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Abstract

At present, the W boson is investigated expenmentallv at LEP2 via its pair production. In

order to achieve precise theoretical piedictions foi the measuiement of the W-boson mass

and the non-abelian tiiple-gauge-boson couplings, the inclusion of radiative corrections

is required. Since the W bosons decay veiv rapidly into light fermion pairs, the actual

processes undei investigation arc e+c~ > 4 fermions.

The full O(a) corrections to these processes arc not available at present. Since the

main contributions originate from diagrams with two resonant W-boson propagators, an

expansion of the amplitude around the poles of the two resonant W bosons is a reasonable

approach, which is also gauge-invariant. In the double-pole approximation, the contribu¬

tions are classified in factorizable and non-factorizable corrections. The amplitudes of the

factorizable corrections are composed of those for the on-shell W-pair production and the

on-shell W-dccays multiplied by the two propagatois of the resonant W bosons. All other

corrections are called non-factorizable, because they do not factorizc into a simple product
of W-pair production and YV decavs.

As a first step of this work, the non-factorizable collections of the processes ef e~ ->

4 fermions are calculated in double-pole approximation. The non-factoiizable corrections

are implemented into an existing Monte Carlo program and various distributions are stud¬

ied. It turns out that the non-factorizable collections aie negligible with respect to the

experimental accuracy of LEP2; however, thev should become relevant for a future linear

collider with higher luminosity.
A further building block of the radiative collections to four-fermion production arc the

bremsstrahlung processes e+c~ ->- 4 fermions -J- -. These piocesses are of physics inteiest in

their own right. For instance, the radiative piocesses can be used to obtain information on

the quartic-gauge-boson couplings 7^WW. oZWW. and 77ZZ, which are part of the tiee-

level amplitude. The tree-level helicity amplitudes for the processes c4e~ --> 4 fermions and

e4e~ —y 4fermionsT 7 foi all possible final-state fermions are calculated. A multi-channel

Monte Cailo piogram for both classes of piocesses is constructed This is a particularly
difficult task owing to the veiv complex peaking stiuctuie of the differential cross section.

In order to include radiative collections into the Monte Cailo program, the infrared and

collinear singularities must be extracted fiom the biemsstiahlung process. This is done

by applying the dipole-subtraction method to fom-leimion production. This subtiaction

method has aheadv been woi ked out in massless QCD foi dimensional regularization. In

the Electioweak Standaid Model it is mote convenient to legulaiize the amplitude with

an infinitésimal photon mass and small feiimon masses Hence, the subtraction method

is reformulated foi mass legnlanzation
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Filially, the doubly-resonant virtual collections are implemented into the Monte Carlo

program for the processes e4e~ —> 4fermions(+7). Therefore, the results of the non-

factorizable corrections and the already existing results of the on-shell W-pair production
and on-shell W-decay are used. For the real corrections the complete bremsstrahlung
process e4e~ —> 4fermions + 7 is taken into account. All results are combined in a four-

fermion generator, which is the first Monte Cailo generator including the complete 0(a)
corrections to the piocesses c4e~ —> W~W~ --^ dfeimions in double-pole approximation.
This generator is used to produce numerical results for the total cross section, angular,
and invariant-mass distributions.
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Zusammenfassung

Am Beschleuniger LEP2 wird zur Zeit die W-Paai-Produktion experimentell untersucht.

Um genaue theoretische Vorhersagen für die Bestimmung der W-Boson-Masse und die

Untersuchung der Drci-Eichboson-Kopplungen zu erhalten, müssen Strahlringskorrekturen
berücksichtigt werden. Weil die W-Bosonen sehr schnell in je zwei leichte Fcrmionen

zerfallen, werden in Wirklichkeit die Prozesse e~' c~ —» 1 Fcrmionen untersucht.

Die vollständigen Strahlungskorrekturen in ö(a) sind zu diesen Prozessen noch nicht

bekannt. Der Ilauptbeitrag stammt von Diagrammen mit zwei resonanten W-Boson-

Propagatoren. Deshalb besteht ein naheliegender und auch eichinvarianter y\nsatz darin,
die Amplitude um die Pole der beiden W-Bosonen zu entwickeln. In dieser Doppelpol-
näherung können die Strahlungskorrekturen in faktoiisierbare und nicht-faktorisierbare

Korrekturen klassifiziert werden. Die Amplitude der faktorisierbaren Korrekturen setzt

sich aus den Amplituden der W-Paar-Procluktion, den beiden Amplituden der W-Boson-

Zcrfälle und den zwei Propagatoren der resonanten W-Bosonen zusammen. Alle übrigen
Korrekturen werden mit nicht-faktorisierbar bezeichnet, weil sie nicht aus einem einfachen

Produkt von Beiträgen zur Produktion und zu den Zerfällen geschrieben werden können.

In einem ersten Schritt wurden in der vorliegenden Arbeit die nicht-faktorisierbaren

Korrekturen zu den Prozessen e4e~ —> 4 Fcrmionen in Doppelpolnäherung berechnet. Sie

wurden in ein existierendes Monte-Carlo-Programm eingebaut, und verschiedene Verteil¬

ungen wurden studiert. Dabei zeigte sich, class diese Korrekturen vernachlässigbar gegen¬

über dem experimentellen Fehler von LEP2 sind. Jedoch werden sie für einen zukünftigen
Linearbeschlermigcr mit höherer Luminosität voraussichtlich wichtig.

Ein weiterer notwendiger Bestandteil der Strahlungskorrekturen zur Vier-Fermion-Pro-

duktion sind die Brcmsstiahlungsprozessc o~he~ —>• 1 Fcrmionen + 7. Mit diesen Prozessen

können auch die Vier-Eichboson-Kopplungen t>WW. yZWW und 77ZZ studiert wer¬

den, die auf Born-Niveau enthalten sind. Die Hehziläts-Amplituden zu den Prozessen

e4e~ -> -1 Fcrmionen und e
' e~ —>- 4Fermionen+-} für alle Endzustände wurden berech¬

net, und ein Monte-Carlo-Programm für beide Klassen von Prozessen geschrieben. Die

Schwierigkeit lag dabei in dem sehr komplexen und stark variierenden Vethalten des dif-

ferenticllen Wirkungsquerschiiittcs.
Um Strahlungskorrektuicn mit Hilfe eines Monle-Carlo-Programms zu berechnen, müs¬

sen die infraroten und kollinearen Singularitäten vom Bremsstrahlungsprozess abgespalten
werden. Dazu wurde die Dipol-Subtraktionsmethode auf die Vier-Fermion-Produktion

angewandt. Diese Subtraktionsmethode existierte m der Literatur für masselose QCD
und dimensionale Rcgulaiisierung. Für das Elektioschwache Standardmodell werden nor¬

malerweise die Singularitäten mit einer infinitesimalen Photonmassc und kleinen Fcimion-
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massen regularisiert. Daher wurde die Subtraktionsmethode für die Vlassenregularisierung

umgeschrieben.
Alle doppeltresonanten virtuellen Korrekturen wurden in das vorher erwähnte Monte-

Carlo-Programm für die Prozesse e"1 e~ --> 4Fermionen(+7) eingebaut. Dazu wurden die

nicht-faktorisierbaren Korrekturen und die schon existierenden Ergebnisse für die W-Paar-

Produktion und W-Zerfällc verwendet. Für die îeellcn Korrekturen wurde der komplette

Bremsstrahlungsprozess eJ~e~ —y 4 Fcimionen-L7 berücksichtigt. Dieses Programm ist der

erste Monte-Carlo-Gencrator, dei alle Strahlungskorrekturen in ö{at) zur Vicr-Fermion-

Produktion in Doppelpolnäherung beinhaltet. Mit ihm wurden numerische Ergebnisse für

den totalen Wirktmgsqucrsclmiil. Winkelver feilungen und invariante-Massen-Verteilungen

erzeugt.
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Chapter 1

Introduction

The Glashow-Salam-Weinbeig model [1], known as the Electroweak Standaid Model

(SM), is very successful in describing electroweak phenomena. Since the SM is a spon¬

taneously broken gauge theory, it is lenonnalizable [2] and hence observables can be, in

principle, calculated to anv finite orclei in perturbation theory.

An important feature of the SM lies in the appearance of elementary gaugc-boson-self-

interactions resulting from the non-abelian structure of the gauge group. The 7WW and

ZVVW vertices can be studied in detail at the e4e~ collider LEP2 [3]. Beside the investi¬

gation of (he triple-gaugc-boson-couplings, LEP2 also allows for a precise determination

of the W-boson mass. Two methods are used [1, 5]: the measurement of the total cross

section near threshold and the reconstruction method, where the Breit-Wigncr resonance

shape is reconstructed from the decay products of the W bosons.

LEP2 is operating above the W-pau production threshold and produces about 101

W paiis. Hence, the typical experimental accuracy is of the order of one to a few per

cent. The accuracy of the W-boson mass measurement is expected to be < 50MeV at

LEP2 [4] and about 15McV for a future linear collider [6]. This experimental accuracy

should be matched or better exceeded bv the precision of the theoretical predictions. Since

W bosons decay very rapidly into light fermions, the actual reaction under investigation
is e4e~ —> W WV~ —> 4 fermions.

Figuie 1.1: Diagiams with two resonant W-boson piopagators contiibutmg to e4e —> 4/
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In the LEP2 energy region, the lowest-order cross section is dominated by the diagrams
that involve two resonant W bosons, as shown in Fig. 1.1. All other lowest-order diagrams
are typically suppressed by a factor T-w/My/ ~ 2.5%, but may be enhanced in certain

phase-space regions. Since all these contributions are required at the one-per-cent level,
the complete lowest-order matrix element has to be taken into account.

Furthermore, the implementation of the finite width of unstable particles, such as

the W bosons, has to be done piopeilv. A finite width is necessarv in the phase-space
region where the unstable paiticle becomes resonant, i.e. nearly on shell, otherwise the

cross section has a non-intcgiable unphysical singularity. The finite width is naturally
introduced via Dyson summation, where the width auses from the imaginary parts of the

resummcd self-energy diagrams:

— V
7.2

_ 1\ [2 L—, k> - M02

1
(l.O.U

k2-M$ + Zv(k>y

where M0 symbolizes the bare mass of the unstable particle, and >JV denotes the one-

particle-irreducible self-energv.

However, since only a part of higher-oidcr corrections are included in this way. the

whole result is gauge-dependent, and wrong results can be obtained in certain phase-space
regions [7, 8, 9, 10]. The reason is that Ward identities are violated and, hence, gauge

breaking terms can be amplified in the presence of small scales, or unitarity cancellations

do not take place properly. Ward identities arc, in particular, ciucial for processes with

nearly on-shell virtual photons or for the production of longitudinal polaiizcd gauge bosons

at high energies.

For the calculation of the tree-level processes e '"e" —> 4/ and e
'
c~ —>• 4/7, three

schemes for the implementation of the finite W-boson width aie compared in Chapter 2:

the constant-width scheme, where the imaginary part of the self-energy is replaced by a

constant, the running-width scheme with the naive nmning T(k2) = l\9(k2)k2/M'v. and

the complex-mass scheme, where the boson masses are replaced by complex masses in all

couplings and propagators and, in particular, in the definition of the weak mixing angle.
In general, the first two schemes violate Ward identities [9, 10], while the third scheme

fulfils all Ward identities.

A gauge-invariant approach for the introduction of the finite width is the pole expansion

[11, 12] outlined in the following. The complete matiix clement for a piocess, with an

unstable particle in the intermediate state, can be wiitten as

where the residue is denoted by /. and the mass of the unstable particle bv M. The

symbol n summarizes all terms that are regular at I2 — M2 Both the location of the

complex pole, which corresponds to the mass of the unstable particle, and the residue are

gaugc-imariant quantities. For stable particles the mass lies on the ical axis, for unstable

paiticles m the complex plane.
In peituibation theoiv. the complex mass 4/ is determined bv the location of the pole

after Dyson summation (1.0.1).

M2 = M2 - ^ {}f2) - M2 - i4/\ r\ . (1.0.3)
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where Fy and My denote the finite width and the leal mass of the unstable particle,
respectively. After expanding the self-energy about M2, the inverse propagator reads

k2 - M2 + Ev(fc2) s= [1 + s;,(M2)](A-2 - A//2) + Ö ((k2 - T/2)2) ,

and the matrix element can be rewritten in the form [12]:

M --- ri—7Trr^-i-i..?.\ + N(k
>ö) =

uk2 -
M(j + ^ (/,'')

*

v ' y

[i + S'v(il/2)](^ -M2)

i?(Ä;2.Ö) R(M2J)
k2 - il/2 + Ey(Ä'2) [1 + Sb(TP)](£-2 - M2)

N(k\9), (L.0.4)

where TV includes the non-resonant diagrams, and 0 summarizes all kinematic variables,

except for the invariant mass k2 of the unstable particle. Since the complete amplitude
is gauge-invariant, the single terms of the Lament expansion about the squares of the

complex mass are also gauge-invaiiant. The first term on the right-hand side of (1.0.4)
corresponds to the leading teim in a Laurent expansion about A2 — A/2, and dominates the

cross section in the resonance region. The remaining teims aie finite in the limit k2 —> M2.

Therefore, a reasonable and gauge-invariant approximation is to neglect the non-leading
terms and to keep only the resonant term. This simplifies the calculation considerably,
since all obviously non-resonant diagrams can be left out fiom the calculation from the

beginning.
In Chapter 3 and 4, the pole scheme is applied to the radiative collections of four-

fermion production. Radiative collections are, m general, required in the theoretical

predictions for four-fermion production, in order to match the accuracy of LEP2 of about

one per cent. The full O(a) calculation involves PP-IO4 diagrams and is, therefore, ex¬

tremely complicated. Since the non-doubly-iesonant radiative corrections are of the order

of oTwln(.. .)/(7rMw) ~ 0.1%, the restriction to the doubly-resonant corrections is a

reasonable approach.
After the introduction of the finite W-boson width, the matrix element reads

R+-(k2k2,0) R+(k2,k2,0) RJk2k2,6) 1T/,9 ,, „N ,

where k± aie the momenta of the lesonant virtual W L bosons and the factoi [J |-Ey(4/2)]
is already included in the definition of/?__

.
R

.,
and i?_'. In double-pole approximation,

the matiix element is expanded about the squares of the W-boson masses and all non-

doublv-icsonant terms aie neglected:

M tcW-w (L06)

The double-pole approximation simplifies the calculation eonsidciablv, since only dia¬

grams with two lesonant W-bosou propagators have to be calculated. Furthermore, a

! We use the the on-shell icuoimali/atioii scheme of Ret 43], whcie Re{3]'N (Vv)} =• 0. In this icnoi-

mali7cition scheme, the deviation ot the -elf eneiü,\ at the complex pole Y,^ (!/') fields only C2(rv2) coi

icctions Hence, the factoi [i + 1^ (~\C)] is neglected m the follow ine, chapteis

3



large part of the doubly-resonant radiative corrections are included in the factorizable cor¬

rections. The factorizable collections are composed of the on-shell W-pair production, the

two resonant W-boson propagators, and the two on-shell W-boson decays. The remaining
radiative corrections are called non-factorizable and are explicitly calculated and discussed

in Chapter 3.

The double-pole approximation is a good approximation if the doubly-resonant con¬

tributions dominate the cross section. If these aie suppressed, as close to the W-pair

production threshold, the other confiibutions become impoitant. This is also true if non-

doubly-rcsonant terms aie enhanced, as e.g. bv neatly on-shell photons. These tenus can

be suppressed by applying appropriate cuts on the phase space.

Note that the pole expansion only woiks if the on-shell limit exists. Since the non

factorizable corrections, given in Section 3.3. involve on-shell-divergent terms, like ln(/;'^ --

M2), the pole expansion of these corrections has not such a simple form as in (1.0.6).
Thus, the non-factor izing collections are calculated for off-shell W bosons, while the limit

k\ —> M2 is performed whenevei possible.
With the results of Chaptei 2 and 3, a Monte Carlo generator is constructed in

Chapter 4 that includes all doublv-iesonant (9(a) radiative corrections to four-fermion pro¬

duction. More precise, this geneiator includes the complete tree-level matrix element, the

virtual corrections in double-pole approximation, and the complete bremsstrahlung pro¬

cess. The cancellation of the soft and collinear singularities is achieved within the subtrac¬

tion method as discussed in Section 4.2. Although the teal non-factorizable collections aie

calculated in Chapter 3 in double-pole approximation, the complete biemsstiahlung pro¬

cess is taken into account in Chaptei 4. In this way, the problem of overlapping resonances

is avoided (see Section 4.1.3). The Monte Carlo program of Chapter 4 is the first generator

that includes the complete (9(a) coircctious to the processes e
'
e~ —» W ' W~ -> 4 fermions

in double-pole approximation.
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Chapter 2

Tree-level processes e+e— —» 4/( + 7)

While the most important process at LEP2 for the studies of the gauge sector in the

Electroweak Standard Model is certainly e4e~ —> W hW~ —> I/, many other reactions

have now become accessible. Besides the 4-fermion-procluction processes, including single
W-boson production, single Z-boson production, or Z-boson-pair production. LEP2 and

especially a future linear collider allow us to investigate another class of processes, namclv

e4 e~ -> 4/7.
The physical interest in the processes c*~o~ —> 4/7 is twofold. First of all, they are an

important building block for the radiative corrections to e4c" —> 4/, and their effect must

be taken into account in order to get precise predictions for the observables that are used foi

the measurement of the W-boson mass and the triple-gauge-boson couplings. On the other

hand, those processes themselves involve interesting physics. They include, in particular,

triple-gauge-boson-production processes such as W '"W~7, ZZ7, or Z77 production and

can therefore be used to obtain information on the quartic gauge-boson couplings -yyWW.

jZWW, and j'jZZ. While only a few events of this kind are expected at LEP2, these

studies can be performed in more detail at future linear e4o~ colliders [14].
Some results for e+e~ -» 4/7 with an observable photon already exist in the literature.

In Refs. [15, 16] the contributions to the matiix elements involving two resonant W bosons

have been calculated and implemented into a Monte Carlo generator. This generator has

been extended to include collineai bremsstrahlung [17] and used to discuss the effect of

hard photons at LEP2 [18]. The complete cross section for the process e4e" H> ude~//07
has been discussed in Ref. [19]. In Ref. [20], the complete matrix elements for the processes

e4e~ —» 4/7 have been calculated using an iterative numerical algorithm without referring
to Fcynman diagrams. We are. however, interested in explicit, analytical results on the

amplitudes for various reasons. In particular, we want to have full control over the imple¬
mentation of the finite width of the viitual vector bosons and to select single diagrams,
such as the doublv-resonant ones. No lesults for e4 e~ —> 4/y with e4e~ pairs in the final

state have been published in the past. The results of this section are published in Pef. [21]
and agree very well with the recent calculations of Ref. [22], where finite-mass effects due

to nearly collinear photon emission arc discussed foi the process e4c~ —> ud/rf^y.
In order to pcrfoim the calc illation as efficient as possible we have reduced all processes

to a small number of generic contiibutions. For e~e~ -v 4/. the calculation is similar

to the one in Rcf. [23]. and the genenc contributions correspond to individual Fcynman

0



diagrams. In the case of e he~ —> 4/7 we have combined groups of diagrams in such a

way that the resulting generic contributions can be classified in the same way as those for

e+e-- _> 4/'. As a consequence, the generic contributions are individually gauge-invariant
with respect to the external photon. The numbei and the complexity of diagrams in the

genetic contributions foi c4e~ —> 4/7 has been 1 educed by using a non-linear gauge-fixing
condition for the W-boson field [24]. In this wav. manv cancellations between diagrams are

avoided, without any further algebraic manipulations Finally, for the helicitv amplitudes

corresponding to the generic contributions concise results have been obtained bv using the

Weyl-van der Waerden formalism (sec Ref. [25] and lefeiences therein).
After the matrix elements have been calculated, the finite widths of the resonant par¬

ticles have to be intioduced. We have done this m diffeicnt ways and compared the

different treatments foi e4o~ —> 4/ and e
! e~ -v I/). In particular, we have discussed a

"complex-mass scheme", which pieserves all Waid identities and is still rathei simple to

apply.
The matrix elements to e^e --> 4/ and e ~c~ —> 4/7 exhibit a complex peaking be¬

haviour owing to propagators of massless pat tides and Brcit-Wignei resonances, so that

the integration over the 8- and 11-dimensional phase spaces, respectively, is not straightfor¬
ward. In order to obtain numerically stable results, we adopt the multi-channel integration
method [23, 26] and reduce the Monte Cailo error by the adaptive weight optimization

procedure described in Ref. [27]. In the multi-channel approach, we define a suitable map¬

ping of random numbers into phase-space variables for each arising propagator structure.

These variables are generaled according to distributions that approximate this specific

peaking behaviour of the integrand. For e4 e~ -7 1/ and e+e~ —> -I/7 we identify up to

128 and 928 channels, respectively, which necessitates an efficient and generic procedure
for the phase-space generation.

2.1 Analytical results

2.1.1 Notation and conventions

We consider reactions of the types

e4(p+,CTa)+C- (/)_.(!_) -> MÄ7.CT1) I /ofe.CT,) + M/,TtT3) + /t(Ä7.ö-4), (2.1.1)

c4(^,cT,) + e~(p_.<7_) -* /| (Aj, 07) + f2(k,.a2) + f,(k^ a,,) + f{(kha{) 1 y(h,X).

(2.1.2)

The arguments label the momenta p+, k% and helicities a, = ±1/2, A — Ti of the cor¬

responding particles. We often use only the signs to denote the helicities. The fermion

masses aie neglected cvcn*where.

Foi the Fcvnman iules we use the conventions ol Ref. [13. 28], In particular, all fields

and momenta are incoming. It is convenient to use a non-linear gauge-fixing term [24] of

the form

£K -

- I^'tt;- -4 u( i" - '-Z'")ir„ _ jyuf/>4
2

-l-(0»Zt, -MzXf V^,)2, (2.1.3)
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where cpJ and y are the would-be Goldstone bosons of the W± and Z fields, respectively

With this choice, the c/>4WT./l vertices -vanish, and the bosonic couplings that arc relevant

loi e4e~ --> 4/7 read

W,1, A
>n t-

- -i( q\ n n [q, P{k h)fi~ 2clm M p
+ 29^1 „]

- „9
iec/i u 11 9/» <V (2 11)

with V = A, Z, and the coupling factoi s

g ni u
~ 1 Ç/7U 11

S

(2 L 5)
w

Note that the gauge-boson piopagatois ha\c the same simple form as m the 4 Hooft-

Feynman gauge, 1 e thcw aie piopoitional to the metric tensor c///; This gauge choice

eliminates some diagrams and simplifies otheis ovmg to the simpler structure of the

photon-gauge-boson c ouplmgs

The vectoi-boson-fennion fcinuon couplings have the usual form

te7/ £ tf A/,^0' (2 1 6)

wheie ^t =- (11 7s)/- J he corresponding coupling lac toi s icad

<ß,/f=--Q, <f/fJ - ~Q, + -

1:
-Or

c« s.
Ou f j x2<7

dn (2 17)

wheie Q1 and l~l t
— 4=1/2 denote the iclatne charge and the weak isospm of the feimion

/,, respectively, and // is the weak-isospm paitnei of / lire colour factoi of a fcrmron /,

is denoted b\ i\rcf ,
r e \)C(] nil

i and A^,,^ = H

2.1.2 Classification of final states for c+e —> 4 /

4 he final states for ( 'e v 1/ have ah each been classified 111 Refs [29 23 30] We

introduce a classification that is vuv close to the one of Refs [29 30] It is based on



the production mechanism, i.e. whether the reactions proceed via charged-cmient (CC),
or neutral-current (NC) interactions, or via both interaction types. The classification

can be performed by considering the quantum numbers of the final-state fermion pairs.
In the following, / and F denote different fermions (/ / F) that are neither electrons

nor electron neutiinos (/, F ^ c~,z/c), and their weak-isospin partners are denoted by

/' and F', respectively. We find the following fl classes of processes (in parenthesis the

corresponding classification of Ref. [30] is given):

(i) CC reactions:

(a) e4c "

-7 ff>FF\ (CC11 familv).

(b) e4e -

---) /yee4,/'/'. ( CC20 famih ).

(c) ehe -^//V/yc. (CC2Q family),

(ii) NC reactions:

(NC32 familv),

(NC4-16 ïamWv).

(NC48 fzmilv).

(NC{-36 family).

(im.r.1,3 familv),

(NC21 family).

(NC4-9 family),

{mix56 family).

The radiation of an additional photon docs not change this classification.

2.1.3 Generic diagrams and amplitudes for e+e~ —> 4 /

In order to explain and to illustrate oui generic appioach we fiist list the results for cH e~ -7

4/. All these processes can be composed from onlv two generic diagrams, the abelian and

non-abelian diagrams shown in Fig. 2.L. All external feintions f0_ f are assumed to be

incoming, and the momenta and helicities aie denoted bv p(l f and <7a,..,j, respectively.
The helicitv amplitudes of these diagrams are calculated within the Wcyl-van der Waerden

(WvdW) formalism following the conventions of Ref. [2o| (see also references therein).

Leptonic and semi-leptonic final states

We first tieat purely leptonic and semi-leptonic final states. In this case, none of the gauge
bosons in the generic giaphs of Fig. 2.1 can be a gluon. and the colour structure trivially

ni

(a) e4e~ -> ffFF,

(b) ehe_ -» ff.fl

(c) c4c~ ->e-c'/f,

(d) e4e~ —> e~e4e~e4.

Mixed CC/NC reactions:

(a) 0+0- -> ./'/./'/',

(b) c4e~ -> //oPp//,

(c) e4e~~ -7 veï>eveu?,

(d) c+e- -7 vevec~e+,

8



a) abehan graph

fa{Pa CTa)

fb(pb,(Tb)

fc(Pc °c)

fdipd 0d)

LiPc ae)

ffiPj Vf)

b) non-abelian graph

fa{Pa <rn)

h(Pi (7„

Figrue 2 I Geneiic diagrams lot c'c -7 1/

leads to a global factoi \^\^, which is equal to I oi 3 aftei summing the squaied

amplitude ovei the coloui degiees of fieedom The icstilts for the generic amplitudes are

Muu '(pa Pb Pc,Pd Pt Pf)
—

-

U lA
A A nTl- n°'> n1 ' rfl

— it. oa _0.bo<Tt--o-i<V -ff) y\]_fn} <R / j (l\lf ]pJ\r,fjf

P\l(Pc + Pd)P\ {Pe+Pf)
,y a 7 i x

x .

_—i-
12 (Pa, Pl , Pc,Pd PejPf)

(a 4 Pc +Pf)2
[2 18)

AlMUT {Po,Pb Pc Pd P<,Pf)

x -Pi [Po I a)Pu Oc 4 Ay) Pit (A +iv) 4(rt(p0)p&,pc,??(/,pe,i7), (2 1 9)

where the vector-boson propagators aie abbiev ldted bv

P' W =

JT-Mi
I - I Z II (7 il/4 - ÜF 0 (2 1 10)

(Ihe case ol the gluou is included foi later convenience ) The auxilian functions \?a
0c<y

and 7I30 are evpiosscd m terms of \A v clW spmoi pioclticts

At++(Pa Pb Pc Pd Pc Pf) - {PaPc){pbPjY{(PbPl) {plP) + (PdPlY{PePl)),

A%+~(pa P},pc Pd p( Pf) - 42LH (po Pb Pc Pd Pf Pe)

+t~V(Pa Pb P< Pl Pt Pl) ~ U ^(Pa Pb Pd Pc Pc Pf)

Aj~~(pa pb p( Pl pL pj) = 1/ Hpa Pi p, p Pj pc)

Arca,(p-, Pb Pc pi p pi) - (4^t
t

(p-, p, p p, p pi)) (21 m

M (P Pl P Pl P Pf) -

{PlP N PlPl) (P P ){P P ) r (PlPl) (PlPl) (P P )\PrPl)

\ (PlPtS PlP 1^ \P P )\P P,

^(Po Pl Pc Pl Pc Pf) = I [Pl Pa P Pl P Pf) (2 1 12)

0



The spinoi pioducts are defined by

pq)-c p\qB -2^/poQo -**
cos

Op 9q
— sin —

2 2

k/),

2
(2 f 13)

wheie p \ q [ aie the associated momentum spmots for the momenta

if — po(l sm 9P cos ôp smt9p sm Op, cos (9p),

q'1 po(f smog cos oq ynO, sino,, cos 9q) (2 f 14)

Incoming fermions aie tinned into outgoing ones bv ciossmg, which is peiformed by

mveitmg the conespondmg feimion momenta and helicities If the gcneiu timet ions aie

called with negative momenta —p —q it is understood that only the complex conjugate

spmor pioducts get the conespondmg sign change We illustrate this bv simple examples

A(p q) =- (pq) = i(p -q) -= A(-p q) = A(-p -q)

B(p,q) - (pq)'- =- -B(p -q) - -D(-p q) - B(-p,-q) (2 1 15)

We have checked the results loi the geneiic diagiams against those of Rcf [23] and found

agi cement

Using the results foi the geneiic diagrams ol I ig 2 1 the helicitv amplitudes foi all

possible piocesses involving siv external feimions can be bruit up It is convenient to

construct first the amplitudes foi the piocess tvpes CC(a) and NC(a) (see Section 2 12)

m teims of the geneiic functions (2 f 8) and (2 1 9), because these amplitudes arc the basic

subaniphtudes ol the other channels Ihe full amplitude foi each piocess type can be built

up from those subamphtudes bv appropriate substitutions and hneai combinations

We fust list the helicitv amplitudes lor the CC piocesses

_
kaO\ a ~a\ —en -a

-n it

£ JVi\ u »

ai(p+ p -Ai I -> -Ai -A i)
~^~a 7"

ni.P\ p-
— Al5 — Ä2, — A3, —A ,)

>J Cry (J-, CT+ O- M -ffl , ,

jVi\ u l~ k

.,-t -rri <T| er

'Vlt UU

Tl

lu \

Ml \

A2,p^ p- -h, Ai)
ffl n

(-A3 hi p p -f |,-A2)

MÛÏ""
-ff ^T,r 7

( A, -Ä, -A, ~h,P„P-)
uMT"'-^-*1-" ' r

( A, -At -h -/> P+ p )\, (2 1 16)

Af
T__ T_ Tl 1 li I

CCb (p ;) AL A h J i)

= M[\: ^ T'T1l/,_p_ A, A A,/,)

-Xcr"1"7 "> -A, A, ;. A /,) (2 i 17'

M°+°-°i '

ca (A P- A i A A, /0

- Vf///
T T

T^'(p p- Ai /W A,)
T_

"*(—A3 p- At / -^ At)_ ^-r,
t en J

(21 18)

to



The ones for the NC processes are given by

.M^I~ai(7^ffl(p+,p^,A,,A2,A3,A,)

hi --> i

X,\
a | er — er i —a en,- a i

0^,p-,-Al,-A2, A3,--At)

+ ^Cw
Oi-T_ — (T3 — Tl — Tl — T

(Pl A A !,
- A i, —At, —A.-

M-(rj -T (Tl (I -T) -TW , , , ; \

\,\ (-At h Pt- P~, ~h, -At)

( h Ai ph,p-, At, A2)i A ^ CT? n TU T (Tl
- r

I Al^

J— >1 —<7
—1T3—OlT|

T_

r-A^Ï""
-3-, m

-Ml _^ -A^-A^.p )

-t-M"?^'"^""""-^^ -'» -A.L, A2,pt,p^) (2 1 19)

^iCTt CT_ (Tl en 03 Tl

lN< b (]^ p_ At A2 A 3 / i)

A Cà

fff.} 0 (Tl <T2 (7? (Tl

lNCa

J<}:~^a
<T

"0)u A, A, A2 A3 A,)

,<k: "?ff

"''(p, p ,A„A2,At A,)

-Kcc° °102,J?01(P+/^ At A2 /, /t)

=

AC,f ^0^l(p+ /^,Ai,A2,A3,At)
.^~(Ti (T_ ~ffy (T> (TT er 1

•/vlNCa

, i(T-l (T_ 0-1 (T> <T> 0\

JVi\Cc\

( Ai p ,-p, A2 A, Aj),

(p+,P-,Ai,A2 A3 At)
^jtTa CT_ (Tj CT 2 (73 CT,

lNCa

ver, cr

liNC 1

(A P- Al A2 A3 A t)

lXCx

-m;"31"1" ff'ffl

l\TCa (-A? p_ AbA2 -p+,A|)

+ ^tN^"ff,ff, "Hd a, a2 -p+)At)

l-AVV" T" ,W,("( ^P- AA A2 At,At)

Finally, the helicitv amplitudes foi ievictions of mixed CC/NC tvpe read

Kt/No<M* "(A />- At A2A3 At)

M^:-ri*a t,(p-.-p- h,h h,h)

tillMl\:~ 7lTlT,ff

(p, P- Ai Ai A, A

(2 1 20)

2 1 21)

(2 1 22)

'2 1 2=5)

A4(l/TnU; '(Pt P- A1 A9 A3 Ai)

X(_;-°
T T

T'1A P- Ai A, /, /,)

-WrcV7
r'^" "7

(-^ A» At -p_ ~p+,A2) 2 121)

\ // T+
r- M r 7 T

-V1C( xu (P P- A s A / 3
/ i )

w;i;
riT T

T'p y>- At a a, /t)

M
\c 1

l(;> p F, A, /, /ti

LI



-^GCa
" IJ"ai0i °

( Aj, A2,A-,,-p ,-p+,A4)

+ A^cca"4 ^"""'(-lu-hu^-P ,-ph,A2)

+ McTr<r^ff+(ri<T1^ ( A3,-A2,At, p,-p^i)

A4c7\-ff,-ff+CT
ai-ff

(-A3 A^Aj.-p-.-pu A2), (2125)

A*cc/VdlT ""> P-ULUU)

= M^l
Tl r

^^(px p_ At A 7 A3 A,)

-^T/ ,,T -a

°\ Up At a -pH;,)

-Mcc'
T3T1

Mr(p, p- At At,/3 /2)

f.MecraiCT1
T

',T(p+ -/. *J P ^2)

+ .MCcV
" " T+" (-^ P-^i.Ai, p, U)

M7c\
T>a,'r ~'*'T

{~U A, A,, p_, p+,A>) (2 12b)

The relative signs between contiibutions of the basic subamphtudcs A4cca and A4nct, f°

the full matnx elements account for the sign changes icsultmg from mtei changing external

fermion lines

Foi the CC icactions, the amplitudes Vf( ( ,, ate the smallest gauge invariant subset of

diagrams [31] In the case of Nt icactions the amplitudes WInci aie composed of three

separately gauge-invariant subamphtudcs consisting of the first two lines, the h\o lines m

the middle, and the last two lines of (2 1 19)

Hadronic final states

Next we inspect pruelv hachonic final states 1 e the cases where all final-state feimions /,

are quarks This concerns onlv the channels CC(a) NC(a), NC(b), and CC/NC(a) given

m Section 2 12 The coloui structure of the quarks leads to two kinds of modifications

Firstly, the summation of the squaied amplitudes ovei the coloui degiees of freedom can

become non-trivial, and secondlv the possibihtv oi \ntual-gluon exchange between the

quarks has to be taken into account Aloie pieciseb, there are diagiams of tv-pe (a) m

Fig 2 1 in which one of the gauge bosons 1 1 ) is a gluon The other gauge boson ol V7 2

can only be a photon or Z boson since this boson has to couple to the incoming e4e~

pair Consequently theie is an impact of gluon-exchange diagiams onlv foi the channels

NC(a), NC(b), and CC/\C(a) but not for CC (a) This can be easib seen bv inspecting

the genetic diagiams in Fig 2 1 the présente of a gluou exchange lequires two quark

anliquaik pans qq m the final state

We first inspect the coloui stiuctuie of Ihe pmch electroneak diagiams Since the

colour stiuctme of each diagram contiibutmg to the basic channels CC(a) and \C(a) rs

the same the c onespondmg amplitudes factonze into a simple coloui pait and the colour

singlet amplitudes ,V4t c., and l/\ given 111 (2 1 fb) and (2 1 19) icspcctruh The

amplitudes foi NC(b) and CC /NC ta) ik composed fiom the ones ol CC (a) and NC(a) m

a way that is analogous to the single t case but new the coloui indices c of the quaiks /
have to be taken into account Tndu dmg the electioweak amplitudes for ftilb hachonic

final states bv had ey and vuititiu, coloui indices explicit h v\c get

t Â T T CJ\ Ü <T% Tl J , 1 j 7 \

HtUHdcvcc c3c,(Pl P fl } U U)

12



- K4w
l

'"'(PHP ^uk^k^k^S^Jc^ (2127)

^NcThad'ew c'cVc^ cA(P I > P > ^1 > ^2, A }, A4)
= M^

ffl T a

°l(j,+ p_ JUUU At)eLlC eL,Cl, (2 I 28)

, V(T| 0„ (Tl (T (73 M / , , , , N

-MNCbh1dt« or C3 dPl P M A A A)

>fxClJ
T1T

T17'(P P- U U U,U)8n< 5nci (2L29)

M{çl
na a

n{p p Juk2 U I 0<W <W,
T T Tl I 71 7 |

•^CC/VVh^clMV O t C,fl(^P^lL/^^

,v4(Clff~
Tl °" ff

^(/a. p_ Ai.Aj A3,At)e;Clf à
C Cl

Xc, 1!'

(PtP UUU,h)5c,cl6Cic (2 MO)

In the calcillation ol the gluon-exchange diagiams ye e an also make use of the 'coloui

smglet" icsult (2 f 8) foi the geneiic diagram (a) of Fig 2 1 after splitting off the colour

structure appiopnatelv Since each of these diagiams involves exactly one internal gluon

exchanged by the two quark lines the conespondmg matrix elcmenis can be deduced m

a simple way from the diagiams in which the gluon is îeplaced b) a photon The gluon

exchange contributions to the channels NC (b) and CC/NC(a) can again be composed fiom

the ones for NC(a) Making use of the auxihan function

AC" ff,ff ff0(T1(Pi,P ,At A2 A3,At)

A2
E [ Mr

T °'r ""-"(-At -Ao,^p_ U -A,)
QlC7sP2

3 t'y 7

y Mr
"lTua ~ax

*(-U -U,p»p- -Ai -h)

hWr
T — r^ ( A, A2 A3, Ahph,p_)

+ Mr °l ff'-ffff»-T( U-U,-h, A,,p,,p )],(2f 31)

where gb — vATfA is the strong garrge coupling the matrix elements involving gluon
exchange explicith lead

A Arr-X- ' ^1 ' Ti 'I / 7 J 7 7 \

•^NtalnclJuinL (63 IP i P M ^ > A A J

- ^:+
T aia a

t,(p- p >i A7 A3 AO ; ync \«C(, (2132)

-^Acbhid gluon < t 3 AA A>- A A; A Aij

vr T licr a

t,(/a p h a A3 /i) ;\?r \?Jtl
VI '^T '

'(P P- /, / A, /1) ;\«c A
,

(2 133)

^CC/NC,1 111 (/' P A / A /,)

- W (A P Ai /W, /j) ;\lf \« (2 131)

The colour stiuctuie is easfiv evaluated bv makin_,us( ol t he compl. teness relation \ \°;

p\7t>/,/ I 2c) laß (01 the Gell Mann matrices \

n



The complete matrix elements for the fully hadronic channels result from the sum of

the purely electroweak and the gluon-exchange contributions,

>(Th,(T- ,(T1.(T..,(Tj,(7 1
_

</(7 c,0_,(T1 ,(T2,ö"3, (7 1 • > (7 H ,(T_ ,(7! JJ2 ,<T,) ,(74 /~-| r> r \

^ 1
. ,had,ri,C2 tj fj

^ l had ew.ci/ 2,c^,ci
' J

,had,gluou,c i,c >,(\3,C4
• ^Z.l.ouj

The gluon-cxchange contributions aie separately gauge-invaiiant.

For clarifv. we explicitly write down the coloui-summed squared matrix elements

for the fully hadronic channels. Abbreviating M ,+
a- "^"^

vp+,p^, kai kb, kc. kd) bv

A4, (a, 6, c, d) we obtain

E |ATccaAd(t,2,3,4)|2 = 9|yv4cCa(f)2.3.4)!2, (2.J.3C)
olocir

E |A4NCa)had(l,2,3,4)|2-9|,MNCa(1.2.3, i)|2 + 2jWfe(l. 2.3,4)|2, (2.1.37)
colour

12E l-^NCb.had(l,2,3,4)|

colour

- 9|ATNCa(f, 2, 3, 4)|2 -1- 9|yVtNCa(3, 2,1. 1)|2 - 6 Re {A4XCd(l. 2. 3, \)MNCa(3. 2,1,4)}

+ 2|A4R(i,2,3)4)|2 + 2|-v4g(.3,2,l,4)I2 + iRe{,V4e(l,2,3,4)A4^(3,2,l,4)}
^8Re{A4Nca(l.2,3.4)yv4:(3,2,1.4)}-8Re{A4NCa(3,2,l,4)A4;(l,2.3,4)},

(2.L.38)

E l-McC/NCa,had(l,2,3, 4)[2
coloui

= 9|A<NrA(t,2)3,4)|M-9|A1cca(l,4>3,2)|2-6Rc{>(NUa(J.2,3)4)Alc;Ca(l,4)3)2)}
+ 2|A4g(l, 2, 3.4)|2 - 8 Re {A4CCa(F F 3. 2)M\{\, 2. 3, 4)}. (2.1.39)

Owing to the colour structure of the diagiams, a non-zero interference between purely elec¬

troweak and gluon-cxchange contributions is onlv possible if the four final-state fermions

can be combined into one single closed fermion line in the squared diagram. This im¬

plies that fermion pairs must couple to different resonances in the electroweak and the

gluon-cxchange diagrams, leading to a global suppression of such interference effects in

the phase-space integration (see Section 2.3.5).

2.1.4 Generic functions and amplitudes for e+e"~ —> 4 / -4- 7

The generic functions foi e4c~ —^ 4 A- can be constructed in a similar way. The idea is

to combine the contributions of all those graphs to one generic function that reduce to

the same graph after removing the îadiated photon. These combined contributions to

c4e~ —7 i/y are classified in the same wav as the diagiams foi the corresponding process

c4c~ -> 4/, i.e. the graphs of Fig. 2.1 also represent the geneiic functions for e4 e~ 7 -if').
Finally, all amplitudes foi 0" c —^ 1/- can again be constructed fiom only two geneiic

functions. Note that the numbei of individual Fevnman diagiams 1 anges between 14 and

1008 for lire valions processes. We note that the geneiic functions can in fact be used to

14



constiuct the amplitudes for all piocesses involving exactly six external fermions and one

external photon, such as eA -7 4/7 and e47 -7 5/
As a virtue of this appioach, the so-defined geneiic functions fulfill the QFD Ward iden¬

tity loi the external photon 1 e replacing the photon polanzation vectoi by the photon
momentum vields /cio foi each geneiic function This is simph a consequence of clec-

tiomagnetic (haige conservation Consequentlv m the actual calculation 111 the VUdW

formalism the gauge spmoi of the photon chops out m each contribution sepaiatelv

Vssninmg the external fermions as incoming and the photon as outgoing, the geneiic

functions lead

Mir
,C<J! T a>

(QaiQb Qr Qd Qc Ql Pa Pb P, Pd Pc P/-A)
fff

- -lv/2( 3)a -r 5„ _ff 6ae _T/ q(r f
q°

f)l g^fchglyfef

(Qa Qb;Qc Qd Qe Qf Pa Pb Pc Pd Pe,Pf,A),x 1£
r a x

'"" " 7C(T' 1C (Tf X(QcnQb Qc Qd Qe Qf Pa Pb Pc , Pd Pe,Pf U

(2 1 -10)

Mutt

= - lv/2cA(T, ^pA , d„,-dffe u)crj _ (QL - Qd)cj\ n u q"lf fh97 lcfig^ fcfi

X A'y X{Q0}Qb Qc QchQe Ql PcnPb Pc Pd PcPf^U,

with the auxiliary functions

M ' ' h (Qcn Qb Qc, Qd, Qc Qh Po < Pb Pc, Pch Pe, P/, A ) - {pap( ) |
A,(A+Prf)Pt (a \-pi)

{PbPjY ( Qc ~ Qd (PaPc)

:>i if

X

(p0A) \(pb f-A IMA)2 (PcU

Qf- Qe (PaPc)

PbPdYiPbPc) + (PdPfY'iPcPr))

( (PaPdTiPoPc) 4 (pcPd)
*

(PcPe))
(Pa -rPc b Pd)2 (pfA)

QbijPaPd)'] (PaPe) 4 (PcPd) *(PcPc)){(PbP])*(P<,Pb) (pfk)*(pak))
(Pa fPc+Pd)2(PaUlPbU

(Qa +Qc - Qd)(PbPr(PcPd)*(PaPc)((PbUk(PbPe) ~ (PlUYPcPl)
(Pa ^ Pc + Pd) 2 (Pb + Pc \ P / )

'

(Po A )
Qd -(Qc- Qc)2(Pd UU (Pc+Pd)p

,

l np
,

_, w x
TT"TATA „T2 —pu(Pc ) Pd~k)Pï (p,4 Pf)(pbPf)
\Pb+P, bp/j

v

(P<Pcl)((PbPcU(PbPc) b (PdPiy(PePf)) + {PcU((PbU (PbPc) -(P/A) (PePf))

(pcA)(pf,A;

— - — — A, ipr p,)Pt (p, A'/ A)
(p +pc t />,)

x
((PbPf) \Pcl>y + <P/AX pJ)){(PaPd) (ihPc) r\ptpi) (PcPc))

P U^PfU

^-'(a C>6 0, (?/ Qc Qf Pc a p Pt p pi u

= ir^iQa Qi, Q Qc -Qf -Q p pb Pc p pi p F)

n



H- I
(Qa , Qfc, Qf , Qd, QcQf, Pa, Pb, Pc , Pel, PcPf, U

= /l^++(Qa,C16,^Qd,--C}c,Öe,C1fA^Ab,Pd,PC,Pe,P/,A),
Tl

Tl

+ 1
(Qa- Qb- Qc, Qd, Qt , Q f-Pa,Pb,PcPd,PcPf,U

= A), h ' * (Qa,Qb- -Qd- - Q, -Qf, " Qc , Po-Pb- Pel, PcPf,Pc A')-
-H I h (Qa, Qb- Qc- Qd, Qc, Q /. Po • Pb- PcPd- Pc -Pf- A )

- 42' H h(Qb,Qo,- Qc- Ql--Qc--Qd-Pb-Pa-Pe-PfiPc,Pcl,U,

A

A:

-+ -7 (Qa, Qb, Qc- Qd- QcQf- Pa-Pb-PcPchPc-Pf- A )
_ 1 t t- h+A (Qb, Qa, Qi- Qc -Qc- -Qd-Pb'PcPi Pc-Pc, Pd- A),

~(Qa,Qb, Qc, Qd- Qe-Ql'Po'Pb' PcPd- PcPf- A
'

Tl t+ t+
(Qb,Qa, - Qc -Qf'Qd-Qc Pb- Pa- Pc - Pl • Pd- Pc U,

+
(QcnQb, Qc Qd, QcQf- Pa-Pb, PcPd- Pc Pf- A

Ar++ (Qb, Qa- Q f - Qc Qd, Qc, Pb- Pa - Pj Pc Pd • Pc, A),

.Qa,

= (Af

'2

Al°>a"a->-(Qa, Qb, Q(, Qd. Qc,Qf,Po,Pb'PcPci.PcPi.b

CT„, -(7e,^(Tci,+
(Qa , Qb- Qc QchQcQh Pa • Pb- PcPd- Pc Pf- A)

and

(2.1 42)

A, A'HP^A')'

- P\ (Pa + Pb)P\\ (P< + Pd)P]} (Pe A Pf) -

At *~ (Qa , Qb, Qc Qd, Qc. -Qf- Pa • Pb- Pc - Pd- Pc Pf- A)

(Qc- Qd)(pcPc)

(P(k)(PcU
X ( (PbPcU(PbPf)'(PaPb)(p(Pc) A (PbPcU(PclPf)"(PaPc)(PcPd)

4 (PhPfTiPaPlTiPaPc) (PePj))

+ Pv(Pa 4 pb
- A)Pn (pc -l prf)Pn (pP +P/)t—ttt-tt

X { (PdPfTl (PaPe)(PcPd){(PbPd)K(PaPb) ~~ (PrfA )
"

(p„ A ))

+ (PaPc)(PePl)((PbPiy{PaPb) ~ (P f U" (Pa A))]

b (pePc)((PbPdy(PaPb) " (Pdk)ypoU)((PbPr(PoPb) - {Pfh)t(p0k))}
Qd (Qc QciUAPd-UPUpU-Pd)

+ P\ (Pa 4 PôV'u (A b Prf
- A ) Pn (Pe A P/ V ,

caaHpa,

x { 0W[ (AA)(p(P/)({Pc/Pf)'<PcP(/) - AfA)'(PcA))

T {PcPc)\PaPb)({PbPciy{PcPd) A (PbUyPcU))

A (PoPf)((P(/P/)k(AP(;) - (P/A)"(pcA))((P6AA)"(PcPr/) + (PbU'(pck))}

7 P C> WAP A

-,
»IP

A m,
A°H <C)/ _a)2C/>/ []i',(ft4p';

4 m4Po l
/'AM' CA +

Pd)-i u UP

J-
P/ A

(p(A)(p/A)

X{ (p6Prf>1 (PrPc)(PaPb){(PhPlY(p<Pi) l-(phh)'<J),k))
+ (PaPc)\PcPd)((lPlPl)fP,Py + (P(/A)'(aA))]

f (papjttPbPi^^PcPt^ - (Pbr(PcU)((PdPiv3PcPf) a (/7/ArobA))},

47
'
(Qn • Qb- Qc Qd- Qc -Ql- Pa Ph-Pc Pd-P, Pl A )

~ Aj'r( (Jh, --Q0. Q,. Q(l. Q, .Qh pb. pu. p«. p(,.p, pf. A ),
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/if' (Qa,Qb,Qc,Qd,QcQf,Pa'Pb,Pc,Pcl'PcPf,k) (2.1.43)

= (Ar^(Qa,Qb,-Qd,-Qc, -Qf,-Qe,Pa,Pb,Pd,Pc,Pf,Pe,k)) \p
w(p)-yp; w{p)

The replacements P\ -7 P+ after the complex conjugation in the last lines of (2.1.43)
and (2.1.44) ensure that the vector-boson piopagatois remain unaffected. Note that the

vector-boson masses do not enter explrcitlv in the above results, but onlv via Pi .
In

gauges such as the 4 Hooft-Fevnman or the unitary gauge this feature is obtained only
after combining difleient Fevnman giaphs foi e" e~ -> 4/7 : in the non-linear gauge (2.1.3)
this is the case diagram bv diagram.

The holicity amplitudes for e'e" -7 4/^ follow from the geneiic functions M\\y-, and

Mvww of (2.1.11) in exactly the same wav as described in Section 2.1 3 for e'e" -A

if. This holds also for the gluon-cxchange matiix elements and for the colour factors.

Moreover, the classification of gauge-invariant sets of dragr arris for e he~ —» 4/ immediately

yields such sets for eLe~ —> 4/~. if the additional photon is attached to all graphs of a set

in all possible ways.

We have checked analytically that the electromagnetic Ward identity for the external

photon is fulfilled for each geneiic contribution separately. In addition, we have numeri¬

cally compared the amplitudes for all piocesses with amplitudes generated bv Madgraph

[32] for tfcro width of the vector bosons and found complete agreement,. We could not

compare our results with Madgraph for finite width, because Madgraph uses the imitaiv

gauge for massive vector-boson piopagators and the 4 IIooft-Fcynman gauge for the pho¬
ton propagators, while we are using the non-1 ineai gauge (2.1.3). Therefore, the matrix

elements differ after intioduction of finite vectoi-boson widths. While the calculation

with Madgraph is fullv automized. in oui calculation we haw full control ovei the matiix

element and can, in particular, investigate vaiious implementations of the finite width.

A comparison of our results with those of Refs [15, 16], which include only the matrix

elements that involve two resonant W bosons, immediately reveals the virtues of our

generic approach.

2.1.5 Implementation of finite gauge-boson widths

We have implemented the finite widths of the W and Z bosons in different ways:

• fixed width in all piopagators- 1\ (p) ~ \p2 - 4C2 + iM\ l\]_l.

• rvnnwg widih m luno-likc piopagatois: P\ (pi -= [p2 — M2 +[p2(V\ /APr)9(f)2)y[,

compier-mass scheme complex gauge-boson masses everywhere, i.e. v/4/9 - [AR Vv
instead of 4A3 m the piopagators and 111 the couphugs. This îesults, in particular,
in a constant width m all piopagatois.

Pa(p) = ÎP2 Ti/7-ilMM-'. (2 1.44)

and in a complex weak mixing angle:

A - 1 - \^-t- > -rTF~' (214})
7/7

— 1 W7L /
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The virtues and drawbacks of the first two schemes have been discussed in Ref. [10].
Both violate SU(2) gauge invariance, the running width also U(l) gauge invariance. The

complex-mass scheme obevs all Ward identities and thus gives a consistent description of

the finite-width effects in anv free-level calculation. While the complex-mass scheme works

in general, it is particularly simple foi c'c" -7 4Ay in the non-linear gauge (2.1.3). fn

this case, no couplings involving explicit gauge-boson masses appear, and it is sufficient to

introduce the finite gauge-boson widths in the propagators [cf. (2.1.44)] and to intioduce

the complex weak mixing angle (2.1.15) in the couplings. We note that a generalization
of this scheme to higher orders requires to introduce complex mass counterterms in order

to compensate for the complex masses in the propagatois [33]. We did not consider the

fermion-loop scheme [7, 9, 10. 31], which is also fullv consistent for lowest-order piedictions.
since it requires the calculation of fermionic one-loop corrections to e4e~ A 1/y which is

beyond the scope of this woik.

2.2 The Monte Carlo program

The cross section for e4e -» 4f(y) is given by

(27
der

]n)l-ïn
I\d%S(k2 t9(A{ 6{l) p4 bp.

?=i /

x |;V4 (p+.p^. Ay,-... Ay) |2. (2.2.4)

where n
— 4, 5 is the number of outgoing particles. The helicitv amplitudes M for e

' c~ ->

4/(y) have been calculated in Sections 2.1.3 and 2.1.4. The phase-space integration is

performed with the help of a Monte Carlo technique, since the Monte Carlo method

allows us to calculate a variety of observables simultaneously and to easily implement cuts

in order to account for the experimental situation.

The hclicity amplitudes in (2.2.1) exhibit a complicated peaking behaviour in different

regions of the integration domain. In oiclei to obtain a numerically stable result and to

reduce the Monte Carlo integration error we use a multi-channel Monte Carlo method

[23, 26], which is briefly outlined in the following.
Before turning to the multi-channel method, we consider the treatment of a single chan¬

nel. We choose a suitable set <ï> of 3?? —4 phase-space variables to describe a point in phase

space, and determine the corresponding physical icgion A and the relation Ay(#) between

the phase-space variables <& and the momenta Aj Ay. The phase-space integration of

(2.2.1) reads

F - /dcT^ J d$p(A^)f(A7<lA)), (2.2.2)

f *-,(*•
>->* *»

A
!X(p_..p_.A7(#).. .,k„($))\ ,
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wheie p is the phase-space density. Foi the random generation of the events, we further

transform the integration variables $ to 3ra — 4 new variables r = (r,) with a hypercube
as integration domain: # = h(r) with 0 < r, < 1. We obtain

/" it. F ,^\ A, /..A A1
!

A(A-,(h(r)))
h - d*p(A,(# ) /(*,*))

= / dr-£—— £ ,
2.2 3)

^ v J v Ao
e/ A,(h(r))

where ey is the probability density of events genciated in phase space, defined bv

c)hfr

9 A,(*

1

p(Â.(qy
<9r

(2.2.4)

If/ varies strongly, the efficiency of the Monte Carlo method can be considerably enhanced

by choosing the mapping of random numbers r to «D m such a wav that the resulting density

g mimics the behaviom of j/'j. Foi this importance sampling, the choice of «I» is guided

by the peaking structure of /. which is determined by the propagators in a characteristic

Fcynman diagiam.
We choose the variables # in such a wav that the invariants corresponding to the

propagators are included. Accordingly, we decompose the n-particle final state into 2 -> 2

scattering processes with subsequent 1 -7 2 decays. The variables $ consist of Lorentz

invariants s,,t^ defined as the squares of time- and space-like momenta, respectively,
and of polar and azimuthal angles 0, and o,. defined in appropriate frames. A detailed

description of the parameterization of an »-particle phase space in tenus of invariants

and angles can be found in Appendix C The parameterization of the invariants st and

A, in <5 - h(r) is chosen in such a wav that the piopagatoi structure of the function f is

compensated by a similar behaviour in the densitv q. More precisely, if / contains Breit-

Wigner resonances or distributions like %"• vTh<4t are relevant for massless propagators,

appropriate paramctciizatioiis of y are given bv

• Breit-Wignei resonances:

y = My A AR F, tanfvi A (a - a)p] (2.2.5)
M2U

with i/i 2
=• aictan

propagators of massless pai tides:

mm max

AR l\

ï'(l-rj)
A "r A A" "(I-

i i
ma\ ' '

mm l ' '

i; - 1 S ^ exp [ln(yna0/? i ln(syim)A - ?-,)] . (2 2 6)

For the choice ol v see Appendix C The temammg vanables in 3> — h(r). i c. those foi

which / is expected not to exhibit a peaking behaviom. aie generated as follows:

S -=" AiaA, ^ Snmi I - i,) c>,-2t/,. cosfi, =.2/7-1. (2 2.7)
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The absolute values of the invariants A, aie generated m the same wav as s, Flic icsult¬

mg density g of events in phase space is obtained as the product of the conespondmg
Jacobians, as given m (2 2 4) In the Appendix C, we provide explicit examples foi the

generation of events with a specific choice of mappings A,($) and h(r), and foi the calcu¬

lation ol the coiresponding dcnsitv q

The differential ci oss sections of the processes F e~ ^ 1 fand especialh c4c~ 7 l/--

possess very complex peaking stitte turcs so that the peaks in the mtegiand /(#) m (2 2 3)
cannot be described pi opeih bv onlv one single dcnsitv gfâ) The mvl1i channel appwach

[23, 26] suggests a solution to this pioblem Foi ea< h peaking stiuctrue we choose a suitable

set #fc, and accoidmgh a mapping of random numbers ,, into «E»^ $A _ h/. (r) with

0 < rt < 1, so that the resulting dcnsitv qk descnbes this particular peaking behaviom

of f All densities cp aie combined into one dcnsitv e/tol that is expected to smoothes

the mtegiand over the whole phase-space integration legion The phase-space rrrtegial of

(2 2 3) reads

u
<r-—-\

k-l

d$; Pa(A7($a)) (7h(A,($
/ A4<tb M

A - \A

01o,(A (<1>a)) /=i

,
/ Ay(lA(r)

dr
—

o e7tot(Ay(hA(r))
(2 2 8)

with

u

/-l

I

9/(A,(*i
P/(A,(*a)

c9r
(2 2 9)

i-h-l(*A;

The chffcicnt mappings h^(r) aie called channels and M is the numbei of all channels

In order to reduce the Monte Cailo error further we adopt the method of weight
optimization of Ref [27] and mtioduce a pi ion uc/ghls evA,A — L, ,

M (07 > 0 and

iCfltCpfc = I) Ih° channel A that is used to geneiate the event is picked landomly with

probability ak, 1 e

lM

7« - E°W c1*aPa(A,($/))c7AA)(*
11 m

A,(/ (4>a))

/old'o E^o >i-i)H3, -/o)/ 4#wy(A (*a))</a(A,($a))- -if A7(*a

A
u

/i /(/ (lb(r)))
/ 4/o E^o Ja l)W ->o)/ dr >—^
/o iTi >«

e?k1(/ (hA(r))

where ß0 = 0 7
- EL, ^ 7 - I ^[ - L jv - v/LL A = l <"id

9toi(A (*A),

(2 2 10)

ep ,(A (*a)) =E°/" 1/ <**)) (2 2 11)

is the total clensitv ol the «vent

For the piocesses c A —^ 1/ we have betwc e n b md 12S different channels foi cn c~ —>

1/} between 1 I and 92S channels Fach channel smoothes a particular combination of
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propagatois that results fiom a charactenstic Fcynman diagram We have written phase-

space generators m a generic way for several classes of channels determined by the chosen

set of mvaiiants s;, f4 The channefs withm one class differ m the choice of the mappings

(2 2 5) (2 2 6), and (2 2 7) and the oidci of the exteinal paiticles We did not include

special channels for mtcifeicnce contiibutions

The 07-dependence ol the quantity

M (a) [/ZiU'rr (2 2 12)
/ r

where w = //e;t0i is the weight assigned to the Monte Cailo point (/A) r;) of the /th event

can be exploited to minimize the expected Monte ( ailo en or

n^yr-u <22i,)

with the Monte Cailo estimate of I,,

F ^2>('or') (2 2U)

by trying to choose an optimal set of a-piion weights We perform the search lor an

optrmal set of n? bv using an adaptive optimization method as desciibed 111 Ref [27]
Mtei a contain numbei of generated events a new set of a-piion weights ojy^ is calculated

according to

.
new

-,.
_

«a oc ak<

[
« gUkFhUri))) [«(/,) A)P M

NU 9toi(A,(hA(rO)) a l

Based on the above approach, we have wntten two independent Monte Carlo piogiams

While the general stiategy rs srmrlar, the piogiams differ in the explicit phase-space gen¬

eration

2.3 Numerical results

If not stated otherwise we use the complex-mass scheme and the following paiametcis

o = 1/128*9 o, - 0 12

\F\ 80 26Ge\ I\\ - 2 05Ge\

1/7 -= 01 ISSlGcA F/ = 2 16Cc\ (2 3 1)

In the complex-mass scheme the weak mixing angle is defined in (2 1 15) m all other

schemes it is fixed bv eu M\\/M/ y(_ = 1 — c ^
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The energy in the centre-of-mass (CM) system of the incoming electron and positron
is denoted bv a/s- Concerning the phase-space integration, we applv the canonical cuts of

the ADLO/TH detector,

9(l,becim) > 10°, 0(ljf) > 3F 9(l,q)^b°,

0(7,beam) > 1A #(-./) ^ 5°. 0(-y,q)>5°,

Ey > 0.1 GeV, Ei ^ 1 GeV. Eq > 3 GcV,

m(q,q')>öGc\\ (2.3.2)

where 6(i,j) specifies the angle between the particles ? and j in the CM system, and I.

q, y, and "beam"1 denote chaiged leptons. quarks, photons, and the beam electrons or

positrons, respectively. The invariant mass of a quark pair qq' is denoted by m(q, q'). The

cuts coincide with those defined in Ref. [30], except for the additional angular cut between

charged leptons. The canonical cuts exclude all collinear and infrared singularities fiom

phase space for all processes.

Although our helicitv amplitudes and Morrte Carlo programs allow for a treatment of

arbitrary polarization configurations, we consider onlv unpolarizcd quantities.
All results are produced with 10' events. The calculation of the cioss section for

e+c~ -7 c+c_//4//~ recuiires about 50 minutes on a DEC ALPHA workstation with 500

MHz, the calculation of the cross section for e4e~ —> c+e~p+p~y takes about 5 hours.

The numbers in parentheses in the following fables correspond to the statistical errors of

the results of the Monte Cailo integrations.

2.3.1 Comparison with existing results

In order to compare our results for e4c~ -+ 4/ with Tables 6-8 of Ref. [35], we use the

corresponding set, of phase-space cuts and input parameters, i.e. the canonical cuts de¬

fined in (2.3.2), a CM energy of \/4 — 190 GeV, and the parameters cv - a(2Ad\y) —

1/128.07, 07 - 0.12, AF\ - 80.23 GcV. Fu = 2.0337 GeV, AIZ = 91.1888 GcV, and

Fz =" 2.4974 GeV. The value of %, which enters the couplings, is calculated from

o(2iVfw)/(24) = CFAI2V/Ur) with c7/; - I.f6639 x lO^GcV"2.

In Table 2.1, we list the integrated cross sections for various processes c4e -a 4/ with

running widths and constant widths, and for the corresponding processes e4e -7 4fy
with constant widths. Foi processes involving gluon-cxchange diagiams we give the cross

sections resulting from the purely electroweak diagrams and those including the gltion-

exchange contributions. The latter îcsults include also the interference terms between

purely electroweak and gluon-cxchange diagrams. In Table 2.1 we provide a complete list

of processes for vanishing fermion masses. All piocesses c~c~ -> \f(i) not explicitly listed

are equivalent to one of the given piocesses.

For NC processes e""e~ -^ 1/ with foui neutrinos or four quarks in the final state

vvc find small deviations of vouglih 0 2(7 between the results with constant and running
widths. Assuming that a running width has been used in Ret. [35]. we find veiv good

agreement.

Uufoitunatelv we cannot compate with most of the publications [17, 18. 19. 20] for

the biemsstiahlung piocesses c4e~ A 4/^. In those papers, eithei the cuts are not
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a/ib
c4e~~ -7 4/

limning width

c4e ->4/

const ant width

efe > 4/y

constant width

p, 7y c e4 256 7(1) 257 1(7) 89 1(2)

/y,phe y 227 1(1) 227 5(f) 79 1(1)

?AA/' /'+ 228 7(1) 228 8(1) 81 0(2)

/y,p
'
r p 2IS 05(0) 218 57(9) 76 7(1)

c~F e c4 109 1(1) L09 1(3)

116 1(1)

38 8(1)
e c

'
p p4 116 6(1) 114(1)

F P+p p1 5 478(5) 5 478(5) 3 17(1)

p f.l
+
T T^ 11 02(1) 11 02(1) 6 78(3)

e o¥viii>i 14 174(9) 14 150(9) 5 36(1)
~~

6 63(2y
—

/y/y// p1 17 78(6) 17 71(6)

'AAP /'
'

//e/y/y/y

10 108(8) 10 103(8) 1 259(9)

1080(1) 1082(1) 0 7278(7)

AAA''7/' 8 151(2) 8 337(2)

1057(1)

1 512(1)
0 7434(7)
1 511(1)

'AA'A'A 1069(1)

/yyypy /y- 8 211(2) 8 218(2)
u d e /y 693 5(1) 6916(3) 220 8(1)

'ici// /y, 666 7(3) 666 7(1) 211 )([)
e~c4uu 36 87(9) 86 82(9) 12 1(2)
e c Al d 13 02(1) 42 95(1) 16 17(8)

uup p4 24 69(2) 24 69(2) 12 70(4)
d cl p p4 23 73(1) 2171(1) 10 13(2)

/y /y nu 24 00(2) 2195(2) 6 84(1)

zyzydd 20 657(8) 20 62(1) 1319(6)

un/y/y, 21 080(5) 21 050(5) 6 018(9)
d d pf y, 19 861(5) 19 817(5) l 156(5)
und d 20611(9) 2110 8(9) 2064 1(9) 2111(1) 615(1) 672(1)
u d s c 2015 2(8) 2015 yF) 59S(i)
u u u u 25 718(7) 7128(f) 25 721(7) 71 10(4) 9 78(2) 12 1(1)

5 527(7) 28 68(1)d d d d 23 191(61 51 35(3) 23 118(6) 51 12(3)
u u c c 51 61(11 IG 72(9) 5157(1) Lil 75(9) 19 61(1) 86 1(2)
u u s s 4968(1) 126 AA) 1962(1) 126 52(8^15 17(2) 75 1(2)
d d s s 17 11(1) 10179(b) 17 02(1) 10171(6) fl 10(2) o9 2(l)

Fable 2 L Integrated oioss sections toi 41 u pu sent une piocesses (F'o —> 1 / with nur

ning widths and constant yidths md foi the c ont spondin^ processes c h( —v 1/ with

constant widths If two minibus tic given the fust te suits bom pure ( lee tiowoak diagiams
and the second involves in addition ^luoti cxelnn^c contiibutions
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ex/fb 0 E
•

"7,miti) -tJ7,mm
lGcV 5 GeV fO GeV 15 GeV

leptonic

process

1° 53.54(8) 27.57(3) 16.96(2) 11.22(2)

5° 32.65(1) 16.98(3) 10.48(2) 6.94(1)

10° 23.18(3) 12.30(2) 7.61(2) 5.04(1)

15° 18.03(2) 9.51(2) 5.90(1) 3.90(1)

semi-leptonic

process

A 14 L.9(2) 71.90(8) 13.56(5) 28.26(4)

17.40(8)5° 86.8(1) ! 44.25(6) 26.78(4)

10° 62.29(7) 3 L.92(5) 19.40(4) 12.61(3)

L5° 17.12(0) 21.50(4) 14.97(3) 9.77(2)

Table 2.2: Comparison with Table 2 of Ref. [15]: Cross sections resulting from diagrams

involving two resonant W bosons for purely leptonic and semi-leptonic final states and

several photon separation cuts

(completely) specified, or collinear photon emission is not excluded, and the corresponding
fcrmion-mass effects are taken into account. Xofe that the contributions of collinear

photons dominate the results given there.

We have compared our results with the ones given in Refs. [f 5. 16], where the total cross

sections for o4e~ —> 4/y have been calculated for purely leptonic and semi-leptonic final

states. As done in Refs. [15. 16] onlv diagrams involving two resonant W bosons have been

taken into account for this comparison. Table 2.2 contains our results corresponding to

Table 2.2 of Rcf. [15]. Rased on Refs. [15. 16]. we have chosen ^s = 200 GeV and the input

parameter's a = 1/137.03599. ARy = 80.9GeV. Iw = 2.1 1 GeV, Mz = 9L. 16GeV, Fz =

2.46 GeV, 9W obtained from o</(2<) = 6^4/4-/(^/2) with GtJ -- 1.16637 x lO^GeV-2.

and constant gauge-boson widths. The energy of the photon is required to be larger
than E^tnin, and the angle between the photon and anv charged fermion must be larger
than e97.nun. A maximal photon energy is required. IF. < 60 GeV, in order to exclude

contributions fiom the Z resonance. Our results are consistent with those of Refs. [15, 16]
within the statistical error of FF given there. In some cases we find deviations of 2%.'

2.3.2 Comparison of finite-width schemes

As discussed in Refs. [7. 9, 10. 3 I], particular care has to be taken when implementing the

finite gauge-boson widths. Differences between results obtained with rrmniug or constant

widths can already be seen in Fable1 2.F where a typical LEP2 energy is considered. In

Table 2.3 we compare predictions foi integrated cross sections obtained bv using a constant

width, a running width, or the complex-mass scheme for several energies. "We consider

lNotc that the input sppuliecl m Reb [15. IG] ii not complot civ rleai even if 1 he infoimation of both

publications is combinée!
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afib r 189 GeV 500 GcV 2TeV lOTeV

e4c~~ —» uei/A/y

constant width 703.5(3) 237.4(1) 13.99(2) 0.62 1(3)

198 8(1)limning width 703.4(3) 238.9(1) 34.39(3)

complex-mass scheme 703.1(3) 237.3(1) 13.98(2) 0 624(3)

e4e~ —» ucl/Azy, y

constant width 224 0(1) 83.4(3) 6.98(5) 0.457(6)

i mining width 224.6(4) 84.2(3) 19.2(1) 368(6)

complex-mass scheme 223 9(4) 83.3(3) 6.98(5) 0.460(6)

e4e" -7 udc~ A

constant width 730.2(3) 395.3(2) 211.0(2) 32.38(6)

i tinning width 729.8(3) 396.9(2) 231.5(2) 530.2(6)

complex-mass scheme 729 8(3) 395. L(2) 210.9(2) 32 37(6)

c he~ A udc^Ay

constant width 230.0( I) 136 5(5) 84.0(7) 16.8(5)

running width 230.6(4) 137.3(5) 95.7(7) 379(6)

complex-mass scheme 229 9( I) 136 4(5) 84.1(6) 16 8(5)

Table 2.3: Comparison of different width schemes for several piocesses and energies

two semi-leptonic final states foi e*e~ -^ 4/(7). 4he numbers show that the constant

width and the complex-mass scheme yield the same results within the statistical accuracy

for e~'c~ -7 4/ and e4e~ -7 4/y. In contrast, the icsults with the running width produce

totally wrong results for high energies. The difference of the running width with respect

to the other implementations of the finite width is up to 1% already for 500 GcV. Thus,

the running width should not be used for lineai-collidei energies. As already stated above,
our default treatment of the finite width is the complex-mass scheme in this chapter.

2.3.3 Survey of photon-energy spectra

In Fig. 2.2 wre show the photon-eneigv spectia ol several piocesses for the typical FEF2

energy of 189 GcV and a possible Imear-collidei energy of 500 GcV. The uppei plots
contain CC and CC/XC piocesses. the plots in the middle and the lower plots contain

NC piocesses. Several spectia show threshold oi peaking structures. These stiuctures

arc caused bv diagiams m wine h the photon is emitted bom the initial state. The two

important classes of diagiams aie shown m Fig 2 1

The first class, shown m Fig 2 la. corresponds to tiiple-gaugc-boson-ptotluction sub-

pioccsses which v icld dominant contiibutions as long as the two viitual gauge bosons

]\ and \"2 can become simultaneoush lesonant If the real photon takes the energy £A

defined in the CM svstem. onlv the encigv \A', with

s' -- 2vA~/oA (2.3 1)
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a) b)

Figure 2.3: Diagrams foi important subproeesses. where Aj, V ~ W,Z,y, and V3 = y, ;

VV>

E^'/GeY

189 GeV

WW

26.3

ZZ

6.5

:Z

ii. )

500 GeV

WW

91,5 221

ZZ

217

yZ

242

79

~2~5C)"

Table 2.4: Photon energies E)1 '

conesponcling to thresholds

is available for the production of the gauge-boson pan Vil. If at least one of the gauge

bosons is massive, and if the photon becomes too hard, the two gauge bosons cannot be

produced on shell anymore, so that the spectrum falls oil for AC above the corresponding
threshold IC^2. Using the threshold condition toi the on-shell production of the Vil

pair,
s/s'> a A, 4 A A,. (2.3.1)

the value of EyV2 is determined by

W;
EF'2 = -----

'Ui, U,

(2.3.5)

The values of the photon energies that cause such thiesholds can be found in Table 2.4.

The value Eyi corresponds to the upper endpoint of the photon-energy spectrum, which

is given by the beam eneygv yF/2. Since Vs' is fullv det ei mined by s and ZCn the

contribution of the I)V-pioduetion srtbpioeess to the A spectrum qualitatively follows

the energy dependence of the total eioss section foi \ \\~2 production (cf Ref. [35]. Fig. t)
above the coiresponding thiesholds. The cross sect ions foi )0' and yZ piodueiion strongly
increase with decreasing energy, while the ones for ZZ and WW production aie comparably
flat. Thus, the "; y and -,Z-pioduction subpiocesses mtioduce contiibutions m the phoion-

encigy spectra with icsonance-hke stiuctuies. wheieas the ones with ZZ or WW paiis
yield edges.

The second class of mtpoitaiit diagiams, show n m Fig 2 3b coi responds to the piocluc-
tion of a photon and a icsonant Z boson that decays mto foui feimions. These diagiams
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are important if the gauge boson V3 is also resonant, i.e. a photon or a gluon with small

invariant mass, fn this case, the kinematics fixes the energy of the real photon to

s - A F

E, ^E^ = -—^z. (2.3.6)
-v/s

which corresponds to the yZ threshold in Table 2.4. This subpiocess gives rise to resonance

structures at IC/A which are even enhanced bv n,/o in the presence of gluon exchange.
In the photon-energy spectra of Fig. 2.2 all these threshold and resonance effects are

visible. The effect of the }Z peak can be nicelv seen in different photon-energy spectra.
in particular in those wheie gluon-exchange diagiams contribute (cf. also Fig. 2.5). The

effect of the WW threshold is present in the uppei two plots of Fig. 2.2. In the plot
for r — 189 GeV the threshold for single W production causes the steep drop of the

spectrum for the pure CC processes above 70 (AW Xote that the CC cross sections are

an order of magnitude larget than the XC cioss sections if the WW channel is open. The

ZZ threshold is visible in the middle and lowei plots for AC- = 500 GeV. The yZ threshold

(resulting from the graphs of Fig. 2.3a) is superimposed on the yZ peak (resulting from

the graphs of Fig. 2.3b) and therefore best recognizable in those channels where the oZ

peak is absent or suppressed, i.e. where a neutrino pair is present in the final state or

where at least no gluon-exchange diagrams contribute. Processes with four neutrinos in

the final state do not involve photonic diagiams and arc therefore small above the ZZ

threshold. The effects of the triple-photon-production subprocess appear as a tendency

of some photon-energy spectra to increase near the maximal value of E~, for two charged
fermion-antifermion pairs in the final state.

2.3.4 Triple-gauge-boson-production subprocesses

In Fig. 2.4 we compare predictions that are based on the full set of diagrams with those

that include only the giaphs associated with the triple-gauge-bosori-produetion subpro¬
cesses, i.e. the graphs in Fig. 2.3a. In addition we eonsidci the contributions of the ZZy-
production subprocess alone. For CC processes, the photon-energy spectra resulting from

the W4W~y-produetion subprocess are close to those resulting from all diagrams at, LEP2

energies, but large differences are found foi highen energies and e4 in the final state.

Note that the spectra aie shown on a logarithmic scale. Even at FEP2 energies the dif¬

ferences between the predictions for different final states may be important, as can be

seen, foi instance, in Table 2.1 bv comparing the cto^s sections of e4e~ —> ud/A/yy and

e4e" -7 ude^Ay. In the case of NC processes, already foi 189 GcW the contributions from

ZZy, Zy-y and 070 production are not sufficient: in the vicinity of the yZ peak sizeable

contributions result from the - Z-procluction subprocess (Fig. 2.3b) even foi (he p+p~ 11Ü7
final state. For e4e~ -7 e e'uïA other diagiams become dominating everywhere. The

contribution of ZZ7 production is always small and could only be enhanced bv invariant-

mass cuts. Note that the triplc-gauge-boson-produelion diagrams form a gauge-invariant
subset for NG processes, while this is not the case foi FG piocesses.
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ex/fb ew and gluon purely ew gluon inteiference

e4 e~ —) u u c c 52.98(4) 21.560(6) 31.38(3) 0.04(5)

e4e~ 7 nu ccy 29.8(1)

26 25(2)

10.38(4) 19.6(1) -0.1(f)

e he~ -A îifiiiû 10 765(3) 15 34(1) 0 14(2)

c l~e~~ —> mi nu ~ 14.83(7) 5.16(2) 9 52(5) 0.15(9)

0 6(8)e he~ -7 dd u ü 901.2(6) 876 4(5) 24.2 1(2)

e4c~ —> ddu fry 290(1) 275(1) 1 1 82(8) 0(f)

Table 2.5: Full lowest order cross section (ew and gluon) and contributions of purely
electroweak diagiams (ew). of gluon-exchange diagiams (gluon), and their inteifcience for

500 GcV

2.3.5 Relevance of gluon-exchange contributions

fn the analytical calculation of the matnx elements for e^e- -> 4/(7) in Section 2. f we

have seen that NC processes with fom quatks in the final state involve, besides purely

electroweak, also gluon-exchange diagrams. Table 2.5 illustrates the impact of these dia¬

giams on the integiated cross sections foi a CM energy of 500GcV. The results for the

interfeience aie obtained bv subtiactiirg the purely electroweak and the gluon contribution

fiom the total cross section. Foi pure NC piocesses the contributions of gluon-cxchange

diagiams dominate over the purely electroweak graphs. This can be understood from

the fact that, the gluon-exchange diagiams aie enhanced bv the strong coupling constant,

and, as discussed in Section 2.3.3. that the diagrams with gluons icplaced by photons

yield a sizeable contribution to the cross section. For the mixed CC/NC processes the

purely electroweak diagrams dominate the cross section. Here, the contributions from the

W+W~"7-]noducfion subprocess are large compared to all other diagrams, even if the latter

are enhanced by the strong coupling. At 500 GeV the gluon-exchange diagrams contribute

to the cross section at the level of several per cent. The interference contributions are

relatively small. As discussed at the end of Section 2 1 3, this is due to the fact that inter¬

fering electroweak and gluon-cxchange diagiams involve different tesonanccs. Xote that

the interfeience vanishes foi c^e- -+ uiiecA. and the cortcsponding numbeis m Table 2.5

are only clue to the Monte Cailo intcgiation enoi.

In Fig. 2.5 we show the photon-energy spectia foi the piocesses e
'
e" -7 u ïrdd y and

c4c_ -7 mi tin) togethei with the sepaiate contributions from pmelv electroweak and

gluon-exchange diagiams The pure electroweak contiibutions are similai to the ones

for c4e~ —> ud/A/y - and c^A v eA'AiuA 111 Fig 2 2. For the NC process eLe^ —~>

uiiutiy. the photon-eneigv spec mini is dominated bv the gluon-exchange contribution,

which shows a strong peak at 72 5 GeV cawing to the ~ Z-prooluction subprocess. For the

CC/NC piocess e
' e" -v u u d cA

.
the electioweak diagiams dominate below the WW

threshold, wheieas the gluon-exchange diagiams dominate at the )Z peak and above. The

inteiference between puieh electioweak and gluon-cxchange diagiams is generally small.
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Chapter 3

Non-factorizable photonic
corrections to e+e~~ —> W+W~~ —> 4/

In this chapter we define and explicitly calculate the non-factorizable photonic coircctious.

It has been shown that thew vanish in inclusive quantities, i.e. if the invariant masses of

both W bosons are integiated cant [36]. However, for non-inclusive quantities these cor¬

rections do not vanish in general. The non-factorizable photonic corrections have already

been investigated by two gioups. Melnikov and Vakovlev 137] have given the analytical

results only in an implicit form and restrict the numerical evaluation to a special phase-

space configuration. Beenakker, Berends and Chapovskv have provided both the complete

foimulae and an adequate numerical evaluation [38. 39]. but do not find agreement with

all results of Ref. [37]. For this reason, it is worth-while to present the results of a third

independent calculation. The material of this chapter has been published in Refs. [40. 41].
We start out by discussing the definition of the vhtual and real photonic non-factoriz¬

able corrections in double-pole approximation in detail. Since only soft photons arc rele¬

vant in double-pole approximation, the virtual non-factorizable correction is just a factoi

to the lowest-order cross section. For the corresponding real correction, the situation is

similar, but in addition an integration over the photon momentum has to be performed.
This requires a specification of the phase-space parameterization, which includes, in par¬

ticular, the invariant masses of the W bosons. Usually these arc defined via the invariant

masses of the respective final-state feimion pairs and aie chosen as independent variables

[37, 38, 39]. Experimentallv. however, the invariant mass of a W boson is identified with

the invariant mass of the associated jet pair that necessarily includes soft and collinear

photons. Therefore, the influence of the choice foi the invariant masses of the W bosons

on the non-factoiizable coriections should be investigated m oider to provide sound pre¬

dictions for physical situations.

Besides the non-factoiizable doublv-iesonant collections, the most impoitanf effect of

the instability of the W bosons is the1 modification of the Coulomb singularity. Since the

off-shell Coulomb singtilaritv insults boni a scalai integial that also contributes to the

doubly-resonant non-fact on/able coircctious. it seems to be natural to approximate this

integral in such a wav that both effects are simultaneoudv included. This icquircs going
beyond the strict double-pole appi cranial ion.
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3.1 Definition of the approximation

3.1.1 Conventions and notations

We discuss collections to the piocess

ef(/y) le (p.) -> W(Â + )4-W (Â_) -> h (F) F h(U) A f,(U) 4 /,(Ä-t) (111)

Fhc lelative chaiges of the leimions /, aie îepiesented bv Q, with ? — 1, 4 The masses

of the exteinal ternirons m;
— Ff and m2 p2 aie neglected except where this worrlcl

lead to mass smgulaiities The momenta of the inteimediate W bosons are defined bv

U - A, \ k? k ki \ U (3 12)

their complex mass squaied and then icspective invariant masses are denoted bv

M2 - \l2~u\IyFy \L \fU (HI)

respectively, and we liitioduee the variables

F\ - kl-M2, A_= Äi ^[2 (3 I 4)

Furthermore, we define the following kmcmatical mvaiiants

a

and

f=C/7o /-)" v=(p -F

G, 0. L,)' u
,- (p- F)2 /=- 1,2,

t-,-(P- In)2- iGc (p. -A,)2 ? = 3, 1, (3 15)

s - (p+ +P-Y - (A y kU

p, = (f yl,Y

by (F ^ UJ F)2 i ) A - f 2 3 f, (3f 6)

which obev, the i dations

5
- U + Al -j-

'o,
-J- ^ib ^i-An <q2-A' <m = A-,

s,ja -= A 4 s A
-J- s ; / ] k - 1 2 1 1 (117)

3.1.2 Doubly-resonant virtual corrections

The aim oi this chaptei is to evaluate the non-facton/able c one c fions to the piocess (IIP
m double-pole appioximation (UP \) The UP V takes into act ount onlv the leading tenus

m an expansion aiound the pole s originating bom the two lesonant Y\ piopagatois
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(a) type (mP

\°4 (p

(b) type (niF)

(cl) tvpe (mm')

Figure 3 1 Examples of non-factoiizable photonic collections m 0(a) Plie shaded blobs

stand for all tree-level graphs contributing to e
'
c > W4 V

~

Whenever Fevnman dia¬

giams with mtei mediate would-be Goldstone bosons o
L instead of IF

'

bosons aie i élevant

the inclusion of such graphs is imphcitlv understood

In UP7V, the lowest-oidei matiix element foi the piocess (1 f f) factoil/es into the ma¬

tiix clement foi the on-shell V -pan pioduction -^4iîoîn^u AA
(p+,P- A

+ , A_), the (tians-
verse parts of the) piopagatois of these bosons and the matnx elements foi the decays of

these on-shell bosons, M^in>hh(U , U k2) *nd M^ni~ /3fl(A^, A3, A,)

MBMn = Y, —

_'MB_jMBmu
_ (3 , 8)

\ \.

The sum runs over the phvsical polan/ations \ of the V -1 bosons

Phc lugher-oider collections to (1 f t) can be sepaiated into factoiizable and non-

facton/ablc contiibutions |5 12 12] In the factoiizable contiibutions the pioduction of

two W bosons and then subsequent elecavs aie independent The coiiesponcbng Fevnman

diagrams can be split into thiee paits bv cutting onlv the two V\ -boson lines ihe coi-

rcspondmg matnx clement facton/es m the same uav as the lowest-oidei matnx element

(118)
flic non-lac ton/able collections compuse all those contiibutions in which V-pan pio¬

duction and/oi the subsequent V\ elecavs aie not independent Obviously this includes

all Fevnman diagiams in w Inch a particle is exchanged between the pioduction subproe ess

and one of the clecav subprocesscs oi between the clceav subproccsses Examples foi such

manifestly non-lactonzable collections aie the dngiams (a) (b) and (c) in Fig 3 1 If

the additional exchanged paihrlo is massive the eonespouchng collection has no double

pole foi on-shell W bosons How even if a photon is exchanged between the different sub-

pi ocesscs this leads to a doubb-iesonant tontnbution oiigmatmg from (he soft-photon
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region This can be directly seen bom the usual soft-photon appioximation (SPA), which

yields contiibutions piopoitional to the (doubly-iesonant) lowest-order contribution

The doubly-iesonant contributions can be extracted on the basis of a simple powei-

countmg argument Foi instanc e the loop mtegial e oitcsponding to diagram (c) m Fig 3 f

is of the following foim

r
=

/ ii Mg F)
' A ' 'A <> \ ->\( / 7 \ > or/ 7 \-> -ir r, ,7 \n -x r > i r / 7 ^ > o\

YY
~

Vy[(q k )2- mi\[(q M)2- M^t\(q h U)2 4/4][(ç ^ ko)' m

dlq
t Me/ A

g2 A2)(q2 2gk ,)(q' - 2qk _
b A

_ \I^)(y\2qkh + k2~ oeil2 )(q2 7 2c/A2)

(3 19)

where we have introduced an infinitesimal photon mass À to regulaiize the mbaied (IR)
singularrtv The function A (q A,) involves the numeiatoi of the Fevnman integral îe a

polynomial m the momenta q and A, and possible fuit her denominator factors oiigmating
bom piopagatois (hidden m the blob of the diagiams) that aie icgular foi q — 0 and

k\ — A12V Foi on-shell W bosons (A^ - 1/-) the mtegial has a quachatic IR smgtilaiitv
For off-shell W bosons, pait of the IR smgulaiitv is legulanzed by the ofbshellness )F\
M2Y =/z o, such that the usual logaiithmic IR smgulaiitv remains Vice versa, the off-shell

result develops a pole if eithei W boson becomes on shell and is thus doublv-iesonant

Theielorc, the quachatic IR smgulaiitv in the on-shell limit is chaiactenstic ol the doublv-

iesonant non-factoiizable contiibutions Vll tetms that involve a factoi q m the numerator

are less IR-srngular and theiefoie do not lead to doublv-iesonant contiibutions and can

be omitted Snmlailv, q can be neglected m all denominator factors included m A'(c/,Ay)
fn summaiy, q can be put to zero m N(q.k,) m UP V Y\e have checked this for vanous

examples explicitly Vs a consequence, we aie left with only scalai integials, and the

non-factorizable virtual collections aie piopoitional to the low est- oi der matnx element

We call the resulting appioximation extended soft photon appro urn ah on (ESP A.) ft drffeis

fiom the usual SPA onlv bv the lact that q is not neglee teel in the resonant W piopagatois
In ESPA, diagram (c) m Fig 1 1 gives the following contribution to the matrix element

M
,,, .. . . / d[q

^QFFM]2oui j 7^
f b irJn

n u I (lft

[J yki

(2-V(q2-VW -2qh)(q2i2qk7)
(IP - M2)(k2 - Ma)

[(Q-t-V Ui){(g + k ,Y - M^]
['iW)

The q2 terms m the last font denominators aie not relevant m the soft-photon limit and

were omitted in Reis [17 18 19 fn fact using the above powei-counting aigument it

can casilv be seen that the differences of doublv-iesonant contiibutions with and without

these q1 tenus aie îion-doublv-h sonant We have chosen to keep the q2 tenus because we

want to use the staudatd techniques foi the evaluation of vutual scalar integrals il] In

DP V i e if we per foi m the limit / "> M^ aftei evaluating the mtegial, we should obtain

the same result

In ordei to amve at physical results we have to meoipotafe the finite width of the

W bosons In DP V this can be clone m at least two diflcient wav s
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As a first possibility, we perform the intcgials for zero width and afterwards put k\ —
M2V where this does not give rise to singularities. In all other places, i.e. in the resonant

propagators and in logarithms of the form ln(C| — A['2Y A ie), we replace k\ - ]\[2V + it by

A± = A2 — M2V + iMwf\v. Since the width is onlv relevant in the on-shell limit, it is clear

that the (physical) on-shell width has to be used.

Alternatively, we introduce the width in the W propagators before integration. This

has to be clone with caution. If we intiodtice the finite width bv resumming W-self-eneigv
insertions, the width depends on the invariant mass of the W boson and thus on the

integration momentum. Fortunately, the contribution we aie interested in results onlv

from the soft-photonic legion where the vhtual W bosons arc almost on shell. Therefore,

we can insert the on-shell width inside the loop integral. After performing the integral,
we put k[\. — V/4, and P\y = 0 where this does not lead to singularities. In ÜPA this gives
the same results as the above treatment.

In the following we write AI2 ~ 4/4- - P1A\\ I\\ instead of My? in the loop integrals, ft

is always understood that AF and Ay are replaced bv AJ2^ where possible after evaluation

of the integrals.
If we implement the width into the integrand, it is clear that only the part of the inte¬

gration region with \qo\ F Uy contributes in UPA. If je/0| A> l\v, one of the W propagators

must be non-resonant and the contribution becomes negligible.
Once the width is introduced, it becomes evident that the relative error of the DPA is of

the order of Tw/scale. bet Ecu be the ccnter-of-mass (CM) energy and AE — Ecu -2AR\

be the available kinetic energy of the W bosons. Then, for AE (7, My? tire scale is given

by My?, for Fw < AE Y My? it is given by AE and for AE A Fw it is given by I\v. This

shows that the DPA is only sensible several P\\ "s above thteshold. This is simply due to

the fact that, close to threshold, the phase space where both W propagators can become

doubly-resonant is very small, and the singly-resonant diagrams become important.

3.1.3 Classification and gauge-independent définition of the non-

factorizable doubly-resonant virtual corrections

Manifestly non-factorizable coircctious arise from photon exchange between the final states

of the two W bosons (if), between initial and final state (if), and between one of the

intermediate resonant W bosons and the final state1 of the othei W boson (mf). Examples
for these types of corrections arc shown in big. 3.1 (c). Fig. 3.2 (a), and Fig. 3. L (a,b),
respectively. In addition, there are diagrams where the photon does not couple to uniquely
distinguishable subprocesses. These contributions can be classified into photon-exchange
contributions between one of the inteimediate lesonant W bosons and the final state of the

same VV boson (mf). between the inteimediate and the initial state (im), between the two

intermediate W bosons (mm'), and within a single W-boson line. i.e. the photonic part of

the W-setf-energv corrections (mm). Diagiams contributing to these types of coircctious

are given in Fig. 3.2 (c), Fig. 3.2 (b). Fig. 3.1 (d). and Fig. 3.2 (d). respectively. Because

the photon coupling to the W boson can be attributed to the decav 01 the pioduction

subpiocesses. these diagiams involve both factorizable and noivfactorizablc collections.

In order to define the non-factoiizable collections, we have to specify how the factoiiz¬

able contributions aie1 split off. This should be donc1 m such a wav that the non-factoiizable
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(c) type (mf) (d) tvpe (mm)

Figure 3.2: Further examples of non-factorizable photonic corrections in 0(a).

corrections become gauge-independent. In Refs. [38. 39] this was reached by exploiting the

fact that in ESPA the matiix element can be viewed as a product of the lowest-order ma¬

trix element with two conserved currents. Taking all inteifeiences between the positively
and the negatively charged currents arising from the outgoing W bosons and fermions

gives a gauge-independent result.

We have chosen a different definition of the non-factorizable corrections, which, how¬

ever, turns out to be equivalent to the one of Refs. [38, 39] in DPA. Our approach has the

advantage of providing a clear procedure how to combine factorizable and non-factorizable

contributions to the full 0(a) correction in DPA. Because the complete matiix element is

gauge-independent order bv order, the sum of all doublv-resonant 0(a) corrections must

be gauge-independent. On the other hand, the factoiizable doubly-resonant corrections

can be defined bv the product of gauge-independent on-shell matiix elements for W-pair
production and W decays and the (transverse paits of the) W propagators,

m= E k^-^m^- ^'^Mr:hhMyyr^ r-r
Ay A- '

where c5Af0'e~~iW"r^V SM^ r~v/l/y and SM^~~Xhh denote the one-loop amplitudes of the

respective subproccsses. We can define the non-factoiizable cloublv-resonanf corrections

by subtracting the factorizable doublv-resonant corrections from the complete doublv-

resonant corrections. This definition allows us to calculate the complete doublv-resonant

corrections bv simplv adding the fat toiizable corrections, defined via the on-shell matrix

elements, to our icsults. Oui definition can be applied cliagiam bv diagram. In this wav,

all diagiams that aie neither manifestly factorizable nor manifestly non-factoiizable can

3 /



be split Such diagiams leceive doubh lesonant contributions from the conquête lange

of the photon momentum q, and not only fiom the soft-photon region Phis is obviously
due to the piesence of two explicit lesonant piopagatois However, aftei subtracting

the factorizable contributions all doubh icsonant terms that arc not IR-smgulai in the

on-shell limit cancel exactlv te onlv the soft-photon region contributes Consequentlv

also in this case q can be neglected even wheie except loi the denominators that become

IR-singutat in the on-shell limit Vs an example we give the non-factoiizable collection

ougmatmg from diagiam (el) of Fig 3 f l

Mnf ~ 1( Myumyl {)
H T

iUM

ryy[(q \-uv v\i(q-uy Af?\

d'e] yyj-
A- "Ov

} (3 112)
A, )

Phis example shows that the on-shell subtiaetion introduces addrtronal IR smgulaiities
If the IR singularities in the non-factorizable real collections are regularized m the same

way, they cancel m the sum In (3 L 12) an infinitesimal photon mass A is used as IR

regulatot but we have repeated the same calculation also bv using a finite W-decav width

as IR régulât oi instead of A, leading to the same icsults m the sum of virtual and real

photonic collections

We illustrate our definition of the non-factoiizable corrections also for the photonic

contribution to the W-self-cneigv collection [diagiam (d) of Pig 3 2) Plie non-factoiizable

pari ol the YV+ self-eneigv leads

^WAA -lC2M{imnl
lib/ 1A)

(2UQ.y{(g + ky2 AF}(k2 -AP)

u - \12

j\y r
(2t) i „V b 2aTy

elb/ 1A'

yryy^FFyyy ca^

F=M>

A.p=AAv
M 113)

The first mtegial results liom the off-shell self-eneigv diagiam the second from the cone¬

spondmg mass-ienoimalizafion term and the thud mtegial is the negative of the on-shell

limit of the hist two integrals Hie mtegtals m ( > I 11) aie b \ diva gent and can be easily

evaluated in dimensional icgiilaiiztlion

The gauge independence of the non factoiizable corrections has been ensured by con¬

struction Phe consistent evaluation of gauce theoncs requires besides gauge mdcpcii
dencc of the phvsical matnx elements the vahditv of Ward identities It was found m

Ret C S 9 10] that the violation of V ucl identities can lead to completely wiong pre

dictions The pioeeduie chsaibcd above lot extiactmg the non factoiizable collections

fiom the full matnx dement does not leid to pioblems with the Vaiel identities that

rule the gauge cancellations inside matrix elements This is dm to the (act that the non

lac toiizable collections aie piopoitional to tin Bom matrix element Iheiefoie if Vaid

'\\c use tlie ml.ii ~ to indicate ui c ennhtv oirhni DP V ic up to non doubh icoinanl tcims
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identities and gauge cancellations aie nuclei contiol m lowest oidci, the same is true foi

the non-factoiizable corrections

Finally, we show how our definition of the non-factorizable collections can be rephrased
in terms of products of appropriately defined anient s By using

I
_

i

Jq rU)2 -M2
~

q2 ±2ql
ïJ-AUy

Ft + uy- MF
'}[ 11)

and the fact that in UP V U can be put to ~\f<\ befoie mtegration m mtcgials that do not

depend on M2, the contiibution (3 1 12) can ho cxpiessed as

A4TW~
J lnl

ie2A4 Roin

cfq IA /

(2U4(r -V)(<y FF )(.q2- 2qk )
k2 ~AP l2 AIP

k) -M>

(qd uy- v2

r~M2 i

{q-k-Y-M2 (q + 1 Y U2(q-k_)2 M
(3 f n)

The other non-factonzable collections that involve photons coupled to W bosons can

be icwntten m a sinnlai wav Finally all non-factonzabfe vliteral collections can be cast

into the following foi m

MT ~ 1-Mboo»

' <li(L r eA-iU WV~ // VV 4~>/7/
Ani -

Ac- >w t-yy- ß w pp
\nt /(

b Ant -

W^fihp \\ -A h
A nt An) //

Ant /'

(M 16)

with

c+c- >W+W
Jvni b /;

wt->A/7
Ant /(

— e

2k u

0\ —

7A

c\Q\

y

2e/Ah

2A1;/

q2 7 2c/A

VV -*/3/l
=

,

J-Vlll //

Q
2 A

va
Vi

2*,_, 2p ,c 2p,

2çA_ ci2 b 2qp c/2A2yp+/'

n
2Up

-

CA oTTT"

cp A 2e/A

2 A kl^AP

lq\ }J(k{ Fq)2 /IA2"

2qk
Qa

2k 2A_

q2 -2qki Y - 2ç/_/ (A - q)2 AF

F M2
(3 f 17)

The last term m (3 L lb) ongmates fiom the Peatman giaphs shown m Pig 3 1 and

those wheie the final-state feimions aie appiopiiateh mteiehangecl [mteifeience teims

(If), (ml'), and (mm')l 4 he contiibutions involving the anient AntA^^ W
(-ontani the

interference tarns (rf) (mf) (im) (mm), and the remaining contiibutions of (mf) and

(mm') idle contiibution of the \\ ' self-eneigv is given foi instance, b\ the pioduct of

the two teims involving /
j.,, in ]{u\ tU^ ^ ail(^ Ant /

fn UPA, the q2 tenus m the denommatois of ( 1 1 IT) can be neglected, and the cm

icnts aie conseived Ihe eunents Y)lt7 '
aU(l Ai

~j ''
aic ^10 oncs mentioned in

Refs [38, 19] Foi the v n tual collections t his shews that oui definition of non-factonzable

doubh-resonant collections coure ides with the one ol Refs 18 19 in DP Y
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Figuie 1 1 Example of a non-fae toiizable iea.1 collection

3.1.4 Doubly-resonant real corrections

The photonic viitual collections discussed above an1 IR-smgular and have to be combined

with the coiiospondmg teal collections m oidci to amve at a sensible physical result The

real corrections originate bom the piocess

U(Pi)+c-(p ) -> W"(A;) \W (A) [7 -by)]
-> h(Y) \-HU) > h(k\) t fYk'j + Uq) (3 L 18)

Note that we have mai keel the teimion momenta A( bv punies m ordei to distinguish
them from the respective momenta without leal photon emission The momenta of the

W bosons aie AC = Aj 7 k'2 and A' - l\ 4 k\ il the ])hoton is emitted in the initial state

oi m the final state of the othei W boson, and A A] ( A^ I q oi A^ A3 1 A't A q if the

photon is emitted in the final state of the icspectne YY boson

The non-tactonzablc collections induced bv the piocess (3 1 18) anse fiom interferences

between diagiams wheie the photon is emitted fiom diffcicnt subproccsses A typical non-

factorizable contiibution is shown in Fig 3 3 Including the integiation ovei the photon
phase space, this contiibution has the following foim

J
cPq Y(q k[)à(p+ \-p_- k[- U-U ^zÉ
Flo{(q \-UY- mi][(q hAC)2~ U'](kp

~

M2)

{ f

lib? 1 A',)2 ^iiY](Fr^2Y(qFFU2-AF2}

d\i\(qP)d(p m> a; k'2-l\ U-'i)

Plo

70 'q i \

(2(]AA(2e/AC t k'z- M2)(1L - V)

1
x

(2qPp\P2 (}P)2}[2qli t- /
'
- ( M Y] qo-

(11 19)

wheie we again use a photon mass Y to uygulaiize the IR smgulaiities, and Y (q F) has

the same meaning as above Ygain the doublv-resonant contiibutions aie < haiactenzcd

by a quadratic IR smgulaiitv for A" - 1/y I v\ > 0 and onlv solt-photon emission is

1 élevant m DP Y loi this leason the \Y bosons aie neaih on shell and the on shell width

is appropriate Ys toi the \11tual collections tin mtiodiufion ol the width befoie or afiei

phase-space integiation lc acb to the same results m UP Y Ys already indicated m (1 1 19)

m the following ical mtc gials we use lU with the understanding that it has to be lcplaced
by Aiy altei integiation w heie possible
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The aim is to integrate over the photon momentum analytically and to relate the

fermion momenta A;' to the ones of the process without photon emission, kt. Primed and

rmprimccl momenta differ by terms of the order of the photon momentum: k\ — k, pO(q0).
fn UPA we can neglect q in N(q.kt), leading to the replacement N(q,k'l) —> Ar(0,/y).
Moreewer, wc can extend the integration region for cy to infinity, because laige photon
momenta yield negligible contributions in UPoY. After extension of the integration region
the integral becomes Loientz-invarianb

While the correction factor to the lowest-ordci cross section is universal in SPA foi

all observables, the correction factoi is non-universal in ESPA. fn order to define this

correction factor in a unique way. one has to specify the parameterization of phase space.

i.e. the variables that are kept fixed when the photon momentum is integrated over. This

fact has not been addressed in the literature so fat.

Let us consider this problem in more detail, ft can be traced back to the appearance

of the photon momentum q in the «"-function for momentum conservation. In the usual

SPA q is neglected in this ebftmction. which is sensible if the exact matiix element is a

slowly varying function of q in the vicinity of q — 0. However, in the presence of resonant

propagators, in which q cannot be neglected, the simple omission of q in the moment tun-

conservation c5-function teads to ambiguous results: putting q = 0 in the ebfuncfion and

identifying A' with A', in (3.J. 19) yields

X
d3qA(O.A,)c5(y, + p_ - A, -Ay -Ay - k{)

~2qôrW-2J(2qk+ -f Ci^I7^(AT^ AI2)
"

X -,--

2qU)[k2_ - (AR)2}\2qk^ A A4 - (AR)2}
....... (3.1.20)

<7o-\/V tA2

On the other hand, eliminating k'+ in the denominator of (3.1.19) with the help of the

(5-function, putting q = Ü in the c5-function, restoring A'( with the modified ebfunction, and

setting k[ -> p results in

I
cPqA(0.A;)4(y_. + p_ - k\ - Ay - U PF

2e/0 (2qk2)(ki --'~M2)(kl -If)
f

(2f/Ay)i -2qk+ A A2 - (iA)2]b2gCA -+- kl - (1A)21
. (3.1.21)

(;o-\/q-+A-

Both expressions differ bv a doublv-resonant contribution. The difference is in general
confined to the \Y propagators and originates fiom the fact that not only soft photons but

also photous with energies of the order of |Ay - 4/y, \/Aty> or, after the inclusion of the

finite width, of order Fy, contribute in UPA. Since photons with finite eneigies contribute,
it is evident that the integial ovei the photon momentum depends on the choice of the

phase-space variables that aie kept fixent

As a consequence, one1 has to choose a definite paiameteiization of phase space and to

exploit the ti-fiiuction carefully, in oidci to define the non-factoiizable collections uniquely.
For instance, if the vectoi A'. - Aj j- F-, is kept fixed, the alternative (3.1.21 ) is excluded.

However, because of momentum conservation, not all external momenta can be kept fixed

independent h
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ft is. however, possible to keep, for instance, the invariant masses of the final-state

fermion pairs A'2 = (k[ + k'2)2 and k'2 = (U + U)2 fixed when integrating over the photon

momentum. If wc require (k[ + k'2)2 = k'2 — A2h = (A7AA2)2, we obtain for the denominator

of the YY"+ boson

(q A kpY - AY = 2c/A( ! A'; - - \Y = 2r/A,_ \- A2h - Al2 A O(q20)
= (q * PP2~~Af2PO(q2), (3.1.22)

where k[ = Ay -b 0(qQ) was used. Based on the power-counting argument given above, the

terms of order q2 can be neglected in DPA. and we find

(q A A-;)2 - Al2 ~ (q 4 kp )2 - AI2. (3.1.23)

If we choose to eliminate k\ ,
as done iir the derivation of (3.1.21). wc find, on the other

hand,

(q 7 A^)2 - - Al2 = (p.c 4 p_ - kYY M2 = (/A A p. - kFY - M2 F O{q0)

= Ay -M2 + 0(q{)). (3.1.21)

The ö(q0) terms are relevant in DPA fand in fact given by (3.1.22)]. As a consequence.

(3.1.21) is not correct if we choose to fix k'_p — A-i when integrating over the photon momen¬

tum. For fixed k'/2. — k\, (3.1.22) leads to the unitpie lesuit (3.1,20) for the W+ pre)])agator

in UPA, independently of the other phase-space parameters. If we choose, mi the othet

hand, to fix A2 = k2, which corresponds to a different définition of the invariant mass of

the W"1 boson, wc obtain

(q A A, Y - M2 = Ai - AI2, (3.1.25)

and thus (3.1.21) instead of (3.1.20). Consequently, the different approaches (3.1.20) and

(3.L.21) correspond to different definitions of the invariant mass of the W+ boson which

decays into the fermion pair (ft, f2). In order to define the UPA for real radiation, one

has to specify at least the definition of the invariant masses of the W bosons that are kept

fixed, in the following we always fix Ay - (k\ b A4)2 ^ (Ay A Ay)2 and Ai - (Al, F k\)2 -

(Ay 4 Ay)2, as it was also implicitly done in Refs. [37. 38, 39]. Once the invariant masses

of the W bosons are fixed in this way, the resulting foimulae for the non-factoiizable

corrections hold independently of the choice of all other phase-space variables.

We stress that the results obtained within this paiameteiization of phase space dif¬

fer from those in other parametenzations by doublv-resonant corrections. As already

indicated m the introduction, in an experimentally more realistic approach the invariant

masses of W bosons are identified with invariant masses of jet pairs, which also include

part of the photon radiation. Since this situation can onlv be described with Monte Carlo

programs, oui results (as well as those erf Refs. [37. 38. 39]) should be regarded as an

estimate of the non-factorizable corrections.

3.1.5 Classification and gauge-independent definition of the non-

factorizable doubly-resonant real corrections

dite doubly-iesonant real collections cm be classified 111 exactly the same way as the

virtual collections. For each viitual diagiam theie is exactly a real contribution, which
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Figure 3.4: Real bremsstrahlung diagram containing non-factorizable and factorizable

contributions.

we denote in the same way, e.g. ff releis to all inteifeiences wheie the photon is emitted

by two fermions corresponding to the two diffeient YY" bosons.

As in the case of the virtual corrections, one has to define the non-factorizable real

corrections in a gauge-independent \\a\. 4o this end. we piocced analogously and define

the non-factorizable real corrections as the chffeience of the complete teal collections and

the factoiizable real collections in UPA The factoiizable corrections are defined by the

products erf the matiix elements foi on-shell W-pan production and decay with additional

photon emission. There aie tin ce contiibutions to the factorizable real corrections, one

where the photon is radiated during the production process and two where it rs emitted

during one of the W-boson decays. The coiiesponding matrix elements lead

Meal 1

Meal 2

A_.\_

\7e °C~-7\ ' V\ ~y KA\ ->/ h KA\v --> A/<M P
BO! 11

M
Bor n

(A2 - 4A2)(Ai M2)

lBor uys A!Beim - V}Bcon jVlI
^ Ufkp Ac/)2 f \R)(kP_~~M2)

b--^wu\- KAw^->hh A//w~~A3b7

A, A

M
Mt M

eal,3 —
lOnn

M
Bom

rt_~ (U -4A)[(A 7 q)2 -A/2]
(3.1.26)

in analogy to (3. L.8). Note that the matiix elements .Y4,cal2 and M10A\} involve an explicit

(/-dependent piopagator. The factoiizable collections aie given bv the squares of these

three matrix elements, and include by definition no interferences between them

As an example for the extraction of non-factorizable corrections fiom real diagrams that

involve both factoiizable and non-factorizable coucou ions, we consider the contiibution of

the diagram in Fig. 3.4. After subtraction of the1 fae toiizable contribution, which originates
from |A41PAi 112. it gives use to the following collection factor to the square |A4Bonf2 of the

lowest-order matrix element (3.1 8b

<Pq^\\av~
_

2 I uvi__^p(J dk
|
A_

<'0ril / UYF2q0
' '

V[kY+q),~Mri(k. t Y)2 - (M'Y]
IA Â_

2qk 2qM A-wy J y„ ycy^A^
(3 f 27)
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Note that the foim of the collection factoi is onlv conect foi fixed (k\ +A2)2 and (U +UY
For otlrei conventions the off-sliell contribution changes, whereas the on-shell contiibution

stays the same Using the relations (3 i H) foi q2 ~~ 0, m UPA we can icwiite (3 1 27) as

Ö
w ! v\

—e~
cfq
-- 2 Re

k,M

(qk+)(qkU

k] -4/°

rY2q0
F

(aTac/)2- l/2(A^Ae/)2-OA)

a 4
A2 \P

M2 IP

i^e/)2- M2 (A_ Hi)2- (MY

10=yypp
\) _L &j > J

fn the same wav, all othci contiibutions that ongmate fiom a photon coupled to a

W boson can be lewiitten such that the complete ual uon-tactonzable collections can

finally be cxpiessed as the following collection factoi to the lowest-oidei cross section

Yc A ni

cfq

(27r)j2g0 2Rc[yLi\i
c7a->w yy- p, w -

V oeil // c U ocal
,

/Aw ,
Ar ~AVU\ «/ W

) r ]

vv -77 p, yy- >/• fiy
oeal I'liilii A

•hfo

,4 4 29)

with the cuirents

e+c--*WlWV-
Aeal ß

wA/,7
/red /'

— e
Yji

çy

w ->Mj
OC rll p

r

c/A_

n
^'/'

n Up
Fi y

-

V2-7-
f/A t çA2

A
^'"

A
*J''

GA 7 Qi~T
ql<A 9A1

Po,

qp±

\r> k] r[2^
qkY)(k^ + qT ~~M2

/ ,A /' 4A2

qk^J (A J ç)> - V2
(3 1 30)

The factoi (3 1 29) foi the non-fact01 izable correction can be viewed as the intcifeicncc

contributions m the squaie ol the matnx element (~ denotes the polanzation vectoi of the

photon)

A4, eat — A4Bom
-/' cA--v\v+vv- , WJ-Wi/ , w-->Afi

-'teal// ' JuAp ' Ocil// (3 1 31)

which is just the sum oi the three matnx (dements Af0i ?
1 - 12 3 m DSP Y (includ¬

ing laebation fiom the exteinal ici niions and the internal Y\ bosons) Plie respective

squaies ol these three contributions concspontl to the factoiizable1 collections Note that

MYUU^ IVS s;'lYYitr
' "~

ls lf° ^off-photon matnx element lot on-shell \Y-pan pio¬

duction Stmilaih M^0+nyl]l "FaYM <111(1 M)lrUU~" Fap
hli

(oucspond to the

soft-photon matnx elements foi the decay s of the on shell YY bosons apait fiom the extia

factors (Ay — 4A2)/[(A -t q)2 - M 1 fliese factors result bom the définit 1011 ol the leawest-

oidci matnx element m tenus ol / and bom the fact that we impose F2 k\ and not

k\ = Aj
Obvioush the emients (3 I 30) aie conserved and the1 c on espoiidmg Ward ldcntitv

toi the U(l)cm s\ mmetiv of the emitted photon is fulfilled



3.2 Calculation of scalar integrals

In this section we set our conventions for the scalar integrals. We describe the reduction

of the virtual and real 5-point functions to 1-point functions and indicate how the scalar

integrals were evaluated. More details and the explicit results for the scalar integrals can

be found in the appendix.

3.2.1 Reduction of 5-point functions

Reduction of virtual 5-point functions

The virtual 2-, 3-, I-, and 5-point functions are defined as

Bo(p\.mo.m]) = —- /elV/ .

CiFPi-l^.ino-mi.niY = ._-, /cfc/
1,1 " J

d^q

I

nYnY
y^

nYfrnY

{Yqp}
NoN^NoN-i

r xUff}

D^./piPi.p2A[p. PhA mi. m2. uiY --
.

E{o.p}(pi,P2,lP- Pi- mo- mi, HR- ii^, m Y ~

:

with the denominator factors

Ay = q2 - m2 + A, Y, — (q t- pp)2 - m2 7- ie, ?-!,..., 4,

AoAbAC/VyYi
(3.2.1)

(3.2.2)

where ic (e > 0) denotes an infinitesimal imaginary part.

The reduction of the virtual 5-point function to 4-point functions is based on the fact

that hi four dimensions the integiation momentum depends linearly on the four external

momenta y, [13, 44]. This gives rise to the identity

0=r

2<p 2qpl ... 2qpi

2/)if/ 2p2 ... 2jy;y

2Ay 4 Too 2e/]y . . . 2qp{

iVL - A*o 4-rJ0 - Vqo 2pj ... 2ppp4

2ppi 2p{p] ... 2p\ Ay - Ay 4 1)0 - ) oo ~PdF ... 2p2

(3.2.3)

with

Too "=- 2my Uo = Yo, = up) A m2 - p2. 5y7 -- m2 -J- m2 - (p, - /y)2, y j =

Dividing this equation bv ,A0Ab • • -A4 and integrating over d[q yields

2,3,4.

(3.2.4)

i ri- J A n A i \

AY04 y00 2qp{ .. . 2qp[

Vi - A0 -i- r10 )do 2p2 . . 2/yy,

Vj - A0 - ))o Uio 2p\P\ 2p\

(3.2.5)
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Expanding the determinant along the first column, we obtain

2piPt • 2p{pA

0- 2DF0)FYmE00-^0

-PiPi - 2/b/b

x

Dp(U - Pic(0)A/

2p>; . 2iY

2/AAt ZpiPi

lpk-iP\ ~2Pk-iP

)H 0w-Voo)^}

2yA.+ ly! ... 2jy + yy

2piPi 2/Ayi

(3.2.6)

where A) (A) denotes the 4-point function that is obtained fiom the 5-point function E0

by omitting the Ath propagator iVA1. The terms involving /t|//240(0) have been added for

later convenience.

All integrals in (3.2.6) aie UY-finite and Forent z-covariant. Therefore, the vector

integrals possess the following decompositions

i

E„ -^YlUPcp-

Dp(k) = YJDi(k)pi in
A-- 1,2,3,4.

Ac(0)+A.,,Ai(0) =EAA))(a Fh)p
7=1

(3.2.7)

The last decomposition becomes obvious after peiforming a shift q —^ q
— /y in the integral.

From (3.2.7) it follctws immediately that the teims in (3.2 6) that involve Dt,(k) drop
out when multiplied with the determinants, because the resulting determinants vanish.

Similarly, Dß(Q) F pq, A40) vanishes aftei summation ovei A. Finally, the term p\pD0(Q)
contributes only for A = 4. where it can be combined with the first term in (3.2.6).
Rewriting the icsultmg equation as a dct ci rainant and reinserting the explicit form of the

tensor integrals leads to

0 =

A'o A Y00 2qp] -qpi

(177
A)oA, • Y,

îm-1 oo A4A • • -ThPiA

i io
- i'oo 2)pp{ 2pipi

(3.2.8)
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Using

2/y/y = Yl7 - Yl0 - 10; A Y

2e//y = iV, - iV0 + Vo7 ^

00?

00) (3.2.9)

adding the first column to each of the other columns, and then enlarging the determinant

bv one column and one row. this can be written as

0 =

1 v00

0 D0(0) + YooE0

0 1 10
- Yio

Vin -1 oo

4 01

DoiD + YoiEo

Yn-Yo*

oi

(3.2.10)

Equation (3.2.10) is equivalent to

0_

-Ao A,(0) D0(i) D0(2) A0(3) D0(4)

L loo Y)l 4 02 Eos loi

L Do 111 U2 1 H Vu

I 5 20 Y2X Y22 V, V2]

1 1 10 Ym V2 Y» Vu

1 V,o Yn Yi2 En Vt4

(3.2.LC

which expresses the scalar 5-point function E0 in terms of five scalar 4-point functions

, 4

E0„ ^det(Y)A

dct(i ) r
oCb (3.2.12)

where Y ~- (Yn), and Y, is obtained from Y by replacing all entries in the ?th column

with I.

In the special case of an infrared singular 5-point function we have

loo -- 2A2 -A 0, En = »'f ~ p\ - 0. V01 = m\ - p\

and the determinants fulfill the relations

0, (3.2.13)

0 = det(V)- V02flet02) Y)alct(U). (3.2.14)

0- (1m- Yo2)<let(Y)^l0,Ylt.let(Y,)^ (Y02Y^ - -1 oAaUlet(YO A r02Vu del (Y{).

0 - (In lo3)det(V) ~ UAn4ct(Y,) A UooVo - Vx-Vi ) det(Y2) 4 l0yVn clot(I4U

which allow the simplification of (3 2.12)
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Reduction of real 5-point functions

The real 3-, 4-, and 5-point functions are defined as

2 r cPq f

~

AnoAC 2ey0 Y[N2

f

G-}(Pi-P2- 4. /?y.r/?2) =-

qo=pY+^'

A,(yt.AAAA.uy.m2,mO-^/|^A7^^
ço^vAr+A9

<t4i(yiU>2Ab-Pt.A.//M,///2,/?y,/nl) - 7 /
/i /

7bq 1

2ey W[AAY^Y( qo=-FF i a'

with

Y( t= 2qp, Fp, - my 1. .4.

(3.2.15)

(8 2 16)

The shift of the integiation boundaiy of ey to infinity" leads to an artificial UV diveigcnce
in the 3-point function C0. which is legularUed bv an energy cutoff AE -7 00. fn the

following wc only need differences of 3-point functions that aie independent of AE and

Forcntz-inva riant.

Because of the appearance of UY-singular integrals in intermediate steps, the reasoning

of the previous section cannot clnectly be applied to Sq. fherefore. we rewrite the ical

5-point function as an integral ovei a closed anticlockwise contour C in the e/o plane and

introduce a Uorcntz-invariant YY regulator A:

o(pt. P2-PhPi, Y »y. »A »A m i) fini -

-,
V^x l-2

i -A2
cry

4^Y[ • N^ q2 - lY

with

K - q2 - -V.

(3 2.17)

(3.2.18)

The contour C is chosen such that it includes the poles at cy, — \/q2 A A2 and çv0
~"

Yq2 A A2, but none else (se^1 Fig. 3 5)2.
The integial (3.2.17) can be leducecl similarly to the virtual 5-point function. Owing

to the different propagators Y'. (3 2 3) leads to

f
0 - lim -

a.-»oo iA Je
cl 4/

-A2

Y' Y
'

.
\
0

\ 1 x[ y - y2

2 Y A4

A[ 4 Yo 2y

A] 1 l,o 2plP]

2qp{

2pp)4

o
°

pp>\

(3.2.191

instead of (3 2 5). with 1,, fiom ( ) 2 4). and A2 can be sei to /eio m all Yt). in particular
we have 100 = 2A2 ~7 0 Atta expanding the detciminant along the first column and

- It is stiaightfonvaid to chock that rho nai\e power conntms, loi the I \ behavioui m (3 2 LT) is valid

foi timc-liko moment a p, light-like p, can be tieatod as a lmntnia, case The basic idea toi the pioof o

to defotm the c otitom C to the \eitual Imc Re{c/n) —

q c- 01th a onall 1
"s 0. winch is allowed foi

sufficiontb laiae lq|. mnic piensch o hen all paiiiele poles appeal led horn the hue Re{r/o} ~ |q| - e
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qA\'

RA00}

Figure 3.5: Illustration of the contour C of (3.2.1 <) 111 the complex c/o plane. The open

circles indicate the "'particle poles" located at e/o(y,) - (2qp, - pf A m2)/(2pl0).

using the Uorcntz decompositions of the integrals where Y'k is cancelled, wc see that these

terms vanish, and we are left with

I / ., 1 A2
0 = Inn — / d q- - -——-

-T- .,

'\->x> 17T
- le AAA J • • A J q- - A-

2A^ 2qpl ... 2qp{

V10 2p\ . .. 2ppp\

V10 2ypy 2AÎ

(3.2.20)

Using

2p,pj ~ yu - i;0 - v0;.

Pup = Y] A Y0). (3.2.24)

adding the fiisf column to the other columus and extending the determinant leads to

n ,.
1 A n

1 - V2
0 - lim — / d q —— -7 ,

— 0 ) 10
A->rc 1A A AAA • • • A , (/- — A~

I 0 lot

0 2A)( A4 1 2F'r lot

Vi — loi

0 1 5 11
- Y

Vo,

A(b 2A^-| Y0[

Yu -Vo,

1 t j
- loi

A 2 22)
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Subtracting the first row from the second, adding the first row to the other rows, and

exchanging the first two rows, we arrive at

0 = lim ,( (I

aAao 4.
.

v AF

-A2

woo iA lc
'

NyY[ X[ q2
- Y2

-I 2^ N[+2N([

1 0

f Vo

1 Vo

Voi

V,

V,

Ay 4 2Y(',

Vo4

Vl4

i:

(3.2.23)

Now we perform the contour integral using power counting for A -A oo (see footnote 2). In

the contribution of the pole at q0 =• \Yq2 T A2 we have Ay" — 0 in the numerator: the limit

A -7 oo can be trivially taken and reproduces usual bremsstrahlung integrals, as defined

in (3.2.15). fn the contribution of the pole at c?o — v/(42 A A2 the term containing A"q in the

numerator survives and will be calculated below, but all other terms vanish after taking
the limit A —> oo.

Thus, we find

-£o MO) Vo(i)FVo(0) V0{2) \ D0(0) VQ(3) + V0(0) V0(4) 4 Ä,(0)

0 =

Vo Vn

1 10 Vu

v20 Vt

1 °,() Vu

V,o Vu

Vo2

V,2

v2

} 32

v42

V)3

Yn

V2Î

V»

V13

Vo,

V,

V,

la

Vt

or

oo —

dct(Y
d(4(V0) P0(0) 4 JZ (1(W ) \r>o(i) A P0(0)

Here

2?o(0) - hm f^ I d'*;—^—-- -"-
-.

v->-x> i7T^ Je A [ • A j q- — A-

°- '
A

I

(3.2.24)

(3.2.25)

(3.2.26)

and tire 4-point bremsstiahlimg integrals V0(i). i 1.2,3.4. result from <C0 bv omitting
the /th denominatoi A~C The result (3.2.24) differs fiom (3.2.10) only bv the extra Do(0)'s
added to the V(]F)F.

The integral T20(0) stems fiom the terms involving A'^ in the numerator in (3.2.23) and

can be expressed as follows:

poi0) = r I dVy^
r

-1

PiFYqPvr
(3.2.27)

where the contoui C smiouncls q'0 yq/J4 1. Perfoi tiling the contour integial ova ch/0
yields

T>o<0) -

Fq'
'77 '7/'
Vo -CA •-CA Avq2ii

3.2.28)
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Now the vectoi q' is time-hke Since also the vcctois p, arc time-like (or at least light-like),
the scalai pioducts q'p, cannot become zero After redefining the momenta,

P = AA A - 4 1 pl0 -> 0, (3 2 29)

and extracting the signs o this mtegial can be evaluated bv a Fevnman-parametei îep

icsentation and momentum integiation m polai cooielmates resulting m

A)(0) - tyoyc^ay / ch j ch ? ch pi;, ril ]aa] (XV'Aj F 2 30)

This is just the Fevnman-paiametei lepiesentation of a viitual 1-point function such that

we finally, obtain

A)(0) - - (Tto2(T,aUY y2 Pi IP Pi Pi Pi \A4 \JPh yPv, YlF (3 2 31)

Explicit reduction of the virtual 5-point function for the photon exchange
between fo, and f^

For the photon exchange between f2 and [^ the following scalai mtcgials aie i élevant

Eq Eo( k^ — Ä_ A4- k2 \ m] Ak AI m2),

DQ(0) = D0(-ki k+P A, A24 A< 0 U \I 0),

D0(l) = D0(-A_ Co ko 0 u u my

DQ(2) IM U U ko \ m, 1/ mA,

D0(3) - i?o( ki -k. k> \ up If m2),

D0(l) - E)0(-k, -Â_ A,. 0 »y V 1/) (3 2 32)

Since we neglect the exteinal leinuon masses the last two i dations (3 2 11) simphlv to

0 - (s2^ -4-i2t)det(l ) ! AAsndct(l,) - [/v_(s;, 4 «-?,) I R^AI2) del(l3),

0 (sn i s2,)d(tO )4 7\^vî<lct(V) [A_(sH i-sm)7 /X) Ui]dct(A)(3 2 33)

These relations allow us to eliminate clet(l,) and de t (1 d) fiom (3 2 12) icsultmg in

da(lo)
A0( Ia A_ A A \ np M 1A /??>)

1(1(1
D0(0)

<kt(l,)

det(
, / {l/v U ,

- i) \ A-bV 7Y(1) l R_s,3D0(3)}
1 )iV_s71

C J

da(l
I

.

7^r-Kbb^»)lA l/,Drll)4A4o,D„(2)}
dct(l )/v s,,

i J

Av

o ,,

^
!

D0{ D
S-). — s>.

Av_^,
Uo (3 2 34)
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The matrix Y reads

(OO -AC K.

* 0 AI2 (-K+ -

,s13
- s2y

* * 2A.I2 2AI2 - s

* + * 2AI'2

0

-523

-AA - s23 - s2y

AI2

0

(3.2.35)

J

Neglecting terms that do not contribute to the correction factor in DPA, the corresponding

determinants are given by

det(Y) ~ 2s23 K+K.....sus23 - (KmAIY 4 K^SiF)(K.....Ad2. 4 AAs24)

det(lo) ~ -Yy?,

dot(l'ï) ~ K+ [Mw(S23 - At) 4 (A3 4 -S24)(5l3S24 SnAs)

4 K-M^-M*. 4 2s,3s23 4 A3-A4 4 A.4A3),

det(Y2) ~ _s23 [A'+(i\/w + A3A4 - S-14S23) 4 2K AI2.s13] ,

det(F3)-det(y2)|Ä.+^_<äi3^,4,
det(ly) = det(ly)lff+^^Si3^SM, (3.2.36)

where the shorthand Ky? is defined in Appendix A.l.

Explicit reduction of the real 5-point function for the photon exchange between

f2 and /3

In this case the integrals appearing in (3.2.25) read

So — £q(U, Aa, k+, Ay, A, rn3, 4f*, M, rip),

V0(0) = -D0(C4, k+ - Ay, A-2 - Ay, 0, AA, M+, 0),

X>o(l) = D0(Aa, A,., Ay, 0, 4/447,7772),

X>o(2) = 24o(A-3,C+, Ay, A, 7773AAm2),

T>0(3) = Po(fc3,A^Ay,A,m3!4A.m2).

I>o(4) = D0(A;3, U, k+. 0, m3, AAA 4/). (3.2.37)

In analogy to the virtual 5-point function, we can express the real 5-point function with

the help of the relations (we denote the matrix 1
"

for the real 5-point function with a

prime, in order to distinguish it from the one for the virtual 5-point function):

0 = (.S23 4 so.,) elet(Y') 4 K*_so_3 det(Y() - |A"+(
0 = ($13 + s23) det(V') + AA.S03 det(V() - \.K*(

A S2.1)- AAiCiyJdetfly),
FsoY - A'+i\/!]det(y2'); (3.2.38)

t)V

£0(U. Aa. Ao_, ko. A. 7773. AP.AI, mf = ^-%-p0(0)
detfl ')
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let (I

det(V')AvAs'23

det(V)
dct A ')AvCao^

Ay4 y?|
AvA^

K+(s23 + s2,)-K\Mi Vo(i)+Vo(0) +At.s23 X>o(3) + î>0(0)

A4(sy, 4 syO - RAAVJ [D0(4) + î>0(0Vj 4 A, s2<p0(2) -,V0(0)

A} A- A>4
•Ai(4) > T)0(0)

AAaî
•Po(f)4'P0(0) 3.2.39)

For the matrix Y' we find

( 0 0 -YvY

* 0 (JIT)2

V =

-AV 0

(-A4. a-
^,ï 4 at) A3

* * 2(AA)2 (-2A+-2AC \ *-{AEY AI2) (- AY F Pa 4 A,)

+ -t * 2.ÏÏ2 4A2

+ * + < 0

(3.2.40)

Rcjdacirrg — KP by AY and (M'Y nv -V2 anfl multiplying the second and third columns

and rows by --1, this becomes equal to (3.2.35) in DPA.

fn DPA, À)(0) can be neglected in the terms V0(i)p D0(0) in (3.2.25) and (3.2.39). and

the reduction of the real 5-point function becomes algebiaicallv identical to the reduction

of the virtual 5-point function, apart from the differences in signs of some momenta. As

a consequence, the results for tire virtual corrections can be translated to the real case if

we substitute AC -7 — Al in all algebraic factors such as the determinants and A0 —> £q.

D„(0) -> Â,(0), A>(1) -> -2>o(D. D0(2) -a -D0(2). D0(3) A V0(3) and D0(4) -7 £>0(4).
In particular, the determinants are related bv

det(V') ~ 4 clef (V)

dctQ7) - --del(V,)

dot (VO - AcUtOY

K-->-[<

A'_-v K"

A"_-v A*

au07) -

dct 07)

dot (I)')

4det(V0) - -sY,

-del(Y2)
K.->-lC

+ del(11)|
ii\._->-;a

(3.2.41)

3.2.2 Calculation of 3- and 4-point functions

The scalai looj> integrals have been evaluated following the methods of Ref. [43]. Our

explicit results are listed in Apj-ienclix A.3 for vanishing YYAyoson width they agiee with

the general results of Ref. 113i. For finite YY'-boson width the viitual 4-point functions are

in agreement with those of Refs. [38. 39j in UFA. 14ns shows explicitly that the q2 tenus

in the W-boson and fermion propagatois are nrelevant in UPA.

An evaluation of the bremsstrahlung integtals. which follows closelv the techniques foi

calculating loop integrals, is sketched in Appendix A.2. The final icsults m UPA are listed

in Appendix A 3. and the bpomt functions agiee with those of Refs. [38, 39]. YY1 have

analytically lejnoduoed all exact lc-ahs foi the oc< uning bremsstrahlung 3- and 4-point

integrals by independent methods In addition, we have evaluated the IR-htnfe integtals
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'Do(i), T>o(4), and £0 — V0(3)/K+ bv a direct Monte Carlo integration over lire photon

momentum, yielding perfect agreement with our exact analytical results for these integrals.
Note that this, in particular, checks the reduction of the bremsstrahlung 5-point function

described in the previous section.

Our results for the 3-point functions cannot directly be compared with those of

Refs. [38, 39], because different approaches have been used. While our results aie IR-

singular owing to the subtracted on-shell integrals, the results of Refs. [38, 39] are artifi¬

cially UV-singular owing to the neglect of e/2 in the YY* propagators. However, when adding
the real and virtual 3-point functions the two results agree. This confirms that our defi¬

nition of the non-factorizable collections is équivalait to the one of Refs. [38. 39] in UPA.

Thus, it turns out that in UPA the subtraction of the on-shell contiibution is effectively
equivalent to the neglect, of the <y teims in all but the photon propagators.

3.3 Analytic results for the non-factorizable correc¬

tions

3.3.1 General properties of non-factorizable corrections

In Ref. [37] it was shown from the integral representation that the non-factorizable correc¬

tions associated with photon exchange between initial and final state vanish in UFA. This

was confirmed in Refs. [38, 39]. Yia explicit evaluation of all integrals we haw checked

that the cancellation between virtual and real integrals fakes place diagram bv diagram
once the factoiizable contributions are subtracted. In this way all interference terms (if),
(mf), (im), and (mm) drop out. Fxamjdos foi the virtual Fevnman diagrams contributing
to these types of corrections are shown in Fig. 3.2.

The only non-vanishing non-factoiizable corrections are due to the contributions (ff').
(mf), and (mm'). The corresponding virtual diagiams are shown in Fig. 3.1, apart from

permutations of the final-state fermions. Two of the corresponding real diagrams are

pictured in Figs. 3.3 and 3.4. Since these collections depend only on s-cTiannel invariants,
the non-factorizable corrections are independent of the production angle of the W bosons,
as was also pointed out in Red's. [38. 39].

3.3.2 Generic form of the correction factor

lire iioii-factori7ablc corrections ebrnf to the fullv differential lowesf-oider cross-section

dciBorn resulting from the matrix element (3.1.8) take the form of a collection factor to

the lowest-order cross-section:

<l'Tnt ~ YaI<tBoiii. (3.3.1)

Upon splitting the contiibutions that leailt fiom jmotons coupled to the YY" bosons ac¬

cording to L = Qya ~ Q\ - Q) and 1 - -Qy- - Ch - CC into contiibutions associated

with definite1 final-state fermions, the comjbiete collection factoi to the lowest-order cioss-

section can be wtilten as

Vi -- £ X ( PP^QRPr lXc{A(k^.ky.k-.kb)} (3.3.2)
o=l 2 b i.I
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fn the following onlv A — A(A + ,A2,A__ A3) is given, the other teims follow by obvious

substitutions A.s discussed above A gets contiibutions fiom intermediate-mt( rmediate

(Amm ), inter mediate final (Amf), and final A7'70' (A(f ) mtei actions

A - Amm \ Aml 4 Ajp (13 3)

The quantity (Amm is mdepencleuf of the hnal-statc lermions Fhe individual contiibu¬

tions read

A^Y
Ammi ~ (2AIY s)|C'o(^ A_ 0 M M) [A0(/ â_, Y, /lAv M»)

Co (A A 0, M AR) 1 [bn(A A^ \, Jl/yV, A/w)

Aml (s,^^,)[A1A)(l) A4Po(D] Yi ^)\h-D0(l) - hLDo(i) (3 3 5)

I 0 3 D

Aif -^ A 4. s 23 A _

R o
— A c i (3 3 6)

with the aiguments of the 5- and t-potnt tunc lions as defined m (3 2 32) and (3 2 37)
The sum Amt> 4 Aff can be simplified bv insetting the decompositions of the 5-pomt

functions (3 2 31) and (3 2 39) lu Ur Y this leads to

A ,
v

AJ_A^s2{det(l0) ,
A hA: Atdct(l0')

Am, 4 An
oT

- D0(0) 4 —
-^

P0(0)

^7yy-{lA Yn bs„)4A AA4]/90(l) FAa^oO)}
0

A__det(V
~

clet(l )

A+dct(l()

{[A (sn hs,3) bA l/;po(l) i A s„Do(2)}

I-
+letjyt)- {[A (^ + sM) /vClAy]P0(f) 4 Ms23P0(3)}

1 7\yoa|aP {l^COn f ».) - RUBEFY \ h,s2,V0(2)} (3 3 7)

Note that AmI is exactly cancelled bv the contiibutions of the last two teims m (3 2 31)
and (3 2 39)

Inserting the expressions toi the scalai mtcgials bom Yppenchx sY 3 and using the

first of tfie iclations (3 2 14) valions tenus notably all IR divergences and mass-smgulai

logarithms, cancel between the real and vntual collections and m UP Y we aie left with

2^ - »

A;A
- &?[ —

uv ) a- Fit
A

Pi;
A

A
-vv

1\
, >

.
/A-_ I A îyy

1
u

2 i In -

A

A

PR

vvJo ^Ya
A

r Av
A

—Cnf ' -A

LA.s, ildlU) A detO )_

det(l) detO ,

'

Aa A s>alot(l ')

1
imagmaiv paits (3 3 8)

A_<letO0

detO ')

imagmaiv ptits

der il )

A__d(t(l_) A_delO')

IF

F

(3 3 9)
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with Do(0) and Vr,(0) given in (A.18) and (A.26), respectively, and

'Ad
,

r or
,'K\ «2J + S24

71

P—j
a
21AAiTw

Li2,-^)+21n("i| _i0K--fe

£d
TAY

Ai 4 .S2 |

4if,:cw

, -, A} 4 sy4
In I-

-^
-,e,,

^ = A, b 2.Ti|21u( 1 - £' ^—) -

hl(l + 7^M "

hf1 + ~-"-
ft--»-A7 I V A: MA J V A:cw4 V s2^ + s2l<\\

4 In

iC

17Y

Al b s2i

Fn -A,
f\ + <Ah-,S2\A>1-i î

To = Fo io -a / , ,
A'-J4v\ id, Av/Yy.

4 2tti< In 1 4 ——— — ml 3
K-->-k\ \ \ A j. 4 V sn + «5?!

In
Aks2I-* 23

hVA4ydn y ,s20
A. 3.10)

The variables ,6\y, xy? and the dilogarithms bi2, Cio arc defined in Appendix A.I.

The above results contain logaiithms and dilogarithms the arguments of which dej>end

on Ad- It is interesting to see whether enhanced logaiithms of the form In (Ad-/A Ay)
appear in the limits K± a 0. ft tirrrrs out that such logaiithms are absent fiom the

non-factorizable corrections, irrespective of the ratio in which the two limits /vd -> 0 are

realized.

Moreover, the non-factorizable corrections vanish in the high-eneigy limit. This fea¬

ture of the non-factorizable corrections has been checked by analytical and numerical

calculations.

3.3.3 Non-factorizable virtual corrections

In Chapter 4 the factorizable and non-factoiizable radiative corrections to four-fermion

production are investigated. In order to oveicome the jvroblcm of overbuying resonances

for the DPA of the real corrections discussed in Section 4 f 3. the complete real process,

involving resonant and non-iesonant diagrams, is evaluated bv Y tonte Cailo integration.
On the other hand, only the doubly-resonant pan of the viitual collections is taken into

account. Therefore, the icsults of the non-factorizable viitual corrections arc required

separately.
As in Section 3.3.2, the1 non-fact oi izable viit ual corrections factorize to the lowest-order

cross section.

,10m ont 1

(3.3.11)

with

/ w zA V

0=1 2 ftrll

QaQb
_

Re{A"'AA + .A7d_.Ad}. (3.3.12)
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The explicit results of the term Avnl = Avnl(A- (, A,2; jfc_, Ay) are listed in the following:

A» =-_ A^ 4 A^ 4 A' 4 AC 4 A1 4 A$ 4 A^C (3.3.13)

with the individual contributions of the diagrams shown in Fig. 34 and Fig. 3.2

A-\ ~ Â-?2~/5 < 5°(* " °- -17) IZ?0 ^ •
°- ^

-

24A2
vv

A-d-A/'

Z?0(C+,A.AAOL
irJ

4(Ao^A_), (3.3.14)

A^< ~ MA|r0(A2,Ay.0.7A.i/)-- fo(k2. A,. A, m2. 3AW

4 (A-2 o> Ay. Ay_ 77 A- ),

A)fY ~ -2A-, p , {cd(ys.At.0.mo,4A)- [e0(;n. Y ,
A. me. Al\y)

4 (;74 77 /a, A+ 77 A__) - (Aa <-» A_) - (/a 7A> ).

d-A/?,

AJrrA/,:

mm'

(3.3 15)

(3 3 16)

Al,~--2k,k-{C0(k+. Aa,0.4/.U> C0(k . -£_, A. 4AW, 4/w)
,_

.(3 3 17)
.U-, =71/7,

A Mit
A <

~

lf

- 2p+A'2A'+I)0(]A. A'+, A2. A, 777,=,, 44. m2)
- (p., 77 p ) - (Ay 77 Ay, Ay <-> Aa) 4 (Ay o Ay. k t d> k ,p+ <7 p„), (3 3 18)

/Yv,4

aml' AAyAa/C+AiO) 2AyAy AdD0(4).

A;Y ~ -2AyAy7vAAYAo.

(3 3.19)

(3.3.20)

The other terms, Avnt(A4. Ay; A .A/,), can be obtained bv obvious substitutions.

Contributions of the diagrams (if), (im), (mf). and (mm) of Fig. 3.2 cancel in the

stun of viitual and real collections in DPA but icmam foi the viitual corrections. Aftei

combining several diagiams the icsiilt becomes relatively simple:

AMtt
~

"mm
2 In

AC

M2

A4
n -r.

MY
4 4 In

A

A
vul 2/d/LdAr

dAv

A
Cd>( -—-. 7\ I ^ Pl

4/vv

Ad

AC

4 4. (3.3.21)

-A4' -U>(1-- yv) \ A 1 ln2( rw)

|-2ln(-^)bi(av)-4aln(f- 1^)
\aAJ\x~ J

l-
imagmaiv paits, (3.3 22)

and

'AtAA jo ;

,-,o
d'Ad"1 4 AY' l A'"/ l A);
-'mf —7m i "—Of -1nl —'if

A\
'

^ -WVV

Ad AvY ^ det ( Y4
n n,

A. dot (14 A
_

clet ( 1A
7

Tiêt(n
'

" "

7W(yT
F) ~ riYidYT1'2

2hY(pK~)hY7rup^i A

\r
»,,(Mi -A)

C44A4. -v)
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u.M.LiSya,.»-«!

where A40(0) can be found in (A. 18) and the variables 3y?. <yy and the dilogarithms bio

£,%2 ate defined in .Appendix A.l.

All mass smgulaiities vanish in the non-factoiizable virtual correction factor el))]11. In¬

frared singularities remain which have to be cancelled by the corresponding real collec¬

tions.

3.3.4 Inclusion of the exact off-shell Coulomb singularity

For non-relativistic YY" bosons, i.e. for a small on-shell velocity dw, the long range of the

Coulomb interaction leads to a large radiative collection, known as the Coulomb singulai-

ity. For on-shell W bosons, this correction behaves like 1/ Av "ear threshold, but including
the instability of the \Y bosons the long-range interaction is effectively truncated, and the

1/dw singularity is regularized. Therefore, for realistic predictions in the threshold le¬

gion, the on-shell Coulomb singiilaiitv should be replaced bv the corresponding off-shell

correction. The precise form of this off-shell Coulomb singiilaiitv [45] reveals that collec¬

tions of some per cent occm even a few YY*-decay widths above threshold. As explained
above, the DPA becomes valid onlv several widths above threshold. Nevertheless, thcie

exists an overlapping region in which the inclusion of the Coulomb singiilaiitv within the

double-pole approach is reasonable.

The Fevnman graph relevant for the Coulomb singiilaiitv is diagram (d) of Fig. 3.1.

The non-factorizable corrections contain just the diffcience between the off-shell and the

on-shell contributions of this diagram. Therefore, the difference between off-shell and

on-shell Coulomb singularity is in principle included in Ammo as defined in (3.3.4). The

genuine form of Amny in UFA, which is given by (3.3.8). does not contain the full effect of

the Coulomb singularity, because in both Co functions of (3.3.-1) the on-shell limit K± -> 0

was taken under the assumption of a finite Ay. fn order to include the correct difference

between off-shell and on-shell Coulomb singularity in Ammo the on-shell limit of the C0
functions of (3.3. f) has to be taken foi aibitiarv J\\. The full off-shell Coulomb singularity
can be included bv adding

24/4,
_ «

A

s

2toï / ) + AAf - 3\ 2oi i K .

- Ad -o s Y _ilV

4 "A i-Avy A F '"\ 24
vv

(3.3.24)

to the genuine UPA icsiilt (3.3 8) foi A
^ .

The quantities C C and A-\? are defined in

(/Yd). Aftei combination with the factoiizable doubh-resonant collections, all doublv-

resonant coircctious and the cones t olfAhell Coulomb smgulaiitv aie included. The on-

shell Coulomb singularity contained m the factorizable collections is compensated bv a cor¬

responding contiibution in the non-fai toiizable ones. Note, howevei. that this subtracted

on-shell Coulomb smgulaiitv appeals as an aitefact if the non-factoiizable collections ate

discussed separately.
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3.3.5 Non-local cancellations

In Ret [36] it was pointed out that the non-factoiizable photonic collections completely
cancel m UPA if the phase-space integiation ovei both invaiiant masses of the \Y bosons

is peiformed This cancellation is due to a svmmetiv of the non-factoiizable collections

The lowest-oidei cioss section m UP Y is svmmetnc with icspect to the "reflections'

A

A

-YY

(kl

M") P l MyiVV I w

3 A, ) t iMyFy 77

(k2 My\) » iAAvFw

(A I - M-r t uAR.Fy

K
IP (3 3 25)

Theiefore A can be svmmetnzed m A u -A -KA) oi A_ > RA if the icspec five invaiiant

mass is integiated out Foi mstauce, if Al is integiated out A can be leplaeed bv

f
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7v <+-h
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"
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^
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ln( I I

Infi f
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1/2

UVV

bv

L-
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In 7^4
at Ai

4

det(l ')

2s2pij(R2 A4 A2s13)

dettl )
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r
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A
4.

S2i, t- S21a a?
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A

dct(l ')
1 imagmaiv paits,

In 1

v av

A^

eyY?

(3 3 26)

with /, defined m ( Y 20) Note that this expiession is coitsideiablv simpler than the full

icstilt foi A fn particulai all diloganthms have chopped out

Svmmctiizmg (3 3 2b) also m R 77 - AvC leads to ftuthei simplifications if the rela¬

tions (3 2 fl) fot the elctciminants aie used Under the assumptions that (sr | s2y >

AI\yiw, (sa 1 sa) "^ }h\\i\\ find that h\\ is miagmau the îeal jtai t of the lesnlt

vanishes These assum]")tions ait fulfilled on lesonanee / — \[fl off resonance, theie aie

legions m phase space1 wheie the assumptions aie violate 4 Ihe volume ol those legions of

phase spae e is suppi esse cl bv factois /_ l/4( / Uy and thus negligible m DP Y Iheieloic

we can use the above assumptions and find that A vanishes m DP Y alla aveiaging ova

the lorn points m the (A A_) plane that aie lelatcd bv the leHections (3 3 25)

A-A, f A
/\_

A
A --K

0 (3 3 27)
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This explicitly confirms the results of Ref. [36]. hi particular, the non-factorizable correc¬

tions vanish in the limit |A;| -- A/4,| <y; Fy?AIy?, i.e. for on-shell AV bosons.

The above considerations lead to the following sim])lificd recipe for the non-facloiizablc

corrections to single invariant-mass distributions, i.e. as long as at least one of the invariant

masses k2. is integrated out: the full factor A can be replaced according to

A -a

l
(A bA V- i

(A4A| V (3.3.28)
2 Y h-^-hzJ 2\ i/M^-Yl/

where the first term on the r h.s. is given in (3.3.26). and the second follows from the first

by interchanging Ad o Ad and hï pà- s2]. Note that no double counting is introduced,

since the first (second) term does not contribute if k'j (/d) is integrated out. In order

to introduce the exact Coulomb singiilaiitv, one simplv has to add the additional teim of

(3.3.24) to (3.3.2G) and (3.3.28).

3.3.6 Non-factorizable corrections to related processes

Since all non-factorizable coircctious involving the initial e !"e_ state cancel, the above

results for the correction factoi also applv to othei W-paii production processes, such as

ryry __>. WAAr -A 4 fermions and qq -> WAY* —> 4 fermions.

The presented analytical results can also be carried over to Z-pair-mediated four-

fermion production, ed1" -7 ZZ -7 4 fermions, fn this case, A{p yields the oomjalete non-

factorizable correction, where all quantities such as 4Av <md l\y defined for the YYr bosons

are to be replaced by the ones for the Z bosons. The1 fact that Q{ — Q2 and Q\ — Q\

has two imi)ortant consequences. Firstly, it implies the cancellation of mass singularities

contained in Afp when all contributions are summed as in (3.3.2). Secondly, it leads to the

antisymmetry of öur under each of the interchanges Ay 77 Ay and Ay a» Ay. ft is interesting

to note that (3.3.2) with (3.3.3) are directly apjnicable. since Amf and Amm/ cancel in

the sum of (3.3.2). Therefore, a practical wav to calculate the non-factorizable corrections

to e+c~ -7 ZZ -a 4fermions consists in taking A(|/ 4 Ami> from (3.3.9) and (3.3.10), and

setting Amm/ to zcio.

3.4 Numerical results

We used the parameters

od1 = 137.0339895. AR = 91.187 CcY, 4/v\ - 80 22GeY4 Id - 2.08 GeV, (3.4.1)

which coincide with those of Ref. r38]. for the numeikal evaluation.

In order to exclude errors, we have written two independent programs for the correction

factor (3.3.2) and compared all building blocks numeneallv These subroutines arc imple¬
mented in the Monte Cailo geneiatoi EXCALIBUR 23M as a coircetiou factor to the three

3Sinre the Monte Cabo program ot Chapter 2 was pno^ammol altoi the results of the non-factouzahle

coi red ions woe puhlohed. the Monte Cailo program EXCAPIBPR «j- i i—otl toi the reoults ot this chapiei
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(doubly-iesonant) AV-pair-pioduction signal diagrams, fn all numerical results below, only
these signal diagrams are included, and no phase-space cuts have been applied.

If not stated otherwise the results for the figuies have been obtained fiom 50 million

phase-space points using the histogram routine of EXCALIBUR with 40 bins for each figure.
For each entrv in the tables. 10 million phase-space points weie genciated.

3.4.1 Comparison with existing results

The non-factorizable photonic coircctious have aheadv been evaluated bv two groups. As

was noted in the intioduction, the authois of Refs [38, 39] have not confirmed1 the results

of Ref. [37]. Theiefoie. we fust eompaie om findings with the results of these two grotrps

Melnikov and Yakovdev [37] give the relative non-factoiizable corrections onlv to the

completely differential cioss section foi the piocess e b1 --,> YAAY -7 //ec+c ip as a function

of the invariant mass AR of the //PeJ svstem foi all othei phase-space parameters fixed

All momenta of the final-state fermions lie m a plane, and the momenta ky and ky of the

final-state positron and electron point into opposite diiections. The angle between the

AYA boson and the position is fixed to (Av -

<r
— 150°, and the CM eneigy is chosen as

s/s — 180 GeV. The invaiiant mass of the1 eAy svstem takes the values i\/_ -- 78 and

82 GcV. The other paiameters aie a = 1/137. Aiy = 80 GeV, and Tw ^ 2.0 GeV. In

Fig. 3.6 we show our lesults for the non-factorizable photonic corrections foi this phase-

space configuration. The inteimediatc-intermediate (mm') collections agiee îeasonablv

with those of Ref. [37], but the other curves differ qualitatively and quantitatively3. YYe

mention that Fig. 3.6 has been reproduced [47] bv the authois of Refs. [3S, 39] within the

expected level of* aecrnacv. YYdrile the individual contiibutions shown m Fig. 3 6 aie at

the level of 10% owing to mass singularities, the sum, which is free of mass singularities,
is below f .2%.

Beenakkcr et al. [38] have evaluated the relative non-factorizable corrections to the

distributions dcr/dM+dM-, dcr/dn/+, and der/da/,,,. where Mav - (M_ + M+)/2. Our

corresponding results for the set of paiameteis given in (3 1.1) are shown in Fig. 3.7

for the single invariant-mass distributions and m Fable 3.1 for the double invariant-mass

distribution. The deviation between the distiibutions thx/dl/i and da/dM- in Fig. 3.7.

which should be identical, gives an indication on the Monte Cailo error of oui calculation.

The single and double invariant-mass distiibutions agiee vcrv well with those of Ref. [38].
The worst agi cement is found foi small invaiiant masses and amounts to 0 03% In fact,
the agreement is bettet than expected, in view of the tact that oui results drffei from those

of Ref. [38] bv non-doubh lesonant collections In the numencal evaluations of Ref. [38]
the phase space and the Bom matnx element are taken entirely on shell [47] Moreovet.

AVlnlo the iomiU of ReU "38. .39] e as oui m-aifU foi the complete- norAartoiizable collection is fioe ot

mass-srnc,nlai logarithms, the losult ot bet u37] contains logaiithms oi ratios of feimion masses Rovvevoi

the authois ol Ref [37] have informed us [40] that the îoMila ol Ret [37] and Refs [38, 3e-)] agree foi equal
fermion pans in the final state

'Although not stated m Hof [371 mass-smgnlai paits have been dropped thcie m the numencal coal-

nation [46] icndenng a thorough eompanson of the (ml4 and (ff'1 paiN impossible Compai mg the sUm

of all fhioe contiibutions. i o the complete non-faeton/able collection factoi. oui lesult diffeis horn the

sum lead off from Ref i.A]
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0.31
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-0.13
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Table 3.1: Relative non-factorizable conections in per cent to the double invariant-mass

distribution da/dAI+dAR foi the CM energy %s — 18 f GcV and various values of ."Un¬

specified in terms of their distance from ARy in units of U^ ,
i.e. A± — (AI:i. - ARy)/Fy.

the scalar integrals are parameterized by scalar invariants different from ours, leading to

differences of the order of |Ay - M^l/My?.
fn Ref. [38], additionally, the decay-angular distribution da/diM d3/+dcosf9w+ei- has

been considered, where (%v+0+ is the clecav angle between la and ky in tire laboratory

system. Our results for this angular distribution aie shown in Fig. 3.8. The cross section

is small for cos(9w+c+ ~ -j, where the coircctious aie largest. Unfortunately the corre¬

sponding figure in Ref. [38] is not correct [17]. The authors of Ref. [38] have provided a

corrected figure, which agrees reasonably well with Idg. 3.8. but does not show the kinks

in the curve for M± -- 78GeYC The kinks are clue to a logarithmic Landau singulaiity in

the 4-point functions. If one employs the on-shell parameterization of phase space, as in

Ref. [38], the Landau singularities appeal at the boundary of phase space. Although no

kinks appear in the physical phase space in this case, the bandau singularities still give
rise to large corrections for eosc%V7o ~- — 1. Since the1 kinks appear in a region where the

cross section is small, thev are not relevant feu phenomenology. The issue of the kinks is

further discussed in Section 3.1.3.

3.4.2 Numerical results for leptonic final state

In Fig. 3 0 we show the non-factoiizable collections 1o the single invaiiant-mass dis¬

tribution do/chlid foi valions CM energies YYCnle the corrections reach up to 1,3%

for r = -L72GeY4 they decicasc yvith maeaang enei gv and aie less than 0 01% foi

yd = -'ICO GeYb .Note that the1 shape of the correction^ is exactly yvhal is naively expected.
If a photon is emitted in the final state, the invaiiant mass of the fermion pair is smallei

than the invaiiant mass of the1 resonant YY~ boson, yyhuh is given by the invariant mass

of the feimion paii plus photon. Since we calculate the conections as a function of the
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%4/GcY- 472 48-1 192 200 300

AAU/UqY -2.0 -1.1 -0.8 -0.6 -0.09

Table 3.2: Shift of the maximum of the single invariant-mass distributions da/dM+ in¬

duced by the non-factorizable corrections at various CM energies.

invariant masses of the fermion pairs, the cross section tends to increase for small invariant

masses and decrease for large invariant masses.

The non-factorizable corrections distort the invaiiant-mass distribution and thus lead

to a shift in the W-boson mass determined from the direct reconstruction of the decay-

products with respect to the actual W-boson mass. This shift can be estimated by the

displacement of the maximum of the single-invariant-mass distribution caused bv the cor¬

rections shown in Fig. 3.9. To this end, wc determine the slope of the collections for

M+ = My?, multiply this linearized correction to a simple Ureit-YY'igiiet' factor, and de¬

termine the shift, AAL of the maximum. The smallness of the collection allows us to

evaluate A4%- m linear appioximation. leading to the simple formula

AM. =
£di
44 A]"

Id'

\a--a/u
(3.1.2]

Extracting the slope fiom om numencal results yve obtain the mass shifts shown in

Table 3.2.

In Figs. 3 10 and 3.11 yve shew the effect of the non-fac toiizable conections on various

angular distiibutions. Since the non-factoiizable conections aie independent of the

production angle of the YY* bosons, it aifhces to eondcloi distiibutions involving the angles
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Figure 3.11: Relative non-factorizable corrections to the angular distribution
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of the final-state fermions. YYd define all angles in the laboratory svstem, yvhich is the

CAl system of the production process. The distribution ovei the angle y between the two

planes spanned bv the momenta of the two feimion pairs in yvhich the YY'" bosons decay.

i.e.

, (ky x ky)(ky \k{)
cos oi - - —-

—-. 3.4.3)
|ki x lc21|k^ x ky

is presented in Fig. 3.10. The collections aie of the order of f% or less, bike the cf> distii¬

bution, the distribution ova the angle between position and electron {9cip~ (Fig. 3.1L) is

symmetric nuclei the interchange of Aid and AL
.
As foi the 0o\y?\ distribution (Fig. 3.8).

the corrections reach several per cent in the region where the cross section is small.

The distribution in the electron energy £% is considered in Fig. 3.12. The corrections

are typically of the order of 1 %. Again the corrections become large where the cross section

is small.

In Section 3.3.4 yve have introduced a correction teim that includes the full off-shell

Coulomb singularity. The lesults for the non-factorizable corrections with this improve¬

ment arc compared with those of the pure UPA in Fig. 3.13. Foi %i = 184 GeY" the

additional terms shift the non-factoiizable coircctious by up to 1.4% foi da/dAI^ and bv

up to 0.8% foi drr/dAL. for small mvanaut masses, wheieas foi laige invanaut masses there

is piaeticallv no effect. 41k1 diffeience oiigmates essentially from the differences between

f/,3 and l/'Av hi (3.3.24). Foi laige invaiiant masses, the explicit logaiithms in (3.3.24)

aie small, i.e. the Coulomb singiilaiitv correction is minuscule, and this difference practi¬

cally makes no effect, fin small invaiiant masses, the logaiithms aie approximately bo and

the diffeience causes the effect seen in Fig. 3.J8. In Table 3.8 yve show the non-factorizable

corrections to the double invaiiant-niass distiibution. as m Table 3.1. but now with the
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A^

_ t -1/2 -1/4 0 1/4 1/2 1

0.39 0.31 0.23 0,15 04)5 -0.04 -0.20

0.31 0.28 0.20 0.10 -0.02 -0.13 - 0.27

0.23 0.20 0.13 0 03 -0.09 -0.19 -0.33

0.15 0.10 0.03 - 0 08 -0.18 -0.27 -0.38

0.05 -0.02 -0.09 - 0 18 - 0.27 - 0.35 -0.11

-0.04 -0.13 -0.19 -0.27 0.35 -0.41 -0.19

-0.20 0.27 -0.33 - 0.38 -0.11 - -0.49 -0.51

Table 3.3: Same as in Table 3.1 but with improved Coulomb-singularity treatment.

improved Coulomb-singularity treatment. YYC find a difference of up to half a pa cent

for small invaiiant masses but no effect for large ones. We mention that the difference

between the cntiies in Tables 3.3 and 3.1 is directly given bv the contribution (3.3.24) to

Amm7 without any influence of the phase-space integiation.

3.4.3 Discussion of intrinsic ambiguities

In the results presented so far, all scalar integials were parameterized by y s23, sa, sy t, and

k\ (parameterization 1). In UPA. howevei. the parameteis of the scalar integrals are onlv

fixed up to terms of order Ay — My?. Wc can foi example parameterize tire scalar hit egrals in

terms old, ,s23, Aa- A^o and Ay (parameterization 2) instead. As a third parameterization,

we fix all scalar invariants except for k'Y by their on-shell values, corresponding exactly

to the approach of Ref. [38], The results of these tin ce parameterizations diffei bv non-

doubly-resonant corrections.

The difference between parameterizations 1 and 2 is illustrated in Fig. 3.14 for the

single invariant-mass distiibution. Flic diffeience amounts to ~~ 0.1%. Note that for an

invariant mass Ad =: 70 GeY" we have ojA/y - A: YA/y -^ 0.002 and would thus expect

absolute changes in the non-factoiizable corrections at this level.

For the non-factoiizable collections to the angitbu distiibutions. uncertainties of the

same order aie to be expected. The onlv exceptions aie the distiibutions over the decay

angles 0\\+P+- and 6\y- e .
bet us explain this foi da-,, in more detail: the non-factoiizable

correct ion contains the teim 2 01 hid 1-1\\ 47y /(sy ^A ad- which can be evaluated by taking

(sn A s2Y directly or (sm — 4/y ) as input. This paiamoteidation ambiguity < an lead to

larger uncertainties, because the above logarithm < an become singular, and the location of

this Landau singiilaiitv is shifted bv the ambiguity. Since there is a one-to-one1 conespon-

clence between sLa and d\a- for fixed s- and Ai. this logaiithmio singularity is washed

out if the angular integration oven %\ (,
- is pcifoinied. but appeals as a kink structure in
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the angular distribution over this angle. Fig. 3.15 shows the non-factorizabie corrections

to this angular distribution for the three parameterizations. For M+ = 78 GeV wc still

have o|A,2F -- M'^l/Myy ~ 0.0004. Apait from the regions where the Landau singularities

appear, this is indeed of the order of the differences between the fin ce parameterizations.
When considering the Landau singularities, one should realize that the parameterization

ambiguity of the locations of the singularities is not suppressed bv a factor a-, i.e. different

parameterizations shift the locations at the level of \k2, - A/4, |/A/{y ~ 0.05. However, the

impact of the corresponding kinks on observables is again stippiesseel yvith (\\k2 - A%2v|/A/y.
if the angles are integrated ewer, since the smgulaiities can onlv appear near the bound¬

ary of phase space and disappear fiom phase space exactly on resonance. Since the cross

section is small where the Landau singularity appeals, the effect, is phenomenologicallv
irrelevant.

3.4.4 Comparison between leptonic, semi-leptonic, and hadronic

final state

The non-factorizable corrections to the invariant-mass distributions are different for dif¬

ferent final states and in general also for the intermediate W+ and W~ bosons.6 The

invariant-mass distiibutions to the intermediate W-1- bosons coincide only if the complete

process is CP-symmetric. In this context, CP symmetry does not distinguish between

the different fermion generations, since we work in double-pole approximation and neglect
fermion masses; in other words, the argument also applies to final states like 7ye+/Ay(
and udsc, yvliich are not CP-svmmctiic in the strict sense. Thus, yve end up with ecpial
distributions for the YYrL bosons in the purely leptonic and purely hadronic channels,

respectively, but not in the semi-leptonic case.

Fig. 3.16 shows the non-factoiizable corrections to the singledtmuianUmass distri¬

butions for leptonic, hadronic, and semi-leptonic final states at various centre-of-mass

energies. YYd observe the same qualitative features for all final states; the corrections arc

positive below resonance and negative above. Quantitatively the differences between the

corrections to the different final states aie small; yve note that the slopes of the correc¬

tions on resonance, yvhich are responsible for the shift in the maximum of the distribution,
are maximal for the leptonic final state. Therefore, yve conclude that the W-boson mass

determination by invariant-mass reconstruction at LEP2 is not significantly influenced bv

non-factoiizable conections.

The authors of Ref. [38. 39] have also calculated [47] the non-factoiizable corrections to

the single-invaiiant-mass distiibutions shown in Fig. 3.16 for yd = L72 GeV and 184 GeY'".

Thev find good agreement yvith om results foi positive invariant masses. However, their

corrections arc1 antisvmmetiie and therefore differ bom our results for negative invariant

An Ref [38. 30] and in the preprint \cwon of Re1! [40' it has been allied thai the îclative non-

factoiizablc con onions to pine imaiianf-mass disfnbutioio aie identical foi all final 7ai.es m e+o~ -v

WW a 4 tannons and vanish foi Z-pammediated ioiu-tannon pioduction. Tins loo deduced from the

assumption thai (up to charge tac lois) the non-tac Oni/able collections become symmohic under the

separate mta changes d a A 2 and bob after mtee,iation o\ei all deov\ angles Although the function

A foi the lelative collection has this piopeth. this assumption is not conect. because the chUeiential

towest-oiclei cioss sec don is not s\nnnetiic lindet fliese mtachangos
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masses. The differences arc of the order of non-doubly-resonant corrections and due to

different parameterizations of the corrections.

fn the previous sections, we investigated the influence of the non-factorizing corrections

on valions angular and energy distributions with fixed invariant masses foi the final-

state fermion pairs. YYd have repeated this analysis for hachonic and semi-leptonic final

states and found corrections of the same orelei of magnitude, viz. of typically 1% at LEP2

energies.

3.4.5 Numerical results for Z-pair production

For the production channels via a resonant Z-boson pan. c+e~ —> ZZ —> 4 feimions, we

have f\ = f2 and ,/y — f\. Owing to Bose symmetry the lowest-order cross section

dcßooi ls invariant uirclei the set of interchanges (Co Ay) 7> (Ay,/y). This symmetry,

which is respected by the non-factorizable corrections, implies that the siugle-invariant-

mass distiibutions to each of the final-state fermion pairs of the two Z-boson decays are

equal. CP invariance leads to the additional symmetry yvith respect to Cp+, Ay. Ay) c >

(p_.^4,Ay); after integration ewer the Z-pair production angle this substitution reduces

to (Ay, Ay) 77 (Ay, Ay). In view of non-factoiizable collections it is also interesting to

inspect the behaviour of d<rHom under the replacements kp 77 Ay and Ay 77 Ay separately,
since terms in dö"Bmn that arf> svmmetiic in at least one of these substitutions do not

contribute to dcj,lt if all decay angles are integrated over. This is a direct consequaice of

the antisymmetry of c)llt in each of the substitutions C| ^ Ay and Ay 77 Ay, yvhich folloyvs

from (3.3.2) and Cd = Q2. Q, -_- QA.
In order to study the behaviom of der^om nuclei the replacements Ci 77 Ay and

Ay 77 Co it is convenient to consider the helicitv amplitudes for the two signal diagrams
foi eTc~ -7 ZZ -7 4 fermions, which contain two resonant Z-boson propagators. These

amplitudes are proportional to the right- and left-handed couplings qff = v, p a, of each

fermion /, — /y,,/y to the Z boson. As can be seen from the explicit form of the ampli¬

tudes, the substitution Ay 77 Ay transforms the helicitv amplitudes to those with reversed

helicities of the fermions /) and R -- R apart from changing the couplings eyl into gj.
Therefore, the differential lowest-order cross section, i.e. the squared helicitv amplitudes
summed over all final-state polarizations, can be split into Uvo parts: one is symmetric

in Ay a> Ay and proportional to [(<A)2 4 (qf)2)/- - r2 A a\. the other is anti-symmetric
and proportional to [(e;bY — Cd Id/- ~ 2acy. The analogous reasoning applies to the

substitution Ay 77 Ay. Alia poiforming the angular integrations, we finally find that the

lowest-order cross section is proportional to (v2 A- a2)(v2 -J- a]), and the non-factorizable

correction piopoitional to ICdaACAAA- where the charge factors Q, stem from the cor¬

rection factor ci„(. Compaiing pure invaiiant-mass distributions foi different final states.

the ratios of the non-factoiizable collections should be of the same oidci of magnitude as

the îatios of the corresponding coupling factois.
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The factors F take the following values:

f.A n (u Cd

R 0.04 0.09 0.06

LI

21

vd

0 1 I

eld

0.10

where d u. d generieallv refer to leptons, tip-tvpe quaiks and down-tvpe quarks, respec¬

tively. The reason foi the smallncss of the factois F is different for leptons and quaiks:
for leptons the suppression is due to the small coupling r, to the vector current, for quarks
the factor R is reduced bv the relative chaiges Q,.

Fig. 3.17 shows the non-factoiizable corrections to the single-invaiiant-mass distiibu¬

tions da/dAPiß, where AR%2 denote the invariant masses of the first and second fermion

anti-feimion pairs, respectively. The ratios of the different curves are indeed of the

order of magnitude of the latios of the factois R given m (3 4 5). For equal signs of

Qi and Cd the- shape of the collections is similai to the shape of the conections to

ode a WW -7 4 feimions. foi opposite signs of yd and Q, the shape is reversed. The

corrections by themselves are veiv small and phcnomenologicallv unimportant. The small¬

ncss of these corrections can be qualitatively understood by comparing the factors P of

(3.4.4) for the ratios of the couplings yyith the conespondmg one for the YY'-pair-mediatecl

processes For e d1 -v YYAY' -v I leptons yve simplv have F = 1. because m the LEP2

cneigv lange the piuelv left-handed Cchatmel diagiam dominates the cross section, and

no systematic compensations, aie mdue eel bv symmetries ] heiefouy the tactoi s m (3 4 ï)
should directly give an estimate toi the suppression of 4ni Ai o"c~ —v ZZ > 4fermions

yvith respect to four-lepton pioduction via a W-boson pan Compainig the collections

for energies vath the same1 distance1 bom the iespecfi\e ou-sholl pair-production thiesh¬

olds. ic the cnive foi \/^ - LS4C4A m the Y\-boson ease1 (Fig 3 16) with the cuives

foi r — 192 GeY m the Z-boson case itig ^ 17b we find reasonable agreement yvith
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our expectation. The authors of Red. [38. 39] have reproduced the corrections shown in

Fig, 3,17 with good agreement [17].
Finally, yve inspect the impact of non-factorizable corrections to some angular distribu¬

tions in Z-pair-mediafed four-fermion production for fixed values of the invariant masses

Ali 2- Since the presence of the suppression factor F relies on the assumption that, the

phase-space integration is symmetric under Ay 77 Ay and Ay <-> Ay, this suppression in

general does not apply to angular distributions. However, partial suppressions occur, e.g.,
if the integration is still symmetric under one of these substitutions and, in particular,
for cmarks in the final state because of their smaller charges. Two examples foi angular
distributions without anv suppression are illustrated in Fig. 3.18 for the ptiielv leptonic
final state yay+r~ A .

The angle d> is defined by the two planes spanned by the momenta

of the two fermion paiis in which the Z bosons decay.

cos c )

(ky x k2)(k5 \ ky'

Ikj x l-cyljk;; x kyl
(3.4.6)

and eb,+T denotes the angle between the1 momenta of the /d and the /A respectively. The

shapes of the curves in Fig. 3.18. specifically the cuives foi the distiibution in cos c'y nicelv

reflect the appioximate anti-svmnatnc behaviour in the angular dependence, yvhich leads

to the suppression in the mvaiiant-mass distiibutions. The dze of the corrections turns

out to be at the level of a few per cent. i.e. thev aie not necessarily negligible in precision
predictions. Note, however, that the cioss section foi Z-pair pioduction is onlv one tenth

of the W-pah production cross section.

74



Chapter 4

Radiative corrections to

e+e~ - W+W" -> 4/

As discussed in the introduction, the cross section for e+e~ -> W+W~ --> if should be

known with an accuracy of 1% or better in order to cope yvith the experimental precision
at LEP2. This requires the calculation of the O(a) corrections to the piocesses e^c- ->

W+W" -> 4/.
The leading radiative corrections, like the miming of the electromagnetic coupling

constant, universal con celions associated with the p parameter, the Coulomb singularity,
and the resummed leading-logarithmic corrections from initial-state radiation (1SR). are

already implemented in several event generators (see Ref. [30] and references therein). The

neglected non-leading corrections can be estimated from the on-shell YY'-pair production

[5, 48], where the full one-loop calculation differs from the one including only these leading
effects by about 1-2% at LEP2 energies and 10-20% in the TeV range. Hence, the leading
radiative corrections are in general not sufficient to match the experimental accuracy of

juta z.

The calculation of the full 0(a) corrections is extremely complicated since the number

of diagrams is of the order of KP-IO' including one-loop integrals with up to six propa¬

gators [49]. The numerical computation of these corrections is highly non-trivial because

the tensor reduction to scalar integrals and the calculation of the one-loop integrals yvith

five and more propagators cause numerical instabilities. Furthermore, the numerical inte¬

gration via Monte Cailo techniques is rather slow for such complex calculations.

Approximations foi radiative corrections bevond the leading level have been calculated

by two groups. A fiist calculation of the complete doublv-iesonant 0(a) radiative correc¬

tions to the four-fermion piocesses AA~ --7 YV YY'~ -a 4 A has been discussed in Ref. [50].
There a semi-analvtic appioacit has been used with different matrix elements for different

phase-space regions and for different obseivables. M oi cover, the four-fa in ion phase space

has been factoiized into the phase space of the on-shell YY'-pair production and of the

on-shell YV elecavs and the integrations of the hvo invaiiant masses of the intermediate

W bosons. Foi the numencal discussion, onlv results foi leptonic processes have been

included. The authois of Ref. [i0] have found a laige shift of the Breit-Wignoi line shape
clue to logarithms of the form hi(ayd) resulting fiom final-state radiation (FSR), These

logaiithms are due to the absence of eollineai photons in the definition of the invariant

i ô



mass of the W boson. In realistic observables, collinear photons cannot be resolved from

charged fermions, except for muons, and have to be included in the reconstructed invariant

mass of the corresponding W boson.

fn Ref. [51], a four-fermion event generator has been presented, including all 0(a)
radiative corrections to the on-shell W-pair production. e+e_ -7 W+W~, yvith exponenti¬
ation of the universal corrections from photon radiation off initial-state e± and off the W+

bosons, beading-logarithmic corrections from FSR have been included in this Monte Carlo

generator in Ref. [52]. However, non-leading Ö(<\) conections to the YY^ decays and the

non-factorizable coircctious are missing. The results of Ref. [50] have been qualitatively
confirmed by the calculations of Ref. [52].

Hence, a Monte Carlo generator including the complete doubly-resonant O(o) correc¬

tions is needed in order to match the accuracy of LEP2 and to take into account realistic

experimental situations.

4.1 Strategy of the calculation

fn this chapter, we consider the virtual collections to the processes

YYpYPcUpY -> \\'+(k+)+\Y-(k ) -à /1(Ay)-b,/2(Ay)-l d(Ay)dd(A;4) (4.1.1)

and the complete bremsstrahlung processes

P'(p+) P e-(PU a A, (Ay) A f2(h) A d(Ay) -t- Â(Ay) A 7(d), (4.1.2)

where the relative charges of the fermions f, are represented by Qt yvith ? — 1,...,4.
The masses of the external fermions aie neglected, except where this would lead to mass

singularities. For the virtual corrections, the momenta of the intermediate W bosons read

Ay = Ay 7 Ay, Aa - Ay A Ay. (4.1.3)

Furthermore, the square of the complex W-boson mass is defined by Ai2 = AR^v — [My?Ty/,
and the center-of-mass (CM) energy is >/s.

4.1.1 Doubly-resonant virtual corrections

The diagrams of four-feimion production can be classified into the doublv-iesonant, singlv-
resonant, and non-resonant diagrams accoicling to the number of resonant W-boson prop¬

agators. Hence, the amplitude of tfie viitual corrections can be yviitten in the following
way after implementation of the finite YY'-boson vdclfh:

R+Mk2.k2.9) RnYPYk-Fh) CY(CaAY(4)
7 , , ,

a,„ -

ßTeFP^VA f-dA7y-
'
aCaa +dVAd- <-u-4>

doubh-lesonant single-resonant
non-resonant

where the vanable 0 symbolizes all phase-space variables, except foi the invaiiant masses

k\ of the YY' bosons.
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Since the matrix elements of non-doublv-iesonant diagrams are suppressed by a factor

oTw ln(.. .)/(wMy?) ~ 0.1%, a reasonable approach is to include only the doubly-resonant
diagrams into the calculation. However, the naive inclusion of the doubly-resonant dia¬

grams vields gauge-dependent results and the reliability of this approximation is unclear.

In order to separate the doublv-resonant corrections m a gauge-invariant way, the pole
scheme has been pioposed in Red. [11. 12], yvheie the matiix element is expanded about

the complex W-boson masses. Since the complete matrix element is gauge-invaiiant. the

single teims of the pole expansion are also gauge-invariant. If onlv the leading teim rs

kept, the expansion is known as the double-pole appioximation (DPA):

Mx
jYTMYr^vFy (4'M

Note that, the residue is taken at the complex pole resulting in complex kinematieal

invariants. In oiclei to avoid the calculation of one-loop integials for complex mvaiiants.

the YV width is neglected in the numeiatoi of (4. Id), yvheie the neglected terms are

suppressed by a factor FyfAly and thus negligible in DPA.

Foi the application of the DP Y on the viitual collections, a set of eight independent
phase-space variables including Aï has to be chosen, yvhich determine the momenta of

the final-state feimions uniquely. Foi seveial choices of the paiamcteiization of the phase

space, the DPA differs only in non-cioublv-resonant contiibutions. Note that in geneial
events can be outside of the physical phase-space boundaiies for on-shell W bosons (see
Section 3.4.3). A relatively simple choice that generates onlv events within the physical
phase-space domain is given in Appendix B.

The DPA is not valid near threshold since the phase-space region where both YY'' bosons

are resonant is suppressed by the kinematieal factor A~(s, Ai,/d ) (see (C.8)). Therefore,

the singlv-resonant corrections arc as important as the doubly-resonant corrections at

threshold. On the other hand, foi some processes the non-doubly-resonant contributions

can be enhanced by ncailv on-shell viitual photons. This enhancement can be avoided by

introducing appiopiiate phase-space cuts in the calculation.

In DPA the virtual collections can be classified into factorizable and non-factorizable

ones [5, 12. 42]. The square of the matiix element of the virtual corrections reads in DPA

FWyr2 = \Mf\2 P\j\4noUfSr. (hl.6)

where AY, M}2mn, and 6f\u are the matiix elements of the factoiizable corrections, the

Born matrix element defined m (3 1 S), and the non-factonzable correction factor, respec¬

tively.

Factorizable virtual corrections

The factoiizable viitual collections are defined bv the piocluct of the on-shell matiix

elements of the YY'-pair pioduction and the YY' decays and the (tiansveisc parts of the)
YY' piopagatois (see Fig. 4 1)

ka - V
*

(adr^vr yA '~~a /> oA~ cdi a i a
Jvb id ?A 4?dAA~ u'4lUI -vlRmn Y4Bmn (ff/)

db- (Al
-

!Ad(Ay Yd

+ -'V/tBoin <hVl -V1Booi 'VAooi yV[Booi ÙJVl ),
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Figure 4.1: Factorizable corrections to ere
"

a if

where YA4e'~e~~ ->w'"wd e)A4w' v/l/y and YVfw~ ~YY4 denote the one-loop amplitudes of

the respective subprocesses. The sum runs over the physical polarizations \± of the

W+ bosons.

Since the on-shell W-pair production and the on-shell YV-decays are gauge-invariant

processes, the factorizable corrections are also gauge-invariant. The results of the on-shell

W-pair pioduction and the on-shell YY'-boson cleeav are explicitly given in Ref. [53] and

Ref. [54], respectively, and can be implemented in the Monte Cailo program, where yve

have to take care of the spin con dations of the YY' bosons in the production and decav

subprocesses. The virtual corrections are build up bv scalar form factors, which include

all one-loop integrals, and standard matiix elements, which depend on the polarization
vectors and spinors of the external paiticles. In DPA the foim factors depend exclusively

on the W-prodiiction angle and can be evaluated very fast by an expansion in Legcndrc
polynomials [55].

Non-factorizable virtual corrections

The non-factorizable virtual corrections are defined as the difference between the virtual

corrections to the complete four-fermion process in DPA and the factorizable virtual cor¬

rections. A representative set of diagiams contributing to the non-factorizable corrections

are shown in Figs. 3.1 and 3.2. The matrix element of the non-factorizable virtual correc¬

tions JPifY factorizc to the Born matiix clement in DPA (see Chapter 3 for more details):

AYf^-PRonFr- (4T.8)

where the correction factor ei),"1 is relatively simple and explicitly given in Section 3.3.3.

Since the factorizable and the complete viitual corrections arc gauge-invariant, the non-

factorizable collections aie also gauge-invariant.
Note that the non-factoiizable corrections involve logaiithms of the form ln(A'i — AI2).

which become singular in the limit Ay -A M2. Therefore, these collections are calculated

for off-shell phase space, i.e. Ai F AI2, while the off-shellness (Ay — 4A2) is neglected
whenever possible.
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4.1.2 On the definition of the reconstructed W-boson mass

In Chapter 3, the non-factorizable virtual and real corrections have been calculated in

DPA, yvhere the integration over the photon momentum of the real corrections is performed

analytically. As for the virtual corrections, the non-factoiizablc real corrections dcpcud on

the choice of the independent phase-space parametcis in DPA. These parameters are fixed

while the integration ova the photon momentum is pa foi med. To apply the DPA on the

non-factoi izing real corrections, two of these parameters are identified with the invariant

masses of the YY^ bosons. Owing to the presence of the bremsstrahlung photon the definition

of these invariant masses is not unique. For different definitions the result for the real non-

factorizable corrections differs bv doublv-resonant contributions, as discussed in detail in

Section 3.1.4. The reason is that the resonant YY'-boson propagator 1/[(A;+ 7 q)2 - AI2}
is constant, if the invariant mass is defined by (Aa -1- cj)2. but depends on tire photon
momentum q for the invaiiant mass kp. Therefore, the calculable observables are restarted

to the actual parameterization of the phase space in a semi-analytic calculation. For

instance, only invariant-mass distiibutions. where the YY'-boson masses arc defined by A,2t.
can be calculated with the results of Chapter 3.

A DPA including all O(a) corrections for four-fermion production has been worked out

in Ref. [50]. As in Chapter 3, a semi-analvtic approach has been used in Ref. [50], where,

for the invariant mass distributions, the W-boson masses have been defined by invariant

masses of the fermion-antifermion pairs, i.e. Ali — k2. resulting in large corrections from

collinear radiation of bremsstrahlung photons off final-state fermions. These originate
from logarithms of the form ln(/??|/s) and yielding large distortions of the peak position
of the Breit-Wigner line shape at the CM energy LSI CFA' of -77MeV, —38Me\C and

—20MeV for e+ip, p+rqn and rdy, respectively. In practice, the invariant masses of YY'

bosons have to be reconstructed in a more realistic wav.

In realistic experimental situations, the final-state quarks are observed as jets. Photons

radiated collinear to these jets cannot be resolved, and the photon momentum is included

in the jet momentum. On the other hand, the momentum of the neutrino can only be

calculated from the missing momentum of the final-state particles, fn this way the neutrino

momentum includes also the momenta due to emission of photons collinear to the beam

[56]. Note that the reconstruction of the neutrino momentum is possible for semi-lcptonic
final states, but not for purely leptonic final states, yvhere two neutrinos are involved.

Furthermore, it is very difficult to separate collinear photons from electrons. However,
photons can be resolved fiom muons even when thev aie collineai. Therefore, only a few

observables, like the invaiiant-mass distiibution chr/cliA yvith A F — Ff of the process

e+c~ -7 ucl/A/y,, are directly sensitive to the distortion due to large collections from FSR.

hi any case, a Monte Cailo geneiator is required in orciei to take into account realistic

experimental situations.

4.Id? Overlapping resonances in the bremsstrahlung process

The definition of a suitable appioximation foi the real collections is made difficult by over¬

lapping resonances of the YY'-bosons. In the bremsstrahlung piocess, the W-boson propaga¬
tors differ depending on whether the brentsstiahhmg photon is emitted bom initial-state
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figure I 2 Diagiam with ovei lapping resonances

paiticles 01 fiom the decay products of the YY boson Both types of piopagatois aie

present in Fig 1 2 wheie the poles of the piopagatois aie located at Ai AI2, A j - M2

and (A+ A q)2 ~ AI2 Therefore the expansion of the cioss section about kf = AI2 and

Ai = 4/2, like in the case of the viitual collections is not suitable

The matnx element ol the biemsstiahlung piocess can be wntten in the following wav

(see Section 3 f 5)

A4 reai
-=

7?(A_ A q) AY (/ h
A

, </)

(k2+- M2)(k2 -M2) [(k+ , qY M2](ki -A/9)
R-(k + ,k q)

(K -AR)[(k +qY AF
I <V(k+ k^ q), 9)

where jV includes the matnx elements of all non-doubly-iesonant diagiams Flic factoi¬

izable corrections of the cioss section are the sepiaies ol the single taras conesponding to

4c, 7\d ,
and /£_, while the non-factonzable collections are the mtei lei ences between these

terms

In the hatd photon region F "^> Fy the tyyo resonances ot the YW bosons located

at Aj. AI2 and (A h t q)2 — M2 aie well sepaiated m phase space Onlv the factoiizable

corrections contribute m this region m DP Y and the non-factonzable collections vanish

m DPA For soft photons, E A F\\, the resonances almost coincide, and the photon

momentum can be neglected m the resonant piopagatois However for semi-soft photons
with an energy Ef - 0(Fy ) the resonances oveilap Thus the definition of an appiopiiate

approximation is lathei complicated and hence the reliability becomes unclcai

4.1.4 Inclusion of the real corrections

In oidci to avoid the problem of overlapping resonances the biemsstiahlung piocess is

taken into account exactly

The biemsstiahlung processes are already studied in Chaptei 2 including all diagiams
Foi the mimetical discussion the processes e+e i y /;

w~
p e e -7 ud/A/y, and

F y y tidsê aie considered These aie the piocesses with the smallest numbei of

diagiams within the leptonic semi leptonic and hachonic piocess classes Note that the

lachative collections toi am leptonic piocess aie équivalait to the rachat ivc collection^ loi

e~c -^> i pfP~ p m DP Y m the absence of logaiithms h\(m i
/ s) fiom FSR The same
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is valid foi e+e -> ndp vu and e+c -7 udsc concerning semi-lcptonic and hadronic

processes, i espectively.

4.2 Subtraction method

When calculating ladiative corrections foi four-fermion production, one has to take care

of the singularities of the real and virtual ladiative corrections. According to the Bloch-

Nordsieck theorem [57] the in bared singularities cancel between the virtual and real part.

Furthermore, collinear singularities, i.e. mass singularities, appear in the radiative cor¬

rections and are regularized bv the fermion masses yvhich are neglected otheryvise. These

singularities originate from collinear photon emission from light external fermions and sheiyv

up as laige logarithms \w(m2fs). For inclusive enough observables, these collinear singu¬
larities cancel between the ical and virtual radiative corrections owing to the Kinoshita-

Lee-Naucnbcrg theorem [58]. except for the mass singtilaiities remaining from initial-state

radiation (TSR) or resulting from reiiormalization. Two methods arc exist for the treatment

of the singularities in a Monte Cailo gcneiator: phase-space slicing and the subtraction

method.

Phase-space slicing splits the integration domain bv a small separation cut into a part

which includes all singularities and a finite part. For inhared singularities the splitting
is usually done by a cut on the photon energy, for collinear singularities bv a separation

angle between the photon and the particle which emits the photon. The integral of the

singular part over the photon momentum is analytically performed yvith an appropriate

regularizafion, and terms of order of the cut parameter arc neglected, fn this wav the

singularities are extracted and can be added to the virtual part of the radia tfve corrections.

Both the singular and the finite part of the radiative cross section depend logarithmically
on the crrt parameter'. This dependence must cancel in the complete result. The logarithms
of the separation cut are determined in the singular part bv analytical integiation. On

the other hand, they must be compensated bv numerical calculation of the corresponding

logarithms included in the finite part of the cross section. Therefore, the crrt has to be

small enough that terms of order of the cut parameter can be neglected in the singular

part, but large enough to obtain numerically stable results.

fn contiast to phase-space slicing, the subtraction method requires no cut parameter.
We use the subtraction method since yve expect a better convergence behaviour. This

method has been mostly applied foi NLO predictions in massless QCD [59, 60]L yvhere

the singularities are usually regularized dimensionallv. In Electroweak Standard Model

processes it is more convenient to intioduce an infinitesimal photon mass as a regularizafion
parameter for infrared singularities and to use small fermion masses for the regularization
of the collineai smgulaiities. In oidci to apply the subtraction method to four-fermion

production, this method is formulated for mass regularization.
In the following, onlv smgulaiities for photon emission off neaily massless exteinal

fermions are considered. Othei singnlaiities like collinear singularities of diagiams yvhere

a virtual photon decavs into two exteinal fermions have to be excluded by appropriate

AAe subtiartion method foi ma^ivc paiticles can be found m Hofs [61. 62].
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cuts. The subtraction method described in the following is based on the dipole formalism
of S. Catani and VI.II. Seymour [59]. The results of this section have been worked out

independently bv S. Diftmaier [61]. Comparing both results we find full consistence.

In the dipole formalism, various mappings are constructed from the five-part iclc phase

space of the bremsstrahhnig process o+c~ --> -I/o into the four-particle phase space of

the non-radiative process e+e -a 4/. These mappings are reeyuirecl to obtain a process-

independent formulation of the subtraction method. Each mapping corresponds to a

certain singular behaviour of the differential cross section. According to these mappings,

the five-particle phase space 44 ^ splits into a foiu-particle phase space T^1"1 and a remaining

one-particle phase space, which contains the siugulaiities:

[dd>P = l\hpdx2 ^PYiY.rUh,.ropo) I ebbik (1.2.1)

yvith i, k — L,.. .
6. In the follcnving. paiticles 1, 2 are initial-state fermions and 3 6

final-state fermions. For the discussion of the subtraction method, all particle momenta

are denoted by p, and the photon momentum bv q.

The arguments of chl44(r|p| - r2p2) indicate that the final-state momenta are calculated

for incoming momenta T\p\ and x2p2- The one-particle phase space is decomposed into

integrations over <!>,*. and over the momentum fractions of the incoming momenta ,?y and

x2- In this way, all different splittings of tire five-particle phase space fit in this formula.

The variables ay and x2 are partly fixed by ^-distributions included in definition of (i>lk.

For each mapping a subtraction term V,;,- is constructed in such a way that it matches

the singular behaviour of the cross section of the bremsstrahlung piocess in a certain

phase-space region and that, it can be analytically integrated over Ty/,.. The subtraction

term is subtracted from the real corrections and added to the virtual correct ions aftei

analytic integration over Tyy

dd> C) M
F)
Bn) n

= dcpF)

O

F)

h<d +
chb(1)2Re(A4(l)(A4h4)t
u. ± ~in 1 '

v

HuO "-Boni

OC

A / chychy / d^i)(npi.x2p2)0 (Vn)

x
(2Re(„WÎ!,\.V(i,lM

5(1- vYS(ï -..,!
ont- l13ooi

C=l

O ($Y

M&J
O (*®) - Y, V* Ö (*(n (*(5)))

ddy,V?/, (4.2.2)

yvhere A4ß0ni, A4Bmn, and A4U11 are the matrix elements of the tree-level process, the

brcmsstiahlting piocess. and the viitual corrections, respectively. Che expeiimental situa¬

tion, e.g. cuts, are included in the definition of the obscivablc O. Note that the observable

O depends on the momenta of the foin -part iclc or five-paiticle phase spaces. Ml infegia-
tions are peiformed numeticallv. except foi the integiation over Ty-/, yvhich is perfoiined

analytically.

In this way. a pait of the real conections including the singularities is transferred to the

virtual corrections. The difference between the cioss section of the biemsstiahlung process
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and the subtraction terms includes no singularities and hence can be integrated ewer the

whole phase space. Note that it is not allowed to exclude the soft-photon region from

the integration domain where the cross section of the breinsstrahhmg process becomes

infrared singular, since the infrared singularities have to cancel between the real and

virtual corrections. This is in accordance yvith the fact, that it is not possible to separate

experimentally photons yvith infinitesimal small energies fiom charged particles.

The situation for collinear singularities is different since collinear singularities shoyy

up as large logarithms of small but finite fermion masses. If fermion masses are used as

regularization parameteis. the phase-space region wheie the photon becomes collinear to

an external fermion has to be included in the integiation domain.

4.2.1 Behaviour of the cross section for collinear photons

As a first step, the collinear limit of the cross section for 1SR is considered, ft is convenient

to calculate the collinear limit, of the cross section in an axial gauge, where the photon

polarization sum runs only over transverse polarizations and hence interference contribu¬

tions do not involve collineai singularities. A photon with momentum q is emitted from

an nnpolarized initial-state fermion yvith momentum pa- mass ma. and relative charge Qn.

The relevant part of the cross section multiplied by the polarization sum of the photon

reads

-PQYlpiYa Fma)ieQ0p
]J>a - é - mn

2rP
- e Qo

Pcdl \i~ X

q1 n" 4 cf nP

qn.

2
N

\ *~

A
+ -

with ni

Ad(Aa-dd,e
pnq YT PoQj

0, qn Y 0, x - L -- (nq)/(npa). and the splitting function is given bv

1 F F

yyprR(x)

(4.2.3)

(4.2.4)

The arbitrary vector // is introduced to define the polaiizafion of the photon.
The factor (1 - ,t);/0 — <fi vanishes in the collinear limit. Onlv the last term on the

right-hand side propcntional to r]ßn is singular in the collinear limit q —> (I — r)pn. Hence,

the collinear limit foi photon radiation off unpolaiizecl initial-state particles yields

AU
colhnrai (Pa-q)

FTP
PaP

-PF) -^
t* Pad

| .At) ?
bvlBoin\ lPa, (4.2.5)

The behaviour of the cross section for polarized paiticles m the collinear limit can be found

in Ref. [63]:

A4
F) ,

rollinoo \P" • 'A - P
QQi

p0q
P(i)

(1- d' nrq

v 2/ye/

r up

o

*M

Poq

o

M
ib ?
BooAAA A

Bom db- -cra (4.2.6)
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Figure 1.3: Yaluc of k/ foi the diffaent photon radiation off fermions

with the helicitv a„ of the initial-state feimion a. In the folloyying all results are calculated

for hchcity cigenstatcs of the external feimions.

For massive fermions the collineai limit involves a hclieitv-flip term propoitional to the

square of the fermion mass, called finite-mass term. Note that if the cross section of the

bremsstrahhnig piocess is calculated foi vanishing fermion masses the Onite-mass tenus

are missing and have to be added to the cioss section of the bremsstrahlung piocess 01

skipped in the corresponding subtraction terms in (4.2.2).
fn order to be able to combine the collinear and soft limit in Section 4.2.3, yve use

charge conservation

nQi ~

~

/..„ Y Cd (1.2.7)

to obtain

(5)
•^collineai (l>o AY, q)

~

= " £}
YAA2C)0Q/,

c

'•/

ipq
-P(b

1 + 7 m„

r 2p0q

(1 i j- in

i
paq

dp

pb
M\yin(rPa,0~o)

MYYn(TPa.,-Oa) -(4.2.8)

The sign h, refers to chaige Iloyy of feimion / into oi out of the diagiam, respectively, yvhich

is illustrated m Fig. 1 3

Foi FSR, q has to be replaced bv —q

-HoLnca.C/YAA)
"

=- -£
npxYQYh

PPl
R(Y -

(1 :

i A P m

2p,q
jYi

(0 P
Boui -AT,

m 7) fp,
LBoc n

'-' CVRYM^,
-a,

Udi
(12 0)

with ~ — (iiPi)/(np, A a/), yvheie the paitiele i is a final-state particle.
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Figure 4 4 Diagrams loi different combinations of initial-state 01 finabstate cmittei and

spectatoi

4.2.2 Soft-photon approximation of the cross section

The unbared limit is given bv the well known soft-photon appioximation

M
A)
soft

h-FkPQ.QkFPf up
A \/., \

" Bom

lk (ppFipidP

Y^ 'O'-Q1- OOVAi'UO \/fF)

After applying partial fractronrng

PiPi Pdh IhPk

(pdYdpq) [(a i pY)q](pk(i) \(Pc fPk)q}(p,q)

d 2 10)

42 II)

and distributing the finite-mass teim yvith / = A with the help ot chaigc conservation

(4 2 7) to the teims with i Y A the soft limit leads

\m^\" -E
^cc2C? CA

p,.q

-Y pk nr

(P -"

AY p,q

M F) I
Boin (12 12)

fn this way, the soft-photon appioximanon (12 12) is vntten m a similar wav as the

collmeai limits (12 8) and (124)

4.2.3 Construction of the subtraction terms

Tire subfiaetion tenus have to be constiucted m such a way that they reproduce both

the soft and colbneai limit ot the cioss section i he solt photon limit (4 2 12) depends
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on two momenta />, and pk- Particle % is called emitter and k speetatoi, since the soft-

photon approximation is singular if the photon becomes collinear to the emitter, but not

if the photon is collinear to the speetatoi. Since the mass of the spectator regularizes
no singularities, it is neglected in the folloyying calculations. The diagrams conesponding
to the four possible combinations of initial-state oi final-state emitter and spectator are

shown in Fig. Id.

Although the folloyying results are formulated foi four-fermion production, thev can be

applied to all processes where the external paiticles are light charged fermions and any

other massless 01 massive neutral paiticles. Note f hat it is some fieedom in the definition of

the subtraction teim and the separation of the one-pat tide phase space, fn the folloyying.
all initial-state paiticles aie demoted bv the indices a 01 b yvith a A b and a, b -- i.2

Final-state emitter with final-state spectator

Firstly, the case is considered yvhere the cmittei and speetatoi are finabstate particles. A

suitable subtraction term rs defined by2

V,h -- —

CAt QiQk j 2

ppi \ Y - CaO - Ca)

y
i1. Àdl! YU

Pk 2p,q

1 A yk mf

- ik lp,q
M{t

M
(b

•^Boob/A PGP.

with the momenta of the four-particle phase space

V,k

and the variables

A = IP A q -

PdP

i - y,.

PdP 4 pkq

Pk-

Ca

Pf -

>hk
Pk

PPl

Pdd F PPl F )pq

Bond/Y A-A

(1.2.13)

(4.2.14)

(4.2.15)

yvhere the indices i and k maik the cmittei and the spectator, respectively.
The subtraction teim obevs the soft limit (4 2 f2) loi z,i -7 1 and 7/7 7 0, which can

be verified with the help of

1

1 - a d - y,y
cyAL pi g a p,pk

(ih -^ Pi )q
(4.2.16)

Furtheimore. if the momentum n affei (4 2 9) is identified yvith the momentum of the

speetatoi /y, the subtraction term reproduces the cioss section m the colliucai limit, i.e.

y,k >0, yA -> a and p, > a/a (4.2 9).

The subtraction term is proportional to the Bom matnx element M^lul yvhich depends
on the momenta p, and /y of the foui-partic le phase1 space These momenta are fixed foi

the analytical integiation ova <F,z,. The momenta y and pf. are chosen in such a way that

thev fulfil momentum eonseivation

0 _ K -1 p, A pi, 1- <[
- F - p Pi (4 2 F

2Notc that the actual definition of the subtraction teim of 177 [61J differs In a factoi L i/,k
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and the on-shell conditions oi the four-pai tie le phase space

m\ = m2 P V -7 0 m2k = 0 (4 2 18)

The moment urn Av is the sum of the momenta ol the exteinal paiticles, except foi the

ermttci, the speetatoi, and the photon The infinitesimal photon mass is denoted bv A

The next step is to relate the momenta ot the ftve-paitulc phase space to the momenta

of the font paiticle phase space and the y ai tables „A and y,k ol the one-paiticlc phase

space Ihciefoie we applv the mappings

plipqik kl p, [ .—^-
,

— Ay I -—?A—ç f Aj
, (12 19)

\i VckU
-

,k i ikPiqJ i - ~,k

Pk*->Pk Pk - (l - V,k)pi (4 2 20)
Y2

q^yp, q
~ [l - ~,k)p, -Pk ,iPk 1

,

'-
Pk - Y ik)f (4 2 21)

1
-

k PdP

with U Pk =- A i c — 0 and find the splitting of the five-paiticle phase space into the fom-

paiticlc phase space dcteimined by the momenta px and pk and the remaining one-patticle

phase space

dyy cP/y cPç

(2tt)U^YUU^
HlF - »F)Ulh oY(pY)9(pk oY(q2 Y)0(q0)d(P(R -

p, pk - q)

i

d
o Ad^/(^(C^ô(p2 m2 \2)9(p,0)6(p2k)B(pkQ)à^(K p, Pk)fddpk

(12 22)

with the mtegial ovei the sepaiated one-paiticle phase space

/ d*,, = P£^(l - i iYY -u)fQ ^- / dyA / dylk (1 - yik)

*0L-^xm\-£)
0

(12 23)
V 7a (1 - ,k)2ppp J

The additional integiations o\ei 11 and a are mtioduced m oidei to match the definitions

of (4 2 1) The masses Y and m, m the Ychstiibution ot ( f 2 22) can be neglected since they
do not legulanze smgulaiities The step func tion 9 m (1 2 2;>) results fiom the requirement

k\ o, 0 of (12 21) and regulanzes all smgulaiities It can be verified in the îesf hame

of p, \ pk that / [ is a space-like vectoi lire variable ey_ is the solid angle of Ay with

lespect to [p m the rest name of p, a p} Since the subtiaction teim does not depend on

odL the integiation ovei àf
A

yields 2- Note that the Boni cioss section included m the

stibtiaction tenu V k depends exclusnih on the momenta of the fom-paiticle phase space

which aie five cl foi the integiation ova / mel q k

fmalh the stibtiaction teim is integiated oyer the one-paiticle phase space yielding

/ ,. 1(
FnUQ Qi

d<ipV i Ai i )d[l-)A

"< { kf(\ lip 2p,pk) t

-2
~~ ! Ui\{P A A)f *

,
I UbLYf -o a),'}

t 0(\) + 0(m ) (12 2 1)



yvith

£(Admf,2y7nc) = -In
A2 1 A2 3

- - In" —ö 4- r hr
in: A2

b In
, , , ,

m:

(4.2.25)
yPdh) 2 \m; J 2 \2ppp

where the photon mass is neglected with respect to the fermion masses, be A <o, np.

Final-state emitter with initial-state spectator

Next, the subtiaction teim fen final-state cmittei and initial-state speetatoi is consideieel

The subtraction teim yvith the conect colhneai and soft limit is defined bv

Vm - -

a ayAd cd

ppi

2
t

I I z2a nrf

ici
I
in 2p,q

L- PaY »F 1 a yn ,- _

^

\M\ioni{p,--(T,-Po)

I

Fa

2 1

Pa FPP1 V,o

with the momenta of the foui-pai tide phase space

P, = PiF q- (1 - x,„)pa, Po r:r AAA-

and the variables

PdP P,Pa ^ Pad -PPl

PiPa i ipq PiPa +paq

Mo)n(lYA-/Y)|~

(4.2.26)

(4.2.27)

(4.2.28)

Similaily to the previous section, the momenta pt and pa fulfil momentum conservation

and the on-shell requirement tor the externat paiticles of the fotu-paifiele phase space.

fn order to separate the integial ovei the one-particle phase space from the integral

over the five-paitiele phase space, the folloyying mappings are used.

A If
10 ' /"ICI ,

a I Pi

1 -- A« A2
yö a

-

caPcdl l

q e > p,

,

f " Pa 1

q
~ (A - -UP - (1 - ria)t,np,

-q 4 k±,

A2

1 - A P,P

with Ayyy = k±q = 0. 'fhcv result in the splitting of the phase space

cPp, d'g

(4.2.29)

Pa-(i-Pa)kx (4.2.30)

(2UU2U
PUY ->n,)9(i>l0)S(q2 -\2)0[q0)d^(K + po - p, - q)

with

d Ad A / l-yyY/y m; -- Y)0(R 0Ym(A -/y - R) f tbfy, (4.2.31)
n I (2x)' J

WO = A'M.„--.0-î(l- >„)/ "P- hi

-»ln-c)MxAp}-pP
z,P L .,,A2i),i>n

(1.2 32)
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yvhere e/yx is the solid angle with respect to pa in the icst frame of pn F p,. Since the

spectator is an initial-state particle, the four-particle phase space becomes ra-clependent

and the one-paiticlc phase space is included in the ay-integration. As in the previous

case the (9-function originates fiom A4 < 0 of the mapping (4.2.30) and regularizes all

sirrgularities. Furthermore, the masses m, and A can be omitted in the Ydistiibutiou of

(4.2.31).
Since the subtraction term does not depend of ok f.

the integiation over (fk] yields

2tt. Moreewer, the Born cross section included in the subtiaction teim does not depend

on z,a, but is a function of xiu. In order to avoid the analytic integration over the Born

cross section, the subtraction teim is integiated for fixed Born cross section at xtn = t.

The T?(,-dependcnce of the Bom cross section is taken into account yvith the help of the

7 -distiibution, yvhich is defined as usual by

fldrg(x)[f(x)}+-. f" dt [q(F) - q(i)\f(p),
/o In

(1.2 33)

where q(i) is an arbitrary test function.

The integiation of subtiaction tenu yields

nu t;
A^A2QYA

c/i

o/i
-

R(X2.my2pjPa)A i -

A,

X 4(1
- r,

la

3 f

2Ï-Y0

x —

A
M(rD(P,,o,.Pa) F -4(1 - rn) Ad^d/A

- Add)A)

pO(X)FO(m,) 4.2 3 I)

with A <d rrp and the function £ defined in (4.2 25). The mass and infiarcd singularities
of (4 2.34) have a similar form as in (4 2.24). Note that the d-distiibution acts on the

matrix element, the observable O (sea (4 2 2)). and the momenta p1 and pa. Here and m

the following case, the momenta of the foui-paitic le phase-space are implicitly understood

to be functions of .ay yvith r„ — r
ia.

Initial-state emitter with final-state spectator

Borrowing the previous definitions ol the momenta of the fom-paiticle phase space (4.2.27)
and of the variables iw and y„ (4.2.28), an appiopiiate subtraction term is defined by

Yd
P0Ptc~QaQi

Pcdl
9 _ A

_ i - Vio -([-+. yy
in;

PhPl Pa

A)
MByyp„.an.pi)

FY - Fa'.
,

in2 I
M BüoiWA

- a
a- Pi (4 2 35)

As m the previous ease, the mappings

.
r yu / i

<A~V Co- Co-A q -

- - -p0
-J- Yjy_ja up.

-ia Path
A-i kp. (12 36)
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p, i~yp, P, - UiaPi - (1 - Yc,)(f - Pa)Pa bo Ay }

Ao[ÄP« A (1 - xia)m2a] \
X

?aAiY " Y Pa)(i k w)m 7
(i 2 37)

with A L/a = A ip, -- 0 lestih m the splitting of the phase-spae e mtegial

el1/), cPq
/ (-yyy, (t)V^^< °^

" A2)C(e]o)c)^(A 1 A
-

A q)

- ^ldy,d A / ^yy'dHiC - V 1 H - ioYnra)0(p,0)^\K-{ U A) / ddy7 (4 2 38)

with

j chly, - j C-j± j dpa j ch,aHA, - Fc,)à(l - p,)
0Ü

-,a[PiPa F' (1 Ca)'Td]

0Ü

pppa 4(1- y«)>A

;oyyA - a, da; J

I (1 - Ao)Cfl(l - FaUPdP

'

1 2 39)

The variable c/y
L

is the solid angle between pa and A y m the rest frame of pn f y, and the

masses A and m„ can be omitted in (12 38) The ^-function results bom k\ a. 0

The integiation of the subtiaction teim ovei y0 and rw foi fixed pa and p, provides

AAY2CACA
[d<i>aiYai-~^'ry-U(\ -a)
I OTT"

L t:

4

~

"6
x C(X2pnp2pafil) à(i d) t

I i.

[P(rQ)(ln(f -r0)4 1)]. [P(r0)],u

__ _ Jn

U A,
v°

fpuY
\U«p,

,

MBolu(pa- A, A)

4 {y5(L - ra) + [1 - rQ], } 1 Ià-O« ey A)
* }

y -i I Ai J

AC4(Y)7 e>(m0) (4 2 40)

with A a. iri0 and the function £ defined m ( 1 2 25) The1 y,-mdependent smgulaiities are

similar to the ptev mus integiated subtiaction teim Fxtia ? „-dependent mass smgulaiities

appear m (12 10) and aie piopoitional to the splitting function P{i„)
While m Ref [61] the momentum pa has been fixed loi the y(,-mtegiation, heie we Ox

the momentum p0 Ylthough the actual toi m of the subtiaction teims aie diffaent, the

results foi integiated disenables aie1 the same1 One can icpioduco the result ol Ref [61]
with

[] dr0 [RFFU hi I ^)qP Y
/o \2pp> f

= /q14a, |[/4y,)Al _«_ +

ppp,
PA-Pf)\q(p) (12 11)
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Initial-state emitter with initial-state spectator

Finally, the subtiaction terms for initial-state cmittei and spectator aie considered. The

subtiaction teim reads

Vab --
a aurPp9p

Pad

2
,

m2
'

- - - I - l ob
- ( L -J 1 F,) r~-

- lab -Paq

i

fab

4)
MBo,n(po,aa,pY

. IIP, f
i Y - RbYp -— .viB(;n(Ao doCfc)A)

Wi lob

with the momenta of the foru-paiticle phase space

Po -= MbPa- Pb - Pb

and the vanables

(4.2.42)

PPl

PaPb

I ab ~

PaPb -Pcdl - PFf

PaPb

( I 2 13)

(4 2 44)

Since the momenta of the foru-paiticle phase space have to fulfil momentum conscivation,

the momenta]), of the final-state panicles are also modified

If
=-

P,
-

with following atixiliaiv momenta

/a ,j>_
rrJpYPpf^

c

dy^^YYa,

L(K f [AA PlKi

(K bA)Av A2
(4 2 45)

A" ^ pa 4 Pb -q^^YP'^ K ~ AC I Pb - XdY (4.2.46)
j=a

Fquation (4 2.45) is a pi open boieiilz tiansfoimation of the momenta pt into p, in the

massless limit 4

The mapping fiom the fivc-paiticle phase space into the fom-pai tide phase space reads

eP^A/oA&AA </=-

///;

Î ab 'ab ~ L ab i

PaPb
Pb Ml ~ I ah V„b)p„ Pk i (4.2 17)

with A ( pa - A i pb -- 0.

Hence, the splitting of the phase-space mtegial takes the foi m

ÏÏ j rjfpYlYUsr - iv2)flpp 0)4b/2 - A2)ede/oY(0(Po I Pb - Udd - q)

~ lr]A,<PbU j (\%S^>- »FïUYoY'YlP^Ph- Up,) j UlPp, (1248)

"The mapping oi the hnaAtato pâme le s coincides with Ref jyQ1 foi wunshmc, feimion masses
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yvith

dip,, =
PaPb

2-k
l-r„

d(pk

8A ;o 2tt
dxob / dry^X-A - ra6)c5(l - .t6)

add

x 9 vab -
(L -- -fob - !y)2ny 4 A

(f ^ Coi - Vob)'2paPb
(4.2.49)

The variable èk
L

is the solid angle betyveen pa and k
_

in the rest frame1 of p0 7y,. The

masses in, of the final-state paiticles of tfie four-paiticle phase space,

„
o

nC - "A- [(' ^ UbYUA Ay

dcp, 4 av

Y-rf A'A"
1-4

Rpp

~K2
(Kp, A Kp,)Kp,
:~IK2~+~KK)K2

(4.2.50)

can be replaced in ( 1.2.18) bv the masses in, of the final-state particles of the five-particle

phase space after neglecting m0 and A. The Afunction is clue to the requirement, kf < 0.

Finallv, the integrated subtraction term is given:

u-k m
KaHbe-QaQb

v ,

d$abVab = 77 à(l
- xb)

07a

3

C(X ,mp2pnpb)P y
Yf-rdidP In

'PaPb

mt

1

A

Ch
MUriP- f-P'Pb) 4 I-4(1 - -A) 4 [1 -- r0}+> -

M\yin(U,-(F,Pb)
CO

A 0(A) 4 0(ma) (4.2.51)

with A <C m„ and the function C defined in (4.2.25). The momentum fia is implicitly
understood to be a function ofdy yvith xa — xab.

4.2.4 Remarks to four-fermion production

Since the virtual corrections are calculated in DPA. the integrated subtraction terms that

are added to the virtual ladiative coircctious have to be treated in the right wav to achieve

tire correct cancellations of the singularities. However, it is not possible to apply the DPA

to the whole integrated subtiaction terms because the .^-dependent parts are evaluated

for reduced CM energies ydypC yvhich are below the1 YY'-pair pioduction threshold for

small r„. yvhere the DPA is not possible. Therefore, the integrated subtraction terms have

to be divided into two parts, one including all ?y-dependatt tarns and a second which is

evaluated m DPA including all infrared and mass singulanties. except for the ry-depeiident
mass singulaiities resulting from ÎSR. Heie. the following decomposition is used:

4dY,

T-nry
' >k

t -or y

iaIaUQAY,

(4.2.52)

hi - aAd - p)C(\2,,iip2yyyn)

xImYuUPp-pY) (4.2.53)
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with i. k — I,.
.. 6, and the on-shell momenta defined in (13.1). The function C is defined

in (4.2.25). Different choices of the decomposition (4.2.52) of the subtraction terms differ

only in iion-dotiblv-resonant contributions.

The singularities of (4.2.53) cancel yvith the singularities of the virtual corrections, while

.ty-dependent mass singularities remain in Y°k
"hel1 from fSR. Moreover, in the integral over

the five-particle phase space of (4.2.2), the cuts applied to the bremsstrahlung process

and to the individual subtraction terms are different, because the observable O depends
on the five-paitielc phase space foi the bremsstrahlung process, but on the four-particle

phase space in the case of the subtraction terms. Hence, one should take care of the

correct implementation of cuts in the phase-space generators, if the subtraction terms arc

involved in the calculation.

4.3 Numerical results

For the numerical discussion, the radiative corrections are evaluated as described in tire

previous sections, i.e. the virtual corrections are calculated in DPA, and the complete

bremsstrahlung process e
l

c~ -7 I/-, is included for the real corrections. Although polar¬
ized cross sections can be calculated in our approach, only unpolaiized cross sections are

considered in this thesis.

The fixed-width scheme and folloyying input parameters are used for the numerical

discussion:

a - 1/137.0359895, Gr, = 1.16639 x KT5 GcV "2, Mt ^= 300 GeV,

My, = 80,26 GcV, I\v - 2.08 L74 GeV. AIZ --- 91.1884 GeV,

Fz - 2.4971 GeV,

(4.3.1)
except for Section 1.3.3 yvhere the input is given explicitly, ff not stated otherwise, the

weak mixing angle is defined bv cp
— Aly/AR. <?2

— I -

ey, and the folloyving fermion

masses are used:

me = 0.51099906 MeAC m,,--= 105.658389 MeYC m, = 1.7771 GeV.

mn = 47YIcA', m< - 1.55GeiYC np = 165.26GcAC

m(1 = 47McV, ms--150MeV. mb-i.7GeV. (4.3.2)

where the light quaik masses are adjusted in such a wav that the experimentally measured

hadronic vacuum polaiization is lepiodueed.
The input paramcteis coincide yvith those of Ref. [50]. except for the additional Z-

boson width. The finite Z width is required, since the momenta of the bremsstrahlung

process are genetateel foi off-shell YY" bosons. For vanishing Z-boson width, the matrix

clement of the biemsstiahlung process becomes singulai if the real photon has the energv

E1 = v7s - M7i. This singiilaiitv is due to diagrams yvheie the incoming electron and

position annihilate into a virtual Z boson after radiation of a bremsstrahlung photon.
The viitual coircctious are evaluated ioi vanishing Z-boson width.
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ft not stated otheiwisc, we use the Gt, paiameterization, where the Fcnni constant Gy,
and the fine structure constant cv are related by

Cr„--r, \- (4-3 3)"

Y2MiPl-Ar

The symbol Ar denotes the ladiative collections to the union decay. The cross section

in G), paiameteiization can be obtained fiom the results m the on-shell lenorinalization

scheme in the folloyying wav:

d<T°" = a^Ui + <*"')

with

Aaa» -

__^Hoin
_

A,,, ._

dAnt 4~ (l<al
_

, v i ]»„„ o, o a

rfhe quantities aBmn. a'fut, and deal denote the tree-level cross section, the virtual, and

the real collections, respectively, calculated m the one-shell renormalization scheme yvith

the free parameters o(0). My , Alz- TAh- and up. The value of Ar can be calculated from

(4.3.3) and the one-loop corrections to the mucin decav yield Arlloop — 0.0373994 foi the

set of input parameters (4.3.1) and (4.3 2).

4.3. L Total cross section and angular distributions

In order to compare our results yvith the results of Ref, [50], the doubly-iesonant elec¬

troweak 0(e\) radiative collections aie calculated foi the leptonic process e+e~ -7 pyip
!
r vT

and the LEP2 energy 181 GcV. In Ref. [50], the DIYY is applied to both the matiix el¬

ement and the four-fermion phase space, except for the Bicit-YYugnci piopagatois. The

integrations of the Breit-Wigner propagators over the invariant masses Adh are extended

to the full range (—oo. Too), resulting m

dC2 - --—-———- _=
_^_

-. (4.3.5)
c A — i\J^ + 1 \iy 1 y, oiyvt yv

In contrast to Ref. [50]. the radiative corrections in oui appioach aie evaluated as

described m the previous sections yvith the exact bremsstrahlung piocess. and the viitual

corrections are taken 111 DPA. YY'heieas in Ref [50]. the momenta are generated for on-

shell YY-7 bosons, we use the exact oil-shell phase space fen the calculation of the ladiative

conections. The DPA-B0111 cioss section is evaluated 111 the same wav as clone 111 Ref. [50],
in particular yvith on-shell phase space, m oidei to have a common noimahzation of the

relative coireetions. Moreover, the real photon is recombined yvith a chaiged final-state

fermion if Unit invaiiant mass is smaller than all othei invanaut masses m(y. /), where y

denotes the photon and / an initial- or final-state chaiged feimion.

CM-energy dependence of the total cross section

In Fig. 4 5 the total cioss section and the conesponding relative collection factoi S arc

given as a function of the CAl eneigy flic ladiative collections aie huge and negative,
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Figure 4.5: CM-energv dependence of the total cross section and the relative corrections

for the process e+c —> yyd r Y-

cspecially close to the W-pair threshold. This effect is due to real-photon ISR, yvhich ef¬

fectively reduces the available energy of the \\T-pair production stibpiocess, combined with

the fact, that near the YV-pair threshold the cross section is rapidlv decreasing yvith de¬

creasing energy. The laige corrections result from diagrams of the bremsstrahlung process

yvhere the real photon is emitted from an initial-state electron or positron.

The DPA-Born cross section agrees very well yvith Fig. 8 of Ref. [50]. The curve for

the cross section including O(a) corrections agrees for high energies, but diffcis for low

energies. For instance, the cross section at 165 GeY* is about 7% larger than the cross

section taken from Fig. 8 of Ref. [50]. Above 190 GeY" the relative corrections agree vcrv

well with the results of Fig. 9 in Ref. [50]. Note that the dominating corrections resulting
from fSR are evaluated in Ref. [50] in DPA with on-shell phase space, i.e. A,2t - 4/2v, but

calculated in our approach with the full off-shell kinematics. This could account for the

deviation to Ref. [50].

Production-angle distribution

The production-angle distiibution is shown in Fig, 4.6. This distiibution is. in particu¬

lar, important in order to get mote stiict bound on the non-standard triple-gauge-boson

couplings. The ladiative collections are negative, and increase m size with decreasing

production angles. The origin of the distortion of the distribution can be traced back to

haid initial-state photonic collections. Haiebphotou emission boosts the CM svstem of

the YY" bosons, causing a migiation of events from regions with large cross section in the

CAl system (e.g. forwaul direction) to regions with small cioss section in the labor atoiv

system (e.g. batkwaicl direction).
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Figure 4.6: Production-angle distiibution for the CM energy yd - 184 GeY* and the

process e+c~ > zyydray-

Our result based on the DPA-Born cross section agiees verv well yvith Fig. 10 of

Ref. [50]. The relative corrections are about one per can larger than the results of Ref. [50]
for small scattering angles and agree for large scattering angles .

Note that the total cross

section of Ref. [50] is about one per cent smaller than our result at s/s = 184 GeV.

Decay-angle distribution

The decay-angle distribution of the finabstate /C yvith respect to the YY/+ boson in the

laboratory frame can be found in Fig. 4.7. As m the case of the production-angle distri¬

bution, the large corrections are mainly due to haid-photon boost effects. The radiative

corrections are negative and large for small decay angles.

The differentia] cross sections of Fig. 4.7 agree veiv well yvith Fig. 16 of Ref. [50].
Deviations of about one pei cent are visible fiom the relative ladiative corrections shown

in Fig. 17 of Red. [50].

4.3.2 Invariant-mass distribution

For the definition of realistic obseivables the momaitum of collinear photons have to be

recombinecl with the momentum of the nearest feimion. except for a muon in the final

state, as discussed in Section 4.1.2. Otheuvise logaiithms of the foim ln(/?y/a remain

from FSR in the invariant-mass distiibutions. These logaiithms are not calculable in oui

approach, which is explained in the folloyying: yve use the subtraction method, yvhere all

mass singularities, y hie h appeal foi inclusive obseivables. are transferred fiom the leal

part to the viitual pan ot the radiative corrections yvith the help of subtiaction teims
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and the fermion masses are neglected everywhere, except for the mass singularities. For

observables, which are not inclusive in the collinear region, like invariant-mass distribu¬

tions without recombination cuts, the phase-space integration over the difference of the

bremsstrahlung cross section and the coi responding subtraction terms in (4.2.2) becomes

divergent for vanishing fermion masses. Therefore, a comparison yvith the invariant-mass

distribution of Ref. [50] is not possible, since the calculation is pei formed without recom¬

bination cuts.

The following photon recombination procedure is used. All photons within a cone of 5°

around the beams are discarded. Next, the photon is recombined with the nearest final-

state charged fermion, more precisely, yvith the fermion that has the smallest invariant

mass yvith the photon. Finally, all events me discarded if a charged finabstate fermion is

within a cone of 10° around the beams. The recombination cuts read:

recomb a: m(f.pY A 5 GeY-*.

rccomb b: ni(f,p) < 25 GeY*.

yvhere /?;(/. d denotes the invaiiant mass of a final-state charged fermiou and the photon.
For the invvuiant-mass distiibutions. the Bom cioss section is calculated with the

complete matiix element and off-shell kinematics. The radiative corrections are evaluated

as in the previous section.

The invauant-mass distiibutions aie shoyvn m Figs. l.S, 4 9. 1.10. and 4 11 for two

recombination cuts and two CM eneigies. the LEP2 eneigy 184GeY-" and a possible linear

collider energy 500 GeY". The results include1 the leptonic process e+A ^v yyPA p
.
the

semi-leptonic piocess e"*e~ -a ncl/AA/- and the haehouic process c
'

e~ —> udsc. Note
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Figure 4.8: Invariant-mass distributions for different photon-recombination cuts and en¬

ergy y/s=r 184 GeY/

that the radiative corrections of all leptonic processes are equivalent in DPA if no mass

singularities remain from FSR. The same is true for the semi-leptonic and hadronic process

classes.

As discussed in Section 4.3.1, the large negative radiative corrections for 184 GeY" orig¬

inate from hard-photon 1SR, which reduces the available CM energy for the W-pair pro¬

duction subprocess, combined yvith the fact that the total cross section of the W-pair

production subprocess is steeply decreasing for decreasing CM energy near threshold.

Since the linear-collider energy 500 GeY7 is far awav from threshold and the cross section

of the W-pair production is slowly decreasing foi increasing energies for yd A 500GcV,

the relative corrections are small and positive.

Apart, from the large reduction of the cioss section for 184 GeV due to ISR, a distortion

of the Breit-Wigncr line shape is caused bv FSR, which can be explained as follows: if

the event is outside the recombination cuts, the invaiiant YY'-boson masses arc defined by

the momenta of the corresponding fermion antifenuion pairs:

Mi = Ay = (Ay b Ay)C AI2 =£i-= (Ay-rA- (4.3.6)

where Ay Ay are the momenta of the finabstate fermions. Foi FSR, one of the two

resonant W bosons elecavs not onlv into a feimion antireunion pain but also in a brems¬

strahlung photon. Thus, the corresponding W-boson propagator,

P(U- -'/>2) = 777—." A yay- (A3.7)
\(k^ he/)2- M2]'

depends in addition on the photon momentum q and leads to a shift of the Breit-YYigner

line shape to smaller invaiiant masses. 1 heae effects are especially large without recombi¬

nation cuts since mass smgulaiities remain fiom FSR [50]. YYbth recombination cuts, the
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Figure 4.9: Invariant-mass distributions for different photon-recombination cuts and en¬

ergy r =- 500 GeV

mass singularities disappear and are effectively replaced bv logarithms depending on these

cuts. A small recombination cut leads to large distortions of the Brcit-Wigner resonance

shape, while large recombination cuts yield relatively small effects.

ff the photon is inside the recombination cuts, it is combined with the nearest charged
feimion and hence is included in the invaiiant mass of the corresponding resonant YY'*

boson:

4/f = (Aade/)2 or Mi = (Aa

The resonance of the W-boson piopagator.

q)

[ki-M2]'

1.3.8)

(4.3.9)

which do not depend on the photon momentum, is located at larger invariant masses, i.e.

M± > My?, yvhere AI+ is defined iti ( 1.3.8). This leads to a shift of the Breit YYdgnei line

shape to laigcr invariant masses.

These effects all visible in Figs. 4.8. I 9. 4.10, and 1.14. For 4A+ < Aly. the relative

corrections increase for decreasing invaiiant masses due to piopagators defined in (4.3.7)
and events, yvhich are outside the recombination cuts. Phis effect is large for small recombi¬

nation cuts, as expected from the1 previous discussion. On the other hand, for M+ Y A1S\
the relative conections increase foi increasing invariant mass owing to the propagatois
defined in (4.3.9) and events, yvhere the photon is iceombined yvith the nearest fermion.

This effect is visible foi the huge recombination cut b. Both effects result in a shift and a

broadening of the Breit YYTgner line shape.
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ri GeV 189 500 2000 10000

er/fb 1284.9(5) 570.4(3) 83.4(6) 6.52(1)

Table 1.1: Comparison yvith Table 3 of Ref. [22]: Total cioss section of the process c"1 e" a

ud/AyA' with the photon mass np = 1(Y(' GeY*

Note that the radiative conections from FSR include the squares of the charges of the

final-state fermions, which emit the bremsstrahlung photons. Thus, the FSR corrections

arc proportional to Qf± = 1 for invariant-mass distributions of W-bosons, yvhich decay into

leptons. and proportional to Q2 + Qq ~ 5/9- if the YY'-boson elecavs into a quark-ant iquark

pair.

4.3.3 Test of the subtraction method

In Table 3 of Ref. [22], the sum of the soft-photon cross section yvith Ey < a and the

hard-photon cross section yvith photon energy Ey > a of the process e"'e~ A tid/AdA'
is given for several values of the separation cut a. in order to show the independence on

the parameter a. Since the soft-photon cross section depends on the photon mass ??-y =

L0 "6
GeV, it is not a physical observable. However, it is a good test for the implementation

of the subtraction method.

fn Ref. [22], the fixed-width scheme and the folloyying input parameters have been

used: My =- 80.23 GcV, I\v = 2.085 GeY*. 4AZ -= 91.1888 GeY*, Fz .-_ 2.4974 GeV, mc
-

0.51099906 McV, mu = 5 YfcAC rnd = JOMeYC and sy = 0.22494. All couplings have been

parameterized by c\(Aly?) = 1/128.07, except for the couplings of the bremsstrahlung

photon which have been parameterized by o = 1/137.0359895.
Our results for these input, parameters are shown in Table 4.1 and agree well within

the statistical error, apart, from the CM energy IOTA", where the numerical integration
is most complicated.
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Appendix

A Calculation of real and virtual corrections

A.l Useful definitions

In the mam text, we have already used the folloyying shoit-hand expressions

Y luv
u -

^--r*l
Av - I

Av -

Yy 1 1"

3-
/ ill2

i--r

i
JiMo Ai Si)

s

h\\ yxyify sns2i s. 1 At) - 1C

Am

IA
-

l21
1A "_i

(U)

where

Ad, y Y = Yd y2 \ "-2uj-2iz 2yz (A 2)

The evaluation of one-foop n-pomt functions natmallv leads to the usual diloganthm,

A d/
hid ) / - ln(l A) |au(l ~)| ^ A (A 3)

ht

and its analytically continued hum

Ay(i î/)-Li>(1 a/) • 4n(a/) ln(?) - Inpd1 Hi -

"

A

aiaa)1 iaicC/)| -^ (F t)

A.2 Calculation of the real bremsstrahlung integrals

In this appendix wc desc nbe a geueial method toi cyabiating the bremsstrahlung 3- and

l-pomt integrals defined m (3 2 15) YYc make use of the geneiah/ed Feviiman-paiametei

lepiesentation [b \3

/
^l(n] L t]p dl>> .f^Tp,

xn— (M
YY i V A >YY_S X)pY
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where the leal variables cv, > 0 aie aibitiaiy, but not all equal to zeio simultaneously dire

sum UYi PkYd must be non-zcio over the entire integiation domain

YVe fust consul« flic 3-pomt mtegial C0 YVe only need the difference betyveen the

geueial IR-fimte mtegial and the conesponding IR-diveigent on-shell mtegial

Co (/h P2 0, ny,ny.) ~C0(pi A A \Jp2 \Jpfj
cFq

Tteio l(2yp/ Pp( m2)(2p2qPp22 ml) (2p}q)(2p2q) J
\qo=s/.

Yb)
Co=v/q y

which is UV-finitc and Loi cut /-invariant Fxti acting the signs a, of p,0 via definition

(3 2 29), and assuming foi the moment cy Re(/y — mf) > 0, the Fevnman-paiametei lep¬

iesentation (A 5) can be applied to each teim in the mtegiand of (A b) 4 he integiation
ovei cFq can be earned out and yields

C0(pl.p2,0.m]pn2) -C0(p\*Pi- Y y/Co y pi) (V

In(Y2) Yin

= (7\(J2 ch | do (Si y^ 07

Z~~#i *
hi, I in E,J»(b? 'd'K

i = l

lŒihP
s i

Putting foi instance c>i — 0 and ca 1 and using

Tchf -1 Uln(l + "i)^/2(,,:)-/;,2(:2r)
h Al y i b a /

\8)

wheie | aic(/y 2, z,z y 2)\ v. t the temaming one-dim (Visional integiation and the analyti¬

cal continuations to arbitiaiv complex (pf - mf) are stiaightfonvaid
Next yve considei the IR-fimte 1-point (unction

Vn(pi,p2 Pi 0a/y,//y >ip)

ahq

^/o (2pdl f p2 m{)(2p2q b pf - in22)(2p]qP pf - mf)

Foi a7 Re(y2 - mf) a 0 we can pioceed as above and find

'4 9)

<7o=|q|

/
PY.Pi. p-> A 0 mi np np)- AAA / dydadt^—t

2o rd

41-Eya
i-i

Ey(a r)p (Tpi>
i i

( Y 10)

Again the two-dimensional integiation ovei the Fevnman parameter s and the analytical

continuations in (pf mf) aie stiaightfoiwaicl

Fmallv yve inspect the IR-diveigcnt l-pomt function

Vo(pi,p>,PiU ypfhip y/y)= -j—
—

I

Ao (2/yc/)(2/)o/ p]-nio)(2p3q)
(Y 11)

c7o dq L\
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Instead of apphmg the Feynman-patauietei representation directly, it is more convenient

to extiact the inflated smgulaiitv by subtracting and adding an IR-divcrgent 3-pomt
function containing the same IR structure Since the diffeience between the 4- and Y

point functions is IR-hmtc wc can icgnlanze the IR diveigence m these two mtcgials m

a more convenient way Therefore we wnte

A)(ci Pi Pi \ ypj mj VaO - lim Po(lF IF ibO m,m2,Jp'1)
'

n o L v /

,-- 9C0(/y Pi 0 m Ca) A — Uo(pi.,lP, \ YYj, YpI)
A, — mx V y / rix — n;s V v v /
pi

-

m IF

-

nF

( V 42)

i e we regtilan/e the IR diveigence in the l-pomt htiiction by the off-shellncss pf -m2 y 0

Both the l-pomt function as well as the diffeience of 3 point hmctions can be treated

as above, yielding stiaightfoiwaid Feynman-paiametei integrals accordmg to ( Y 7) and

(A 10), respectively The limit nY —^ pj can easily be taken aftei the integiations have

been per foi med

A.3 Explicit results for scalar integrals

Loop integrals in double-pole approximation

The following one-loop mtcgials aie required foi the calculation of the non-fact on/able

corrections m Sections 112 and 13 3 The 2-pomt and 3-pomt functions of the (mm)

(mf), and (un) collections read in DF Y

p-Z~Aj2 M+ ° r-\Bo(k} 0 M)] } - [UrU Y IAO]
U1-A7,

a4M^M
Co(/2,A + ,0,m2, M) \C0(k2 k

+ ,\m2 My)

(A 1 1)

a+-vn

YY(rw h

'yy 'yy o/aM,Au„
m>

(A 14)

Co(/y U 0,m, V)- [Ppp A Y np My)\
1 m^MW ^A

t Mi UUMi -t/UUpU -i<v\ 'w

In

Y^d

K

\

m.

MU 6
Y 15)

In the (mm') collection the following combination ol 3 point tunc fions appeals m the

stnet DFY

Cn(/- *_ 0 M M)- \( (U -U \ My My)}

I f
. /A- Y

.

/A

JA =^l

,

/

A_

u i Ma" ?" )
J <' (jx- FY) \ P (1 d'y) l-' 1 InY-iy)

r 2ln(YlA ) hl(?U ' 2lhlH-i\0} I A. 16)
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hi oi da to include the full off-shell Coulomb singularity, one has to add

2tti fßpAM 8\ 2ti /A, bAd P sfRyAM\

to the t h s oi ( Y IG)

foi the (if) (mf) and (if') collections we need the following l-pomt hmctions

Y4AU
do (y l A i, A > A mL M m Y ~ -~ I 2 In ( — mi

7-4-9A4- I V — d > 4 Y -Av.

- In'

D0(0) = D0( AbC, 7 A3 A, f A^ 0 AR AI 0)

meAIy

~Mtr~t
Inf - -

.
•>/ 7779 Y ^

lnV4AvJ T

/ AI2
vv

Cp ypUu^
It -1er) t £?> 0^

re, 7

With Ti

£,2U_y,-i U - Ci2Uyl iM-lnli \ —j ln(~aff) j,

14-^ C S]-5^21 ~ AAa I 'avAyy
M

1 -, —

yy

-\ a

u\y

ua 2, 1 Aa

(Y 18)

Y 19)

Y 20)

D0(l)- D0( As ,A+.A2,0 4A 4/ m2)
1 ./

A,(s^ 7 s2i) 7 R-AI2 1 o,v

yy '-—-ti

A79I y-1 iyy I - -C'9

M2

'Av

So! 1 SH

r a, tw

, r
,'A+ s2i I At Y

,
/ "^ Ay

r
, ,

a3 + s21
bl( ^iir-ie

(Y21)

D0(2) - D0( A,,Af,A> A //a Y >a)

at

ra rLlY

in I -— ic

mylAy

T H m^r^K-UAv)'1112^)
(A 22)

A)(3) = Do(-Ä3 Ä_ A> \ m, \/ m>) D0(2)
Kj /\_ o < O; i

> <

(Y21)

Do(4) D0(-A,,-A_ A 0 07 IA lA) = /)n(b)
, ;7\ Li- /\_ m ^-»(3 s j j < vo

Bremsstrahlung integrals in double-pole approximation

U2i)

In the (mm') inteileience eonedions the tollowmg combination of 3-pomt functions ap¬

peals

C0(A /_ 0 M IA ) C0d A_ Y My, My)
I _\l.

{c0(A A 0 M M) [dn(A -/ Y Yu YVv )]A =v }
l\ -4-A-*

I Ob



2?T1

57
A

In

vv

K+ P Kfxy

iXMw(f- xfp)
A.25)

For the (mf) and (id') interference conections the following 4-point functions are re¬

quired:

I>o(0)=-- ~D0(Ip.kp -U.k2 - Cy-0.4A.4/+.O)

-Do(0)Y27ri{ln( -yv^Odln
hy I V My?

Ml
I Y --(

Au

In ( 1 A oo- zxy ) - In ( 1 J- -Rat : A\
Aiy Ali

with z from (A.20).

Tin 14^(1
•A3

(A.26)

D0(l) = 'A40(Aa, k+. Ay. 0. M C 4A,m2)

2-i
A>(1) +

k-^-ki
'

AvY ( At 4 a 1) - - AC 4 Axy

AY

2 hi L-
AvC s 5 3 -1- sy 21

Ad Aly

In 17-
Avd Av

-In 1 -I-

XyAU
VV

sa Y syt

1 / nF

~ln,T/2 (A.

î>0(2) -- 2A(Ay, Ay - Ay. A,m,. 4A.m2)

A"+ So-?2?ti
I40(2)Y -- -In

A + sy^ i/Y/?72(sy^ A s2y.

V0(3) ---- P0(Ay. Aa, Ay. A, uy, AY. ?7?2)

-Do (3)
2/ri

.

y - - — In
at.-»-ai KAs2\

MY' 7?o

-A(s2i Y syid

©o(4) = V0(h, Aa, Ay. 0. /??,, 4Ad M)

-D0(i)
m\

'<- ->-A'l 7vA(a3 A S23) - AvA4/y L

Rlxy?

A
YyYY _ln A 7

A.2S)

(A. 29)

Xy? My?
s 13 Y as

(A. 30

We note that the logarithmic tenais on the i.h s. of (A.26) yield purely imaginary contri¬

butions if (su A S03) ^ - My vy . (sat 4 s2() "^ -Alyipy, and /lW is imaginary. These

conditions arc fulfilled on resonance. Off resonance, this is no longer true near the bound¬

ary of phase space. But since these conditions are onlv violated in a fraction of phase

space of orclei |Ay — Ali i/4/\\, which is irrelevant in DPA (compare the discussion of the

relevance of the hanclau singularities in Section 3.4 3). it would even be allowad to replace
7Y(0), which is real, bv - Re{A40)}. as it was done in Refs. [38. 39].

B Four-fermion momenta for on-shell W bosons

In order to define a DPA foi the y iitual collections of font-feimion production, one has to

project the foui-feimion momenta for off-shell inteimediate YY' bosons to the ones, where
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the YV bosons are on shell. Therefore, eight independent paramcteis have to be chosen,

which determine the four-fermion phase space uniquely and include the invariant masses of

the resonant YV bosons kp. One possible choice is to fix the directions of the particles YYr !
,

A), and )b hi the CAl frame of the initial-state o+e~ pair while taking the limit Ai a- 4/(4,
This results in the on-shell projection:

/.on _

Y q
1,011

__

is-1 YSo
/.on _

, /.on
A+o

-

-y
• kr

-

Y 4 7/ 'Ay - A_
- /a -J /a

-

A. ,

py -. k{^P--, cf - un - uy. py - o -^-, cy - con - ay (Bt)

with A'+ - Ay A Ay and A_ = Ay A Ay. The momenta of the initial-state Yb are denoted by

p± and the momenta of the final-state fermions bv k,. i
~ 1 4. The on-shell momenta

aie mai keel bv the superscript Amb

C Construction of phase-space generators

The scattering amplitude1 of a given process includes usually a lot of different, propagators

corresponding to the different diagrams. The different piopagators peak in different phase-

space regions and, therefore, slow clown the convergence of the numerical integration or

cause numerical instabilities. If the differential cioss section varies too much, the result

and, in particular, the statistical error of the Ylonte Carlo integration can not be trusted.

As described in Section 2.2, the multichannel appioach is applied to obtain accurate

predictions for the processes c+e~ -a 4/(7-"), where each channel is responsible for a

diagram or a class of diagrams with the same piopagators. A channel is defined bv

the mappings from random numbers to the momenta of the event. For each diagram, a

phase-space genera toi is constructed in such a wav that the corresponding propagators are

smoothed by the .lacobian of the specific mapping. To do so, the inverse of the Jacobian

of the channel has to simulate the cross section in those regions of phase space where the

cross section becomes large. The construction of the phase-space generators is explained
in the following (see in addition Reds. [26. 65. 66)).

C.l Smoothing propagators depending on time-like momenta

Diagrams usually involve severed piopagatois depending on time-like or space-like mo¬

menta. In this section, diagrams which depend onlv on propagators with time-like mo¬

menta arc considered. It is appropriate to decompose1 the integral over the phase space

into several integrals ovei the1 invaiiants of the piopagators and the remaining integrals
over the angles in appiopiiate icst fiâmes. Fach invaiiant is mapped to a random number

r such that the integiat takes the following foi m

"\i< -/J
^

- Z1-'
r (en

(C.2)

a qppi p m . p. snim. smax

with 0 d >' A I <wicl 4k1 density e/s defined bv

L d/?( i. lip. p. y-

(p(Fp).ni2.p. smra. yliad ch-

lOS



4he mapping of the random numbei / into the invariant s

5(0 = /»(' ?"2 v Alin, Aux) (C3)

has to be chosen such that the dcnsitv ey simulates the behaviom of the mtegiand m
the region wheie the mtegiand is laige This is called importance sampling because

more events are sampled m the impoitant integiation region of s in which the mtegiand
becomes laige Thus it is a reasonable appioach to require that the density has to include

the un eise of the piopagatoi

The mappings belonging to the different ptopagahn tv pes read

Propagator with vanishing width [2b] : o x 1/U — m2|

h(r,rn2pn, smm smvJ - dan-, - >
Ai-'

gYs, nr p. smm, smid -

loi p Y l and

1 (1 Oldmin Ilk )

I P

A1-i
7/?

Ill )l-i _(. mm my1-'| (s nP"

h(pm2 t smm smrJ — cap ;ln(smlx- nY) (t / ) ha(ynm - m2)

21

m

dYf> llY 1, yum bno)
77a s

—

?aln(smrv - nP) -ln(smt

for v 1

Breit Wigner propagator: a a L/[(s MffY b l/^p/]

h(i M{ -xARFx 2 smin sirnJ Yy I fan [</, -r (y? - yt)i j h M2,

4Aly
qAp MA) Pk\F, 2 smm snnJ -

(V -ydd-oA^YA/ArC]

with

//i ->
— aictan

AR
in m i\ "y

lAf

y r v

(C 4)

(C 5)

(C6)

(CA)

lhcse mappings au1 applicable not onlv for the Ylandelstam vanable s, but also foi the

absolute value of the Mandelstam variables l\ and 4/|
The paiametei p can be tuned to optimise the Y hint e Carlo integiation and should be

chosen d 1 The naive expectation /
— 2 is not nctessaiilv the best choice because the

propagatoi poles ol the differential cioss section an paitlv cancelled m the collinear limit

Note that the mappings (C 1) and (C 5) aie undefined foi /
^ 1 and smm \ nF

Since all feimion masses are neglected m oui calculations foi foui feimion pioduction
m can be omitted m (( 1) and (C 5) flowevei 1 found it convenient to use a small

negative mass paiametei ??? - -a to avoid uumaieal problems for smm = 0
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Isotropie decay into two particles

Phase-space generators of diagrams, which include only piopagators depending on time-

like momenta, can be composed bv isotopie particle elecavs. Therefore, the isotopic decay

is described in the following.
oY particle yvith momentum p decays into two particles with momenta Ay and Ay. The

momenta of the initial-state particle and the masses of the final-state particles are fixed.

The polai angle cF and azimuthal angle A in the rest frame of the decaying particle are

suitable integration vaiiables:

f d$d(p,mlm2) - I'd'kpcYkUOy - rrY)0(kl())d(kj - ml)9(k20)8^(p C, - Ay)

—

x\d*Aa inPmJ} /2l

with the function A defined in (A.2). For the numeiical integration using the Monte

Cailo technique, the angles have to be expressed by random numbers ?y and 77 with

0 < A, A A I :

cto / dcosfY
0 ./- t

(C.S)

d4y(y. mj. mf) - cbyet;-, (C.9)

(C.JO)

qPjF.mi. np) A

with (f> — 2rcrp, cos id = 2/y - J, and the density

,2 2 2x PP2
gd(p , m,. m2) =

—,-——r
- --

/Y (;;-. nri. m~2)x

Since the laboratory frame usually does not coincide with the rest frame of the decaying

particle, the proper borentz transformation is introduced. The boientz transformation of

momentum At into the rest frame of the paiticle with momentum p is defined bv

A' = B(p().p)k (C.il)

with the explicit form (see e.g. Ref. [65])

bk

Aq =. -7 Ay 4 bk, k'-Abb -1 bAy, (C.12)

where b = - p/m. y = Po/m and m - A/A. The inverse boientz transform is obtained by-

substituting p into —p. For instance, if the momentum k is identical to p, the particle is

transformed into its rest frame and vice1 versa:

U - B[p0. p)p. p --. 8(p0. -p)y" (C.13)

withy* = (m,0,0.0)l\
Since the decav is isotropic, the oiientafion of the coordinate svstem can be arbitrarily

chosen and the momenta of the outgoing paiticles lead

/ k'FP. -P \
2yU

A1 = AdCo-^p)A(oCcos4d
0

0

\d/7 7 [ ;-y

A7d

k2 = p
- Ay (C.14)
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(p\

o (y-)

Figure 4.12: Diagram with two resonant \Y bosons of the process c+c > >ypP+r A

with the explicit rotation

7?AcY, cosed)

/ i 0 0 0 \

0 coscC sineY 0

0 --- sined cose7* 0

\0 0 0 1)

( i o o a \

0 cos A- 0 shod

0 0 10

\0 - sin (A 0 cos 0* J

(C.15)

Example

As an example, a phase^spacc generator for the diagram of Fig. 4T2 is constructed. For

both intermediate particles, photon or Z boson, onlv one generator is required, since the

corresponding propagator is fixed by the momenta of the initial-state particles and, hence,

no mapping is needed, dite phase-space integral can be decomposed of the integrafs over

the invariants of the intermediate YY' bosons, the YY'-pair production, and the two VV

decays:

IT -= dCy
Y'-AA

dki jd<FY.P,ki,ki)
x / d4y(Aody.AA) / chlyda. Ay. ^) (C.16)

with p —- p+ A p-, Aa - Ay -4- Ay. and Aa — A î A Ay lire invaiiant masses of the YY'-boson

propagators arc determined bv

ki = h(P,Mi ^lAlyVy.A.O.p2).

Aa = h(p.Ali -U/yU\v2.0. (iU-yki)2)
with the function /? defined in (C 6). lire total density reads

(C.17)

(0.18)

Ar cp(l ). AlY - iAU Id .
2. 0. i72)cy (/A . YyC, Fly 1\N .

2. 0. (yU - y Iff)')
i m i ->\ > a i y

pqpp'.kUkUqpkUkpkYguupy.ky.

including the two YY-boson piopagatois.

(CIO)
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C.2 The t-channel diagram of a 2 —> 2 particle process

So far, onlv phase-space generators for diagiams yvith propagators depending on time-like

momenta are considered. The simplest diagram including viitual paiticles with space-like
momenta is the A-channel diagiam of a 2 -a 2particle scatteiing process which is outlined

in the following.
Two paiticles with momenta pu and p. transfonn into two particles with momenta Ay

and Ay, where the momenta of the initial-state paiticles and the masses of the final-state

particles are fixed. Furthermore, the diagiam includes a propagator depending on the

Handelst am vaiiablc t ~ (p+ — Ay)2 which has to be smoothed.

The calculation is performed in the rest frame of y = pi \ p_ with the 3-axis in p,.

direction. The momenta of the exteinal paiticles take the form

/ ÀdÀ d Y

Vd

0

P± =

Y

0

i
, , ,

\- ip- p- p- i

"~V7~ J

hj = R(o .cosA)

f PpFFUl \
2 Up

o

o

U(,d FF)
\ 2iyU J

(C 20)

and Ay* - p] d pf — ky Since the invaiiant mass of the propagator A depends exclusively

on the azimuthal angle cos9A

t = ki+pi- *-
(p2puf- rrppi -pfy^xYu.kf.kyxyurpr^u

2p-
. (C.2L)

the phase-space integral can be converted into an mtegial ova the polar angle él and ovei

the absolute value of the Haiidelslam variable A:

dTpC;y ,ja,7??f,m:()

- |d4MWV Id
- IP)S (Ay - mf) 9(k u.r (A2 - m2) 0(Uo)

d\t\. (C.22)
• 2-

ixyu.pf.pui»
no

bnay

where the integration boundaries can be calculated bom (C2L) with --1 < cosed a 1.

bike in the previous section, the polai angle cb and the invaiiant 1 of the ptopagatot arc

determined bv

o — 2t7'i
. \h-h(i2.nr.u. Aiav /lllin)

resulting in

/ chfyA/t+.y. , A,\/a) - / d?, / da-
I h

F ~

i

with the density

'o Uh-A.P2'Pf pUP.nP.p.immFnmy

{GPU

(C21)

(}p{p-p]-pi-t.nr.u.tmnJmaU = y\pp2.pi.p2 )(]A-t.nF,p, Amflx. -/mm) (C 25)
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U(p,

C (J! ) _H

Figure l f Y An example foi a imilti-penpheial dragiam contributing to the process

e+c~ -> /yy,/A y 0

To obtain the momenta ol the final-state paiticles in the labenatorv fiante a rotation

and a piopei horentz transformation are peifoimed

/, =-B(po,-p)R( o cosOA; (C2b)

yvith ? f, 2 and the angles

an tan
(£L0

p+] a 0 p, >

A - <J
^ >

+
cos,9^ CA4 (C 27)

aictaia—) \ r, p+ioO IP H

withy, - B(p0 p)c+
fn ordei to make the numerical integiation more efficient cuts can already be mtio¬

duced m the generation of the event îe an uppei limit on f or on cos tY Since1 the

Handelstam vanable / is boientz invanaut the cut on / is valid m arbitiary frames Au-

gulai cuts have to be tiansfoimed into the rest hame of the incoming partrcles

C.3 Phase-space generator for a multi-peripheral diagram

The inulti-peiiphcial diagram ot Fig 4 f 1 is investigated as an example, because it in¬

volves all tvpes of piopagatois In the following all feimion masses are neglected and the

following definitions aie used

k» = k7\k], k >i —}> i k] + k\ / i^>i
— / i

- / -A, I Y

<Il
-

pi
— k] q- -- p 1 p p | p_ (C 28)

The mhaicd and eollmeai smgulaiuns are excluded bv a Iowa limit on lY3 > AJHmin
The ])hase-space mtegial

/cit - I" duy I' au , /" dUhu Idur p- ulU[ uy
it -ï t

x/ddyyy, q_ I 1 y,) j <14a(A -,.A_ A' / \) j eld ,(/ M Ao\ / i) (C29)

in



is decomposed ol two scatteiing piocesses and two paiticle elecavs The mterinediate

paiticles of this decomposition are the virtual particles and an additional fictitious paiticle
with momentum C12oi The invariant masses of the exteinal paiticles of the scatteiing

piocesses and paiticle elecavs have to be determined fiist

Ui = h(p 0 ip A,\
)in

i) (C30)

A22^ - /?(/? 0 7a kY p ) (C31)

Oat OaOOY^O) (C32)

As a second step the momenta of the finabstate1 paiticles are calculated

AC Y p- yyjnat +_kY\
The mitial-state electron and position tiansfonns mto the finabstate p and a fictitious

particle with momentum / pD| The invaiiant mass of the YY boson piopagatoi is cletei

mined bv

lç'1-M't K-ilAylyy 2 0 fP U]m), (C 33)

wheie the boundaiies are taken fiom (C 21) The momenta can be calculated according
to Section C 2

P+4eya^ A A23i

4hc incoming paiticles are the initial state position and the incoming viitual YV boson

which couples to the initial state election \ote that the momentum of (he incoming YY

boson is fixed bv the momentum of the mitial-state election and the already calculated

momentum of the final-state y Ihe invaiiant mass ot the YY boson piopagatoi reads

\q2Y^h(,,Mi iMyly20(kYu Ad^lO^i ql)/h>mi) (C 3 f)

with the boundaiies calculated fiom (C 21) In this wav the momenta of the final-state

7ie find the viitual photon aie determined

IA234 y kojj \ Ci I

The viitual photon elecavs isotiopicallv into the final-state //+ and the vufual p accoiclmg
to Section C L

[k2yu a ? \-_ki\
Finally the viitual // decays isotiopicallv mto the final state //" and the final-state y

Flic total density toads

d i qikfi 0 ip k(]nm p )q (A, j
0 / ) F p )q dj u

0 0 k)u p2)

\qp(jY 0 0 0 My 4Adu 2 O;;- /P t)

x<7p(0'm ° q- q ]U PP\T\\ 2 o (/,, ,
a y(iY]2il 0)Oiai)

xyfC',, /,', 0)q,(I 0 01 (C 35)

and includes all propagators ot this diasuam

111



Figure 4.14: The generic phase-space generators symbolized by the topologies of the cor¬

responding diagrams

C.4 Remarks on four-fermion production

fn this way, five generic phase-space generators foi e~e~ -7 4/ and ten for e+c_ —> 4 Ay are

constructed. The topologies corresponding to the phase-space generators for the processes

c+A -7 if arc shown in the first row of Fig, 4.14 and the topologies corresponding to

e+e~ -a 4/y can be found in the second and third row of Fig. 4.14. For each generic

generator the order of the external particles and the mappings for each propagator can be

(Tosen. In particular, flat mappings of a subset of piopagators correspond to topologies
where these propagators are contracted. YY'ith the help of these generators all propaga¬

tors of the cross section are smoothed. Special phase-space generators for interference

contributions to the cross section arc not, constructed.

For the process e+e~ ~p c+c~c+e y with 1008 diagrams 928 different channels are

included in the calculation. The difference is clue to diagrams where the initial-state e~* e~

pair couples to a virtual photon or Z boson. Since the invaiiant masses of the virtual photon
and Z-boson are fixed bv the CAl energy, onlv one phase-space generator is required for

both diagrams. For instance, the diagram of Fig. 4.12 corresponds to the first topology of

Fig. 4.14, where the mapping of the propagatcu which couples to both incoming paiticles
is flat, i.e. p, = 0.

Phase-space generators for diagrams with a quartic-gauge-boson vertex are also in¬

cluded. This diagrams have one piopagator less than the othei diagrams, Fherefore, one

propagator in Fig. 4.14 is omitted and the mapping of the invariant of this piopagator is

flat.

The order of the particle elecavs. the 2 -^ 2paiticle piocesses. and the dctciurination

of the invariants influence the convergence behavioui of the numerical integiation. since

the integiation domains of the single mappings depend on the already fixed invanants

and momenta. In paiticnlai. the invariant masses ol decaying particles in a clecav chain

are not independent of each other, bo improve the numencal stability the invariants

of the virtual massless particles that couple to external paiticles should be calculated

first, applying already the cuts in the gcneiation of the momenta. In the here discussed

Honte Carlo program, invariant-mass cuts are mod foi the piopagators ol the viitual
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particles with time-like momenta. Foi the viitual particles with space-like momenta onlv

one angular cut is applied to the first 2 --7 2 particle process. Note, that, the angular cut

docs not influence the boundaries of the integrations over the invariants of the virtual or

fictitious particles with time-like momenta, which are calculated at the beginning.
For the numerical integiation of the subtraction terms, additional phase-space gener¬

ators are constiucted. which take into account the propagatois of the Born-cross section

included in the subtraction terms. Since the Bom cross section depends on the foin-particle

phase space, the four-particle momenta have to be generated first with the phase-space

generators for the piocesses e'e" --> 4/. These momenta are then mapped into the five-

particle phase space according to the different mappings defined Section 4.2.3.

Besides momentum conservât ion and the requirements on the momenta of exteinal

particles, i.e. Ay = mf and A-,0 > 0. the phase-space volume is a very helpful vaiiable to

test the phase-space generators. Foi massless external panicles, the phase-space volume

can be calculated analytically as follows

/ J] dU,S(ki)0(kU6P(p - YU YY (^Y'~l i^-A (c.36)
/ ,d,0 Y24 F(n)i(n - I)

where n is the number of final-state particles (see e.g. Ref. [67]).
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