonant W-boson propagators, and the two on-shell W-boson decays. The remaining
radiative corrections are called non-factorizable and are explicitly calculated and discussed
in Chapter 3.

The double-pole approximation is a good approximation if the doubly-resonant con-
tributions dominate the cross section. If these are suppressed, as close to the W-pair
production threshold, the other contributions become important. This is also true if non-
doubly-resonant terms are enhanced, as e.g. by nearly on-shell photons. These terms can
be suppressed by applying appropriate cuts on the phase space.

Note that the pole expansion only works if the on-shell limit exists. Since the non-
factorizable corrections, given in Section 3.3, involve on-shell-divergent terms, like In(k% —
M?), the pole expansion of these corrections has not such a simple form as in (1.0.6).
Thus, the non-factorizing corrections are calculated for off-shell W bosons, while the limit
k3 — M? is performed whenever possible.

With the results of Chapter 2 and 3, a Monte Carlo generator is constructed in
Chapter 4 that includes all doubly-resonant O(«) radiative corrections to four-fermion pro-
duction. More precise, this generator includes the complete tree-level matrix element, the
virtual corrections in double-pole approximation, and the complete bremsstrahlung pro-
cess. The cancellation of the soft and collinear singularities is achieved within the subtrac-
tion method as discussed in Section 4.2. Although the real non-factorizable corrections are
calculated in Chapter 3 in double-pole approximation, the complete bremsstrahlung pro-
cess is taken into account in Chapter 4. In this way, the problem of overlapping resonances
is avoided (see Section 4.1.3). The Monte Carlo program of Chapter 4 is the first generator
that includes the complete O(«) corrections to the processes ee™ — WHW™ — 4 fermions
in double-pole approximation.



Chapter 2

Tree-level processes eTe™ — 4f(+7)

While the most important process at LEP2 for the studies of the gauge sector in the
Electroweak Standard Model is certainly ete™ — WHW~ — 4f, many other reactions
have now become accessible. Besides the 4-fermion-production processes, including single
W-boson production, single Z-boson production, or Z-boson-pair production, LEP2 and
especially a future linear collider allow us to investigate another class of processes, namely
ete™ — 4fy.

The physical interest in the processes ete™ — 4 fv is twofold. First of all, they are an
important building block for the radiative corrections to ete™ — 4f, and their effect must
be taken into account in order to get precise predictions for the observables that are used for
the measurement of the W-boson mass and the triple-gauge-boson couplings. On the other
hand, those processes themselves involve interesting physics. They include, in particular,
triple-gauge-boson-production processes such as WW~=~, ZZ~, or Zyy production and
can therefore be used to obtain information on the quartic gauge-boson couplings vy W W,
yZWW , and yyZZ. While only a few events of this kind are expected at LEP2, these
studies can be performed in more detail at future linear ete™ colliders [14].

Some results for eTe™ — 4 fv with an observable photon already exist in the literature.
In Refs. [15, 16] the contributions to the matrix elements involving two resonant W bosons
have been calculated and implemented into a Monte Carlo generator. This generator has
been extended to include collinear bremsstrahlung [17] and used to discuss the effect of
hard photons at LEP2 [18]. The complete cross section for the process eTe™ — ude 7,7y
has been discussed in Ref. [19]. In Ref. [20], the complete matrix elements for the processes
ete™ — 4fv have been calculated using an iterative numerical algorithm without referring
to Feynman diagrams. We are, however, intervested in explicit analytical results on the
amplitudes for various reasons. In particular, we want to have full control over the imple-
mentation of the finite width of the virtual vector bosons and to select single diagrams,
such as the doubly-resonant ones. No results for e"e™ — 4f~ with eTe™ pairs in the final
state have been published in the past. The resnlts of this section are published in Ref. [21]
and agree very well with the recent calculations of Ref. [22], where finite-mass effects due
to nearly collinear photon emission are discussed for the process ete™ — ud L7,

In order to perform the calculation as efficient as possible we have reduced all processes
to a small number of generic contributions. For e"e™ —» 4f, the calculation is similar
to the one in Ref. [23], and the generic contributions correspond to individual Feynman



diagrams. In the case of ete™ — 4f~ we have combined groups of diagrams in such a
way that the resulting generic contributions can be classified in the same way as those for
ete™ — 4f. As a consequence, the generic contributions are individually gauge-invariant
with respect to the external photon. The number and the complexity of diagrams in the
generic contributions for e*e™ — 4 f+ has been reduced by using a non-linear gauge-fixing
condition for the W-boson field [24]. In this way, many cancellations between diagrams are
avoided, without any further algebraic manipulations. Finally, for the helicity amplitudes
corresponding to the generic contributions concise results have been obtained by using the
Weyl-van der Waerden formalism (see Ref. [25] and references therein).

After the matrix elements have been calculated, the finite widths of the resonant par-
ticles have to be introduced. We have done this in different ways and compared the
different treatments for ete™ — 4f and ete™ — 4f~. In particular, we have discussed a
“complex-mass scheme”, which preserves all Ward identities and is still rather simple to
apply.

The matrix elements to efe™ — 4f and eTe™ — 4f+ exhibit a complex peaking be-
haviour owing to propagators of massless particles and Breit—Wigner resonances, so that
the integration over the 8- and 11-dimensional phase spaces, respectively, is not straightfor-
ward. In order to obtain numerically stable results, we adopt the multi-channel integration
method [23, 26] and reduce the Monte Carlo error by the adaptive weight optimization
procedure described in Ref. [27]. In the multi-channel approach, we define a suitable map-
ping of random numbers into phase-space variables for each arising propagator structure.
These variables are generated according to distributions that approximate this specific
peaking behaviour of the integrand. For e™e™ — 4f and efe™ — 4fv we identify up to
128 and 928 channels, respectively, which necessitates an efficient and generic procedure
for the phase-space generation.

2.1 Analytical results

2.1.1 Notation and conventions
We consider reactions of the types

et (py,op) +e (po,02) = filki, o0) + folks, 00) + fa(ks, 03) + fulky, 04), (2.1.1)

e (g, 00) F e (po,0-) = filke,00) + folke, 02) + falka, 03) + filky, 04) + y(ks, \).

(2.1.2)

The arguments label the momenta py, k; and helicities o; = +£1/2, A = +1 of the cor-
responding particles. We often use only the signs to denote the helicities. The fermion
masses are neglected everywhere.

For the Feynman rules we use the conventions of Ref. [13, 28]. In particular, all fields
and momenta are incoming. It Is convenient to use a non-linear gauge-fixing term [24] of
the form

i o i 2
Lo = = | 0TV +ie( ¥ — 220117 i ot]
| Sy ) !
1 ¢ VLT N l. .Y D) 4
...... E(aﬂ: Ty — Mo\ )? = 5 (6"4,)% (2.1.3)
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where ¢* and y are the would-be Goldstone bosons of the W+ and Z fields, respectively.
With this choice, the ¢*WT A vertices vanish, and the bosonic couplings that are relevant
for ete™ — 4fv read

Wk,
Vo by | o |
~ = =10V T [{g,,,p(A:»_ ----- /2i,7+ )N - Q,Q/L,,,}{f\,.fyp -+ 2_0;,,[,,%‘\;’,,} ,
e
W ke
. A_,L .M.fp_%_
N
= —2egvww JuvJoo- (2.1.4)
‘/ :/ I/I/TO.#

with V = A, Z, and the coupling factors

. Cw o1
gaww =1, Jzww = ——, (2.1.5)
Sw
Note that the gauge-boson propagators have the same simple form as in the 't Hooft—
Feynman gauge, i.e. they are proportional to the metric tensor ¢g,,. This gauge choice
y Jauge, A 9 g
eliminates some diagrams and simplifies others owing to the simpler structure of the
photon—gauge-boson couplings.
The vector-boson~fermion—fermion couplings have the usual form

fi

V., / ' 3
JW\‘\ = 167, Z gv./Fifj Wy, <21b)

1
where wy = (1 +v5)/2. The corresponding conpling factors read
Q
S I 1
o o 7 W W, o “ -
Jaf.p = W(‘Q’i: (72_, T T (27 + M""‘_;—(ScT‘-% Uy g = “’T“"'OU-—v <2l /)
fifs Rt . . N

3 = 41/2 denote the relative charge and the weak isospin of the fermion

where Q; and [ ;
fi, respectively, and f! is the weak-isospin partner of f,. The colour factor of a fermion f;

. . LOAC LA NG 1 ar AJC e
is denoted by N7, i.e. N, = 1 and Njp = 3.

2.1.2 Classification of final states for ete™ — 4 f

The final states for e*e™ — 4f have alreadv been classified in Refs. [29, 23, 30]. We
introduce a classification that is verv close to the one of Refs. [29, 30]. [t is based on



the production mechanism, i.e. whether the reactions proceed via charged-current (CC),
or neutral-current (NC) interactions, or via both interaction types. The classification
can be performed by considering the quantum numbers of the final-state fermion pairs.
In the following, f and F denote different fermions (f # F') that are neither electrons
nor electron neutrinos (f, F' # ¢7,1,), and their weak-isospin partners are denoted by
Jand F', respectively. We find the following 11 classes of processes (in parenthesis the
corresponding clagsification of Ref. [30] is given):

(i) CC reactions:

(a) oo = [FFE, (CC11 familv),
(b) etem — veet £ F, (CC20 family),
(c) ete™ — ffle D, (CC20 family),

(ii) NC reactions:

(a) ete” — ffFF, (NC32 tamily),
(b) etem — fffF, (NCY- 16 family),
(c) ete™ —e7etff, (NC4 S8 family),
(d) efe” — e ete e, (NC4- 86 family),
(iif) Mixed CC/NC reactions:
(a) etem — FfFF, (mizg 3 family),
(b) ete™ = vuloff, (NC21 family),
(¢) ete™ = Velolole, (NCY-9 family),
(d) ete™ = veee e, (miz56 family).

The radiation of an additional photon does not change this classification.

2.1.3 Generic diagrams and amplitudes for ete™ — 4 f

In order to explain and to illustrate our generic approach we first list the results for ete™ —
4f. All these processes can be composed from only two generic diagrams, the abelian and
non-abelian diagrams shown in Fig. 2.1. All external folmmns Ja,...r are assumed to be
incoming, and the momenta and helicities are denoted by p, ¢ and Oa,...f, Tespectively.
The helicity amplitudes of these diagrams are calc ularod within The Weyl-van der Waerden
(WvdW) formalism following the conventions of Ref. [25] (see also references therein).

Leptonic and semi-leptonic final states

We first treat purely leptonic and semi-leptonic final states. In this case, none of the gauge
bosons in the generic graphs of Fig. 2.1 can be a gluon, and the colour structure trivially

8



a) abelian graph b) non-abelian graph

fc(.paac) _ ) J-< fc<pc::ac)
) f alPas Tq A .

fa(pa, oa) o v IfJ/J fa(pa, 0a)

) >-WM11

- felpe, 0e) o (Des 02)

. ‘ e
< j?) (pb~ (7(1,) w
"N\K\ fi(pg, o) LK\ frpy,o4)

fo(Pa, 0a)

fo(pp, 00)

Figure 2.1: Generic diagrams for e™e™ — 4f

leads to a global factor Nf, Nj,, which is equal to 1 or 3, after summing the squared
amplitude over the colour degwos of freedom. The results for the generic amplitudes are

Tas0p:0c,0d,0e30f ¢ oy m
My, (Pas Doy Pes Py Pes )

= 4(: é(f(; mgb(scr[( —0d O(fr y—af g;ri’ fofg- ]$,)f7 /(\hl]f ]V fajf

l\/ (pe + Pa) Piyy(Pe + 1f) o000
2 ASmTOTe (D Des Deds Pes DE ) 2.1.8
TETRERE 5 (Pas Dby Des Das Pes D), (2.1.8)

M T (Do Dy, Pes Pas Des D)
= 464(55,»,,,--(71, 00',;,+ OO’(—[,“()UG;“F()O‘_"‘,"‘ (Qc - C/) d)g\/’l/i/"/‘f g ?bf( . fbg I'—V_fc I dg;{/fs T
x P‘ (])a + Pb)PW (pc + pd)-PW’ (lPC + P;’) A’nga (pa,a DPuvs De, Pds Pes pf)a (219)

where the vector-boson propagators are abbreviated by

P\ (p) = -3 —“") V= f‘. Z Ur 7, 17\[4 = ‘Z\/[g == (). (2110)

T O

(The case of the gluon is included for later convenience.) The auxiliary functions AZ*
and A5® are expressed in terms of WvdW spinor products,

AT (Do, Dy, Des Py Pes 1) = (DaDe) (060) " ((Dopa) ™ (pope) + (paps)* (Peps)),
AT (Dar Doy D Dats e 0f) = A3 (Day Dos Des Das P> De)s
A (Do Doy Pes D e p/) = A3 (Do, Dy Pa- D> Pes D7),
AS T (Pas Dby Pes Pas P 1) = AT (Do, Doy s D D D)

57 Doy Dby Des Dty Pes pf) (flf;’ T D Do Des Dats Des p/)) (2.1.11)
AT Pas oy Des D Pes0p) = 0o0a) 050 7) " Papv) (Pede) + (0oPa) (Paps) " (Pabe) (PeDa)
+ (s ) (Pap )" (Pope) (PeDy )

AZ (Day Doy Der Das Pes D) = AL (Do Doy Des Dt Pe Pf ). (2.1.12)



The spinor products are defined by

— e cos £ sin —- ()p
2 272

(pq) = e*Ppaqn = 2/Podo e~

where pa, g, are the associated momentum spinors for the momenta

7)“’ = fpo(l, sin 0, cos (bp. sin «‘)p sin ¢y, cos b,),

(2.1.13)

(2.1.14)

Incoming fermions are turned into ontgoing ones by crossing, which is performed by
inverting the corresponding fermion momenta and helicities. If the generic functions are
called with negative momenta —p, —g, it is understood that only the complex conjugate
spinor products get the corresponding sign change. We illustrate this by simple examples:

Alp,q) = (pg) = Alp,—q) = Al(=p.¢) = A(~p.—q),
B(p,q) = (pq)" = —B(p,—q) = —B(~p,q) = B(—p, —q).

(2.1.15)

We have checked the results for the generic diagrams against those of Ref. [23] and found

agreement.

Using the results for the generic diagrams of Fig. 2.1, the helicity amplitudes for all
possible processes involving six external fermions can be built up. It is convenient to
construct first the amplitudes for the process types CC(a) and NC(a) (see Section 2.1.2)
in terms of the generic functions (2.1.8) and (2.1.9), because these amplitudes are the basic
subamplitudes of the other channels. The full amplitude for each process type can be built
up from those subamplitudes by appropriate substitutions and linear combinations.

We first list the helicity amplitudes for the CC processes:

Ty 0y, 01,02,03,04 o . A n L,
M, (Day Dy kit Koy Kesy Ky
O, 0y =01,=02,=08,=04 (), X 3 [
= My (}9+:])w»> —hky, —Fka, —ks, “7»4_)

Oy T ey = 01,02, (T3, Ty . N
+ ¥ [ Mo (Dgs Dy —h1, =k, —kg, — k)
V= fs

O, 0,0y O == (T3 — O

+ ’\/i\ ”1 PO 1( /1], ]12,])¢ - “"1113, }\4)
e Tt e SV T, S Y. L

"‘{‘" \/l‘ 1‘ o ( /\3/ Ai ])L ])_Q "‘II\|7 A
— O =02, =08, = T4\ Ty T e [ 7. .

+ My (—k1, —ka, —ks3, =k, Dy, po
RV Bl O el O I A 0 TN 2 SE VN Y .

+ My (= ks, —ky, =k, —Fa, py, - j}

M 0'_ 02,078,074 (1)4". pw“ llfl. A:% ]1._2‘ ]‘ )
= MR Ry ke, Ryl k)

o /\/122\ 02,01,~0 .03, H’l(] ﬂ_; *]\’) ]H _Z) Cg, ])n‘

M(é.g:._70’[;(1’-3,0»3.,0’4 (])_‘_\ D, ,l‘ ‘ ]{"‘7‘ A.:% ,7,0
= /\/l(T 43-“ SRR O-[(Z)A_ P /71'] . flf‘_g. ]’fﬁ,. 17\1)

03,0, 01,02, — O 0 L R .
CCa (—“]\3 P /ll]_\ ]x,g‘ —p_;_,, All)
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(2.1.16)

(2.1.17)

(2.1.18)



The ones for the NC processes are given by

T T1,02,03,04

NCa (D4s P, s oo k?'z, ky)
) O0=1™ TO2,TO8, ™Y Iy 7 [» [~ o 2
Z [ M, T g p, —k, — ke, ks, — k)

‘/’1 ,‘/3 :’}',Z

Il

O e T ey = T3y Ty T, — 2

+ My, 2pg,pe, —ks, —kay —ky, —k2)
+“M;la‘l:”_m‘mw B O N T R ),
M Mm( —k3, =k, Pyy Doy — k1, k)
(- )
- )

— 0,02 03, =04, T
“i“ M“I‘-’ ]11 '““““]LQ '“"]b‘{, Azl p [)

+ MO (g Ky, — Ky, — Ko, Dy P }, (2.1.19)

Oy T 0,00, 073,074 . . n 1.
My (D1, D=y Ry Koo Ky By
T T 000,035,074

s J \IV)(—"& ’ T (1)1_ 1)__,/\ ]\’) ]\Jg ]‘v )
e MRS TTI T (o gy Ry Ky B, (2.1.20)

MEETI0IDIRT (ke Ry ks ky)
NCe Py P—s N1y K2, B35 B
_ O 001,020,040 1 1 1. L
- MNC;L (]‘)+: P ’l‘/la }"27 k3> ’Z‘"L>
OO O 02,0°3,04 N , N v DN )
- MNC; ’ (""‘]%1;])...., TP k2, ks, ]‘J-’l)v (‘?"1‘21)

ng‘(,g_ LRI (D4, P—, k1, ko, Ko, k)
= MRS (g p ke ko, ks, Ka)
MG T gy oy Ky oy Ky R
B MNW%SJ_.,mrf+,cr2,03,m ( /ZUL Dy = Dops ko, ]{:37 }34)
— M7= oI ey p_ Ky kg, =Dy, Ky
b MREET 7T (Kb, i k)
- M= TR 7\% Doy =Dy Ry Ky, Ra). (2.1.22)

Finally, the helicity amplitudes for reactions of mixed CC/NC type read

T, 0 e, 01,02,03,04 N R .
/\/ICC/\TC (l)-}-~?>~—; 1‘”17 ]VZ’t ‘Z"‘-?: ](‘4)

O T 01,02,03,04 ) A . . R
Mxca (Das D=y Ry Koy s, ky)

- Mzﬁi': TLILTR (])x , P Ajl: ]ﬂflb 11{37 Izm"z), (2123)

M?’i;}gfh' TDIRT (o /f,;t. ko, ks, ki)
= MR o Ky ko ks, k)
— MmO T T (kg Ky, —po, =D, k2), (2.1.24)
M ?J{/(,T\}(”r‘ ORI (o At»; . A‘:_». ke, k)
- w({a TR ke K, Ky)
T T (]L{,. Py kg kol ke By)
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— My IR TO (—ky —ko ks, —p—, =y, Ka)
o Ml ™ TTIRTRISTI (e —ky, ks, —po, =Dy, K2)
+ MGom T IR OIS (kg kg, Dy =Dty )
— Mmoo I om0 (e kg, ke, =P, =Dy ko), (2.1.25)

/\/l(cr"c/gl\l(,{;1 TR (p P— Alv]‘ ks ka)
= MG oy, Ry )
— M0 m R (—~~- /«:3,]3__, ki, ko, =Dy, ky)
— MEETTTT T B ks, B)
b MGETTRITITR T ey Ry —p sy )
+ Ml T (< kg, o ke ke, —pa, Fo)
— Mmoo Im TR (Lo, Ky =Py =Dy Kio). (2.1.26)

The relative signs between contributions of the basic subamplitudes Mee, and Mye, to
the full matrix elements account for the sign changes resulting from interchanging external
fermion lines.

For the CC reactions, the amplitudes Mec, are the smallest gauge-invariant subset of
diagrams [31]. In the case of NC reactions, the amplitudes Muca are composed of three
separately gauge-invariant subamplitudes consisting of the first two lines, the two lines in
the middle, and the last two lines of (2.1.19).

Hadronic final states

Next we inspect purely hadronic final states, i.e. the cases where all final-state fermions f;
are quarks. This concerns only the channels CC(a), NC(a), NC(b), and CC/NC(a) given
in Section 2.1.2. The colour structure of the guarks leads to two kinds of modifications.
Firstly, the summation of the squared amplitudes over the colour degrees of freedom can
become non-trivial, and secondly, the possibility of virtual-gluon exchange between the
quarks has to be taken into account. More precisely, there are diagrams of type (a) in
Fig. 2.1 in which one of the gauge bosons V7, is a gluon. The other gauge boson of V5
can only be a photon or Z boson, since this boson has to couple to the incoming ete™
pair. Consequently, there is an impact of gluon-exchange diagrams only for the channels
NC(a), NC(b), and CC/NC(a), but not for CC(a). This can be easily seen by inspecting
the generic diagrams in Fig. 2.1: the presence of a gluon exchange requires two quark-
antiquark pairs ¢¢ in the final state.

We first inspect the colour structure of the purelv electroweak diagrams. Since the
colour structure of each diagram contributing to the basic channels CC(a) and NC(a) is
the same, the corresponding amplitudes factorize into a simple colour part and the “colour-
singlet amplitudes” Mae, and Mye,. given in (2.1.16) and (2.1.19), respectively. The
amplitudes for NC(b) and CC/NC{a) are composed from the ones of CC(a) and NC(a) in
a way that is analogous to the singlet case, but now the colour indices ¢; of the « um,ks fi
have to be taken into account. Indicating the electroweak amplitudes for fully hadronic
final states by “had,ew”, and writing colour indices explicitly, we get

/\/lf‘fb_.,(T_ J01,02,03,04 (pl Do, /sjl, /’C-j( /7'\‘,3. Z\i)

CCa,had.ew,ct,02,03,04



O4,0—,01,02,03,04 . . 7
= Mg, P (s Ry ko, K3, Ba) SerenOesens (2.1.27)

Oy 0, 01,02,03,04 ) , . . A
Mo hac (Dgr Dy K1,y Koy kg, key)

NCa,had,ew,cy,c2,c3,c4

= MBIy p Ky Koy ks k) OeyenOosess  (2.1.28)

MEGET VIR TST  (py, pey ke ko, ks, By)

b had,ew,eq,00,c3,04
. Ty T e (O] ,00,0°3,04 . A
- \/I\C‘ (P*&:p-“: ]L'b A’Q 'Z‘3 ]"4> Smm()rgm

T 0 e (TR, T0,T1,04 . I N A 271
— \/{\C1 (])AH P, ]{/3, !7»2, 'I\/b !lvcl) 5(:3(:3 (SC} 4 (2]-29)

Ty 0, 01,02,03,04 . S L L, -
MCC/NC&,h&l(’l,CW,CQ,cg,C3,C.1 (p'H P A’l’ Aﬁ ]"37 ]“)

T30y 01,02,03,04 ¢ A A Y Y
= I\/(N*Ca. (1)4,—7 P—, A’l) ]"2: ]{'3> ]Wl) écmg OCgC,/}

AAT+30—01,04,03,02 . R . L N 1o
I~ CCa ! (7)_)‘7 pw, Arl; ]\;4; f7</3, ILJQ) 501 C/[(}C:igcg . (2130)

In the calculation of the gluon-exchange diagrams we can also make use of the “colour-
singlet” result (2.1.8) for the generic diagram (a) of Fig. 2.1, after splitting off the colour
structure appropriately. Since each of these diagrams involves exactly one internal gluon,
exchanged by the two quark lines, the corresponding matrix elements can be deduced in
a simple way from the diagrams in which the gluon is replaced by a photon. The gluon-
exchange contributions to the channels NC(b) and CC/NC(a) can again be composed from
the ones for NC(a). Making use of the auxiliary function

Mghd TLI205 m(p}ap-w»]‘/l AZ 'Z\h]“ )

2
= @_‘%*;5 Z { \/l—m IO s = 0, 04 (“—/{715 ~A72’])+’ Do, - ‘/335 ‘““'1554)
¢ 1 30 V=y,7

!

+ J\A;:B‘ymmwn%ﬂw1—4”1:W(TD (m/":f% Mkihp—}w D-,; “kfh _]{:2>
HMPETITIER TR (e — kg, k3, —ha, Py p)
+ ;‘zzz.,w--ov;,--cﬂ 02,0 T e ( ks, —ky, —ki, ko, D) p_u)} . (2_1_31)

where g, = /4ras is the strong gange coupling, the matrix elements involving gluon
exchange explicitly read

T 0, 071,072,03,074 ) A
M Ca had atuo ‘x(])-|~>p~—7]{‘17’1"27;‘“3:]"(0

NCa,had,glion,cy,c2,e3,04
— Oy 0, 01,02,03,04 [, e N S S a a 1
o /\/l% 7 (D D~ oy Ko, Ky, ki) T /\ﬁcaf\recw (2'1'32)
T O e yO1,02,0°3,04 e e e
M\' Ch, had,ghmn €1,62,03,C 1(1) 4+ P— ]”]7 ’[”27 /“37 ]‘1)
- J\/lg? AR (7)+$ P '1;717 kE k.’:?; ’Zgil) i\

cyen” (3(1

----- MEHTTRTRINT (| p ks, Koy R ky) L P AT s (2.1.33)

ST e T T3, ;
J\A( 'C/NCahad,ghion,ey ea,e3.04 (-

005,04 (j)—l. - ,Z ]1 g ,Z\;) :/\U A (2134)

C1Ca7 Cacy
The colour structure is easily evaluated by making use of the completeness relation /\;Fj/\zg =

""%(57;7'(%1 -+ 2050 for the Gell-Mann matrices \j’f
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The complete matrix elements for the fully hadronic channels result from the sum of
the purely electroweak and the gluon-exchange contributions,

MU-I—,VM-uglagkfa(713)(f"l — MU"MO-'?UI:U-?:O-ByU"-I "E"‘ M” T, 01,02,03,04 (2 1 35)

had,er,eo,es,e4 ...had.ew,c1,e9,c3,04 Jhad,gluon,ey,es,ca,c4q

The gluon-exchange contributions are separately gauge-invariant.
or clarity, we explicitly write down the colour-summed squared matrix elements
F larity, licitly te d the colour-summed squared matrix elements
for the fully hadronic channels. Abbreviating M7+ 7=7ao00%d(p ko Ky, ke, kq) by
M. (a,b,c,d) we obtain

ST IMecana(1,2,3,4)]* = 9 Meca(l, 2,3, 41, (2.1.36)

colour

ST Mucanaa(L, 2,3, 47 = 9 Muca(l, 2,3,4) [ + 2| M,(1,2,3,4)[%, (2.1.37)

colour

> [Muepnaa(1, 2,3, 4))?

colour
= 9| Muyea(l,2, 3, 4)[2-»91/\41\[03(3,2,1;4)}2 — GIwo{A/l\u(l 2,3, M, (3,2,1,4))
g){M (l 27‘ )lZ U(3 2*17“”1 + -RG{ M, ( ;2,3 /L)M ( y2, 1, 4)}
— 8Re {Myea(1,2,3 4) /\/L,( ,2,1,4)} — 8Re {JerCa(.a,z,l,«i)M*( 2,3,4)},

(2.1.38)
S IMeoncanaa(l, 2,3, 4)
colour
= 9'MNC&(132>3>4)| QIJ\/{(,C(\L( 4, 3:“” — 6Re {MNC‘W( >MCC&(L 4,3, 2)}
+ 2 M, (1,2,3,4)2 = 8Re {Mcca(1, 4,3, 2)M:(1,2, 3, 4)}- (2.1.39)

Owing to the colour structure of the diagrams, a non-zero interference between purely elec-
troweak and gluon-exchange contributions is only possible if the four final-state fermions
can be combined into one single closed fermion line in the squared diagram. This im-
plies that fermion pairs must couple to different resonances in the electroweak and the
gluon-exchange diagrams, leading to a global suppression of such interference effects in
the phase-space integration (see Section 2.3.5).

2.1.4 Generic functions and amplitudes for eTe™ — 4 f + ~

The generic functions for eTe™ — 4/~ can be constructed in a similar way. The idea is
to combine the contributions of all those graphs to one generic function that reduce to
the same graph after removing the radiated photon. These combined contributions to
e’*c — 4 f~ are classified in the same way as the diagrams for the Lomoqpondmo process
ete™ — 4f, e the graphs of Fig. 2.1 also represent the generic functions for ete™ — 4 f+.
Finally, all amplitudes for e"e™ — 4f+ can again be constructed from only two generic
functions. Note that the number of individual Fevnman diagrams ranges between 14 and
1008 for the various processes. \We note that the generic functions can in fact be used to



construet the amplitudes for all processes involving exactly six external fermions and one
external photon, such as e”e™ — 4fv and ety — 5f.

As a virtue of this approach, the so-defined generic functions fulfill the QED Ward iden-
tity for the external photon, i.e. replacing the photon polarization vector by the photon
momentum vields zero for each generic function. This is simply a consequence of elec-
tromagnetic charge conservation. Consequently, in the actual calculation in the WvdW
formalism the gauge spinor of the photon drops out in each contribution separately.

Assuming the external fermions as incoming and the photon as outgoing, the generic
functions read

MBI O L Qe Qs Qs Qs Qs s Do Pes Pt Pes Dy )
= —4\/2¢ Ova,—m, 000,040, —0y g;;f fy ]‘ 2 fo By thcflj"’?fcff
4(7 e e Qa Ob» v e (2(/ (QF ()f p(? p Z)( pd pe?p/r?'z') <21~1O)

T\ Ohy Ty 0 T O .
J\/lx n( ;L @ f ((201 Qb (Qc ( ds (”20: Qf> Pas Pos Des Pd; pmpf: ']‘)
- 4 \/260 50(‘1 y O O”C ot On.ll ¥ ()(76 i O‘Uf 7 (QC o Qd) gyww qg,fbfu b ga/’]‘rcfci '(];V,fc ff

X A?IL!/\(QO,) (Q()n CQ(‘» Cgclu Qe: Qf> Pa> Py Pes Pds Pey Pfs /‘/-7)7 (21‘11)

with the auxiliary functions

A-QHM!“P(Q(U Qb: Qc; (\?(17 Qe; an PasPby Pey Pdy Pes pfa ]\) _ <pap(:>{

Py, (pe + pd) Py, <])e +p f)
« {<?)(7])j'>*< Qe — Qg | <papc>
(Pak) \(py +pe +pp)? (Dck)
+ (pﬁfpc f” %ijjf (papd)" (Do) + () )
I Qb(<pa.p<l>:k <pap6> + <p(‘pd>*<pcpr>>(<p>pj> <130Pb> <pfk>* <v75)ak>>
(pa + e +Pd) <pn'z‘><[)b/‘;>
N (Qa + Qe — Q) peps)* (Pepa)* (Pabe >(<pb/f\*<7)bm> — (psk)" <pep/->)}
(Pa + De + 1a)2(po + e + D5 ) (Pk)
Qd ( Qd) (1)11. ' ]C)]j\"i <pc =+ p(l)
(pb + pe + py)?
o epa) ((popa)* (Pope) + (Paps) (Pepy)) + (pek) (Do) (Pvpe) — (prh)* (Pepy))
(pk) (pak)
] O; - (@C Q,t ]7/ ]ﬁpx ( , p‘/)
(170 + Pe -+ })d)
o Upeps)" (pepy) + (k)" (Pek)) ({Papa)* (Pape) + <;pczzz>"'<pcz>e>)}
{(pek)(prk) ’
AT Q0 Q1 Quy Quy Qe QD i p ;)C,.;y{;>.1,>,-.ﬁ*)
= ATT(Qa Qv Qe Qu. = Q. = Qe Do Do Des D D Der k),

( <pb])d> ' <])b2!7e> + <Pdpf > * <Pepf > )

Py (pe + pa — E) Py (pe +0r) (pops)*

Py (pe + pa) Pry (pe 4 py — k)
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AFT N Qus Qpy Qey Qay Qe Qfy Das Dby Doy Py Pes P k)

= AT (Qu, Qu, —Qa, —Qc, Qe, Qs Pas Poy D> Des Pes P> k),
A+_-+(Qn . QranQcvQ,/‘-,Paw7)371')6:7%1)7[’@7)7”’m

= AFT(Qu, Qu, —Quy — Qe —Qr, =Qe, Do Doy Pas Des s Pes k),
A7 Q0 Qny Qey Qay Quy Qs Das Do Des Pas Pes Dy 7

= AyHQy, Qo — Qe —Qp, — Qo = Q4. Db. Do Des Pf s Des Das k),
142__}_m+<Qm Qb) Qc-/ er> Qey Qf: Pas Pos Pes Pds Pes Pfs }O

= AT Qv Quy Qs Qe —Qey —Qu: Do Pas D s Des Des P k),

''''' 5 TTQa, Qy, Qe, Qa, Qey Qf Pas Py Des P Des D K)

= AT (Qp, Quy = Qe — Q. Qus Qe Pbs Pas Ve D+ s Des ),
AQ_MMF(QU,: @y Qe Qay Qe Qfs Pos Pos Pes Pds Pes P fs ]‘>

= AT Qy, Qo Qs Qey Quy Qey Do, Das D Des Pas Des k),
A3 (Qay Ry Qes Quy Qe Qs Day Poy Des Py Pes P K) (2.1.42)

= (A2 T (Qs Qby Qoy Qas Qe Qf- Pas Doy Des Das Dey D k))

Py o ()= Py, (p) ’
and

ATWQM Qs Qey Qdy Qe Qf: PasPos Pes Pds Pes Py k)
(Qe — Qa)(epe)
(pek) (pek)
X ( (popa) (Peps) (Pad) (Pebe) =+ (Dopa) " (Paps) ™ (Pape) Peda)
+ {oopy) (Papy)” (PaDe) (PeDs))
») ) AN S oy Doy de 9y Y Z
+ Py (pa + py — k) Pow (pe + pa) P (pe -+ py) o (o
XL Aparp)l (pape) (Pepa) ((Dopa)™ Daps) — (Pak)" (Pak))
+ (Pape) (Pep ) (o0 1)“ (Pabr) — 0rk)" (Pak))]
+ (Pepe) ((Popa)™ (Pap) — (Pak)™ Pak)) ((Pops) " (Papv) — (Prk) " (Pak)) }
- (Qe — Q4)2(pa - k) Pw (pe + pa)
(Dek) (pak)
x4 o) T Pape) (Pep ) ((Pap ) (Pepa) — (k)" (k)
+ (Pepe) (Papv) ({Popa) ™ (Pepa) + (pok) ™ (peki))]
+ Pabe) (Paps) ™ (Pepa) — (k)" (k) ((Popa) (Do) + <pb7<> (peke))}
Qf* (Qf — Qe)2(py - k) Py (pe + /)
(pe 7»><Pf“
X { (pwpa)' T (pepe) (Pabo) (s p) " (Depy) + (k)" (pek))
+ (Pape) (Pepa) (Pap ) (peps) + (k)™ (Pek))]
+ (Pabe \( Pop ) (peps) + (Pok)™ Pk} ) ((Pap )™ Peps) + (Pak)™ (pek)) },
A Qay Q1. Qe Qu. Qo Q. P Po- Do P Des Dy k)
= AT (~Q,, —»—QU Qer Qay Qe Qf, Db Doy Des P Dex Dy k),

----- PL (pa pb)Pﬂ' (p(; -+ ])d)])” (Z)C + ]:)f)

+ Py (po + pu) P (pe + pa — k) Pw (pe + py) Qa -

+ P‘ (])n T [)b)]ﬂ ([) o [),[)]‘ D+ Py -

16



Agaﬁ(Qaa Qb; Qc: Q(b ch Qf7 Pas Pos Pes Py Pes Py k) (2143)
- <A-£~;_(Tm+(62a7 Cgb, wQ(l) —‘Qcy MQf? “QEapm Py Dds Pes D5 Pes k))

Py ()= Py (p)

The replacements P- — P after the complex conjugation in the last lines of (2.1.43)
and (2.1.44) ensure that the vector-boson propagators remain unaffected. Note that the
vector-boson masses do not enter explicitly in the above results, but only via P-. In
gauges such as the 't Hooft-Feynman or the unitary gauge this feature is obtained only
after combining different Feynman graphs for e*e™ — 4 f+; in the non-linear gauge (2.1.3)
this is the case diagram by diagram.

The helicity amplitudes for e"e™ — 4 f~ follow from the generic functions My;y; and
My of (2.1.41) in exactly the same way as described in Section 2.1.3 for eTe™ —
4f. This holds also for the gluon-exchange matrix elements and for the colour factors.
Moreover, the classification of gauge-invariant sets of diagrams for ete™ — 4 f immediately

yields such sets for e"e™ — 4 f~, if the additional photon is attached to all graphs of a set
in all possible ways.

We have checked analvtically that the electromagnetic Ward identity for the external
photon is fulfilled for each generic contribution separately. In addition, we have numeri-
cally compared the amplitudes for all processes with amplitudes generated by Madgraph
[32] for zero width of the vector bosons and found complete agreement. We could not
compare our results with Madgraph for finite width, because Madgraph uses the unitary
gauge for massive vector-boson propagators and the ‘t Hooft—Feynman gauge for the pho-
ton propagators, while we are using the non-linear gauge (2.1.3). Therefore, the matrix
elements differ after introduction of finite vector-boson widths. While the calculation
with Madgraph is fullv automized, in our calculation we have full control over the matrix
element and can, in particular, investigate various implementations of the finite width.

A comparison of our results with those of Refs. [15, 16], which include only the matrix
elements that involve two resonant W bosons, immediately reveals the virtues of our
generic approach.

2.1.5 Implementation of finite gauge-boson widths
We have implemented the finite widths of the W and Z bosons in different, ways:
o fized width in all propagators: Py (p) = [p* — M3 + My Ty] ™,

o running width in time-like propagators: Py-(p) = [p* — M2 + ip?(Tv /M) (p?)] 1,

instead of My in the propagators and in the couplings. This results, in particular,
in a constant wicdth in all propagators,

Pr(p) =[p* — ME+iMy Ty (2.1.44)
and in a complex weak mixing angle:
N , M2 —iMwDw )
2= 1= st = : 2.1.45
“n W ‘\[7 — 1M1y ( L L)>



The virtues and drawbacks of the first two schemes have been discussed in Ref. [10].
Both violate SU(2) gauge invariance, the running width also U(1) gauge invariance. The
complex-mass scheme obeys all Ward identities and thus gives a consistent description of
the finite-width effects in any tree-level calculation, While the complex-mass scheme works
in general, it is particularly simple for e*e™ - 4f~v in the non-linear gauge (2.1.3). In
this case, no couplings involving explicit gange-boson masses appear, and it is sufficient to
introduce the finite gange-hoson widths in the propagators [cf. (2.1.44)] and to introduce
the complex weak mixing angle (2.1.45) in the couplings. We note that a generalization
of this scheme to higher orders requires to introduce complex mass counterterms in order
to compensate for the complex masses in the propagators [33]. We did not consider the
fermion-loop scheme [7, 9, 10, 34], which is also fully consistent for lowest-order predictions,
since it requires the calculation of fermionic one-loop corrections to ete™ — 4fv which is
beyond the scope of this work.

2.2 The Monte Carlo program

The cross section for ete™ — 4f(v) is given by

(27‘_)4—371 n T n
do = ——— — [ ) (A?) (kY )J 5 <p+ +po =Y ]ﬂ?i>
: .

e
29 i=1

PESY

X M (po oo ki, k)P, (2.2.1)

where n = 4,5 is the number of outgoing particles. The helicity amplitudes M for ete™ —
4f(7) have been calculated in Sections 2.1.3 and 2.1.4. The phase-space integration is
performed with the help of a Monte Carlo technique, since the Monte Carlo method
allows us to calculate a variety of observables simultaneously and to easily implement cuts
in order to account for the experimental situation.

The helicity amplitudes in (2.2.1) exhibit a complicated peaking behaviour in different
regions of the integration domain. In order to obtain a numerically stable result and to
reduce the Monte Carlo integration error we use a multi-channel Monte Carlo method
[23, 26], which is briefly outlined in the following.

Before turning to the multi-channel method, we consider the treatment of a single chan-
nel. We choose a suitable set @ of 3n —4 phase-space variables to describe a point in phase
space, and determine the corvesponding physical region V" and the relation k;(®) between
the phase-space variables ® and the momenta %y, ....%,. The phase-space integration of
(2.2.1) reads

I, = /‘(;mu:: /\@@ p(ki(®)) £ (1 (®)). (9.2.9)
(i) = G e
f(ki(®)) = S M p R ( @) k(@)
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where p is the phase-space density. For the random generation of the events, we further
transform the integration variables ® to 3n — 4 new variables r = (r;) with a hypercube
as integration domain: ® = h(r) with 0 < r; < 1. We obtain

J0

1= [ a®p(k(®)) f((®)) = [ L ﬂﬂﬁ))) | (2.2.3)

where ¢ is the probability density of events generated in phase space, defined by

oh(r) |

mmmmmmmm — = plk(®)) | —= 2.2.4
g(ki(®@)) () 5y .

r=h-1 ((I’)

If f varies strongly, the efficiency of the Monte Carlo method can be considerably enhanced
by choosing the mapping of random numbers r to ® in such a way that the resulting density
¢ mimics the behaviour of |f|. For this importance sampling, the choice of ® is guided
by the peaking structure of f, which is determined by the propagators in a characteristic
Feynman diagram.

We choose the variables @ in such a way that the invariants corresponding to the
propagators are included. Accordingly, we decompose the n-particle final state into 2 — 2
scattering processes with subsequent 1 - 2 decays. The variables ® consist of Lorentz
invariants s;,%;, defined as the squares of time- and space-like momenta, respectively,
and of polar and azimuthal angles #;, and ¢;, defined in appropriate frames. A detailed
description of the parameterization of an n-particle phase space in terms of invariants
and angles can be found in Appendix C. The parameterization of the invariants s; and
t; in @ = h(r) is chosen in such a way that the propagator structure of the function f is
compensated by a similar behaviour in the density g. More precisely, if f contains Breit—
Wigner resonances or distributions like s;7", which are relevant for massless propagators,
appropriate parameterizations of s; are given bv:

e Breit-Wigner resonances:

si = M3+ MyTy tanfy, + (yo — y1)7y] (2.2.5)
Sminmax — M
with 9,5 = arctan | ——w22 TV )
.2 ( Mol ;

e propagators of massless particles:

)

- ‘ 1/(1—1)
. R D B ST EA el
v # 1: Si = {Sm‘ax” + Smin (L - Ii,)]

vo=T1: ;= exP [In(Spma) 75+ In(smin) (1 —73)]. (2.2.6)

For the choice of v see Appendix C. The remaining variables in @ = h(r), i.e. those for
which f is expected not to exhibit a peaking behaviour. are generated as follows:

8y = SppaxTi F Smjn(\l - 7',’), 0; == '.377’);, COS f), = Z)L — 1. (

S
b
~1
p—
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The absolute values of the invariants ¢, are generated in the same way as s;. The result-
ing density g of events in phase space is obtained as the product of the corresponding
Jacobians, as given in (2.2.4). In the Appendix C, we provide explicit examples for the
generation of events with a specific choice of mappings £;(®) and h(r), and for the calcu-
lation of the corresponding density g.

The differential cross sections of the processes e™e™ — 4f and especially eTe™ — 4fy
possess very complex peaking structures so that the peaks in the integrand f(®) in (2.2.3)
cannot be described properly by only one single density g(®). The multi-channel approach
[23, 26] suggests a solution to this problem. For each peaking structure we choose a suitable
set ®5, and accordingly a mapping of random numbers 7; into ®;: P, = hy(r) with
0 < r; <1, so that the resulting density ¢ describes this particular peaking behaviour
of f. All densities g, are combined into one density gy that is expected to smoothes
the integrand over the whole phase-space integration region. The phase-space integral of
(2.2.3) reads

M f(A:,I;((ﬁk:)) Mo f(ki(hk(r)n

]ﬁ::g;ﬂﬁﬂhﬁm@ﬂ@pngd%ﬁéw);;Rziggjszggl)drmm(ma%@»>ﬂ226)
with
a 1 Oy (r) ‘
(k@) = S a(k(®), ——— = (@) |
gti( ( k)) 131’01< ( A)) gl<}‘:'i(q)kt>> /)]( ( L)) Or xw:}l[l((bk,)O)g)

The different mappings hy(r) are called channels, and M is the number of all channels.
In order to reduce the Monte Carlo ervor further, we adopt the method of weight
optimization of Ref. [27] and introduce a-priori weights cy, bk = 1,..., M (ap > 0 and
M ox = 1). The channel & that is used to generate the event is picked randomly with

probability oy, i.e.

M : L ) f(li‘-v,: ((I)AD
1, == ;::[ oy, /‘ dd,, /)k(/»-,:(@z:))‘% (M(q’k)) W‘l;‘_)j

. M ‘ fk; (P
= /o L drg AZ::[ O(ro — Bp—1)0(Br — o) | A Ay py (]\’:,;(: @M)).{M (A,( o k)) ;LF@@S%

1 Mo 1 f(Bi(hy(r)
:/dmzmmwmm@ﬁmudr(‘fwn> (2.2.10)
0 k=1 70 Grot (/\'?7’ (hy, (ﬂ))
where G, =0, 5; = i o g=1,.. . M=1, 3y = S o =1, and
dro (k@) = 3~ cwgn (ki ®4), (2.2.11)

1 the total density of the event.
For the processes e™e™ — 4 f we have between 6 and 128 different channels, for ete™ —
4f~ between 14 and 928 channels. Each channel smoothes a particular combination of
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propagators that results from a characteristic Feynman diagram. We have written phase-
space generators in a generic way for several classes of channels determined by the chosen
set of invariants s;,¢;. The channels within one class differ in the choice of the mappings
(2.2.5), (2.2.6), and (2.2.7) and the order of the external particles. We did not include
special channels for interference contributions.

The «u-dependence of the quantity

1 N

< 2wl )P, (2.2.12)
V=1

where w = f /g0, is the weight assigned to the Monte Carlo point (7)), r7) of the jth event,
can be exploited to minimize the expected Monte Carlo error

.fn, =3 Z ’LI./‘('I"‘S, rj) (2.214)

by trying to choose an optimal set of a-priori weights. We perform the search for an
optimal set of ay by using an adaptive optimization method, as described in Ref. [27].

3

After a certain number of generated events a new set of a-priori weights o}*" is calculated

according to

- 1 & gi(ks(hy () [w(r). v )] M
()l};tw Xy | Z ( s ‘ ) — 0 ﬂ ’ Z &zew —1. (2215)
N3 ot (A'-zt(hk (\I“",))) f1

Based on the above approach, we have written two independent Monte Carlo programs.
While the general strategy is similar, the programs differ in the explicit phase-space gen-
eration.

2.3 Numerical results

If not stated otherwise we use the complex-mass scheme and the following parameters:

= 1/128.89, o = 0.12,
My = 80.26 GeV, Dyw = 2.05GeV,
My = 911884 GeV, 'y = 2.46 GeV. (2.3.1)

In the complex-mass scheme, the weak mixing angle is defined in (2.1.45), in all other

schemes it is fixed by ¢y = My /My, 5

)
s =1 — e
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The energy in the centre-of-mass (CM) system of the incoming electron and positron
is denoted by +/s. Concerning the phase-space integration, we apply the canonical cuts of
the ADLO/TH detector,

f(l, beam) > 10°, g(1,1") > 5°, 0(l,q) > 5°
O(y, beam) > 1° O(v,1) > 5°, O(~,q) > 5°,
E, > 0.1GeV, Ey > 1GeV, E, > 3GeV,
m(q,q') > 5GeV, (2.3.2)

where 6(i,7) specifies the angle between the particles ¢ and j in the CM system, and [,
q, v, and “heam” denote charged leptons, quarks, photons, and the beam electrons or
positrons, respectively. The invariant mass of a quark pair ¢¢’ is denoted by m(q,¢"). The
cuts coincide with those defined in Ref. [30], except for the additional angular cut between
charged leptons. The canonical cuts exclude all collinear and infrared singularities from
phase space for all processes.

Although our helicity amplitudes and Monte Carlo programs allow for a treatment of
arbitrary pola,luatlon configurations, we consider only unpolarized quantities.

All results are produced with 107 events. The calculation of the cross section for
ete” — eTe T puT requires about 50 minutes on a DEC ZXLPH A workstation with 500
MHz, the calculation of the cross section for ete™ — ete™ T~y takes about 5 hours.
The numbers in parentheses in the following tables correspond to the statistical errors of
the results of the Monte Carlo integrations.

2.3.1 Comparison with existing results

In order to compare our results for ete™ — 4f with Tables 6-8 of Ref. [35], we use the
corresponding set of phase-space cuts and input parameters, i.e. the canonical cuts de-
fined in (2.3.2), a CM energy of /s = 190 GeV, and the parameters a = «a(2My) =
1/128.07, «y = 0.12, My = 80.23GeV, [y = 2.0337GeV, M; = 91.1888 GeV, and
I'y = 24974 G("\/ T’ho value of sy, which enters the couplings, is calculated from
a(2Mw)/(252) = G, M3 /(m/2) with G, = 1.16639 x 107° GeV ™2,

In Table 2.1, we list the integrated cross sections for various processes ete™ — 4 f with
running widths and constant widths, and for the corresponding processes eTe™ — 4f~
with constant widths. For processes involving gluon-exchange diagrams we give the cross
sections resulting from the purely electroweak diagrams and those including the gluon-
exchange contributions. The latter results include also the interference terms between
purely electroweak and gluon-exchange diagrams. In Table 2.1 we provide a complete list
of processes for vanishing fermion masses. All processes e¥e™ — 4 () not explicitly listed
are equivalen’c to one of the given processes.

For NC processes ete™ — 4f with four neutrinos or four quarks in the final state
we find smaﬂ deviations of roughly 0.2% between the vesults with constant and running
widths. Assuming that a ranning width has been used in Ref. [35], we find very good

agreement.
Unfortunately we cannot compare with most of the publications [17, 18, 19, 20] for
the bremsstrahlung processes efe™ - df~. In those papers, either the cuts are not

[ S
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, ete”™ — 4f ete” —4Af ete™ — 4fy
o/t running width constant width constant width

VeTt— 6" 256.7(3) 257.1(7) 89.4(2)
e o, 227.4(1) 227.5(1) 79.1(1)
Vet 228.7(1) 228.8(1) 81.0(2)
vt T, 218.55(9) 218.57(9) 76.7(1)
e eteme” 109.1(3) 109.4(3) 38.8(4)
eetpypt 116.6(3) 116.4(3) 43.4(4)
pop et 5.478(5) 5.478(5) 3.37(1)
ottt 11.02(1) 11.02(1) 6.78(3)
e"ety 1/;, 14.174(9) 14.150(9) 5.36(1)
Velapt ™ 11" 17.78(6) 17.73(6) 6.63(2)
VTR 10.108(8) 10.103(8) 4.259(9)
Velelally 4.089(1) 4.082(1) 0.7278(7)
Vel 1y, 8.354(2) 8.337(2) 1.512(1)
V0,10, 4.069(1) 4.057(1) 0.7434(7)
VDV Vs 8.241(2) 8.218(2) 1.511(1)
ude 7, 693.5(3) 693.6(3) 220.8(4)
ud e, 666.7(3) 666.7(3) 214.5(4)
e"etun 86.87(9) 86.82(9) 32.3(2)
eetdd 43.02(4) 42.95(4) 16.17(8)
Wit 24.69(2) 24.69(2) 12.70(4)
ddp—pt 23.73(1) 23.73(1) 10.43(2)
VeDou Tl 24.00(2) 23.95(2) 6.84(1)
veiedd 20.657(8) 20.62(1) 4.319(6)
uiy,n, 21.080(5) 21.050(5) 6.018(9)
ddw,p, 19.863(5) 19.817(5) 4.156(5)

wadd | 2064.1(9), 2140.8(9) | 2064.3(9),  2141(1) | 615(1), 672(1)
udsc 2015.2(8) 2015.3(8) 598(1)

PRIRINH 25.738(7),  TL.28(4) | 25.721(7), 71.30(4) | 9.78(2), 42.1(1)

dddd | 23.494(6), 51.35(3) | 23.448(6), 51.32(3) | 5.527(7), 28.68(4)

uncc 51.61(1), 144.72(9) | 51.57(1), 144.75(9)  19.61(4), 86.1(2)

ufiss 49.68(1). 126.52(8) | 49.62(1). 126.52(8) | 15.17(2), 75.1(2)

ddss A7.13(1). 104.79(6) [7.02(1), 104.74(6) | 11.10(2), 59.2(1)

Table 2.1:

ning widths and constant widths and for the corresponding processes eTe™

Integrated cross sections for all representative processes ete™ —

41 with run-
— 4 fy with

constant widths. If two nmumbers are given, the fivst results from pure electroweak diagrams

and the second involves in addition glion-exchange contributions.

[N
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o /fb Omims Eyin | 1GeV | 5GeV | 10GeV | 15GeV

1° 53.54(8) | 27.57(3) | 16.96(2) | 11.22(2)

leptonic 5° 32. ())(/l) 16.98(3) | 10.48(2) | 6. 04(1)
process 10° 48(3) | 12.30(2) | 7.61(2) 04(1)
15° 18.0 Hm 0.51(2) | 5.90(1) | 3. 90(1)

E 141.9(2) | 71.90(8) | 43.56(5) | 28.26(4)

semi-leptonic 5° 86.8(1) | 44.25(6) | 26.78(4) | 17.40(3)
process 10° 62.20(7) | 31.92(5) | 19.40(4) | 12.61 (3)
15° 47.42(5) | 24.50(4) | 14.97(3) | 9.77(2)

Table 2.2: Comparison with Table 2 of Ref. [15]: Cross sections resulting from diagrams
involving two resonant W bosons for purely leptonic and semi-leptonic final states and
several photon separation cuts

(completely) specified, or collinear photon emission is not excluded, and the corresponding
fermion-mass effects are taken into account. Note that the contributions of collinear
photons dominate the results given there.

We have compared our results with the ones given in Refs. [15, 16], where the total cross
sections for ete™ — 4 f+ have been calculated for purely leptonic and semi-leptonic final
states. As done in Refs. [15, 16] only diagrams involving two resonant W bosons have been
taken into account for this comparison. Table 2.2 contains our results corresponding to
Table 2.2 of Ref. [15]. Based on Refs. [15, 16], we have chosen /s = 200 GeV and the input
parameters o = 1/137.03599, My = 80.9 GeV, I'y = 2.14 GeV, Mz = 91.16 GeV, 'y =
2.46 GeV, sy obtained from o/(2s) = G, AL, /(u V2) with G, = 1.16637 x 10~° Ge\‘“z,
and constant gauge-boson widths. The energy of the photon is required to be larger
than E, min, and the angle between the photon and any charged fermion must be larger
than 0, nin. A maximal photon energy is vequired, £, < 60GeV, in order to exclude
contributions from the Z resonance. Our results are consistent with those of Refs. [15, 16]
within the statistical error of 1% given there. In some cases we find deviations of 2%.!

2.3.2 Comparison of finite-width schemes

As discussed in Refs. [7, 9, 10. 34]. particular care has to be taken when implementing the
finite gauge-boson widths. Differences between results obtained with running or constant
widths can already be seen in Table 2.1, where a tvpical LEP2 energy is considered. In
Table 2.3 we compare predictions for integrated cross sections obtained by using a constant
width, a running width, or the complex-mass scheme for several energies. We consider

'Note that the input specified in Refs. [15, 16] is not completely clear even if the information of both
publications is combined.



o/fb NG 189 GeV | 500 GeV | 2TeV | 10TeV
constant width 703.5(3) | 237.4(1) | 13.99(2) | 0.624(3)

ete” —wudpy, running width 703. /1( 238.9(1) | 34.39(3) | 498.8(1)
complex-mass scheme 3.1(3) | 237.3(1) | 13.98(2) | 0.624(3)

constant width 224.0(4) | 83.4(3) | 6.98(5) | 0.457(6)

ete” —wudp 7,y running width 224.6(4) | 84.2(3) | 19.2(1) | 368(6)
complex-mass scheme | 223.9(4) | 83.3(3) | 6.98(5) | 0.460(6)

constant width 730.2(3) | 395.3(2) | 211.0(2) | 32.38(6)

ete™ —wude i running width 729.8(3) | 396.9(2) | 231.5(2) | 530.2(6)
complex-mass scheme 7‘29.8(‘3) 395.1(2) | 210.9(2) | 32.37(6)

constant width 230.0(4) | 136.5(5) | 84.0(7) | 16.8(5)

ete” s ude 7y running width 230.6(4) | 137.3(5) | 95.7(7) | 379(6)
complex-mass scheme | 229.9(4) | 136.4(5) | 84.1(6) | 16.8(5)

Table 2.3: Comparison of different width schemes for several processes and energies

two semi-leptonic final states for e"e™ — 4f(~). The numbers show that the constant
width and the complex-mass scheme yield the same results within the statistical accuracy
for ete™ — 4f and ete™ — 4f~. In contrast, the results with the running width produce
totally wrong results for high energies. The difference of the running width with respect
to the other implementations of the finite width is up to 1% already for 500 GeV. Thus,
the running width should not be used for linear-collider energies. As already stated above,
our default treatment of the finite width is the complex-mass scheme in this chapter.

2.3.3 Survey of photon-energy spectra

In Fig. 2.2 we show the photon-energy spectra of several processes for the typical LEP2
energy of 189 GeV and a possible linear-collider energy of 500 GeV. The upper plots
contain CC and CC/NC pmu‘\\es the plots in the middle and the lower plots contain
NC processes. Several spectra show threshold or peaking structures. These structures
are caused by diagrams in which the photon is emitted from the initial state. The two
important classes of diagrams are shown in Fig. 2.3.

The first class, shown in Fig. 2.3a. corresponds to triple-gange-boson-production sub-
processes which yield dominant umuﬂmrmns as long as the two virtual gauge bosons
Vi and V5 can become simultaneously resonant. If the real photon takes the energy F£.,
defined in the CM svstem, only the energy Vs’ with

§'=s—2/sE., (2.3.3)
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Figure 2.2: Photon-energy spectra for several processes and for /s = 189GeV and
500 GeV



Figure 2.3: Diagrams for important subprocesses, where V3, V5 = W, Z, v, and V3 = 7, g

Vs ] 189 GeV | 500 GeV
Wo  [WW ZZ | vZ | vy [WW | 2Z | 92 | vy

I i

E;“‘/'E‘/Ge\/" 26.3 | 6.5 725 | 94.5 | 224 | 217 | 242 | 250

Table 2.4: Photon energies 11" corresponding to thresholds

is available for the production of the gauge-boson pair V1 V5. If at least one of the gauge
bosons is massive, and if the photon becomes too hard, the two gauge bosons cannot be
produced on shell anymore, so that the spectrum falls off for E, above the corresponding
threshold £}">. Using the threshold condition for the on-shell production of the 1415
pair,

NEES My, + My, (2.3.4)

the value of 21" is determined by
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The values of the photon energies that cause such thresholds can be found in Table 2.4.
The value EJ7 corresponds to the upper endpoint of the photon-energy spectrum, which
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is given by the beam energy \/s/2. Since Vs is fully determined by s and E,, the
contribution of the Vi Vy-production subprocess to the £ spectrum qualitatively follows
the energy dependence of the total cross section for 1115 production (cf. Ref. [35], Fig. 1)
above the corresponding thresholds. The cross sections for vy and v7Z production strongly
increase with decreasing energy, while the ones for 27 and WW production are comparably
flat. Thus, the vy and vZ-production subprocesses introduce contributions in the photon-
energy spectra with resonance-like structures, whereas the ones with 727 or WW pairs
yield edges.

The second class of important diagrams, shown in Fig. 2.3b corresponds to the produc-
tion of a photon and a resonant Z boson that decavs into four fermions. These diagrams



are important if the gauge boson V3 is also resonant, i.e. a photon or a gluon with small
invariant mass. In this case, the kinematics fixes the energy of the real photon to

— M2
B, = sz _;.._/_Z (2.3.6)
2./

which corresponds to the vZ threshold in Table 2.4, This subprocess gives rise to resonance
structures at Eﬁ/f‘ which are even enhanced by ag/a in the presence of gluon exchange.

In the photon-energyv spectra of Fig. 2.2 all these threshold and resonance effects are
visible. The effect of the vZ peak can be nicely seen in different photon-energy spectra,
in particular in those where gluon-exchange diagrams contribute (cf. also Fig. 2.5). The
effect of the WW threshold is present in the upper two plots of Fig. 2.2. In the plot
for /s = 189 GeV the threshold for single W produnction causes the steep drop of the
Spectmm for the pure CC processes above 70 GeV. Note that the CC cross sections are
an order of magnitude larger than the NC cross sections if the WW channel is open. The
77 threshold is visible in the middle and lower plots for \/s = 500 GeV. The 77 threshold
(resulting from the graphs of Fig. 2.3a) is superimposed on the 77 peak (resulting from
the graphs of Fig. 2.3b) and therefore best recognizable in those channels where the +7Z
peak is absent or suppressed, i.e. where a neutrino pair is present in the final state or
where at least no gluon-exchange diagrams contribute. Processes with four neutrinos in
the final state do not involve photonic diagrams and are therefore small above the 77
threshold. The effects of the triple-photon-production subprocess appear as a tendency
of some photon-energy spectra to increase near the maximal value of E, for two charged
fermion—antifermion pairs in the final state.

2.3.4 'Triple-gauge-boson-production subprocesses

In Fig. 2.4 we compare predictions that are based on the full set of diagrams with those
that include only the graphs associated with the triple-gauge-boson-production subpro-
cesses, 1.e. the graphs in Fig. 2.3a. In addition we consider the contributions of the ZZ~-
production subprocess alone. For CC processes, the photon-energy spectra resulting from
the WTW~y-production subprocess are close to those resulting from all diagrams at LEP2
energies, but large differences are found for higher energies and e in the final state.
Note that the spectra are shown on a logarithmic scale. Even at LEP2 energies the dif-
ferences between the predictions for different final states mayv be important, as can be
seen, for instance, in Table 2.1 by comparing the cross sections of ete™ — udp~ 7,y and
ete™ = ude 7. In the case 0{ NC processes, already for 189 GeV the contributions from
Loy, Zryy, and vy production are not sufficient: in the vicinity of the vZ peak sizeable
contributions result from the ~Z-production subprocess (Fig. 2.3b) even for the ptputy
final state. For eTe™ — e"eutiy other diagrams become dominating evervwhere. The
contribution of 27~y production is alwavs small and could only be enhanced by invariant-
mass cuts. Note that the triple-gauge-boson-prodnction diagrams form a gauge-invariant
subset for NC processes, while this is not the case for CC processes.
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Figure 2.4: Photon-energy spectra resulting from the triple
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o/ th ew and gluon | purely ew gluon interference
ete” —uiicc 52.98(4) 21.560(6) | 31.38(3) 0.04(5)
ete” s utccy 29.8(1) 10.38(4) 19.6(1) | —0.1(1)
ete” —utiui 26.25(2) 10.765(3) | 15.34(1) | 0.14(2)
efe” —unuiy 14.83(7) 5.16(2) 9.52(5) | 0. 1)(9)
ete” = dduu 901.2(6) 876.4(5) | 24.24(2) 0.6(8)
ete” = dduily 290(1) 275H(1) | 14.82(8) 0(1)

Table 2.5: Full lowest order cross section (ew and gluon) and contributions of purely
electroweak diagrams (ew), of gluon-exchange diagrams (gluon), and their interference for
500 GeV

2.3.5 Relevance of gluon-exchange contributions

In the analytical calculation of the matrix elements for ete™ — 4f(7) in Section 2.1 we
have seen that NC processes with four quarks in the final state involve, besides purely
electroweak, also gluon-exchange diagrams. Table 2.5 illustrates the impact of these dia-
grams on the integrated cross sections for a CM energy of 500 GeV. The results for the
interference are obtained by subtracting the purely electroweak and the gluon contribution
from the total cross section. For pure NC processes the contributions of gluon-exchange
diagrams dominate over the purely electroweak graphs. This can be understood from
the fact that the glion-exchange diagrams arve enhanced by the strong coupling constant,
and, as discussed in Section 2.3.3, that the diagrams with gluons replaced by photons
yield a sizeable contribution to the cross section. For the mixed CC/NC processes the
purely electroweak diagrams dominate the cross section. Here, the contributions from the
WHW~~-production subprocess are large compared to all other diagrams, even if the latter
are enhanced by the strong coupling. At 500 GeV the gluon-exchange diagrams contribute
to the cross section at the level of several per cent. The interference contributions are
relatively small. As discussed at the end of Section 2.1.3, this is due to the fact that inter-
fering electroweak and gluon-exchange diagrams involve different resonances. Note that
the interference vanishes for e"e™ — uiicc v, and the corresponding numbers in Table 2.5
are only due to the Monte Carlo integration error.

In Fig. 2.5 we show the photon-energy spectra for the "~ uiiddy and
ete” — utiuiiy together with the separate contributions from purely electroweak and
gluon-exchange diagrams. The pure electroweak contributions are similar to the ones
for ete™ — nc'_l//,“z'/,, vand eTe” — eTeTuliy in Fig. 2.2, For the NC process ete™ —
uuuty, the photon-energy spectrum is (h'nnlnat(-wl by the gluon-exchange contribution,
which shows a strong peak at 72.5 GeV owing to the v Z-production subprocess. For the
CC/NC process ete™ — niidd~, the electroweak diagrams dominate below the WW
threshold, whereas the glion-exchange diagrams dominate at the v7 peak and above. The
interference hetween purely electroweak and gluon-exchange diagrams is generally small.

processes ete
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Figure 2.5: Electroweak and gluon-exchange contributions to the photon-energy spectra
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Chapter 3

Non-factorizable photonic
corrections to ete™ = WTW™ — 4f

In this chapter we define and explicitly calculate the non-factorizable photonic corrections.
It has been shown that thev vanish in inclusive quantities, i.e. if the invariant masses of
both W bosons are integrated out [36]. However, for non-inclusive quantities these cor-
rections do not vanish in general. The non-factorizable photonic corrections have already
been investigated by two groups. Melnikov and Yakovlev [37] have given the analytical
results only in an implicit form and restrict the numerical evaluation to a special phase-
space configuration. Beenakker, Berends and Chapovsky have provided both the complete
formulae and an adequate numerical evaluation [38, 39], but do not find agreement with
all results of Ref. [37]. For this reason, it is worth-while to present the results of a third
independent calculation. The material of this chapter has been published in Refs. [40, 41].

We start out by discussing the definition of the virtual and real photonic non-factoriz-
able corrections in double-pole approximation in detail. Since only soft photons arc rele-
vant in double-pole approximation, the virtual non-factorizable correction is just a factor
to the lowest-order cross section. For the corresponding real correction, the situation is
similar, but in addition an integration over the photon momentum has to be performed.
This requires a specification of the phase-space parameterization, which includes, in par-
ticular, the invariant masses of the W bosons. Usually these are defined via the invariant
masses of the respective final-state fermion pairs and are chosen as independent, variables
137, 38, 39]. Experimentally, however, the invariant mass of a W boson is identified with
the invariant mass of the associated jet pair that necessarily includes soft and collinear
photons. Therefore, the influence of the choice for the invariant masses of the W bosons
on the non-factorizable corrections should be investigated in order to provide sound pre-
dictions for physical situations.

Besides the non-factorizable doublv-resonant corrections, the most important effect of
the instability of the W bosous is the modification of the Coulomb singularity. Since the
off-shell Coulomb singularity results from a scalar integral that also contributes to the
doubly-resonant non-factorizable corvections, it seems to be natural to approximate this
integral in such a wayv that both effects are simultaneously included. This requires going
beyond the strict double-pole approximation.



3.1 Definition of the approximation

3.1.1 Conventions and notations
We discuss corrections to the process
et(py)+e(pl) = WHky) + W (kL) — filk) + falks) + falks) + fa(ks). (3.1.1)

The relative charges of the fermions f; are represented by ; with 7 = 1,..., 4. The masses

g » : 2 2 9 : .
of the external fermions, m? = k? and m2 = p%, ave neglected, except where this would

lead to mass singularities. The momenta of the intermediate W bosons are defined by
b= ky + ks, ko= ks -+ ky, (3.1.2)

their complex mass squared and their respective invariant masses are denoted by

M? = M3y — iMwTw, My = \/k3, (3.1.3)
respectively, and we introduce the variables
Ky =k —M*,  K_ =k -M (3.1.4)
Furthermore, we define the following kinematical invariants
t= (]):‘: - ki)J U = (p’ - A:?F>2.‘.
trs = (py — k)%, Uy = (po — k)? 1= 1,2,
S (])w - k'i)gv Wgq == <p-!- - ]‘/:’i)?): L= 3> 47 (3[5)
and
s = (pr+p-)” = (ke + )%
Sij = (}‘i + ’l‘)>2/
sije = (ki + kj + k)7, i, gk =1,2,34, (3.1.6)
which obey the relations
s = kT 4+ k2 + 513+ 514+ 503 + 524, s12 = kY, sa1 = k72,
Sijk = Sij + S -+ Siks I 7 k=1, .2 3 1. <317)

3.1.2  Doubly-resonant virtual corrections

The aim of this chapter is to evaluate the non-factorizable corrections to the process (3.1.1)
in cdouble-pole approximation (DPA). The DPA takes into account only the leading terms
in an expansion around the poles originating from the two resonant W propagators.



(a) type (mf’) (b) type (mf’)

e (py)

Figure 3.1: Examples of non-factorizable photonic corrections in O(«). The shaded blobs
stand for all tree-level graphs contributing to e™e™ — WHW~=. Whenever Feynman dia-
grams with intermediate would-be Goldstone bosons ¢* instead of W* bosons are relevant,
the inclusion of such graphs is implicitly understood.

In DPA, the lowest-order matrix element for the process (3.1.1) factorizes into the ma-
! r v,}_ F

trix element for the on-shell W-pair production, M$.& =YW (p, p_ k. k_), the (trans-
verse parts of the) propagators of these bosons, and the matrix elements for the decays of

. -1 : Whsfifary 10 10N amd AW 3 fa .
these on-shell bosons, My ..~ (ky, ki, ko) and M7 (k- ks, ky):

Me”‘e”»ﬂ\f““\\f‘ ‘\/l\"\w“/\/ingW_-—>f.3ﬁ1
/\/lﬂom - z

Born Born Born (3 1 8)
A A KiK_

The sum runs over the physical polarizations A\ of the W* bosons.

The higher-order corrections to (3.1.1) can be separated into factorizable and non-
factorizable contributions [5, 12, 42]. In the factorizable contributions the production of
two W bosons and their subsequent decays are independent. The corresponding Feynman
diagrams can be split into three parts by cutting only the two W-boson lines. The cor-
responding matrix element factorizes in the same way as the lowest-order matrix element
(3.1.8).

The non-factorizable corrections comprise all those contributions in which W-pair pro-
duction and/or the subsequent W decays are not independent. Obviously, this includes
all Feynman diagrams in which a particle is exchanged between the production subprocess
and one of the decay subprocesses or between the decay subprocesses. Examples for such
manifestly non-factorizable corrections arve the diagrams (a), (b), and (c) in Fig. 3.1. If
the additional exchanged particle is massive, the corresponding correction has no double
pole for on-shell W bosons. However, it a photon is exchanged between the different sub-
processes, this leads to a doubly-resonant contribution originating from the soft-photon
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region. This can be directly seen from the usual soft-photon approximation (SPA), which
yields contributions proportional to the (doubly-resonant) lowest-order contribution.

The doubly-resonant contributions can be extracted on the basis of a simple power-
counting argument. For instance, the loop integral corresponding to diagram (¢) in Fig. 3.1
is of the following form:

] — /‘d»’lq ’\”(] ’7’?>
T R R Al 7 AR R = Ml T ke =
_ / 4 Ng, ki)
o q(q2 — A2)(G% — 2qF3) (¢ — 2qh_ + k2 — M3 ) (% + 2qky + k3 — ME) (g2 + 2qk,)

(3.1.9)

where we have introduced an infinitesimal photon mass A to regularize the infrared (IR)
singularity. The function N (g, £;) involves the numerator of the Feynman integral, i.e. a
polynomial in the momenta ¢ and £;, and possible further denominator factors originating
from propagators (hidden in the blob of the diagrams) that are regular for ¢ = 0 and
k% = M%,. For on-shell W bosons (k7 = M), the integral has a quadratic IR singularity.
For off-shell W bosons, part of the IR singularity is regularized by the off-shellness, k3 —
M3, # 0, such that the usual logarithmic IR singularity remains. Vice versa, the off-shell
result develops a pole if either W boson becomes on shell, and is thus doubly-resonant.
Therefore, the quadratic IR singularity in the on-shell limit is characteristic of the doubly-
resonant non-factorizable contributions. All terms that involve a factor ¢ in the numerator
are less [R-singular and therefore do not lead to doubly-resonant contributions and can
be omitted. Similarly, ¢ can be neglected in all denominator factors included in N(q, k;).
In summary, ¢ can be put to zero in N(q, k;) in DPA. We have checked this for various
examples explicitly. As a consequence, we arve left with only scalar integrals, and the
non-factorizable virtual corrections are proportional to the lowest-order matrix element.
We call the resulting approximation extended soft-photon approzimation (ESPA). Tt differs
from the usual SPA only by the fact that ¢ is not neglected in the resonant W propagators.
In ESPA, diagram (c) in Fig. 3.1 gives the following contribution to the matrix element:

' d"l(j Ux_)kg
(2m)* (g7 = N2)(g? = 2qks) (¢ + 2qks)
" (k2 — MG (k2 — M)
la— b2~ M3 llq + Fr)? — M3

(3.1.10)

The ¢* terms in the last four denominators are not relevant in the soft-photon limit and
were omitted in Refs. [37. 38, 39]. In fact, using the above power-counting argument it
can easily be seen that the differences of doublyv-resonant contributions with and without
these ¢° terms are non-doublyv-resonant. We have chosen to keep the ¢* terms, because we
want to use the standard techniques for the evalnation of virtual scalar integrals [43]. In
DPA, i.e. if we perform the limit 2 — 1[G, after evaluating the integral, we should obtain
the same result.

In order to arrive at physical results, we have to incorporate the finite width of the
W bosons. In DPA this can be done in at least two different ways:
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As a first possibility, we perform the integrals for zero width and afterwards put k% =
M2, where this does not give rise to singularities. In all other places, i.e. in the resonant
propagators and in logarithms of the form In(k3 — M3 -+ i), we replace k3 — M3, + ie by
Ky = kzi — MZ; + 1My, Since the width is only relevant in the on-shell limit, it is clear
that the (physical) on-shell width has to be used.

Alternatively, we introduce the width in the W propagators before integration. This
has to be done with caution. If we introduce the finite width by resumming W-self-energy
ingertions, the width depends on the invariant mass of the W boson and thus on the
integration momentum. Fortunately, the contribution we are interested in results only
from the soft-photonic region where the virtual W bosons are almost on shell. Therefore,
we can insert the on-shell width inside the loop integral. After performing the integral,

the same results as the above treatment.

In the following we write M* = My, — 1My instead of Mg, in the loop integrals. It
is always understood that M? and k2 are replaced by M& where possible after evaluation
of the integrals.

If we implement the width into the integrand, it is clear that only the part of the inte-
gration region with |¢y] S Tw contributes in DPA. If |¢5]| >> Ty, one of the W propagators
must be non-resonant and the contribution becomes negligible.

Once the width is introduced, it becomes evident that the relative error of the DPA is of
the order of 'y /scale. Let Ecy be the center-of-mass (CM) energy and AFE = Eey — 2 My
be the available kinetic energy of the W bosons. Then, for AE 2 My the scale is given
by My, for T'w S AE S My it is given by AFE and for AE S Dy it is given by I'vw. This
shows that the DPA is only sensible several ['yw’s above threshold. This is simply due to
the fact that, close to threshold, the phase space where both W propagators can become
doubly-resonant is very small, and the singlv-resonant diagrams become important.

3.1.3 Classification and gauge-independent definition of the non-
factorizable doubly-resonant virtual corrections

Manifestly non-factorizable corrections arise from photon exchange between the final states
of the two W bosons (ff'), between initial and final state (if), and between one of the
intermediate resonant W bosons and the final state of the other W hoson (mf’). Examples
for these types of corrections are shown in Fig. 3.1 (c), Fig. 3.2 (a), and Fig. 3.1 (a,b),
respectively. In addition, there are diagrams where the photon does not couple to uniquely
distingnishable subprocesses. These contributions can be classified into photon-exchange
contributions between one of the intermediate resonant W bosons and the final state of the
same W boson (mf), between the intermediate and the initial state (im), between the two

intermediate W bosons (mm'). and within a single W-boson line, i.e. the photonic part of

the W-self-energy corrections (mm). Diagrams contributing to these types of corrections
are given in Fig. 3.2 (c), Fig. 3.2 (b). Fig. 3.1 (d). and Fig. 3.2 (d), respectively. Because

the photon coupling to the W boson can be attributed to the decay or the production
subprocesses, these diagrams involve both factorizable and non-factorizable corrections.
In order to define the non-factorizable corrections, we have to specify how the factoriz-

able contributions are split off. This should be done in such a way that the non-factorizable

(@)}



(a) type (if) (b) type (im)

Figure 3.2: Further examples of non-factorizable photonic corrections in Ofa).

corrections become gauge-independent. In Refs. [38, 39] this was reached by exploiting the
fact that in ESPA the matrix element can be viewed as a product of the lowest-order ma-
trix element with two conserved currents. Taking all interferences between the positively
and the negatively charged currents arising from the outgoing W bosons and fermions
gives a gange-independent result.

We have chosen a different definition of the non-factorizable corrections, which, how-
ever, turns out to be equivalent to the one of Refs. [38, 39] in DPA. Our approach has the
advantage of providing a clear procedure how to combine factorizable and non-factorizable
contributions to the full O(«) correction in DPA. Because the complete matrix element is
gauge-independent order by order, the sum of all doubly-resonant O(«) corrections must
be gauge-independent. On the other hand, the factorizable doubly-resonant corrections
can be defined by the product of gauge-independent on-shell matrix elements for W-pair
production and W decays and the (transverse parts of the) W propagators,

Born

N ot ATy IS ARt Whaa f T.-, N e £y £ Sy o g -
'(OA/[‘ €T WEWS g WV ‘\IMIILMM?;Qrz{fJ“ (3.1.11)

MBI MM A A R,
where SMETeTWIWT G AWISAE Cand MY A5 denote the one-loop amplitudes of the
respective subprocesses. We can define the non-factorizable doubly-resonant corrections
by subtracting the factorizable doubly-resonant corrections from the complete doubly-
resonant corrections. This definition allows us to calculate the complete doubly-resonant
corrections by simply adding the factorizable corrections, defined via the on-shell matrix
elements, to our results. Our definition can be applied diagram by diagram. In this way,
all diagrams that are neither manifestly factorizable nor manifestlv non-factorizable can

o
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be split. Such diagrams receive doubly-resonant contributions from the complete range
of the photon momentum ¢, and not only from the soft-photon region. This is obviously
due to the presence of two explicit resonant propagators. However, after subtracting
the factorizable contributions, all doubly-resonant terms that are not IR-singular in the
on-shell limit cancel exactly, i.e. only the soft-photon region contributes. Consequently,
also in this case g can be neglected evervwhere except for the denominators that become
IR-singular in the on-shell limit. As an example, we give the non-factorizable correction
originating from diagram (d) of Fig. 3.1:

WEW- .o ~ddy Ak ko
~ ie" M ~om{ - ‘ y
Mar . “,/u)»{@+Ag~«w[mka2-Mq ------

}.(31&2)
'i:'\[?

This example shows that the on-shell subtraction introduces additional IR singularities.
If the IR singularities in the non-factorizable real corrections are regularized in the same
way, they cancel in the sum. In (3.1.12) an infinitesimal photon mass A is used as IR
regulator, but we have repeated the same calculation also by using a finite W-decay width
as IR regulator instead of A, leading to the same results in the sum of virtual and real
photonic corrections.

We illustrate our definition of the non-factorizable corrections also for the photonic
contribution to the W-self-energy correction [diagram (d) of Fig. 3.2]. The non-factorizable

part of the W+ self-energy reads

m_{/ i el
D2y (g% = AN (g% + 29k ) (¢7 — 2qk ) 1a

MVV"“VV"*“ ~ _“IC /\/l {/ dl(] JAJEF
of Born (;qq%m+kg »A]M%mﬂﬂ)
el ]
kL= MU (2m) ¢2 (¢ + 2qky) D k2 =ar
d* (1 452 } } o -
45 (3113
l 2m) (g% — A?) (g% + 2qk4 ) Dz =nz, ( )

The first integral results from the off-shell self-energy diagram, the second from the corre-
sponding mass-renormalization term, and the third integral is the negative of the on-shell
limit of the first two integrals. The integrals in (3.1.13) are UV-divergent and can be easily
evaluated in dimensional regularization.

The gauge independence of the non-factorizable corrections has been ensured by con-
struction. The consistent evaluation of gange theories requires, besides gauge indepen-
dence of the physical matrix elements, the validity of Ward identities. It was found in
Ref. [7, 8, 9, 10] that the violation of Ward identities can lead to completely wrong pre-
dictions. The procedure described above for extracting the non-factorizable corrections
from the full matrix element does not lead to problems with the Ward identities that
rule the gauge cancellations side matrix elements. This 1s due to the fact that the non-
factorizable corrections arve proportional to the Born matrix element. Therefore, if Ward

"We use the sign ~ to indicate an equality within DPA, i.e. up to non-donbly-resonant terms.
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identities and gauge cancellations are under control in lowest order, the same is true for
the non-factorizable corrections.

Finally, we show how our definition of the non-factorizable corrections can be rephrased
in terms of products of appropriately defined currents. By using

(3.1.14)

1 1 _ k2 — M? }
(qF k)2 — M2 @2£2qke U (q+ky)? — M2

and the fact that in DPA &7 can be put to M3 before integration in integrals that do not
depend on M?, the contribution (3.1.12) can be expressed as

M\y+y\/—~ N i(DQ MR ‘ / d‘l(] 4k, ]\ ’:M ]%j - A[Z
nf 4 o (27)* (% — A (q? + >qA g —2gk )L (q+ k)% — M2
k2 — M? k2~ A,,,[Z k2 — M?

..... I L Sk - 3115
(q—k_)? = M2 (g+Fk)?—M?(q—Fk_)? — .1.’\1’2} ( 2

The other non-factorizable corrections that involve photons coupled to W bosons can
be rewritten in a similar way. Finally, all non—fa‘ctmuable virtual corrections can be cast
into the following form:

a4 E
irt . d q 1 et WHEWT o WHS iy | etem WEWT L W s fa
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The last term in (3.1.16) originates from the Fevnman graphs shown in Fig. 3.1 and
those where the final-state fermions are appropriately i.11tor<zl'1a11g(‘d {in'torfczence terms
(ff), (mf), and (mm')]. The contributions involving the current 5% 7"W'™™ contain the
interference terms (if), (mf), (im), (mm), and the remaining contributions of (mf’) and
(mm'). The contribution of the W™ self-energy is given. for instance, by the product of
the two terms involving /1_1_/, in ]f;fl,‘*“ W and ]\\]\; ERE

In DPA, the ¢* terms in the denominators of (3.1.17) can be neglected, and the cur-
rents are conserved. The currents »/\\m " N and ;\?“77//‘ are the ones mentioned in
Refs. [38, 39]. For the virtual corrections, this shows that our definition of non-factorizable

doubly-resonant corrections coincides with the one of Refs. [38, 39] in DPA.
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Figure 3.3: Example of a non-factorizable real correction.

3.1.4 Doubly-resonant real corrections

The photonic virtual corrections discussed above are IR-singular and have to be combined
with the corresponding real corrections in order to arrive at a sensible physical result. The
real corrections originate from the process

e"(py) +e (po) = WHEL) + W (ED) [+ ()]
= fu(K)) -+ Fo(kh) + fa(k3) + Fa(kY) +v(q). (3.1.18)

Note that we have marked the fermion momenta &} by primes in order to distinguish
them from the respective momenta without real photon emission. The momenta of the

W bosons are £/, = ki + ki and k. = k} -+ &} if the photon is emit_t_ed in the initial state
or in the final btat@ of the other W bogon, and k, = k' + kL qor ko =k ++ k) 4 q if the

photon is emitted in the final state of the 1espe(,t1\fc \\ bo,son.

The non-factorizable corrections induced by the process (3.1.18) arise from interferences
between diagrams where the photon is emitted from different subprocesses. A typical non-
factorizable contribution is shown in Fig. 3.3. Including the integration over the photon
phase space, this contribution has the following form:

/ a N(q, k)o(py +p- — ki — k) — &y — k| — q)
Zqo (Z }‘ /]1 ))V - 77?[)”((] "’{“‘ k/‘_;_‘)“ A A\[h)]‘(/‘t,% """" 1"{2)

l *
X{K“+%V“”H%V—\f(m+z ~APJ
. / PaN(g. kD)o (pe +po — K, —k, =k, — k), —¢)
200 (2qk5)(2qk!. + k2 — M2) (K2 — AL?)
1
(2qk5)[KE — (M*)?][2gkL + K2 — (M*)?]

(3.1.19)

o= TN

where we again use a photon mass A to regularize the IR singularities, and N(q, k) has
the same meaning as above. Again, the doubly-resonant contributions are characterized
by a quadratic IR singularity for &2 = M3, I'w — 0. and only soft-photon emission is
relevant in DPA. For this reason, the W bosons arc nearly on shell, and the on-shell width
is appropriate. As for the virtual corrections. the int troduction of the width hefore or after
phase-space integration leads to the same results in DPA. As already indicated in (3.1.19),
in the following real integrals we use A/* with the understanding that it has to be replaced
by M3, after integration where possible.
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The aim 1s to integrate over the photon momentum analytically and to relate the
fermion momenta k; to the ones of the process without photon emission, k;. Primed and
unprimed momenta differ by terms of the order of the photon momentum: k! = k; +O(qo).
In DPA we can neglect ¢ in N(q, kf), leading to the replacement N(q, k) — N(0, k;).
Moreover, we can extend the integration region for ¢, to infinity, because large photon
momenta yield negligible contributions in DPA. After extension of the integration region
the integral becomes Lorentz-invariant.

While the correction factor to the lowest-order cross section is universal in SPA for
all observables, the correction factor is non-universal in ESPA. In order to define this
correction factor in a unique way, one has to specity the parameterization of phase space,
i.e. the variables that are kept fixed when the photon momentum is integrated over. This
fact has not been addressed in the literature so far.

Let ns consider this problem in more detail. It can be traced back to the appearance
of the photon momentum ¢ in the o-function for momentum conservation. In the usual
SPA ¢ is neglected in this o-function, which is sensible if the exact matrix element is a
slowly varying function of ¢ in the vicinity of ¢ = 0. However, in the presence of resonant
propagators, in which ¢ cannot be neglected, the simple omission of ¢ in the momentum-
conservation o-function leads to ambiguous results: putting ¢ = 0 in the é-function and
identifying &/ with k; in (3.1.19) vields

B N(0, k) (po + pe = ky — kg — k3 — ky)
1 '
X R oot e aese N .
(2qks) [k — (M*)?][2qk - + B2 — (M*)?] gy /am 2

7 —

(3.1.20)

On the other hand, eliminating &, in the denominator of (3.1.19) with the help of the
d-function, putting ¢ = 0 in the d-function, restoring £/, with the modified §-function, and
setting & — k; results in
AP N0, 5)0(pe +po = kg — ko — ky — ky)
1 2qq (2qk2) (k3 — M2)(k2 — M?)
. 1
(2qks)[=2qky + k3 — (M) [2qk_ + k% — (M*)2)] go=r/ P4 AT

L

T —

(3.1.21)

Both expressions differ by a doublv-resonant contribution. The difference is in general
confined to the W propagators and originates from the fact that not only soft photons but
also photons with energies of the order of |k% ~ M3 /My or, after the inclusion of the
finite width, of order Iy contribute in DPA. Since photons with finite energies contribute,
it 1s evident that the integral over the photon momentum depends on the choice of the
phase-space variables that are kept fixed.

As a consecuence, one has to choose a definite parameterization of phase space and to
exploit the o-function carefully, in order to define the non-factorizable corrections uniquely.
For instance, if the vector A, = &} -+ K} is kept fixed, the alternative (3.1.21) is excluded.
However, because of momentum conservation, not all external momenta can he kept fixed
independently.
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It is, however, possible to keep, for instance, the invariant masses of the final-state
fermion pairs &2 = (kj + k3)? and & = (k} + k})? fixed when integrating over the photon
momentum. If we require (£} +k£%)? = & = k% = (ky+k2)?, we obtain for the denominator
of the WF boson

(q-+ A‘«;)g - M? = 2qk + /'7 — M? =2k, + ]a:i — M? + O(q%)
= (q-+ k) = M+ O(q), (3.1.22)

where k] = k; -+ O(qp) was used. Based on the power-counting argument given above, the
terms of order ¢7 can be neglected in DPA, and we find

(q+ k)2~ M~ (q+ k) — M. (3.1.23)

If we choose to eliminate A’ as done in the derivation of (3.1.21), we find, on the other
hand,

= ki~ M7+ O(q). (3.1.24)

g+ kR = M?* = (pp+po =k ) = M= (pp +p_ — k) = M+ Oq)
+. .

The O(gy) terms are relevant in DPA [and in fact given by (3.1.22)]. As a consequence,
(3.1.21) is not correct if we choose to fix &7 = k% when integrating over the photon momen-
tum. For fixed &7 == k7, (3.1.22) leads to the unique result (3.1.20) for the W™ propagator
in DPA, independently of the other phase-space parameters. If we choose, on the other
hand, to fix 172‘ = k7, which corresponds to a different definition of the invariant mass of
the W boson, we obtain

(g-+ k)2 = M = k% — M, (3.1.25)

and thus (3.1.21) instead of (3.1.20). Consequently, the different approaches (3.1.20) and
(3.1.21) correspond to different definitions of the invariant mass of the WT boson which
decays into the fermion pair (fi, fo). In order to define the DPA for real radiation, one
has to specify at least the definition of the invariant masses of the W bosons that are kept
fixed. In the following we always fix 2 = (k] + kL)? = (ky + ko)? and k2 = (K} + k})* =
(ks + k4)?, as it was also implicitly done in Refs. [37, 38, 39]. Once the invariant masses
of the W bosons are fixed in this way, the resulting formulae for the noun-factorizable
corrections hold independently of the choice of all other phase-space variables.

We stress that the results obtained within this parameterization of phase space dif-
fer from those in other parameterizations by doublyv-resonant corrections. As already
indicated in the introduction, in an experimentally more realistic approach the invariant
masses of W bogons are identified with invariant masses of jet pairs, which also include
part of the photon radiation. Since this situation can only be described with Monte Carlo
programs, our results (as well as those of Refs. [37. 38, 39]) should be regarded as an
estimate of the non-factorizable corrections.

3.1.5 Classification and gauge-independent definition of the non-
factorizable doubly-resonant real corrections

The doubly-resonant real corrections can be classified in exactly the same way as the
virtual corrections. For each virtual diagram there is exactly a real contribution, which
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Figure 3.4: Real bremsstrahlung diagram containing non-factorizable and factorizable
contributions.

we denote in the same way, e.g. ff’ refers to all interferences where the photon is emitted
by two fermions corresponding to the two different W bosons.

As in the case of the virtual corrections, one has to define the non-factorizable real
corrections in a gauge-independent way. To this end, we proceed analogously and define
the non-factorizable real corrections as the difference of the complete real corrections and
the factorizable veal corrections in DPA. The factorizable corrections are defined by the
products of the matrix elements for on-shell W-pair production and decay with additional
photon emission. There are three contributions to the factorizable real corrections, one
where the photon is radiated during the production process and two where it is emitted
during one of the W-boson decays. The corresponding matrix elements read

oo T b B F N f T
MEe PWEW 7'/\/[?\ >./1,.Iz/\/t\\’ —f3 /4

M eal ] = Born - - 3’0!‘:?1 Born .

real! E\_ (k2 = M?)(k2 — M?) )

A geFer S WHW= Wy oy W™ fa

Mgz = 3 Mhon = Mpon "~ Moo ™

T (K +q)2 — MP)(E2 — M?)

%—X-e“ WA v ?}\H‘«—»)fl I» _,\/l'l\éV“ — fafary
Moy = 20T . : ~ “Born r' orn 3.1.96
real,3 /\g_}“ (u“} - J,[“))![(f{w e q)z o 1\4'2] > ( )

in analogy to (3.1.8). Note that the matrix elements M. » and Mear 3 involve an explicit
g-dependent propagator. The factorizable corrections are given by the squares of these
three matrix elements, and include by definition no interferences between them.

As an example for the extraction of non-factorizable corrections from real diagrams that
involve both factorizable and non-factorizable corrections, we consider the contribution of
the diagram in Fig. 3.4. After subtraction of the factorizable contribution, which originates
from [Meq 1 |%, it gives rise to the following correction factor to the square Mpom|? of the
lowest-order matrix element (3.1.8):

O\\T R _ 4*]\':_%;/;_. | |
rea ‘);2 \[2{(]\~ + Qﬁ)g __ (E\,[.:’:)?’}

: “‘ p— 3.1.27

'2(]1‘ ._)(]]1w ) /\,‘i: 3 ]\1\ } ]{m?t \/,qz e < ‘ )




Note that the form of the correction factor is only correct for fixed (k) + k%)% and (kj-+k})*.
For other conventions the off-shell contribution changes whereas the on- shell Contribution

\)\\ W ~(?2 / (13»_— 5 ‘\{ | ,1;‘._:#]{:_ { /’(’.i — M? N k’% m (ﬂ/f*)Q
- (2m)*240 (qhi)(gho) Lko +q)* = M* (ke +q)? — (M*)?
k3 — MP k2 - (M2
S T T 2(‘ — H uuuuuu (3.1.28)
(s + )7 = M2 (k= + q)? = (M2 oo

In the same way, all other contributions that originate from a photon coupled to a
W boson can be rewritten such that the complete real non-factorizable corrections can
finally be expressed as the following correction factor to the lowest-order cross section,

. 13
- d’q eteT o WHWT W i oy x eteT - WHW - fa fa
Oreal,nf ™~ = / 5 V30 2Re [.71'0&1 (Jrearp ) Jreal ' (71Ld )"
. (H/n) 2(]0
v .:‘*\/1/7“ »\\__"\’/‘in { ¢
+ ixea ( real,u ) ] (70‘—‘«'\/;1?-;?2— kB 1‘29)
with the currents
cetem aWhHWo o ]{LH// k'wu. Py P
Jreal,p =€ . + o )
’ gky gk gp. qps

!

Vb f T ke ko o k2 — M?
PR = (o gtm ) B

qky v qA 5 (k.

sy £ T ke k k. >/s72 zW 2

W= f3 fa 3p dp 14 - 9 -

Tonl 1 = € Q;gm-w () — ) = 3.1.
']I("ﬂ’“ ‘ ( ) qk’.;g qA 4 | (]A: (k ( 30)

The factor (3.1.29) for the non-factorizable correction can be viewed as the interference
contributions in the square of the matrix element (= denotes the polarization vector of the
photon)

_ o (setem s WHWS | WES i f | W fafy 21 a
Mreal - MBorn < (jical 1t + Jreahu -+ ]10(11'/1 ) R (313[)

which is just the sum of the three matrix elements Meu ;. 7 = 1,2,3, in ESPA (includ-
ing radiation from the external fermions and the internal W bosons). The respective
squares of these three contributions correspond to the factorizable corrections. Note that
Mo, W gngele =WIWT g the soft-photon matrix element for on-shell W-pair pro-
duction. Similarl /\/lgoj:f ”:“,\(\ﬂu’f 2 and M Bomﬂ 3agn ;}(}a L P01 correspond to the
soft-photon matrix elements for the decays of the on-shell W bosons, apart from the extra
factors (ki — M?*)/[(k+ +q)* — M?]. These factors result from the definition of the lowest-
order matrix element in terms of L. and from the fact that we tmpose Z’F A,L and not
k2 = k2.

Obviously, the currents (3.1.30) are conserved, and the corresponding Ward identity
for the U(1)e, symmetry of the emitted photon is fulfilled.



3.2 Calculation of scalar integrals

In this section we set our conventions for the scalar integrals. We describe the reduction
of the virtual and real 5-point functions to 4-point functions and indicate how the scalar
integrals were evaluated. More details and the explicit results for the scalar integrals can
be found in the appendix.

3.2.1 Reduction of 5-point functions
Reduction of virtual 5-point functions

The virtual 2-, 3-, 4-, and 5-point functions are defined as

. 1 7, 1
Bo(pr.mg,my) = — / e e—
o(p1. Mo, My, o ] NoN,!
Colpi, pa.mo. my, ma) ! / 14 !
WP P2 T My, M) = oy [ A
0Pt P2, Mo, 17, T — i NoN, Ny
, Loy, {1,q,}
Dy D1, D2y D3y M, M, Ma, My ) == —— / dtg ——HL
{otu}(] 13 P2y P32 M0y 12y, M, 'a) - q NoNlj\/QNg’
. 1 1,q,}
oSN e e ) e EEOR Sl R
Eo.u1 (p1, 025 D3 Pas M0, M, Mo, i, iy — / d'q NN Ny VoY, (3.2.1)
with the denominator factors
Ny = ¢* —m? +ie, Ni = (q+p)? —m? i, =100, 4, (3.2.2)

where ie (€ > 0) denotes an infinitesimal imaginary part.

The reduction of the virtual 5-point function to 4-point functions is based on the fact
that in four dimensions the integration momentum depends linearly on the four external
momenta p; [13, 44]. This gives rise to the identity

2¢° 2qpy ... 2qpy 2Ny -+ Yoo 2qp1 ... 2qpy
2p1q 2p7 ... 2pipy Ny — Np+Yig =Yoo 207 ... 2pipy
2paq 2papy - 2] Ny — No+Yig — Yoo 2pupr ... 203
with
Yoo = 27’71%7 Yo=Yy = 77'1..3 + 'm? pf, Vi o= 777? - m? - (p; — Pj>2> i,7=1,2,3,4.
(3.2.4)
Dividing this equation bv NNy -+ Ny and integrating over d*¢ vields
2Ny + Yo 2Py .. 2qpy
0 1 / " 1 Ny =N+ Yo=Y 2p7 .. 2pipy 30 s
) L R — X ‘ .
12 ! No Ny N : S 5 (3.25)
Ny= No+ Yo~ Yoo 2pupr -0 2p]




Expanding the determinant along the first column, we obtain

201p1 ... 2pipy
0 = [2D4(0) + Yoo 2o :

20401« 2papu

4 )
+ UMD (R) = [Du(0) + pupDo(0)] + pa Do (0) + (Yip = Yoo) Fi }
k=1

5 fh 9t
2py .. 2P,

2pipr - 2D

X 2pp—apr - 2Pk—1Pa | (3.2.6)

2Pt - 2Dkl

2papL oo+ 2papn

where Dy(k) denotes the 4-point function that is obtained from the 5-point function Ej
by omitting the kth propagator N;'. The terms involving py Do (0) have been added for
later convenience.

All integrals in (3.2.6) are UV-finite and Lorentz-covariant. Therefore, the vector
integrals possess the following decompositions

4
e
—E/,f, - Z »Lz‘piu:
=1

4
D“UL) = Z Z)i<]<‘7)17'ill/a k == 17 2> 3; 4;

itk
. 3
D, (0) + pay Do (0) = > D;(0)(ps — pa)p- (3.2.7)
i=1

The last decomposition becomes obvious after performing a shift ¢ — ¢—py in the integral.
From (3.2.7) it follows immediately that the terms in (3.2.6) that involve D, (%) drop
out when multiplied with the determinants, because the resulting determinants vanish.
Similarly, D,,(0) + p4, Do(0) vanishes after summation over k. Finally, the term py, Dy (0)
contributes only for k& = 4. where it can be combined with the first term in (3.2.6).
Rewriting the resulting equation as a determinant and reinserting the explicit form of the

tensor integrals leads to
No+ Yoo 2gp1 -0 2qpy

1 Yio =Yoo 2papr - 2pipa

Yo — Yoo 2papr - 2paps

16



Using
2pipj = Yij — Yio — Yo; + Yoo,
2(]]7_7‘ = ]Vj — N, o -t }/()j """ .'f()(), (329)

adding the first column to each of the other columns, and then enlarging the determinant
by one column and one row, this can be written as

1 Yoo R You
0 Do(0)+YooEe ... Dold)+ Yoo
- 10 Y10 — Yoo . Vi — You : (3.2.10)

0 Yip — YOO . }‘;; — Y04
Equation (3.2.10) is equivalent to

— By Do(0) Do(1) Do(2) Do(3) Do(4)
1 Yeo Yo o Yoo Yoz Yo
L Y Yoo Yoo Yoo Yy
L Yy Yo Yo o Yoy Yy
LYy o Yy Vi Yayo Yy
1 Yio Yn Y Yis Y

which expresses the scalar 5-point function Ey in terms of five scalar 4-point functions

1 4 ,
E T e ——— et V ] N S 2, 2
o dor(v) % det(Y;) Do(2), (3.2.12)

where Y = (Vj;), and Y; is obtained from Y by replacing all entries in the th column
with 1.
In the special case of an infrared singular 5-point function we have

o = 207 = 0, Yoo =mi —p? =0, Yor =m3 —p; =0, (3.2.13)
and the determinants fulfill the relations

0 = det(Y) — Yoo det(13) — Yos det(13), (3.2.14)
0= (}rz; - 563) (IGI(SW —+ 5033[1 det (S}) -+ () DZS‘H - Sb; Ygﬂ (]C‘t(&i}) -+ Ebyxwu det (31)
0 = (Y — Yoo ) det(Y) + Yo7y det(V7) 4 (YoaYay — Yoo ¥ay) det(V3) + Y3V det (1),

which allow the simplification of (3.2.12).
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Reduction of real 5-point functions

The real 3-; 4-; and 5-point functions are defined as
2 7 g 1
CO(])I:!—)Q: A, 77‘1"11771-2) S / J e ;
T Jao<An 2o qu\@i%:\/;z:;;
2 rd’c 1
D (])1 P2y Py /\ My, e, 7773) p :*/ )‘*1 iﬁ*\“/ ““““““““ 3
/i ([) s O:\/;]z+/\2
D) 3
50 (p'l? P2, P3s Pis /\‘- My, Mo, My, 77?“’1) = / d q 71 «,~/l N
o 2(7() A’\l.\'?.wg .L‘l /4
with
N! = 2qp; + p? — m?, p=1, 00,4 (3.2.16)

The shift of the integration boundary of ¢ to infinity leads to an artificial UV divergence
in the 3-point function Cp, which is regularized by an energv cutoff AE — oco. In the
following we only need differences of 3-point functions that are independent of AFE and
Lorentz-invariant.

Because of the appearance of UV-singular integrals in intermediate steps, the reasoning
of the previous section cannot directly be applied to &. Therefore, we rewrite the real
5-point function as an integral over a closed anticlockwise contour C in the ¢y plane and
introduce a Lorentz-invariant UV regulator A:

Iy 1 —A?
Doy D3, Dy Ay M Moy Mg, my) = lim w/ 1ty — 3.2.17
Eo(pry P2y p3, Pa 1, Mg, M3, My) = am e [ IA/(’)\' N A2 ( 7)
with ‘
N§ = ¢ — ). (3.2.18)
The contour C is chosen such that it includes the poles at ¢y = /g% + A and ¢ =

Vq? + A%, but none else (see Fig. 3.5)%.
The integral (3.2.17) can be reduced similarly to the virtual 5-point function. Owing

to the different propagators N/, (3.2.3) leads to
2NY 2qpy .. 2qpy
1 1 —A? N[ +Y 207 .. 2pipy
0= lim — /11 s : | ' (3.2.19)
aein? Jo CUNINTTTN R A2 ST (9.2.19
‘\?1 + Xm Qp.l])'z N 2])3

instead of (3.2.5), with V}; from. (3.2.4), and \? can be set to zero in all Y3, in particular
we have Yy = 2\7 — 0. After (—xpamiimg the determinant along the first column and

2 It is straightforward to check that the naive power counting for the UV behaviour in (3.2.17) is valid
for time-like momenta p;; light-like p; can be treated as a limiting case. The basic idea for the proof is
to dcf'orm the contour C to thg vertical line Rc{q b= *q\' € with a <me1U I > 0, which is allowed for
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Figure 3.5: Ilustration of the contour C of (3.2.17) in the complex g plane. The open
circles indicate the “particle poles” located at qo(p;) = (2qp; — p7 +m3)/(2pin).

using the Lorentz decompositions of the integrals where Nj is cancelled, we sce that these
terms vanish, and we are left with

2N, 2qpy .. 2qpa

. A2 VY 297 ... 2pip
0= lim ;TL /L d'q A%N{]i TN ;\A’\g oo ’?‘7 1‘ (3.2.20)
Yio 2papr - 203
Using
2pip; = Yi; — Yoo — Yo,
2qp; = N} + Yoy, (3.2.21)

adding the first column to the other columns and extending the determinant leads to

1

10 Yo Yo
0 2N, N2 2NE 4+ Yoy ... N+ 2V) + You

0 Yip Yo - Yo e Yig — You

0= lim — / G Ay — —— :
A—vco 1712 Je ¢ ‘\éA\g e A\/l (]‘)’ — A2

0 Y YooY ... Yig —You



Subtracting the first row from the second, adding the first row to the other rows, and
exchanging the first two rows, we arrive at

~1ON) N+ 2N) ... NL+2N]
- _ 10 Yo . You
0= lim T““é‘ /L (1/1(] \” /“\/” 7 :‘ ; - e 1 11() SV]] . }’/'14 . (3223)

A—oo 177

1 Y Y . Yu

Now we pel f'onu fh(\ contour integral uqinq pox\ er counting for A — 00 (%@ footnote ‘7) In

in (3.2.15) In the (ontnlmnon of tho po]e at o = /q? + \> The term contamme) \ in the
numerator survives and will be caleulated below, but all other terms vanish aﬁer taking
the limit A — co.

Thus, we find

~E Do(0) Do(1) +Dy(0) D(2) + Dy(0) Do(3) +Dy(0) Dy(4) + Dy(0)
1 Yoo Yo Yoo Yo3 You
0 — 1 Yig Y Yo Y3 Yoy
1 Yoo You Yoo Y53 Yo,
1 Y ¥y ¥so Y3 Yy
1 Yio Y Yio Yis Y
(3.2.24)
or
. 1 S 4 A ~ ) .
&y = Tet (1) {det(i’o) Dy (0) + l}; det(};) ['Do(z) + DO(O)} } (3.2.25)
Here .
Bo(0) = lim = [ dtg— bt = 3.9.96
0 \)';oiﬂ' Je (] \[(]l__\.), ()

and the 4-point bremsstrahlung integrals Do(y)‘ z == 1,2, 3,4, result from & by omitting
the ith denominator V). The result (3.2.24) differs from (3.2.10) only by the extra '250(0)’8
added to the Dy(i)’s

The integral Dy(0) stems from the terms involving V) in the numerator in (3.2.23) and
can be expressed as follows:

. 2 |
Dy(0) = J—«/ 1 T 2
()( ) 1:72.(”( (1 7([ ]) )(/ [? q """ 1 % )

where the contour €' surrounds ¢ = V q” + 1. Performing the contour integral over dg;,
yields

S 1 rdig 1 §
ﬂﬂm:u%/o?;/ . (3.2.28)
T 2q5 2¢'py - 2'py loh=va'?+1
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Now the vector ¢ is time-like. Since also the vectors p; are time-like (or at least light-like),
the scalar products ¢'p; cannot become zero. After redefining the momenta,

D = OiDis o; = *+1, Dio > 0, (3.2.29)

and extracting the signs o;, this integral can be evaluated by a Feynman-parameter rep-
resentation and momentum integration in polar coordinates resulting in:

~ 0 . 4 4 o =2
Dy(0) = —o1020304 / day dag das day 6(1 Zax,;) KZ .z:,,;]'i;) } - (3.2.30)
Jo

i=1 1=1

This is just the Feynuman-parameter representation of a virtual 4-point function such that
we finally obtain

D()(O) = gy 000304 Dy <po »»»»» D1y D3~ Dis Do~ D1 \/p \/pg, \/pg, \/p ) . (3.2.31)

Explicit reduction of the virtual 5-point function for the photon exchange
between f, and fs

For the photon exchange between f, and f; the following scalar integrals are relevant:
Ey = Eo(—ks, —k_, ki, ko, \ymg, M, M, ms),
Dy(0) = Do(—Fky, ky + kg, ko + k3,0, M, M, 0),
Do(1) = Do(—=k_, Ky ke, 0, M, M, my),
Do(2) = Dol ~ka, ey ko N, ma, M. ms),
Dy(3) = Do(—Fks3, —k_, ko, \,msz, M, ms),
Do(4) = Do(=ks, —k_, ki, 0,mz, M, M). (3.2.32)

Since we neglect the external fermion masses, the last two rvelations (3.2.14) simplify to

0 = (823 + 820) det(V) -+ K_say det(¥3) — [ Ko (805 + 801) + K_M?| det(Y3),
0 = ($y3 -F 893) det(Y") 4+ K503 det(Yy) — EZ\“ (513 F s93) + N [‘)] £(15).(3.2.33)

These relations allow us to eliminate det(Y7) and det(Y]) from (3.2.12), resulting in:

. . let (Y
Eo(—ka, —k_ ko ko, \oma, MM, ms) = MDO(O)
det(Y)
det(Ys) g 1 |
-+ ([Gt’(&[X_‘K};{J/\l(\J% Sy ) - I \[ ]7 ( > - K S):}DO<3>}

{U\'vﬁ (;913 - .923> - ])&1‘;_ \/i\D(\, (D -+ ](4, SHD()(E)}

(3.2.34)




The matrix Y reads

00 —K_ K, 0
* 0 M? (=K, — si3— $23) — 593
Ve | s s 902 2M? — s (—K_ — sp5 — 504) |- (3.2.35)
ok x phVE M?
ok % 0

Neglecting terms that do not contribute to the correction factor in DPA, the corresponding
determinants are given by

Mﬂwmﬂhk ...... mWMM&+LmWM%+&mW
det(Yy) ~ —kiy,
det(Yy) ~ Iy [1\,/1\‘}\,(523 — So4) + (S5 + S04) (513504 — 51/152:3)_1

+ K_ M2, (=M + 2513803 4 513804 + 514803),
d%@)w»;P@MQ%%mn~&%ﬂ%W\MWqL ~~~~

d(“t( )— d (5 )i[\'_}.HI&)‘_.‘,S[;gHSQ4’

det(Yy) = det(Y7) (3.2.36)

l Ky K 81345247

where the shorthand kw is defined in Appendix A.1.

Explicit reduction of the real 5-point function for the photon exchange between
f2 and f3

Tn this case the integrals appearing in (3.2.25) read

Ey = Eolksy ko ko, ko, N\yms, M, M, ms),

Do(0) = —Do(ky, ky — ks, ko — ks, 0, M_, M, 0),

Do(1) = ”DQ(A*_,A;,§.,AJQ,O,_A'[*,J[, ma),

'DO(Z) Dolks, ky, ko, Nyms, M, ma),

Do(3) = Dolks, ke, oy Aymg, M7 o),

Do(4) = Dylks, k-, ko, 0,my, M* AL, (3.2.37)

In analogy to the virtual 5-point function, we can express the real 5-point function with
the help of the relations (we denote the matrix Y for the real b-point function with a
prime, in order to distinguish it from the one for the virtual 5-point function):

(0 = (\/3‘33 + 83;) d(f‘,f(iyv) -+ _[\‘i-ﬁ“gg det (SD - f[»f\w,;, {\S»_};;; s 1) j \[ } det( />

0 = (813 4 $23) det (V") + Kyspz det(V]) — fm@m+&gmﬁmﬁymuﬂmz%)
by

| det(Y]) =
80(/’03, k.- ] ] \ (RAEE AL M 7777) (lé%é?))p” ((H



det (Y5 ~ - 2\ L B
+ --f-—(i“{[f@.(s%+s24> — K M3 [Do(1) + Do(0)] + K* 2 [DO<3>+DD<0>]}
det (S )[\ 593
mmmmm det(}3) {[1 (513 + 523) = I M| [Do(4) + Do(0)] + K50 [Do(2) + 150(0)]}
det (3 )]\ S$923 ' 4
3 -+ 523 + £ 2 &
~ P TIB I (4) + D(0)] ~ 2Dy (1) + Di(0)]. (3.2.39)
]\ + .5‘343 ],\‘ San
For the matrix Y we find
00 K — Iy 0
0 (M*)? (=R + 515+ 523) 523
V= x o o(M*)? (2K, — 2KF + s — (M*)2 = M?) (—K* + 505+ 504)
%k * 2M* WE
* ok * * 0
(3.2.40)

Replacing —K* by K_ and (M*)? by A% and multiplving the second and third columns
and rows by —1, this becomes equal to (3.2.35) in DPA.

In DPA, DO(O) can be neglected in the terms Dy(7) +Dy(0) in (3.2.25) and (3.2.39), and
the reduction of the real 5-point function becomes algebraically identical to the reduction
of the virtual 5-point function, apart from the differences in signs of some momenta. As
a consequence, the results for the virtnal corrections can be translated to the real case if
we substitute K. — — K" in all algebraic factors such as the determinants and FEy — &,
])0(0) —y DQ(O), Do(l) — DQ( ) DQ( ) = -“’DQ(L)), [)Q(S) — DQ(B) and D()(L) — DQ(-L)
In particular, the determinants are related by

det(Y") ~ + det(Y) det(Yy) ~ +det(Yy) ~ — ki,

Ko——KZ
det(Y)) ~ —det(¥y)|, . det(Y)) ~ —det(¥z)] ke
det(Yy) ~ + det(13) e det(Y)) ~ + det(Y 1);1\ e (3.2.41)

3.2.2 Calculation of 3- and 4-point functions

The scalar loop integrals have been evaluated following the methods of Ref. [43]. Our
explicit results are listed in Appendix A.3. For vanishing W-boson width theyv agree with
the general results of Ref. [13]. For finite W-hoson width the virtnal 4-point functions are
in agreement with those of Refs. [38, 39] in DPA. This shows explicitly that the ¢° terms
in the W-boson and fermion propagators are irrelevant in DPA.

An evaluation of the bremsstrahlung integrals, which follows closelv the techniques for
calculating loop integrals, is sketched in Appendix A.2. The final results in DPA are listed
in Appendix A3, and the 4-point functions agree with those of Refs. [38; 39]. We have
analvtically reproduced all exact results for the occurring bremsstrahlung 3- and 4-point
integrals by independent methods. In addition. we have evaluated the IR-finite integrals

e
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Dy(1), Do(4), and & — Dy(3)/K 1 by a direct Monte Carlo integration over the photon
momentum, yielding perfect agreement with our exact analytical results for these integrals.
Note that this, in particular, checks the reduction of the bremsstrahlung 5-point function
described in the previous section.

Our results for the 3-point functions cannot directly be compared with those of
Refs. [38, 39], because different approaches have been used. While our results are IR-
singular owing to the subtracted on-shell integrals, the results of Refs. [38, 39] are artifi-
cially UV-singular owing to the neglect of ¢* in the W propagators. However, when adding
the real and virtual 3-point functions the two results agree. This confirms that our defi-
nition of the non-factorizable corrections is equivalent to the one of Refs. [38, 39] in DPA.
Thus, it turns out that in DPA the subtraction of the on-shell contribution is effectively
equivalent to the neglect of the ¢* terms in all but the photon propagators.

3.3 Analytic results for the non-factorizable correc-
tions

3.3.1 General properties of non-factorizable corrections

In Ref. [37] it was shown from the integral representation that the non-factorizable correc-
tions associated with photon exchange between initial and final state vanish in DPA. This
was confirmed in Refs. [38, 39]. Via explicit evaluation of all integrals we have checked
that the cancellation between virtual and real integrals takes place diagram by diagram
once the factorizable contributions are subtracted. In this way all interference terms (if),
(mf), (im), and (mm) drop out. Examples for the virtual Fevnman diagrams contributing
to these types of corrections are shown in Fig. 3.2,

The only non-vanishing non-factorizable corrections are due to the contributions (ff'),
(mf’), and (mm’). The corresponding virtual diagrams are shown in Fig. 3.1, apart from
permutations of the final-state fermions. Two of the corresponding real diagrams are
pictured in Figs. 3.3 and 3.4. Since these corrections depend only on s-channel invariants,
the non-factorizable corrections are independent of the production angle of the W bosons,
as was also pointed out in Refs. [38, 39].

3.3.2 Generic form of the correction factor

The non-factorizable corrections doyg to the fully differential lowest-order cross-section
dogern resulting from the matrix element (3.1.8) take the form of a correction factor to
the lowest-order cross-section:

dopp = One AoBom. (BBU
Upon splitting the contributions that result from photons coupled to the W hosons ac-
cording to 1 = Qw+ = @1 — Q2 and 1 = —Qw- = ()4 — Q3 into contributions associated
with definite final-state fermions. the complete correction factor to the lowest-order cross-
section can be written as

Gue= S0 S ()T S Re{ A bt b R (3.3.2)

a=1,2 h=34 o
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In the following, only A = A(k, ko; k_, k3) is given; the other terms follow by obvious
substitutions. As discussed above, A gets contributions from intermediate—intermediate
(Amny ), intermediate—final (Apye), and final-final (Agy) interactions:

A = Amm’ - L\mf’ e A“:f, (%33)

The quantity (Apge 18 independent of the final-state fermions. The individual contribu-
tions read

A ~ (202, — )4 O (b, —k_ 0. M. M) — [Coller, —k, A, My, M)
\\ ) \

k3 =M2,
= Colksy oy O, M, M) o (o ooy Ay M, M)y o (3:3:4)
Agpp ~ (823 + 524) [[\'.-{-.vDo(l) ~~~~~~ ,I\}-Do(lﬂ ~ (813 + 823) [K* Pold) = KifDO(Li)J o
App ~ =K yso|[K_Ey — K*&)]., (3.3.6)

with the arguments of the 5- and <4-point functions as defined in (3.2.32) and (3.2.37).
The sum A¢ + A¢p can be simplified by inserting the decompositions of the 5-point
functions (3.2.34) and (3.2.39). In DPA this leads to

K K7 sp3 det (YY)

App + A o — [‘V(;;‘lj"‘(;‘ﬁ;t("b)_Do(m + Dy (0)
- éﬁ%@yi) { (K (893 + s04) + KMy Do (1) + K_s93D0(3 }
]‘&‘i%%-) (IR (515 + 520) + K, MEIDo(4) + K 45250 (2)}
+ K:{i‘%%) {[R) (503 + s03) = KX MEIDo(1) + K 553D5(3) }
+ %ﬁ%% {[,/”‘ (S13 -+ $23) — Ko M3 Dy(4) + Ky 593D (2 }
Note that Ay is exactly cancelled by the contributions of the last two terms in (3.2.34)

and (3.2.39).

Inserting the expressions for the scalar integrals from Appendix A.3 and using the
first of the relations (3.2.14), various terms, notably all IR divergences and mass-singular
logarithms, cancel between the real and virtual corrections, and in DPA we are left with

243, — K K e
A ~ ‘i'}—f—'—{ El?('}“‘“ 1\'\) + Lh([\ —, Ty ) -LL7,<_.};117:77\V>
N .

S,f')w I S
i Ko+ KF o
~ L1 (»» Z\i :z‘\“\;l> -+ 27i In< e : \[;\ o ” -+ imaginary parts, (3.3.8)
, K K _soydet(Yy) K det(Y3) K et 1(Y5)
App + D o —— D0y - e 2R
v det(Y) Y det(Y) 7 det(y) 7

N K*syydet(Y)) o« Kodet(YY) K 101@1) -
i det(}7) otV det{}") ‘ det(Y7) B

-+ imaginary parts, (3.3.9)




with Dy (0) and Dy(0) given in (A.18) and (A.26), respectively, and

Lo (K sy b s aien .. M o
Fy = —2Lis (‘,{ Y SR 1€> + 3 L@z( """ - 17€v> — Lig (*——L— +16, -”?\rfvﬂ
K_ M W S K. S93 -+ Saq |

, ( _k L) 2 ( S33 S iE)
M) M2, !
L [(ifb'\v

+ 2712

ik l Qe — el

F, = I}

. . >
Kp o Ka, 82442513

K> ay T My Iy o
. T 2»7ri{]n(1 + _{___}T_y_> - In <1 -+ —I—EE—“\L> + In{_ 2 - H
Ko—=K* Ky $13 T S23 1M (515 + 523)

(3.3.10)

Fo = Iy

The variables fw, zw and the dilogarithms Lis, Lis are defined in Appendix A.1.

The above results contain logarithms and dilogarithms the arguments of which depend
on K.. It is interesting to see whether enhanced logarithms of the form In(AL/MF)
appear in the limits Ko — 0. It tuwrns out that such logarithms are absent from the
non-factorizable corrections, irrespective of the ratio in which the two limits K, — 0 are
realized.

Moreover, the non-factorizable corrections vanish in the high-energy limit. This fea-
ture of the non-factorizable corrections has been checked by analytical and numerical
calculations.

3.3.3 Non-factorizable virtual corrections

In Chapter 4 the factorizable and non-factorizable radiative corrections to four-fermion
production are investigated. In order to overcome the problem of overlapping resonances
for the DPA of the real corrections discussed in Section 4.1.3. the complete real process,
involving resonant and non-resonant diagrams. is evaluated by Monte Carlo integration.
On the other hand, only the doubly-resonant part of the virtual corrections is taken into
account. Therefore, the results of the non-factorizable virtual corrections are required
separately.

Asin Section 3.3.2, the non-factorizable virtual corrections factorize to the lowest-order
cross section:

dgl\i?m - o\1\1;” d{—TBm‘n (%311)

with (
S = S S (=1 Q0 S Re{A (b ket k) (3.3.12)

a=1.2 b=34 a
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The explicit results of the term AY™ = AV (L, ko: k| k3) are listed in the following:

Avnt - Avxri “+ A\x

mm mf im mm’

“}-AH”—FAV“L e AVIIT +/_\Virt+A}][i-}‘t. (33[3)

mf’

with the individual contributions of the diagramns shown in Fig. 3.1 and Fig. 3.2

2M; .
virt W . X ;
A { Bo(k 0. 2) = [By (.0, A [)JA-;-;:A//:?}
- 2M [ BY (e, M, A[\\)JA e T B0, (3.3.14)

AV o AT {CQ(L‘:27 oy, 0,mey, M) — [C’O (ko by Xomeo, VW)JA oy }
W
+ (kg <> kg, by <> k), (3.3.15)

A;;X‘l ~ 2k Dy {OO (P B, 0, M, M) — { 0D by A, e, ﬂ[w)hg_[\i,7 }
TR =2
+pp o ky e k)~ (ke ko) = (pe = p), (3.3.16)

A ok ke {CO(A:+, ~~~~~ b0, M, M) [C'O(A;_,;, A M, M), }(3%1;)

muay ]x 3= [\1“

AT o 20, ko K Do (pa, by ko, Ny mig, M, ms)
—(py & p) = (kg > kayky > ko) + (ko 4> kg, by © koypy < po), (3.3.18)

AV o Okok_ K Dy(1) ~ 2ksky K_Dqg(4), (3.3.19)
AT 2k ks K KBy, (3.3.20)

The other terms, AV (k. b, k... k), can be obtained by obvious substitutions.

Contributions of the diagrams (if), (im), (mf), and (mm) of Fig. 3.2 cancel in the
sum of virtual and real corrections in DPA but remain for the virtual corrections. After
combining several diagrams the result becomes relatively simple:

K K_ A
At~ =222 ) = 2in( ) 4l 5= ) + 4 3.3.2
i 4 z n i Vi -+ 4, (3.3.21)
i 2 M ~~~~~ s K. R G 2 5 :
A ~ /?\j\‘v. [ Liz ( W 7’\\-?) + Lig ([\_ ;7"\\,}) + Lis(1 — 2%) -+ 7% + In® (~aw)
+ 2 1n< _‘\ ! > In(rw) — 27iln(l — 23,)| + imaginary parts, (3.3.22)
MMy " ’
and
N [ —S$03 — 1€
A\llt A\n A\J” - A\]IT l A\ irt ~~ 1 <“‘““‘f‘;" ] ___:_Al_‘ ____________ )
mf im + J]\\> I ( 1 [\3\
KoK _soydet(Yy) Ko det(}y) K_det(Y5)
- S D (0) — — - — I
det(Y") e det(Y) det(Y) 7
=R Ul ME — - . g
-+ 2]11( i ) ]11(11 S ”> + ?]n(»-«-ﬁ——) hl({:ﬂg --------------- ) )
by \[\\ \/\\ 1) \\[\\ / ( \[\\ - 7_1)
5T



t— Mgy | t— M
+Li2<1 - -L{—JY) + ,[,12<1 - W)

) L3
| w— M3  — M |
— Liy (1 - i—iﬂ> ~ Liy <1 ffw--w-»_-—‘-‘i), (3.3.23)
Up3 Uo

where Dy(0) can be found in (A.18) and the variables Sy, xw and the dilogarithms Lis,
Lis are defined in Appendix A.1.

All mass singularities vanish in the non-factorizable virtual correction factor 6", In-
frared singularities remain which have to be cancelled by the corresponding real correc-
tions.

3.3.4 Inclusion of the exact off-shell Coulomb singularity

For non-relativistic W bosons, i.e. for a small on-shell velocity fyw, the long range of the
Coulomb interaction leads to a large radiative correction, known as the Coulomb singular-
ity. For on-shell W bosons, this correction behaves like 1/5yw near threshold, but including
the instability of the W bosons the long-range interaction is effectively truncated, and the
1/fw singularity is regularized. Therefore, for realistic predictions in the threshold re-
gion, the on-shell Coulomb singularity should be replaced by the corresponding off-shell
correction. The precise form of this off-shell Coulomb singularity [45] reveals that correc-
tions of some per cent occur even a few W-decay widths above threshold. As explained
above, the DPA becomes valid onlv several widths above threshold. Nevertheless, there
exists an overlapping region in which the inclusion of the Coulomb singularity within the
double-pole approach is reasonable.

The Feynman graph relevant for the Coulomb singularity is diagram (d) of Fig. 3.1.
The non-factorizable corrections contain just the difference between the off-shell and the
on-shell contributions of this diagram. Therefore, the difference between off-shell and
on-shell Coulomb singularity is in principle included in A, as defined in (3.3.4). The
genuine form of A, in DPA, which is given by (3.3.8). does not contain the full effect of
the Coulomb singularity, because in both Cj functions of (3.3.4) the on-shell limit K. — 0
was taken under the assumption of a finite Jyw. In order to include the correct difference
between off-shell and on-shell Coulomb singularity in A, the on-shell limit of the
functions of (3.3.4) has to be taken for arbitrary Jyw. The full off-shell Coulomb singularity
can be included by adding

2MG; — s Fﬁ-i (3 + Ay — ,5’> 271 | (A + N_ + s,.f"f\\dmﬂ
— I

A (3324

to the genuine DPA result (3.3.8) for N, The quantities 3. 7, and Ay are defined in
(A.1). After combination with the factorizable doublv-resonant corrections, all doubly-
resonant corrections and the corvect off-shell Coulomb singularity are included. The on-
shell Conlomb singularity contained in the factorizable corrections is compensated by a cor-
responding contribution in the non-factorizable ones. Note. however, that this subtracted
on-shell Coulomb singularity appears as an artefact if the non-factorizable corrections are
discussed separately.
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3.3.5 Non-local cancellations

In Ref. [36] it was pointed out that the non-factorizable photonic corrections completely

cancel in DPA if the phase-space integration over both invariant masses of the W bosons

is performed. This cancellation is due to a symmetry of the non-factorizable corrections.
The lowest-order cross section in DPA is symmetric with respect to the “reflections”

](»]_ = (A e :\[\2\) +iMw Ty *-~(;Zﬂi J[{l) F 1MWy = MX(»??

[N]

— M) +iMwly < —(B2 — M3) +iMy Ty = — K. (3.3.25)

K= (k2

b

Therefore, A can be symmetrized in Ky — — K7 or K — —K* if the respective invariant
mass is integrated out. For instance, if k% is integrated out, A can be replaced by

Kets—K* >

N 171_{ § - 21\[\2\/ In < K. .aw + I&j)

,B\,VS K. Ty — _[\'_;_

i - KL K* 593 [ 813,
+ Ky 893kw e — | | In <—~.t'?» / Hi_r> -+ 1 <.[ + —=(1 -z >
F feS2skn Liet() ) det(} ’)} [n a M, FI 993“ )
) Sa, 1! - 5'94
+n(1+ L4 2z )|
in o f ﬁ[\?\, Ty

{Ku det(Y5) N K* de-t('}';’)” o 518 + m) 1<< 53 H
det(1) det (Y1) W W

b Cp det(Y3) {ln (L‘cw < 2T k SN) -~ 2 111(1 + Besmt 52?4)}

1
(A A
(a4

det(Y) K. Mg

91 <1 I, 503+ “21)]
—2In{ 1 — —/=—
K Mg )

det(Y™)
2503 M3 (K2 594 — K235 yiun
G KK
det(Y)
2323/\:"[%(]’\'is-g% — K*sy3) 11<1 n Zx+ > }
det(Y")
-+ imaginary parts, (3.3.26)

with z defined in (A.20). Note that this expression is considerably simpler than the full
result for A. In particular, all dilogarithms have dropped out.

Symumetrizing (3.3.26) also in Ko > — K% leads to further simplifications if the rela-
tions (3.2.41) for the determinants are used. Under the assumptions that (si3 -+ Sg3) >
mﬂc“[{’f’vxw, (803 + 894) > — J[\E\ﬁl‘\\n and that ryw 1s imaginary, the real part of the result
vanishes. These assumptions are fulfilled on resonance, k% = A/[G.: off resonance, there are
regions in phase space where the assumptions are violated. The volume of those regions of
phase space is suppressed by factors k1 — M | /MG and thus negligible in DPA. Therefore
we can use the above assumptions and find that A vanishes in DPA after averaging over
the four points in the (k2. 42) plane that are related by the reflections (3.3.25):

A+ A

lt f\‘,;_ —e— ]\'_‘;~

+ A + A ~ 0, (3.3.27)

N Ky ——K5
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This explicitly confirms the results of Ref. [36]. In particular, the non-factorizable correc-
tions vanish in the limit [k3 — Mg | < T'w My, i.e. for on-shell W bosons.

The above considerations lead to the following simplified recipe for the non-factorizahle
corrections to single invariant-mass distributions, i.e. as long as at least one of the invariant
masses k1 is integrated out: the full factor A can be replaced according to

A=y <_x +A /\'_<w>—r\';> +5 (_\ + "x!/\:wwk_;) : (3.3.28)

where the first term on the r.h.s. ig given in (3.3.26). and the second follows from the first
by interchanging /X, ¢ N_ and s13 <> s94. Note that no double counting is introduced,
since the first (second) term does not contribute if A2 (k) is integrated out. In order
to introduce the exact Coulomb singularity, one simply has to add the additional term ot
(3.3.24) to (3.3.26) and (3.3.28).

3.3.6 Non-factorizable corrections to related processes

Since all non-factorizable corrections involving the initial e™e™ state cancel, the above
results for the correction factor also apply to other W-pair production processes, such as
vy~ WW — 4 fermions and qg — WW —» 4 fermions.

The presented analytical results can also be carried over to Z-pair-mediated four-
fermion production, ete™ — Z7Z — 4 fermions. In this case, Ny vields the complete non-
factorizable correction, where all quantities such as My and D'y defined for the W bosons
are to be replaced by the ones for the 7 bosons. The fact that )y = Qs and Qs = Q4
has two important consequences, Firstly, it implies the cancellation of mass singularities
contained in Ay when all contributions are summed as in (3.3.2). Secondly, it leads to the
antisymmetry of d,¢ under each of the interchanges £y < ky and ks 4> ky. 1t 1s interesting
to note that (3.3.2) with (3.3.3) arve directly applicable, since A,p and Ay, cancel in
the sum of (3.3.2). Therefore, a practical way to calculate the non-factorizable corrections
to ete™ — Z7Z — 4fermions consists in taking Ay + AL from (3.3.9) and (3.3.10), and
setting Ay L0 zero.

3.4 Numerical results
We used the parameters
ot = 137.0359895, My = 91187 GeV, My = 80.22GeV, Dy = 2.08GeV, (3.4.1)
which coincide with those of Ref. [38], for the numerical evaluation.
In order to exclude errors, we have written two independent programs for the correction

factor (3.3.2) and compared all building blocks numericallv, These subroutines are imple-
mented in the Monte Carlo generator EXCALIBUR [23]% as a correction factor to the three

3Since the Monte Carlo program of Chapter 2 was programmed after the results of the non-factorizable
corrections were published, the Monte Carlo program EXCALIBUR was used for the results of this chapter.
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(doubly-resonant) W-pair-production signal diagrams. In all numerical results below, only
these signal diagrams are included, and no phase-space cuts have been applied.

It not stated otherwise the results for the figures have been obtained from 50 million
phase-space points using the histogram routine of EXCALIBUR with 40 bins for each figure.
For each entry in the tables, 10 million phase-space points were generated.

3.4.1 Comparison with existing results

The non-factorizable photonic corrections have already been evaluated by two groups. As
was noted in the introduction, the authors of Refs. [38, 39] have not confirmed? the results
of Ref. [37]. Therefore, we first compare our findings with the results of these two groups.

Melnikov and Yakovlev [37] give the relative non-factorizable corrections only to the
completely differential cross section for the process e"e™ — WW — vete™ 7, as a function
of the invariant mass M. of the v.e™ system for all other phase-space parameters fixed.
All momenta of the final-state fermions lie in a plane, and the momenta k, and ks of the
final-state positron and electron point into opposite directions. The angle between the

W= boson and the positron is fixed to Oy-.+ = 150° and the CM energy is chosen as
Vs = 180 GeV. The invariant mass of the ™7, system takes the values M_ = 78 and

82 GeV. The other parameters are v = 1/137, My = 80GeV, and I'yy = 2.0GeV. In
Fig. 3.6 we show our results for the non-factorizable photonic corrections for this phase-
space configuration. The intermediate-intermediate (mm’') corrections agree reasonably

with those of Ref. [37], but the other curves differ qualitatively and quantitatively®. We
mention that Fig. 3.6 has been reproduced [47] by the authors of Refs. [38, 39] within the
expected level of accuracy. While the individual contributions shown in Fig. 3.6 are at
the level of 10% owing to mass singularities, the sum, which is free of mass singularities,
is below 1.2%.

Beenakker et al. [38] have evaluated the relative non-factorizable corrections to the
distributions do/dMidM_, do/dM,, and do/dM,,, where My, = (M_ + M,)/2. Our
corresponding results for the set of parameters given in (3.4.1) are shown in Fig. 3.7
for the single invariant-mass distributions and in Table 3.1 for the double invariant-mass
distribution. The deviation between the distributions do/dM, and do/dM_ in Fig. 3.7,
which should be identical, gives an indication on the Monte Carlo error of our calculation.
The single and double invariant-mass distributions agree very well with those of Ref. [38].
The worst agreement is found for small invariant masses and amounts to 0.03%. In fact,
the agreement is better than expected, in view of the fact that our results differ from those
of Ref. [38] by non-doubly resonant corrections. In the numerical evaluations of Ref. [38]
the phase space and the Born matrix element are taken entirely on shell [47]. Moreover,

4While the result of Refs. [38, 39] (as our result) for the complete non-factorizable correction is free of
mass-singular logarithms, the result of Ref. [37] contains logarithms of ratios of fermion masses. However,
the authors of Ref. [37] have informed ns [46] that the results of Ref. [37] and Refs. [38, 39] agree for equal
fermion pairs in the final state.

®Although not stated in Ref. [37], mass-singular parts have been dropped there in the numerical eval-
uation [46] rendering a thorough comparison of the (mf') and (ff') parts impossible. Comparing the sum
of all three contributions, i.c. the complete non-factorizable correction factor, our result differs from the
sum read off from Ref. [37].
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Figure 3.6: Relative non-factorizable correction factor to the differential cross section
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A, A

~1 ~1/2 | —1/4 0 1/4 1/2 1
—1 0.81 0.64 0.52 0.38 0.22 0.07 | —0.16
~1/2 0.64 | 0.52 0.40 0.24 0.08 | —0.07 | —0.25
~1/4 0.52 0.40 0.28 013 | =0.02 | —0.15 | —0.31
0 0.38 024 | 0.13 0.00 | —0.13 | —0.24 | ~0.37
1/2 0.22 008 | —0.02 | =013 | —0.24 | —0.32 | —0.43
1/4 0.07 | —0.07 | =015 | —0.24 | —0.32 | —0.39 | —0.48
1 —0.16 | =025 | —0.31 | —0.37 | —043 | —048 | —0.54

‘able 3.1: Relative non-factorizable corrections in per cent to the double invariant-mass
distribution do/dM dA_ for the CM energy /s = 184 GeV and various values of M.
specified in terms of their distance from My in units of T'vw, 1.e. Ay = (My — My )/Tw.

the scalar integrals are parameterized by scalar invariants different from ours, leading to
differences of the order of [A2 — M3 | /M3

In Ref. [38], additionally, the decay-angular distribution do/dM_dM d cos fw+er has
been considered, where fyw+.+ 1s the decay angle between k. and ks in the laboratory
system. Our results for this angular distribution are shown in Fig. 3.8. The cross section
is small for cosfy+e+ ~ —1, where the corrections are largest. Unfortunately the corre-
sponding figure in Ref. [38] is not correct [47]. The authors of Ref. [38] have provided a
corrected figure, which agrees reasonably well with Fig. 3.8, but does not show the kinks
in the curve for My = 78 GeV. The kinks are due to a logarithmic Landau singularity in
the 4-point functions. If one employs the on-shell parameterization of phase space, as in
Ref. [38], the Landau singularities appear at the boundary of phase space. Although no
kinks appear in the physical phase space in this case, the Landau singularities still give
rise to large corrections for cos fyy+.+ ~ —1. Since the kinks appear in a region where the
cross section 18 small, they are not relevant for phenomenologv. The issue of the kinks is
further discussed in Section 3.4.3.

3.4.2 Numerical results for leptonic final state

In Fig. 3.9 we show the non-factorizable corrections to the single invariant-mass dis-
tribution do/dAL, for various CM energies. While the corrections reach up to 1.3%
for /s = 172GeV, thev decrease with increasing energv and arve less than 0.04% for
Vs =300 GeV. Note that the shape of the corrections is exactly what is naively expected.
If a photon is emitted in the final state, the invariant mass of the fermion pair is smaller
than the invariant mass of the resonant W boson. which is given by the invariant mass
of the fermion pair plus photon. Since we calculate the corrections as a function of the
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Figure 3.8: Relative non-factorizable corrections to the decay-angular distribution
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Vs =184 GeV.
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Figure 3.9: Relative non-factorizable corrections to the single invariant-mass distribution
do/dM, for various CM energies.
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Figure 3.10:  Relative non-factorizable corrections to the angular distribution
do/dM_dMidcos¢ for fixed values of the invariant masses M and the CM energy
Vs = 184 GeV.

V5/GeV 172 | 184 | 192 | 200 300
AMy/MeV | =20 | =11 | =08 | —0.6 | —0.09

Table 3.2: Shift of the maximum of the single invariant-mass distributions do/dM.. in-
duced by the non-factorizable corrections at various CM energies.

invariant masses of the fermion pairs, the cross section tends to increase for small invariant
masses and decrease for large invariant masses.

The non-factorizable corrections distort the invariant-mass distribution and thus lead
to a shift in the W-boson mass determined from the direct reconstruction of the decay
products with respect to the actual W-boson mass. This shift can be estimated by the
displacement of the maximum of the single-invariant-mass distribution caused by the cor-
rections shown in Fig. 3.9. To this end, we determine the slope of the corrections for
My = My, multiply this linearized correction to a simple Breit-Wigner factor, and de-
termine the shift AM.. of the maximum. The smallness of the correction allows us to
evaluate AN, in linear approximation, leading to the simple formula

, F iy > | s )
AM. = | — ] 3.4.9
(('UL,,, A=ane S (3-4.2)

Extracting the slope from our numerical results we obtain the mass shifts shown in
Table 3.2.

In Figs. 3.10 and 3.11 we show the effect of the non-factorizable corrections on various
angular distributions. Since the non-factorizable corvections are independent of the
production angle of the W bosons, it suffices to consider distributions involving the angles
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Figure 3.11:  Relative non-factorizable corrections to the angular distribution
do/AM_dM d cos Oy for fixed values of the invariant masses My and a CM energy

/5 = 184 GeV.

of the final-state fermions. We define all angles in the laboratory system, which is the
CM system of the production process. The distribution over the angle ¢ between the two
planes spanned by the momenta of the two fermion pairs in which the W bosons decay,
Le. :
Cos ¢ == (ke x ko) (ks kd). (3.4.3)
[k <kl k| o
is presented in Fig. 3.10. The corrections are of the order of 1% or less. Like the ¢ distri-
bution, the distribution over the angle between positron and electron G- (Fig. 3.11) is
symmetric under the interchange of M, and M_. As for the f,+w+ distribution (Fig. 3.8),
the corrections reach several per cent in the region where the cross section is small.

The distribution in the electron energy F.- is considered in Fig. 3.12. The corrections
are typically of the order of 1%. Again the corrections become large where the cross section
is small.

In Section 3.3.4 we have introduced a correction term that includes the full off-shell
Coulomb singularity. The results for the non-factorizable corrections with this improve-
ment are compared with those of the pure DPA in Fig. 3.13. TFor /s = 184 GeV the
additional terms shift the non-factorizable corrections by up to 1.4% for de/dM,, and by
up to 0.8% for do /dAM . for small invariant masses, whereas for large invariant masses there
is practically no effect. The difference originates essentially from the differences between
1/3 and 1/8w in (3.3.24). For large invariant masses, the explicit logarithms in (3.3.24)
are small, i.c. the Coulomb singularity correction is minuscule, and this difference practi-
cally makes no effect. For small invariant masses. the logarithms are approximately 17 and
the difference causes the effect seen in Fig. 3.13. In Table 3.3 we show the non-factorizable
corrections to the double invariant-mass distribution, as in Table 3.1, but now with the
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Figure 3.12: Relative non-factorizable corrections to the electron-energy distribution
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A, A
| 12 | 1 0 14 |12 1

1 039 | 031 ] 023 | 015 | 005 | —0.04 | —0.20
12 031 | 028 | 020 | 010 —0.02 | 013 | —0.27
14 023 | 020 | 013 | 003 —0.09 | —0.19 | —0.33
0 015 | 010 | 003 | —0.08 | —0.18 | —0.27 | —0.38
1/2 0.05 | —0.02 | =009 | —0.18 | —0.27 | —0.35 | —0.44
14 | =004 | =013 | =019 | —0.27 | —035 | —0.41 | -0.49
1 020 | 027 | ~0.33 | —038 | 044 | —049 | —0.54

Table 3.3: Same as in Table 3.1 but with improved Coulomb-singularity treatment.

improved Coulomb-singularity treatment. We find a difference of up to half a per cent
for small invariant masses but no effect for large ones., We mention that the difference
between the entries in Tables 3.3 and 3.1 is directly given by the contribution (3.3.24) to
A, without any influence of the phase-space integration.

3.4.3 Discussion of intrinsic ambiguities

In the results presented so far, all scalar integrals were parameterized by s, s23, 13, Sa4, and
k% (parameterization 1). In DPA, however, the parameters of the scalar integrals are only
fixed up to terms of order k% — Mg, We can for example parameterize the scalar integrals in
terms of s, Sg3, S123, So34, and A% (parameterization 2) instead. As a third parameterization,
we fix all scalar invariants except for k2 by their on-shell values, corresponding exactly
to the approach of Ref. [38]. The results of these three parameterizations differ by non-
doubly-resonant corrections.

The difference between parameterizations 1 and 2 is illustrated in Fig. 3.14 for the
single invariant-mass distribution. The difference amounts to ~ 0.1%. Note that for an
invariant mass M. = 70 GeV we have My, — k3 [/AMG ~ 0.002 and would thus expect
absolute changes in the non-factorizable corrections at this level.

For the non-factorizable corrections to the angular distributions, uncertainties of the
same order are to be expected. The only exceptions are the distributions over the decay
angles fy+e+ and Oy- . Let us explain this for Ay+.+ in more detail: the non-factorizable
correction contains the term 251 n[1+4aw M, /(5134 503)]. which can be evaluated by taking
(813 + S93) divectly or (s123 — AME) as input. This parameterization ambiguity can lead to
larger uncertainties, because the above logarithm can become singular, and the location of
this Landau singularity is shifted by the ambiguity. Since there is a one-to-one correspon-
dence between sys5 and fy-+ for fixed s and A2, this logarithmic singularity is washed
out if the angular integration over fy+q+ 18 performed. but appears as a kink structure in
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Figure 3.14: Relative non-factorizable corrections to the single invariant-mass distribution
do/dM,. for the CM energies 172, 184, and 192 GeV and two different parameterizations.
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the angular distribution over this angle. Fig. 3.15 shows the non-factorizable corrections
to this angular distribution for the three parameterizations. For M, = 78 GeV we still
have alk? — My, |/Mg, ~ 0.0004. Apart from the regions where the Landau singularities
appear, this is indeed of the order of the differences between the three parameterizations.
When considering the Landau singularities, one should realize that the parameterization
ambiguity of the locations of the singularities is not suppressed by a factor o, i.e. different
parameterizations shift the locations at the level of k2 — A |/ME ~ 0.05. However, the
impact of the corresponding kinks on observables is again suppressed with o|k? — M, | /M3,
if the angles are integrated over, since the singularities can only appear near the bound-
ary of phase space and disappear from phase space exactly on resonance. Since the cross
section is small where the Landau singularity appears, the effect is phenomenologically
irrelevant.

3.4.4 Comparison between leptonic, semi-leptonic, and hadronic
final state

The non-factorizable corrections to the invariant-mass distributions are different for dif-
ferent final states and in general also for the intermediate W and W~ bosons.® The
invariant-mass distributions to the intermediate W* hosons coincide only if the complete
process is CP-symmetric. In this context, CP symmetry does not distinguish between
the different fermion generations, since we work in double-pole approximation and neglect
fermion masses; in other words, the argument also applies to final states like vee™ =,
and uds¢, which are not CP-symmetric in the strict sense. Thus, we end up with equal
distributions for the W* bosons in the purely leptonic and purely hadronic channels,
respectively, but not in the semi-leptonic case.

Fig. 3.16 shows the non-factorizable corrections to the single-invariant-mass distri-
butions for leptonic, hadronic, and semi-leptonic final states at various centre-of-mass
energies. We observe the same qualitative features for all final states; the corrections are
positive below resonance and negative above. Quantitatively the differences between the
corrections to the different final states are small; we note that the slopes of the correc-
tions on resonance, which are responsible for the shift in the maximum of the distribution,
are maximal for the leptonic final state. Therefore, we conclude that the W-boson mass
determination by invariant-mass reconstruction at LEP2 is not significantly influenced by
non-factorizable corrections.

The authors of Ref. [38. 39] have also calculated [47] the non-factorizable corrections to
the single-invariant-mass distributions shown in Fig. 3.16 for /s = 172 GeV and 184 GeV.
They find good agreement with our results for positive invariant masses. However, their
corrections are antisymmetric and therefore differ from our results for negative invariant

8In Ref. [38, 39] and in the preprint version of Ref. [40] it has been argued that the relative non-
factorizable corrections to pure invariant-mass distributions arve identical for all final states in ete™ —
WW — dfermions and vanish for Z-pair-mediated four-fermion production. This was deduced from the
assumption that (up to charge factors) the non-factorizable corrections become svmmetric under the
separate interchanges ky > ko and k3 < by after integration over all decay angles. Although the function
A for the relative correction has this property, this assumption is not correct. because the differential
lowest-order cross section is not symmetric under these interchanges.
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masses. The differences are of the order of non-doubly-resonant corrections and due to
different parameterizations of the corrections.

In the previous sections, we investigated the influence of the non-factorizing corrections
on various angular and energy distributions with fixed invariant masses for the final-
state fermion pairs. We have repeated this analysis for hadronic and semi-leptonic final
states and found corrections of the same order of magnitude, viz. of typically 1% at LEP2
energies.

3.4.5 Numerical results for Z-pair production

For the production channels via a resonant Z-boson pair, ete™ — 77 — 4 fermions, we
have f1 = fy and f3 = f;. Owing to Bose symmetry the lowest-order cross section
dopem 1s invariant under the set of interchanges (kq,ky) <> (k3, ky). This symmetry,
which is respected by the non-factorizable corrections, implies that the single-invariant-
mass distributions to each of the final-state fermion pairs of the two Z-boson decays are
equal. CP invariance leads to the additional symmetry with respect to (py, ki, ko) ¢
(p_, ky, kg); after integration over the Z-pair production angle this substitution reduces
to (ky, k2) <> (k4,k3). In view of non-factorizable corrections it is also interesting to
inspect the behaviour of dope, under the replacements ky <+ ko and ks <> k4 separately,
since terms in dope, that are svmmetric in at least one of these substitutions do not
contribute to doyg if all decay angles are integrated over. This is a direct consequence of
the antisymmetry of 0, in each of the substitutions ky > ky and ks <> &y, which follows
from (3.3.2) and Q) = (>, @3 = Q4.

In order to study the behaviour of dopy, under the replacements ky <> ks and
ks > ky, it is convenient to consider the helicity amplitudes for the two signal diagrams
for ete™ — 77 — 4fermions, which contain two resonant Z-boson propagators. These
amplitudes are proportional to the right- and left-handed couplings ¢ = v; 7 a; of each
fermion f; = fi, f3 to the Z boson. As can be seen from the explicit form of the ampli-
tudes, the substitution £y ¢ s transforms the helicity amplitudes to those with reversed
helicities of the fermions fy and fy = f; apart from changing the couplings g into ¢f.
Therefore, the differential lowest-order cross section, i.e. the squared helicity amplitudes
summed over all final-state polarizations, can be split into two parts: one is symmetric
in k; <> ky and proportional to [(¢7)* + (97)%]/2 = ©? + a2, the other is anti-symmetric
and proportional to [(¢7 )% = (¢7)?]/2 = 2vyay. The analogous reasoning applies to the
substitution ks < ky. After performing the angular integrations, we finally find that the
lowest-order cross section is proportional to (v + a%)(vi + a3). and the non-factorizable

correction proportional to 4¢)yvia1Q3vzas, where the charge factors @; stem from the cor-
rection factor d,¢. Comparing pure invariant-mass distributions for different final states,
the ratios of the non-factorizable corrections should be of the same order of magnitude as

the ratios of the corresponding coupling factors,

ja A1 vra1Qsvzas i
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Figure 3.17: Relative non-factorizable corrections to the single-invariant-mass distributions
do/dM, 5 for eTe™ — Z7Z —» dfermions with different final states for /s = 192 GeV.

The factors F' take the following values:

fifs e an (d i ud dd
F 0.04 | 0.09 | 0.06 | 0.21 | 0.14 | 0.10

where £, u, d generically refer to leptons, up-type quarks and down-tvpe quarks, respec-
tively. The reason for the smallness of the factors F' is different for leptons and quarks:
for leptons the suppression is due to the small coupling v; to the vector current, for quarks
the factor F' is reduced by the relative charges ;.

Fig. 3.17 shows the non-factorizable corrections to the single-invariant-mass distribu-
tions do/dM, 5, where M, 5 denote the invariant masses of the first and second fermion-
anti-fermion pairs, respectively. The ratios of the different curves arve indeed of the
order of magnitude of the ratios of the factors F' given in (3.4.5). For equal signs of
Q1 and Q3 the shape of the corrections is similar to the shape of the corrections to
corrections by themselves are verv small and phenomenologically unimportant. The small-
ness of these corrections can be qualitatively understood by comparing the factors F' of
(3.4.4) for the ratios of the couplings with the corresponding one for the W-pair-mediated
processes. For eTe™ — WW — dleptons we simply have F = 1, because in the LEP2
energy range the purely left-handed #-channel diagram dominates the cross section, and
no systematic compensations are induced by symmetries. Therefore, the factors in (3.4.5)
should directly give an estimate for the suppression of 8, for eTe™ — Z7 — 4 fermions
with respect to four-lepton production via a W-boson pair. Comparing the corrections
for energies with the same distance from the respective on-shell pair-production thresh-
olds, i.c. the curve for /s = 184GeV in the W-boson case (Fig. 3.16) with the curves
for /s = 192GeV in the Z-boson case (Fig. 3.17). we find reasonable agreement with
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Figure 3.18:  Relative non-factorizable corrections to the angular distributions
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our expectation. The authors of Ref. [38, 39] have reproduced the corrections shown in
Fig. 3.17 with good agreement [47].

Finally, we inspect the impact of non-factorizable corrections to some angular distribu-
tions in Z-pair-mediated four-fermion production for fixed values of the invariant masses
My 5. Since the presence of the suppression factor F' relies on the assumption that the
phase-space integration is symmetric under ky <> ko and k3 ¢ &y, this suppression in
general does not apply to angular distributions. However, partial suppressions oceur, e.g.,
if the integration is still symmetric under one of these substitutions and, in particular,
for quarks in the final state because of their smaller charges. Two examples for angular
distributions without any suppression are illustrated in Fig. 3.18 for the purely leptonic
final state p~p 77", The angle ¢ is defined by the two planes spanned by the momenta
of the two fermion pairs in which the 7 bosons decay,

(ke % k) (ks x Ky

COS () = s < koK k| (3.4.6)

and 0+, denotes the angle between the momenta of the ™ and the 7=, respectively. The
reflect the approximate anti-svmumetric behaviour in the angular dependence, which leads
to the suppression in the invariant-mass distributions. The size of the corrections turns
out to be at the level of a few per cent, i.e. they are not necessarily negligible in precision
predictions. Note, however, that the cross section for Z-pair production is onlv one tenth
of the W-pair production cross section.



Chapter 4

Radiative corrections to
ete™ - WTW— — 4f

As discussed in the introduction, the cross section for ete™ — WFTW~= — 4f should be
known with an accuracy of 1% or better in order to cope with the experimental precision
at LEP2. This requires the calculation of the O(a) corrections to the processes ete™ -
WHW= — 4f.

The leading radiative corrections, like the running of the electromagnetic coupling
constant, universal corrections associated with the p parameter, the Coulomb singularity,
and the resummed leading-logarithmic corrections from initial-state radiation (ISR), are
already implemented in several event generators (see Ref. [30] and references therein). The
neglected non-leading corrections can be estimated from the on-shell W-pair production
5, 48], where the full one-loop calculation differs from the one including only these leading
effects by about 1-2% at LEP2 energies and 10-20% in the TeV range. Hence, the leading
radiative corrections are in general not sufficient to match the experimental accuracy of
LEP2.

The calculation of the full O(«a) corrections is extremely complicated since the number
of diagrams is of the order of 10°-10* including one-loop integrals with up to six propa-
gators [49]. The numerical computation of these corrections is highly non-trivial because
the tensor reduction to scalar integrals and the calculation of the one-loop integrals with
five and more propagators cause numerical instabilities. Furthermore, the numerical inte-
gration via Monte Carlo techniques is rather slow for such complex calculations.

Approximations for radiative corrections bevond the leading level have been calculated
by two groups. A first calculation of the complete doubly-resonant O(«) radiative correc-
tions to the four-fermion processes e"e™ — W W~ — 4f has been discussed in Ref. [50].
There a semi-analytic approach has been used with different matrix elements for different
phase-space regions and for different observables. Moreover, the four-fermion phase space
has been factorized into the phase space of the on-shell W-pair production and of the
on-shell W decays and the integrations of the two invariant masses of the intermediate
included. The authors of Ref. [50] have found a large shift of the Breit-Wigner line shape
due to logarithms of the form In(m7/s) resulting from final-state radiation (FSR). These
logarithms are due to the absence of collinear photons in the definition of the invariant



mass of the W boson. In realistic observables, collinear photons cannot be resolved from
charged fermions, except for muons, and have to be included in the reconstructed invariant
mass of the corresponding W boson.

In Ref. [51], a four-fermion event generator has been presented, including all O(«)
radiative corrections to the on-shell W-pair production, ete™ — WHW~—, with exponenti-
ation of the universal corrections from photon radiation off initial-state e* and off the W=
bosons. Leading-logarithmic corrections from FSR have been included in this Monte Carlo
generator in Ref. [52]. However, non-leading O(a) corrections to the W decays and the
non-factorizable corrections are missing. The rvesults of Ref. [50] have been qualitatively
confirmed by the calculations of Ref. [52].

Hence, a Monte Carlo generator including the complete doubly-resonant O(«) correc-
tions is needed in order to match the accuracy of LEP2 and to take into account realistic
experimental situations.

4.1 Strategy of the calculation
In this chapter, we consider the virtual corrections to the processes
etpy) +e (po) = WHEL) + W (k) = filky) + falko) + falks) + fi(ky) (411
and the complete bremsstrahlung processes
ctpe) +e7(po) = filka) + falka) + fa(ks) + falks) +~(q), (4.1.2)

where the relative charges of the fermions f; are represented by @; with ¢ = 1,...,4.
The masses of the external fermions are neglected, except where this would lead to mass
singularities. For the virtual corrections, the momenta of the intermediate W bosons read

l’&+ = ]{T]A -+ :Z’Crg} ki w= Ag -+ ]{I4;_. (413)

Furthermore, the square of the complex W-boson mass is defined by M? = M3, —iMwIyy,
and the center-of-mass (CM) energy is \/s.

4.1.1 Doubly-resonant virtual corrections

The diagrams of four-fermion production can be classified into the doubly-resonant, singly-
resonant, and non-resonant diagrams according to the number of resonant W-hoson prop-
agators. Hence, the amplitude of the virtual corrections can be written in the following
way after implementation of the finite W-boson width:

R (k2 k2.0 Ro(k2,82.0)  R_(K2, k2.0 S
Moy = gt i ) ok 1(2 RALSAL (£ = )+l\f(1«;i,z¢:,0),(4.1.4)
(B2 = AP (k2 = M2 B2 =P Y N i/

d non-resonant

doublyv-resonant single-resonant

where the variable ¢ svmbolizes all phase-space variables, except for the invariant masses

;4 of the W bosons.
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Since the matrix elements of non-doubly-resonant diagrams are suppressed by a factor
al'wn(...)/(7 Mw) ~ 0.1%, a reasonable approach is to include only the doubly-resonant
diagrams into the calculation. However, the naive inclusion of the doubly-resonant dia-
grams yields gauge-dependent results and the reliability of this approximation is unclear.

In order to separate the doubly-resonant corrections in a gauge-invariant way, the pole
scheme has been proposed in Ref. [11, 12], where the matrix element is expanded about
the complex W-hoson masses. Since the complete matrix element is gange-invariant, the
single terms of the pole expansion are also gauge-invariant. If only the leading term is
kept, the expansion is known as the double-pole approximation (DPA):
pea R (M?A76) (415)
virt 77 (]1:; — A\[“))U\{ N ,1\{[2) . 1.0

Note that the residue is taken at the complex pole resulting in complex kinematical
invariants. In order to avoid the calculation of one-loop integrals for complex invariants,
the W width is neglected in the numerator of (4.1.5), where the neglected terms are
suppressed by a factor I'w /My and thus negligible in DPA.

For the application of the DPA on the virtual corrections, a set of eight independent
phase-space variables including k7 has to be chosen, which determine the momenta of
the final-state fermions uniquely. For several choices of the parameterization of the phase
space, the DPA differs only in non-doubly-resonant contributions. Note that in general
events can be outside of the physical phase-space boundaries for on-shell W bosons (see
Section 3.4.3). A relatively simple choice that generates only events within the physical
phase-space domain is given in Appendix B.

The DPA is not valid near threshold since the phase-space region where both W bosons
are resonant is suppressed by the kinematical factor A= (s, k2, k%) (see (C.8)). Therefore,
the singly-resonant corrections are as important as the doubly-resonant corrections at
threshold. On the other hand, for some processes the non-doubly-resonant contributions
can be enhanced by nearly on-shell virtual photons. This enhancement can be avoided by
introducing appropriate phase-space cuts in the calculation.

In DPA the virtual corrections can be classified into factorizable and non-factorizable
ones [5, 12, 42]. The square of the matrix element of the virtual corrections reads in DPA

M

DPA|2 _ 2 12 cvirt 116
!j\/l\ut ! - I-/\/lf‘] + ’-/\/I'Bom{ (5;11] . (116)
where Mg, Mpom, and ' are the matrix elements of the factorizable corrections, the

Born matrix element defined in (3.1.8), and the non-factorizable correction factor, respec-
tively.

Factorizable virtual corrections

The factorizable virtual corrections are defined by the product of the on-shell matrix
elements of the W-pair production and the W decays and the (transverse parts of the)
W propagators (see Fig. 4.1):

_ 1 . L e o o
- \ . A ACTE — WY A Whs i y W= fa fy -
M! /\f’f_, U“—‘- - M )(/]‘ - [’3) ((' M v le‘n \/lBorn < 117 )

Born Born Born )

pte s WHW= ¢ s F st e - FE s 5 - - P £
+ \/l e WY (b\/l\\ —f f2 \/1&”“ I5fa 4oAMeTe wWHwW \/l\ Al 5/ \/{W >'/,,f4)



e
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Figure 4.1: Factorizable corrections to ete™ — 4f

where M e WIWT S AW AL and MW T denote the one-loop amplitudes of
the respective subprocesses. The sum runs over the phyvsical polarizations Ay of the
W bosons.

Since the on-shell W-pair production and the on-shell W-decays are gauge-invariant
processes, the factorizable corrections are also gauge-invariant. The results of the on-shell
W-pair production and the on-shell W-boson decay are explicitly given in Ref. [53] and
Ref. [54], respectively, and can be implemented in the Monte Carlo program, where we
have to take care of the spin correlations of the W bosons in the production and decay
subprocesses. The virtual corrections are build up by scalar form factors, which include
all one-loop integrals, and standard matrix elements, which depend on the polarization
vectors and spinors of the external particles. In DPA the form factors depend exclusively
on the W-production angle and can be evaluated very fast by an expansion in Legendre
polynomials [55].

Non-factorizable virtual corrections

The non-factorizable virtual corrections are defined as the difference between the virtnal
corrections to the complete four-fermion process in DPA and the factorizable virtual cor-
rections. A representative set of diagrams contributing to the non-factorizable corrections
are shown in Figs. 3.1 and 3.2. The matrix element of the non-factorizable virtual correc-

tions MY factorize to the Born matrix element in DPA (see Chapter 3 for more details):

M = Mg (4.1.8)

nf

virt

where the correction factor o;i" is velatively simple and explicitly given in Section 3.3.3.
Since the factorizable and the complete virtual corrvections are gauge-invariant, the non-
factorizable corrections are also gauge-invariant.

Note that the non-factorizable corrections involve logarithms of the form In(k3 — M?),
which become singular in the limit k2 — 3/*. Therefore, these corrections are caleulated
for off-shell phase space, i.e. k1 # M2, while the off-shellness (A% — M?) is neglected
whenever possible.
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4.1.2 On the definition of the reconstructed W-boson mass

In Chapter 3, the non-factorizable virtual and real corrections have been calculated in
DPA, where the integration over the photon momentum of the real corrections is performed
analytically. As for the virtual corrections, the non-factorizable real corrections depend on
the choice of the independent phase-space parameters in DPA. These parameters are fixed
while the integration over the photon momentum is performed. To apply the DPA on the
non-factorizing real corrections, two of these parameters are identified with the invariant
masses of the W bosons. Owing to the presence of the bremsstrahlung photon the definition
of these invariant masses is not unique. For different definitions the result for the real non-
factorizable corrections differs by doubly-resonant contributions, as discussed in detail in
Section 3.1.4. The reason is that the resonant W-boson propagator 1/[(ky + ¢)* — M?]
is constant, if the invariant mass is defined by (k. + ¢)?, but depends on the photon
momentum ¢ for the invariant mass Ai Therefore, the calculable observables are restricted
to the actual parameterization of the phase space in a semi-analytic calculation. For
instance, only invariant-mass distributions, where the W-boson masses are defined by k7,
can be calculated with the results of Chapter 3.

A DPA including all O(«) corrections for four-fermion production has been worked out
in Ref. [50]. As in Chapter 3, a semi-analytic approach has been used in Ref. [50], where.
for the invariant mass distributions, the W-boson masses have been defined by invariant
masses of the fermion-antifermion pairs, i.e. M3 = k2, resulting in large corrections from
collinear radiation of bremsstrahlung photons off final-state fermions. These originate
from logarithms of the form ln(m? /s) and vielding large distortions of the peak position
of the Breit-Wigner line shape at the CM energy 184 GeV of —77 MeV , —38MeV, and
~20MeV for e*w,, pt,, and 71, respectively. In practice, the invariant masses of W
bosons have to be reconstructed in a more realistic way.

In realistic experimental situations, the final-state quarks are observed as jets. Photons
radiated collinear to these jets cannot be resolved, and the photon momentum is included
in the jet momentum. On the other hand, the momentum of the neutrino can only be
calculated from the missing momentum of the final-state particles. In this way the neutrino
momentum includes also the momenta due to emission of photons collinear to the beam
[56]. Note that the reconstruction of the neutrino momentum is possible for semi-leptonic
final states, but not for purely leptonic final states, where two neutrinos are involved.
Furthermore, it is very difficult to separate collinear photons from electrons. However,
photons can be resolved from muons even when thev are collinear. Therefore, only a few
observables, like the invariant-mass distribution do/dM_ with M? = k2 of the process
efe” — ud 1”7y, are directly sensitive to the distortion due to large corrections from FSR.
In any case, a Monte Carlo generator is required in order to take into account realistic
experimental situations.

4.1.3  Overlapping resonances in the bremsstrahlung process

The definition of a suitable approximation for the real corrections is made difficult by over-
lapping resonances of the W-bosons. In the bremsstrahlung process, the W-boson propaga-
tors differ depending on whether the bremsstrahlung photon is emitted from initial-state

79



Figure 4.2: Diagram with overlapping resonances

particles or from the decay products of the W boson. Both types of propagators are
present in Fig. 4.2 where the poles of the propagators are located at k2 = M? k3 = M~

and (kg + q)* = M?*. Therefore, the expansion of the cross section about k3 = M? and
k? = M? like in the case of the virtual corrections, is not suitable.
The matrix element of the bremsstrahlung process can be written in the following way
(see Section 3.1.5):
Riky, k-, q) Rk ko q)

Muea = G 32 — 005 T [k, 4 q) — MR — 0

R_ (ki k- q) ,
n S A S 4.1.
+%imhﬁﬂw"+®2mﬂﬁ}hMM”k'@’ e

where A includes the matrix elements of all non-doubly-resonant diagrams. The factor-
izable corrections of the cross section are the squares of the single terms corresponding to
R, R, and R_, while the non-factorizable corrections are the interferences between these
terms.

In the hard photon region, E., > Ty, the two resonances of the W* bosons located
at k% = M?* and (ky -+ q)* = M are well separated in phase space. Only the factorizable
corrections contribute in this region in DPA, and the non-factorizable corrections vanish
in DPA. For soft photons, £, < I'yw, the resonances almost coincide, and the photon
momentum can be neglected in the resonant propagators. However, for semi-soft photons
with an energy E., = O(I'y), the resonances overlap. Thus the definition of an appropriate
approximation is rather complicated and, hence, the reliability becomes unclear.

4.1.4 Inclusion of the real corrections

In order to avoid the problem of overlapping resonances, the hremsstrahlung process is
taken into account exactly.

The bremsstrahlung processes ave already studied in Chapter 2 including all diagrams.
For the numerical discussion, the processes efe™ — v, 777, efe”™ — u &1/,/,7;“, and
ete”™ — uds@é are considered. These are the processes with the smallest number of
diagrams within the leptonic. semi-leptonic, and hadronic process classes. Note that the
radiative corrections for any leptonic process arve equivalent to the radiative corrections for
ete™ — v, 7 0, in DPA, in the absence of logarithms 11’1(772,:;/’»,/’.9,\) from FSR. The same
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is valid for efe” — udp 7, and ete” — udsc concerning semi-leptonic and hadronic
processes, respectively.

4.2 Subtraction method

When calculating radiative corrections for four-fermion production, one has to take care
of the singularities of the real and virtual radiative corrections. According to the Bloch—
Nordsieck theorem [57] the infrared singularities cancel between the virtual and real part.
Furthermore, collinear singularities, i.e. mass singularities, appear in the radiative cor-
rections and are regularized by the fermion masses which are neglected otherwise. These
singularities originate from collinear photon emission from light external fermions and show
up as large logarithms In(m3/s). For inclusive enough observables, these collinear singu-
larities cancel between the real and virtual radiative corrections owing to the Kinoshita-
Lee-Nauenberg theorem [58], except for the mass singularities remaining from initial-state
radiation (ISR) or resulting from renormalization. Two methods are exist for the treatment
of the singularities in a Monte Carlo generator: phase-space slicing and the subtraction
method.

Phase-space slicing splits the integration domain by a small separation cut into a part
which includes all singularities and a finite part. For infrared singularities the splitting
is usually done by a cut on the photon energy, for collinear singularities by a separation
angle between the photon and the particle which emits the photon. The integral of the
singular part over the photon momentum is analytically performed with an appropriate
regularization, and terms of order of the cut parameter are neglected. In this way the
singularities are extracted and can be added to the virtual part of the radiative corrections.
Both the singular and the finite part of the radiative cross section depend logarithmically
on the cut parameter. This dependence must cancel in the complete result. The logarithms
of the separation cut are determined in the singular part by analytical integration. On
the other hand, they must be compensated by numerical calculation of the corresponding
logarithms included in the finite part of the cross section. Therefore, the cut has to be
small enough that terms of order of the cut parameter can be neglected in the singular
part, but large enough to obtain numerically stable results.

In contrast to phase-space slicing, the subtraction method requires no cut parameter.
We use the subtraction method since we expect a better convergence behaviour. This
method has been mostly applied for NLO predictions in massless QCD [59, 60]' where
the singularities are usually regularized dimensionally. In Electroweak Standard Model
processes it 18 more convenient to introduce an infinitesimal photon mass as a regularization
parameter for infrared singularities and to use small fermion masses for the regularization
of the collinear singularities. In order to applv the subtraction method to four-fermion
production, this method is formulated for mass regularization.

In the following, only singunlarities for photon emission off nearly massless external
fermions are considered. Other singnlarities like collinear singularities of diagrams where
a virtual photon decays info two external fermions have to be excluded by appropriate

"The subtraction method for massive particles can be found in Refs. [61, 62].
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cuts. The subtraction method described in the following is based on the dipole formalism
of S. Catani and M.H. Seymour [59]. The results of this section have been worked out
independently by S. Dittmaier [61]. Comparing both results we find full consistence.

In the dipole formalism, various ma,ppi:nqs are constructed from the five-particle phase
space of the bremsstrahlung process eTe™ —» 4f~ into the four-particle phase space of
the non-radiative process e"e™ — 4f. These mappings are required to obtain a process-
independent formulation of the subtraction method. Each mapping corresponds to a
certain singular behaviour of the differential cross section. According to these mappings,
the five-particle phase space &) splits into a four-particle phase space & and a remaining
one-particle phase space, which contains the singularities:

— 1 ,
/d@(*’) = / daydas /(1@“”(;7:1[)1,:,z:_-gpp,) /d(]?z;k (4.2.1)
y JO . .

with i,k = 1,...6. In the following, particles 1, 2 are initial-state fermions and 3,...,6

final-state fermions. For the discussion of the subtraction method, all particle momenta
are denoted by p; and the photon momentum by ¢.

The arguments of dpt) (21p1, Top2) indicate that the final-state momenta are calculated
for incoming momenta zyp; and x9p,. The one-particle phase space is decomposed into
integrations over ®;; and over the momentum fractions of the incoming momenta z; and
Zo. In this way, all different splittings of the five-particle phase space fit in this formula.
The variables 21 and x5 are partly fixed by J-distributions included in definition of ®;;.

For each mapping a subtraction term V. is constructed in such a way that it matches
the singular behaviour of the cross section of the bremsstrahlung process in a certain
phase-space region and that it can be analyvtically integrated over ®;.. The subtraction
term 1s subtracted from the real corrections and added to the virtual corrections after
analytic integration over @

@ ((1')<5>) -+ / ddWoRe {_,/ (mMBom} O (@M))

0(09) - £ vi0 (st (7))

4&(

+/ (hﬂl’b/d@ (21p1. wap2) O <<]’ﬂ >

=y 12
[ a0® A,

- /d(I) )Mggm

x 4 2Re (MUELMER) 61— 20)0(1 - 20) + 3 ﬂ / Ay Vi i o (4.2.2)

where JM_%%,”T], ./\/l(B?n“ and Hfm are the matrix elements of the tree-level process, the
bremsstrahlung process, and the virtual corrections, respectively. The experimental situa-
tion, e.g. cuts, are included in the definition of the observable . Note that the observable
O depends on the momenta of the four-particle or five-particle phase spaces. All integra-
tions are performed numerically, except for the integration over ®;. which is performed
analytically.

In this way, a part of the real corrections including the singularities is transferred to the
virtual corrections. The difference between the cross section of the bremsstrahlung process
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and the subtraction terms includes no singularities and hence can be integrated over the
whole phase space. Note that it is not allowed to exclude the soft-photon region from
the integration domain where the cross section of the bremsstrahlung process becomes
infrared singular, since the infrared singularities have to cancel between the real and
virtual corrections. This is in accordance with the fact, that it is not possible to separate
experimentally photons with infinitesimal small energies from charged particles.

The situation for collinear singularities is different since collinear singularities show
up as large logarithms of small but finite fermion masses. If fermion masses are used as
regularization parameters, the phase-space region where the photon becomes collinear to
an external fermion has to be included in the integration domain.

4.2.1 Behaviour of the cross section for collinear photons

As a first step, the collinear limit of the cross section for ISR is considered. It is convenient
to calculate the collinear limit of the cross section in an axial gauge, where the photon
polarization sum runs only over transverse polarizations and hence interference contribu-
tions do not involve collinear singularities. A photon with momentum ¢ is emitted from
an unpolarized initial-state fermion with momentum p,, mass m,, and relative charge @,.
The relevant part of the cross section multiplied by the polarization sum of the photon
reads

, o / —i ’
e (=16 Q)Y (B + Ma)16Qu s 5 gy T
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with n? =0, gn # 0, © = 1 — (ng)/(np,), and the splitting function is given by
1+ 22 .
Px) = T (4.2.4)
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The arbitrary vector n is introduced to define the polarization of the photon.
The factor (1 — a)p, — ¢ vanishes in the collinear limit. Only the last term on the

right-hand side proportional to ap, is singular in the collinear limit ¢ — (1 —z)p,. Hence,
the collinear limit for photon radiation off unpolarized initial-state particles vields
2 2 )
(%) 2 Q; Mo | |y N e
M inenr (P (])] _pnq’ (I P(a) — ]_)(77] ’ Han(zpa) (4.2.5)

The behaviour of the cross section for polarized particles in the collinear limit can be found
in Ref. [63]:
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Figure 4.3: Value of x; for the different photon radiation off fermions

with the helicity o, of the initial-state fermion a. In the following all results are calculated
for helicity eigenstates of the external fermions.

For massive fermions the collinear limit involves a helicity-flip term proportional to the
square of the fermion mass, called finite-mass term. Note that if the cross section of the
bremsstrahlung process 1s calculated for vanishing fermion masses the finite-mass terms
are missing and have to be added to the cross section of the bremsstrahlung process or
skipped in the corresponding subtraction terms in (4.2.2).

In order to be able to combine the collinear and soft limit in Section 4.2.3, we use
charge conservation

ki Qi = L Kk Qp (4.2.7)

to obtain
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The sign r; refers to charge flow of fermion 7 into or out of the diagram, respectively, which
is illustrated in Fig. 4.3.
For FSR, ¢ has to be replaced by —¢:
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with z = (np;)/(np; + ng). where the particle 7 is a final-state particle.
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Figure 4.4: Diagrams for different combinations of initial-state or final-state emitter and
spectator

4.2.2 Soft-photon approximation of the cross section

The infrared limit is given by the well known soft-photon approximation
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and distributing the finite-mass term with ¢ = £ with the help of charge conservation
(4.2.7) to the terms with 2 # £, the soft limit reads
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In this way, the soft-photon approximation (4.2.12) is written in a similar way as the
collinear limits (4.2.8) and (4.2.9).

4.2.3 Construction of the subtraction terms

The subtraction terms have to be constructed in such a way that they reproduce both
the soft and collinear limit of the cross section. The soft-photon limit (4.2.12) depends
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on two momenta p; and pi. Particle 7 is called emitter and & spectator, since the soft-
photon approximation is singular if the photon becomes collinear to the emitter, but not
if the photon is collinear to the spectator. Since the mass of the spectator regularizes
no singularities, it is neglected in the following calculations. The diagrams corresponding
to the four possible combinations of initial-state or final-state emitter and spectator are
shown in Fig. 4.4.

Although the following results are formulated for four-fermion production, they can be
applied to all processes where the external particles are light charged fermions and any
other massless or massive neutral particles. Note that it is some freedom in the definition of
the subtraction term and the separation of the one-particle phase space. In the following,
all initial-state particles are denoted by the indices @ or b with a % b and a,b = 1, 2.

Final-state emitter with final-state spectator

Firstly, the case is considered where the emitter and spectator are final-state particles. A
suitable subtraction term is defined by~
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with the momenta of the four-particle phase space
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L= yip L=y ‘ '
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PiDx -+ Dig -+ piq’
where the indices ¢ and £ mark the emitter and the spectator, respectively.
The subtraction term obeys the soft limit (4.2.12) for z;; — 1 and y;, - 0, which can
be verified with the help of
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Furthermore, if the momentum n after (4.2.9) is identified with the momentum of the
spectator py, the subtraction term reproduces the cross section in the collinear limit, i.e.
Yir — 0, 2 — 2, and p; — pi/z, (4.2.9).

The subtraction term is proportional to the Born matrix element ./\/lg&»n which depends
on the momenta p; and pp of the four-particle phase space. These momenta are fixed for
the analytical integration over ®;;. The momenta p; and 7, are chosen in such a way that
they fultil momentum conservation

O=N-+p+pr+qg=K-+p +pp (4.2.17)

*Note that the actual definition of the subtraction term of Ref. [61] differs by a factor 1 — y;.
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and the on-shell conditions of the four-particle phase space

m; =mi+ A\ =0, mi=0. (4.2.18)

2

The momentum I is the sum of the momenta of the external particles, except for the
emitter, the spectator, and the photon. The infinitesimal photon mass is denoted by .

The next step is to relate the momenta of the five-particle phase space to the momenta
of the four-particle phase space and the variables z; and y;;, of the one-particle phase
space. Therefore, we apply the mappings

Yik 1 zig A’ ) Zik, o
Di V> Yiks ik Ko pio== —_— pi 4+ ———q -+ k., (4.2.19
(1 =V L=z 1= 2y prq L=z ( )
Pr > ;13& P = (1 - y.z‘/\,;)];;‘,? (42?0>
- . - - ik ,'\2 - . L
q =i pq = (1= zi)Pi — Vikzabr + % —pp — (L= 2 ke (4.2.21)
1 - Zik PiPk

with £y pp = kg = 0 and find the splitting of the five-particle phase space into the four-
particle phase space determined by the momenta p; and py and the remaining one-particle
phase space:

/ dip; dip, dig (2
S(p2 —
@m)? (2m)3 (2m)2

2

m3)0(pi.0)d (970 (pi0)(a” — N)0(q0) 8V (K = ps = i — )

! Up, dipp N N VY G
= / dzydasy / e —-‘ik-;—c)(pf —m? = A)0(Pi.0) (P2 (Pr.o) 0D (K — p; — py.) / dd;y
Jo (2m)3 (2m)3 ‘ T ’ '
(4.2.22
with the integral over the separated one-particle phase space
/d@k.ﬂﬁﬂl—1ML—zJ/ Jﬁw/mm/¢m1~ﬁg
872 2
. AN222 A+ mP (1 — zy)?
X 0|y — — TR 4.2.23)
( Zig (L — 23 2Di D ( '

The additional integrations over xy and x5 are introduced in order to match the definitions
of (4.2.1). The masses A and m; in the d-distribution of (4.2.22) can be neglected since they
do not regularize singularities. The step function @ in (4.2.23) results from the requirement
k5 < 0 of (4.2.21) and regularizes all singularities. It can be verified in the rest frame
of p; + pi that ky is a space-like vector. The variable ¢, is the solid angle of &, with
respect to py, in the rest frame of p; + pp. Since the subtraction term does not depend on
¢r, the integration over ¢, vields 27, Note that the Born cross section included in the
subtraction term Vj, depends exclusively on the momenta of the four-particle phase space,
which are fixed for the integration over ;. and yi.
Finally, the subtraction term is integrated over the one-particle phase space vielding

2)0(1 — )

L 9 ) 5 2 -'7- i~ .42 1 4 . o2
X { {L‘(\— [ )/) ])/J :} - %7 }\/lﬂl(?m(pl T3 ]T}L:)t + ') !J‘\/lggrn(pi: —0q, ])l); }
+O(N) + O(my) (4.2.24)
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with

L, m?, 2pipy) =

[SORIE

. /\2 1 5 /\2 3 ’]TL2 /\ 5
In* | o] = sIn" [ = | +=1n L)+ 1In = 4.2.25
( 2Dy, ) 2 (m ; ) 2 20Dk m2 ) ( )

where the photon mass is neglected with respect to the fermion masses, i.e. A < m;.

Final-state emitter with initial-state spectator

Next, the subtraction term for final-state emitter and initial-state spectator is considered.
The subtraction term with the correct collinear and soft limit is defined by

2

17 = ¢ - v ') -y
KiK. e“O;Q(, 2 . L+ 52 m; 1 4 ~ ~ N7
Vi g T e (Lv Lrva { [‘ - i 1 — g R = T% - M %(2!‘]} (p’ia O3, P (7,)
Pid &7 Zig 7 Tia i 4Piq ] Via
L=z m2 1 . oy . 2 1 e
Ch g Mo (Pis =04, a) (4.2.26)
“ia ~p1q 20

with the momenta of the four-particle phase space
i = pi+q— (1= Zi)Pa, Do == TinPas (4.2.27)

and the variables

[)IPKL L“pn(] = i ([

P Pa + Da '5]
Similarly to the previous section, the momenta p; and p, fulfil momentum conservation
and the on-shell requirement for the external particles of the four-particle phase space.
In order to separate the integral over the one-particle phase space from the integral
over the five-particle phase space, the following mappings are used:

1 Tia Zia /\\2 Zia
Di 7 Tigs Ziay kit pi = | - e |y b g R R 4.2.29
b ’ il < Lz 1=z Pad e 1 2z ! = ( >
. ; - . \ Zia /\2 .
q = Pi S <l ““““ Zia )pi - (L - 577in,):if1]7(7, + ‘i““‘"““i“?"“”““ Do (l - Zm)kj_ (4230)

L — 234 DiPa

with k1 p, = kg = 0. Thev result in the splitting of the phase space

(my@ﬁﬂfmeWMMW~VWMWWK+m~m—W ~~~~~

. . 14,',“]. . R N o » ) N
=z / da,dxy / A{%--{)»}S(‘ﬁf - - ,\‘W(]'),;U)O(‘D(]( + Do = Di) / dd;, (4.2.31)
J0 . e R / \ ’

/‘ d'p; dlg

with
Dila N /e LA doy, / |
E(I o = =5 0{Ta — 2, )0(1 — ) S / dzi,
8= Jo 27 /

A2 m? (l \‘,1‘3) ,
X AL = a,) — ... Flaf ) 4.2.32)
(\ Zia ([ - v/u,) )]),])n, ( ’
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where ¢y, is the solid angle with respect to p, in the rest frame of p, + p;. Since the
spectator is an initial-state particle, the four-particle phase space becomes z,-dependent
and the one-particle phase space is included in the z,-integration. As in the previous
case the f-function originates from A7 < 0 of the mapping (4.2.30) and regularizes all
singularities. Furthermore, the masses m; and A can be omitted in the J-distribution of
(4.2.31).

Since the subtraction term does not depend of ¢y, the integration over ¢y, vields
27. Moreover, the Born cross section included in the subtraction term does not depend
on zi,, but is a function of x;,. In order to avoid the analytic integration over the Born
cross section, the subtraction term is integrated for fixed Born cross section at z;, = 1.
The z;,-dependence of the Born cross section is taken into account with the help of the
+-distribution, which is defined as usual by

1
/o deg()[f(0)]y = 1/01 dalg(z) — g(D)]f (), (4.2.33)

where g(x) is an arbitrary test function.
The integration of subtraction term vields

5 ,
. Ui g ),“C ]'Q .
/d(l)iavia, = '“} " ;“_3‘2” “““““ ZO(J. - :7,‘[))

o7
= 2 3 1
X L2 m2,2p:0,) 41— - LS - z,) + [ 1 < ”’) R }
(A%, m3, 2p;p,) 5 (1—2,) T n{ . ST,
1 . BN . N 2
X — }J\/lggm (Di, 03y Do)+ =0(1 — x,) ,f\/lgjgm (D3 =04, Da)
+O() +O(m;) (4.2.34)

with A < m; and the function £ defined in (4.2.25). The mass and infrared singularities
of (4.2.34) have a similar form as in (4.2.24). Note that the --distribution acts on the
matrix element, the observable @ (see (4.2.2)), and the momenta p; and p,. Here and in
the following case, the momenta of the four-particle phase-space are implicitly understood
to be functions of z, with 2, = 2;,.

Initial-state emitter with final-state spectator

Borrowing the previous definitions of the momenta of the four-particle phase space (4.2.27)
and of the variables z;, and 2z, (4.2.28), an appropriate subtraction term is defined by

Ko ki €200 2 ,om2 ]l ; 2
Vi = = ol 22 28 — 1=z~ (1 + 2} L — D (5, 0o, Pi
] Dad 5 Tin — 23 I < i) m) zpmq Yo 1MBm n (]7(7,/ (O Dz)
' 2
(4.2.35)

T — . 2
1 — 2 ma

— : > pi+ky, (4

Zia Pali
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N G\J,




Pi > 131} P = {me)i - (i - "Eiu,)<]~ - Zia,)pa """" vmll }

Ziq /Ni (e 1 - 1a /2
y { lPipa + ( Tia) 10, } (4.

ZiaPiPa = (1 = Zia ) (1 — @) M

D
[@V]
~J
—

with ki p, = ki p; = 0 result in the splitting of the phase-space integral

/ an M S5(p1)0(pi0)d(q° = N)0( o)™ (K + po — pi — q)

N N Z /~A . 5 N Y - . i .
Jo S LT ‘

1 1

N Doy 1 /’ - ~ . - i
/ dd,; = / (;’)A“% / dx;, / dzi00(y = 250)0(1 — )
. J0 L7 y
0

« ]57‘,170, + (L - ;’lfy‘,n)nli { Zia [ﬁipa + (l - "I'm)?ﬂg} }
S ';’mﬁ'pn - (1 - w(:)(l l,(,>771 }

% (/) L . )”IHNING {— 7” (l lm) [(]‘ .N:“ *Zfzfz>_' MF‘ :;0] . (4239)
(1 - @ia,)/v'hz(l - l:ia,) 2]7‘1',])0, '

The variable ¢, is the solid angle between p, and & in the rest frame of p, + p; and the
masses A and m, can be omitted in (4.2.38). The #-function results from k5 < 0.
The integration of the subtraction term over z;, and x;, for fixed p, and p; provides
O ¢ I

v {1(21 50
/ ADy V= "hﬁ—g— -------- O(1 — )
. 8/( '
VN2 D o s (R 2 1,
: {{ [L(/\Z) M 2o}~ 4 _{3‘} oL =2a) {1 ----- T, tn <2 ------ ./L‘H,M +
‘ m2 1 N 2
~ [P(ra) (In(1 = 2,) + )]~ [P(x,)], In (:u—(-‘;—) }——- ]/\/lggm(pa,ai,pi)
“PaPi T
1 2
{ 5(" - ) -+ U - J }_ J-/\/len(pn '"‘“Uowp‘i,) }
+ O(\) + O(my) (4.2.40)
with A < m, and the function £ defined in (4.2.25). The x,-independent singularities are

similar to the previous integrated subtraction term. Extra z,-dependent mass singularities
appear in (4.2.40) and are proportional to the splitting function P(z,).

While in Ref. [61] the momentum p, has been fixed for the a;,-integration, here we fix
the momentum p,. Although the actual form of the subtraction terms are different, the
results for integrated observables are the same. One can reproduce the result of Ref. [61]

with
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Initial-state emitter with initial-state spectator

Finally, the subtraction terms for initial-state emitter and spectator are considered. The
subtraction term reads

27 ‘ " -
Kakne Qally 2 _ - somz 1 4 - 2
Vo o el =z — (1422 ) —2 | — (Mu. (Do, O ,'),)
" Padl L= ap = 1+ o) 20| ot M s 00,
. om2 o1 (4) e 19 A9
x (L - 7ab) m])“(j“ “;’ ’ Born (1)0 ‘‘‘‘‘ Tay pb) (‘12 4~)
~“ray ~ad

with the momenta of the four-particle phase space

Do = TabPos Dy = Db (4.2.43)
and the variables
.0 1alb = Dall = Dyl o
R (4.2.44)
Palb Dalb

Since the momenta of the four-particle phase space have to fulfil momentum conservation,
the momenta p; of the final-state particles are also modified:

. (K + K)p, 2Kpi ,
ol A T (K + K+ 222 G 4.2.45
Bl T T ROK s (4.2.45)

with following auxiliary momenta

3

K =p,+p —q= Zpi,, K = Do+ Dp = Zlg?? (4.2.46)

2=3

BEquation (4.2.15) is a proper Lorentz transformation of the momenta p; into p; in the
massless limit.”
The mapping from the five-particle phase space into the four-particle phase space reads

5

. e . . -

Gt Tap, Vab, /‘U. g = {UOZ} o (L """ s Lab 1’(7())};"“;"' Dy + (1 - Tah Unh)pa + ]‘r—t.L (‘124’)
at’b

with &y p, = kips = 0.
Hence, the splitting of the phase-space integral takes the form

s dhe .
H/ 1 Z—)— s (5(1 —my) 10 (p; O)(\( . }(9(({0}1\ ()U Py YDy q)

—-/ (,dzg,H/

*The mapping of the final-state particles coincides with Ref. [59] for vanishing fermion masses.
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with

1 1 7-’?@7)

. DT 27 (1 f]) L ' Y
/d(I)(,b = ]87]26 / ‘ifri / dz g / dvapd(wa — wap)O(1 — 23)
A 0 < !72%4’/\?‘ O
T Drarp
X 0 Vab — (L - Lgh ‘Unb)zn?:2 - /\2> <L 2 1)>
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The variable ¢ is the solid angle between p, and & in the rest frame of p, + p,. The
masses m; of tho final-state particles of the four-particle phase space,

2 2 g 2

m; = m; — [(1 — Iab>mz + A7

Kpi + _“A_zg_i » ([&’p?:)?‘ ,,,,,,, s + Kp)) Kp;
K24+ KK ' '

K* (K? + KK)K?
can be replaced in (4.2.48) by the masses m; of the final-state particles of the five-particle
phase space after neglecting m, and A. The #-function is due to the requirement. k% < 0.
Finally, the integrated subtraction term is given:

KqRpe” (ga()b

(4.2.50)

lb

i -
X LN, m2,2P.0) + = 0 fi O{1 = ,) -+ [P(x,)], [In ey ’L“
w23 Tal T ATel m2 -

12 Lo ) 1y, N RNE
""""""""" |MB01 §il ]7(1 Tq, Pb)é + {;é“ "y + “ - fl:nl#-} "7‘ E./\/iggm (Pm -*-(,7'(“])[-)) }

-} O(/\) + O(my,) (4.2.51)

with A < m, and the function £ defined in (4.2.25). The momentum p, is implicitly
understood to be a function of x, with x, = x4.

4.2.4 Remarks to four-fermion production

Since the virtual corrections are calculated in DPA, the integrated subtraction terms that
are added to the virtual radiative corrections have to be treated in the right way to achieve
the correct cancellations of the singularities. However, it is not possible to apply the DPA
to the whole integrated subtraction terms because the x,-dependent parts are evaluated
for reduced CM energies \/x,s, which are below the W-pair production threshold for
small 2, where the DPA is not possible. Therefore, the integrated subtraction terms have
to be divided into two parts, one including all ,1.a~<lep@ndenti terms and a second which is
evaluated in DPA including all infrared and mass singularities, except for the z,-dependent
mass singularities resulting from ISR. Here, the following decomposition is used:

/ (I);L]/zﬂ ~ ‘ DT‘\ [__ K‘/’.}:"s‘&s\m%‘x: (4232)
S Kikpe (i) - o
‘7131 A 4/\; - k S (L iiiii ;’I,‘,[)O (J o IW\LZ( A\ )2 ~Z i\n ()n)
X Mo (5 020 57| (4.2.53)
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with 7,k = 1,...,6, and the on-shell momenta defined in (B.1). The function £ is defined
in (4.2.25). Different choices of the decomposition (4.2.52) of the subtraction terms differ
only in non-doubly-resonant contributions.

The singularities of (4.2.53) cancel with the singularities of the virtual corrections, while
zo~dependent mass singularities remain in V3" from [SR. Moreover, in the integral over
the five-particle phase space of (4.2.2), th@ cuts applied to the btemsstrahhmg process
and to the individual subtraction terms arve different. because the observable O depends
on the five-particle phase space for the blmnsstmhlung process, but on the four-particle
phase space in the case of the subtraction terms. Hence, one should take care of the
correct implementation of cuts in the phase-space generators, if the subtraction terms are
involved in the calculation.

4.3 Numerical results

For the numerical discussion, the radiative corrections are evaluated as described in the
previous sections, i.e. the virtual corrections are calculated in DPA, and the complete
bremsstrahlung process ee™ — 4 f~ is included for the real corrections. Although polar-
ized cross sections can be calculated in our approach, only unpolarized cross sections are
congidered in this thesis.

The fixed-width scheme and following input parameters are used for the numerical
discussion:

------ - 1/137.0359895, 7, = 1.16639 x 107° GeV ™, My = 300 GeV,
Myw = 80.26 GeV, I'w = 2.08174 GeV, My = 91.1884 GeV,
FL = 2,4971 (wo\/

(4.3.1)
except for Section 4.3.3 where the input ig given e\*plicitly. If not stated otherwise, the
weak mixing angle is defined by ¢y = My / \[ 8 ''''' ] e (t%v, and the following fermion
masses are used:

me = 0.51099906 MeV, m,, = 105.658389 Me 'V, my = 1.7771 GeV,
My = 47 MeV, Me = 1.55 GeV, my = 165.26 GeV,
mq = 47 MeV, mg = 150 MeV, my, = 4.7 GeV, (4.3.2)

where the light quark masses are adjusted in such a way that the experimentally measured
hadronic vacuum polarization is reproduced.

The input parameters coincide with those of Ref. [30], except for the additional Z-
boson width. The finite 7 width is required, since the momenta of the bremsstrahlung
process are generated for off-shell W bosons. For vanishing Z-boson width, the matrix
element of the bremsstrahlung process becomes singular it the real photon has the energy
E, = Vs — My, This singularity is due to diagrams where the incoming electron and
p(mtmn annihilate into a virtual Z boson after radiation of a bremsstrahlung photon.
The virtual corrections are evaluated for vanishing Z-boson width.

93



If not stated otherwise, we use the G, parameterization, where the Fermi constant G,
and the fine structure constant « are related by

g QT 1 |
PVRME s L = Ar ( )

The symbol Ar denotes the radiative corrections to the muon decay. The cross section
in (¢, parameterization can be obtained from the results in the on-shell renormalization
scheme in the following way:

Ao = dolr (14 0%)

Born
with
o o Y
G, dog,, dol, + dog, i ‘
dOB(l)rn o .._.___QLQ_Z 0(’, [r— virt - real AAP Toop (434)
) (L o Al) dOBorn

4%

The quantities o3, 0%, and g, denote the tree-level cross section, the virtual, and
the real corrections, respectively, calculated in the one-shell renormalization scheme with
the free parameters a(0), My, My, My, and my. The value of Ar can be caleulated from
(4.3.3) and the one-loop corrections to the muon decay yield Arter = 0.0373994 for the
set, of input parameters (4.3.1) and (4.3.2).

4.3.1 Total cross section and angular distributions

In order to compare our results with the results of Ref. [50], the doubly-resonant elec-
and the LEP2 energy 184 GeV. In Ref. [50], the DPA is applied to both the matrix el-
ement and the four-fermion phase space, except for the Breit—~Wigner propagators. The
integrations of the Breit—Wigner propagators over the invariant masses k% are extended
to the full range (—o0, 4+00), resulting in

00 1 T
13 — ‘ _ = . 4.3.5
/-\x e ]1:)1 - M \2\ + 1\[\\T W ﬂj\,\;F\V ( )

In contrast to Ref. [50], the radiative corrections in our approach are evaluated as
described in the previous sections with the exact bremsstrahlung process, and the virtual
corrections are taken in DPA. Whereas in Ref. [50], the momenta are generated for on-
shell W bosons, we use the exact off-shell phase space for the calculation of the radiative
corrections. The DPA-Born cross section is evaluated in the same way as done in Ref. [50],
in particular with on-shell phase space, in order to have a common normalization of the
relative corrections. Moreover, the real photon is recombined with a charged final-state
fermion if their invariant mass is smaller than all ofher invariant masses m(vy, f), where
denotes the photon and f an initial- or final-state charged fermion.

CM-energy dependence of the total cross section

In Fig. 4.5 the total cross section and the corresponding relative correction factor § are
given as a function of the CM energv. The radiative corrections are large and negative,

<
=



o/ th 6/ %

250 T T T T T T 1 0 T T T T T T
200 |- T .
// . o
v ~10 L -
150 g[ // - e
/ 7
/ ~15 o E
/ //
100 =~ — %
DPA-Born - =20 = 7
DPA-Bormm+0O(«) -~
50 | 4
o5 L B
0 R W N T M N A ~30 A R N T R DR R

160 170 180 190 200 210 220 230 240 250 160 170 180 190 200 210 220 230 240 250

J3/ Gev 5/ GeV

Figure 4.5: CM-energy dependence of the total cross section and the relative corrections
for the process ete™ — v, 77U,

especially close to the W-pair threshold. This effect is due to real-photon ISR, which ef-
fectively reduces the available energy of the W-pair production subprocess, combined with
the fact, that near the W-pair threshold the cross section 1s rapidly decreasing with de-
creasing energy. The large corrections result from diagrams of the bremsstrahlung process
where the real photon is emitted from an initial-state electron or positron.

The DPA-Born cross section agrees very well with Fig. 8 of Ref. [50]. The curve for
the cross section including O(«a) corrections agrees for high energies, but differs for low
energies. For instance, the cross section at 165 GeV is about 7% larger than the cross
section taken from Fig. 8 of Ref. [50]. Above 190 GeV the relative corrections agree very
well with the results of Fig. 9 in Ref. [50]. Note that the dominating corrections resulting
from ISR are evaluated in Ref. [50] in DPA with on-shell phase space, i.e. k% = Mg, but
calculated in our approach with the full off-shell kinematics. This could account for the

deviation to Ref. [50].

Production-angle distribution

The production-angle distribution is shown in Fig. 4.6. This distribution is, in particu-
lar, important in order to get more strict bound on the non-standard triple-gauge-boson
couplings. The radiative corrections are negative, and increase in size with decreasing
production angles. The origin of the distortion of the distribution can be traced back to
hard initial-state photonic corvections. Hard-photon emission boosts the CM svstem of
the W bosons, causing a migration of events from regions with large cross section in the
CM system (e.g. forward direction) to regions with small cross section in the laboratory
system (e.g. backward divection).
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Figure 4.6: Production-angle distribution for the CM energy /s = 184 GeV and the
process ete” —» vt T,

Our result based on the DPA-Born cross section agrees very well with Fig. 10 of
Ref. [50]. The relative corrections are about one per cent larger than the results of Ref. [50]
for small scattering angles and agree for large scattering angles . Note that the total cross
section of Ref. [50] is about one per cent smaller than our result at /s = 184 GeV.

Decay-angle distribution

The decay-angle distribution of the final-state g™ with respect to the W+ boson in the
laboratory frame can be found in Fig. 4.7. As in the case of the production-angle distri-
bution, the large corrections are mainly due to hard-photon boost effects. The radiative
corrections are negative and large for small decay angles.

The differential cross sections of Fig. 4.7 agree very well with Fig. 16 of Ref. [50].
Deviations of about one per cent are visible from the relative radiative corrections shown
in Fig. 17 of Ref. [50].

4.3.2 Invariant-mass distribution

For the definition of realistic observables the momentum of collinear photons have to he
recombined with the momentum of the nearest fermion, except for a muon in the final
state, as discussed in Section 4.1.2. Otherwise logarithms of the form In(m?%/s) remain
from FSR in the invariant-mass distributions. These logarithms are not caleulable in our
approach, which is explained in the following: we use the subtraction method, where all
mass singularities, which appear for inclusive observables. are transferred from the real
part to the virtual part of the radiative corvections with the help of subtraction terms
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Figure 4.7: Decay-angle distribution of the p with respect to the W+ in the laboratory
frame for the CM energy /s = 184 GeV and the process eTe™ — v, utr= i,

and the fermion masses are neglected evervwhere, except for the mass singularities. For
observables, which are not inclusive in the collinear region, like invariant-mass distribu-
tions without recombination cuts, the phase-space integration over the difference of the
bremsstrahlung cross section and the corresponding subtraction terms in (4.2.2) becomes
divergent for vanishing fermion masses. Therefore, a comparison with the invariant-mass
distribution of Ref. [50] is not possible, since the calculation is performed without recom-
bination cuts.

The following photon recombination procedure is used. All photons within a cone of 5°
around the beams are discarded. Next, the photon is recombined with the nearest final-
state charged fermion, more precisely, with the fermion that has the smallest invariant
mass with the photon. Finally, all events are discarded if a charged final-state fermion is
within a cone of 10° around the beams. The recombination cuts read:

recomb a: m(f,v) < 5GeV,
recomb b: m(f,v) < 25GeV,

where m(f,~v) denotes the invariant mass of a final-state charged fermion and the photon.

For the invariant-mass distributions, the Born cross section is calenlated with the
complete matrix element and off-shell kinematics. The radiative corrections are evaluated
as in the previous section.

The invartant-mass distributions are shown in Figs. 4.8, 4.9, 4.10, and 4.11 for two
recombination cuts and two CM energies: the LEP2 energy 184 GeV and a possible linear
collider energy 500 GeV. The results include the leptonic process eTe™ — v, 1777, the
semi-leptonic process ete” — u(ul/,zv“z'i{,,,, and the hadronic process e*e™ — udsé. Note

97



do_/ _fb o
aM~ ] Gev 5/ %

UL B R D LU s R R E A A T N
180 p- Born i ~ efe” = ud o,
160 b recomb a —-- i o5 -
recomb b -1
140 b L .
140 ; ‘] o T -
120 | 105 1
;f *
100 - i - =5 L .
d |
80 | B - " i
) A 10 B o -
60 b »i;«v) - L |
40 | i - .
i -15 T ETN e
20 b » ‘\"J’J‘ T h
P - TN N WU U OO NN SO B (Y AN WO SRR TSN W TR NN A
7H 76 TT T8 79 80 81 82 83 84 85 7576 77T 78 79 80 81 82 83 84 85
M_ [ GeV M. ] GeV

Figure 4.8: Invariant-mass distributions for different photon-recombination cuts and en-
ergy /s = 184 GeV

that the radiative corrections of all leptonic processes are equivalent in DPA if no mass
singularities remain from F'SR. The same is true for the semi-leptonic and hadronic process
classes.

As discussed in Section 4.3.1, the large negative radiative corrections for 184 GeV orig-
inate from hard-photon ISR, which reduces the available CM energy for the W-pair pro-
duction subprocess, combined with the fact that the total cross section of the W-pair
production subprocess is steeply decreasing for decreasing CM energy near threshold.
Since the linear-collider energy 500 GeV is far away from threshold and the cross section
of the W-pair production is slowly decreasing for increasing energies for /s < 500 GeV,
the relative corrections are small and positive.

Apart from the large reduction of the cross section for 184 GeV due to ISR, a distortion
of the Breit—Wigner line shape is caused by FSR, which can be explained as follows: if
the event is outside the recombination cuts, the invariant W-boson masses are defined by
the momenta of the corresponding fermion—antifermion pairs:

M2 =02 = (k + k), M=k = (ks + k), (4.3.6)

where ki, ..., ks are the momenta of the final-state fermions. For FSR, one of the two
resonant W bosons decavs not onlv into a fermion-antifermion pair, but also in a brems-
strahlung photon. Thus, the corresponding W-boson propagator,

3 . 1 .
b= s “\/@: + (-/)2 - ug} ’ < ;
depends in addition on the photon momentum ¢ and leads to a shift of the Breit—Wigner
line shape to smaller invariant masses. These effects are especiallv large without recombi-

nation cuts since mass singularities remain from FSR [50]. With recombination cuts, the
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Figure 4.9: Invariant-mass distributions for different photon-recombination cuts and en-
ergy /s = 500 GeV

mass singularities disappear and are effectively replaced by logarithms depending on these
cuts. A small recombination cut leads to large distortions of the Breit—Wigner resonance
shape, while large recombination cuts vield relativelv small effects.

If the photon is inside the recombination cuts, it is combined with the nearest charged
fermion and hence is included in the invariant mass of the corresponding resonant W
boson:

M = (ky+q)7 or M= (k_+q) (4.3.8)

The resonance of the W-boson propagator,
P (k]_) = ““3““———; (439)

which do not depend on the photon momentum, is located at larger invariant masses, i.e.
My > My, where My is defined in (4.3.8). This leads to a shift of the Breit~Wigner line
bha‘pe to larger invariant masses.

These effects all visible in Figs. 4.8, 4.9, 4.10, and 4.11. For Al < My, the relative
corrections increase for decreasing invariant masses due to propagators defined in (4.3.7)
and events, which are outside the recombination cuts. This effect is large for small recombi-
nation cuts, as expected from the previous dmcusm@n. On the other hand, for My = My
the relative corrections increase for increasing invariant mass owing to the propagators
defined in (4.3.9) and events, where the photon is recombined with the nearest fermion.
This effect is visible for the large recombination cut b. Both effects result in a shift and a
broadening of the Breit-\Wigner line shape.
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s/ GeV | 189 500 2000 | 10000
o/fh | 1284.9(5) | 570.4(3) | 83.4(6) | 6.52(1)

Table 4.1: Comparison with Table 3 of Ref. [22]: Total cross section of the process ete™ —

wd pm 7,y with the photon mass m., = 107° GeV

Note that the radiative corrections from FSR include the squares of the charges of the
final-state fermions, which emit the bremsstrahlung photons. Thus, the FSR corrections
are proportional to Q7 = 1 for invariant-mass distributions of W-bosons, which decay into
leptons, and proportional to Q;; -+ Qé = 5/9, if the W-boson decays into a quark-antiquark
pair.

4.3.3 Test of the subtraction method

In Table 3 of Ref. [22], the sum of the soft-photon cross section with E, < w and the
hard-photon cross section with photon energy £, > w of the process ete™ — u El/,z.‘ﬁ!,q'
is given for several values of the separation cut w, in order to show the independence on
the parameter w. Since the soft-photon cross section depends on the photon mass m., =
107% GeV, it is not a physical observable. However, it is a good test for the implementation
of the subtraction method.

In Ref. [22], the fixed-width scheme and the following input parameters have been

0.51099906 MeV, m,, == 5 MeV, mgq = 10 MeV, and \f\ = 0.22591. All couplings have been
parameterized by «o(Mw) = 1/128.07, except for the couplings of the bremsstrahlung
photon which have been parameterized by «v = 1/137.0359895.

Our results for these input parameters are shown in Table 4.1 and agree well within
the statistical error, apart from the CM energy 10 TeV, where the numerical integration
is most complicated.
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Figure 4.10: Invariant-mass distributions for different photon-recombination cuts, different
processes, and energy /s = 184 GeV
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Figure 4.11: Invariant-mass distributions for different photon-recombination cuts, different
processes. and energy /s = 500 GeV
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Appendix

A Calculation of real and virtual corrections

A.1 Useful definitions

In the main text, we have already used the following short-hand expressions,
AM,
: Miy .
,flf\.\i = \/ . — 1€

Ty = oy,

4M?
3 == /l e
! 5
Ryw = \/\(*\f{lv 513524, 514523) — le,
k2 V ’ _
AI\] — '" """"""" < ) (f\l)
where
Mo, y, 2) = 2% + 92 + 22 = 20y — 202 — 2yz. (A.2)
The evaluation of one-loop n-point functions naturally leads to the usual dilogarithm,
) 2 dt
Lip(2) = — / el In(1 1), lare(l — z)| <, (A.3)
J 0 ,
and its analytically continued form
Lig(x,y) = Lis(1 — 2y) + In(zy) — In(z) — n(y)] In(1 — ),
Lave(x)]. Jare(y)] < 7. (A.4)

A.2 Calculation of the real bremsstrahlung integrals

In this appendix we describe a general method for evaluating the bremsstrahlung 3- and
4-point integrals defined in (3.2.15). We make use of the generalized Feynman-parameter
representation [64]

L ) ( 1 - Xﬂn-] 0717)
= '(n) d) Sday, e A5
1 T \/ - . Q«;L[ A\Zfrz) n ( )



where the real variables cy; > 0 are arbitrary, but not all equal to zero simultaneously. The
sum Y., Nlx; must be non-zero over the entire integration domain.

We first consider the 3-point integral Cy. We only need the difference between the
general IR~finite integral and the corresponding IR-divergent on-shell integral.

Co(p1, 2, 0,m1,m2) = Co (Phpm A, \A)? \ﬂ§)>

- /d‘ { 1 1 }
""""" Jowgo L(2pig +pi = mi)(2pag +p3 —m3)  (2p10) (2paq)

(A.6)

=/

which is UV-finite and Lorentz-invariant. Extracting the signs o; of p;y via definition
(3.2.29), and assuming for the moment o; Re(p? — m?) > 0, the Feynman-parameter rep-
resentation (A.5) can be applied to each term in the integrand of (A.6). The integration
over d*q can be carried out and yields

, e -
Co(pr, p2, 0,10, m2) — Cy (Pl»]% A/ \/‘P-},) (A7)
. 9 PR 2
2 : D ) | — 2 y (02— mP)
. In(A )+111K;])Z,L1> J 21n [}; oi(py — m?)x;
= 0109 / dryde ><>< ~~~~~ Zn 2 > — =
Jo
=1 2 <Z Di; )
Putting for instance a; = 0 and «s = 1, and using
00 1 1 , ‘
dax - > In(1 -+ zx) = Lis(2 Loz, 2), A8
/0 <7: 4z T 2o, ( ) ( 2) - 9<‘ ) ( )

where |arc(zy 0, 2, 2 z19)| < 7, the remaining one-dimensional integration and the analvti-
cal continnations to arbitrary complex (p? — m?) are straightforward.
Next we consider the [R-finite 4-point function

Do(pr, P2, ps, 0,10, M2, Ma)

d*q 1
- / g ;s 2 2 : (‘\9>

mo (2p1g -+ Pt = mi)(2paq + pg = m3) (2psq +p§ —mi) |,

9 2 -
For o; Re(p? — m3) > 0 we can proceed as above and find

3 3 .
{Z ma, J (
(A.10)
Again, the two-dimensional integration over the Fevnman parameters and the analvtical
continuations in (p? ‘m?‘) are straightforward.
Finally, we inspect the IR-divergent 4-point function

(Y e 1 | ,
Do p1, P2, 03, A/ PT, Ma /P37 ) = / , — ,7 5 g - (AT
( PV v > S g0 (2p1q)(2paq + sz‘*77'75)(7173(/)[(10::\/;]‘:;\7 ( /
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Instead of applying the Feynman-parameter representation directly, it is more convenient
to extract the infrared singularity by subtracting and adding an IR-divergent 3-point
function containing the same IR structure. Since the difference between the 4- and 3-
point functions is IR-finite, we can regularize the IR divergence in these two integrals in
a more convenient way. Therefore, we write

Dy <])1,p2,]);‘3, A, \/;f Mo, \/]_){‘> = hm {Do <])1,p2;],)3, 0, m, ma, \/133)

m2 >p~

““;{:—7-7—;2(’ ([)1 P3, ) m, \/E) -+ T—LM] “““““ (/() (pl,])g, /\ \/_“ \/p )J (r\l‘_),)

i.e. we regularize the IR divergence in the 4-point function by the off-shellness p —m? # 0.
Both the 4-point function as well as the difference of 3-point functions can be treated
as above, yielding straightforward Feynman-parameter integrals according to (A.7) and
(A.10), respectively. The limit m? — p? can easily be taken after the integrations have
been performed.

A.3 Explicit results for scalar integrals
Loop integrals in double-pole approximation

The following one-loop integrals are required for the calculation of the non-factorizable
corrections in Sections 3.3.2 and 3.3.3. The 2-point and 3-point functions of the (mm),
(mf), and (im) corrections read in DPA:

' M\ ,yA
s {BO(M 0, M) — [By (ky,0.M0)], r\/’} - [B m,/\,4\_[\&,)}%:%

1 A My ) } (
~ I 1 A (
M2, { ! ( k)T (A.13)

Colka, ki, 0,mo, M) — [CO(/\) ko, A, mo, \[\x)}

A; =M
1 m - K 5/ Mo e
——in < )>] < ’>_ 12<___:>_M_~_}
J\/fgv{ Mg ) "\ TG T (A.14)
Colps hig, 0yme, M) = [Colpa. by, A, e, ”“)JH:—MSV

| My N[ [ —K, K. e \]
........................... (220 () () (29)] 5 .
s u{\{“ e, i) M =) T ) g ) e (A1D)

In the (mm') correction the following combination of 3-point functions appears in the
strict DPA:

Colky, =y 0, M. M) = |Colhe, =k X, My, My ]

1 . (R - 2, . 5
~ e { """" Lh(‘[—\t 1\\) + ,L,?;}([\ RN ) FLib(1 = agy) + 77+ In?(—ay)
K. _— .» .
9 hl(/\”\\) In(zw) — 2riin(l — lf{\»)}. (A.16)
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In order to include the full off-shell Coulomb singularity, one has to add

27 <{} + Ay — B) 27i <K,,- + K_ + sfwA M>
= In = | — n

s O+ Ay +0

to the r.hus. of (A.16).
For the (if), (mf’), and (ff") corrections we need the following 4-point functions:

(A.17)

, 1 MM AMy 5/ M 2

Do(pa. by ko Ny me, M, mg) ~ ~{2 In <m ,m~>> ln( ,,“ ) — In? <m—?~> ----- W—
) : t+2]&+ —*t,;.,g — K + A/[VV 3

12 < ﬂz_gj\i}y_) ,,,,, /iQ <l — ¢ - A[\2V> }) (F\ 18)
L\ [\V T f’ i7
Do(0) = Do(—kyy by + ka, ko + k3, 0, M, M, 0)
1 S A [2 7
N e - (_. 1)”{£}7 <.NM :_jj_}_;ms_f} _____ 1€ «T(r) } LZ:( .................... : }Y ........... + 1(7 ...... lg)

KW =75 M Son -+ Sou

with Ty = S“”)“lo: Lo = J"[‘\Z\“ 2 == 3'[\"{\; Tt T S NW» (A.20)
M. W S132 23 135924 ’
Do(1) = Do~k ky, ko, 0,0, M, my)
e s - L T - L/) “““““““““““““““““ }- 16 T >] A21
K 4.(523 -+ 524) 4 11\'_3[5\; T;:H ]& - “ Sog -+ So4 \V ( )
o ‘K’Jr Sog b 89q > ( m) > K. > S93 -+ 594 N\
- 2 L: T, T T - o - 1 N - § - ";""—'—T—':L— - - “
2 (A_. N "\ {1“( K hl( MZ, “)J }
Do(2) = Do(—ks, ki, ko, Ay mis, M, ms)
1 . 513 72 893 ‘ I 0 [ Mo
____________________ (-2 T (S () ()
I(+ S93 { 2 S93 3 E (A YREE 1(/ " /\f\”fw " .A/[\V
813 + Sz .
 n? (JL_M ~ie) | A.22
n T ie [ (A.22)
Dqo(3) = Dy(=ky, —k_. ko, Aoy, MLomo) = Dy(2) e (A.23)
Co s K maebmin 313 82 1
D0(4) ------ Do( ]xg —k_ /71_3_‘, 0, . \[ \[) o= ])D(D . ) . (;\Q—l)
L L MM, S350

Bremsstrahlung integrals in double-pole approximation
In the (mm') interference corrections the following combination of 3-point functions ap-
pears:

Colkiy b, 0, M, M) {00 (B ko N\, My, My »

2 -\}’

~ Aotk k02000 = [Colh, ~ k. ./\‘A\,/_'w,A\[f\\r\)hg_w } ”
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(A/\_-25>

271 l: [\+“|“ K* zw }
SKJW )

1/\]\/[\/\[(1 - I\’V

For the (mf") and (ff") interference corrections the following 4-point functions are re-
quired:

Do(0) = —Dq(ky, ki — k3, by — k3.0, M_, M, 0)
~ =Dy (0) + ----t“-(--:l-{hl<~-~lw 23) an + 220 )’ +1In [1 NNy S

K Mg, §93 S93
1n<1+ MX)V&J\Q In <1 + u\’i \m)} (A.26)
with z from (A.20),
Do(1) = Dok, ki ko 0, A%, M, ms)
~ DO(l){K_H’Ki + Ky (593 + ;;)1 — KM {3 b (1 %%A}ﬁ‘”)

]’f"‘ Ty M3 m3\’
~In ( ! > - 11‘1< 1+ L“‘“*“‘“) 111<~]*n§>
K* aw So3 + So4 My /.

Do(2) = Dok, ky, ko, N, mz, M, mo)

271 ]\'—,I_.S’f)g s
~ Do(2) + — h{_ L5 } A28
O< ) A+523 1/\’17?,.2(8'13 -+ 823) < )

Do(?)) 7:7 (kg [__ /) /\ ms, M*, 777,2)
271

1K ey
~ Dy + In|— } A.29
DO(O));K»%#Q f K593 nL\(Szg+SQ,¢) ’ ( )
D, (4) Do(A3 _,]\} O ms, ‘[ ’\[)
271 [ Koy o aw Mg,
D) e s B (1 md )
0 K (515 + $33) — Ko Ma L K, L S
(A.30)

We note that the logarithmic terms on the r.h.s. of (A.26) vield purely imaginary contri-
butions if (s13 + $93) > —MZ v, (805 + s9q) > —MEaw, and ry is imaginary. These
conditions are fulfilled on resonance. Off resonance. this is no longer true near the bound-
ary of phase space. But since these conditions are ouly violated in a fraction of phase
space of order |k3 — M| /MG, which is irrelevant in DPA (compare the discussion of the
relevance of the Landau smvulaune in Section 3.4.3). it would even he allowed to replace
Dy (0), which is real, by — Re{Dy(0)}, as it was done in Refs. 138, 39].

B Four-fermion momenta for on-shell W bosons

In order to define a DPA for the virtual corrections of four-fermion production, one has to
project the four-fermion momenta for off-shell intermediate W bosons to the ones, where
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the W bosons are on shell. Therefore, eight independent parameters have to be chosen,
which determine the four-fermion phase space uniquely and include the invariant masses of
the resonant W hosons kZ. One possible choice is to fix the directions of the particles W,
fi, and f; in the CM frame of the initial-state ete™ pair while taking the limit k% — Mg
This results in the on-shell projection:

kx S

LON A\{} on __ c Voo on . _.on
o= k" = k.| 2 Dy S R S I
ME M3,
on . T oW .0n __ 1.0n .00 on g W .00 ] on _ p.on Ty
O = Al_?/‘t‘/n:f"d“ kot = K — RN RS = A";Z/;kﬂ“’ = kO — kG (B.1)
with ko = ky -+ ko and k_ = ks - ky. The momenta of the initial-state e* are denoted by
s 1 2 3 2
p4 and the momenta of the final-state fermions by &;,2 = 1,...,4. The on-gshell momenta

are marked by the superscript ‘on’.

C Construction of phase-space generators

The scattering amplitude of a given process includes usually a lot of different propagators
corresponding to the different diagrams. The different propagators peak in different phase-
space regions and, therefore, slow down the convergence of the numerical integration or
cause numerical instabilities. If the differential cross section varies too much, the result
and, in particular, the statistical error of the Monte Carlo integration can not be trusted.

As described in Section 2.2, the multichannel approach is applied to obtain accurate
predictions for the processes ete™ - 4f(+~), where each channel is responsible for a
diagram or a class of diagrams with the same propagators. A channel is defined by
the mappings from random numbers to the momenta of the event. For each diagram, a
phase-space generator is constructed in such a way that the corresponding propagators are
smoothed by the Jacobian of the specific mapping. To do so, the inverse of the Jacobian
of the channel has to simulate the cross section in those regions of phase space where the
cross section becomes large. The construction of the phase-space generators is explained
in the following (see in addition Refs. [26, 65, 66]).

C.1 Smoothing propagators depending on time-like momenta

Diagrams usually involve several propagators depending on time-like or space-like mo-
menta. In this section, diagrams which depend only on propagators with time-like mo-
menta are considered. It is appropriate to decompose the integral over the phase space
into several integrals over the invariants of the propagators and the remaining integrals
over the angles in appropriate rest frames., Each invariant is mapped to a random number
7 such that the integral takes the following form:

Smax g r )
[Tas= [ —— (C.1)
J Smin 40 Gs (“(/} m=. . Smin. 'qmax)
with 0 < » <1 and the densitv g, defined bv
AN v g ,
1 dh(r.m?, 1. Spin. Smax)
— — = = (C.2)
gs(s(r), m= 1y S, 51‘1’1&:{) cr
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The mapping of the random number 7 into the invariant s
(e 2 , N
s(r) = h(r,m”, v, Smin, Smax ) (C.3)

has to be chosen such that the density g, simulates the behaviour of the integrand in
the region where the integrand is large. This is called importance sampling, because
more events are sampled in the important integration region of s in which the integrand
becomes large. Thus, it is a reasonable approach to require that the density has to include
the inverse of the propagator.

The mappings belonging to the different propagator types read:

e Propagator with vanishing width [26] : ooc1/ls—m?]?
i DR 9 - ”
]7/(7“7 777'27 Vs Smins Slna}() - [71(5111(“ - /m“u,)l‘P + (1~ '7“)("qn1in 7777)1"}} T m,
‘ L—v
2 . . : e
95(5, ™M=, Vy Smins '5max) - o ; o N ((“n
{(Sma,x - /77?’;)1—“ - (Smin - 'm'“)lay] (5 - '777/"“>"/
for v # 1 and
X 5 ; ) . ; ay ] D)
h(r,m*, 1, Smin, Smax) = €xp {r In($max = m”) = (1= 7r) In(smm — m“)’ +m”,
e 2 - X o 1 5
gs(é: m-, 17 Smins '511'121.3() - 5 ; ) 5 < )“»))
{ln(smax —m?) = In(Sym — -mz)} (s —m?)
for v = 1.
e Breit-Wigner propagator: oo 1/[(s = ME)? + MITE]
/7/(7": A’[’\’ - LA-C[\}F\:, 2, Smins Smnx) = My tan [Ul -+ (2/2 - yl)rl -+ AI\Q’J
. MyT'y
R . 2} Cy . V4iy
,(],9(5; 4\[{ 1A[\F 2; Smins 'Smax) = ; ToNC O TR (CG)
' } (y2 = y1)[(s — MJ)? + MGT?)
with
IR —, 21
) ) Smin/max Wl ~
y1/2 = arctan ' - C.7

These mappings are applicable not only for the Mandelstam variable s, but also for the
absolute value of the Mandelstam variables [¢] and Jul.

The parameter v can be tuned to optimise the Monte Carlo integration and should be
chosen 2 1. The naive expectation v = 2 is not necessarily the best choice, because the
propagator poles of the differential cross section are partly cancelled in the collinear limit.
Note that the mappings (C.4) and (C.5) are undefined for v > 1 and sy, < m?.

Since all fermion masses are neglected in our caleulations for four-fermion production,
m can be omitted in (C.4) and (C.5). However, I found it convenient to use a small
negative mass parameter m? = —a to avoid numerical problems for Syin = 0.
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Isotropic decay into two particles

Phase-space generators of diagrams, which include only propagators depending on time-
like momenta, can be composed by isotopic particle decays. Therefore, the isotopic decay
is described in the following.

A particle with momentum p decays into two particles with momenta &, and k,. The
momenta of the initial-state particle and the masses of the final-state particles ave fixed.
The polar angle ¢* and azimuthal angle 6* in the rest frame of the decaying particle are
suitable integration variables:

/dq?,z(l), 777/%, m::) = / (14/17] (14]425“{7;2 - 7771)9““))0“5 _______ 172%)6’“/ 70)(5@) (p— ky — ]*JQ)
_ Axp it ms) / 6 / Leos 0° o)
Sp Jo J 1 A0,

with the function A defined in (A.2). For the numerical integration using the Monte
Carlo technique, the angles have to be expressed by random numbers 7 and 7, with
0 < 1,72 § 1:

. ; S 1 1
/dq?d(p.m{,'n'zg) = -/ drydry (C.9)

J0

2
I B N 2p
galp 3777'177”2> —

Ly oo 2 oy, (C"]'O)
Az (p?omi, mi)r
Since the laboratory frame usually does not coincide with the rest frame of the decaying
particle, the proper Lorentz transformation is introduced. The Lorentz transformation of
momentum £ into the rest frame of the particle with momentum p is defined by

K= Blpo,pk (C.11)

with the explicit form (see e.g. Ref. [65])
= vk £k, k' = kbt b, (C112)

where b = —p/m, v = py/m and m = /p>. The inverse Lorentz transform is obtained by
substituting p into —p. For instance, if the momentum £ is identical to p, the particle is
transformed into its rest frame and vice versa:

P = Bpo.plp,  p=Blpo.—php' (C.13)

with p* = (m,0,0,0)".
Since the decay is isotropic, the orientation of the coordinate svstem can be arbitrarily
chosen and the momenta of the ontgoing particles read

ky = B(pg. —p)R(o". cos ") 0 : ke =p—k (C.14)
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Figure 4.12: Diagram with two resonant W bosons of the process e?

R NV 7

with the explicit rotation

10 o oN/1 o0 0 0
. 0 coso* sing* 0 0 cosf* O sinf* L
R(p*, cos) = : (C.15)
0 —sino* cosod® 0 0 0 1 0
0 0 0 1 0 —sin#* 0 cosO*

Example

As an example, a phase-space generator for the diagram of Fig. 4.12 is constructed. For
both intermediate particles, photon or 7 boson, only one generator is required, since the
corresponding propagator is fixed by the momenta of the initial-state particles and, hence,
no mapping is needed. The phase-space integral can be decomposed of the integrals over
the invariants of the intermediate W bosons. the W-pair production, and the two W
decays:

S v/~ R r
/ 4P = / k2 / (Vi-viE) i / Ay (p, k2, k2)
. JO J0 .

x / Ay (s, k2, 12) / A (k12,52 (C.16)
with p=p. +p_, ke =k + koo and ko = Ly =k, The invariant masses of the W-boson
propagators are determined by

k2 = hiry Ma — iMwTw. 2.0, p%), (C.17)
s 5 e o et o
B = (e MG — i T, 2.0, (Vp? = /i) ) (C.18)

with the function h defined in (C.6). The total density reads

Gon = 9o (K2 M — DTy, 2.0,p%) g, (K2, M3 — Ty, 2,0, (o2 = /42))
X ga(p”, /w“) B2V gl b2k B galk? ks kD). (C.19)

including the two W-boson propagators.
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C.2 The t-channel diagram of a 2 — 2 particle process

So far, only phase-space generators for diagrams with propagators depending on time-like
momenta are considered. The simplest diagram including virtual particles with space-like
momenta is the t-channel diagram of a 2 — 2 particle scattering process which is outlined
in the following.

Two particles with momenta p, and p_. transform into two particles with momenta A
and ko, where the momenta of the initial-state particles and the masses of the final-state
particles are fixed. Purthermore, the diagram includes a propagator depending on the
Mandelstam variable ¢ = (p, — ky)* which has to be smoothed.

The calculation is performed in the rest frame of p = p, + p_ with the 3-axis in p..
direction. The momenta of the external particles take the form

pho= kY = R(¢", cos ") (C.20)

and k3 = pi + p* — ky. Since the invariant mass of the propagator ¢ depends exclusively
on the azimuthal angle cos 8%,

‘ ) 2\ (2 1 2 : $in2 12 22\ \3(2 2 2 g f*
T pi AAAAA (p? + k2 — kD (p* + pe—p2) vi)/\; (p*, k7, k3) A2 (.7),[)_?;47]9*) cos (C21)
2p?

the phase-space integral can be converted into an integral over the polar angle ¢* and over
the absolute value of the Mandelstam variable #:

/ ‘ Ad®, (py, p.,mi, m3)
— /d‘lk]d‘lk;g(i“) (p—p1—p2)0 (l;:f - mf) 0(k10)0 (k; - m%) 0(kap)
' [ 27 "—tmin
- [Cas [, (C.22)
0

4/\% (])2, ])'2}1)":} - J —tmax

where the integration boundaries can be calculated from (C.21) with —1 < cos@* < 1.
Like in the previous section, the polar angle ¢* and the invariant ¢ of the propagator are
determined by

OF = 2mry, [t] = h(ra, m* v, ~tmaxs —tmin) (C.23)
resulting in
/‘ A®, (py, po k3 kD /i1 dr /jt dr ! (C.24)
L\ Py By R ) 1 2 N B ) - ey
. ’ 40 0 gp([)z: PP, & '777'2: Vs Lin, tl’l’l?h\")

with the density

;2 2 P ' 3 2 L, 9 R . b - -
p (\p‘{‘: p[ pif [ 7772- v, fmins fmax) - ‘:\ : (Z)2= PP ).(]*‘ (*—YL m-, v, tha.x‘; '“‘[7z1‘1il’1>' (UZb)
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Figure 4.13: An example for a multi-peripheral diagram contributing to the process
ete™ = vty

To obtain the momenta of the final-state particles in the laboratory frame, a rotation
and a proper Lorentz transformation are performed:

ki = B(py, —p)R(~0, cos O) & (C.26
with 7 = 1,2 and the angles
N arctan (£t Hyq > 0 L P a
¢ = <] l) r : cosh = L+ (C.27)
aufan( ") + 7, Py <0 D]

with p. = B(po, p)p+.

In order to make the numerical integration more efficient, cuts can already be intro-
duced in the generation of the event, i.e. an upper limit on ¢ or on cosf*. Since the
Mandelstam variable ¢ is Lorentz invariant the cut on ¢ is valid in arbitrary frames. An-
gular cuts have to be transformed into the rest frame of the incoming particles.

C.3 Phase-space generator for a multi-peripheral diagram
The multi-peripheral diagram of Fig. 4.13 is investigated as an example, because it in-
volves all types of propagators. In the following, all fermion masses are neglected and the
following definitions are used:

kosy = ko -+ ]\'/'3? fosy = ko -+ kg -+ Ky, kyogy = ky =+ ko -+ k3 + ky,

Gy = py — ki, G- = p.. — ks. P= Pyt (C.28)

The infrared and collinear singularities are excluded by a lower limit on ki3 > k35 1o
The phase-space integral

N » '])2 N ‘])j R \])'2 ) R .
/ 4D = /k i, A LN S / A, (ps po. W2y, )

3, min =} Y vasd

. /(i(‘l’)p(:])»{,,g m)/ 1D(koga, ks, A2 )/ By (ko k2, K2) (C.29)
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is decomposed of two scattering processes and two particle decays. The intermediate
particles of this decomposition are the virtual particles and an additional fictitious particle
with momentum £i934. The invariant masses of the external particles of the scattering
processes and particle decays have to be determined first:

k2, = /7,(7“1. 0,11, k35 pmin 27, (C.30)
/»231 = h(ry, 0, va, kis. p7), (C.31)
k2ppy = /2,(7“3, ), 0, k3ey, 0°). (C.32)

As a second step, the momenta of the final-state particles are calculated:

D -+ D — l(71234 -+ }{75

The initial-state electron and positron transforms into the final-state v, and a fictitions
particle with momentum Ays34. The invariant mass of the W-boson propagator is deter-
mined by
x:) " 2 ¢
] - ’ = /?(7 —1MwI W ,Orp“ - i,7|234>7 (ng)

where the boundaries are taken from (C‘ 21). The momenta can be calculated according
to Section C.2

Py +q- = ki + ko

The incoming particles are the initial-state positron and the incoming virtual W boson
which couples to the initial-state electron. Note, that the momentum of the incoming W
boson is fixed by the momentum of the initial-state electron and the already calculated
momentum of the final-state .. The invariant mass of the W-boson propagator reads

‘qij = h(rs, M\\ —iMwTly, 2,0, (k; m% - Ag:&ﬂ(’*%z&i """" (ZE)/MQ:M) (C.34)

with the boundaries calculated from (C.21). In this way, the momenta of the final-state
D, and the virtual photon are determined.

koga = ka3 + Ky

The virtual photon decays isotropically into the final-state ;= and the virtual 1 according
to Section C.1.

11723 - ]ﬁg -+ /Zug

Finally, the virtual g decays isotropically into the final-state 1~ and the final-state .
The total density reads
Grot = .,‘73(16;37 0, 1. A;% min® pz)Q‘ ]‘5‘ 0, 19, ATE‘“‘ ])2) (74(]‘“‘112“'31‘ 0 O~ ]‘531])2)
x g,(p*, 0,0, qQ h'“ — \J\\l\\ 0,7 = kihgy)
><f7p<'1*72' 0, <1 «(la--. V\\ LMy Dy 2.0, (Zf - k%&ﬂ“"'wgz:s;l “““ (73>/7i7f23.1>
X Ga(Faags Fage 0)gal £35.0.0) (C.:

[N
e

and includes all propagators of this diagram.
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Figure 4.14: The generic phase-space generators symbolized by the topologies of the cor-
responding diagrams

C.4 Remarks on four-fermion production

In this way, five generic phase-space generators for e"e™ — 4f and ten for ete™ — 4f~ are
constructed. The topologies corresponding to the phase-space generators for the processes
ete™ — 4f are shown in the first row of Fig. 4.14 and the topologies corresponding to
eTe™ — 4fv can be found in the second and third row of Fig. 4.14. Tor each generic
generator the order of the external particles and the mappings for each propagator can be
chosen. In particular, flat mappings of a subset of propagators correspond to topologies
where these propagators are contracted. With the help of these generators all propaga-
tors of the cross section are smoothed. Special phase-space generators for interference
contributions to the cross section are not constructed.

For the process ete™ — eTe~ete ™y with 1008 diagrams 928 different channels are
included in the calculation. The difference is due to diagrams where the initial-state ete™
pair couples to a virtual photon or Z boson. Since the invariant masses of the virtual photon
and Z-boson are fixed by the CM energy, onlv one phase-space generator is required for
both diagrams. For instance, the diagram of Fig. 4.12 corresponds to the first topology of
Fig. 4.14, where the mapping of the propagator which couples to both incoming particles
is flat, 1.e. v; = 0.

Phase-space generators for diagrams with a quartic-gauge-boson vertex are also in-
cluded. This diagrams have one propagator less than the other diagrams. Therefore, one
propagator in Fig. 4.14 is omitted and the mapping of the invariant of this propagator is
flat.

The order of the particle decavs, the 2 — 2 particle processes, and the determination
of the invariants influence the convergence behaviour of the numerical integration, since
the integration domains of the single mappings depend on the already fixed invariants
and momenta. In particular. the invariant masses of decaving particles in a decay chain
are not independent of each other. To improve the numerical stability, the invariants
of the virtual massless particles that couple to external particles should be calculated
first, applying alreadv the cuts in the generation of the momenta. In the here discussed
Monte Carlo program, invariant-mass cuts are used for the propagators of the virtual
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particles with time-like momenta. For the virtual particles with space-like momenta only
one angular cut is applied to the first 2 — 2 particle process. Note, that the angular cut
does not influence the boundaries of the integrations over the invariants of the virtual or
fictitious particles with time-like momenta, which are calculated at the beginning.

For the numerical integration of the subtraction terms, additional phase-space gener-
ators are constructed, which take into account the propagators of the Born-cross section

phase space, the four-particle momenta have to be generated first with the phase-space
generators for the processes ete™ — 4f. These momenta are then mapped into the five-
particle phase space according to the different mappings defined Section 4.2.3.

Besides momentum conservation and the requirements on the momenta of external
particles, i.e. k7 = m? and kjy > 0, the phase-space volume is a very helpful variable to
test the phase-space generators. For massless external particles, the phase-space volume
can be calculated analvtically as follows

NN 2n-—4
,14 ]1, S /\3 (7) ( luz S(D [ [) == WN” /{Z— i <1—> ......... Z_) e — C‘ g(’
17:]:}77, C 1¢ ( i ) ( 0)‘ (P Lzml ) 9 F(ﬂ)r(’ﬁ — 1) ) ( )

>

where 7 is the number of final-state particles (see e.g. Ref. [67]).
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