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Summary

The basis of the modern physical description of metals is formed by electron-phonon theory,

which describes the interaction of the electrons with oscillations of the ion lattice structure, or

sound waves. In electron-phonon theory the standard method of computing physical quantities

by means of a perturbative expansion in the coupling constant breaks down because the

coupling constant is typically not small.

Having to take all higher-order terms into account makes the calculations very difficult.

Therefore it is common (o make an approximation first proposed by A.B. Migdal in 1958. ft

consists oJ" leaving out the higher-order contributions to the interaction vertex. This greatly

simplifies solving the main equations of theory. Migdal justified this approximation by claiming

that, at zero temperature, the higher order contributions vanish linearly in the sound velocity,

c. For ordinary metals, this velocity is small relative to the other relevant parameters. This

claim has become known as '"Migdal's Theorem" although, to our knowledge, no rigorous

proof has ever been published. Migdal gave a sketchy argument for the lowest order correction,

the "one-loop correction"', and then claimed that higher' orders would work the same. Other

authors have followed him in doing so and have extended the claim to non-zero temperature.

In this thesis the most simple form of electron-phonon theory, the Jellium model, is

considered as a statistical quantum field theory at finite temperature in the presence of an

ultra-violet cut-off. A rigorous bound is found for the one-loop correction that is indeed 0(e)

except for a correction term which vanishes along with the temperature. This done using very

explicit calculations using a Feynman-trick and repeated integration by parts.

Proper formulation of the theory so that the zero-temperature limit exists requires

renormalization of the theory. Here, a so called Fermi-surface renormalization is done, where

counter terms are added to the band relation. Using renormalization group tcclmiqucs and a

scale decomposition argument these counter terms are define precisely and it is shown that the
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zero temperature limit of the renormalized theory is well defined by establishing temperature

independent bounds for the values of graphs occurring in the theory.

Finally it is shown that for the renormalized theory, for all 0 < e < 1 the vertex

corrections of order r are bounded by

for some e-dependent constant Mr(e), with ß the inverse temperature. This is done by com¬

bining the Feynman-trick and the integration by parts with the scale decomposition.
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Chapter 1

Introduction

1.1 Migdal-Eliashbcrg theory

1.1.1 The electron-phonon model

Free phonous and pohrons

One of the main insights of the physical theories that describe superconductivity is that, at

least for ordinary superconductor, the rcsistauceless current flow at low temperatures arises

because of the interplay between the electrons and lattice vibrations, or sound waves. The

microscopical, i.e., non-phenomenological, theory thai describes these phenomena is called

Electron-Phonon theory [Mah81. AGD75. FW71],

The term Electron-Phonon theory is used to refer to a whole class of physical models

that have common features. In a metal most electrons in the metal arc tightly bound to the

nuclei. Together they form positivelv charged ions. These ions arc arranged in a lattice and

oscillate only small amounts around their equilibrium positions (at least at low temperatures).

A standard computation shows that these deviations from the equilibrium positions can be

viewed as a superposition of independent longitudinal density (sound) waves, or phonons.

These are described by a simple Hamiltonian:

^ph = E^(&ÏA + ~) (1.1)
k

where b*k and ?>k are bosonic creation and annihilation operators for a phonon with wave

vector k. wk = c|k| is the energy of one photon with wave vector k. The proportionality

constant c is the speed of sound in the metal. In a finite volume of wavelength of side length

L, the components of k are integer multiple of 451. In the infinite volume limit the sum over
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the momenta changes into an integral.

Moreover above a certain value of the length of the wave vector the vibrations are

inhibited by the crystal structure. Therefore the sum is often considered to be cutoff such

that Wk < ojd- The frequency lü£> is called the Debcye frequency. Note that in this model

there is no (direct) coupling between the phonons. They form a system of free bosons.

When the ions are all at their equilibrium positions they provide a periodic positively

charged background for the remaining more loosely coupled electrons to move in. These

interact with each other and with the ions through coulomb forces. However, because of

the positively charged background, the inter-electron forces are heavily screened and can be

neglected as a first approximation. This simplifies the model extremely, because there is no

direct interaction between the electrons and these thus form a system of free fermions. The

only interaction between them is indirectly through coupling with the phonons. Such particles

are also called 'polarons', however we will most of the time refer to them as electrons or even

plain 'fermions'.

Besides neglecting the screened coulomb interactions there is a further simplification

wc make here in that we assume that also the periodic potential can be neglected. The effect

of the ions is assumed to be smeared out evenly over space, and the conduction electrons form

a homogeneous gas. This model is called the Jellium model. The kinetic part of the electron

Hamiltonian then only contains a Laplacian. It is easily diagonalized in momentum space and

given by

^el = E eo(k)aL°ka (1-2)
.ko

Here eo(k) — ^T- is the band-relation of the Jellium model, with m the electron mass. Note

again that in infinite volume the sum is replaced by an integral. The index a denotes the spin.

As in the rest of the discussion all terms will be diagonal in the spin, we drop the index from

the notation (or, equivalently, absorb it in the momentum sum).

A lot of the proofs in this thesis depend directly on the properties of the band relation,

such as whether its level surfaces form manifolds, and when yes, how smooth these are. All

these questions get relatively simple answers for the Jellium model. In addition as we will

see. the rotational symmetry leads to substantial technical simplifications. In more realistic

models eo(k) is replaced by a much more complicated band relation (or even multiple bands).



1.1 Migdal-Eliashberg theory 11

In addition the periodic potential (and the lattice structure) implies that the momentum

space is not Rf' but is a J-dimensional torus. Nevertheless we feel that the Jellium model,

apart from being a widely used model in itself, still illustrates the major features of the proof

that would be needed for more general models. For an example of what would be involved in

such a generalization, see [FST96. FST98, FST99],

So far we have neglected anharmonic effects leading to coupling between phonons, the

coulomb repulsion between electrons, and the effect of the periodic potential produced by the

ions on the lattice. What remains is the effect of disturbances in the ion-potential produced

by deviations of the ions from their equilibrium positions at the lattice sites. This leads to

a coupling by coulomb forces between the lattice \ ibrations, i.e. phonons, and the electrons.

The interaction part of the Hamiltonian is given by

w-' = E-v(qK^qMVi-^q) (1-3)
p q

The interaction matrix element is given bv j/(q)2 - <]2^q. where g2 — ^U^2 with rj a dimen-

sionlcss parameter that turns out to be ~ i foi most metals.

Summarizing, we have for our model the Hamiltonian

TT^Ho + nmi (1.4)

with

H0 = Hcï + Hph (1.5)

describing the free propagation of the particles.

1.1.2 Statistical quantum field theory

Grand canonical averages and Matsubaia's method

We are interested in computing statistical mechanical piopeities of the metal in the above

model. That is. for some opeiator O we are interested m its ensemble average (O), also called

the expectation value of O. Let A* be the total number operator, given by

N = J2n{k) n(k)-4ok (1.6)
k
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then in the grand canonical ensemble each state is weighted by the value of e~ß(H~vN) in

the state. Here ß = jrU^ is the inverse temperature. The chemical potential ß regulates the

number of particles in the system. Thus

(0) = ^Tre-^H-"^0 (1.7)
Z

Here Z = Tre~^H~'jN^ is the grand canonical partition function and the trace is over all

states in the Fock space. Z~l normalizes the average (1.7) such that (1) = 1. Note that both

traces are only rigorously defined and finite when the momenta are restricted a bounded set,

a so-called ultra-violet cut-off and we will do so below.

These ensemble averages are typically computed using a method clue to Matsubara.

The electron and phonon field operators in the Heisenberg representation are given by

At(k)r) = eT(Ä-^)4e-^-^) (1.8)

A(k. T) = er(n-^N)Qke-r(H-ßN) ^ 9)

ßt(k, r) = e<n-^ \J^(bk + blk)e-^H-^ (1.10)

for 1 6 [—/], ß]. Normal time evolution for an operator O would be given by O(l) = e~ltHOtltH.

This is related to the Heisenberg evolution in our case by a substitution t = it. Therefore

this formalism is often said to be using "imaginary time".

It is customary to introduce the scaling factor
y 2^- ^n^s ^ias ^e advantage that in

the interaction term (1.3) the coupling is now simply the constant g.

Two-point functions

A well known result is that all physically interesting statical mechanical ciuantities can be

expressed in terms of correlation functions, in particular the two point correlation functions.

In momentum space Lhey are given by (after removing the delta function that sets the two

momenta equal which is the result of translation invariance of the model)

&(k,T) = -{TrA(k,T)AHk,0)) (1.11)

&(k, t) = ~(TrB(k, r)B(-k, 0)) (1.12)

Here TT is the time ordering operator, which puts any product of operators that are evaluated

at Ti, T2, etc. in such an order that the r^'s arc decreasing. Here it is the required permuta¬

tion. In addition if performing the permutation requires interchanging fermionic operators a
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factor -1 for each pair interchange occurs. These functions are also called Green's functions,

propagators or covariances depending on the viewpoint one looks at the theory and we will

use all these terms in the rest of the text.

As an example note that from the definition of TT it follows that

lim<?(k,r) = {Af(k. 0)A(k,0)) (1.13)

= (n(k)) (1.14)

Because of the properties of TT a little operator algebra shows that for —ß < t < 0

^(k,7) =-^(k.T Vß)
(1.13)

0(k.r) =#(k,r-( ß)

When considering the Fourier transform with respect to i

ß

^(k) --- V(ko, k) -= f <?(k, r)c'À0Ulr with *-0 - !?"-—]£, ne% ( \ .16)

o

ß

9(k) - $>(k0,k) = / 0(k.r)c'A°"dr with *0 = y,nfZ (L.17)
o

Thus sums over the irequencv ai'gmnent A'o either- onlv the fermionic Matsubara frequencies

Ut^JZL or rjjg hosonic Matsubara frequencies 2jy occur'. This is a direct result of the different

signs in (1.15) which reflects the fact that the fermion fields obey anticommutation relations

and the boson fields commutation relations

The interaction repiesentation and the free propagators

The ensemble average < O ^ is in general \eiv difficult to compute exactly, even in a rela¬

tively simple model such as ours. Therefore one often resorts to perturbation theory. Observe

that our Hamiltonian is of the form II -- IIq + J7mt. Define the fields in the interaction

represent ation as

i.T(k.r) = p7(Wo-"JV)ajcc-7(H°-"iV)

f(k.r) = e-iVo-^l^^illo-nN) (L18)

C>(k.r) ^fn«o-/,A-) /rî^)(6k.,. &t_k)e-r(7Jo-^)
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Defmine the free field average (O)o of an operator O as

(O)o = -^-Tte-P^^O (1.19)
Zo

wdth Z0 = Tre ô^//o M^h Then the two-point function is given by

,*/,._%_ <TVS(/3)V<(k,TWt(k,0))o

^^^KWIMBf! (1.21)
(MpJ/o

Here S(r) is the so called 5-matrix operator given by

5(r') _ er'{Ho-ßN)e-T'{H-ßN) ^ 22)

\
1.23)

/

= TTexp / iJint(r)d

\b

where H-mt(r) = eT(Ho~ij1^)Ffmte~-T(Ho-ßN) ancj (p23) can be obtained by solving the propa¬

gation equation for S(t) iteratively.

Up to now the expressions for the 2-point functions have only been rewritten. They

have not been simplified, fn the special case g = 0 or equivalently jfTjnt = 0, H = Ho, and

S(ß) = 1 and the two-point functions can be computed. Because there is no interaction term

between the particles, this is called the free theory. The computation of the 2-point functions

in this case is standard. We have

ß

C(k) = C(k0lk) = - JdTejkoT(TTij(k,T)^(K0))0 (1.24)

o

-
/ dr,-ifa>r

Tr e-^'-^>JW>(k, r)V;t(k; 0)

o

__L
tfcnT

Tr e^g« e(k)»(k))rr^(k, r)V>t (k, Q)
~

J Tre-'3Ske(k)n(k))
^~°J

0

pikot
= Um-

^r (1.27)
40 7,/co — e(k)

JM!
2m

The t-limit gives a recipe to compute the inverse fourier transform.

where we have set e(k) = eo(k) — /j, = ^
—

/' The right hand side of (1.27) is a distribution.
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Because we introduce an UV cutoff, this will turn out to be irrelevant in all computa¬

tions done below, so we do not write it anymore. Similarly

8

D(k) = D(k0-uj(k)) =-.- I drc'A'07 (TT<£(k,T)<7H-k,0))o (1-28)

b

-

^\. (129)

~

ki + cj(ky
[1-ZJ)

C(k) and D(k) are called the free propagators.

At this point it is possible to proceed by expanding the exponent in (f .23) as a (formal)

power scries in q. This gives a power scries expansion for the 2-point functions. They obviously

start with the free propagators. In the higher order terms temperature ordered products of

multiple fields appear in (-)o. These ensemble averages of temperature ordered products arc

then expanded (in the thermodynamic limit) in sums of integrals over the free propagators

using a theorem by Wick and Matsubara. See [AGD75. Mah81, FW71]. Rather than this

'operator formalism' wc will follow an approach using functional integrals. This is done mostly

because it allows an easier formulation of the renormalization procedure, which is necessary

to remove infrared divergences in the expansion of the operator above.

1.1.3 Functional integrals

Some notation

The frequency sums are written as (for a function f(.r) of the fermionic frequency x)

b

°'n
-— ,'K

d3l(r) =

T X, /(7](2« + l)) (1.30)
lit»

This notation emphasizes our interest in the zero temperature limit, ß —> oo where

9C CO

j d/8r/(r)—> J dr/'(r) (1.31)

—oo --co

At, this point we will take the thermodynamic limit, i.e. T —> oo. In the infinite volume

limit the Fourier sums are replaced by integrals

1

yy«k>-/'Jy/(k)r
, ..,,--, , ,„ w., ,~~, (1.32)
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In a more rigorous introduction of the functional integrals one should keep the volume finite

and also discretize coordinate space. However we choose not to do so here because it for our

purposes it suffices to introduce them formally and simply assume their algebraic properties.

Generating functional

The main observation of the functional integral approach is to observe that the trace in the

definition of expectation value can be evaluated using the following functional integrals. The

grand canonical partition function is given by the Fcynman-Kac formula

Z= fdpc(^^m<D(<f>)e-9Vo (1.33)

Here dßc and dpu are Gaussian "measures". Here the term measure is used looselv because

for the fermions the "integral with respect to dp,c is simply a notation for a linear functional

that has properties similar to integration. Formally they aie given by

dßci^ip) = Y[di/){k)]l(\<${p)e-$ c~léî (1.34)
A. P

dpD(ß) = Y[d<P(k)e-l^D~1^ (1.35)

with C and D the ftee propagators given by (1-24) and (1.28)

Here the anticommuting (Grassmannian/fcrmionic) functions ß[> and xb and the com¬

muting (bosonic) field ß take the role of the field operators ^ .-é and <j> of (1.18). The quadratic

parts of the Hamiltonian, i.e. the free theory, have been absorbed in the measures. Vo repre¬

sents the interaction. For our model it is given by

d/jgo f dq I dßpp I _dp
2tt J (2tt)(/ ,/ 2tt ,/ (27

W, «M) = / ^ / tS / ^ / iB-AMb - M(-p) (!-37)

or equivalently

Vo(VmM)

_

f dßqo f dq /' dßp0 f dp f dßk0 f dk

2?r / (27r)d J 2tt J (2n)a J 2ix J (27r)a

For a function 0(iß. ij), ß) of the fields, the expectation value is given by

<0) = [dpc($^p)dpD((t>KgVo0^.i>,e) (1.39)
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Notice the correspondence with the interaction representation. However the time ordering

operator that was contained in (1.23) is missing. This is one of the main advantages of this

formulation of the theory.

These formula's are proven bv expanding the exponentials in the trace using Trotter's

product formula. The operator fields turn into functions by projecting them on states. To give

a rigorous proof and showing that the measures exist requires more care (such as discretizing

the theory and being careful about when to take the continuum limit). We refer to [Sim79,

Sal99] for the proof.

For our purposes it will be sufficient to sec that the 'characteristic functions' of the

gaussian measures are given by

fdilcßß.ip)(^")L(r^ ^e'^c^ (1.40)

/d//D(c))c(/l,^e^/D/) (J .41)

The fermionic fields £. ( and the bosonic field .7 are called source fields. In particular we see

t hat

(Hh)-é(k2))\q=0 ~~ fdL,cé(h)r(h2) (1.42)

,/ àÇ(lï) öt,(k2)st(h)saM)

-6 <)

àç(kï) f^Ch)
'

£-=£=0

(1.43)

(1.44)

^C(k1)S(ll - k2) (1.45)

Thus the covariances C and D aie indeed exactly the free propagators given above.

The same argument gives that for

Z(£6 /) - / d/7(.(r. J •)dl,p(m)c~(sVne^^+^ 0+(>tf) (L46)

the functional Z(£, (. J)/Z(0. 0. 0) is the generating function for expectation values of poly¬

nomials of £(Ä',)'s, £(kß\. and J(k,)'s. It therefore contains all the properties of the model.

Note that Z(0,0.0) - Z.
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Feynman graphs

Z(Ç,Ç, J) is evaluated by expanding e~gV° as a formal power series in g using the technique

mentioned before. Formally

Z«-«-'')=E7!(-1;»((|.^.^))'/d''c».«dw(*)e««+'*«+^' (1-47)

= ££(-^4£>)'<lf-c0«1WD'> <^>
/ =0

Evaluating the derivatives of the exponentials on the right of (1.48) requires some book

keeping and combinatorics. This is done by means of Feynman graphs. The idea is to represent

each of the r factors Vo with a vertex with three attached lines; Because V'o is given by (1.38)

each type of derivative occurs once and is represented by a line attached to the vertex.

As the derivatives act on the exponentials a natural pairing is made between vertices.

Taking a derivative ^ produces a factor C(k)Ç(k). When a derivate with respect to £ from

another vertex hits this factor, draw an arrow between the two and associate a factor C(k)

with the line. Do the same for derivatives with respect to J but draw a wavy line and

associate a phonon propagator D with it. Some lines can remain unconnected and for each

such line there is a factor DJ, Ci}, or Ci[>. The vertices to which these lines belong are called

external vertices. The product of the derivatives can now be expanded into a sum of the terms

corresponding to graphs where the sum is taken over all graphs. Each such term will be a

monomial in the source fields. The type of the monomial corresponding to a graph G is given

by the external lines of the graph G. The coefficient of a monomial £(k\)... J(kn) is of the

form Val(G)(ki.... ,kn-])ö(ki -\ \-kn). The function Val(G) is called the value ofG. The

beauty of this method is that Val(G) can be constructed from G using a simple recipe called

the Feynman rules. For details see for instance [Sal99].

It turns out that the effective action

G((.(,J,-gV) =log I dnc(iß,i>)dfiD(e)e-s^+^+^+J) (1 49)
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is a more convenient object to study. After a shift in the integration variables and using the

fact that the integrals are Gaussian

G(Ç.Ç, J, -gVo) = ~(l,C-J0 - \(JJTlJ) + logZ(C-%C-lÇ, D~lJ) (1.50)

G is the generating functional for the amputated connected Green's functions. The term

'amputated' comes from the fact that taking derivatives with respect to the source fields

produces factors C^[(kß and D~~l(k\). These cancel the pre-factors from the DJ, Cß, and

Cip that belonged to the external lines. The term 'connected' comes from the fact that there

is also a Feynman graph expansion for 67 but where only connected graphs occur[Sal99].

To be precise

G(££.J,-9Vo)-

E^E E/ R ^£pIKwcöw*.)
2mp^mB 2mpJrmB

il J(Pn)S( E Pn)G, Wr,mB(Pl,---,P2ml+mB^v) U^)

n-lmp Lt n
— \

where

G, mi mB
= Y, Vfll(6") (L52)

G^QJi mp mp)

with Qc(r, mp,mp) the set of all connected graphs v ith ? vertices with a pair of fermion lines

and a boson line attached to if and with mj outgoing fermion lines, mp ingoing fernrion lines

and 77ib external phonon lines.

For each graph G, Val(G')(pi P2mr+mp-\) is defined bv

• Assign momenta p-j. ... pmr to the incoming Fermion lines, momenta —p„,r+i, ...

~-P2nn f° ihe outgoing Feimion lines and momenta p2mr+[, .. . p2mr+mB <o the ex¬

ternal phonon lines. p2mr vmB
= - Yln^'i^"'""1 Pu-

• Assign momenta to the internal lines picserving momentum at each vertex. This leaves

exactly L free momenta /] ... li, where L is the number of independent loops in G.

• To each Fermion line assign a propagator

C(l) - -^—i-—- with I - (/0,1). /0 e R 1 t lRf/ (1.53)
?<o

- e(l)
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The dispersion relation e(l) is given by e(l) = |1|2 - p. I is the momentum flowing in

the direction of the line.

To each boson line with momentum I attach a phonon propagator —D(lo,c\l\) where

D is given by

D(x,y) = -2V (1.54)
xL + yÂ

The dispersion relation c|l| is that given in section 1.1.1.

Take the product of all the propagators and integrate over all ly ... lp, with

fdßln,o f dln

J 2tt J (2p)d

Add an overall sign factor {-l)r+* Fermion Lo°ps in G.

(1.55)

As example, we compute G^n(p,—(p — q)). There is only one graph in Qc(3,1,1),

namely

Its value according to the Feynman rules is

CO

/ d^o fd\C(l)C(l - q)D(lQ -

po, c|l - p|) (1.56)

-00

1.1.4 Strong coupling theory

The need for non-pcrturbative treatment

In 'perturbation theory' one would naively expect that H\ui only gives small corrections

to the solvable theory defined by Ho- In our case we expand around the free field theory.

The perturbation is given by —gVo. The coupling parameter g determines the size of the

perturbation.

In Quantum Electrodynamics, which is a relativistic field theory with much the same

structure as the theory we consider here, the relevant coupling parameter is indeed small[IZ85].

Good approximations are found by breaking off the expansion (1.51) at small orders of g.
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However in Electron-Phonon theory we are not in such a fortunate situation. The

coupling parameter g is of order 1 and we cannot simply cut off the series (1.51). Thus we

must consider the theory non-perturbatively. This is generally too hard to do. However Migdal

[Mig58] (for 71 =- 0) and Eliashberg [Eli61] (for T / 0) found an approximation to the theory

not based on perturbation theory that we will consider now [Hol64, AGD75].

Proper Green's functions

We change our viewpoint again by considering the generating function for the proper or

one-paiticle irreducible Feynman diagrams. A graph is called one-particle irreducible (1PI)

if cutting any of its lines docs not make the giaph disconnected, ft is possible to define this

generating function diagrammatically. However the proper way to do so is by means of a

Legcndrc transformation[IZ85].

Consider the generating functional for the connected diagrams

Gc(C,C.J)^lo<>z(()l0Q)Z(ß.t,J) (1.57)

Write J — (s1,.!;, J). Define functions

m J) = jß^G, i(„ J) = ---J- G< «M) = ^ (1.58)

Assume that these relations can be inverted to give J - J(k. T) with \L> =- (ß),ß), J). Then the

generating functional for the proper Grecu\ functions is defined by

T(ß. ß.J) = Gc(r,Ç,J) - (r. iß - (o.() - (V/)|J=J(M0 (1.59)

Using the definitions (1.58) and the chain rule for functional derivatives we see that

ÔV
-J(kA>) ~-^

Ç(A-.T)
-=£--..^0,) (1.60)

àè(k)
v '

öi'ßk)
v

'

;

<hh(k)

The Generating functionals can be expanded as a formal power series

V
' n-i.

I;
Lmj2mp->inB

Il J0>n)fH E PnWmr,,nn(Pi,---,P2mr+mB-l) (161)

mp mB
'

n = \ v n=-l

2mi
-mB2mp-'inB

n=2mp ' I 71
— 1
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The functions ^mF,mB arG called the n-point functions of the theory, ^iß(k) = &(k) and

%,2(k) = &(k) are the full propagators of the theory and coincide with those from (1.16) and

(1.17). As stated before, the object of the calculations is to compute those two functions.

Similarly

„ 2mj7+mrj . . mp

mp mB n=l
^ '

?i=l

2mp+mB 2mp+mB

II ß{Pn)S( Yl Pn)FmF,mB(PU---,P2mF+mB-l) (1-62)

ln.=2mp + l 7i=l

To see that the Legendre transform does indeed generate the 1PI graphs, we compute

some of the lower order terms. Taking the derivative of the middle equation of (1.58) with

respect to ß(p), we get

^-p) = -mmGc (L63)

WP)öakrc,Sip(p)J
( j

using (1.60) this gives

where we used that the only nonvanishing second order derivatives of Gc are T7j^jrh)Gc and

IJ(p)öJ(fßGc- Setting J = tf = 0 gives.

S(k - p) = S(k - p)&lfi(h)Tlfi{k) (1.66)

and thus Plj0(A:) = Sf(fc)^1. Similarly P0,i(fc) = %,2(k)~[ = V(ky{.

Taking the derivative of (1.65) with respect to ß(q) gives

\\6J(l) Ô&) 6Z(k) Tc'oÇ(p)6Ç(k) ),Sß(q)J

,(J> zLc A { __±.v\
nm

\SC(p)ö£(k)
n

5ß(q) 07ß(p) ößßk) )
K' '

Using (1.60) and setting J = ^ = 0, we get

#i,o(fc)ri.iO, k)5(P + k + q)= c$n(p, k)S(p + k + q)YXo(p)V2o(q) (1.68)
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Substituting p —» —p gives

TiA-P,P-<Ù = ^ii(-P,P-'7)^(p-<7)~1âf(-p)"1^(?)-1 (1-69)

The function Pi,i is called the proper vertex correction. Its lowest order term in g is simply

the vertex factor g. Inspection shows that multiplying with the inverse full propagator takes

out exactly those strings of CS\ \ that make it 1-particle reducible. Thus P^ indeed expands

into IPI diagrams. If we represent the full propagators by thick lines and coefficients of P by-

filled blobs then this can be represented diagrammatically by

Schwingel'-Dyson cquations

There exists a set of integral equations relating Cf}mn and Tpq. These were discovered by

Schwinger and Dyson. These non-pcrturbative relations contain all the physics of the model.

On a functional integral level they can be seen as resulting from the fact that it is possible

to do integration by parts (without boundary terms) in the functional integral. In fact this

property is one of the main reasons a functional integral approach is natural to the problem.

We derive the equations for the Electron-Phonon model analogous to [IZ85]. For derivations

in the operator formalism see [Mah81. AGD75).

By integration by parts we have

0 - Idpc I dpD (-gJL-v(k) - C-ßk)o(k) + ((Iß) p--5Voe(cT«+KO+(J,f*) (L70)

^M"^^ (1.71)

where we have written Jdl for fLj^T0zi. The - C~~] (k)è(k) comes from the measure. For¬

mally it can be seen to arise from the derivative of the Gaussian weight function. Using

Z - ec" we get

«*, -= „ [^j^^U, - /, + /0 + C-W|| ,,.72)

Taking the derivative with respect to £(?) on both sides gives

C(*W - 0 = -SC(« JMfApjß- dL-± GA, + *' + rt - g, 4-0. (1.73)
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Setting the source fields zero we see

&(k)5(k - I) = C(k)S(k - I) + gC(k) Jdqjdp&n(p, k)ô(q + k+p)ö(k - I) + J^^GC
(1.74)

And using (1.68) we thus see

9(k)=-.C(k)+gC(k) [^ f7%^(p)^(^p-k)Tll(p,kW(k) (1.75)
2tt J (2p)c

A similar calculation shows that

9(k)=D(k)+gD(k) I ^ t1%i^(p)^(p^k)Vn(-P,p-k)9(k) (1.76)
2tt ./ (2vr)(/

Graphically these can be represented as

+

Note that these graphs arc not amputated.

The Migdal-Eliashherg approximation

The Schwinger-Dyson equations form two coupled integral equations for <3 and D. Unfor¬

tunately the integrals there also contain a vertex correction. This makes them very hard to

solve. The vertex correction must itself be expanded. Moreover the self-consistent expansion

of Pu in terms of <S, ^ and Pu contains infinitely many terms.

Migdal observed that there is another parameter (besides g) in the theory that is small.

He observed that

Approximation 1 (Migdal-Eliashberg). When c/vp is small then the corrections to the

vertex beyond the zeroth-order term are also small, i.e., we can replace T\\ by its zeroth-order

term g.

The purpose of this thesis is to find rigorous justifications for this approximation.

Migdal's original justification (known as "Migdal's Theorem") and our results are discussed

in section 1.3.
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Eliashberg equations

In the Migdal-Eliashberg approximation the Dyson equations become

Sf(fc) ---C(k) + gC(k) j^ J-^y<f(p)<0(-p - kym (1.77)

9{k) = D(k)+gD(k) j^l j^^(p)^[p -k)(~p,p-k)®(k) (1.78)

These eciuations are called the Eliashbcrg Equations. They are sufficiently simply to make

solving them possible [AGD75. Mig58. E1Ï61].

1.2 Cutoffs, renormalization and finite temperature

1.2.1 An ultra-violet cutoff

Apart from the problems in summing up the perturbation theory expansions in g discussed

above, there is the question whether the coefficient functions Gr>mj,/rnF are actually well

defined.

One problem that, can occur is that the functions to be integrated don't decay quickly

enough for the integrals to converge. Because large momenta correspond to high energies,

this is called the ultra-violet problem. It can be ^hown that such problems can be eliminated

[FT90].

However in models of solid-state phvsies the physical properties arise from the low

energy behavior. The high-energy behaviors is not so interesting. Therefore we assume that

in the theory there is a 'cut off such that all vector momenta occurring are in a compact set

Ü C Bd, defined to be the ball of radius A/2 around the origin, for some A > 7. With this

particular choice of f>. |1 — p| < A for all 1. p e il.

When dealing with higher order graphs we will use a tighter restriction on the elec¬

tron momenta that contains the region where the electron propagator is singular. The scale

decomposition method used there gives a natural form such a restriction. The region where

electron-propagator is bounded gives a trivial A dependent contribution.
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1.2.2 The Infrared divergences and finite temperature

Divergences in the zero temperature limit

From the construction of the graphs it easy to see that it possible that there exist subgraphs

that are chains of IP I 2-legged graphs connected by electron lines, i.e.

By conservation of momentum, all the fermion lines have the same momentum p attached to

them. This gives rise to a factor

f

c(pT = (1.79)
(ipo - e(p))n

in the integrand for the value of the graph, for some n. fn the zero temperature limit the

frequencies are continuous and the factor becomes singular for po = 0, p : e(p) = 0. This

singularity is not integrable for n big enough. In fact already for n = 2 the integral is not

absolutely convergent (see (2.3)). Note that the singularity occurs on a submanifold of codi-

mension 1 in R x fi C JRrf+1 and thus the superficial degree divergence does not depends on

the dimensionality of the problem.

Thus the coefficients G
rrnprriB

arc ill-defined in the limit ß = oo. This is called an

infrared-divergence (because it occurs at low energies).

Finite temperature as a regulator

It is possible to eliminate the divergences as in the ultraviolet case by introducing a cutoff for

the frequency, the momentum, or both that keeps the values away from the singularity. One

would then have to show that the quantities that are computed exist in the limit where the

cut-off is removed and computation of the quantities and the removal of the cut-off can be

interchanged.

However note that at finite ß, the electron propagators are bounded: The frequencies

po are of the form po = | (2n + 1), and thus

ipo - e(p)
< <2
NI TT

(1.80)
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In section 1.4.1 it is shown that similarly the phonon propagator or more importantly its

derivatives are also bounded at finite ß. This means that all integrals/frequency sums are

absolutely convergent when 6 < oo. Finite temperature acts as a natural regulator. The

absolute convergence of the integrals is also very convenient as we can exchange integrations

at will.

1.2.3 Renormalization

The need for renormalization

Unfortunately the coefficients of the perturbation expansion being finite at finite temperature

does not mean that all is well. Although finite.the bounds are not uniform iu ß and diverge

as ß —> oo. However we want to achieve uniform bounds (at least in the small temperature

region) for the n-point functions and in paiticular foi the vertex correction.

The self-energy

As shown in section 1.1.4 P[q - °f~l. The zeroth orclci value approximation to the right

hand side is just C^1, Define the contributions to Pio(p) bevond zeroth order as —E(p) —

Pio(p) — C(p)~]. E(p) is called the self energv. because the full propagator is now given by

Wo
- c(p) - E(p)

The divergences arc artificial

It is now a standard argument to see that the divergences are in fact artificial and result from

the fact that we have been expanding around the wrong thcory[FST96, Sal99]. Indeed when

expanding (1.81) around the free piopagator we get

^°
v I n) '

<Û(p) "= V —-^L'---. (1.82)

which gives the unwanted powers of the free propagator with non-iutegrable singularities at

Po = e(p) — 0. Note however that the left hand side is singular for po
— e(p) + E(p) = 0.

Thus switching on the hiteiaction moves the singularitv. ft is the fact that we try to expand

a singular function around a function with a singularity somewhere else that produces the

problem.
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The counterterm

One solution would be to expand around ipo — e(p) — S(p), for <ê that means not to ex¬

pand at all. This is what happens in the Dyson-equation formulation above. However this

fundamentally changes the formulation of the model as E(p) depends on the frequency po-

Therefore we introduce a function K(p), such that e(p) + K(p) has the same zero set

as e(p) + E(0, p). This function is called the counterterm. We show that the expansion around

e(p) + K(p) does produce finite coefficients. This procedure is called Renormalization.

To complete the analysis one should find a function e(p) such that e(p) + K(p) gives

the physical band relation. This is in general a hard problem [FSTOO. FST98, FST99, FT91].

We shall not consider it here. Note however that by 0(d) symmetry, both e is really ouly a

function of the one variable |p| and K can be chose such that it is too. Thus the problem is

already much simpler in our case, where we do indeed define K in such a way. Our definition

for K is given in (3.55). It contains an additional linear term UqK' where K' is a constant. It

amounts to multiplying the propagator with a constant factor (f + K')~l which can be seen

as the result of scaling the fermion fields by (1 + K')~ï.

1.3 Migdal's theorem and variants

1.3.1 Fixing units and notations

Electronic units

A common choice of units when working with the electron model are the so called electronic

units. These units are chosen such that

• The electron mass m = ~.

• The Fermi wave vector kp is 1.

The Fermi velocity kp is defined such that for |k| = kp, e(k) = 0. Thus it follows that in

these units p = ißß and the band relation becomes e(p) = |p|2 — 1.

A smooth cut-off function

Through this text we will need smooth cut-off functions and partitions of unity. Most of these

will be formulated in terms of the following
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Let x ' [0> °°) -* [0, 1], ?' = 0,1 be a smooth (7°°-ftmction such that

(1.83)

and

\'(x)<0 V,K(-d) (1.84)

Miscellaneous nota tion

By i(Y(x)) for some condition Y(x) we denote the indicator function for the set of cr's for

which r(.c) is true.

The following C^'-norms and restricted forms thereof are used throughout the text:

For a ("/-dimensional multi-index o. Da f(p) — -yßr • •

,
"4r/"(Pr> • • ->Pd)- ^or -^ ^ ^ open,

-M * d

f gC"(A".C) aiuH >0.

\f\n,X -SUP J2 \D°f(PM U'85)
p£"v s

|/i« = U'lno (1.86)

Denote the «-dimensional measure of of an n-dimensional manifold A" by Vol(A").

1.3.2 Pertubative expansion for the vertex correction

Consider the proper vertex correction T(p.q) — lß\( -p,p
- cj) in the electron-phonon model

in (/-dimensions as described above. Let 3 be finite. Restiict all vector momenta to be in a

compact set Ct as an ultraviolet cut-off. The electron propagator is thus given by

C(l) = -, —TTr
with / = (/0.1), /o R, 1 e Q (1.87)

7'0 — C(ij

The dispersion r'elation e(l) is given by that for the Jellium model. e(l) = |1|2 - t. The phonon

propagator is D(/o-r|l]) where D is given by

D(x. ,j) = -JJ~ (1.88)
a- -f- y-

The coupling constant is given by q.



30 Introduction

Expand P(p, q) as a formal power series in g.

CO

T(p,q) = J2rr(p,q)gr (1.89)
r=l

From the topical properties of graphs it follows that Tr(p,q) = 0 for r / 1 + 2L where

L G N U {0} is the loop order. Pi (p, q) = g is the coupling constant attached to a simple

vertex.

1.3.3 Migal's original statement

First order diagrams

With the definitions given above, the Migdal-Eliashberg approximation discussed in sec¬

tion 1.1.4 is that replacing P by its leading order term F\ = g gives only a small error.

In his paper Migdal made the following claims to support that approximation. These (and

their extension to non-zero temperature) are commonly referred to as 'Migdal's theorem'.

Ts(p,cj) is given by

CO

T3(p,q)= J dpkj dlC(l)C(l-q)D(l0-po,c\l-p\) (1.90)

—oo n

In our notation the claims are

Claim 1 ([Mig58, FW71]). Let d = 3. At T = 0 the lowest order correction to T « P1;

Tz(p,q), is of order c except for som,e unphysical values of q.

Migdal gives for the unphysical condition q as 2, qo. In [FW71] the unphysical condition

is given by \qo\ = 2|q|, the factor 2 comes from the derivative of e(l) = r2 — 1 with respect

to r = |1| at the Fermi surface. Note that the claim the was originally formulated in the zero

temperature Green function formalism.

The above result is often extended to hold at non-zero temperature

Claim 2 ([EH61, Hol64, AGD75]). Let d = 3. At positive temperature the lotuest order

correction to P « Ti. T^(p,q), is of order c except for some unphysical values of q.

Again the different authors disagree on the exact nature of the unphysical region.

Both [Hol64, FW71] argue that even in the unphysical region there is a logarithmic in

the zero temperature limit and that logarithmic divergences do not cause problems because
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they are integrated over. However although the presence of an additional logarithmic diver¬

gence does not change integrability it can dramatically change the value. To us this therefore

does not seem a fruitful approach.

Note that Claim 2 clearly does not hold as stated. Because of (1.97) and (1.96), each

frequency sum contains one term that docs not depend on c at all and thus does not vanish

at c — 0. In Theorem 2 we prove the claim (accounting for this problem) and extend it all

dimensions d ß_ 2. The only values that gi\-e problems will be for |q| « 2.

Higher order terms

In addition to the calculations done for the first correction and the claims above there is the

following much stronger claim [Mig58, Eli6L Hol64. FW71, AGD75], which we cite in the

form stated by Migdal

Claim 3. It can be shown that [the bounds from the above claims are] not changed wheri

diagrams of a higher order are taken into account [and therefore P = g + 0(c)].

To our knowledge a proof of this claim never appeared in the literature. Most authors

suffice to discuss the one-loop correction and cite the above sentence by Migdal.

In this thesis we do prove a bound for the higher order corrections (Theorem 3), but

this bound is slightly weaker (mainly for technical reasons).

Using "MigdaVs theorem" to validate the approximation

In ordinary metals the A-elocity of sound relative to the fermi-velocity, c/vp, is proportional

t° \i£r~~i or equivalentlv to ojp/ep. This ratio is therefore much smaller than one. Any
\f "''ion

correction which is of order c/vp (remember that vp — 1 in our units) is therefore indeed

small. Note that in typical metals c is on the order of f0] m/s and vp on the order of LO6 tn/h,

which means that c/vp » 10 !.

1.3.4 The theorems proven in this work

Theorem 2 (Migdal's 'Theorem' to 1-loop order). Let d > 2. Let nt - ~. Let e(l) =

|/|2 - 1. There exist, constants M~" SP. Miemp. and Mfemp. such that for all, ß, all p = (po,p) fc
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'I + flß X Ü and all q = (q0,q) 6^Zx!l with |q| < Kt:

\T3(p,q)\<cM*+Mtemp^ (1.91)

Moreover for d = 3 and |q| > kj

|r3(p,9)| < c(logc)2M* +Mtemp^p^ (1.92)

The theorem is proven in Chapter 2 and Appendix A. M* = max{A/s,M5} where Ms

and Mg are given explicitly in Lemma 15 and Lemma 12 respectively.

We also prove a rigorous bound for the vertex correction to all orders of perturbation

theory. However we don't prove the 0(c) bound that Migdal conjectured, but the following

slightly weaker bound.

Theorem 3. Let d > 2. Consider the proper vertex correction T(p, q) in renormalized electron-

phonon theory with d-dimensions and with all vector m,omenta in Q. Let the free electron

propagator C(l) be given as above and, let the free phonon propagator be given by

r>(Zo,c|l|)A-rf(l) (1.93)

with Xd = 1 for d > 3 and X2 a smooth function with X2 < 1 and, for p G stippX2, |p| < 1.

Let Tr(p,q) be given by the formal power series expansion (1.89).

Let 0 < e < 1. Then, there exist constants {Mr(e)}£L2 such that for all ß > 1, all

p = (po,p) G (| + 2f7L) x Ü, all q = (q0, q) G '^fE x Q with q G suppXd, and all r > 2:

'.!_£
,

/(log/J + l)^1-6'
|rr(p,g)| < Mr(e) I cL~c + ^-^^-J

(1.94)

The exact definition of the renormalized theory is given in section 3.4.2. definition 22.

In the theorem one-loop case we saw that values of |q| which are close to two are

problematic. This is because for bubble diagrams which have a net transfer of momentum q

the integral for the value contains singularities on nearly touching Fermi surfaces. Therefore

for such q a result which contains c up to at most logarithmic factors could only be obtained

for d > 3. This will be discussed in more detail later. The restriction q G suppA*2 for d — 2

is there to ensure that this problematic case does not occur here. Note that when the vertex

correction Y(p,q) occurs in values of graphs or in the Dyson equations it always multiplied

with a phonon propagator D(q). Thus q only takes values in the support of D. With D given
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by the special form (1.93) this means that q will always be in sup Xd and thus this restriction

is a valid one.

As we shall see, the latter theorem depends much more strongly on the special choice of

the jellium band relation e(l) = jl|2 — 1 than the former. Both use the special form to simplify

considerations on the geometiy of the Fermi surfaces such as Lemma 5 and Lemma 34. How¬

ever these either already have been shown to generalize to much more general band relations

([FST98, FSTOO, FST96]) or are not expected to give significant problems. However in the

higher order diagrams we use the 0(d) symmetry of the problem to simplify greatly the treat¬

ment of strings of 2-particle insertions. Extending the theorem to non 0(d) symmetric band

relations will therefore require additional ways to bound contributions with those insertions.

1.4 Basic properties of the model

1.4.1 Properties of the phonon propagator

Basic properties

The proof of Theorems 2 and 3 bases on the pioperfies of the boson propagator D(/o,ejk|).

I drD(pij) -- k\v\ (1.95)

For frequency sums at finite 8

AijrDh. u) = § E ^(r»>y) ^ /TM +
t (°6)

Here r„ — 'ßßn are the boson Matsubara-fiequencies. To separate the two terms on the right

hand side, split up D as

D(i..y) = dl0 r-D*(v.y) (1.97)

-ß—t w hen x -ß 0

lT(r.y) = D(uißl(i ß0)= {
' TV"

(1.98)
0 for t = 0

Because we have cut r = 0 explicitIv we have for frequency sums over ZT:

Ap.rD^t.y) - '=jY,ir(*n-<l) ^ tM (1-99)
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Proof. The function D(x, y) is a decreasing function of x for x > 0. Therefore for each n > 0

the its minimum on the interval [xn-i,xn] is D(xn,y) and Jßnez ^(xn,y) is a Riemannian

undersum for the integral f/f0 dxD(x, y). Similarly ]CnZ_ D(xn,y) is a Riemannian undersum

for the integral / dxD(x, y). Because D(0,y) = 1 and D*(0.y) = 0, the n — 0 term gives

the remaining term (zero for the latter). D

The derivatives of D have the following properties.

\Dy(x,y)\ =

Dyy(x,y)\

dy

d2

dy

D(x,y)

2D(r,y) <

2D*(x,y)

\y\

8D*{x,y)

(1 fOO)

(1.101)

Note that in particular this implies that for x = in discrete bosonic Matsubara-frequcncies

the derivatives arc bounded since ï^O implies |x| > -# and y Dx(x,ij) = (x + if) .

Integrability oi denvativcs

The properties of D and its derivative lead to the following bounds which will be used through¬

out the proofs.

Lemma 4. Let D defined as above, Let p G Q and po G 5(2Z + 1) a fermionic Matsubara

frequency. Let fcR" and X C Û Let J : X —> R be a strictly positive C2 function. Let the

map

l: Y —> X

(1 102)

ù/i, • -Vn) '—> i(yi--..,y«)

be twice continuously different able. Let v = sup,^ i2Mey|l — p|- Then for all i, j = \..n and

finite ß

»;
co

j ^J(l)D*(lo-Po, c|l - p|) < ci J(l)|l - p| < c\v\ J|oy (1.103)

«J

%
(J(l)I>*(Zo-po,dl-p|)) < oo

anr/

dßlp
2tt

A
%

(J(l)I>*(Zo-po.c|l-p|)) < cu\J\ i,x
91

%
(1.104)
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Hi)

JLJL
dy, 0y1

(J(i)D*(l0-p0,c\\~p\)) < CO (1.10E

and

dnlß'O

2tt dy, dy.
(J(l)D"(/0-po.c|l-p|))

J\u
ll-pl

cPl

diydy-i
+ 6|J|2A'

dl

dy,

dl

dy1
(1.106)

Proof. The proof is a straightforward application of the chain rule and the properties of D.

We show iii only. For a function / (I) denote bv f" the matrix with -^- ~~- as its matrix element

on row i and column p Then

and

jLJLf ^

jL (i2L.JH\
=

dJ d~l
(("—) —

dy,dy, dyt \ dl dy-, J dl ~dy,ày1 dy, dy1

11
-

inax|?rr7Tr(J(l)D(/() -p0.c\\ -pi))| ^ 12| Jl,—L-nB'-(la -p0, c|l - p|)
7 ?

1 dh 01
7 ">7

1 pp-

because

(1.107)

T.I 08)

Z

D(l0.c\l\) -- ~

,

/2 J- 7

r> Z k\_ _Z__
dZkl$+ Z

> 'zTx1~+Z

()
2m2 o 2,, ,

d d
2 „ 2

jrpc 1 ^ 2c M
—-—c-lh>c-25?7

d/! öl
j dlj

'

(1.109)

T.HO)

4.111)

This and a similar calculation for the first half of eqn. (1.107) implies that the integrand

is bounded at finite fl because

1
m/i H [W 2 ^0 -Po) "Z 0 C2

-r^D (lo~
po-

ql
-

pi)
< f TT

—

r: <•

Il-Pi2
VU 1U ' "'"

(/o PoP + r2!!- p\>- (f)2

and gives the required inequality.

(1.112)

D

Phonon propagators in Feynman Diagrams

The integrability propetiies of the phonon propagator and its derivatives lead to bounds for

integrals that contain them. They are used diiectlv in Chapter 2. In section 4 their effect is

calculated in terms of scale decomposition.
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1.4.2 Coordinates and Fermi Surfaces

Polar coordinates

In any discussion of a physical theory involving Fermions, the level surfaces of the band

relation e(l) plays an important role. Because of the Pauli principle no two Fermions can

occupy the same state. Therefore even if all particles occupy the lowest possible energy levels,

there will still be a finite volume of states filled. The boundary of this volume is called the

Fermi Surface S. The level at which this occurs is determined by the chemical potential p. As

we have absorbed /; into the definition of the band relation, this level will always be 0. Thus,

S = S(0) where S(p) = {l|e(l) = p}.

Typically the essential behavior of the model is determined by its properties close to

the Fermi surface and our case is no different. Therefore we introduce some notation for this

region

U(S,q,V) = {l\\e(l-q)\<v} (1-H3)

U(S,ri) =U(S, 0,7]) (1.114)

and similar to (1.85))

\f\n,S = l/ln.(/(5,5) (1.115)

|/U,<J.q= \f\n,U(S,5)nU(S.q,5) (1.116)

One of the techniques that is used often here and elsewhere is that in this region there exists

a natural set of coordinates. These are a generalization of polar coordinates, where the radius

is replaced by the energy e(l) and role of the angular variable is played by a projection on the

Fermi Surface. In [FST96] existence of such coordinates is proven under very weak conditions

on the band relation e(l). In fact is shown there that this change of coordinates can be taken

to be C00 even if the differentiability of e(l) is much lower.

In our case e(l) = |1|2 - 1, and thus the Fermi Surface is a sphere and e(l) is smooth in

its neighborhood. The existence of the coordinates (stated in the following Lemma) is then

trivial, because the standard polar coordinates can be used. The main purpose of the lemma

is therefore to fix notation.

Lemma 5. Let e(l) = |1|2 — 1. For S = ~ and rmm = |
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i) S(p) = {1 G Rrf|c(l) — 7]} is a sphere, hence a strictly convex C°° manifold, for all

\n\ < S, and

n) U(S,S) C {p G fi|||p| > i ,mn} and

m) Phere eut h an inveihble C'k map 4>o

*o U(S,b) —> (-6ö)s.Si-i
(1 l\i)

1 r ^> (p -- e(l) 6)

Denote iv(p,6) - *cT1(/9 0)

in) Let Ji(p 0) — I\(tt(p 9)) be the lacobian of the chanqe of coordinates 1 = Ti(p,0)

(Note Jj (p) is a function from L (S à) to IR | ) Then

Ui|o>- Ai f W'-2 |/i|i5<f (H à)d ?
(1118)

2

U'-2 I / li

^
,_, , . i, .

1

|7l'2 5^-0-(1^^ I7! ^ <
1-2 (1Uq)

~"

77)777

Remark 6. Un restiufion à ^ /s /or communie ft ensures that the function

f 7 ?/

Log(/r + y) — - lo_,( r
^

y ) \ ? arc tan (1120)
2 i

sasisfies for 111 <- \ and \ij\ < à -^ e_

|Tog(?i 4- y)| < |log|y|| h -s2|log|y|| (1121)

Proof Let

P 1T; —> PC x S^1
(1 122)

I r- v (, 0)

be the polai coordmatc map P~[(i 0) — ? 0 Then c(i 0) — /
2

t — p(? ) Let ? (p) — yT + p

be its mveise \\e thus ha\e S(iß — {? (?/)(?'(9 G b^""1} ~ S'f/~1 The ongm is inside Sßß foi

all 11] j < ci

On t (S <•)), \p(i)\ ^~ \ and thus i(p) ^ Jl ~ \ ß imm Moieov „
Mp) _ __L

er

J „ i

3p 2vT+p

iP(rt -

'

Lot j be the map (i 0) >-v (p(r) 6) then

Tn - f P (1 123)
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is C°° because / and P are.

Ji(p,6) = IdetDP^1!
Or(p)

dp
=

2r
d-2

m = ^t2

The bounds for the Jacobian and its derivatives now follow trivially.

(1.124)

(1.125)

D

Corollary 7. From the construction of coordinates in the above lemma it follows that for

l G U(S, 8)

01

dp
< 1

08
<(l + 6)

02l

dp2
< 1

dJi

Op
< (d-2)(l + 5)

d-3
(1.126)

Transversa if ty and interpolating Fermi Surfaces

In the following it is often needed to deal with integrals where the integrand not only has

a singularity of on the Fermi surface S but also on a second translated Fermi Surface Sq =

{l|e(l — q) = 0}. If these two intersect transversally then we can use e(l — q), or oquivalcntly

c7(l,q)=e(l-q)-e(l) (1.127)

as a second coordinate besides p — e(l) and use the resulting double integral to control the

two singularities.

However maxies|rj(l, q)| < const |q| and thus it will not be possible to find bounds for

[7(1, q) and its derivatives that are uniformly bounded from below in q. This is caused by the

fact that for small q the two surfaces lie very close to another and thus the intersection angle

is very sharp.

In fact we can choose a ks such that for all |q| < ns, the shifted Fermi surface Sq is

completely contained in U(S, 6). This is shown in the following lemma. There it also shown

that for small q, the interpolating band relation defined as

e(l,q,i) = (l-t)e(l)+te(l-q) t G [0.1] (1.128)

has properties similar to that of e(l). In particular all intermediate Fermi surfaces S(t,q) =

{l|e(l, q, t) — 0} are indeed also contained in U(S, 5) and the coordinates (p,9) can be used

as "polar coordinates" around these surfaces too.
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Last but not least we show that foi q ^ 0 the îescaled diffeience function

0(1,q) - ^-(7(1 q) = ~Ml- q) e(l)) (I L29)
|q| |q|

can be used as cooidmate on at least part of S*(f q) {7(1 q) — 2|1|{ q thus the part the

dependence of U on the angle between q and 1 is essentiall-y quachatic when q and 1 are close

to paiallcl Howovct loi small q the mtei section nevci Iks m this region and U is umfoimlj

bounded from below there

The rase 'q| « 2 has to be rieated drileienth

Remark 8. Foi d> 3 there emsti a parametei ration

1 J

(1 130)
(9U0) ^> 9(9i 6) - (IOS0LSU1010)

0f gd-[ W)py ]iU0}rHm Jnnq— (sm0|)(l~2 bounded hi/ 1 and smooth for 0\ ^ {0,7t} Therefore

for notatwnal uniformity it is convenient to iitmd this to d — 2 and set S° — { — 1,1}

Moicoucr u t YoliS''-1) = 2 Ja„q - L and fst d0f(8) - IV11 f(9)

Lemma 9. Let e(l) jl|2 - 1 Let S <,
x

t\ =

j- r
h
=

l
q±
— \\[2, and q2 — t>o

— \

IJien Iheie east positive functions \5 \( y \( r- CMR') such that

M r\i 1 \,-v< "I (I 131)

and for all q G e\d with |q| v h,

0

5
VlCsuppy^ |c(l) ^;x and \e(l - q)| <^ -/1 (f 112)

VlCsuppxi |c(l)|^yi and |e(l-q)|>~/i (1133)

u) For all 1 t stipp\i\b q M 0 |L(1 q)j > //-> and the coordinate axes can be taken

sucli that on the support of \^\r, the tin C^ paiametonation of 5d~~l with anqles 9[,9

desenbed above is such that

^(4¥t 0)) q)\^rh (1134)

for all rt(p,0(9i 9)) G supp\3\ ,
Tht laeobum of the chanqe of coordinates to (9{,9)

is then given bi) J«„9(0i) and lonJ ^ 2 for 7t(p 6(0i 0)) g supp\3Yr>
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Hi)
dp

e(w(p,0),q,t) > r>o for ail t G [0, l],7r(p, 0) G suppx3-

Proof. Let U(l, q) = e(l — q) — e(l) and choose coordinates such that q = (q. 0,... . 0). Then

{7(1,q) = q2 — 2ql\. On the set where |e(l)| < 8 choose the polar coordinates (p,9) with

p = e(l) such that 9\ is the angle between q and ix(p,8). Write r(p) for the inverse relation

r(p) = yp+T. Then

U(p,9)=q(q~-2r(p)cos9l) (1.135)

Choose Xi = f — x( ( r ) ) Then on the support of y3

|e(l-q)| < |[7(bq)l + |e(l)| < r{ + '^\~+2rß < rx + -rx rri (1.136)

On the support of x i >

\e(l-qi)\>\e(ï)\-\U(l:q)\>-r1 (1.137)

For the second part of the lemma we work with the polar coordinates. We show that

although the difference between the two band relations, U, goes to zero with q. U. the rescaled

difference does not. Choose \§(l) = x(2(l - (I • q)2). That means that xeMp, #(#1, 0))) =

y(2(sin01)2).

In the polar coordinates we have U(p,9\) — q
- 2r(p) cos0i. On the support of X6X3:

cos0i > \sf% and thus

1
rr n 1

|P(p,0)| > |2r(p)cos0i| - k6 > |cos0t| - ks > -V3-
y^

> - = n2

Furthermore, on the support of X3X5- |sin0i| > ky/2 and thus

0
Ü(7T(p, 0(0!,0)),q)

09i
(q — 2r(p) cos 0i) = |2r(p) sin0i[ > yV2 = p\

So the coordinates from Remark 8 satisfy Proposition ii of the lemma.

(1.138)

(1.139)

Finally observe that

0 d

d
e(ir(p,9).q,t) = ^-{p + tq2 - 2tqr(p) cos8L)

= 1 -
tq cos 91

Vp+T

(1.140)
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and thus

Tr-e(Tr(p,9).q,t)
r\ I

6~2
(1.14P

and so proposition (iii) holds with vq
l

2
'

D

By inspecting the bounds above we see that some of them can be extended to much

larger values of q.

Corollary 10. Let Kt < 2yT — ry and q 7^ 0. then there exist constants 4T and £2 such that

for all, q 7^ 0 with |q| < h'4 and all 7v(p,9) G {'(6*. rf) such that \Ü(tt(p, 0), q)| < £2

Ac7(7r(p,0(0i.0)).q) Ci .142)

1.4.3 The basic argument for factors of c and why they are nontrivial to extract

Pairing with Ll functions

To see how the bounds in the theorems arise, and Avhere the problems lie, it, is instructive to

look at a few simpler cases. Let f be a measurable function on IR x Q, such that sup/0|/(/o, k)| G

Ll(Q). Let IT be defined as in(1.9S). Throughout this section p will be in (| + ?flß x Q as

in Theorem 2. Because D is increasing in its second argument:

dßlß'O

2k J
E Q

dlf(l0.l)Dk(lo^po,c\P-p\)
1

S c--A||sup/(Z0,-)lli
2 i0

(1.143)

where the L\ norm is over the region fi.

The one-loop self-energy

The aditional factors appearing irr the integral for the vertex-correction are propagators C(l),

which are singular for /q = c(l) -- 0. Thus when they appear as part of the function /, the

right-hand side of (1.143) is not bounded uniformly in ß. The problem in proving the theorem

is to control these singularities and show that they do not, change the qualitative behavior

of the integral. To show the methods used we first look at the problem with one aditional

singular factor.
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Lemma 11. Let p 6 (f + 77^) x Q-For the onel-loop self-energy Si(p), given by

?n(p)
'dßl/3'0 dl 1

J 2tt J (27r)d i/o - e(l)
R SI

|S(p)|<ciV^ + ^A/ê

D(k — Po, c|l — p|) (1.144)

(1.145)

with

Mß =

Vol(gd+1)
(kp(1 + ci)^2r/2 + (1 + öy~2/£p|log «5| + 6Ad(|log<5| + log A)) (1.146)

^p = (1 + 5 + IpI) (1.147)

Sign cancellations in the integral are important, to obtain (1.145). This can be seen

from the following. Let c < 1, po = 0 and p and c > 0 such that hif'içj^s^jl - p| > e. Then

because D increases monotonically in its second argument

1
d/0 / dl

iR n

üo - e(l)
£>(/o-Po,c|l-p|)

= / d/o / dl

jr n

and restricting to the most singular contribution

cS

> [dk I dl

1 2n |2
1 C |1

—

p|

2 2
cze"

~c5 U(S,S)

c5 5

> j d/0 J dp

-cS S

c2
> const

V^ôr+tW/02 + C262

1

\/Tf+~p-
-A8JM9)

1 + e2

c5

d/o / dp

> const

l + e2 j
~»

j '-^72777^2

0 -«5
v u 7

cR ,

, / d/0 log
'
—

A 82

1 + e2 lol
+ \ll + 1

0

> const / dx c6 log ( - ( 7^7
+ \/ -^ + c21

n

c \ \x\

(1.148)

(1.149)

(1.150)

(1.151)

(1.152)

(1,153)

> const . c|log c\ (1.154)

This means that the bound (1.145) does not hold if integrand in (1.144) is replaced by its

absolute value.
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Proof of Lemma 11. The most convenient way to make use of the cancellations in the integral

is to use integration by parts with respect to p = e(l).

To prepare for the integration by parts a change to the (p, 9) variables is made. To be

able to do this the region containing the singulaiity is cut out. It is also convenient to isolate

the c-independent contiibutions.

v;i(p) = SR(p) + S9(p) i V0(p0) (J 155)

where

S*(p) -= j ^° j j£yd -Z-LyD'(/0 - po.cd - p|H(|/o[ > I V |e(l)| > 6) (1.156)

1R O

l

S,(P)=/Ç / ^--L^D-yo-^cl-pl) (1.13T)

_i 0(9 y

and

2JQ
. ,

1 f dl L

(Po =

7; / ff~f ,-rr (1.158
/5 / (27r)ri /po

- c(l)
n

is the contribution of the tot m with /o - Po to the licqueucy sum. By Lemma 4

A Vol (12)
v,

2d(2^)d

In fact we can do bettei Define r,j(z) for y ^ 0 as

(p)|<rl---}:/ (1159)

M ^y

Then using

wrc have

(1.160)

I(|/0I > i V|c(ll| > Ô)

_M_^^l_J_J_n_ ^ _A(t(l)) ^ 3Trt(|1, _ J} (1161)

Vr(p)\ ^c2 j (—_^(H|
- Dil Pi (1-162)

Q

By changing to polai cooiclmates on the right hand side we see that

A

\T.M\ < '^fpA/d,^ - 1) < c52M£A^(|,o6i| + bgA) ,7,03,
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Changing to the variables (p = e(ix(p, 9)), 0) in U(S, 6) we have:

I 5

d0 1

2

= Be - /s

dp
(27T)rf iZ0 - P

D*(lo-po,c\<P,O)-P\)JiWp,0)) (1.164)

(1.165)

where, by integration by parts in p

By = -

'

dylp
2p

d0

Log(î,/0 - p) / T^V/-0*^ -W),c|7r(p,0) -p|)Ji(7r(p,0))
p^d

p=-6

(1.166)

2 <5

Iv. = -
[^ ldpLog(i.l0-p)4- /7lTA7.-Dt(Zo-Po,c|7r(p,0)^p|)JJ(7r(p,0))
/ 2tt

.i -5

Op J (2ir)d"

(1.167)

These two integrals exist at positive temperature because each integrand is bounded by a

(/3-dependent) constant.

By (1.121) |Log(i/o - p)\\p=±s < 2|log|p||. Using this and Lemma 4:

IR 1^ 911 VI
VOK^"1),,,

PE
< C2 log ()\kv ——; \Jl\o.S

(Zp)u

Using the same bound on the logarithm

(1.168)

l-Ts S / -M /dp|21og|p||
2tt

_I -5
2

(27 dp
Ji(p,0)D(/o -po,c\ir(p,6) -p|)

By Lemma 4 this is

Vol^-1
^

>9ir{p,(
< c

'

";^d—KP|Ji|i,g|-
q

'

7|o,g / dp(-21og|p|)

-5

. 0Vol(5d-]) |7| ,for(p,fl),

because

0 2

/ dp|Log|p|| < 2 dp\logp\

-s

(1.169)

(1.170)

(1.171)

(1.172)
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Applying the bounds from Lemma 5 and Corollary 7 and the definition of 0 the above

results give

« Vol f c?rf'~ lï \f/
|2r(p)| < c^^~^-(|logol TlogA) (1.173)

IR I -

A(l+A)^lVol(6'^1)l1

15SI swp 777777 ! lo8 ö I ( 1.174)

(1-f J^Vol^-1)
(2^^^^^iP^2 (L175)

Thus

|Sa>(p) + S,s(p)| < |Sß(p)| + |i?s| + |/s| (1A76)

Vol ( S10^1 ) / \

< c - -^V rT {TKp(i + f5)''--V/2 y MI + cT)d-^|log 8\ + 6Arf(|log <5| f- log A)J

(1.177)

which gives (1.115) and (1.146).

Bounding Eo(po) analogously gives the 4 term. See also Appendix A. D

1.4.4 Discussion of previous arguments

Before we start, with the proof of Theorem 2. we briefly review the existing arguments given

for its validity. Most follow Migdal's origional argument rather directly[Mig58, IOS92, E1161,

Hol64, AGD75, FW71]. Basically they are all variants on the following argument, (for d = 3)

• First it is remarked that D(lo —po, cjl - p[) rapidly falls off as (Iq —po)2 when |/o — Po| >

ei] for some constant n. This is then used to justify ignoring the contribution of this

region.

• In the region |/o — Pol ^ c>1- ^e phonon propagator is said io bc^ 1 and replaced by

the constant one. The c-dependence is then purely in the restriction on the Iq summa¬

tion/integration region. This reduces the integral to that for the so called particle-hole

bubble.

j dil0 I dlC(l)C(l - q) (1.178)

|'P-P0|<C7/

• In (1.178) the difference c(l -J- q) - c(l) is approximated by its first order Taylor ex¬

pansion. This is written in the form |q!.r whore x contains the angular dependence.
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The integrals over x and E = e(l) are then evaluated to get logarithmic factors con¬

taining the nominators of the electron propagators. It is then argued that the actual

divergences of these logarithm occur only for unphysical parameter values.

In additions to these three main points the different authors apply other minor approxima¬

tions.

Unfortunately there are various weaknesses in this argument. Although the phonon

propagator does indeed decay quadratically in /o — Po, large Iq —po regions can still contribute

a significant part to f dloD(lo — po,c|l —p|). Moreover, although D(Iq — po,c|l —p|) ~ 1

for Iq — po small, it follows from (f.fOf) and Lemma 4 that the second derivative is only

integrable (in three dimensions, d = 2 requires taking the Iq sum into account). As there

are two integrations done on the rest of the integrand this is important. Integration by parts

would mean that for each integration there is a dcrivate acting on D. Finally one must justify

the substitution e(l + q) — e(l) « |q|.T, which is non-trivial (and for d — 2 not even possible

everywhere). It is also surprising that none of the authors studying the non-zero temperature

model has noticed the presence of the 0(ß~l) term (which is typically small so it does not

necessary affect the application of the theorem to justify the approximation that higher order

corrections can be negclected).

With the benefit of hindsight it is possible to see that our method to prove Theorems

2 and 3 is a combination of a rigorous version of the latter replacement, using a Feynman

trick and Lemma 9. and a careful analysis of the behavior of the derivatives of D to replace

the former.

1.5 Motivation

Widely used approximation of unsure validity

Our motivation for studying the vertex correction and the Migdal-Eliashberg approximation in

detail is twofold. First, the Migdal-Eliashberg approximation is still widely used in the study

of the Electron-Phonon model. In fact it forms one of the cornerstones of the microscopic

understanding of the theory of superconductivity.

In the light of that it is surprising that a more rigorous study in particular of the

higher order contributions was never published. In fact, there are even doubts about its vahdity
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[Mah81, Sch64].

New interest from high temperature superconductivity

The discovery of high temperature cuprate superconductors had sparked new interest in the

theory of superconductivity Lhifortimately the standard theory does not adequately explain

these materials. One of the reasons for that is that the condition for the validity of the

Migdal-Eliashberg approximation, i.e., the smallness of 0(c). possibly is not satisfied because

these materials have an unusually low Fermi A'clocity This has caused various authors to

look at Migdal's theorem again and study the effects of including contributions beyond Pi

[GPS95, DDL97, IOS92].

Other proposed mechanisms for superconductivity in high-temperature superconduc¬

tors suggest other bosonic excitations as the interaction mechanism. The probable absence

of a Migdal-Eliashberg approximation for interactions through phonous has also brought up

the question of whether there is a Migdal-theorem like result for these interactions |Mil92,

HLBM76].

In this light it seems worthwhile to try to study "Migdal's Theorem' in more detail and

with more rigor, especially given that recent advances in the rigorous treatment of renormal¬

ization in fermionic field theories have made available new tools to do so.
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Chapter 2

The one-loop vertex correction

2. L Introduction

2.1.1 Sign cancellations and integration by parts

In this chapter we consider the vertex correctiorr to one-loop order in the presence of an

ultra-violet cut-off. The c-dependent contribution is given by

V](p. q) = Iyt [ j0yiCO)C(l - q)lT(lo ~~

Po. c|l - p|) (2.1)

0

The treatment of the other feim in I\

rl^mM-ri) = ^ j y^yC(l)C(l-q)\^ 2.2

-pa v---;

0

is deferred to Appendix A.

As illustrated in section 1.4 3 when discussing the one-loop self-energy contributions,

sign cancellations are important. In the one-loop \crtex correction, two additional singular

factors appear, fn fact here the integral is not even absolute convergent at zero temperature.

For 0 - oc.q -- 0

d

fdJ\C(l)\2 > const /d/() / dpry^T, --= oo (2.3)

-d

At finite 0 the integral does converge absolutelv. Below we show that it is bounded uniformly

in 0 and thercfoie the 3 -^ oc limit does exist. This limit is then taken as the zero temper¬

ature theory expression. In the following chapters we shall see that for higher order terms

renormalization is needed to define the limit.
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Again our main device will be to integrate away the singular factors in the fermion

propagators using integration by parts. This introduces some technical difficulties arising from

dealing with the derivatives of the other factors. For instance the result of summing the second

derivatives of D over the frequency is no longer bounded uniformly in 8 but only the integral

over momenta that term is. In the rest of this chapter we show that it is indeed possible to

do the integration by parts and that these technical difficulties can be dealt with, giving a

proof of Migdal's theorem to one-loop order.

2.1.2 The three cases

Because there are now two singular factors at least two integrations by parts are needed in

the most singular icgion. The geometry of the singular region depends q. There are three

cases:

Small q The most singular region is at the intersection of the Fermi-surface S and its trans¬

late by q, Sq. When q is small these intersect at a very sharp angle. S and Sq almost

coincide and the two annuli U(S,8) and U(S, q. 8) have a large oveilap. In fact from

Lemma 9 we see that for ry = ^S and ks = ßß. the aimulus U(S, q, jri) is completely

contained in U(S.ij).

Touching Fermi surfaces The other case that gives a sharp intersection angle arises when

q is the (almost) the difference between a point on the Fermi-surface and its antipode.

The two Fermi-surfaces then (nearly) touch. For e(l) = |1|2 — 1. this happens for all q

with |q| ~ 2. In fact we sec later on that in this case we do not obtain an 0(c) bound.

For d = 3 we can get 0(c(logc)2) however.

Transversal Fermi-surfaces Take Kt =

7, (satisfying the precondition of Corollaiv 10).

When hs < |q| < Kf. the intersection is transversal, and a = e(l) and b = e(l —q) can be

used as independent variables. This means each factor
,

l
,n

and -r-, r-—-:—r can be
1

ilo—e(l) i(lo—qo)—e(l—(i)

integrated separately, without producing derivatives of the other Fermion propagator

(thus creating more singular factors). Therefore this case is simplest and we will start

here.
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2.2 Transversally intersecting Fermi-surfaces

2.2.1 Proving the transversal case

In this section we piove the following pait of the theorem

Lemma 12. There exists constants Mq\ and Mg2 such that for all q, p all qo G 2f^, end

allpo G f (^ I 1) with

i^s b |q| S hi (2 4)

the inequality

|P> ?)d 7, c(Mgln2p • Mq2 V,+1) < cMq (2 5)

holds with KP -= (I \ 8 + hi + |p|) and Mg -^ (Myi V2 I Mg2 V(/'!)

Proof This lemma is pi oven as m the seli-eneig\ case ly fiist changing to the appropiiate

vaiiables m the smgulai legions and then mtegiatmg ty parts The contiibutions horn the

icgulai and smgulai legions are defined using a partition of unity

Let x, [0, oo) > [0 1], i
~ 0 1 be the smooth paitition of unity given by \i

—

y and

y 0 — t — y T ot f)i — mm{ '? ß r \} w ith p2 i x and h2 as m I em ma 9 and

Co(l)-C(l)\o(nT2(12o I Kb2)) (2 6)

CpO-cY/hi^2^ Kl)2)) (2 7)

Now \o(Sß2(l20 i c(l)2)) > 0 implies lf} + c(1)' ^ ^ and then

1 112

_r^
_

^^
- —- -

(h
(2 8)

V t

Plus implies Cq{1) is C^ and |C0(n| 7, f

Then

r""(p,ç)î-= / ~~y°- /
77777777 777 ti~

~

\
~

ri
TD"(Zo -po}c|l-p|)

/ 2p I (2-)'//0-c(l) ?(/0 qo) r(l q)
R 0 (2 9)

~ loo + Uo I Aoi 4 in

where

lyAfoç) = / V-0 / TT-ylC)^C^1 l)D<(^ Po.ql- P|) (2 10)
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Because Cq(1) is bounded as

\C0(l)\ < riSl(e(l)) < 6rSl(\l\ - 1)

with r as in (1.160). By Lemma 4

"dßl0c
4)01 < -36

J 2p

it n

Jj3r*D*{lo~Po,c]l ~ P|)r*l(|11 " 1)TSl{11 ~ ql ~ 1]
-

(2.11)

216Vol(5rf-1)Ad
6i2dKd

(2.12)

By directly replacing the propagator by its supremum on its support we get the simpler bound

Wool <
,-2

JR n

-2//2Note that Xi($i tto + e(l)2)) > 0 implies 1% + e(l)2 < 8f so in particular |/0| < Si and

Ie(1)1 ß 81. Therefore

<h

4io =
delß^O dl

2*r\d

J 2p J (Z7T

Si U(S,<h)

Ci(l)Co(l + q)D*(lo~Po,c\l-p\) (2.14)

<h Si

= [^ [dPT^ I 7^Kio(lo^(p,9))D*(l,o--po,e\ir(p,8)^p\) (2.15)
,/ 2n J il0 - p J (2p)a

-$i -y .çd-i

where

Kio(l) = xM2(l2o + e(l)2))C0(l-q)Ji(l) (2.16)

Because the indicator function is zero for p = ±<5|, the boundary terms from integrating by-

parts vanish, and we get

dö d
M = j ~~- / dpLog(7/0 - p)

(2p)d Op
(KioD*(lo -

po, e\rr(p. 9) - p|)) (2.17)

-Sx -Si S^1

By Lemma 4 this integral exists at finite ß and is bounded as

Ato| < c/tplAioli,^—7777^—ll77lo,5 / |21og|p||dp
(2ir)d 'Op1

(2.18)

where we used supjçy^^d—p| < kp Now

2|Ti|i.,5
|ATio|i,y <

öi

.

,2|Ji|o,5
+ a—-—- sup

dl U(S,5i))

ßL
ai

(Xl(<57-2(/2 + e(lY))xo(Sß2((lo - Qo)2 + e(l - qf)))

+ ri|J1|oyy2lell (2-19)



2.2 Transversally intersecting Fermi-surfaces 53

and

dy

_9/ 2 i 2^

xo(ài-(x" + y~))
\y\ I / cc—2/ 2 2\

i
<
2^ |*o(<*rV + VZ))I < 2|x|o^it'2 < T-Ixlt (2.20)

so

Xo(5r2((/o-~ço)24e(l^q)2))
2|Y|i 0e(l — q)

01

which gives

IA 10 IL S

2lJ.li,)
,
I2dßß\\ßß.h i <)

<*f

which with the bounds from Lemma 5 and using d > 2

2M
|Ve(l-q)|

01

Op

2|X|

<yJ(ld^/-2 + ^(l + ^2'v|^^|y|1(l + ^2
ôï °ï °i

and thus by (1.172)

16c/2
Ajo < c--y-hp

èy

71 ^V 2Voi(Sf/-J)

e i

(2.21)

(2.22)

.23)

;2.24)

Observe that apart from an irrelevant change in integration region Aoi becomes Aio

after the change of variables ß >->• Iq + qo- 1 H> 1 -1-
q and with p replaced by p' = p

-

q and

likewise po by p0 - po
-

qo- Because the boirnd (2 24) is uniform in p,po and q, Aoi obeys

the same bound.

In An we need to do integration bv parts twice. By our choice of S{ and the cut-off

function \ on the support of the integrand in 4n( Foi d = 2 this support consists of two

connected components (see Remark 8). For q ^ 0:

|[/|=.--lr(l-q)-e(l)l<--(|e(l- q)| f- |c(l)|)
q ft,

< < 1l2
h

s

(2.25)

(2.26)

By Lemma 5

An =

deld'o

2/T

-ài -di

dp / doi
ß*L VPV^o + P2) xdSrttk - go)2 + e(xq)2))

/

~(2x)d >h-p ?(/o-?o)-c(7r-q)
A (2 27)
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and

A - D(k -

po, c\tv(p, 9) - p|) Jang(ö) Ji(p, 9,9) (2.28)

In each of these it is now possible to change to coordinates

a
— e(l) = p

b = e(l + q) = p + U = p + qU

because by Corollary 10

(2.29)

,dbll0U, ,

W
=

"laF^'-^>0 <2'30»

In these coordinates the integral takes the convenient form

di y

An = / 77^ do db-
77-7 r r

/ 777-77An(l0,l(a-b,Ö))D(lQ -p0.c|l-p|)
J 2tt j j ilQ-a i(lo+qo)-0 J (2yr)rf

-Si -Si

(2.31)

where

Ku(l) = i-^r1 JangMM2(l2o + e(l)2)xM2M - qo)2 + e(l - q))) (2.32)

We now do an integration by parts with respect to a. Note that this is allowed because by

Lemma 4 the integrals are all absolutely convergent at finite ß. Again, the boundaiy terms

vanish because the indicator functions (and their derivatives) in Ii~n are zero.

„ y

An = j-ip^- /
777-777

/ claLog^/o-o)--/- —-—(JfTiiD(/o+po, l(o.6. ö)-p)j
J 2tt ,/ (2rr)fi J i(l0 - qo) - bda \ I

-Si

(2.33)

After integration by parts with respect to b,

y si

An = / ^r / da / db / 7^7-7 Log(?/0 - a) Log(7(/0 - qo) - b)

-Si -5i

^^ [Kh D(k + po, l(a, b.9) - p)) (2.34)
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By Lemma 4 and because 2 < 2|log<5i| and on the integration region |Log(//o + o)| <

2|logo|

/in|<4
A6..

Si Si
1

/ do|log|o|| / d/)jlog|/)|| r-——-
J J |1 - PI

-ai -y

Atill ch q

01
„r- I

Ol

Oa

Ol

Ob

Because | - ^

Ol

Oa
l

;2.35)

(2.36)

Observe that the partial dciivative with respect to a is the derivative with respect to a — e(l)

alorrg the curve given by e(l - q) — b in a plane containing the origin and q, fixed by 9. due

partial derivative with respect to b is the derivative with respect to 6 — c(l — q) along the

curve given by e(l) = a in a plane containing the origin and q. fixed by 0. Note that a change

of variables 1 -7 1 + q transforms the latter expression into the former up to q > q. Because

the bounds are invariant under these transformations we also have

dldl

Ob
and

This gives

i On Ob

Si

A1 1j dh

dMpi \~0dl
< (KsV\Y (2.37)

7

L

\An\ < 4ch2Jpßßfa^ j do|log|o|| / db|log|6|| / d6d——r
1 (2/T)</hs;/i / / ,/ |l-p|

(2.38)

To sec that the remaining integral is bounded we change back to the original 1 coordinate.

-Si

do|log|o|| / d&|log|Z>||d#
I1 - p;

-Si

where

dflog e(l)|||logle(ly q)|iTrV^,/rl j-^A
U(S <ï|1nf'(5q ()(

1

|l-~p|

3,/

4k, 2 r

^ 7TTTA'

Plog -- sup / cll|log]e(l)|;|log|e(l + q)||
--1-

p q / jl
— PI

(2.39)

(2.40)
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is finite because in two or more dimensions ttt-t js integrable and the logarithmic factors

don't change that. Inserting this gives

\An\ < 112cfci0
Kl2id

(^yrtiAvi
\Kll\2,Si,q

It remains to compute |/Cn|2.y.q. Using the identity \fg\2 < 2\f\2\g\2 we have

Ob

!An|2y1,q<24|(7^)-1Jarg|2A,q|Ji|2.y|xi(5r2(/02 + e(l)2))|25l

Lemma 5 gives |Ji|2.y and wrc have

2.41)

(2.42)

Yi(ö72(/2 + e(l)2))|2,y <
lAl2|e|2

52

Finally

'
db

ri
•d9i}

Ja,ig _

1

2 Q

,0U

00i> Jaig

From the construction of the coordinate 6i in Lemma 9 we see that

[c)9i] Jdrg
1 sin^3 6»i

q 2|1| 2 mm

2
rr

Inserting these bounds and those from Lemma 5 gives

,, , .
216+Hlogf/6ff2(1 + g)2|v/|2|e|2 (d_3)2^:

Uni < c rxTTT—;—x; U +

(2.43)

(2.44)

(2.45)

(2.46)
/l TminKs'/t°l mm

Taking all the bounds together and using that Si = ^4^ it follows that the lemma is

satisfied with

,,,„ =
w+sgm [ v°f;;/w+2"+tK£lehd+l"-m'

Ati (2tt)< mV27r 'mitlas

i/._8|xl!Vol(S''i-1)
'92

k2t/2 (2rr)^

(2.47)

(2.48)

D

2.3 Small q

2.3.1 The method

The main idea of this proof is again to exploit sign cancellations in the C(l)C(l — q) factor

by using integration by parts. The basic observation in dealing with the integral at small q
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is that for q = (go, q) = 0 the singular factor has the form

f
(2.49)

(J0-P)2

which is easy to integrate twice with respect to p. hence a double integration by parts with

respect to p works similarly to the integration by parts employed in the previous section.

However in general the two nominators appearing in C(l)C(l - q) are different. In

order to do the integration by parts it is convenient to bring this factor in a form, similar to

(2/19), that is easier to integrate. Following [Sal99j. Section 1.5.5, this is done by using an

interpolation, otherwise know as 'Feynman Tiick"; It is based on the observation that

1 i ^ i i w i
,2-50)

a(a)b(i) a(r) - b(i) \b(x) aß) ß J ((J - i)a(x) + tb(r))2
o

when the integral
on the right hand side exists. It is

effectively
expressing | by Taylor expan¬

sion around -, This woiks best when the difference is small, which is why it is the appropriate

p eu cul ijiir ngiiL uciiui sine ca-isls. it, is euei_ iivui) CA.piessjj.ig

L

a
'

method to use here.

The result is onlv a single function in the dénommât or at the expense of it being

/-dependent. The latter point is relevant here: In ordei to apply this method the /- and

r-intcgration must be exchanged and this exchange must be justified.

It is instructive to do this fiist for the special limits (go = 0, q ^ 0) and (qo ß- 0, q -- 0)

and then do the general case which is dealt with in basically the same way but contains some

technical complications.

2.3.2 The condition on q

In this section the ftist-oidci vertex correction is considered at small transfer momentum q.

In Section 2 1.2 this was defined as

jq1 < ^

where k, is given by Lemma I which implies that for 6' — \ri,

IßS.q.Sß C U(S.S) Vq. |q| <. h, (2.51)

The coordinates a = e(l). & = c(l — q) used in section 2.2.1 are inappropriate in this case

which can be seen for example from the fact that the Jacobian diverges for |q| —> 0 (See

eqn. (2.30)).



58 The one-loop vertex correction

The main idea is now is not to use coordinates that are based on Fermi-Surface S, but

coordinates based on the interpolating Fermi-surface S(t, q) defined after (1.128).

2.3.3 Taylor expansion for q / Feynman trick

In this section wc look at the limit where (go = 0, q 7^ 0).

n(p,(0,q))=Jq(R,l) (2.52)

where

WX) =[^1 ß^yD0o -

Po- c|l - p\)ZqX(l)

Y

z =^A L
q ?/0-~e(l)J0-~~(e(l)+{7(l,q))

-1 1 1

(2.53)

(2.54)

{7(1. q) V^o-e(l) i/0-(e(l)+C7(l.q)).

First the contribution to the integral from the region outside the amilus U(S,ri) is

cut out using the smooth partition of unity defined in Lemma 9. This contribution is easy to

bound: Because {7(5, q, |n) C U(S,8), for 1 6 supx4, |e(l — q)| > -jn and |e(l)| > ?n- So

Q 1

l^ql < — for * ^ SUPX4 Or |/0| > 77

rl l
(2.55)

Thus bounding the nonsingtilar part of the integral

|Jq(R,f)|<|^(iR\[-^],f)| + +|Jq(h^],x4)! + |iq([-^],.y3)l (2.56)

16Vol(fi)A
C+|/q([-ö.d'X4)|-~~r{(2-K)d~
" ' KqU 2'2J

(2.57)

In Iq we do a Tavlor expansion around q = 0: At finite ß, the Fermi-frequency 7o| > 7.

Therefore for all t G [0. f]

f

(ilo-(e(l)+t(U(l,q)))Y

71

- 7ä
ß2

(2.58)

the integral

dt-

(ilo-(e(l)+t(U(l,q)))ß
(2.59)
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is absolutely convergent and equals Zq. Inserting this in the integral

i
<

i

r /r
14,

s
r

/ dßlo f dl f xs(l)
Ia(\

— -

,

-

, Ys) — Li — / —— / -,—-,D(lo — Po, c\\ —
pi)

/ at 5qU
2'2J,A3J ,/ 2tt ./ (2p)J

{0 ' Pl>
J (üo -(c(l)+t(U(l,q))))2

(2.60)

Because of the absolute convergence at finite temperature the order of integrations can be

exchanged by Fubini's theorem, so that /-integral is taken last.

1 4

/
In f Ao f dl D(/0 -po. |1 -p|)

m (
.

h^ dt -— /
777-77

—

x xyx-X3 1 2.61
/ / 2tt / (2p)d (il0-e(l.q,t))2
0

_
L

where e(l,q,/) is the interpolating dispersion relation defined in (1.128). 7i is bounded by

finding a /-independent bound for the inner two integrals.

Inside this region we change to the coordinates (pt — e(l, q. t),9). This change of coordi¬

nates is the composition of the coordinate map 1 h > (p. 77) with the map p \-> e(l(p, 9), q, i). By

Lemma 5 the former exists on the support of \ 1, and is smooth. By Lemma 9, 7p-e(l(p. 0), q, /) ^

vq and thus the latter is also regular and smooth. Therefore the composition is too. Let the

Jacobian be denoted by Jp

J3 = J,(^(l(p.ö).q.0)"1 (2.62)

This gives
ss-1

dßl0 f dB f ^ JYßßßßßXß

{ih-pt?

h = I dt j -^ I
—

rf dp,—f-^2 (2.63)

h=- j d1 f Aß

jAA jdPtLog(iIo
-

Pi)-~{D\hxu (2.64)

0 M.,

We rrow proceed as in the self energy case bv repeated integration by parts:

d)lo f d9 f\
T , , ,

02

0 Ns-

Bere Log(?/0 — pt) denotes the piintrpal branch of the logarithm. The intermediate and the

resulting integrals exist because bv Lemma I the integrands are bounded in absolute value

at finite ß. The boundan terms \anish because 73 vanishes for large pt-

Like in the transvasai case bounding the integral requites some care, because the

second deiivatives appealing are no longer bounded (unifoimly in ß). However they still are

integrable for d > 2 and a factor c can still be extiacted uniformly in ß.
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After exchanging the finite sum over /q with the integrals and again using |Log(//o — Pt)\ <

2|Log|pi|| one sees that

|/i I < 2 / di
d9

(2n)d
„

dpt|Log(|pt|)|
dßlp
2tt

d2DJ3X3

dpß
0 M<i

Applying Lemma 5 and noting that the inequalities corollary 7 remain true for pt

2 l-^h.tîUab /*,„ /A
,T /, ,m

f
< 28ca

For example note that

P (2ir)' T.

-t

sup / d9 / dpt|Log(|pt|)|
|1-P|

91
< [pt

dpi — \ dr
dpt
dr

and

dpt

Or
= \2r - 2qeos9it\ > 2rmm - 2ks > 1

Changing back to to integration variable 1 in the remaining integral

1
dö / dpA|Log(|pt|)|

|l-p|
dl|l0g!f(/'1-.q)llJ3ft,q,l)-1

U(S,n)

<-
Ie'1 I

|i — r>l

where

p0g - sup sup / dl(l + |log|(l - t)e(l) + te(l + q)||) —
teiotl p / I1

Î.65)

(2.66)

(2.67)

(2 68)

(2.69)

(2.70)

The constant k\0R is finite because rr^-i is intcgrable in two or more dimensions and the
|i-p|

logarithm does not change that.

2.3.4 Taylor expansion for go

In this section we look at the case where go ^ 0 and q = 0).

P;(p,(g0,0))=Jgo(R,l)

where

Lqo

Y

z =

1 l

go
do-e(l)i(l0-qo)-e(l)
1 1 1

?go V''o -e(l) i(h -qo) - e(l)

(2.71)

(y, X) = J-~LI ^dD*(lo ~~

Po, c\l - p\)ZqX(l) (2.72)

(2.73)
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Let A(qo) = {t\\t\ < | A \.r — go| < 5}. For simplicity we only consider the part where

/o G A(qo) here.

The integral Iqo is split up again in different parts to allow integration by parts

Iqo(A(q0). l) = Igo(A(qo). \0 + Igo(A(q0),xO (2-74)

These terms are bounded individually. One is trivial

i

W^o).\r)s [d^r j -^yd\Zqo\D(lo- Po,r\l-p\) (2.75)

_!.

~

|e(nsi,

From the form (2.73) for Zqo one sees direct that when |e(l)| > \r\ then \Zqß < 4*. Therefore

by Lemma 4

\lqo(A(qo). \ 0| < ;i-|^y/ Vol(fd) (2.76)

In the singular regions one could be tempted to proceed as in the previous section arrd

use a taylor expension m Zqa. However the integral

[d,mA-.m> (2-77)

docs not always com-erge. Although at finite 7 ß and go are bounded away from zero, the

linear combination ?o + /go can still become zero. When the expression is inserted in the

integral/sum it does not lead to an absolutelv convergent integral and one cannot apply

Fubini to take the /-integral last. Howevci the integral is sufficiently simple to do at least one

integration by parts.

Iqo(A(qo),Xl)

= r^iwAT{l« ^cll~A±(T^~1T^\^Xi(M (2-78)
./ 2tt ,/ (2k)c1 iqo\ilo-e(l) i(lQ-\ q0) - e(l) J

- I ^/dp/7^^(/o^Po.clI(p.o)-pl)J1(l(p.a>))^-f-L-^ \ )
I 2'/i J J (2ir)d -iq0\ilo-p H'o ~ Qo) - Pj

A(qQ) -à

(2.79)
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Now observe again that 77-3-
= — -§-Log(i!o - p). One integration by parts gives

8

= j dyloJdp-A- (Log(l7o __ p) _ Log(i(/o _ qo) _ p)) I Ai(JltoD*) (2.80)

-4(90) -5

At this point it is possible to do a Taylor expansion in the frequencies because we can control

its convergence. Observe that if p 7^ 0 then

f 7 1
— (Log(7(/0 - go) - p) - Log(il0 - p)) = / dt-

"tqo J i,(lo ~ tq0) -

p
(2.81)

In the integrand above, p can be zero, so the integral in (2.81) doesn't always converge.

However at finite temperature the integral

<5

h = dp I dt-

-5

1 0

-%(•*»"*)i,(l0 - /go) - p J Op

is absolute convergent at each Iq- By Lemma 4, j-
( J1X3-D* ) is bounded at finite ß and

(2.82)

*4h(w) < const (2.83)

at fixed ß. Thus

S

dp f dt
i(k - tqo) -

P ,/ dp
do—( JtD

s 1

< const dp dt:
1

i(k - tqo) - p\
(2.84)

-<5 -5 0

The remaining integral is bounded by recognising that it it just an integral over the

absolute value of a single fermion propagator. Because go 7^ 0, it is possible to change to the

integration variable re = Zq — tqo'-

5 1

dp / dt-
1

S h-qo

= — dp / dx-

\i{h-tqo)~p\ qo J J \IX~~P\
-5 0 -5 l0

(2.85)

S lo—qo S lo-qo

<— I dp [ ^7 + — /dp / dx—A -t(\jx _ p| < 10)
go J J 10 go J

~'~

J ~"\/x2 + p2
-S l0 -S lo

(2.86)

< 00 (2.87)
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Because the integral exists for each Iq and the sum over Iq is finite we can take the sum

inside integral. By Fubini's theorem and (2.81) therefore

t à

UAM,X,) = f* J ^ f^«^f--J^tM**)--h (2.88)

0 A(qo) S

Llere the right hand side is the result of another integration by parts with respect to p:

1 {

h - fàt f A^j dplogßdo - tqo) - p) j yLA^(jxXlD*) (2.89)

0 A{qo) -Ù

For lo G A(qo), \h - go I ^ (1 - /)|/o| + /|'o -

Ço I < \ and thus ILo&Wo - tq0) - p)| <

2|log|p||,

^l^i^^ifSrA'^) (2M>

by Lemmas 4 and 7

!--> < Ah2 (6j-71 \312 s
- \-h V3U ,0 / dp|Log|p|| / 77-7777. r (2.91)

(2p)d |1- p|
-d

By applying (2 68)-(2.70) in the case / = 0

56a2

\Iqo(A(qo)-\A\<c^AAoßJß2ß\ß2 (2.92)
mm

2.3.5 General small (go-q)

TJie 'Feynman hick' and integiation by paits

For the geneial form we want to combine the methods of the two previous sections. Note

that the introduction of the interpolation and inteithangc of integrals needed to be done at

different stages. The same occurs here. Observe that

C(/)C(/-g)-P,(/,g)-i(/,g)i Pp(/,g);2(/,g) (2.93)

where

L 1
(Lg)-

K/o - qo) - c(l) ßlo - go) - e(i - q)
,0

,

l l (-J4J
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and

Fl(i'"> " AAA *('«) = '-*('«) =

*
.

P.95)
iqo + \q\U(l,q) iqQ + \q\U(l, q)

which is the application of the left-hand side of (2.50) to the frequency and vector momentum

parts of the propagator separately.

Each of the terms of terms on the right hand side of (2.93) is now similar to Jq or

Iqo. The main difference is the appearance of the factors P\(/,g) and F2(l.q). Performing

integration by parts to remove siugulaiities from z\ and z2 can produce derivatives acting

on them. The main addition of this section will therefore be to deal with the technicalities

involved in either avoiding such derivatives by an appropriate change of coordinates or in

bounding the derivatives when we cannot do so.

As we have seen in the previous sections, the method used is to combine a Feynman

trick and integration by parts to deal with the singularities from the Fermion propagators.

After that the factor D* and its derivatives are dealt with. Therefore it is convenient to

capture the effect of the first step in a Lemma.

We start by formulating what happens when there is only one integration by parts

clone. This is both illustrative and useful as we will need this later on.

Lemma 13 (Integration by parts). Let |q| < ks, co(loA) be a différend able function with

stipw C [-5,3] x US(S) n Ui(Sq) and let

I= i^èS 1A)"G{1)C{J qMloA) (2'96)

then

1

|/| < const J dt j^J jA^(\Zi(l,q.t)\ + \Z2(Lq,t)\)(\u(lo, 1)| + iVu^o-l)!) (2.97)

0

where const is independent of q and

ZM.ept) = — r
77-^77-7^

7, n
(2-98)u ;

i(/0-go)-(l-*)e(l)+te(l-q)

Z2(l,q,l) = T
A—-^ (2.99)

i(k -tqo) +e(l)

Proof. From Lemma 9 we see that when q is sufficiently small then we can choose annrili

around S and Sn (independently of q) such that one is contained in the other and that
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outside of the larger both e(l) and e(l — q) are bounded away from zero. Decomposing the

integration region in outside and inside the larger anntilus (or rather applying a smooth

approximation of that decomposition) we get

I = J4 + J3 (2.100)

where

L^ j'Ai* J^rjC(l)C(l g)y;(lM/0,l) (2.101)

By Lemma 9 on the support of \4. |C(/)| < ;2- and \C(l — q)\ < -- and thus

^^lAIA1""«^ (2-i02)

Note that in most applications of the lemma we v ill consider lj is such that sup wfl(R x sup \ i)

0 aud thus ß - 0.

Inserting (2.93) gives the following split

h - h\ h hi (2.103)

where

hj - fdßlo jdlFßl.q)zßl.q)xßl)uj(lo,l) i - 1.2 (2.104)

To bound pv complete the Fevnman Tuck using

: i (/,?)- jdt~i(LqJ) (2.107

where

zßl.q.t)^- -T (2.106)
(i(lo -g0)-c(l.q./))"

and insert this expression into (2.101) (; - f). Note that at finite ß we have |/o — go I x! ^

p
which implies |7j | < -- and thus the integral is absolut elv bounded and it is allowed to change

the integration order to take the / integral last. This results m

i

hi - Jdf j~ir jße)<i ^(t-q)h(i.q)xAiVAk-i) (2.107)
b
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We will now perform an integration by parts with respect to p integration z\ and therefore we

change to the coordinates (p,9). However the integration by parts will produce terms where

Fi is differentiated and these will have to be controlled. This is done again in two ways in

different parts of the integration region (See Lemma 9): On the support of X6, i-c for small

angles between 1 and q, the (scaled) difference Ü will be bounded away from zero and the

derivatives of Pi will be bounded. On the region where U is small, Lemma 9 shows that

the Jacobian of the change of integration variables 0i h> U is bounded and thus we can use

coordinates (p.U,9) there and integrate with respect to U. So the integral is split as (using

notation from Lemma 9)

h\ = hi 5 + Izu (2.108)

where for m = 5. 6

Pn m = / d/

' dal

fl'O

iP
dX,„ / dpzx(l, q)Fi(l, q) Jmym(l)y3(1)0;(/0.1) 109)

Avith

dA"„, =
fßW l'dU m -5

r dû

1 (2Tv)d

j —

m = 6

J(p,9(9i(Ü),9))JaXiS(9}(Ü).9)-Ar m = 5

<ae11

J(p,9) m = 6

Note that 1 was used as a shorthand notation for

tc(p,9(9,(Ü),9)) 77i = 5

7r(p, 9) m = 6

Aftei this preparation the integration by parts is simple. For m = 5, 6

1 =

Iz\m = - / dt fA-^ jdXmjdpZi(l,q)
0 /Pi(/,g)Jmym(l)x3(lMZo,l)

dp ;^p)-Ve(l.q.i)

with Z\ as defined in the lemma.

(2.110)

(2.111)

(2.112)

(2.113)

For J32 a similar expression can be found. However in this case it is not possible to do

the interpolation and then take the / integral last to do the integration by parts. The difficulty
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is that, although at finite ß both lo and go are bounded away from 0, but, Iq — /go need not be.

Thus the absolute convergence is not, guaranteed. However it turns out that, the z2 is simple

enough to integrate directly. Observe first that for go = 0, F2 = 0 and thus J32 = 0. We can

thus WLOG assume go 7^ 0 in the following.

~„ =
._L

.

( i
_.

1 \
(2.1L4)

-iqo \ilo-((q) dh-qo)- t(q)/

Note in particular that the pre-fact or docs not depend 011 I. This allows direct integration by

parts.

C32 = P25+-P20 (2. 115)

where for m = 5, 6

h2m - - I'A-^jdX,,, fdp~2(i.q)F2(i.q)jmXm(i)xYiMioA)
.^[dxJ'dpZAl.qA-
J 2 a

,/

,/
Op

where

dA ldXm ldpZ2(l.q)A (F?(lq).ImXm(\)\l(\)u(lo,l))
« ./ .7

Op

(2.116)

Z2(l.q) -.= — (Log(//0 - c{\)) - Log(/(/0 - go) - e(l))) (2.117)

where Log denotes the main branch of the logarithm.

Although interpolation was not necessarv here to do the p-integral we now introduce

it, afterwards to bring the expression in the same form as for /31. Observe that Z2 can be

written as

1

Z2(hq) = I dtZ2(I.q.l) (2.118)

with

Z2(,.9.r)-—-—^—-- (2.119)
i(l0 -tqo) --e(l)

For any bounded positive function gßo-l-t) the integral

1

Idßo I dl I dt\Z2(l.q.tßq(l0,q.l) (2.120)

0
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is convergent and thus we can insert (2.118) in (2.116) and change the order of integration to

obtain

t

J32m = J dtJ^ JdXm JdpZ2(l,q)^(F2(l,q)JmXm(ï)X3(lMhA)
0

(2.121)

It remains to show that bf
I
M-g)-^Xm(i)x3(i)^(/o,i) ] < const(U + |Vw|) and similarly

\àp V (v^l) Ve(l,q,t) J
- V! I ! 1/

\-§-p[[Fi(l,q)JmXm(l)X3(lMloA))\ < const (M + |Vw|)

By continuity, compactness of the support of the integrand and Lemma 9 we have

\JmXmXsU < const m = 5, 6 2.122)

and

£l)-Ve(l,q,i)
<dp

const

(2.123)

so the lemma follows if we can show jj^p VP/,-| < const on the support of \m for m = 5, 6

and k = 1,2.

Note that this expression has an implicit dependence on m. When m = 5 the partial

derivative keeps (U,9) constant. Observing that Ff. = F^(qo, U) wc sec that

dp Op
= 0 .124)

u,o

For m = 6 the partial derivative is
g~

on the support of x.e>

and the value of 7^1 • VPV is nontrivial. However

IVPtl < const |Pf.|

and thus the lemma follows.

7g0 |q|{7

const const
< —3— <

\u\ m
(2.125)

n

Double integration by parts

Although doing a single integration by parts is sufficient to extract the weaker bounds proven

in the following Chapters, for a bound proportional to c is necessary to exploit the sign

cancellations even more by doing another one. This is captured by the following lemma.
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Lemma 14 (Double integration by parts). Let |q| y. ks Let A(qo) be given by A(qo) =

Vo\\k\ <
2) I'o — qo\ < 5} Let cu(/o,q) be different/able function of I that vanishes for Iq ßi

^4(go) Let It be qiven by

h - j d^° / ~ C(l)C(l q)xYA(k 1) (2 126)

Then there exits a constant M2 such that

t

|I|- M2 j dt j^A j ß (l HPog|e(l)|| I |Log|e(l q i)H) X>ÛWI (2 i27)

0 M<2

Pioof Pioceed exactly as 111 the piool of the pieviotis Lemma, up to the moment wheie

absolute values weie taken Bv apphnig an extia mtegiation of parts to (2 113)

1

h\m = J^j^l^n, fdplogßßo go) t(l q /))

/.. x ..nu jn,,d]r. hw

(2 L28)

0

Of 1 0 fFßl g)/ny;7,(l)y3(lM/o,l)

dp\£L Vc(lq/)dpV (^p) Vr(l,q,r)

Poi /o - A(cjo), \h)\ <- 5
and thus |I 0<o(i(Iq - go) - ( (1 q /))|2 y |Iog|e(l, q, l)\\ Splitting the

factois containing w and its deiivatives taking supiemum-norms oi the others and finallv

charrgmg bark to cartcsran cooidmates gives

1

IAS 1A, j dt 1^ j-^AlLoglcil^m zA^A (2 129)

0 l«l<2

Phe constant 74/31 is computed later

A snnrlar extra mtegiation b\ paits m (2 121) grves

i

h2m= j dt jd^ jd\m jdplogßßlo tqo) l(l))^2(r2(l,q)TmXm(l)\lßMloA))
0

(2 130)

Loi /o e A(qo) |/o -tqQ\ < (I r)/0| - //0 qo ^
1
And Huis |Iog(î(/0 /go) f(l))| b

2|Log|e(l)lj Vgam factoimg out the
^ dtpcnrUnt factois and taking supnoims foi the otheis

gives

1

Un |v Vl2
I
dt /A^ I A\

j
loo|c(l)|| Y\Oyu\ (2 131)

^ßuß^f^p^mzZvr
\n\<22
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where nothing /-dependent is actually left in the integrand.

Thus the Lemma holds with M2 = max{AP3i, M32}. What remains is to compute the

constants. Wc must bound

K-mj —
d

dp

1 0

A
dp eßl,q,t])dp\l e(l,q,ß)

FjJmXmXS^ikA) Jßß (2.132)

with 7 = 1,2 and t2 — 0. Here

—
I

Op I m

dp

d_
dp

Uft

0i,0

777 == 5

777, = 6

Note that 4| e(l, q, 0) = -ß-p = 1. Moreover e(l, q, /) = p + tqÜ and thus
1 1

A
dp 5e(l,ql*I) = ||&i(p +^ = l

and (as in the previous lemma) by construction

Therefore

A57 <

A
Op

A
dp

.^7=0

hXbX^

Using the identity

c92

oAm
< (E \daf\

01
+

02l

a<2
Op Op2

we can split the bound in individual factors:

dU.u51 7-11
Ay, < 2Ö|J J\

\9. ThUa-
I \0,UdJi\2 (7, Hang

09p
|2,L/5|X5|2|X3|2( I —II2 I—

dp dp2
Y\o°
a<2

where Um = suppx3Xm-

We now continue by computing the various factors. Observe that

731 09 y0_
dp u,e Op

1 +
e 091 Op

(2.133)

(2.134)

(2.135)

.136)

(2.137)

(2.138)

(2.139)

and
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The latter implies ^j-
fy 2 tan 0! (,9i + 1)

„,91 2 .

,d2l

. Using this we have

10\/2,
1 1 1

îl) < (2 , 7

Op1 ß)p2U~{ ii

Continuing with the next factor

7-1 7-1
h lo 05 <

\-ß lo vßJmß,o v-1 ^7 |o le S
dï\ 2^îd(l + S)

J-2

(2.141)

(2.14S

Using Lemma 5 and (2.45) and gathering up the factois gives

Kv ^ (E \d
2'^^dßl -t-^V'-1,, V2W,. (d-3)2-

_
(L +

-1((|4

rv<2

C/-1 ^
,'

'VV 2
'
mm mm mm

IA7I2IAAI2

Let w(p) — fj) I e(l.q./y) l»'(p)| ^ t'o bv Lemma 9 Because
dp 16

(2.143)

0 ( X 0(1

dp \ic(p) Op \rc(p)
7(D

we have

(El^/l)-iyu + ,,7 3|.»7 + i»'"l)7--77^(El''"'l) <2-144>
O'mm 0<2

1-J-24a.s23/^ a
L 1 1 1 1 mi

^07 ^ pi
- (2_7 ^'IjlP lot'f Ji U t/51 Yeul Y3|2|i'j |2,f./0

A)'mm V(l<2 2

<-.

27i + 247,s)r/1(l-i-75)f/-2(2 + (i)
ty'+i 2

(
0

'
mm '/2

(2.145)

(2.P16)

where we have used (as in the previous lemma) that on Ve, the deiivatives of F3 aie bounded

uniformly 111 q:

\F\2|2 u
8(2 -4- (i)

7 (2.147)

Summarizing this means that the bound is satisfied foi

,,
^cß\Xß2\\ß2(l rS)d~2(2d b)

M2 — TTTi max
U'-^^iAwA^AAßß^)
{ Amu Pmn VA J

(2.118)

n
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Extracting the factor c

Having shown how to deal with the sign cancellations in the previous sections and with the

technicalities hidden in Lemma 14, it is now quite straight forward to bound the first order

vertex correction.

Lemma 15. There exists a constant Ms such that for pêfl and all |q| < ns.

\Tl(p,q)\<cMs (2.149)

with Kp as in, Lemma 12. Moreover we can take Ai., = suppfi AAd~(ts+îxi + 20c/kp(1 +

^)^2A|X3|i) + 12d2K2AJ2(|gr.

Proof. As stated before, the essentials of the argument are contained in the Lemma's of the

previous section. What remains is to deal with the simpler cases that were left out their for

clarity, bring the integral in the required form and finally to extract the factor c from the

resulting integral.

Denote by 7(/(/0,q))

/(/(Zo,q)) = |^- j ß§yC(lß(C~ q)D*(lo -p0,C|l-p|)/(/o,l) (2.150)

h

Let II(l0) be iJ(/0) ^ l(|/o| < 7) and write Hs(l0) = H(l0)H(l0 - qo)- Note that suppHs =

A(qo).

Using the partitions of unity X3 + Y4 = 1, H(lo) + (1 — H(Iq)) = X, and H(lo — go) +

(1 - H(lo - go)) = 1, gives

HO, q) - L(xi + X3(l - H(/0))(l - H(l0 - go)))

+ I(X3H(l0)(X - H(l0 - go))) + I(X3H(l0 - go)(f - H(l0))) + /(x3H.,(/0)) (2.151)

By Lemma 9 on the support of X4 and (1 - H(l0))(X - H(lo - go)), C(l)C(l - q) is

bounded. In particular \C(l)\ < j-
and \C(l - q)\ < j-

and

7(X4 + X3(l-"/P(/o))(l^-ff(/o"Ço)))]<^/^y7^Z)(/o^W):i^p|) (2.152)

and thus by Lemma 4

|J(y4 + X3(l - H(l0))(X - H(h - g0)))| < <^^r (2-153^
ri vZ/J
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We now turn to the next two terms in the decomposition. It suffices to concentrate

on J(x3iJ(/o)(f — II(lo — qo)))"- Apart from a shift g in the integration variable I(x^H(lo —

go)(l - H(lo))) behaves identically and thus obeys the same bound as the difference between

\3 and its translate by q is irrelevant in the compulation (remember |q| < ns).

On the support of (1 — H(lo - go)), \qo\ > è aU(l thus C(l - g) is a bounded function.

As stipy-3 c U(S,8), we can change to the coordinates p. 9

/(x^(/o)(l-//(/o- <to))) =
'dj,HO do

2x ./ (2tt7 /
'

do -P

1
dp A(/0.l) (2.151)

with

A(/0,l)-J1Y^(/o)-77^^^-7i-D(/o^ Po,ll- P|) (2-155)
?('o - go) -c(l- q)

A single integration bv parts gives

I(Y,n(lo)(l-II(lo-qo))

On the support of the integrand |Log(Jo — p)| *S 2jlogjp||. Taking absolute values of the

factois in the integiand and applying this inequality and Lemma 4 wre get

s

\[(XbH(Io)(1 - ff(l0 qo)))\ < c27lp|Ji|LylV3|i

Using inequality (1.172). Lemma 5 and

Yh) -

go I > ^ I

li/o- g0|> 7

i(Jo g0) - c(l -q)

Vol(5
d-L>

m -s

ißlo - go) - e(l- q)
2 + 4|c|i 577 5JA

| log | p\ | dp

(2.157)

(2.158)
t rt

we finallv have

\TU m/J, Uli YM '

1AM l " ^''""'"P Vo1^
I I

|/(\î/i(/o)(l Hßo --go)))| > AO 7777,7) Ixili (2.159)

The remaining term I(\^IIßlo)) can be bounded using Lemma 14 where lj(1q,\) —-

D(lo-poßl-p\)LLßlo)-

1

|J(Y,jP(/o))| < j dt 1^ /j-ßßyii1 + 'LogKDH J |Log|e(l.q./)||) ]T |<TZ?| (2.160)
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By Lemma 4 this is finite and bounded by

l

b

< ci2d2KlM2-Ah (2-162)

where

hog = sup sup / dl
7j

— — (2.163)
te[o,i] q,p J ß- P\

2.4 Almost tangent Fermi surfaces in three dimensions

In this section the vertex correction is considered in the case where the Fermi surface and its

translate by q touch or q is in a region close to the value where the surfaces touch. Llere the

behavior is strongly dependent on the dimension d. Here the behavior is considered for d = 3.

For simplicity we also restrict ourselves to the standard spherical band relation.

Proposition 16. Let d = 3 and, e(l) = |1|2 - 1. Let q G 1R,
.
Let e be given by |q| = g = 2 - e.

Then for |e| < \ there exists a constant y such that

\r3((qo,<l)Apo,p))\<"fc\Logc\2 (2.164)

We start by isolating the region where the two Surfaces meet. Let

Xo(x) + xi(x) = f
,

Vx- G R ; Xo, XT G Cc

11 11

suppxo C [--. -] and xo = 1 on [--, -]

(2.167

and set

Furthermore, let

x(k) = xo(e(k))xo(e(k-q)) (2.166)

1 1
Z= {x eR\\x\ < - A|x-g0| < -} (2.167)
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Then we can write

rt((qo,q).(po,p))~M+i (2.168)

where

/- fdßl0Jd\C((loA))C((lo + po.l-<i))n(lo-po,L\l -p|)x(l) (2.169)

z

By construction on the support of (f - \(l)l(|?ol < 7)), \(ilo - e(l))^1] < 4 it is

straightforward to sec that

|/j < *c (2.170)

where we can take

- --= 102- VoPS^'ll-Pl, 1 (2.171)
u0 <

2.4.1 Parameter representation

In order to exploit sign cancellations occurring because of the changing sign of the feimion

covariances. we introduce a parameter representation for the fermion covariance.

Denoting A - ?s(/0)s(/0 - q0)D"(h) -Po-c|l - p')x(l)

J = B^2 + lh<2 (2.172)

where

JO CO

B1>0
=

/ dolo / dl dt, / df1A""!^'s"o1'lP7-l^»f^,s(l»~"»P1-(')'AM>2 — / U7/0 / Ol 1 um I cut

Z
'

0 t3

X X1
(2.173)

'l<2
=

/ 0,3/0

z 0 ;

Pi<2
=

/ d,/n / dl / dz, / d/,r-l'f,l',-'^''jV(lV'( "I'0 ,"«')l'1-'s('0+9oM1-<i)^j^-

Well show the bound here only lor P>i>2 as the other is almost identical after shift of inte¬

gration variables.

As Ave want to integrate bv parts onlv for large values of the parameters we introduce

another set of cutoff functions.Let ho-hi t C'"V(7R) and e\reu. such that /?o + /?i = 1 and

hx(v) 7- L for |r| > 2. hßr) = 0 for |r| < f and h\ ~~> 0 for 1 <. 7 < 2.
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The following lemma estimates the effect of decay in the parameters to get bounds in

k.

Lemma 17. Let a > |, ( > 0, g(p) and f(p) be Cl -functions on an open set containing

[-(,(], with g(0) = 0, f(p) > 0 and stipp/ C [-(,(]• Let m^ßh-, <?o,p) be given by

cyr- oo

m3kr(lo-,qo-,p) = / d/2 / d/i
hj(t2)

t3

z2
0 at2

0 Y hk(s(l0)ti - s(/0 - g0)/2 + s(l0 - qo)g(p)h) ,—\lo\t-\—\lo—qo\at2

Op) (s(l0)ti - s(l0 - qo)t2 + s(l0 - qo)g(p)t2)k

for j, k,r G {0,1},?' < k. Suppose there exist 0 < 5i < X and 82 > 0 such that

(2.174)

\g(x)\ < 81 and, \g'(x)\ > 52 \/x G [-CC] • (2.175)

then there exists a constant M such that

1) \mjko(lo-qo,p)\ < Af(l + /7|Log|/0||)(1 + j|Log|/0 - go||) Vp[-C,C], J A'G {0,1}

ii)

C

m]ii(lo,qo-p)f(p)dp

<

< A/(l + /T|Log|/o|!)(l+.?|Log|/0-goi|) sup|/(p)| + /
c
m

^
01

dp
Op

J

Proof. We start by rewriting the parameterization, Avriting s(lo,qo) for ,s(/q)s(/o — go)

<x> til a

ir \
fufu M^OM/t - s(h,qo)(t- g(p))t2) ^Mh-\i0-qo\t,

/o17rv
mno7o,Qo,P)= / d/i / d/2 — 7 Tl 77- e

j 0! |0 i0< -

(2.176

./ ./ *2 Ji -s(lo-qo)(1 -9(p))*2
o 1

As /1 > /2 > 0

<

/2 |/t -s(Z0,<7o)(f - g(p))h\ ti + s(l0,qo)g(p)t2 \t2 \h - s(Z0, g0)(f - g(p))t2

X

7- +

X (X
< TT ^— I T- +
(X-SYh \t2 \ti-s(l0,qo)(l-g(p))t2\

(2.177)

(2.178)
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Inserting this identity in (2.176) gives

oo h /a

mno(lo,qo,p) < ~rr7-/d/l / d/2
iV^ ~''^\^

a 1

oo h/n

AA[(Ui /•dt,I^li^^H1A^^Me-Ko|n-|/o-,o|t, (2.i79)
-di I A Mi |fi-s(/0.g0)(i-(j(p))/2|

a L

Treating each term indhiduallv

oo III" oo

/d/i / dtA-e^^^lo~q(,ha < /d/i I dh I :
e-l'ol'i-l'o-wlt' (2.180)

./ I
"

ht2 J I t{t2
ol II

< (1 f |Log|/o||)(l I |Log|/0-go|!)(l + |Log«|) (2.181)

Consider

il,a

U-
I

dtlAtJAîizAAAA (lAAû(A'o-qo\ai2 (2im

) -

\ti-ßi0-qo)(ß -QßßYß
~>

Assuming for simplicity that |/q — go|o < 1. then

7 1(1 ^ |/[ - s(/0,g0)(i q[pßtß^ tA-i)
„

[j < / (py —— —• ___ _ AYYYßYlßßizMßeAio-q0\cyi2
~

I IP -ßlo-qo)A -q(p))U\
l

"d,,1{lh ~q(^11 A^AAAfA^^^
|P-s(/0.g0)(l -q[p))l2\

CO
(2.183)

P < / dl
llU./i-^/n.f/oKl 91P))PI^ 777^7

'P - -(/o.t/o)(l -gfp))o7,j
i

+ |d/,;/o-gok-,,°-,7',|a'j
i

(2 184)

C7<1 + —-— / -du (2.185)
1 - dv I u

L

U ^ —--U 7 |Log;/o - 7ol,)fl -^ iLogo!) (2 186)
i - (p



78 The one-loop vertex correction

And thus

oo tila

1 fdu f dt/
l hYh - s(l0,qo)(X - g(p))t2) c_Mtl^lo_q()lat2

X--81J A A |ti-3(/o,9o)(l-5(p))*2|
a I

(X + |Logcr
<

A-SA2
(l + |Log|/0||)(l + |Log|/o-go||) (2.187)

and

miW(lo,qo,p) < ^^l?^(l + |Log|/o!|)(l + |Log|/0 - goij) (2.188)
(1 - biY

The bounds on rrijuo for other values of j and k follow similarly using fß° dtho(t)u(t) <

2||u||oo-

The second half of the Lemma is proven by reducing it to the first case using integration

by parts Avith respect to p. HoAvever some care is needed to deal Avith the fact that Ave have

taken absolute values. We make use of the folloAving identity (which can be shown by splitting

up the integral into parts Avhere the sign of w(x) is constant).

Remark 18. Let w(x) = W'(x). Then

C C

(2.189)

-c

Let rih be the number of zeroes of 757-^y^ on |.t| > f. N.B. It is possible to choose /)i

such that 7?/, =4. Then

C / c

/ mJn(/o,go,p)/'(p)dp< 2nh s\ipm3io(lo-,qo,p)\f(p)\ + / ^to(?o,9o,p)

-C V -c

df

dp

\

dp

(2.190)

and the bound folloAvs by applying the first part.

Summarizing we can take

477/, (f + |Loga|)
M =

A-Y2
(2.191)

D
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2.4.2 Integration by parts

The basic idea now is to convert sign cancellations in the original integral into decay in the

parameters. As usual this is clone using integration by parts in the appropriate variables.

Let (p,9,9i) be usual the polar coordinates with p =7 e(l). In order to capture the

volume factor from the dimensionality and the oscillating behavior in the parameters Ave

change to coordinates (p. Ö, o) Avhere 2s/p~-\ 1(1 -- cosTp) -- ß2. This implies sin/pcPp 7=

ß(p 4 X)~~~dß and the Jacobian for d = 3 Avith the spheiical band relation is therefore of the

form J(p)cb.

Let a
—

--y, a •= qa — ((f. In these coordinates ac(l q) takes the form ae(l(p, 9, <f>) +

q) = -p + £(p) + aclr. Here £(p) = 72 4- aq{p - 2v7>TT). We see that £'(0) = 0 and £"(p) / 0

on the support of \. In addition because !(|g - 2) <^ Y for p t [—7, 7], |y'| < f0-

In these coordinates

00 ^ 10 \

Dl>2 -=a I cbJ0 / dt2 I d/, / dö f do f dpcM 'o«i-»('oWi

Z 0 at-, 0 _A

e-\lt}-qa ati-iiJn-qr, (p—t{p))h g-'J'o-qo)«»''2^ (f)JX (2 192)

We can then split of the integral as

Pt>2 = P)o -+ P)i 4 Po f Pi (2T93)

where

oo x. ] 0 T

Ip =a I d.ßo ( dt2 f dti f d§ I dô I dpt-l'0l'1-l'0-9°lût'p-""/u(«;')e~"('0~<7o)a<*"!t;!#-;(<?)-/A"
Z 0 nt2 0

w = s(/0)p/] s(l0 - q0)(p -C(p))P

î7-s(/0)fi-s(/o-go)(i-^7;'(p))/2

(2.194)

(2.195)

Using

JO

f dec "{l'^qo)ae2hßlu(h)JX
b

10

=
ßAßAzßAMA(jxß^0- YßAiYfLl [dAl(JAe->A0 -«o««^^. {2m)

a t2
'°

a J t2 dß
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and

dperiwhi(w')JX = / dpe
^whi(w')0JX

i,w' Op
dpe— ( lAAl ) jX (2.197)

Op iw'

Ave integrate by parts j-times Avith respect to ß and A:-times Avith respect to p to obtain for

;,fc = 0,l:

10 3

Y]k\ < I dßlo I d9 dß dpmjko(p,lo,qo)
o _i

3

YAk [A\
dp) \06)

10 3

Ski I dßlQ I d0 I dß j dpm3ii(p,to,qo)

z 0 _i
3

+ S]L / dplo I dö / dpmiko(p,lo,qo)

z

A
dp

(JX]

0ß

(JX]

JX'

(7=o

+ SkiSn I dßk I dö / dpmm(p,/o,go)|(JA)|()i==0 (2.198)

z

where rnjkr are as defined in Lemma 17 Avith g(p) = tß(p).

The last half of (2.198) is bounded using Lemma 17 and 2|Log|/o|| > (1 + |Log|/o||) on

Z to give

dßlo / d9 / dpmiko(p,lo,qo) (ff
<7=o

< const / dßlo / dö / dp |Log|/o|||Log|/0 + qo\\y. -Dßo - Poßl - p\
J J J |l-p| é-0

const d9 dpc|Logc|2|Log |1 - p||2 < const .c|Logcj" (2.199)

because f dp|Log|l(p, 9, 0) — p|j2 < const.
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As

dßlo / dö|Log|/o|||Log|/o + <Zo||sup|(./A')|(Ä_0

< const / dj/o / d(9|Log|/o!|jLogj/o f go||P>7o - PoaA)

7 const |Logcj2cA(Log(A)2 7, const .c|Logc|2 (2.200)

we have using Lemma 17 and JX > 0.

1
3

dßlQ / dö / dp777iU(p./o.go)|(JA)|0=.0

< const / dßlo / de / dp??Mio(P-/o-<7o) A(JX)
Op 0-0

const / cp/0 / dö|Log|/0|||Log|/o+ go|l sup |(/A')]0 <-const r(Logc)" (2.201)

For the other tvvo teims avc apply the lemma again to get

10 1

dßlo / d9 / dô / dpm;AO(p7o.go)
z b ßi

10 7

0\> ( 0

dp) \Oo
(JX)

< const / dßlo j dö / do / dp |Log|/0|.iLog|/0 + /oil71—Z\1DV° ^Po,ßl- p|)

0 _i

1-v2'

10 7

s
> /'

,
f

,
(l0i7 1 - Pi)2

/,x ,, ,1 ,

"(loge)' do dp Y *-^-\ 1 < const .c loge
2

2.
/ / I- P|

const cy

0 _i
3

where we have used

Remark 19. Let the coordinates (p. 9,6) be as introduced above, then at fired 9,

Jdo[dp{^^AÏxA)<eonst
It |1 - PI
0 „i

3

202)

(2.203)

P7'oo/. Note first that on the support of (1 - 1(111 - pjj < 7)) the integrand is bounded by

a constant times a logaiithm squared and thus the contrilnition from this region is trivially

finite.
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Let k(0) be the orthogonal projection of p on the plane given by extending {l(p, 9,ß)\\p\ <

Y ß = 0... 10}. Let k2(9, cb) be the orthogonal projection of k(9) on the ray through the origin

and 1. Then |1 - p| > |l(p, 9, ß) - k(9)\ = y/\l(0,p, ß) - k2(9, ß)\2 + \k2(9, ß) - k(<9)|2.

Let £3 be such that {l,ks} forms a righthanded set of coordinate vectors for the plane

and let

= (1 - k2) - f w - (k2 - k) k3 .204)

then

a[\1(9,P, ß) - k2(9, ß)\2 + \k2(9, 6) - k(t9)|2 = ^fYAYA2 (2.205)

Geometrically z and w are the signed lengths of 1 - k2 and k2 - k respectively.

dw

It remains to shoAv that on the support of y(l)l(||l - p|| <

> const. Then we can change to these variables to see that

A > const and

10 3

',,/", (log|l — pi) ,„,H /n, |, P
dß / dp^l f-xl 1 1-P < T

./ |1 - PI 4

0 _i
3

lOmtt

< const / cb /

b o

d7rr^|Lj=--x(l)l(l|l
- Pll < j) < const (2.206)

•SY21^w

The derivative of z is simple to bound as z = r(l) - r(k2) and f^ > const. Remembering that

Ave denoted by 9\ (from the polar coordinates) the angle in the constant 9 plane, then Ave can

see explicitly

w = \k(9)\AxY9i(l(p,e,ß)) - 9ßk(9)))

nu

Oß
= \k(9)\coS(ei(l(p,9,ß))^9i(k(9)))^A

> const

(2.207)

>.208)

by construction.

In bounding the term

10

Ski / dßlo d9 dß I dpnijiYpJo-cio)

z b
dé

(jx:

o

(2.209)
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by applying Lemma 4 it, is required to be more careful with taking the supremum and inte¬

grating. This is done in the following lemma

Remark 20. Let, fkßx,yi,y2) = \Log\x + yi\\k\Log\x + y2\Y Then

i) For

x 10

h, --- j dxfkl(x. //i, y2) j drtsup -—-^—Jt-^ (2.210)

-X) 0

\Lki\ P const uniform mui,y2,p- (2.211)

ii) For

10

r =, / d/0fu(/o.O,go) / dösup—i-T- .rrlzPL—-
(2.212)

.7 ./ p |1-P| do
- Po) +c-|l-pp

z o

|7l| < const r(logc)2 (2.213)

Proof, i. First note that the result is obvious for the integration over regions Avhere jl — pj >
7

(or |/o — po| ~> 7) so the beloAv will silently assume that on the integration region the opposite

holds. Let k(9), k2(9, cß. à and ir be defined as in the previous remark. Let, v(9) be the signed

length of k(9) -

p. i.e. \v(0)\ ~~ \k(9) - p|. Lhen bv construction

|l-p| = ^v(9Y + w(0.tß2 + i(9.ß,p)2 (2.214)

Let 110.6) = \Jv(9)2 + w(9.o)2

|1- p| = \Ju(0.oV + A9.o.pY (2.215)

The integral thus can be rcAvrittcn as

00 10

hi = j drfuA- ip- y2) f do sup F (2.216)

-x: 0

where

F=
YYO-oY^YO-o-pY

'

r2 + n(9.<ß2 + z(9,o.pY
(2.217)

The idea is now that although the function F is maxiirral for r2 - v(9. dß2 -\ z(9, ch.p)2 (and

then equal -I) this value is not always in the domain of integration/taking the supremum. So
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we get

1 1

sup F < sup Fl (œ2 < u2) + sup Fl(u2 < x2 < —) + supFl(— < a;2) (2.218)
p p p

lb
p

16

< 1{x2 < n2)-
A0,A

1(
2
< x2 < 1}I

+
_1 (2-219)

x2 + u(9, é)2
~~ - XSYr Ax2 + {

(where the last bound comes from the restriction |1 — p| < |). The restrictions on the inte¬

gration range noAv make the integral finite. For instance

10 \ 10 10

dé - < const + / d</>Log \u(9, ß)\ < const / dc/>Log \w(9, é)\ < const (2.220)

0 \u(è,Ô\ ° °

as 11^| > const for small w and thus é. The additional logarithmic divergences in fki change

nothing but the value of the constant.

i =^> ii. This implication follows by rescaling:

to

h= I dlofu(lo,PPo + qo) /dsup-r-J1 p|
(2.221)

/ J p (f r + i - p\2
Z+po 0

c

10

/* p 111

< / dZo(logc)2 / dsup-;—LAPP!
""

,/
{ '

J /(^)2 + |l-p|2
Z+po 0

c

10

+ loge / d/o/io(-,— ,0 / d^sup-r— -

J c c J p W+l-p2

Z+po 0
c

10

. n ,
/"

,, ,
7o

n
Po + qo-, f , , |l-pj

T loge
/ cl/o/oi(-,0, ) / d^sup-j—-—

-

J C C J p ((0A2+1_p2

Z+po 0
c

10

a- / dlofn(-,—, / dc7sup (2.222)
,/ c c c ./ p (k)2+1_p2

2T+/70 o

D
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Chapter 3

Power counting and renormalization

3.1 Going to higher order

3.1.1 Restricting to a simpler case

In this and the following the chapter the higher order terms in the renormalized perturbation

expansion are considered. Unfortunately controlling such terms requires quite some technical¬

ities. As stated in the introduction we Avili restrict to the weaker bound proportional to c1_t.

Combined Avith the restriction to the spherical symmetric Jellium band relation this removes

some of the technical problems.

3.L.2 Some notation

Univeral constant, const

We will focus on the existence of constants and not their A-alue. For that reason. Ave use the

general notation 'const' as a placeholder for a constarrt that may- change from inequality to

inequality, but is independent of the important parameters of the problem. In particular c, q

and ß, however it is allowed to depend on e.

Properties of graphs

Let, G be a graph. Then Ave denote by L(G') its set of lines and by V(G) its set of vertices.

Vn(G) is the set of A-erticcs of G Avith coordination number n. Denote by Lp(G) and Lb(G)

the set of Fermion and Boson lines respectively For a line / of G avc will sometimes Avrite P)

for its propagator and;)/ for the momentmir flowing through /.
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Let {Pi}"=i be a set of pairwise disjunct subgraphs of G. Then the quotient graph

G/{t7î}"_1 is the graph obtained from G by replacing each Ut by a vertex ty that is connected

to the rest of 67 by exactly the same number and type of lines as Ut. If n = X Ave often Avrite

G/U for G/{U}.

3.2 Wick ordering

Another basis

A fiist useful method to attack the perturbation expansion is to do the expansion not in the

basis of the normal monomials, but in the so called 'Wick ordered' or Wick-monomials. Note

that a Wick-monomial of degree 2n is actually a polynomial degree 2n. Expansion in terms

of Wick-polynomials amounts to a partial resummation of the perturbation scries.

Définition

Recall that it is possible to Avrite each monomial of the fields ß and rf> bv means of the

generating function

m<l>(Pi) Y(kn)YAPn) =
tjUt^A wf^T^r^'^'0
Sx(h)Sx(pA Sx(kn)SX(Pn)

(3.1)

\=\=o

This relation is used to define the Wick-monomials with to respect to covariance C, denoted

using : :<?, as

: Y(k)vb(pi). ..ß(kn)Y(pr,) :c= 77-77-7 jz-p-T
JXl^lTr^Wc

Sx(ki)S\(pi) 5x(kAS\(p„)
(3.2)

Y=A=0

A\here

Wc = eAA)+(ßx)Ax,cx) (3.3)

The Wick-monomials aie useful because they are in a orthogonal with respect to the measure

dpc- Because

Apc(Y,ßßWc(Y,Y) = L (3-4)
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we have for instance

/ dpcßl\ i/0 : Y(k)ß(pi)... ß(kn)Mpn) :c= Sn0 (3.5)

It is useful here to keep the covariance with respect to Avhich Wick-ordering was done in the

notation as in oui' case these will differ most of the time from the covariance Avith Avhich the

integration is clone.

As an example the "Wick-monomial of degree 2 is given by

: ßßkßßp) :C- mv(p) + C(k)8(k - p) (3.6)

Note that the extra term m Pie Wick-ordering is obtained by taking the pair of fields and

'contracting' it. That is replacing it by a propagator Avith the proper momentum dependence.

In fact Wick-ordering is often defined recursively by (3.6) and extending to larger' degrees by

contracting all possible parrs.

Wick ordering, graphs and Pick Pires

Idic expectation values of monomials in the fields are computed by expanding them into a

sum over Feynman-graphs. If A\-e instead compute the expectation value for (products) of

Wick-monomials it, is a well knoAvn result (e.g.. [Sal99]) that this gives also a Feynman-graph

expansion, but the contractions such as in (3.6) cancel exactly those graphs Avhere there are

lines that connect a A-ertex to itself. Such lines arc called Wick lines. As a result graphs

containing Wick-lines do not occur.

The Wick-ordered electron-phonon vertex

BeloAv we assume the bare interaction A-ertcx function 7b to a be Wick-ordered monomial

Avith respect to C<q. This is a common thing to do Avhen studying field theory. In this specific

case this assumption is eA-en trivially satisfied. By momentum coirversion the contraction of

the Eletron-phonon vertex contains a factor 77)(0) = 0 and therefore vanishes.
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3.3 The localization operator

3.3.1 Using localization to define the counterterm

As already stated in the introduction the aim of renormalization is to show that there exists

a function k(lo, p) such that when
jf-ze(i)-kii i)

*s used as the free propagator it has the same

singularity as the full propagator ü _e,l^2\Al n^wp-yy
^n particular we want the bare and the

physical Fermi surfaces (i.e. the zero sets of Uq - e(l) — k(lo, 1) and Uq - e(l) — k(lo, 1) - P(/o, 1)

to be the same. In addition Ave want to take the function k as simple as possible, in particular

Ave want it to have no, or very simple lo dependence.

Definition 21. Let i G [0,1] then Pt is the contraction defined, by

Ptl = l(ip(l),0(l)) (3.7)

We have P\ = id.

For the space of functions on R x Rd define the projection I as

(*/)(po,p) = /(0,P0p) (3.8)

Then the condition on the zero set can be formulated as

^-o-e(l)-fc(Z0)l)-S(Zo,l)) = 0 (3.9)

Because I is a projection it easy to see that if we can choose k such that k = —7E then the

condition is satisfied.

3.3.2 A stricter localization

Definition

Note however that \ve have considerable freedom in choosing the function k. ft turns out that

in the case of a spherically symmetric band relation e(l) it, is convenient to require more of

the counterterm. This done by replacing the projection £ by a neAV projection L defined by

(hfY.Po-p) = M Pop) +Po(^/)(0,Pop) + jj^hp) (3.10)
t=o
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Properties of the localization operator

When the function T is given in the coordinates h,p-9 the projections become in these

coordinates (for a function T(/o, p. 9))

(iT)(lQ.p.e) ----TPO.0.0) (3.11)

(PT)(/o,p.Ö) -T(0.0.9) + lo(^rF)(0,0.9)d p(AT)(0.0,9) (3.12)
oh dp

It is obvious from this form that (2 = t and L2 = L, and that the projections map all functions

on the zeroth- and first-order favlor polynomials m h <iud p. Moreover, if the function T is

radially symmetric in H'ß i.e. it doesn't depend on 9. then this also holds for IT and LT. In

fact, for a radially symmetiic P. IT is a constant and L T a frrst-orclcr polynomial in h and p.

For later if is good to lune an expression for ( L L)T. the remainder of the second-order

Taylor expansion:

i f

(X -L)T-- /d/ Ids(DI')(J0.sp,9) (3.171)

o o

where D is gi\-en by

^of^ 2/074 ;} ^T* ^
Oh did Op Op~

We also need just the first-order expansion

(1 - L)T --- (1 - IßT - 10(4-T)(0.0.e)
-t p(-f-0(0,0,0)

d/0 Op

OT
,

,0T \ / ,dTs
- latihl(YY)Yh-ip-e)-(YY)(v-ü-0)) -pl(YY)(ih-tp,9)-(A)(o,o,9v)

Oh 0l0 ) \ dp

(3.15)

When T is radiallv svmirretric

and

^-LT=A(T = 0 (3,16)
Oh Op

YLTYA'mn-] |;ir-p/)(aM (3-'7)

AtAA=A't-° (3'i8)
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3.3.3 Counterterm

Changing the propagator means changing the measure in the functional integral. HoAvever,

for the analysis of the theory it turns out to be convenient to keep the same measure for

both renormalized and the unrenormalized theory. Observe that (p, C~xip) appears as the

quadric part in the exponential. Adding the function K(p) thus has the effect of adding an

extra quadratic term. So instead of absorbing this term in the coA^ariance it is also possible to

view it as an extra so called 'counterterm' in the interaction that is quadratic in the fermion

fields.

That means avc will use as an interaction V in our renormalized theory

V(P, ß, é) = -gVo(P, P, é) + /C(P,P) (34 9)

Avhere /C(ß,ß) is a Wick-monomial of degree 2. Again here the Wick-ordering is of no conse¬

quence as Wick lines on a 2-vertex produce disconnected graphs.

3.3.4 Extending the localization operator

In order to make it convenient to implement the localization condition on the generating

functionals, aa-c extend the localization operator to a projection L on formal poAver scries of

the fields. First define L on Wick-monomials, ff Q(ip, p) is a Wick monomial of degree 2m Y 2

in the fields then TQ = 0. Tf Q is of the form

Q(<M) = j dßlo JdlQ2(l) : P(7)P(0 -c (3.20)

the localization L ad s as

LQ(P, P) = Jd8l0 JdlL(Q2)(l) : P(/)P(/) :c (3.21)

(3.22)

Then extend L by linearity to all formal power series in the fields that have coefficients

containing an overall momentum-conserving ^-function. All polynomials and formal power

series that occur here arc of this form, because of translation hrvariance.
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3.4 Multiscale Analysis

The Multiscale Analysis techniques used here are based on [Sal98, Riv91, Gal85, GN85a,

GN85b, FT90, FT9L, FST96, FST98. FST99. Leh94, FLKT95, FKLT99]

3.4.1 The flow of the effective actioir

A decomposition of the Fermion propagator

The guiding principle of (mult P) scale analysis is to weigh the rate of increase of the propagator

around the singularity by decomposing the space around the singularity in small shells that

come exponentionally closer. The index of such a shell is called the scale. The contribution of

a shell to an integral containing the propagator is bounded bv7 the supremum of the absolute

A-alue of the propagator times the volume of the shell. As the shell is closer to the singularity

the srrpremum increases Avhile the \rolumc falls. If this decay is quick enough to compensate

for the increase in the supremum then the pioduct. i.e.. the contribution of this shell, is finite,

ff, additionally, the contributions form a sum niable series, the integral is finite. Therefore,

(nmlti-)scalc analysis can be seerr as a poAverful arrd exact A-ersion of power counting.

This method was originally developed to deal with ultra-violet divergences [Riv91,

Gal85, GN85a, GN85b]. In that case the decay of the propagator is weighed against, an

increasing A'olume of shells, but the technique is otherwise the same.

The division of space into shells is done using a smooth partition of I on the support

of C. Let 1\1 > max{4, T-}. Let c, Cœ(A [°-1]) such that

I 0 for r< M"1

u(x) = (3.23)

[1 for r> M~2

and n'(x) ^ 0 for x fc (AT1. M~2). Then define for ; fc Z_

ß{x) = a{M~2>i) - a(M-2^-^x) (3.24)

which gives

-l

1 -«(.r) = £ M') (3-25)

supp/, 77 ß^YJ~l,AI2ß (3.26)
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Note the standard convention that, the scale j is a negative integer. This is because Ave are

studying the infra-red end of the model. The positive integers are typically used in studies of

the ultraviolet contributions. If Ave define tj(x) = t(\x\ < M-7) then \fß(x2) < tj(x).

We can noAV insert the partition (3.25) into to the propagator. Define the (hard) prop¬

agator of scale j, Cj as

CYY=C(l)fYlAe(l)2) = fj{f+ e^ forj<0

I °
~

A (3.27)
Coßß^cmiAeYYY^^^fAJY^n

Jo - e(l)

Because of the special choice of the scale zero propagator, the full propagator C decomposes

as

C(l) = C<o(l)^2ACA) (3-28)
j<0

The name P<o for the complete propagator will be used to emphasize the presence of the sum

over all scales Avhen appropriate.

Later Ave also need the soft propagator of scale j, C<j, defined as

k<j

Note that on the support of Cj(l), by construction
, \ih — e(l)| > MJ'~2 and thus Cj is no

longer singular. For any multi-index a Ave have that

\daCßl)\ < constM^(1+lö^l7(/o)lj(e(l)) (3.30)

for all j < 0.

After a change to the coordinates (p, 9) of Lemma 5 one easily sees that

fd\lj(e(l)) < const Mj (3.31)

fdßhl:j(h) < constMj (3.32)

Using these three inequalities Ave have for j < 0

dßlo fdl\Cj(h,l)\ < constifO (3.33)
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and for j < 0

/d/3/0 /dl|C<;(h-I)| < constM3 (3.34)

On the support of Po the momenta are not restricted to a compact, set, and therefore it

has to be treated differently The PTV-cutoff will still restrict the vector momentum, but the

frequency- sum contains infinitely many terms.

ft is in fact a good Avarm-tip exercise in Avorkitig Avith scales to sIioav that (3.33) implies

(3.34). Inserting the definition of the soft propagator

1 = Jdlo jdllCYYlo-l)] < jdlo |dl£|C*(/0,l)| (3.35)
k<]

At finite ß, \h\ is bounded from beloAv and thus the sum on the right is actually finite.

Therefore it can be exchanged with the integral. Using (3.33) avc have

J^E /cl/o [dl\Ck(lo-l)\ (3.36)

< const J2-]fk (Y-37)

-= const ]T Mk~>MJ = const 4P ]T Mh < const M> (3.38)
A-^7 KO

Given a graph 67 it is possible to insert (3.28) in the integral for Val(G'). This gives a

scale decomposition for each fermion line in the graph. For (his reason the method is called

multiscale analysis. As in the preceding trivial example it is possible to take the sums outside

of the integrals. Each fermion line / in the graphs then has a propagator Cn attached to it.

Bounding Val(67) then amounts to using (3.30) and (3 33) and shoAving that the factors that

occur are stuumable. Thus bounding the graphs has been reduced to a conceptually simple,

albeit sometimes technically challenging book-keeping exercise. Before avc embark on this, \Arc

first show that such graphs in fact occur naturally as part of a discrete renormalization group

How.

Semigroup properties of the effective action

Recall the effective action defined in (1.49), Avhich was gp-en as:

G(C- P //. V) =-- log ldpc^(Y c)dpD(n)ev('i+t <l+^+A (3.39)
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Define VeS(Y Y v) as

Veff(4J, Y rj) = log jdpD(é)ev^+v) (3.40)

Then the total effective action is given by

G{1 Y V, -9V) = log fdpci0(P, rb)ev^J+^+^ (3.41)

We concentrate on the those contributions to the generating functions Avith no external phonon

sources. Thus Ave can set 77 to zero on both sides. Dropping the V-dependency from the notation

this gives

G(YO = log jdpc^Y-Y)eV^^'b+^ (3.42)

Note that the phonon part of the theory is now completely contained in Veir which appears

instead of V in the interaction. This can be interpreted as a new field theory Avith 'effecthre

interaction' V0fr- This is one reason for calling 67 the effectiA'e action.

The renormalization procedure avc follow now is a further application of this idea. It is

originally due to Wilson. Our current formulation is taken from [FT91, FST96] and companion

papers. See also [Sal99] for a more detailed introduction and a more elegant approach. Let

the general effective action be given by

Gx(YYm = logfdpx(Y,ßßeu^^ (3.43)

If the covariance A" = A'i + A2 is a sum of two covariances then the Gaussian measure is

simply the product measure of the measures d/ixy and d/p\-,. This can be used to A\-rite

67A7+A7 (Y YU) = log yVVl (P, Y)eG^&+M+Q = GXl (Y Y, Gx2 (-M)) (3.44)

Because of this property the method is often called the Renormalization Group Approach,

although of course (3.44) is only a semigroup representation.

Integrating out fluctuations scale by scale

Proceed by rising the semigroup property on the decomposition (3.28). As Ave already saAv

in the example aboAre, this decomposition is effectively a finite sum at finite ß. This will be
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implicit most, of the time, but to make it explicit observe that there is some I = I(ß) such

that.

G(-,VC{{) - Gc<I(;Gi(;Vca)) - 67;(.,VPff) (3.45)

where Gk(x,xY^) — Cy0 r (M) ~1S called the effective interaction of scale k. This identity

can be seen from the characteristic function of the measure dpc<i and the fact that I can be

chosen such that the because of support properties (\. (-Yi\) - 0. Alternatively observe that

in a Feynman graph expansion the right-hand side is the leading term, and the only one that

does not, invohre integration over lines with Cß^j.

Inserting the finite decomposition of the propagator Ave get the recursive expression

G,^Gcß--G1^l) V7y?<^l (3.46)

On a physical level this means that at scale y the theory can be seen as an effective theory

field theory Avhere the propagators are of scale y and the higher-scale contribtitiorrs appear as

effective interactions. I he higher scale fluctuations are said to have been "integrated out".

ft is convenient to rcAvrife (3.46) as

Cß - Go + ]T (Gl- Gk+A (3.47)
j^A<0

3.4.2 Renormalization

Introducing the counterterm scale by scale

Recall that V(\, \, rj) = —gVo{\-X- >]) + h(\. \) wirh k" a Wick monomial of degree 2. Thus

Voli = Po-P (3.48)

vith

Po - log fdpD(o)e~«Vn<-^ n+n) (3.49)

If avc noAV also define

C] _

C7;-C7;.a ;<0
(3.50)

670 - Pen j - 0

(3.51)
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Ave can rewrite (3.47) as

Gj = Vq + K + J2 £k (3-52)
3<k<0

Note that at finite beta 67 = 67/ and £k = 0 for k < I. Therefore for j — J, (3.52) can be

written as

67 7= y0 + 7P + ]TV (3.53)
k<0

Remembering that the object of counterterm is to regularize the theory such that

L67 = 0 and that L projects on the wick-polynomials of degree 2, Ave get the folloAving

equation for the counterterm.

o = lg = lvo + l/c + lJ2 £k

- L/C + L J2
(3.54)

ck

k<0

Using L = L, one sees that (3.54) is 'solved' by

K(X,X) = £-L£*(X,X) (3.55)
k<0

Note that this is actually an equation for K, as the <PPs still depend on TV. However when /C

is expanded as a formal power series in g, then for the contributions of order r only terms of

order r' < r appear on the right hand side by virtue of the construction of £J. Thus on this

level (3.55) can be interpreted as a recursive definition of its own solution as a formal power

series.

The renormalized theory

Noav that Ave have an expression for the counter term, it possible to define the renormalized

theory.

Definition 22. The renormalized theory is given by the effective action (3.39) where V =

— <?Po + P- widh K given by (3.55).
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3.4.3 Gallavotti-Nicolo trees

Tree expansion

Above the multiscale analysis was used to define the counterterm. However as we shall sec

now, it also a great help in Gnding bounds for the coefficients in the poAver series expansion

of 67. The main reason for this is that the sum over all graphs gets subdivided into sums

over graphs with a particrdar structure of subgraphs (which dictates the structure of the

divergences). Again aw follow [FT91J and [PST96J.

After inserting the definition for the counter term (3.52) can be arranged in the con¬

venient form

67; - Po + ]T(1 - h)£k + ]T -L£k (3.56)

7<y k< i

The objective is to expand the coefficients 67
7
m a seiies of Fevnman-Graphs. As Avas stated

in the introduction these occur when expanding the exponential of the interaction. This can

be made moie explicit [Sal99]: Let Ü be a polynomral in the fields. Define the CA-aluation

operators £„ as

£n(GIti. • PP) - II Y\
l°'A I dl-'ceT^s

?=L

A,/P (3.57)

\i= =A„=0

With this definition we have for k ^ 0

v^ 1
-pt,ß(

}. 67?4.i. ,.,67/+i) (3.58)
AA r

;) times

This sum starts at n — 1 because avc lurve explicitlv subtracted the n = 0 contribution in the

definition of O. Tn fact if U is a Wick ordered monomial aaPIi respect to C, then Pi (C,U) = 0.

Denote bv Pf n
is the orthogonal projection on the wiek-ordcred polynomials of degree 77.

Insert (3.58) in (3.56) and expand each term as a Wick-monomial Avith respect to C<r

Phe resulting sum can be kept finite Ire A\-riting OA-eivthmg as formal poA-vcr series g and doing

this order by order. The equation (3.56) is a recmshe definition expressing 67
7
in terms of

the other 67/Ps with appear as aigumenfs to <fn"s. Note that <f„ is multi-linear. Therefore the

sum over Wick-monomial contributions to (3.56) can be taken outside.

These sums in the expression of 67 can be represented as a sum over Gallavotti-Nicolo

trees (GN-trees, or often just 'trees') [Gal85. G\85a. GN85b]. A GN-tree is a triple (/, E}, Pf).
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here / is a tree rooted at root ß. The number of branches above a fork / is denoted nj. Ef

is a map from the forks of r to the positive even integers. Pf is a map from the forks / of /

to {1, (1 - L), -L} such that Pf = X when Ef > 4 and Pf ^ 1 when Ef = 2. A fork with

Pf = 1 - L is called an R-fork. A fork with Pf = -L is called a C-fork. Most of the time Ave

Avili simply write t for the triple (t,Ef,Pf). Denote by 7r(/) the fork just beloAV a fork /.

A particular contribution to 67 is given by a GN-trce (t,Ef,Pf) and a labeling jf of

the forks and leaves of / as follows. Starting with the root, take a fork / and:

• If / is a leaf, then jf = 0 and take the term Vq-

• If ,/' is a fork and Ef > 4 then jf > jP(/y Take the term Pc<} ,EfAA- Each of

the 77/ arguments to £Yf is given by the term corresponding a sibling of /. These are

determined recursively.

• If / is a fork, Ef = 2, and f is an R-fork then jf > j7T(j)- Take the term (1 -

L)PC7<J ,EfAA- The arguments are determined as above.

• If / is a fork, Ef = 2, and f is an C-fork then jf < ,Pr(/p Take the term (-L)YY£Yr

The arguments arc determined as abo\*e.

A labeling with scales jf A\4th the properties j„ = X for a leaf, jf < .P-m for a C-fork. and

jf > Jwtf) otherwise is called compatible to t. Note that because of the Wick-ordering only

trees with nf > 2 for all / Avith jf < 0 contribute.

Labeled graphs

To complete the expansion in to graphs Ave use the folloAving standard result (See, e.g., [Sal99]):

If for each i = 1,... .n, 77, is a Wick-ordered monomial of degree 2m, with respect to C<3 =

C3 + C<3 and the order r' contribution to the coefficient is given by UL_r> times a momentum

preserving delta-function, then the coefficient of order r of Pc< ,rn£T1(Cj,Ui U\) is a up

to a delta function given by TpPPm.rj," with

E2m,r.j.r,= }Z EE Val(G> S)A , C<v Uyri,..., Un.rJ (3.59)

E7=10=r G s

Here G is the sum over all (connected) graphs Avith 2m external legs and 77 A-ertices where

A-ertex i has 2777, legs and where no line connects a vertex to itself Avhen j < 0.1 The sum over

s is over all maps s : L(G) -> {0,1} such that 67 is connected by just the lines with s (I) = 0.

1. At j=0 it possible that Wick-lines occur because Vo is not necessarily a wick-ordered polynomial.
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Idre lines with s (I) = 0 are called hard lines and the lines with s (I) - X are called soft lines.

Val(G, s) is defined like the normal Feynman rules, but lines s (I) = 0 have C1 as a propagator

and lines with s (I) = 1 have 67<7 as a propagator. The vertex with index i has UhTi as a vertex

function. With each line there is thus associated a labeling (ji,sj) Avith ji = j and si = s (I).

The connectedness by hard lines condition comes from the fact that the integration is

with respect to dpp and the logarithm is taken. Graphs with lines connecting a vertex to

itself do not appear because the vertex functions are Wick-ordered monomials. Finally the

extra soft lines come from the contractions Avith 6\j that result from expanding unordered

monomials in terms of those that are Wick-ordered Avith respect to CPr

To compute G2„h, in terms of Peynman-Graphs, apply the above result to the contri¬

bution of a tree / rooted at é and a labeling with scales y y compatible to /. IX the tree does

not just consist of a single leaf this expands Pc<;, c £-n't in terms of a graphs Avith labels

()i, y) with j/ = pp. HowcA-er the A-crtex functions ate either the scale zeio vertices Po or they

aie of the form P/Ppy E,?n\ and thus can be expanded in a set of graphs with labelings

(p,jß with )r = )i If avc take the sum over these giaphs outside then each of these graphs

appears as subgraphs replacing the A-eitices. Repeat this process recursively until the leaves

arc reached. Note that to each folk there is subgiaph Gf and these subgraphs are partially-

ordered by inclusion such that (7/ C Gp iff f ""• f' in /.

Exchanging the sum over scale assignments to the tree with the sums over subgraphs

and combining those in one big sum oa-ci graphs giA_es

^^EER/AE E Val(G') (3.60)
7<0 ; M " G ]f-J(lG,i)

Llere J(t,G. j) is the set of all labelmgs J of 67 that haA-e root scale 7 and aie compatible

with /. A labeling J of G is assignment the lines of 67 Avith labels (p, s/). A graph 67 Avith a

labeling J is denoted bv G' and is called a labeled giaph. A labeling J is compatible to / if

there is a mapping /' t-> Gf from the tree / to the subgraphs of 67 such that

• Gé---G, Gj C6r> iff / % /'.

• When /' and /' aie not ordered then Gj and 67p aie disjunct.

» for each /' all lines / of the quotient graph 67(/) 77 Gj/{Gf>}w^p^-f have the same

scale, say ;y

• 67/ has 77f A-ertices.
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• Gf is connected by its hard lines, and

• The labeling of t defined by the j/'s and assigning scale zero to the leafs is compatible

to /.

ff J(t, G,j) Y 0 f°r some j then 67 is called compatible to t or vice versa. A labeled graph is

said to have root scale j if j(p
—

j.

Each vertex Pq or of order 2 and corresponds to a leaf of /. The sum over trees / is thus

a sum over all trees / with r leafs. As n f
> 2 for all f with jf < 0 the number of such trees

is finite. A bound due to Felder for the number of such trees with giA-en incidence numbers is

given in appendix F of [GN85a]. However Ave do not require it here.

For a graph with none of the Ef = 2. Val(GJ) is simply given by the usual Feynman-

rules Avith hard or soft propagator of scale ji associated Avith a line /. If 67 contains an 67/-

Avith Ef — 2, Val(677) is defined by applying Pf to the value of 67 J and inserting that as a

vertex function in the containing graph. Here J/ is J|cy A more explicit expression is given

in Section 5.3.2.

3.4.4 Powercounting for labeled graphs

The decomposition of (3.60) is convenient because the subgraph structure induced by the tree

characterizes the poAver counting. This is captured in the following Power Counting Lemma.

Lemma 23 (Power Counting [FT91, FST96]). Let j < Q, t a tree with Ef > 4. 67 a

graph and J G J(t.G,j). Then

IVal67J|0 < const J\ |Val(P)|0 M0*3* ]J MD/^/->i/)) (3.61)
v leaf f><7>

HereDf = \(+-Ef)-\Y2(Gf)\.

This lemma actually holds more generally. For instance; For the unrenormalized theoiy,

i.e. L = 0, the restriction Ef > 4 can be dropped.

P7'oop We give an inductive proof that exploits the recursiveness of the labeled graphs that

occurs naturally because of the tree structure [Leh94]. The induction is on the height of the

tree, i.e., the maximal number of forks betAveen a leaf of the tree and the root.

A graph belonging to a tree of height zero consists of just a vertex function, so the

lemma holds trivially. If the tree has nonzero height then consider G(ß). Denote bv // the
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subtree of/ rooted at /, and by Jf the labeling of 67/ induced by J (N.B. J/ fc J(tf, Gf,jf)).

Then

|Val(67J)|o<|Val'(67J(ç5))|0 J] lVal^')lo Ü !ValG/;lo (3-62)
,71.!') è 7t(7)= <75

Where Val' (GJ (é)) means the value of the graph where all A-ertex functions have been replaced

bv 1 and all propagators bv their absolute values.

Note that all lines of 67/(o) haA-e scale j„. Start Avith the case j(p < 0. By construction it

is connected by hard lines, ft is possible to choose a spanning tree T of consisting of hard lines

only. By (3.30) for each line / £ P the propagator |P/| is bounded by const M ~n — const M^]v.

Each line / L(G(cb) \ T) forms part of an independent loop containing / and lines of T. We

can bound the integial corresponding to this loop using (3.33) and (3.34). Note that only

CJli?l appears in the integral because we have already taken stipiema of the propagators of

the lines in the tree. Taking all these together grves

|Val'(67/((7))|o < const U~?< \F.n\ }[iMAGA)\T)\ (3 6:])

This power counting bound can be rearranged usmg the topological properties of the graph

arrd the spanning tree:

|P(67(o)\7-)|, \MG(o))\ - \L(T)\ (3.61)

|P(P)|-!P(T)|-1 = V(G(é))\-l (3.65)

'/'(G(«))|^( E ^ E Ef ~A) (3-66)

ir(G(,i))|= E ^ E i (3-67)
t(i)-o r(l)-0

All these taken together gh'es

|P(67(ô)\T)|-|L(P)| = 2-ip7^ J2 0h,-2+ J^ ßE^2 (3'68)

Note that ÏE, -2^0 for El - 4 and \EV - 2 - - 1 for Ev - 2. Because the graphs 67; for

tt(/) 77 ß are disjunct Ave have V2(G„ \ {Gf}.,n=l)) -= VAG6) E^j)-^ VYG[)- Together

this gh'es

|Val(67%yconst4P^M^^G P f] |Val(r)|0 \[ 'Val^V^'^"^'"1^^

(3.69)
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and the lemma follows by applying the induction hypothesis to |Val67/|o-

It remains to treat the case j^ = 0. Note that if root scale is zero, there can be no forks

above the root. In addition when j<y, = 0, Mß*J* = f, and the Lemma reduces to showing that

the value of the graph is bounded. Because the scale zero propagator is bounded it suffices

to show this for graphs that are 1PI.

Consider the graphs with the phonon lines replaced by effective 4-vertices Po. The scale

zero graph can contain Wick-lines. As the original electron-phonon vertex was Wick-ordered

these can only occur if the scale zero line closes a loop that contains the phonon line. Therefore

We for all Wick-lines we can replace the tAvo-legged subgraph containing the Wick-line and

the vertex by a two-legged effective vertex. If the Wick-line Avas a hard line then this vertex

has Aralue

W2] {P) = JySv J JA^QAD(h - Po, c|l - p|) (3.70)

h

which is bounded because Q. is bounded and f dßhD(h, ) is finite (See also Sections 1.4.3 and

4). If the Wick line was a soft line then it has value

w22(p) = f^r j FdYyiG<Q(YD(h
-

Po- c\l - p|) (3.71)

Q

which is finite by (3.34).

What remains is to bound the value of an 1PI graph containing scale zero lines tAvo-

legged and four-legged vertices that have bounded vertex functions and Avithout Wick-lines.

By (3.34) it suffices to show this for graphs containing only hard propagators 67o- Because

of the UV-cutoff the vector momenta integrals are all over bounded sets and thus it remains

to show that the frequency integrals are finite. We will do this using a power counting and

scale decomposition argument just as before. However here it is much easier as the frcquency

integrals are 1-dimensional. Note that

\Co(l)\<rM-i(h) (3.72)

Therefore

|Val(67J)|o < const |ValT(G)|oo (3-73)
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where ValT is given by the integral constructed from 67 by using rM-1 (p/;0) as the propagator

on each line / and for each line /' that closes a loop an "integral" fdßpjiß is taken.

Inserting the decomposition

T\/-i(r)-Ef' (3'?4)

;>0

Avith

i(AA'-2<|t <M>-ß

I

;>0
(3.P

A/I(|r| <^M-}) i -0

giAres a ucav assignment of (positive) scales to lines of the gi aph. As 67 now contains no Wick

lines, each loop contains at least tAAX) lines Thcrefoie rt possible to take a spanning tree T for

67 such that the line with maximum scale k is in it. Bounding the value of each such labeled

graph using

Ave have

dßhrj(h) > const (3.76)

|Yalr(G0k 7^ const V V T] Ar1' (3.77)

iyo ;,yo/fcL(cp 1er

mô\{j,}-k

-

coust E l ]L[GXr)Ark < const (3 78)
7M)

This is of com se a atia crude bound but sufficient for oui purposes D

In the following we shall also explicitly need the spanning tiees defined above to com¬

pute the Araluc of the graph. Concatenating the spanning tiees constincted recursively above

for each 67(/) it folloAvs directb that

Corollary 24. For each graph 67. tree t and labeling J such thai J is compatible to t and G

it is possible to choose a spanning tree I for G such that for all f e t. 67(f) nT is a spanning

tree for (7(f).

Such a tiee is called compatible to the scales J
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3.5 Improved power counting

3.5.1 Why the power counting can be improved.

In Lemma 23 the power counting was obtained by taking the 67°° norm of the propagators on

the tree and ignoring their support properties. However we do can better if a propagator on

tree is contained in multiple loops. First we characterize the graphs where this occurs. Then

afterwards we will prove an improArecl power counting lemma similar to [FST98, Sal99].

3.5.2 Overlapping Graphs and Gallavotti-Nicolô trees

The structure of non-overlapping graphs

In this section avc review some properties of graphs that will be needed later on. Most of

the results and proofs are from [FST96]. For a more detailed discussion and more exam¬

ples please refer to that, publication. Most of these properties deal Avith the consequences of

overlappingness.

Definition 25. A graph G is called, overlapping if there exists a line of 67 that, is part of two

independent loops.

Some properties of overlapping and non-overlapping graphs that are used below are:

Remark 26.

i) If S is a, subgraph of G and, S is overlapping, then 67 is overlapping,

ii) If S is a connected subgraph of G and, 67 is non-overlapping, then G/S is non-overlapping.

Hi) If 67 consists of two vertices v with 3 or more lines of 67 connecting them,, then 67 is

overlapping.

These are proA^cn in[FST96].

Below it is shown that being non-overlapping has strong consequences for the structure

of the graph. First A\-e define some terminology for these structures. These definitions are given

recursively.

Definition 27. If G is a two legged graph then it is called a, Generalized Self-contracted Two-

legged (GST) graph, if the two external lines are connected to a single vertex and, the other

legs of this vertex are pairwise connected, by strings of two-legged graphs that are themselves

GST graphs.

A four-legged, graph 67 is called a Dressed Bubble Chain (DBG) of length n > 0 when
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there are n + X vertices {vq, - -

-, vn} with E(vr) > 4 Vr, such that: Two of the external lines are

connected to tro and the other two to vn, for all, r = 0,... ,77
— 1 vr and, vr+i are connected by

two strings of GST graphs, and for each vr. r = 0,... ,
n the remaining legs of vr arc pairwisc

connected by strings of GST graphs.

Lemma 28. Let G be a non-overlapping l-pnriiclc irreducible graph, containing only even

legged vertices. Then

i) lfE(G) -- 2. G is a GST graph.

ii) IfE(G) =4, 67 is a DBG

This is an easy consequence of the following two propositions

Proposition 29. Let G be a an even legged IP1 graph containing only vertices ivith even

incidence number such that for each pair (t'0.P) °f external legs the graph G obtained by

connecting (C0-ß) is over-lapping. Pheri G itself is overlapping.

Proof. Assume 67 is rrot o\-erlapping. Pet i„ and p be tAvo external lines. Because 67 produced

by connecting them is overlapping, but 67 is not. the hoav loop created must thus be one of

those that OA-erlap. The loop containing these tAA-o lines in 67 shares a line I Avith another loop

I
j. Because P C 67, 7 G 67. Thus the path connecting I, and Iß in 67 contains at least the line

C. This implies that /, and L0 are connected to different \-crticcs, say v, and o0. By repeating

this argument for all pairs containing y, it follows that (', is in fact the only external line

connected to e,.

Because v, has an cwen number of legs, there are arr odd number 7' of lirres connecting

v, to the other part of the graph. G — v,. Pet 67 - vt = [PLi P; be the decomposition of G —

v%

in its connected components. Let r} be the number' of lines connecting S1 and <;,. Because

zY'A r1 --- r is odd, at least of the rjs is odd. We can WPOG assume it is 77. Because 67

is non overlapping, the subgraph IP consisting of Si. v, and the n lines connecting them is

nouoverlappiiig. As Si is connected. W/S\ is nonoverlapping too. However IF"/Pi consists of

1wo vertices connected by r\ lines and thus n < 3. Hoaa-ca-ci- this implies that, Si is connected

to the rest of the graph by r
— 1 lines and Avhich is in contradiction with the fact that the

graph is XPI. Thus. G is ewerlapping. D

We can eA-en show that the hrvorse of this argument holds:

Proposition 30. Let G be a IP I graph, let l0 and t, be external lines of G connected to two

different external vertices. Then the graph 67 produced by connecting them is overlapping.
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Proof Choose a spanning tree of 67. As the external vertices of £0 and P are different, there is

a line £ in the spanning tree on the path between these two. Because 67 is 1PI, there is a loop

in 67 containing £. This loop is also contained in 67. Because 67 is connected, connecting £0 and

P produces another loop in 67. This loop contains the path in the spanning tree connecting

the tAvo vertices and therefore £. Thus £ is contained in two different loops in 67. D

Proof of Lemma 28. Let 67 be 2-legged. 1PI and non-overlapping. The result is trivial if 67

contains just one vertex. Assume as induction hypothesis that the lemma has been proven

for all graphs with less vertices then 67.

By prop 29 connecting the two external lines Avili not make the graph overlap. By

prop 30 the two external lines are therefore connected to a single external vertex v. Let C

be a connected component of 67 — o. Consider the graph 67 containing 67,v and the r lines

connecting them. 67/67 is a graph containing two vertices connected by r lines. If r < X then

67 and therefore G avouIcI not be 1PF If r > 3, 67/67 would be overlapping and therefore 67

and 67 would be too. Thus r = 2. C is a tAvo legged graph connected to a pair of lines of u.

G is two legged and thus a string of tAvo legged lPI-graphs. Each of those is non-overlapping

and thus by the induction hypothesis a GST graph. Note that C can in particular be a single

line, it would then form a normal self contraction.

Turning to the case Avhere 67 is a four-legged graph observe that by prop 29 there exists

a pair of lines (p. p) such that connecting them by a line £ does not produce an overlapping

graph. Note that 67 + t? is tA\ro legged and non-overlapping and therefore by the first half of the

lemma a GST graph. 67 is obtained by cutting the line £ of this graph. Inspection sIioavs that

cutting a line in a GST graph produces a DBC with possible chains of two-legged A*erticcs

connected to the external legs. HoAvever they cannot occur here because G is 1PP D

The relation between GN-trees, spanning trees and overlap

BeloAv Ave state some more properties of overlapping graphs that Ave will use. In particular

they state hoAv the notion of OA-erlapping and the multiscale analysis interrelate. Most of these

are intuitively clear-, but just require a bit of care in manipulating graphs to proof. For the

proofs as Avell as pictorial examples we refer to [FST96].

The notion of the quotient graph 67 can be generalized. Let / be 67 a tree and a graph

that are compatible. Let r be a subtree of / Avith the same root. Let, the boundary B(t, t) be
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given by

B(t /)=-{f et\\f £t n(f) Et} (3 79)

Then we can define the quotient giaph 67(r) In

G(Y = G/{Gf}fCB(rt) (Î80)

As a special case be allow r 0 then 77(0 /) == <>) and (7(0) = 67/67,, - 67/67 is a single

Acitex

Lemma 31. Let G be a giaph t a hie compatible to 67 P/?e?7 there is a unrgue maiimal

subtreer rooted at the root of t such that 67 (r) is non-oiei lapping, but for each tree r C P ( /

67(r') is ovc ilapping If G(a) is overlapping t --= 0

Foi the pi oof sec [FSP96]

Lemma 32. Let G be a graph t a compatible hie Let t be the maiimal non-overlapping

subtree as given in Lemma 31 Lei T be a labeling compatible to t and G LetT be the spanning

defined in Corollary 2j Then there ensts a line P t. P with scale y+ — mm{;pj/ fc B(r, /)}

and lines l\ F C L(G) \ L(I) such that F is contained in the loops generate by these two

lines

Pioof See [FSP96]

The value ot a GSI t^iaph

Pet G be a tAvo legged IPI giaph Let / be a compatible tiee and r c /be the maximal

non-oyerlappmg subtiee let - ß 0 Then (7(r) ts a non-o\reilapping and Iia Lemma 28, 67(r)

rs a GST giaph

Plie lectusiAC stnutrue of GSI giaphs is reflected m the expiession for then \alue

([FST96], Remaik 2 14) Fust a\c mtioduce some notation let 67 be a E(G) — 2?7) legged

giaph Then Val(67) is a tunc t ion of 2m - 1 momenta T et Al (G) be the function of m momenta

obtained from \al((7)(pi P^m-i) as

M(G)(P[ pm) = \al(C7)(Pl pmP2- -pm) (5 81)

Remark 33. Let G I r be as above and let J <_ J(t G y) then YAGr(q) has the structure

\adGr(q) ^f[( I dJl0 [d\,S,{l,))M(GJfY)(n h lm>) (382)
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where Gf is the generalized external vertex of the GST graph GJ(r), i.e., f G B(r,t) or f a

vertex an,d Gf contains the external vertices of G, which is Ef = 2m' legged.

The Sr 's are strings of propagators and two legged subdiagrams given by

Sr (P) = f fi A,k (pAr,kTr,k (p) J C^ (p) (3.83)

with

• Fr}k = (1 — L) when Tr,k — Val(67/;, t.) with /ry. an R-fork.

• Pr,k = L ivhen Tr.k — Val(67/)ijt) with fr± a, C-fork.

• PV,fc = I when Tr_k is the value of a two legged, subgraph, that is itself a, IPI GST graph.

TTjk is then again, of the form, (3.82).

In particular jr < jf for all r = 2
...

777' and min{J2,... ,>} 7= j.

3.5.3 Volume Improvement bounds

Below Ave prove a variant of the "volume improvement lemma" introduced in [FST96, FST98,

Sal99]. This is later used to show that for a large subset of the graphs the poAver counting

is improved over standard poAver counting. Scale decomposition restricts the momentum at

each line to values in a small annulus around the Fermi-surface. The integrals to be bounded

Avili then be a constant times the intersection volume of such annuli Avith the Fermi-surface

for each line shifted by some constant vector.

Most of the time it will be sufficient to bound the value of the intersection by the volume

of the thinnest annulus. When the annulus has thickness e, that volume is proportional to

e. HoAvever it is possible to do better by observing that when two annuli of thicknesses 2

and £3 intersect transversally their intersection volume is ~ C2£3. However this is not the

case Avhen either the centers of the tAvo annuli are very close such that the tangent, spaces

to the Fermi-surfaces are at small angles everywhere or when the arrangement is such that

the Fermi-surfaces (nearly) touch at the intersection point. The essential observation is that

values of the relative shift k where these problems occur themselves occupy a very small

region. When k contains another momentum that is integrated over this in fact generates an

extra factor ~ e3 log £3 in the bound for the outer integral.

In [FST98] this bound is proven for a large class of band relations e(l) Avhose level

surfaces are C2-manifolds with strictly positive curvature. In [FST96] a Aveaker bound is
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pi oven for an even moie general class of Fermi surfaces In this section the bound is generalized

to the case where the three band relations and thus Feimi surfaces are not identical, but aie

m fact elements of the set of functions given by
to-1

e(l,q,Z) -(l-Z)c(l) -Wc(l f q) (3 84)

Avheie / t [0,1] and q a small given Aectoi (See section 1 12), and c(l) - jl|2 L As we

have seen m section 2 3 the interpolating Peiim smfaces anse when combining a product of

a propagator and its translate bv q usmg a Fcvnman-tiiok

Foi e(l) — |1|2 — I (l|c(l) - 0} and {l||c(l + q)l 0} aie spheres Moie împoitantp

(Assuming WLOG q - ( q 0 0)) foi all / t. [0 I]

d

((I q /) -E^ 1 ^A 21yqt (385)
= r

d

- (ß -fq)2^yr f I (/ Y)q2 (3 86)

and thus in this case the leAel surfaces oi c(l q /) are also spheres (but Avith a t and q

dependent i adms)

fins implies that aac can choose (for some <) ^ 0) as a parameterization of the level

stufacc p
—

c (1 q /) the mrp pi q(p 9) given bv

(-Ö à)\ Sd~l —> PP
(3 87)

(p 9) i 7 ptq(p 0) ~ P Y q) 1 p(r(p,t,q) 9)

where (1,9) H> p(r,9) — r 9 is the standard polaitooiclmatc map, p0(Z q) is the centci of the

sphere and i (p /,q) y p-\ X - (t — t2)q2 is the radius of the the IcacI surface of level p

This constellation simplifies the proof greath as the tangentspace to the level sruface only

depends on (9, rrot on p

ft is comemeut to have a notation foi the set of points contained m annuli around the

Fermi smfaces Denote

.4(7 qe) = {ll|c(lf/f)Ke} (3 88)

With these definitions aac piove

Lemma 34. Let A C Rd be compact let h, ^ ] I hen there erisl constants b v à and, M(8)

such that for all oi i>e{ LI} all 0 s. t[ o t) s d all p t2 p fc P 1] |q| < h,, all Q t K
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and, t' = 1

/dA I dAo

AA J ß^MA>iPt>h+V2l2 + Q,q,h)\<e3) (3.89)

.4(ti,q,ei) A(t2,q,e2)

< M(7i)eie2e3ilog(max{ei,e2,e3})| (3.90)

Moreover when c\ < C3 and e2 < £3 this bound also holds for t' G [0,1].

Proof. For t' = X, exchanging p.pj and P + 772P + Q corresponds to a simple change of

integration values and we can without loss of generality assume ei < 3 and 62 < 3. By

choice of constant avc can also assume 63 < —. Let p,;(p, 9) = pt,,q(p, 9), i = 1,2,3, be the

shifted polar coordinates defined in (3.87), i.e. e(p,(p, 9), q, /,-) 77: p. Then because this change

Pei-i
<- 1/

Or I - 2(
of coordinates is C°° and has Jacobian bounded by rd l\-Y:\

x
< YX + p) 2

7(67,62,63) < {-+^2 f dpi j dpiW(t'pi,P2,eA (3.91)

where

W(t'puP2,eA =

70C J-i / 77T7|rT]I(le(vtPi(/'pi,Öi) + 7;2P2(p2,Ö2) + Q,q,/3)| < e3)
(27r)d x ,/ (2/r)d x

S>i—i sd-x

(3.92)

By the mean value theorem

\e(vipi(t'pi,9i) +- v2p2(p2,92) + Q,<i,t3)\ < e3 (3-93)

implies

|e(uipi(0,öi)+U2P2(0,Ö2) + Q,q,*3)| <e3 + ^(ei+2) (3.94)
77,0

<(l + 2^)e3 (3.95)

and thus

W(t'pi, p2, e3) < W(0,0, (1 + 2Mi)e:3) (3.96)
'«o

Therefore it remains to show that

LP(0,0,e) < const e loge (3.97)

D
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Proof of inequality (3.97). Below this inequality is proven for the spherical band relation

e(p) = jp|2 — I. In this simple case it is possible to use very explicit coordinates and bounds.

The proof is along the lines of Appendix B.8 of [Sal99]. First, we prove the a bound where

only a single integral is taken (called the '4-loop bound", as this occurs when bounding a

loop involving tAvo fermion lines). This will produce a bound almost oc e, except for a few-

singular regions. Integration over this bound due to the second integral then gives the bound

with Pre singulaiity producing the logarithmic factor.

The expression that occurs lor the inner integral is given by

T(e.k.t.2)

s,l-l

dO

(2YY:
-l(\e(v2p2{{),9) 4 k v2Po,2 + Po,3,q, P)| < £3) (3.98)

and we can bound IP(0. 0, c) in terms of this as

W(0,0,c) < max sup / dPP(e.p(r(0./i, q). 9) + clPo ,

< max sup I d9T(e.p(r(0.ti.q).9)-hQ'.vß

"2Poy
-

Po 1 + Q, v2) (3.99)

(3.100)

where K' 7= {1 7 Rf/|J(l, K) 7. d/s s} because pP/.q)j \ hs.

Proposition 35. There exists a constant Q independent ofk, such that for all v2 = 1 1, all

|q| < K, 7. 77
and all 0 < e v 7

T(e,k.ü2) < Q{

1
+

1

P V v'P'i(lk)1
'

yp-ijky I ''
- ^

"i
- 2

I //' 'k| < 2c

if 2e v 'k| <, \ and Vs G {±} |.(7s(|k|)| > 2c

if2ts k| < j and 3s G {±}|9s(|k|)| < 2c

nt he ne 1 sc

(3.101)

where g+(k) =- T+k(k±2R2). P = (t-t;)q\ T = 7',-Z2. R2 -- yPf-P2. and if = min{3,c/}.

Note that when T ^ 0 and k =a 0, g=(|k|) ~ 'k| and thus the bound is ~ |k|~P Similarly

when |k| ?=• 2P2, <7-(|k|) ~ |k| - 2P2 and thus the bound is proportional lo ||k| - 2172|~^.

This is indeed the behavior obtained previously for P 7 0[Sal99. FST98].
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Proof. Setting ß to be the angle between w2p2(0, 9) and k and denoting k = |k| as usual

e(u2P2(0,9) + k - 772po,2 + Po,3, q, h) = \V2P(R2, 6>) + k]2 - 1 + T3 (3.102)

- \p(R2,9)\2 + k2 + 2\p(R2,9)\k cos é - 1 + T3

(3.103)

= T3-T2 + k(k + 2R2cose) (3.104)

= f + k(k + 2R2 cos é) (3.105)

Observing that for |q| < ks < |, |Td < ^P, \f\ < | and § < P2 < f •

Changing to coordinates (é,9) with é as above and $ G Pd~2, then

1

(2vT)

T(e, k, u2) = 7^ / dr9 / (sinß)d~2t(\T + k(k + 2R2 cos ©)| < e)cP7 (3.106)

Sd-2 Q

<Tßk,e) = Apiï f(sme)d'-2t(\f + k(k + 2R2COsß)\ < e)dß (3.107)

o

When jfc > |, k + 2R,2 cos ß > k-2R2 > \. Thus \f + k(k + 2P2 cos ß)\ > \k- \f\ > ±
- \f\ >

j > e so the integrand vanishes identically on this region.

When k < 2e, the integrand is bounded by 1 and thus T(e, k, tj2) < 22~P

Pet k > 2e. Pet, v = cosf. Then f + Jfc(fc + 2P2 cos é) = <?_(fc) + 4R2fcv2 = 77+ +

4R2k(v2 -- 1), and sine/) = 2tj\/1 — ?72:

t

T*(jfc,f) = -

/-7;d'^2(l-7;2)ii^l(|^(A;)+4fcP2^| < e)cP (3.108)
1 f ..d'-lt-i „^A^P^T,/|„ /,A , /tl,E>„,2|

TT

b

When |c7_| < 2e, |cy_ +4P2A;7;2| < e implies v2 < -r^fy- On the one hand this means

that v2 < g|r- < é < 7 < 1 and (1 — tP)~~2 < 2. On the other hand avc can use this restriction

to replace the integration bounds and then drop the indicator function. Together this gives

ß 4kR2 ^

T'(M<-
/ «rf"2dt; =-^—r f-^-) 2 <-(f)^ (3-109)

v ' ; -
-ïï- 7 tt(J' - f) \+kR2) ~ vrv/P v ;

o

When |cy+| < 2e, change to the variable u = \/l — v2. This means that v = Yx — u2 and thus

using cItj = (1 — iY)~^udu

i

T(fc,e) = i /«d'-2(l-u2)^l(|0+(fc)-4ÄÄ2ti2| <e)dti< -(7)^ (3.110)
71/ ÎT K
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just as before because the sign in the indicator function is irrelevant.

When |<7_| > 2t and \g ß > 2e Ave use a combination of the observations above. Note

that 7; 7= o or v = I can no longer be trivially excluded. Therefore, we split up the integration

region into two parts.

'P'(Pe) - TÔ(k.e)+Tf(l.e) (3.111)

with

7o'(/,.e) = -[ /V'-J(l Y)-^ï(Y^(k)d lkR2v2\ < e)dv (3.112)

0

T[(l.() -A I cd'~2(X v2)A)ß\g„ (/) 1 UR2v2\ < e)dv (3.113)
1

1

1 / ud'~2(l - ir)~^l(\q^ (A) 1AP?7/2| < e)du (3 L14)

where in the last equation the change of a ai tables a — vi v2 Avas used again. As TÖ'(A.c)

and T/(A,e)i differ onh bA the appeaiance of -q instead of cy^, it suffices to bound the

foimei.

ff 9_(A) > 2c > 0. c; _(A) \ IAP2P -> 2c and T0'(A.e) = 0. IP cy_(P) < 0, set a =

Y Art, > 0- Then obseivmg that on the mtegiation region (J - v2)~z < |, Ave have

7

'Po'(/r.6)< IdvMp'-eYl^^YA (3.115)

0

and with |t>2 - «2| 77 m — alle f a\ > |r - a\a

< /drl(|r
- a\ < 77^) < - ,-"^— ^ ^=^=7= (3.1 L6)/ dAP2o lAR.o

-

JlRßqAß
0

v

Thus the proposition holds with Q = 2

For k > ~, \T -f A (A- + 27?2 cos o)j ^ I
so the mtegiancl vamshes identically always. D

Note that when el ß 3, J' = Î and idv -- \die. with w — tP appears in the integral. A
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change of coordinates thus gives

i
4

T0\k,e) < A fl(\g_(k) + 4kR2w\ < e)dw < |. (3.117)

Combining this with the observation that when the q is zero T = 0, we arrive at the following:

Corollary 36 (Tranversal one-loop bound). Let d > 3, e(p) = |p|2 — 1 and, p > 0. Then,

there exists an M(p) such that, for- all, fi,e2 < p, and all k with |k| > 27/.

f dl
i(|e(l)|<e1)l(!e(l + k)|<e2)<;M(p)eie2

y (2tt)£/
u"v""

~

~" vrv~ "7i
-
^' -'•""

ik

Moreover, for d — 2 this inequality holds for 2p < |k| < 2 — 2p.

(3.118)

Now apply Proposition 35 to (3.100). Observe that the bound given there only depends on

\p(r(o, p, q), 9) + Q'|. If we decompose the coordinates 9 — (ß,9) such that é is the angle

between p(r(o,ti, q),9) and Q'. Then

Yß) = \p(rio,ti,q),9) + Q'\ = Y(Q^RY2A2QMÄ(X-cos cb) (3.119)

where Q = ]Q'|, and R\ = r(o, /i, q) = YY— Ti. Therefore Proposition 35 implies IF(0,0, e) <

suP<3>o>V(e,Q), where

W(e,Q) =2 \smß\d~2T(e,YßYde
b

(3.120)

and

+
Pf \YYYW, YÎYAY)

VYYYYl YYAßj

T(e,e) =

A-zl
e 2

YAe

if /p < 2e

if 2e < Ç < \ and Vs G {±} |c/s(0| > 2e

if 2i?2 - \ < £ < | and Vs G {±} |ffs(£)|

if 2e < £ < i and 3s G {±} |&(OI < 2e

if 2iî2 - j < { < | and 3s G {±} |c;s(OI

| < £ < 2P2 - \

otherwise

>2e

<2e

(3.121)
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where we have used Q < X and for i < £ < 2R2 - \, 9+(Y A |- The region | < £ < 2R2 - \

has been split off because when £ < \ or £ > 2P2 -

7, |-ddcJ-t(OI > 5-

The rest of the proof is now to show that, in the regions where (3.121) does not give

the bound immediately the coordinate change cb e+ ((6) is sufficiently regular. Observe that

£(</>) > |/?i - Q\- Thus when Q<£A= [i?i- \,Rl + \}U\Rl + 2R2 - t, PP +§], ± < y < 2J?i- |

y > |, and therefore for such Q. W(c.Q) <~ $TT\/~2e.

Now assume Q £ A. in particular therefore Q ^ Pi | > Jp Substituting v =

AACjRi sin(^fô), using T(e, \(r)) < 1. and denoting \(v) — ((é(v))

PTxyK

FV(c,Q)^2 / (2QR[-v2yA(e.\(e))de (3.122)

0

x/JïjJp-c

<A + 2 I A~QRi -v2)-±t(e,\(i))dv (3.123)
An /

<{8s/2 1- Ae+lo + h (3T24)

Avith

pppy-f

io-2 y (2(7P, u2)^f(C.y(r)) l(v(r) < L)du (3.125)

r

v/2Q/?!-<-

P - 2 / (2Qi?i - e2Y iF(e. \(v)) 1(2772 - i
< x(u) < ^)cP; (3.L26)

Because y((;) = \/(Q - 77p2 + r2 avc see that Avhen Q "-• P| + -. the integral io vanishes.

Moreover

d\ (e) \~~ \{v)
a

./y
U

-

U
-

V V V

(3.127)
(1<- I v s/\'-(Q-RA2 Y\ -\Q-Ri\

On the suppoit of the integrand in /0. 2QRi - v2 - Q2 + Rj - y2 ^ R\. \Q - Rß + y

and v - Y\2 - (Q - Rß2 ^ 1 implies \
- \Q — Rß "> 4e2. Making the substitution \ = \(e)

in 70

1

]

9 r

[Q<~ / ;--^-- —7-(c.y)l(K -[(j- Rij|^4e2)dy (3.128)
7ii ./ v\

- \Q - Rp
'Q-nd
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Inserting (3.121) gives

h<Ti J ^x_]Q_Rxi—
( E ^.M))* (3723)

Q-ßi| s-±j-up

i

where A0(:r) = x ^t(\x\ > 2e) and A\(x) = e 2l(|.x| < 2e). Taking the sum out of the

integral and applying the Cauchy-Schwartz inequality
i i

r <-
2e

X- ( f l(k-|Q-i?i||>4e2), .*/ /
2 \i

Jo<^-^^ ( / x„[Q^jPp d*) I / M9s(x)) dX) (3.130)
i=±'?=0L|Q—Ail

The bound for the left integral is now easy and

i~±'7~°L'Q-Äi|

IQ-Äil

i

1
i

P,<^logc| Yl ( / M9YxY2dxy (3.131)
1

'=±.J=°d
|Q-Ä1|

As observed before, when y < \, \-2f-gs(x)\ > | f°r both s = ±. Substituting u = c7s(x) gives

i

h < ^VAA }A ( [ AAduf < f-cjlogcl (3.132)

because [_1 A2(7Pjch; - e~l ff2e du = 4 and jß{ A^(v)du = 2 J2 ^du < 4|log e|.

Changing to the coordinate y = x(v) in F and applying (3.121). Ave have

. _—. P 17! y - \0 - R, || > 2e2)
h<eYX0 £ / /n2\lJ

2 , n AA{9s{^dx (3'133)

t=o,ifAps=+l YQ2 +
R2i~x2Yx-\Q-Ri\

with Bo - {x\\Q -Ri\<x< VQA RA QRY aIld^i = {xlx > y/Q{ + R(-QRiMx) <

Y2QRi — e}. If we can show that

f l(\x - \Q - Ri\\ > 2e2)
c-

=./ ^YnYA-iQ-m -const|Ioge| (UM)

then the bound follows as above after applying the Cauchy-Schwartz inequality. For y G Po,

-P|
Rß\Q2 -Rj- x2\ > QR\ and we easily see P0 <
jf|loge|.

For y G Bu \x - \Q - Rß\ > YQRi

and thus

r < -
/ Hy/Ö^TRj^QR~\ < X)H\ YQ2 + RÎ- X\ > rye)

l~Ri.l |yöT77P^2_/Y|

with ct =
A anc\ i\ms

12

C^—|loge| (3.136)
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3.5.4 Improved power counting

At this point Ave can piove that when a labeled giaph is oveilapping, there is a shaipei powei

counting bound than that of Î emina 23 Prrst we show a Pav direct corollaries of the pi oof of

Lemma 23

Corollary 37. Let y <, 0 / a tiee tilth Ff > 4 G a graph and I G J(t G,j) Let T be a

spanning tree of G compatible to the scales (Corollary 24) If there easts a line l* G T of

non zero scale such that P is not contained in any loop in G, then

iValG;|0 < const JJ Aal(r)|0 MD ; J| MD ('"> (») ApY (3 137)
leaf p^A

wh 11 e

v(0-V(l/oU,-P(l)) (3 138)

p 7= )[ and p* is a linear combination of the eiürnal momenta

Proof Vs P is not contained m am loop the momentum /P does not depend on airy loop

momenta Ba inspection ol the pi oof of Lemma 23 it is obvious avc can keep the mclicatoi

function D

Lemma 38. Lit j <^ 0 ta tree with Ef ""> 1 G a giaph and T G J(t,G j) Let T be a

spanning tut of G compatible to fhe scales (Corollary 24) If Ihere easts a line P G T of

non zero scale such that I* is pist contained in one loop oj G, then

|ValPJ|o <. const \[ |\ d((),o MD " JJ Mn '"' >P\y-" fdm jdp\Cv s (p)YYQ + v2p)
e leaf j-

J '

(3 139)

where v2 ±L, s?
— Ll indicates uhether the propagator is soft oi hard Q is some linear

combination of the eiternal momenta
<

as above arid j2 )f Here f2 is the highest foil

of t such that P is in a loop in Gf

Proof Because of the leoiusiveness of lemma 2i we can WIOG assume f2 = ß Consider

G(cjr) Applv Coiollaiv 37 to the loik / with -(/) — o and P - Gf if this toik exists Vpph

Lemma 23 to the other forks above o If such a foik / does not exists that implies that P

and the both appeal at stale y ind the lesult is clncct
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Because I* is only contained in the loop generated by Z2, P* is of the form p* =

Q+v2p with p the momentum flowing through l2 and does not depend on anv other momenta.

Therefore we can choose to not perform the integral over p. Thus there is exactly a gain

const Mn missing from the powercounting.

Lemma 39. Let j < 0. t a tree with Ef > 4, G a graph and J G J(t.G-j). LetT a spanning

tree of G compatible to the scales (Corollary 24). If there exists a line l* G T of non-zero

scale, such that /* is contained in two loops of G, then

|ValC7J|o < const JJ \\'A(v)\0 MD*U JJ MDf<J-i-U))l (3 140)
77 leaf f>4>

with

I = ji/-Ji-^ Jdßko Jdkjdgpo jdp\CnM (k)\\Cn ?Yp)YYQ + Vi + v2P) (3.141)

where vi,v2 = ±1, si_. s2 tt: ±1 indicates whether the propagator is soft or hard. Q is some

linear combination of the external momenta, z* as above and jL = jy Here f2 is the highest

fork oft such that P is m a loop in Gf2. p 7S the highest fork oft such that l" is in two loops

777 Gh

Pi oof Phis an obvious vanant of the proof of the of the previous lemma D

Theorem 40 (Improved Power Counting, [FST98, FST96]). Lett be a tree. G a graph,

j < 0. and J G J(t,G,j) Let r be the maximal non-overlapping subtree. When B(r,t) Y 0

lei f = min{jf\f G B(r,t)}.When B(r.t) = 0 let f = 0 Then

|ValG;|o < const JJ |Val(v)|0 {\j*\ + l)M3*MD*3* J] MDfb-^ri (3 112)
v leaf /></>

Proof. The result is trivial when g* = 0. Assume j* < 0. Choose a spanning tiee T according

to Corollary 24. By Lemma 32 there exists a line /* G T with scale f and the preconditions of

Lemma 39 are met. Thus (3 140) holds and it remains to bound I. We do the case s\ = s2 = 0

here. The extension to soft lines is trivial.

Drop the frequency restriction from z*, use (3 30) and perfoim the frequency sums.

This gives

I < const M-"-32 /dk /dpln(e(k))lj2(e(p))l,*(Q + tykT T72p) (3.143)
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By Lemma 34

I < const A/-n_72(|7*| + l)M7l+?2+7* (3.144)

and the theorem follows. f I
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Chapter 4

Phonon lines in loops

4.1 Phonon lines and derivatives

In the previous chapter a scale decomposition Avas introduced for the fermion propagators only.

The phonon lines were absorbed in the scale zero eflectfye vertices. As the phonon propagators

are bounded functions this viewpoint is almost always sufficient for power counting purposes.

However sometimes it, is necessary- to take them into account. In this chapter we introduce

the techniques needed to deal Avith these cases. There will be three primary reasons for taking

phonon lines in account:

ddre first is obvious. It is our aim to extract a factor c and thus our bounds must at some

point involve a phonon propagator. Second, exploiting sign cancellations through integration

by parts and the renormalization procedure introduces derivatives and the derivatives of the

phonon operator are not bounded but only integrable. This will be dealt with by introducing a

scale decomposition for the phonon propagator Avhen there is derivative acting on it. Third, the

localization operator and the renormalization piocedurc contain dcrivatiAres with respect, to

the frequency Unfortunately bounds analogous to Lemma 4 for (integrals over) the derivatives

which give correct factors e only exist for derivatives with respect, to the vector momentum.

Each frequency derivative gives a factor c"1.
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4.2 Derivatives of two legged graphs

4.2.1 Rerouting the external momenta

As we shall see in Chapter 5, the frequency derivatives are only taken for graphs that only

have two external fermion legs. This is fortunate in the light of the following lemma, which

holds for graphs with an arbitrary number of additional external phonon legs.

Lemma 41. Let G be a graph in electron-phonon theory, such that G has 2 external fermion

legs (and an arbitrary number of external phonon legs). Let vi and v2 be the external vertices

connected to the electron phonon, lines. Then there exists a, spanning tree T rooted at vi such,

that the path in T from vi to v2 contains only fermion lines.

Proof. The lemma is an easy consequence of charge conservation at the electron-phonon

vertices. Note that the result is trivial when v\ = v2- The proof is by induction on V(G).

If V(G) = 1, then 17 7= V2 and the result holds. Let n > X and assume the lemma holds

for F(67) = 77 — 1. Without loss of generality we can assume ty Y u2- Let G' be the graph

that consists of G without t;2 and the lines that connect it to the rest of 67. These must one

phonon line and one fermion line /. Therefore 67' is a graph with tAvo external fermion lines,

one additional external phonon lines, and with P(67') = n — X. By the induction hypothesis

there is a spanning tree T' C 67' with the desired property, ft is now easy to see that T = T'öl

is the desired tree. D

Corollary 42. Let G be a graph in electron-phonon, theory, such that G has 2 external,

fermion legs and no external, phonon legs. Then it is possible to fix momenta in, 67 such

that the external momentum only flows through fermion, lines.

This implies that for a graph 67 that has 2 external fermion legs and no external phonon

legs, it possible to given an expression for Val(67)(p) where the only factors in the integrand

that depend on p arc fermion propagators. In other words the derivatives of V*al(67)(p) can be

computed as a sum of terms that only involve derivatives of propagators belonging to fermion

lines.

4.2.2 Some notation for derivatives of graphs

When taking derivatives of the value Val(67) of a graph a sum occurs because of the Leibnitz

rule. Each term in the sum contains the derivative acting on one of the propagators. This can
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be represented as the value of a graph where the line the propagator belongs to is associated

with the derivated propagator. This will the main form wherein derivatives of graphs will be

studied in the following. Therefore atc introduce some notation for them.

Pet 67 be a Feynman graph, let, m - 0,.... J, and let / be a line of 67. Then denote by

d}mG the graph such that Yal(<9/m67;p contains (-A-pPi)(pi) instead of the propagator P/(p/) for

the line /, but is otherwise identical. Let s > 1 and p,. .. P G L(G) and mi,..., rns -= 0,... ,
J

then avc denote dßnn ,,mG for d,imid/,m2 ... Oi,nKG.

Tn this notation avc can write down the form in which we will irse Corollary 42 (which

is again a trivial corollary).

Corollary 43. Let G be a giaph in electron-phonon theory, such that 67 has 2 external

fermion legs and no erter rial phonon legs. Let mi.rn2 G {0, ...,d}. Hi en there exists some

subset L of L 17(G) such that

A Val(G)(p)|<X;iVal(PmiG)(p)| (4.1)
°Prrn i

/t/

-A^AL
Yal(P)(p)

OPnn <JPm2
ZA'^AniPinnAA Y-'Y

h hei

4.2.3 Derivatives acting on soft lines

The result from the previous section does not imply that there is no need to deal with deriva¬

tives acting on phonon lines. One of the reasons for this is that if 67 is a labeled graph, the

tree T given by Lemma 41 is not nccessaiilv compatible with the GN-trce structure. In par¬

ticular it is possible for P to contain soft lines. Thciefoie it is possible that the corresponding

soft propagators can get deiivatives acting on them. The poAver counting is not sufficient to

contiol these derivatives

ddre following lemmas sIioav that these derivatives can be eliminated by means of inte¬

gration by parts. First avc define a generalization of the absolute A-alue of a soft propagator.

For ,s 77: 0, t and 7 < 0 define1

c^i^iz'^AY-A-— <«>
,

\>h -Pbl

Lemma 44. Let j < 0. Let r = 0. 1 d. Let q(h- P be a function with integrable derivative.
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Then

dph /dl( J-C<J(Z))p(Zo,l)

constE E M-^1-*) Idßlo /dlC<J.0(/) 'A
"dim

YgihA) jXA)

Proof. The important point of this lemma is that on the right side m Y 0 even if r 7= 0.

Therefore consider the case r = 0 first (the other derivatives are similar, but easier). Note

that Cj(l) = (Uq — e(l))_P?(M2'(/o + e(l)2)). The dcrivatfve can act on the propagator or on

the cut-off function. If it acts on the cut-off function avc use

A
Oh

a(M2Yl2o + c(l)2)) < constM-31(M3-2 < \ilQ - c(l)| < MJ) (4.5)

to see that this gives a contribution to the s 7= 0 term. Inserting the other half of the derivative

in the integral gives for r = 0.

-7o(M2?(/24-e(l)2))
I = / dfl/o / dl

(do - e(l)Y
'<?(/<>, 1) (4.6)

which in the coordinates of Lemma 5 is given by

(4.7)
/"i

7
[w[a -MM23(l2 + p2))

= /
dßlo / d6» / dp

_

g(lo,ir{p, 9)).R

An integration by parts in the p integral gives

J^/d./o/d./dp^a^^Tp2))!^)
+ i tdeh fdO [dp -^- Aa(M23 (I2 + p2)) (4.8)

./ J J Po -

P op

The lemma now follows by (4.3), (4.5) and the fact that on the support of the integrand Jp

its derivative and its inverse are bounded by constant.

ff r > 0 the lemma follows more directly by doing an integration by parts in lr.

By doing a second integration by parts if required the following lemma about second

order derivatives folloAvs:

Lemma 45. Let j < 0, ri,r2 = 0,1,... d. Let g(l) and h(l) be functions whose second order
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and first order derivatives respectively are mtegrable Then

0 d

dßh I dl
dl,2 dln

< const

C^(l))g(lo l)h(h I)

M-7n

d

X-—mMd *' *4

1\ l •> t<,^+ St=2 77)1 "1 =-1

°i bs <:l

/d,/„/<0CV, („j(-A )•(£)••,«)
0

, 54

-JP
MO 9)

Moreover let 71 7, 72 < 0 cy(/ /?) o function with mtegrabh second derivative andhi(l), h2(l)

h^(l,p) functions with mtegrable fir st dematne

dpkojdbj'dilo [d\^ 6\,(0) (^ 6^(A)^7,(/)/,2(A)iy(/,A)/^(/ A-))

< const

0 M -r-^-t^l-si

E u_n u" ; ti

d,l0 jd\L\no(l)Hd^ Ylhßl)Ad ko jdkC , S3(A)
à

~~

Ohmr>
'Yi2(k)

YlA'A]'"uk)\iYy^^"^ 10)
1 m "•mi "")7i7

Although these foimula aie look complicated then content is again simple We can îe

express al] domaines on soft propagators m tenus oi derivatives aaiUi respect to the Aectot

momentum of the othei put ol the integral In addition it is possible to avoid having two

deiivatives acting on the functions /? and hi, at the tost of leaving one of the derivatives on

the soit piopagatoi

The functions q uid // ibove aaiII tvpicallv be pioducts of piopagators and these can

contain phonon piopagators Thus derivatives ol the phonon piopagatoi anse m this Avay

However, these aie all derivatives with icspn t to lomponems oi the *\ectoi momentum only

The lest of this chapter will discuss how such du rvalues can be bounded

4.3 Volume improvements for point singularities

When bounding giaphs where deiivatives of the phonon piopagatoi appeal v\e will bound the

singularities m the dciivative using a scale decomposition Because these are point smgulaiities

there is a much bettei volume behavioi The following lemma capttues the volume bounds

when taken alone and when combined with a Prctoi coming horn the fermron-piopagatoi
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Lemma 46. Let d > 2. For all ei,e2 there exists constants W\ and W2 independent of e such

that for all peRd and all t' G [0,1].

dklflk - p| < ei)l(|e(k)| < e2) < Wjef (4.11)

/ dkl(\Pt,k - p| < ei)l(|e(k)| < e2) < W24~^2 (4.12)

Proof Identity (4.11) is trivial. Just drop the second factor from the integral. What remains

is just the volume of a J-dimensional sphere of radius e\. In the other integral we change to

the coordinates (p,9). By adjustment of the constant we can assume e\ < j.

I clkl(|Pf7k - p| < ei)l(|e(k)| < e2) (4.13)

< const / dp / d9t(\ir(t'p,9) - p| < ei)P)l(|p| < e2) (4.14)

y const e2 sup / dÖl(|7r(/'p, 9) — p| < ei)
lol<c> •/

(4.15)
P!<Q

gd—1

Taking 6\ as the angle between p and tt (t'p,

4

y const / döil(|sinöl | < er) sin^2 9y (4.16)

b

< const ef-162 (4.17)

D

4.4 Controlling derivatives of D

4.4.1 Splitting the phonon propagator

The following lemmas capture the effect of bounding a loop-integral with a phonon line in the

corresponding loop. This phonon line may have derivatives acting on it. This is controlled by

observing that the singularity in the derivative of D is a point singularity and thus leads to

a better volume improvement. The results in this section correspond to those of Lemma 4.

First define a convenience expression for the typical pre-factor that is extracted. Define

A, asvs

x_e ,
;(l + logßy^-e

As(c,P,e) = c1-+(^^^-)
(4.18)
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The c and ß dependent bounds come from different parts of the phonon propagator.

As avc have seen in equations (1.96)- (1.99) the (3 dependent distribuiion comes from the term

in the sum Avhere the frequency argument is close to zero. To make this explicit we write

D(/o,c[l-pi)-Do(Z0.c[l -pD + ZMMl- Pi) (119)

where

Dßh-cß ~pj) = P)(/0.Pl -p|)l(-£ <^o<:^)
A)(P.c|l- p|)-P(/0.e|l-~pi)(l - l(--;<h<A

ß ß

4.20)

The cutoff function has been chosen such that fx dßl0D0(h,M) < /d/0I7(/0, M). Note that,

if M is some set of Matsubara frequencies and efo G R, i.e. is not necessarily a Matsubara

frequency-, then |{/o G M\\D\ (h- c\l — p|) p 0}| - 1. Non-Matsubara freqrrency arguments to

the propagator occur through the localization and interpolation done in the renormalization

procedure. For instance taking P Val(67) for a two-legged graph sets the external momentum

to zero, which is not a fermionic Matsubara iiequencv.

4.4.2 No derivatives

When there is no derivative acting on the phonon line the frequency part of the integral is

enough:

Lemma 47. Let p G IR,/LP Pcf y -^ 0, Thin there is a constant 'const' such that for all

cG [0.1]

fdßoM}h\<MYD(h /y.Pl-pj) s const A0(r,,V)aPc (

Proof. Observe that the integial can be bounded in two Avavs. Fiist as

4.21)

[dßloDQo -Po.(\l -p|) < fd3l0Do(! - po-dl- p1 dßlQDi(h po-(\l-p\)

2tt
y I / dl0D(h -po-cjl - pi)| f - < TTcjl p| + -- (4.22)

and secondly

dßlolßh1 v M1) y I dhl(\h\ v AC) < const AP (4.23)

The inequality (4.21) is simply the c-vveighted mean of the two bounds (with |1 - p] < A). PI
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4.4.3 A single derivative in a loop

The above result needs to be combined with volume effects in the momentum integrals Avhen

there are derivatives present.

Lemma 48. Let s = 0,1, e G (0,1], p G IRä!+1, and I' < 0. Pet Wj be given by one of the

following:

i) Wj(l) = \C3(l)\ withj < 0 or Wj(l) = M-J'l.,(|Zo|)lj(|e(l)|)

n) WJ(l)=C<j.0(l)
l(l20 + e(l,q,/)2 <4M2-Q

[7/0 + e(l,q,/)|
in) Wj(l) = PP^TJPPPPÎP^^^ for some y

.

, TT/ m
1(M21' < (h + tqo)2 + e(l)2 < 4MP)

w
Wj(l)

= ——

; i /or some /.

(p/o + %) + e(l)|
T/ien /Pere ct/s/s a constant 'const' independent of c, t, /', I', and p, but possibly dependent,

on e, such that for all I1S given, by

Ljs= /dö/0ydllP7(/)|VsP)(/o-po,c|l-p|)| (4.24)

|7JS| < const A0(c,,d,e)((y j + X)sMej = const A0(c, d, e)APi(|j'| + l)'A/de_l)j (4.25)

Proof. Noting that the derivative of D is bounded as

ivr-nci ii m ^
£(fo-Po,c|l--p|) , .

VP) /o -p0,cl-p) < : (4.26)
I1-PI

we introduce a scale for |1 — p| by inserting

l = ^/m(Il-p|2) + a(|l-p|2) (4.27)
m<0

in the integral. The essential argument of the proof is now that the extra volume gain as

given in Lemma 46 is sufficient to control the factor |1 — p)^1 ~ M~m.

After making the scale sum in the soft line of case ii explicit this leads to terms of the

form

Hkm = /d/0/dl|Pfc(/)|4yyv::^^ao-7Jo,c|l-p|) (4.28)
./ J \Pt'l-p\s

< const J\rk-ms [dßlo /"dl
(4.29)

l(|/o| <A7fc)l(|e(l)| <M*)l(|P^l-p| <Mm)D(Zo-po,c|l-p|)

with Cp(l) = Cho(l) given by

r m
MM3-2<\ilo-e(i)\<Mi)

c3Äi) _ urßYYz^rßeMj+A
(4-^
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When k < m we use an c-weighted mean of

7 27T
/ dghDßo- e\l\) y Ttcjll + — < const A0(c, ß, 0) (4.31)

it

and JRd/0I(|/o| < Mk) < '2Mk to give

Hkni < const A0(c Pt)4/"A ""M/tA fdl(\c(D\ v Mk)l(\l - p| < M"1) (4.32)

using Lemma 46

f 4P IP" k < m

< const A0(c. 7. e)Ar' -'"WT* < (4 33)

[A/2"1 777 < A'

We don't need the extra factoi Md-e)m tjiat ^oupj ( omc flom tyie integral over Do and thrrs

we can handle both parts of D together.

For case r where 7 < 0

^< «>ust ( E H>»> f EJV + 7f/°) (434)
;< 771^0 J77v/

w here

77?0= /dJo/dlin^/)!^1--^^)^ -y?0,c|l-p|) (435)
7 / i — Pi

and because on the srrppoit of the mtegiand 1 — p1 > -, it is trivial to see that for all four

cases,

H,o < const A0(c. PePPP; (4.36)

Foi the sum over m s y\o use the above bounds for IIjm

]T Hvn y const A0(c, i.cPlP^1'7 ]T AP2~^m (4.37)
T7l<7 777^.1

v const A0(r. ke)M[' ~])> \Y2 ~']>
= const A0(o.p,e)jP7 (4.38)

For the othei sum

"F J/7,n< const A0(c. J. t) Y AP'Ml] K'm < const A0(c. 6. e)(!y| 4 1)'M" (4 39)
m>; ;v77?vO
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In case n the bounds are the same but for an additional sum

J^E E #*m + £ £ ff*m + I>*0 (440)
k^j I <777<0 k<] m<k k<j

< const Ao(c,p,e) I £(|jfc| + l)>MeK + ]TyLj(2~P^ + £ ApJ j (4 41)
\k<j ^<7 i<] J

< const, A0(c, ß, c)(\j\ -+- X)SMC3 (4 42)

Avhere the constant is now allowed to depend on e

The two remaining cases are completely analogous to the case where TT^ is the absolute

value of the soft propagatoi Interpolation does not change the powei counting 4s h ~ tqo is

not necessanlv a Matsubara frequency theic is no natural lowei scale I = 1(8) on the scale

sums m case iv This is replaced bv the explicit scale F Note that the constants m the bound

depend on neithci because

£|7|niLP7 < £ |j|n Ve' < const (n,e) (4 43)
I<1 —rx><]

D

Remark 49. In other words, Lemma 48 implies that, when a phonon line of a graph with

root scale 7 is differentiated this gives a factor Xq(c, ß, e)(\j\ + 1) b/"P~P.? compared to normal

power counting, provided this phonon line is contained in a loop In contrast when a feimion

line gets differentiated there is an additional factor M~J

Note that 111 the above lemma a volume gam m the momentum pait of the integral

was exploited In paiticular this means that other volume improvements on lines involving

the mtegiation vaiiable can not be used We will sIioav that indeed when a dei native of a

phonon propagatoi appeals these volume improvements will not be necessaiv,

4.4.4 The position of phonon lines in two legged graphs

The following lemma implies that for the important class of graphs where we take derivatives

with respect to external momenta, namely the two legged graphs, the phonon line is always

m a loop

Lemma 50. Let G be a graph with two external fermion lines Let 67 contain a phonon line

not contained m a loop Then G is a tadpole graph (when the phonon lines are not condensed

into effective 4 vertices) with this phonon line connecting the two parts, 1 e G is of the form
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Moreover any derivative with rvspect to the eeternal momenta of the value of this graph will

never- hit, this line.

Proof. Let, 1 be this phonon line. As 1 is not contained in any loop 67 \ / is disconnected,

67 \ / 7= 6pÙ672. As / is a phonon line the two external fermion lines have to both connect to

671 or both to 672. This means that G has the required form.

Because G is a tadpole graph, Val(67) contains 73/(0) where P/ is the propagator on

this line. In particular this docs not depend on the external momentum. D

4.4.5 Controlling second order derivatives

In the renornralization procedure second order derivatives of the phonon propagator can

appear too. However avc must thread with care. First of all it is again important that the

derivatives are with respect to the components of the vector momentum only. Secondly it is

here that the split from (4.19) becomes important. We can only control two derivatives acting

on PJo- The bound uses that such second order dérivât iA-es can only occur when the phonon

line is contained in two loops.

Lemma 51. Lei t' G (0.1] and p.r G 7Rd+l, Lei I' <^ 0. Let TT*7l (/) and Aß2(k) each one of

the four possibilities of Lemma 4$- Let i'i.v2 G -1.1. Let a.b G {l,...,d}. Lei L and I be
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given by

1= dßk0 dkWh(k) dßh dlWn(l) AA
'dladlb

Do)(t'h + vik0 -po,c\Ptd + vik- p|

J = / dßk,0 / dk Wj2 (k) / dßlo / dl Wh (I)

d

(—pDo)(t'h + viko - po,c\P,A + vxk - p|)

d
(— Do)(t% + v2k0 - r0, c|Pid + 772k - r|)
cJt,b

(4.44)

(4.45)

then for t' = X

max |7| < const c(\j\ + 1) All
V\ ,772 =±1

_

max \I\ < constc(\j\ + X)2M3-

(4.46)

(4.47)

where j = miniP, j2 }. AToreover, when p < j2 and /' < 1 Z/ien /or o// e G (0,1)

max \I\ < const (-)i_e(|ji| + X)2AI31
Vl,V-2 =±l t

max |7| < const (A~Y\h\ + ffPP1
ui,u2=±r t

(4.48)

(4.49)

Proof. For simplicity we assume IF^ = P<71 and FFj2 = C<j2. Note that

9 <9
(^rpppDY(h + viko -p0,c|l + 7jik-p|)
Ola air,

<
const

jl + tpk - p|
rPp(Zo + vxko -po-,c\\ + vßk - p\) (4.50)

AVriting the scale sums in the soft propagators explicitly and introducing a scale sum for the

phonon momentum/momenta as in (4.27) we have

I < const ( Jq + I<< + P>< + J>> (4.51)
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with

lo = I dßk0 j dkWn(k) I cP/o / dlTPn(/)

l(|Pêd + 77k-p|>i
(4.52)

in,, , î,
D(/'/0 + ciA'o -po,c\l + v{k - p|)

|Pf/l
-+- vßk

-

pß

'- = E E E a,.. 7 E E E '..«-

Sl\;i M7S2v.(2 *l<m sl<2 H<sî 5] <?77

J>^= E E E ^1Sim < E E E ^i^m (4.53)

^ = E E E Jii^"'< E E E T^'2m
777 <0 777 < s ( <;i m<S><) > 777 < / ?77<Sl 777 < Si

with

-Pi S 77 cPA-o Alk /clJo /c11P„(/)6\,(A;

1,„ 2>1 W,k -p) .

------

--.-—--;
— P>oP /o + I'P'o -po-Ppd + tyk-p)

Pfd h rik- p
-

const A/
— 51 —S2 —7777

4.51)

/d/jAo Idk Idßo /dip P| <4/spll(|A-o| < y\r-)

l(|c(l)| < 47n)l(|t(k)| < \/s,U(|P,/l + üik-p| < A7f")

PJo(Po •+-t'iAo - Po-oP/'H tyk -p|)

We boirnd this last expression in different wavs depending on which scale is lowest.

Extra care is needed in case /' <. 1 because the integral is then no longer invariant under

interchanges of s\ and s2. We stait off with 7<<.

Aftci chopping the indicator function for rcstrrction on Iq. the ^-integral in 7Sl5,m

becomes

ld8ko IdkDoßh + vAo- Po-hPeC\ v}k - p|) IL(|< (k)t < AFYH\PA + vLk - p| <. Mm)

(4.55)

On the support of the integiand in the k-integral the frequency part is bounded as

fdßkoDoßlo 4 v\.ko -

Po- e\PA+ cyk - p|) < ^PP/d + tyk p| < ttcAPA (4.56)

Note that he presence of the factor APn is essential, which is why bounding 77 j in this would

fail. Applying Pemma 16 to the vector part and the standard bounds for the /-integral (Note



134 Phonon lines in loops

that the /' dependence plays no role here), we arrive at the following bound for ISl S2rn

ISlS2m < const M~Sl~S2^2mM2sicMmMS2+m (4.57)

= const eMSl (4.58)

This implies

J<< ^ E E E const cM51 (4.59)
S1<1 s'l<S2 Sl<777,

< J2 const c(|si| + l)2MSl (4.60)
u<j

< constc(|i| + l)27V7-i (4.61)

When t! = 1, JSl.<52m is symmetric under exchange of the two integration variables and thus

the same bound follows for 7>< there.

Observing that for m < ,si < s2

7,Çl,,2m < const M-Sl-S2-2mcM3mM2si < const cAImMSl~S2 < c7l7m (4.62)

Again by symmetry, the same bound follows when t' — 1, m < s2 < si. Consequently, for

P = l

J» ^ E E E const cA7m < const c(|j |+ 1)2AJ7 (4.63)
m<jm<si<0 m<S2<0

The 7o contribution is easily seen to obey the bound. The lemma has now been proven

for /' = 1 and e = 1. It remains to handle the case /' < 1.

Let c' 7= ß before. Applying Holder's Lemma to the /o-integral and Lemma 46 we see

that

Pi,2m < const M-Sl-S2-2m(c')1"£M(1-£)mM"1MSl+miV/2s2 (4.64)

< Const (c')l-«jtf-<2+«i-cm (4é65)
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As ji < J2,

J>< = E E E T^m ^4-66)
S2<72 *<><Sl <7l S2<77)

* E E E ^- (4-67)
41 <7l s2<sl 9 2 < 777

= const (c')w ^ 4Pn J2 E ^'1~fm (4'68)

-7 const (<')'"' E ~U^ E(ls-'l + 1)1/(l~°'2 (4-69)
?iv.yi "(Ksi

using c ^ 1

< const (c')L~r Y. LP^Pii + P^P1^'1 ^ const (c')J_c(|7i|4 l)i\/" (1.70)
si<n

(4.71)

Similarly

7>-^ E Zu^»-E E E J— (4-72)
777<S2^S]<7l 777<71 S 1 > 77) <.,>.. ,

and after inseiting bound ( 1.62) one sees

^ E 7^-+E E Erons1rMro (4J:î)

< const c(|yi| + l)Pl7?1 + const Y (c'Y-LAl(-ï^mAPS] (4.74)
777 < S J < S J <, )i

S const c (|n.| + fp'dP1 - const Y Y')^hYY r l)4/(1~r''PlPSi (4.75)
77lv n<7l

< const c(|7j|+ l)2Mn + const J^ (P)w(hP ~L l)T7(W)H7bPn (4.76)

<const(P)l^t(!/r|4 i)2.P" (4.77)

The proof for I starts bv introducing scales foi both phonon momenta. Then one keeps

only that factor D that corresponds to the lowest scale momentum. This then trivially gives

the same power counting as above. CI

Remark 52. The power cou tiling without the phonon factors would have been const AIn+J2.

Thus we see that from the above lemma with c
- X that apart from polynomial factors that
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can be controlled, the two derivatives give rise to one factor M3 when they hit phonon, lines.

Here j* is the highest scale where the phonon line(s) are contained in a loop.

Finally we discuss what happens with D\ terms. The second order derivatives do not

give integrable terms because there is no gain from the frequency sum. For that reason we

avoid second derivatives of this term altogether. However as Lemma 44 shows, that means

that sometimes we must leave a derivative on a soft line. The following corollary is the single-

derivative bound adapted to this case.

Corollary 53. Let m G {1,... , d}, j < 0, p0 G B.d, and let

d
H - / cItJo / dlC<3ti

Then

dim
D\ (/o-po,c|l-p|) (4.78)

, rl (iogd +
1)2

\H\ < const
v to/ ;

(4.79)

Proof. Let I(ß) be the lowest scale such that § < MI(ß)-2. Then
ß

J~1
7 /' 1

H = E / Ao / dlPM(-T-77,)(/0 -po,c|l-p|) (4.80)
k=i(ß)J

J CHm

Define H^m — Ftkm\D->Di as in Section 4.4.3. Then

7-1

P7< const Y M'k( E nL+YHA + HY) (4.81)

k=I(ß) k<m<0 m<k

proceeding as in Section 4.4.3 with c = 0 and e 7= 1 we get

7-1

< const/r1 Y M~k((\k\ + YMk + 2AIk) (4.82)

k=I{ß)

3-1

y const p^1 Y (\Y + X) (4.83)

k=I{ß)

(|7(P)| + 1)2 (logP + 1)2
/10<,

< const AAA1L L. < const ^—^- '—
(4.84)

D

4.4.6 Scale zero graphs

The lemmas of the previous sections do not directly carry over to integrals containing scale zero

hard propagators 67q because the frequency integrals do no converge with just one propagator
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present per integral. However most of the content of 1he previous lemmas is to show that

the one integral is sufficient to control both the divergences of the electron propagator and

those of the derivatives of D by balancing the volume gains in the frequency and momentum

integrals against each other
.
As the propagator C0 P not singular at all this not needed in

this case.

Recall that in bounding the scale zero contribution we used jPo(/)| < }D/,>0^fc(P) ar|d

bounded the frequency integrals simply bv the volume of Ü. The identity

dßhrßh) < const 71.85)

was used to bound the integrals.

As D is an iutegral function of the frequency the presence of D in the integral only

improves the decay. The fact that the vector momentum integrals are up to this point com¬

pletely unused gh'es sufficient lee-way to control the derivatives. That is the corrtent of the

following lemma

Pemma 54. Let a =0.1. Then there erists a condani such that for all p C R X A, all

s -- 0,... ,2 - a. all 77i\. rn2 = 1..
. ,

d. and for all k ß 0

7 = ^dl jdgloMlo) (H ^A,)(/0 - JO-CJl - p|)
n 7 =1'

const

7-1

o=0

a
— X

(4.86)

Proof. By simply using ir/,| < 47 it can be chopped from the integral to get

7 v const / dl

n

const / dl

/
dl—

y-
/ cP/oPVPP -

Po- < lß - p|)
/ |1 - PT /

a = 0

1
_. r» i —1+a

' I1 F 17—1 I

o I 7 n — 1

4.87)

(4.88)

and the Lemma follows because s — X + a <. 2.

Therefore even when the loop that contains D with derivatives acting on it is at scale

0 the power counting effect is as in Remarks 49 and 52 or better.



138 Phonon lines in loops

4.5 Phonon lines in overlapping graphs

Lemma 55. Let 67 be an overlapping graph. Then 67 contains a phonon line k and a loop £

such that k E A.

Proof By definition 67 contains two loops A and £' such that LF(A) D LF(£,') A 0, Lp(£) \

Lp(-Z') A 0 and LF(A) \ LF(A) A 0- In fact there exists lines h G LF(A) n LF(£,'), 12 G

Pp(£)\ LF(il'), ß e LF(£ß\LF(£) such that h,l2, h are all connected to the same (effective)

4-vertex v.

To see this take any h LF(A) n Lp(£'). Start by taking / = p. Let /' be the next

line of LF(£) according to the direction of the fermion line. Then there are two cases:

i) l' G Lp(£'). Then V £ LF(A) 0 LF(A'). Set / to /' and repeat,

ii) l' ß LF(A). Then take h = 1, h = I' and v the vertex connecting them. Take p the

next fermion line after / along £'. p is connected to v because / is.

It remains to show that case ii must occur. If it doesn't then this implies that case i occuis

always. As \LF(£)\ < oo this means that after some amount of steps / = h again, tlowever

then P_f(£) = LF(£) 71 LF(£!). Which is a contradiction.

Now expand the giaph back to the full electron-phonon graph. Let k be the phonon

line corresponding to o. ff k G £ then we are finished. However if A; ^ £ then p and h connect

to 3-veitices on cliffeient sides of k, i.e. 67 contains the subgraph

and thus k G £'.

D
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Chapter 5

Power counting for Electron-Phonon Graphs

5.1 Introduction

In this chapter and following the (improved) power counting for the renormalized theory

is considered, ft will then be applied to prove that the theory is renormalizablc. In [FST96]

improved power counting bounds are obtained for a general class of interactions with bounded

derivatives of the interaction propagator, using the localization operator I as defined in (3.8).

Irr our case an analogous bound is possible requiiing more attention to derivatives acting on

the phonon propagatoi.

In the proofs of [FST96] where the localization operator £ is used to act on the values of

2-legged graphs, bounding graphs containing stiings of 2-lcgged insertions sometimes requires

more than just the renormalization gain. Analysis of sign cancellations in those strings is

required. For the localization operator P the same bounds apply. However all types of 2-legged

insertions give rise to an extra power counting improvement and the use of sign cancellations

in the product of propagators is replaced by the improved renormalization bound.

5.2 Bounds on Strings

5.2.1 Some norms of Graphs

Below we will often need to bound rrorms of graphs that are mixtrrres of of Lp Ck and

S7tp-norms. The following definition introduces a notation for them.

Definition 56. Let G G Ck(R x Q) for some k. Let /' G (0.1] and g(h, 1) a bounded function.
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Then define

/V/S(G, <,,/')= Y Jdßhfdlg(hA)
iT=0...d

n
r=l

A
dk.

e(t'h,ptd) 0< s < k (5.1)

AU©) = AA®, MN)Mle(l)l), 1) (5.2)

Furthermore, let n G IN and Q E Ck((R x Q)n). Let An = {1,..., n} x {0,..., d}. Then for

z = 0,1, 2, NAi'Zjn o
*s defined as

AAYZ/e-'t'A( II sup) E ÏÏ (/d^m.o/dlmlim(Kmi0|)ljm(|e(lm)
lyiyz'1,0'1, peAn--m=z+i

^^ ^

n
r=l

cP
e((//0)o,ptd0),/i,...,p) 0 < s < k (5.3)

Note that Ave take the supremum over the first z momenta. In particular for z = 0 we

integrate over all momenta.

We also Avrite

^;:,1.s(e)=AP:;::PniS(0,i)

Note that when \Q\S < oo, i G {0,1,2}

Vn-i,,
J1-3»-i,s

,(G) < const JW^"=i 2>|0|
) V z I 1

(5.4)

.5)

5.2.2 Bounds on Strings and Bubbles

In this section we consider 2-legged graphs, which consists of a string of propagators and IPI

2-legged subgraphs as drawn in Section 1.2.2. It is shown that the presence of the counter

terms does indeed lead to improved bounds.

Lemma 57 (Simple String Lemma). Let j < 0, n > 1, A; G {0, ...,n
— 1}. Let k! E

{k,...,n- 1}; m G {!,..., n}. Let, Px,... Tn-X E G2(A. x Ü) and, g E (7°(R, x O). Let

k k' 7i-l

sYi)=cYi)mcJ+i(i)n-mH(x-L)TW(i) n lt^y n t-w
777=1 w—k+l w=k'+l

I3 = jdßh jdllgßßWSYlß
then there exists a constant Ui such that

?),-l k' k

\Ij\<Ux II AYoM"3) II (\T*\oM-j + \Tw\i)M-ijVjfi(g)Y[\Ttwll

(5-6)

(5.7)

(5.8)
w=k'+ \ w=k+L w=l
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Moreover, when A; > L then

n-L k' k I

\Y\<Ui I] d^lo^"'7) U AY\oM^ + \TYY\gAllAh dt/jVj;2(Ti,i') (5.9)
w=k'+ l tr -fc-l-1 tu=2

q

when J0YltßV%2(Tu tß < oc.

Proof. Assume for simplicity that k' = 77 — 1. Pire extension to k! < n — I is trivial. As the

signs of the factors in the integrand are not relevant for these bounds we start by taking the

absolute values of each. Using that both |P,jo < const U_î and |(7;+1|0 < const M~? we can

bound \Cj(l)mC7+ßl)n~m\ < P/-";i,(|/0|)ly(Hl)!). Which gives

A n 1

|/7| < const 4/-"PV;0(7 ]J i1 ~ L)T«' II LT^ (5-i0)
W=l (( -- k -1

Noting that the indicator functions in A' restrict the region where the values of the other

factors need to be bounded

A 77-1

| J, | < const Ar1" H\(x - L)TYo., J] \LT'-'- o,M'3,o{9) (5-H)
lL—[ u=A^-l

or alternatively when A' > 0

k n-1

\I,\ < \g\o,, const M~°> \\ßX - L)TAo , ]J | LTw\0jjVho((l - l)T>) (5.12)
7i'=2 »-A-I

\o I 7TI <" IT"I i 1/ II 9T [ i ,_||PT|
As \L1 |

< \1 |o + IPIITTylo + IpH^Io-

|PP,.|o ;
< \Tw\o P -V'lPyt - 477(|T„|0717^' + \TW\Y (5.13)

Using expression (3.15) for (I - L)TW it is easy to see that

(l-I)ru|o7 <2AI>ßß.\l (5.14)

Inserting these bounds into (5.11) (and excluding factors coming from J\f7o(g)) gives a total

power counting factor of AAaY"-1'-1)] \f->v = j\p-i am\ +\ms (5_g) follows.

Turning to ectuatioii (5.12) we want to find a simpler bound for A(,,o((l - P)Ti) not

involving L. Using the Taylor expansion (3.13)

.V7)0((l - L)TA = Aß o( I dt /eP(PPP(P0. <y>.0)) < const M2' I dt /cXsAj 2(T]. s) (5.15)

0 b b b
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which implies (5.9) after insertion in (5.12) as the power counting factor is now

M(t-l)iM(n-t-l)JM2JM-nj = L (516)

Note that the factors Afjß(g) and A/y2(Ti,s) normally produce an other factor M2?

and thus the complete power counting is MJ and M2j respectively. D

Corollary 58 (Simple Bubble). Let j < 0, and for all, i = X, 2 n; > 1, k-L G {0,..., n,- — 1},

k[ E {k,...,n- X}, mi E {l,...,n;}. Pe/Typ ... Tn_M G 672(R x A) and gt E C°(R x fi).

Let q G R x Q, for both i. Let Ay + A:2 > 0, and

k; P 77,,—1

5iii(o=c'i(z)m'-^+1(/)'i''-m'n(i-z)TW,i(z) n LT^w n ^^o (5-i?)
w=l w=ki+ l vj=k' + l

Ij = fdßhfdlgAYgAAS^AAS^Al + q) (5.18)

Z/ien //rere exists a, constant Iß such that

\Y\<UiAr3 J} (\TwYoM~3 + \TwYi) n (l^,ilo^"
(777,7) (w,i)

k,<w<k[ k'<w<n

9\\o,M*J II AYi fdt)Mh2(Ti.s,t') (5.19)

K0?JM)
toyA;,

777/iere s = 1 if ki > 0 o,?7,ci s = 2 otherwise, when fQ d/0V}j2(Tps,/') < 00.

Proof. The proof of the corollary is completely analogous to that of the previous lemma but

for the fact that as there now are two strings there is another propagator not paired with a

corresponding Tw and thus there remains another factor AI"3 in the power counting. D

fn the following there is also a need to bound strings with derivatives acting on them.

The following shows that the power counting just contains the expected factor AI~~3 for each

derivative of a string at scale j.

Lemma 59. Let j < 0, n > X, k G {0,..., n - X}, Let k' G {k,...,n- X}, m G {1,... , 7?,}.

Let s = X or s = 2. Let Ql,a2 G {0,..., d,}. LetTp... T„_i G C2(R x A) and g E P°(R x Ü).

Let Sj be given by (5.6).

1, = / <y„ / diisffl ÂA)SAi)
7=1

(5.20)
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then there ensts a constant U2 such that for 6=1

71-1

|/,| < VßAr'ArßV,o(q)Y'AAxoY)
7-0

where for some set B of numbcis 0 77 — 1

71 1 A'

V (b)- n dr-io^ o n (ujov-' \\tyi) h\p.77, P

u. =k' (-1 777—1

wlB

Moreover there ensts a constant P2 w/c7 that

Yj\<o2Ar" Y YA'YxoßAA-d,,, )-> \2(ii)?>ni,)n(Bnt,
n 77g t

where

\t(0
\qß1fA^A2l(Tl P) 0^/ <A

17 yA
j o(<yKo(') otherwise

P|o, f()ld/'V2/(Pi /') / -OAA
^

1

u(')-<
^-yV,o(9)

0

Mo? v2?(P)

? = p \ A - 0

A < r P A'

0 ^ ? t. A V 7 > P

7Pe?e P is given by

h ={(7! 0)'7L -0 71 1}

-L> {(?i /i)|/i r2 -0 ,n 1}

(5 21)

(5 2^

(5 21)

(5 24)

(5 25)

26)

(5 27)

(5 2£

and B(ii,i2) 7= {; L ;,} when A - 0 n Y 0 or /2 p 0 When A > L then P(0,0) = {1}

Note that here again the expiession is moie complex than its contents Although the

deiivatives change the explicit foim of the factois we will ^ee latci that these have essentially

the same povvei cotmtmg Pherefore the onh change on the level of povvei counting is the

appeaiance of the factoi M""
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Proof. Distribute the derivatives using Leibnitz's rule. The derivative with respect to /Qi either

hits the subgraph rt or the propagators. In the latter case, take r%
— 0 and it the derivative

gives a factor AI"1 trivially. We will show that when r% A 0 the corresponding factor gives

power counting similar to that used in the proof of Lemma 57 but also with a factor M~3.

When r > k' then we simplv have

\£-Tu\ < |T,,|i < M-3(M3\T,,U) (5 29)
Ola,

The momentum dependence of L is trivial and thus for A" < ry < k' a similar bound holds

-LTrß < \Trßi < M-3(AP\Trßi) (5.30)

For 0 < r, < k the bound is even simpler than without the derivative because the derivative

gives a direct gain.

|-f-(l - PTrJ| < |TrJi < M-3(M3\TU\A (5.31)
Ola,

The second derivative of PT with respect to p and h vanishes. Therefore for 0 < ry < k and

k' < r we have

A o(\4~ 1T-(1 - Mr < k)LTrß\) < N%2(TY < Ar23(AI23Aß2(T, )) (5.32)
(J^ai <-3A2

Note that the derivatives have given the factor AT23 directly and interpolation is not needed.

The most difficult term is when there is only a single derivative acting on (1 — L)Tr

but we still want to cxtiact the improved renormalization factor AI2]. Here we use the repre¬

sentation (3.15) for (1 — L)Tr. For simplicity we consider only the ßp- derivative

^,o(^-(l-T)T,)
C'O

1

< JdtAjoY^-Yth, Ptl) - (^)(°>poi))
o

+M'SAiA{A)A)+NAA])
0

t t

< const A7? / d/A2 3(T,, t) = const AP~7(M2? f d/A'2 3(Tr,t)) (5.33)

b b

Which is indeed the bound in (5.15) but for another factor AI"3. D
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5.3 Power counting with the Iv-operator

5.3.1 Graphical representation of the norms

We now have bounds for overlapping graphs and for strings, with power counting improve¬

ments through extra volume effects renormalization, Bv Remaik 33 these are in fact all the

tools we need.

It is good to have a graphical interpretation of the norms defined in the previous

section and of the definition of A4 in (3.81). Let A4(67) be the graph obtained from G by

connecting the incoming line with momentum p, to the outgoing line with momentum pm+,- \

for / = 2... m. Similaily define Ai(G) as the graph where also the remaining two external

lines are connected. Below these two giaphs are drawn for m = 4. The new lines are drawn

dashed

/ ^»~ \
'

s \

* ' ^~A ,

M(G) M(G)

The graph AI(G) is two legged. When the added Fermion line is thought of as having

propagator I then Val(.14(67)) is given bv (cf. equation (5.3)):

fl (fdsl, o jd\, ) M(G)(h,.. .Am) (5.34)

Idle graph M(G) (and related graphs) occur natmallv in Pheorem 60. because of the recursive

structrrre for two legged non-overlapping graphs given bv Remark 33. We will also use the

two following trivial properties of Af(67):

• When 67 is overlapping, then A\(G) is overlapping.

« When A4(67) is overlapping and / is pait of two overlapping loops then / G 67.

5.3.2 Another representation for labeled graphs

Pet / be a tree rooted at o and G a graph compatible to it. We now define a tree r as follows.

Take the maximal subtree /' C / such that for all f t /' with f not a leaf E(f) > 2. Thus the
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leaves of t' are either the leaves of t or forks with E(f) = 2. r is created from t' by iterating

over all / G t' with E(f) = 2 and following the following procedure recursively:

• If Gf is IPI then stop.

• Each 1-particlc reducible two-legged fork 67/ is a string of fPI two legged graphs. If

these are sub forks of / connect them to 7t(/) directly. If they are graphs of scale jf

(these are called same scale insertions (SSI)) then create a new fork /' for each of them

in the tree. These have the special property that the scale jfi isn't summed over but

always jp 7=

yyy) + 1. Note that by momentum conservation for a 1-particle reducible

fork / the only term contributing to the scale sum is jf = jir(f) +1 an-d thus eliminating

the fork from the tree (and from the scale sums) is allowed. After these new forks have

been inserted replace them by vertices as above.

We also construct a corresponding graph 67' similar to the construction in e.g. [FST96],

but only replacing the two legged subgraphs. Apply the replacement procedure above to /.

67' is created from 67 by replacing each two-legged subfork / such that Gf is IPI and for all

ß < f < f, E(f') > 2 or 67/' is IP-reducible by a two legged vertex Vf with scale jf and

value

Val(u/) = E V«r Val(G/) (5-35)

JeJ(tf,af,jß

with

L if / is a C fork

'PVl = < (1 - L) if / is an R fork (5-36)

1 if / is a SSI

Correspondingly replacing tf in / by / gives r. We will often identify Vf and /.

Such 2-legged vertices/subgraphs act in many ways like fermion lines. For instance if

for a leaf Vf of t we define dfmG as the graph that is constructed from G by replacing 67/

by a vertex with the value yy-(P/Gr/)(/). It is obvious that Corollary 43 trivially extends to

graphs that have 2-legged vertices in this way. As 2-lcgged vertices thus behave like lines in

the above sense we define P2(/, 67), a set, containing both lines and vertices, as follows

F2(t,G) = LF(G')UV2(G') (5.37)



5.3 Power counting with the P-operator 147

5.3.3 The power counting bound

Theorem 60. Let e G (0, I]. Let /' G (0,1] for e < I and /' =- 1 for t = X. Let (/, 67) be a pair

consisting of a graph G compatible with a tree t for our theorg with e(l) — |1|2 — f. Let cb be

the root of I. Lei s < 1 when E(G) =7 2m --- 2 and s' 77 0 when E(G) — 2m P 1.
.
Let 7 y 0.

IfE(G)'- 2 then let G be IPI Let ß.h G F,(t. G) Let a\.a2 G {0,... ,cl}.

Then there is a polynomial Pol such that

1) When either

(a) E(G) 2 and when c v 1 s' - 0, 01

(b) ß — 0 and G(eß is oieilappincj. then

Y !Val(677)|p <A.((Pf) Pol(|/i)il/'(2- L2E<AAs'+c) (5 ]8)

iç.J{t a 7)

(c) If F(G) > 4 and G(6) is non overlapping

Y \AA(GY\o^-Pol(\)\)M>(2-ir(A)
TCJ(I G ;)

39)

n) When M(G(6)) is oicilapping and h(G) - 2m P 1 then for all scales 72, , 7777 < 0

and for all scales j ß rnax{;2, ;„,))

Y A' lA(-VYàl]a]GY)^A(c U)Po}(ßß)M^A2^+i(2-ndH(e-i) (540)

fÇJ(t G I)

where g =- min{;/2,. .77,,} Aloreoin for F(G) — 2777 > 4 and 67(o) not necessarily

overlapping

Y A: ';o(M(dhaiGY) < Pol(ßßA^AY2n+ß2-m)-L (5 41)
Jtjij c, 7)

uheie 7 =7 mm{pi. . ;„,) if m ß 1 ) = ] foi m = 2

in) When E(G) 2m y 4 and A!(67(o)) ?s oicrlapping, then for all ]i,...,jm < 0 such

that y
— mm{/i. , ;,„} - ji alien t' ^ 1 and all 7 ^ max{y ,..., ;,„})

E -AVoi-^àA^cYi')
J£j(t(, J)

< (t')c-YAAc ],c)Pol(|y|)17>^'- 2> lK2"'A-r l;(c-i) (5 i2)

<. (/')f 1A2(c. Pe)Pol( ; )A/^m=i2' H/(2-m) i-,(c-2) (5 j3)

where j = mm{?i. .7»,). 7" 77 mm{p 7/?^T \ p7? 1-- wdh 1 chosen such that p 7 j
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iv) When E(G) - 2m = 2, then for all j\ < 0 and all j > j\.

Y <(°2(Val(67J),/') < (/')c~1A2(c,P,e)Pol(|71!)7P72^+^.H^(-1) (5.44)
JJ(t,G,J)

< (t'y-1\2(c,ß,c)Pol(\ji\)M23^+3l(-£^ (5.45)

Proof. We prove this by induction on the depth P of the pair (/, 67) defined by

P = max{7-|3/i > ... > fk > à with E(Gf) = 2 for 1 < ? < k}. (5.46)

This proof will be analogous to that of Theorem 2.46 of [FST96] Avith the addition that the

vertex functions no longer have bounded derivatives and that the derivatives must rerouted

to avoid phonon lines. As we are not interested in having very strong bounds for the constants

involved, no special care is taken in bounding overlapping four legged graphs. For that reason

four-legged graphs do not appear in the definition of the depth P used here.

We start, off the induction at P = 0. Then proceed on a case by case basis. We will

denote by s the number of derivatives acting on the graph, i.e. s = s' in (5.38), ,s = 0 in

(5.39), s = 1 in (5.40) and (5.41), and s = 2 in (5.43) and (5.44).

Graphs of depth zero

Case A: P = 0,.s = 0 and either G(ß) is overlapping, i.e. G is overlapping at root scale, or

E(G) = 2 and j = 0. Using the improved power counting bounds we have

Y ßAl(GY\o < count \j\aA1+dAi Y ]jAIDAJf"3Pfß (5.47)

J£J(t.G,f) J£J(i,G.j) /><7

by bounding all phonon propagators by 1.

However by Lemma 55 there is at least one phonon line k contained a loop when a graph is

overlapping. Likewise by Lemma 50 there is a phonon line in a loop for j = 0. Let A be the

highest scale where D is contained a loop. Then by Lemma 47 (or Lemma 54 if j = 0) the

h integral in this loop can be bounded by const, A2(c, ß, e)AIe] instead of const AI3
. Using

AFP = M^-^3'Mi* we thus get the bound

Y |Val(67J)|0 <constA2(c,7?,e)|.7|A7(1+I?^P47^1)P Y JJ AIDAJf^-(A

JeJ(t,G,j) J£J(t.G j)/></>

(5.48)
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using (e — 1) < 0 and j < j*.

< const A2(c, 8.c)\j\MD°3Me} Y U AI^f^f^Mfß (5.49)

j£j(t,G,P p-cß

Remember that Df = 2- i(P(C7f/)). As P = 0, Df < 0 for all / > cb and thus

Y |Val(67/)|o< A2(c. l.pPold?!)^/^-^^-^ (5.50)

ACJJ C7 ,)

which gives part ib and ia for the case G(d>) is oven lapping or 7 - 0. The case E(G) =- 2. G(6)

overlapping and 7 < 0 cannot occur at depth P 7- () because G is IPI it consists of a single

(effective) vertex with generalized self contractions. As P =7 0 these strings cannot contain

two-legged insertions and therefore they must be single wick lines. However because of Wick

ordering these cannot occur at scales ) < 0.

Case B: P - O.s — 0. E(Gß) > 4 and 67(c)) is non-oveilappmg. Proposition ic follows directly

from Lemma 23 because there are two-legged subgiaplrs.

Case C: P=0,s=l, 77(67) 77 2 and G(cb) is overlapping or 7 — 0. By the remark above this is

all of item ia at depth P — 0. As Using Corollary 43 we sec that for all a G {0,... d}

i/ Val(P7;)(p)|^ Y |Val(9pfl67;)| (5.51)

and treat this case together with Case D (see the lemaik at the end of Case D).

Case D: P = 0,s = I and £7(67) P 1. Fix a spanning tree T for 67J compatible to the scales.

Because P = 0, ß is either a hard line 01 a soft line. If P is hard line set / =7 ß and 67 = 67,

and proceed with (5.53). If / is a soft line then we need to another integration by parts using

Pemma 44.

Denote by A(67) a graph with the same structrrre as 67 but such that at each line of G the

absolute value of the propagator is taken when computing the value. This docs not change the

power counting behavior of the giaph. Because ß is a soft line there is a loop L (consisting

of hard fermion and boson hires) in G that contains /,. Then from Lemma 44 we have:

d

YAl(c)liaGY\<-M-">-\yA(A(GYV~ Y E YAl(A(dlaiCA))\ (5.52)
a' -1 lGL\h

where 67 is the graph 67, apart fiom the the propagator on line P which has been replaced by

C<n o- Again this does not change the power counting of the graph.
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Proceed by bounding each of Äff"' *'z 0(A4(A(<9/a67J ))) separately using power counting.

Starting with z = X

771

K^im.o(MMdiaGJ))) =V^(Gt) J] M* (5.53)
?=Z+1

where the two-legged labeled graph, 65/, is obtained from A(diaGJ) by constructing the graph

M(A(d(aGJ)) as described above and attaching A7"":',l7i(|pj)o|)ljî(je(pî)|) to the line added

Avith momentum p% (i = z + 1... m). The line now has scale j,.

There are two cases:

/ is a Fermion line
.
Then the derivative gives rise to a factor const AI"3'. where j\ is the

scale assigned to /. As there are no C-forks allowed (P = 0), AI"31 < AI"ß If j < 0 bv

assumption M(G(é)) is overlapping and thus 67/ is overlapping at the root scale of 67J,

i.e. scale J. Moreover by Lemma 55, there exits at least one phonon line k in Cß that is

in a loop. Denote by 7* the lowest scale at, which k is in a loop. Note that j* can be one

of the J2 hn

We can apply the improved power counting at scale j and Lemma 47 together because

the former only uses the momentum part, of the integral and the latter only the frequency

part. Taken together they give

in

AAAA^A')) < Val(67,)n^'
4=2

771

< const (|J| + X)AlhrA\2(c,ß,e)M(e"VAY[M23>AID^ J] MDf^r-i-s) (5.54)
î=2 f>(f>

m

< const (\l\ + X)\2(c,8,e)AYt"1AY[M23*AIDAY[AIDf^f"J-f) (5.55)
7=1 f>4>

By assumption 77p < 0 for all / thus the sum over all labelings J G J (t. G, j) converges

and (5.40) follows because D^ — 2 - m and (e - 1 ) == (e - s). The first term in (5.52)

is bounded in the same way as the factor M 3li is the same as would have come from a

derivative on a hard line of scale jy.

For z = 2 not enough momenta are integrated over to make the graph overlapping.

Likewise there is no guarantee that there is a phonon line in a loop. However that does

not matter as for (5.41) no improved power counting is needed.
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/ is a phonon line The derivatives of P4(p/.o,c|p/j) are not bounded. We will bound them

using Remark 49/Lemma 48. Recall that this case comes from (5.52) and thus a > I

and / is contained in a loop in G.

Let j" be the highest scale such that / is contained in a loop. As before this can be

one of J2 jm- Then by Remark 49 there is an additional factor const A2(c, ß, e)(\j* | +

l)7\/P-1^P with respect to the power counting of the graph without a derivative acting

on /. That, is. one loop is used up to get the statement of Remark 49. Note again that

this loop could have been one of the overlapping loops and thus avc can no longer get

the volume improvement from this. HoweA-er the fact, that the extra factors in this case

are less divergent is sufficient to get the required result.

m

y^AAKOiAY) p Yapp,) Jp7''
7-2

77!

< const À2(c.,Pc)(|/| 4- i)4/(c-nP Yl^Y2l-AIDA J] MDiOj~^ß (5.56)
7=2 />f/>

777

< const A2(c, Pe)(|y! }~ 1) J| AI2hAI(2"n>^Aß'""A f[ MD^3'"^^ (5.57)
i=l fxb

which gives (5. 10) when summed over all .7.

When ^7-2 then we use the same bound with e
—

j
and throw away a factor of

M$r < X.

Note that, E(G) = 2 is just a pathological version of this. There is no integration over the

external vertex, but, the graph is already two legged and overlapping. Insertion the bound

in (5.51) gives Case C item ia.

Case E: P -- 0, s = 2. E(G) = 2m 77 2. Because P =7 (), 67(<7>) is overlapping or j 77 0 as

discussed at the end of C!ase .-V. As 67 is a two legged graph we can use Corollary 43 to bound

AAM(GY)< Y E AA^dAdaAA (5-58)
oi ci2=ot1 herpj G)

Proceed by bounding the terms in the sum on the right together with

Case F: P - 0..s 77 2. E(Gf) - 2m > 2 and M(G(A)) is overlapping.

As before we have to deal with the case where /| or 7> is a soft, line first, ff only one of the

lines is a soft line then we can integrate the deriv-atA-e away using Pemma 44 just, as in (5.52).

If both lines are soft lines rrrore care is needed as we want to make sure no second derivative
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is taken of D\. Let K(G) be the set of all labelings K : Lß(G) —>• {0.1} of the phonon lines

of G. Then define 677,A as the graph where each phonon line / has Dfçm as the propagator.

Choose a spanning tree compatible with the scales in the usual way and fix momenta accord¬

ingly. When p A h both p and l2 generate a loop (Pi and P2 respectively) in 67 that can

contain both Fermion and Boson lines. When p = Z2 then set Pi =7 P2 to the loop generated.

We apply Lemma 45 in these loops/ this loop. If p = /2 Ave apply the first half where g

contains all the propagators from the Fermion lines in Pi \ {p} and all the propagators from

Boson lines / G Pi with 7v (/) 7= 0, and h is the product of all Boson lines / G Li with K(l) = I.

If h Y h we apply the second half with g the product of the propagators belonging to the

Fermion lines in (Pi U P2) \ {/i,/2} and all the boson lines / G Pi U P2 with K(l) = 0; For

2 = 1.2 take ht the product of propagators of the boson lines p G (Pi U P2) D (L, \ (Pi n P2))

with K(l) = 1. Finally take /13 the product of the boson propagators of / G Pi n P2 with

K(l) = 0.

Lemma 45 makes sure that none of the propagators in h.hi,h2- or hi has more than one

derivative acting on it. In addition the only derivatives acting on phonon propagatois are

with respect to components of the vector momentum. Thus we have to bound either

4=i, -KAA^m>:mAAGJh\P -M-lh<«+^c
))) (5-5°)

or

Iu-éi, =Xm0 AM(A(dY ,d,P ,GJ'K ))) (5.60)hAh n 7,, 21 ^ \ ,'m' l'm'2
Ph=M-»dZc<Jh0,Pl2=Ar»2^C<Ji2J33

V >

Here P\ denotes the propagator on line /, l[ and /2 are hard Fermion lines or phonon lines,

s, < X, si + 52 + S3 4 S4 + ,s5 == 2. S] + Si < X, s2 + 54 < 1, m[ A 0 when /( a phonon line.

557=1 only when s 77 1. Iß is a phonon line and K(l\) =7 1. The cases where one of the lines,

say /2, is a hard line produce similar terms where we can set /(, = 72. m2 = rn2 and possibly

leave off the replacement of the propagator P/2 on line /2.

In the following we vviite I for all these terms. It is sufficient to show the required bound

follows when each I is summed over J because the sum over the labelings K, and over the /(,

sds, and m('s where appropriate, is finite. For the purposes of power counting it is also again

useful to view the resulting expression as the value of a graph obtained bv extending G.

m

I = YA(G)J\[AI3' (5.61)
(=1
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where 67 is the graph M(A(dsßm, c9,P/77/ GJ,K) with replacement of the propagators of ß and

/2 if applicable, and in computing each value each new (dashed) line is taken to have the

propagator M~lllh(\Pi,o\)ïjl(\e(Pi)\) when/), is the (formerly external) momemtum flowing

through the line. Note that 67 has no external legs. The method to bound Val(67) depends on

the type of the lines l\ and /(,.

At least one of /(,/-(. is a Fermion line or s3 + sy > 1, s^
— 0

.
Assume WLOG l[ is a

Fermion line (in case s3 J- <y > 1 the power counting behaves as if a hard line of scale

7p or ji, was differentiated). Then the derivative at /', gives rise to a factor const AI ''i.

Note also that

a-;;' °;m oYa(gY) v. ai2av;AA(m(cA) (5.62)

when the right hand side is finite. This is the trivial bound for the effect of the exfia

integration over the remaining external fermion line. Thus the power' counting for J is

the same as for const AI231 Ar'^YV^A Ho(M(-YàYm> d%ni,G '*")). Note that /', G G and

thus const AI2]1AI J,'i y const AI2'1 AI~l < const 4/2/1~'* which is exactly the extra

factor in (5.43) relative to (5.40).

Both lines arc phonon lines, s^ - 0 This is the new aspect of this case; there are two

derivatives on phonon lines. The effect of this will be bounded using Lemma 51 and

Remaik 52. However this is not always needed:

Pick a spanning tiee T compatible to the scales, fix momenta and bound all propagators

on the tree except those foi /( and /( bv their suprema.

Consider the case there are two loops £i.£2 G 67. such that £| Y £2 mid /( G AP for

? 77 L,2 and 1'2 ß Pi oi vice veisa. Without loss of generality we can assume the former.

Note that this implies that /py does not depend on the loop momentum of £i. duns we

can apply lemma 44 once with e = \ and once with e as given by the preconditions of

the theorem. Phis gives a faotoi

A2(c, P c) Pol(P|)4J^-'P47- Y < \2(c. i. c) Pol(]Ai|)J\/{c~i^i\/-*: (5.63)

in addition to the ordinary power counting without the derivatives. Here k and k aie

defined as follows. Pet k, the lowest scale in £, oi equivaientlv the highest scale where

£, appears. Then A- 7= min{Ai. A-2} and k — max{Äy. Ay} > ß7

If there are no such two loops then either



154 Power counting for Electron-Phonon Graphs

a) l[ is not contained in two loops.

b) There exists loops £i,£2 G 67 with l[ G £1 D £2, but only such that /2 G £1 D £2

too.

First we show that case a cannot occur. Observe that by construction l[ E L\. Set

£1 = Pi- Assume that there exists no other loop £2 G 67 that contains l[. £i \ T = p.

The graph H — 67 \ p contains l[ but not in a loop, tlowever H is two legged and thus

by Lemma 50 a tadpole graph that is disconnected if l[ is cut. This implies that l[ does

not depend on pp. which is a contradiction.

Thus we must be in case b. Note that this implies that p;i = ±py. Therefore the

integral is zero when K(l\) A Kfy) because stippPp) P suppPp 7= 0. By construction

K(l[) = K(l2) = X cannot occur in case b. Therefore K(l[) = K(Y) = 0 and we can

apply Lemma 51 arrd get:

m

I < const (IP] + Xf^Y-'M^"^"1 J] M2hMDA JJ MDAif"J-ud (5.61)
i=t f>4>

< const (|y| + X)2(^)aYc"1YaI"1*M^i 2j,M(2-m)j JJ MDAif"J~<fd (5 65)
f

f>4>

and (5.43) follows after summing over the scales. l[, 1'2 and the type of derivatives.

Otherwise, i.e, 55 = 1 55 7= 1 implies that l\ is a phonon line, si = K(I[) = X. No second

derivative occurs as s2,S3. 94 = 0. Bound the propagators on all lines of spanning tree

except /( by theii suprcma. Apply Corollary 53 to the integral over p\2 and ordinal y

power counting to the remaining integrals. In ordinary power counting the py integral

would have produced a factor AI31?. Thus the difference is given by

const AAL±AYM-3i2 < const x2(c. ß. e)AYc"1AAI"3' (5.66)

And thus the bound follows after carrying out the remain summations over the scales,

K, l[, and m\

Overlapping higher depth graphs

Now turn to the cases with P > 0. Assume as the induction Hypothesis that the propositions

of the theorem have all been proven for graphs with depth P' < P.
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Construct the graph 67' as above. By construction 67' has depth P 7= 0 and the new vertices

have depth P' < P if not a SSI and can be bounded using the induction hypothesis. Moreover

Y Val(677)- E AA((G')J) (5.67)

reJ(t,G7) Jej(rG'))

Case G: P > 0. s — 0 and (7(o) is overlapping or j — 0. Gße) is also overlapping. The power

counting for 67'P is as in Case A. with extra factors coming from M~ ?~<-f) AA(vf) for each

two legged vertex. The effects from these on the scale sum are bounded using the induction

hypothesis with c -- e' -- 7 to show that thev are bounded by at most a polynomial in the

scale:

• ff Vf is from a C fork the extia factor is

M-^n Y E I^Val(C?f)|o,7r0) (5.68)

P--J~(7) >£J(tf Gi ]ß

^ Y E -P"^'f,|APl(P7)|o + |Va1(67//)|l (5.69)

h^l-U) l&Jdj G- )ß

where equation (5.13) was rrsed. Applying the III for e = e'

y E A_>(r. Pe')Pol(l;/-')(.U^1+e')^-'^) l-M^O (5.70)

Ip^-i- n

77 A2(c. ?,r') Y PoPÎ/ypP'" (5.71)
7 !<!-(')

I
__

1and setting e 7= 1

<A.J. P^Popy^1) (5.72)

ff Vf is from an R toik the extia factor is bound using (5.14) as follows

Ar'-(l) E E \^-d^(o})(p)\0j_U)
h^l-r(,) lLJilj Gf ,,)

< y E Y'A(cA<Hcid) y m\u\)M^
iC 1- n 7-7il, G/ i,} ii^)-(i)

y const A2(c, p. t') (5.73)

where we have set e' = 1 in the last line.
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• If Vf is from a SSI then apply normal power counting to the graph 67/ to see that the

extra factor is

M~3<r>M3f < const (5.74)

because for these SSI's jf = j^f) + X.

Case H: P > 0, s - 1 and 17(67) > 4 or E(G) = 2 and G(ß) is overlapping or j = 0. As

above the power counting for 67' reduces to Case D. The only new factors are either as above,

or when instead of a line / one of the vertices Vf is differentiated. Note that because of the

spherical symmetry |P67/|i < |67/|i, i.e. no second derivative appears. This gives the following

bounds

• If Vf is from a 67 fork then we use the IH with e = 1 (this is allowed because s 7= 1)

M--M70 Y E lVal(G/J)lt
7/<?,-(/) J<=J{tf,Gf,]j)

<AI"3-G) Y Pol(b'/DA/7/ < constPol(|j^(/)l) (5-75)

3f<3~r(f)

» If Vf is from an 77 fork the extra factor is

AI"^(n Y Y lVal(C/)|i <constPol(!,7ff(/)|)ArM-fi (5.76)

7t>3*U) JJ(tf.Gf,3f)

Thus the effect (apart from polynomial factors) is the same as if one of the fermion lines

of GP(/) was differentiated.

• If Vf is from a SSI then apply the lemma to the smaller graph 67/ to see that the extra

factor is

M"^(J)M3f < const (5.77)

because for these SSPs jf = j^^f) + X.

Case I: P > 0, s = 2, E(G) = 4 or E(G) = 2 and G(ß) overlapping. What happens when

one of the derivatives acts on a new vertex Vf that is not hit by the other is discussed above.

If any of the new vertex gets differentiated twice, observe that, because 67' is IPI each two

legged vertex only occurs in a loop in 67'.

Note that by the spherical symmetry all second derivatives of LVA(vf) arc zero. Thus if Vf

corresponds to a C fork the integral vanishes when both derivatives act on Vf. Moreover iîvf
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corresponds to an i?-ibrk

YA-^^A-A^ (5-78)

Thus only the full Val(67/) appears in the bound and not the Taylor error term. This means

that interpolated values do not appear. The IH applies with /' — 1 and can thus be used with

f 7.1. For a SSI the pre-factor was 1 from the start.

If Vf corresponds to an R fork, observe that Yal(A(p , u^a?^7)) contains the subintegral

c) d
M->~ " / dAYCp s-(p)j|y-T~-Val(W/)| (5.79)

,/ (JPa i Gpa?

for some line j+ of 67' which if s1- — 0 is bounded bv

M-i-i'M-F Y -AA^YGJ)) (5.80)
J£j(tr Gt lr)

which by the induction hypothesis is bounded bv

A.,(c. Pc)Pol(|P'piPr M'AI"' G) (5.81)

which is an extra factor A2(c, P c) Pot(| j|)47(r~P? M"]~g) compared to the normal power

counting and thus this tenu obevs the bound When s" = I is bound is analogous. A SSf is

treated in exactly the same wav.

Non overlapping graphs

Case J: P > 0y 0. E(Gf) ß 4 and 67(o) is non-overlapping. As in Case G the power-

counting is as in the P = 0 case because the two-legged subgraphs give at most polynomials

in their root scale.

Note that below onlv graphs with root scale ; < 0 occur because scale zero graphs can always

be treated as if they were oveilapping because AF> — 1 and no gain is needed.

Case K: P > O.s - 0 and E(G) = 2. 67 is IPI. ; < 0 and 67(o) is non overlapping. Note that

in this case e <. 1. 67 is a GST giaph and thus Yal(677) has the strnctme (3.82). At least one

of the strings has scale ], — /.

67/ in (3.82) is either a single vertex or 67/ is such that expanding to the roof scale 7/ of 67/

would make G coverlapping. If the stiings of two legged diagrams in G are replaced by clashed

lines, this gives A4(67/). litis then implies that M(Gf(f)) is overlapping (Note that / is by
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definition the root of 67/). However because of the power counting gains that the L operator-

gives to the strings we will not really need this detailed structure here. In the following we

write u
— f and P* =7 67/.

Applying the first half of Lemma 57 to each of the strings gives the bound

1Vr — l

ValGJ(c/)|o<const7V;;71;1;0(A4(P))n^~> Ü &•*
r=2 k=l

with

(5.82)

|Pry|i when fr^ is an R-fork

Qr.k = l M"3'ßTr.k\o + \Tr,k\i when fr.k is a C-fork (5-83)

AI"3'- \Tr fclo when Tr e is a SSI
v.

The sum over all scale assignments to (67, /) factors into the sum over all scale assignment to

subgraphs of U, all scale assignments to Gr,k and sums over the j'rs. Applying this to (5.82)

Y |Val67J(ç/)j0
J£j(t,G,j)

in' 7(7,. —1

< const E E E <ï'UM(U))l[M-» ft Qr,k (5.84)

{jr}A P>maxlP} JuJ{iu,U,ju) r=2

min{jr}=j

k=l

with

Qr.k = <

Ar,k>3,- ^F.keJA.k,Gr.h,jATAi when fr.k is an R-fork

Ar.k<3r Zjr.kej(irik,Gr.k,JT>k)(M~Jr AYo + \Tr,k\i) when fr.k is a C-fork

M~ir E,/„ .ejt* . G, ,ATAo when TrJ is a SSI

(5.87

As before using the induction hypothesis and ordinary power counting for the SSPs we sec

that

Qr,k < PolflTr .86)

However inserting this in (5.84) does not give the desired inequality (5.38). The bound on

Aym ß:l'Y,(M(U)) gives at most an improvement, A2(c, ß,e)AIe3li. However j < ju and we need

to extract, the factor elsewhere.
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The scale j does exist in the string S, (because ? was chosen such that p = 7). If S, contains

a C fork or a SSI (say corresponding to ThZ) then apply the first half of Lemma 57 to (3 82)

to obtain

Y |ValG7(c7)|0 (5 87)
TeJlt G ,),i =-j

in1 77), — r

-«* E E E A:'~i\lo(M(U))llA["i HQlk (5 88)
{7,lV, 7^max{/,} Jt,CJ(tu L ju) '=2 k=l

r>)Y)

< const Y A Po\(ß\)\AA> l> (d-»AQiz (589)

{) yY-i ' ^maxP i

7 7;-)

applvmg the IH to Q,
„

rl rt is a C fork or tins case i oc tu srv civ for a SST

y const Y E A2(c, 7 t)PcT(|7l)17- '-^'"7'^m')+t? (5 90)

{/, } ß-, I ^m<-<p7 }

i >i A

^\2(c,d.APol(\)\)U(t"r)i (5 91)

When S, is a stung of iPfoiks, apply the second half oi Pemma 57 to obtam (vvheie we have

assumed foi notational simplicity that ? = 2)

E Y'AGYq)'o (5 92)
JeJ(l G Pj,= ;

777' / 771,-1 \

^co1^ E E E II h/; II Qr^\M(u))oj
{i } Y ] %nidP? 1 Aejp, i i -=n a=i J

3 ^lo~)

n'a./o'P A C?'o[uY
A=2

0 77/'fc,/y,(, /' /

using the pievious bounds and the III

i

< A2(c,d c)Pol(|;|) Y Y -^-=3/ ~M-'->)uy+(c-iy ldtp-i
{lr}

_

I "-maAl 1 0

/ 7/2 = 7

<\o(c. Pc)Pol(l7lPU(] l)>
(5.95)

(5 93)
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Case L: P > 0,5 = 1 and 77(67) 7= 2, 67 is IPI, j < 0 and G(ß) is nonoverlapping. We use the

structure (3.82) of the graph. Using Corollary 43 we see that the derivative can written as a

sum over terms where it either acts on a fermion line/2-vertex in U or on one of the strings.

d

dqa
AAGJ(q) <Li + Yhi (5.96)

?;=2

where

P == E Ê (jAr,ofdlr\SYlr)\) IM(dkaUJ)(q, l2 - - -

, /,- (5.97)

k£F2(tu,UJ)r=2

L2,i = jQ f / delr'° / dlr \SYY)\ J / dßlr,p j dl;

r=2

ry«

d

dli.a
Sr(li) ß\4(U)(q,l2....lmß\ (5.98)

To bound 7i use (5.84) with U -+ dkaU and (5.86), which gives

Jej(t,G,p

(5.99)

m! wr—1

< const y e e <ï'o(^(^p))n^" n ör.* (5-io°)

{jr ]V .7,, >max{j,.} J„ 6 J"(tu T.7u)

mn{jA=3

1—2 k=l

< const E E E Pol(\j\)Ai^AjAM(d^U))IlM~J' ('5-101^

OV};"4 P*>ax{>} Ju£J(tu,U,jn)

mm{j,}-j

r=2

and using the IH

< const, A2(c,p,c)Pol(|,7'|)7V7y (5.102)

To bound the contribution I2.i, apply Lemma 59 to string £,-. Again assuming for simplicity

that i = 2 we get

m' / wr—1 \

x: j2.2 < const e e En Mjr n ^ i.*wi°j
J£J(t,Gj) {j^m^j^maxijr} Jv&J{U,U,ja)r=3 V fc=l /

>>j (5.103)
7/72 — I 7(72 — 1

u~h e ay n ö2,fc
r,-0 fc=l

fcy?'!
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where

.Alt Ey>„ E vcj(t2 i G2 Tl f) AAG2ry > 0 ./Vi is an P-fork.

AY- h/wE7'<wE^ej(tilGiI] 7y|Val(PP,,)|r P.,, is a C-fork. (5.104)

//nEj'fcjp21 G,,t ,,)!Val(PPn)|i P,^ is a SSI.

By the induction hypothesis

MAßYr, Y^ }M(U)\o, <AI"1AI>aYii Y !>PP)|o,? < T>o\(\j\)M>->' (5.10"))

'G(fu t'A.) ^P. J /A

E h-2 S 47^2'-Pol(|;|) Y vYt) (5.106)

J&J(I G j) 'l-O

7. Pol(|;;U/";J~r(t_n y Pol(|?|)il/c' (5.107)

Case M: P > O.s = 2 and P7(67) -7 2. G is IPI, 7 ^ 0 and G(eb) is nonoverlapping. This

bound is analogous to the previous case. The extra dciivative gives rise to another sum over

lines in F2(t,G). If one of the lines, say h is m P — 67/, then the bound is simply a repeat

of the above with U replaced by dpaA] The extra derivative generates an additional factor

M~lv < AI"J and the bound follows

The new case is where there are two strings, sav Sn and Sg that are differentiated, or orre

string Sa is differentiated twice (3 = cß. Assume WLOG that jp > ja. Applying Lemma 59

to both (where we take (5.21) tor J f- cß gives analogous to above

7/3Poi(|-7|)A/'1 Yl -A[J' E lAidß'ofAr^-'Aiß.d.YAP^^Yu^-^A
7fPi JAt. t 7.)

< À2(c.Pc)Pol(iy!)A/2?PLP«^2) y A2(c. J.c)Vol(Yi\)AI2nAI3l(c'^ (5.108)

D

5.4 Renormalizability

With the power counting theoiem foi the leiiormahzecl theory from the previous section, the

perttnbative renormalizability of the theoiv can be shown easily. As an example we show

this for graphs with two external fermrorr legs. Extending this to more general graphs means

taking the appropriate norms.
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Theorem 61 (Renormalizability of two legged Graphs). Let S2r(p) be the contribu¬

tion of order 2r in g to the Fermion self-energy in electron-phonon theory renorm,alized ac¬

cording to Definition 22. Then there exists a constant K2r such that

\Z2r\o<K2r\2(c,f3,-) (5.109)

In particular is K2r independent of ß.

Proof. By (3.60), P2r(p) is given by

^(P) = EEIInE E Val(G') (5.110)
7<o t fet

J' g LPUejyyyy

where the sum is over trees t with 2r leaves. Using Proposition i of Theorem 60:

1

|S2, (p)|o< const £ £11— Y A2(c.,d,e)Ap(1+£) (5.111)
j<0 t fet

nf'
G lPI,G~t

for all 0 < e < 1. As the number of trees with 2r leaves and coordination number greater

than two at each vertex is bounded and the number of graphs compatible to such a tree is

also bounded, we have

|S2,(p)|o < œnst YxYcß,YAL3{i+e) (5.112)
7<0

Note that there exists a constant k such for all c < X and ß > 1, X2(c,ß. ^) < k. Therefore

|Sar(p)|o < const A2(c.p, ±) £ aA = K?rX9(c,ß, \) (5.113)
2'

J<0

D

As the functions A2r are uniformly bounded in a neighborhood of ß = oo, this implies

by the Lebcsgtic dominated convergence theorem that the limit lim^oo S2r exists and is well

defined.
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Chapter 6

Bounding vertex corrections

6.1 Strategy

6.1.1 From vertex corrections to four-legged graphs

In the previous chapter the poAver counting for electron-phonon theory was considered. In

Theorem 60 bounds are given for graphs that have only external Fermion lines. Here we

will argue that these bounds can still be used to give bounds for the electron-phonon vertex

correction.

Like all other graphs, graphs contributing to the vertex correction can contain stiings

of two legged subgraphs and must be renormalized. Therefore the formalism of the previous

is chapter is needed to deal with the counter terms.

In addition for a large class of electron-phonon vertex-correction graphs, the graph

structure is that of a one-loop graph where the electron-plionon vertex has been replaced by

a higher order electron-phonon vertex-correction and the phonon line has been replaced by a

four legged graph:

We will see below that the graphs that arc not of this form are relatively easy to deal with. In

the case of the one-loop correction avc extract the sign cancellations in the loop by means of

integration by parts and then use the properties of the phonon propagator and its derivatives.

The more general graphs above are bounded in the same Avay and therefore the properties of
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the derivatives of the values of four-legged graphs and of electron-phonon vertex corrections

are needed. Theorem 60 provides such bounds for a large class of four-legged graphs.

The purpose of this chapter is to extend those results to other four-legged graphs and

to electron-phonon vertex corrections. This will be done by means of an inductive argument.

First we note that the distinction between the two types of graphs under consideration can

be eliminated by means of a notational trick. Let G any graph contributing to Pr, with value

Val(67)(p, q). Let 67' be the graph constructed from G adding another vertex connected to

the original external phonon line by a phonon propagator. 67' has four external fermion legs

(and no external phonon legs). The value of 67' is given by Val(67')(/7, k —

q,p
— q) where k

is the momentum flowing into the new external vertex. By the structure of the graph and

by conservation of momentum \Al(G')(k,k —

q,p — q) == gD(q)Val(G)(p,q), in particular

the value does not depend on k at all. The factor D(q) comes from the new phonon line /*

connecting the new vertex with G.

Let 67* be the four-legged graph constructed in the same way. but with Pi* —I. Idren

we have Val(G*)(p I —

q,p
— q) = q Val(67)(/7, q), or graphically

P
'

q k — qé \^
__

k - q /—-\ p-q

In the following we can therefore focus on four-legged graphs provided we allow graphs of

the type 67*. Properties such as overlappingness trivially extend to such graphs. Note that by

construction the line with propagator 1 docs not appear in a loop in G* and we will only use

below that the propagator is bounded by 1.

6.1.2 Overlapping graphs and factors c.

In the rest of the chapter we will bound four legged graphs (possibly constructed from an

electron-phonon vertex collection in the above way) using scale decomposition. Let G be such

a graph and / a tree rooted at ß compatible to it. We will show a bound of the type

Y E |Val(GJ)|0 < const A2(c.p,e) 0<e<l (6.1)

7<OieJ(t,G,7)
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From Theorem 60 it follows that this is direct when G(é) is overlapping, i.e. G is overlapping

at root, scale.

E E |Val(GJ)|0 < const A2(c, ,<3, t) Y Pol{\j\)MC3 < const A2(c, ß, e) (6.2)
7<0 JGJ(t,G.j) ?<o

The problem therefore lies in dealing with labeled graphs that do not overlap at root scale.

6.2 Some simple non-overlapping graphs

6.2.1 General form

In order to see how to treat the graphs that arc not overlapping at root scale, it is good to

do some simple cases 'by hand' first. By Pemma 28 a non overlapping four-legged graph is a

Dressed Bubble Chain, i.e. it has the form

Here, the 4-vertices in the diagram are either effective Vertexes created by highen' scale

lines such that expanding the root scale of the corresponding graphs will make the total

graph overlapping or they are single vertices, i.e. boson lines if these arc reintroduced in the

graph. If the latter then a 4-vertex is the artificial propagator with value 1 if it is the leftmost

4-vertex of a graph G* constructed from the vertex correction and a single phonon line for

the other graphs. This single phonon line is arranged such that the momentum of the loop(s)

connecting to the 4 vertex flows trough it (otherwise the original graph would be 1-particle

reducible by cutting this phonon line). Graphically this looks like

Pi - Pi

pi
-

q
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Note that although the 4-vertices as shown above must contain higher scale lines it

is possible for them to contain lines at the root scale. In that case they are composed of

4 + 2n effective vertices of strictly higher scale where the 2n pairs of additional external lines

are connected by strings of root scale. Because of the Wick-ordering these cannot be single

propagators. Each such string must thus contain a 2-leggcd insertion (which can be a SSI).

The thick lines indicate the full Fermion propagator, i.e. they are strings of two particle

insertions. The simplest examples of such graphs beyond the bubble are those which are

bubble-like diagrams but with a two-legged insertion on one of the lines and the graphs that

consist of two consecutive bubbles. To illustrate the method used, we apply it to each of these

simple cases first. After that the general method for an arbitrary chain of bubbles with an

arbitrary number of two-legged insertions is given.

6.2.2 Bubbles with a single two-legged insertion

General structure

Consider a labeled graph with root scale j such that the maximal non-overlapping expansion

looks like:

Here 671 G$ are IPI graphs. Denote the scale of the line Z7 by y. Denote the root

scale of G, by h%. When root scale of the total graph G is j at least two of the jßs are equal

to 7 because of Wick Ordering. Each of the lines has a hard/soft label st. At most one of the

lines can be a soft line (EiLi s? P Y aud this line must have scale j. Note that if either p

or Z2 is the soft line then the propagator of the of the soft lines is bounded on the support of

the integrand because the momentum is the same as that flowing through the hard line.

C-forks and SSIs as inseitions

The easiest case is when the fork Jy corresponding to the subgraph G3 is a C-fork. Then

(because of Wick ordering) hi = 7'/, is the lowest scale in the graph (773 < min{7i,,72} = .?')
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We use Theorem 60 to extract the factor A e and the improved power counting factor A4hie.

The scale sum over all scales that give rise to graphs of this type is given by

\—~\ v—> \—^ v'"> v—-\ v—-v \—> ., , r--ir -i7t-i\

J^EE E E E E E Kpi^.-qYAYAYY})

)<0 7=1 ?]+sj—sj<l j-d,iv7. ^0 /m<7 /n>max{/i,n} hJ vmä\{;:./i}
S, —0 7,=; 1+.1

(6.3)

Avith

f(ßp,qAYAAx^-YY})-- E E E
hej(tn G, In) h J g, cy h.) hej(tfi,G-i h6)

jd^ßCJl^ßl)Ct,,S2(l)C!^ßl^q)A^yA(GA(YAA(GA(PiA-qY)AA(GA(kp,~-q,pß
(6 4)

Note that because of the momentum conseivation and the support properties of the propa¬

gator the only two terms contributing to the ;, sum for 7
— 1.2 arc j, = 7 and jr -- j + L.

Using the standard bound (5.13) and the impioved power counting bound from The¬

orem 60 to the graph 67} gives (noting that h^ 7. /)

\L\Al(GAhi

< const P/PV-(c, J.f)(Pol(!/n|U/llJ-rV'M/"-J + Pol(|7P)7i7e/,!)

7- A2(r, ö.r)Pc7l(|/7d)d7f/,PP77 (6.5)

and applying noimal power counting from Theoiem 60 each of the graphs Gi,G2 avc get the

bound:

\f(i,P,q-YYY^}-V'Y)\

<X2(e. ke)Po\(\,\)APh''AP j ddA]l\Cn H(l)Av -(0I|C;„mC " <?)l (6-6)

<A?(c. 7.t)Pol(|7l).l/t/)P17"^^',-'PU3' (6.7)

where Ave rrsecl ,7 7= minjji, j>. j A nnd for 7 < 0 used the standard bounds for the propagators.

When .7 = 0 the presence of three propagatois in the mtegial m (6.6) gives sufficient decay

to make the frequency part convergent, lire restiiction on the scale of the C-fork gives the
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required bound:

El/^P^UM^MM)! < A2(c,P,e)Pol(|-7'|)/Pf^-P^PP7P' Y Meh" (6-8)
h-3<j hs<j

< A2(c, ß, e) Pol(\j\)AI-3l"32~jAM(3+Ai (6.9)

< A2(c,p,e)Pol(|,7'|)Af£-?' (6.10)

and thus

J < ^A2(c,p,e)Pol(|.7'|)T7c-7 < const A2(c,,d,e) (6.11)
j<0

When G3 does not belong to a subfork but to a same scale insertion then the bound

is the same. The only differences are: In (6.8) there is no sum over h$ but the factor Me]

appears immediately as ho, = j. Moreover the projection P is absent and thus (6.5) holds

immediately.

R-forks as insertions

We now turn to the case where G3 is a grfiph corresponding to an R-fork. This is where we

profit most from the more complicated projection P. The extra improvement the this gives

to the bounds of values of P-forks is enough to extract a factor c by power counting only.

Without it a partial integration argument similar to that of the next section would have been

necessary to exploit, the sign cancellations.

Denote Iy(Z) = YA(GJß)(Pl, I - q,Pl - q), V2(l) = Val(G2/2)(/,P7- - q,pA and P3(Z) =

((1 - P) Val(G'33)))(Z). The scale sum over all scales of G where 67 has the required form at

root scales is given by

3

i = EE E E E 0(pj.pr,?,OiM*},{M) (e-12)
7<0 r=l si+,s2+S3<l jSri<jr<0 fti>max{ii,73}

st=° ji-3 Ar h2>ma,x{J2,j3}
/73>max{ji,J2}

with

g(ßp,qYY}Ysi}Yhi}) = E E E
Ji£J(tfl,Gi,hi) J2eJ(tf.2,G2,h-2) JieJ{tf3,G3,h3)

fd<>+1lCn^(l)Cn,S2(l)Cn^(l - q)Viß)V2(l)VYl) (6.13)
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Note that j cannot be zero if there is an P-fork present in the graph at scale j.

By expanding the scale sum in the soft line and observing that because identical mo¬

mentum flows through p and 12 their scales can only differ by at most 1, the sum can be

rearranged as

/-Pi- h (6-1 Y

with

^ -z E E E 9(/J.p,^{/J,{s-0},{M) (6.15)
1^-° (71 U 73)7 U , /)->max{7i ]>,)

/?i>ma\{;-> ;p
/n>max{/i yj

with

-d0,7 - {(?./)-(; - PP. (/ 7 -D}\{; l}\ {(./,/./)}

-•ii; = {{h ))(!+ U(7/^n}\{-ro 7} V,<-1 (6.16)

-P-. = «m)}\{--oo ;}

Note that this situation is in fact atypical If there had been an insertion in the lower

string of the bubble too then the all scales sums horn soft hires would have been restricted

by conservation of momentum. Here the sum over 73 is in fact only finite because of finite 0.

When (77. 72- 73) G -4y7 then 77, is the lowest scale in the giaph. We must combine the gain

from the Tailor expansion in the uppei stiing with the volume gain in the lower string. That

requires a small extension of Theorem 60:

Lemma 62. Let G be two legged and XPI. Let q 6 P \ P. Let t be a tree compatible to t and

)i < ) < 0. Let t' E (0, P. PcJ e E (0.1). Then

Y A-2(\A(G>)An(\h-qo\)Yi(AÏ -q)M')
ÏLj(t Gj)

< (Yy~A2ß:ß,c)Po\(\ji\)M2n+3l{c"^ (6.17)

Proof. This is a trivial corollary of" the pi oof of (5.14), which is the t? - 0 case. The indicator

functions are used in analogy to a soft propagator, and the shift is irrelevant for such bounds.

LP
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Using ordinary power counting for Val(G11) and Val(G22) and carrying out the scale

sums over J\ and J2. we see that for (ji,ii, J3) E As,

\g(jpi,Pr,q,{Ji}Asi =-0jMM)I (6T8)

1

< Pol(|i|)M-^-^-^M2J fdt Y ^(VA(G{), tn+,Y\h - sço|)ln+„(e(l " sq)),t)

0 JJ(th,G3,h3)

(6.19)

< A2(c,P,e)Pol(|P+2s|)M"P-P^3A/2PV7(1+^'1+2s (6.20)

< A2(c,,Ö,e)Pol(|ji+2J)AJ£-"+2' (6.21)

Inserting these bounds and carrying out the sums over the scales hi,h2,zmd ho, gives

Pol < A2(c, ß, e) Y E Fol(\.e\)MCJ < const A2(c, ß, e) (6.22)
j<0 J3>3

IPI < A2(c,p,e)y V Pol(|y3|)TPj3 < A2(c,p,e)V Pol(|j|)A7ej < const A2(c, ß, e) (6.23)
/t rf A, nimm/ j£.~ irt/

7<()73<7 7<0

6.2.3 Two bubbles

Derivatives acting Tp

In the previous chapters we have seen that derivatives acting on PJ>i can give rise to compli¬

cations and these were circumvented by making sure no Ip term was derivated twice. The

reason that was necessary is that in faking the Taylor expansion of the value of two legged

graphs, these are evaluated at a frequency in between the Matsubara frequencies. However for

phonon lines that are not in a two-legged insertion the frequency is ahvays a boson Matsubara

frecmency and there is a much simpler argument.

By construction supp7Pi(-, c|l|) n 772Ï = 0. Therefore,

,1 k = 0

PMMhDH (6.24)
0 ZoGfTP*

ß

Which implies that for all 1 < a < d, and all h E Aßl*

d
•Di(/o,c|l|)=:0 (6.25)

Oh
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A re-summation of the scales

In the previous section bounds were given for when G was a generalized bubble graph with

insertions on the bubble lines. To see that happens when the graph is a sequence of bubbles,

consider a two bubble sequence (without two legged insertions in the bubble lines). The

corresponding graph has the form:

Ji

p< -q j v y \. y \p< -(i

h )2

The scale assignments to G i- G 2 and 67 t, are such that expanding the root scale of each

subgraph will make the total graph overlapping or such that there is a 2-legged insertion at

root scale. Foi simplicity avc only consider the formen- case in this example.

In addition as the scale zero propagator C'o has a different power counting, a simpler

but different method is recmirod to bound the bubble if thev appear. Again to avoid distracting

from the main teclmiepie we assume they do not occur here. For the same reasons we only

consider the case iq| ^ h, here.

g(ji- )2-Ji,J2,JA =

E E ! A1pi I A>YYpCn ,ßPßCn ,Yin -q)cJ2,Y:P2YY,i2(P2^q)
$Hs><L/i+7 2<t'

ri(pi)V2(pi,p2)\ß(p2) (6.26)

where for all hi, h2. lu v 0. 71 v /y 77 min{/?], h2}. J2 < h2 = min{/r?. hA> A e J(tf,- G,. hß;

Furthermore PPpi) - Val(67,;,)(p,.p1 -

77.77/ - q).Y2(p{,pA = Val(G2;P(pi,/72 - q,pi) and

Voßp2) -- \A(CYß)(P2-Pi -

q.p2 ^ q).

The difficulty is that neither of the p's is the smallest scale in the graph (7 < p, V?).

However any improvement in the power counting (for q ~ 0) will come only from the overlap

in the graph at scale h{.h2 or lu (oi from the fact that they aie just single vertices created

by one phone-line and thus have scale 0) This difficult a is oveicome by resummation of all
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scales lower than the scales where the overlap occurs.

/(Jt,J2,J3)= Y E 9Üi,J2, Ju h, Jz) =

h<h,ih<th.

J d,+1pi J dfYp2C(pi)C(pi - q)C(p2)C(p2 - q)

ShJpi)Sh2^2)Vi(pi)V2(pi,p2)VYp2) (6.27)

where Sh(l) = a(M"2A^^(l2 + e(l)2))a(l\I"2A-^((l0^q0)2 + e(l--q)2)). However this means

that the integrand is now no longer boirnded, or more precisely: It is still bounded by the fact

that the h "integral" is really a finite sum not including the h value, however it is no longer

bounded uniformly in ,67

However the important point is that due to sign cancellations the integral is not.

The sign cancellations are exploited by doing an integration by parts in each of the two

momentum integrals. Before we can do that, we combine the propagators in C(pßC(pi - q)

using a Feynman trick, i.e. interpolating between the two values of the argument. This was

already done in section 2.3.5 in Lemma 13.

Applying this lemma to (6.27) we see that

2 2

\f(Ji,j2,j3)\< Y E EE^^c"pJ') (6-28)
ai+f»i+ci<l a,2+b-2+c-2<l n = l r-2 = l

and thus

n e V^^-Jn e )—»

v»=lJ,eJiy.G;./!,)/ a2+b2+c2<l V=tJ,J{tf.,Gl,hi)J
7-l,7'2=0,l

(6.29)

where w = w(ap lp, c,-, ?',;, Jß is given by

vj(a,i,bi,Ci,7g,Ji) =

i 1

Id/iidz^dfvy'df^
b 0

|(V)6lPi(p1)||(VPl)cl(Vp2)62P2(7Ji,P2)||(V)C2P3(p3)| (6.30)
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Decoupled derivatives

When ci + ?>2 < 2, i.e. when only one of the derivatives acts on V2 then the two integrals can

be disentangled

7ü(al,h,,c,,rl,-Jß <

i

\Vßo supJl/-0^ jdß f df'pi \Zn(pi-tß\Sh(pYIM^VuYpAI
b

sup,V-"^ jdt2J dAl>2 \ZrAp2.i2)\Shßp2)\(V)h+cAY2(p2)\ ) (6.31)

wrierc

1 6i =- 1 or o i
— 1. hi < ho 2 P - i or no — 2, h2 < hi. rp A 2

qi = { ~72-
" *

(6.32)
2 otherwise I 3 otherwise

c7y{1.2.3}\{ns.fy} (6.33)

In other words: When a derivative from a loop acts ou a subgraph then keep that in the

integral. If there is a derivative acting in both loops, take the sup-norm of the remaining

subgraph.If there is a dcrh-atiA-e acting on the cutoff functions in a loop then keep the lowest

scale subgraph in the loop if that is not taken by the previous rule. Otherwise always take

the rightmost subgraph in the loop. Take the sup norm over the remaining subgraph. This

procedure takes care that if 67i consists of only the added line with propagator 1 then the

integral is taken over the other orre which is guaranteed to contain a phonon line. Moreover

it ensures that the scale improvement comes from the lowest possible scale.

Each of the integrals in (6.31) can be boirnded separately. Observe that the integration

is required as the derivath-es of P,;i and P,;> are a priori not uniformly bounded in ß. Alorcover

avc need to extract an improved power counting gain from these factors. This is trivial if Gr/1

and G,l2 are overlapping, however if they are not we only know that they make the total graph

overlapping when expanded. The following Lemma shows that, there remains just enough

structure from the original graph to extract a gain power from this overlap.

Consider a graph G and a tree / ~ G. 61onstruct the graph 67" as in section 5.3.2. It

contains only two and four-legged vertices. Each four-legged vertex consists of one phonon
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line. Define L2(t,G) as

P2(P G) =7 LF(t, G') U LB(t, G') U V2(t, G') (6.34)

For a line or two vertex / E L2(t,G). m E {X , d}, a labeling J and s
— 0.1, define <9;msGJ

as the graph obtained by G by replacing the propagator of line / by

AL
e>Prr,

C(p)

Pl(p) ^ { 0

s — 0, / a hard fermion line

s = X, or / a soft line (6.35)

d
P4s(po,c|p|) / a phonon line

,
Op

Lemma 63. Let G be a jour-legged graph with value AA(G)(pi.p2,pß and t a tree of sub¬

graphs compatible to G Let cb be the root of t Let 0 < e < 1. Let s = 0,1

Let W[ (G) be the graph constructed from G by attaching two of its external legs to a

j-vertexv, i e. W\(G) is

Pi

V

IP

Pi + p2
- Pi

Let j < )' < 0 Let J be in J(t, G, )'). Let W3 be one of the functions from Lemma j8

Let #i>s(Val(G/), ),q,p) be given by

7 \ s

dj+1lW3(l)\[ ^
Ar~ur,JVal(GJ)(/,p-g./-c7)| (6.36)

Let I E L2(i- G) be such that I is contained m a loop in Wi(G). Let m ~ X. ..

,
d and s 7= 0,1.

Then if either Wi(G(6)) is overlapping, i.e. IPi(GJ) is overlapping at the root scale f of GJ,

or G is a single effective j-verter build up from a phonon line such that the momentum on

this line depends on I

Y y/Ao(AA(ßlmYGY,J,q,p) < A2(c,/Pe) Pol(ß\)AA3 aY1"^3' (6.37)

JeJ(t,Gp)

and

Y Wis(AA(CY).3,q,p) < A2(c,p,e)Pol(|/|)McPV(^^' (6.38)

Jej(t G 7')
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Note that, in the above two cases the graph WßG(cb)) either has the structure

\ Pi

\ /" '^/V/»l+P2-P3

V

where the single bubble can be replaced by a whole chain, or in case 67 is a single vertex the

graph looks like

v /n

\ / ^s-a/Ap+p2- 7A

y
/ x

/

/

/

Pi

Proof. In 'Aßfi (Val(G'), ].q.p) the derivative is with respect to vector momentum only. By-

taking a spanning tree compatible to J for (7 and computing the derivative by taking the

corresponding expression for Yal(G;). we see that (6.38) reduces to a sum over terms of the

form (6.37). Thus it remains to show (6.37).

The proof of I he lemma is similar to Case I) and Case H of Theorem 60. the only

real difference being that 7Pi o(AA(dimß)GY- )-q.p) is now bounded bv AP times value of

tire four-legged graph graph lP| (A(c7/r,^G/)). Here a is taken to have a value 1 and the new

lines to have propagators \]j(p) and M"1 respectively, lite two new lines thus have scale j.

The line with propagator M"1 can always be taken into the spanning tree and thus the lack

of indicator functions restricting the momentum on this line is not a problem for the power

counting. Repeating the arguments given in the proof of Pheorem 60 thus gives that this

value is bounded as

Y \>A(YVßA(dlrm>Gf)))<\Ae. i.AlAlßjßAr^-^AM^"^3' (6.39)

iej{t G.,')

which gives the required bounded when summed over the finite number of / and combined

with the fact or AP.

Note that the presence of a possibly interpolated band relation in Ily(p) does not

matter as we have shown that the volume improvement also holds in that case. D

Note that expanding graph G2 makes the total graph overlapping: This implies that
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either the graph containing just G\ and G2 and the loop connecting them is overlapping when

G2 is expanded or that this holds for the other subgraph containg G2 and G3. The following

remark shows that this implies that then both subgraphs have this property.

Remark 64. Let G be a graph with four external legs. Let G be such that when two of its

external legs are connected to another j-vertex the total graph is overlapping. Then the graph

created by connecting the other two legs to a, j-vertex is also overlapping.

Proof. This trivial when G is itself overlapping. If G is not overlapping, then it must be a

dressed bubble chain of length at least one, and the two connected external lines must be on

different ends of the chain. Then at each the end there is one other external line and thus

connecting those also gives an overlapping graph. D

Observing that,

l7/ A10
, .

, i(/02 + e(l,q,/)2<4A7P)
\ZA (p, q, t)Sh(p y -yLTy-L, ,/ ,71 6-tJ0

\ih + e(l, q,/)|

17! me , ^^ A{hPiqo)2Pe(l)2<m'23)
\Z2(p-qA)\sh(p)

<

lYßAYYAqYYAm (6'41)

< hm 11^!%^ (6.42)
~/'->-oo \i(h + tqo) + e(l)\

we can apply Lemma 63 (and its mirror version for the integral over the other external legs)

in each of the integrals. Let hm = m'm{hp,h2} = min{/ii, h2. lu}, this is the lowest scale in

the graph after resummation. Let hM =7 maxj/y^ h2}. Applying the lemma at finite P for p,

with e 77
1 vvheii 1\ A llm gives:

Il E \wYi-Y,cl,r„Tß (6.43)
^=yjlej{iji.Gx.h,)J

< \2(c,ß.e)Pol(ßiJ)M"aiAM"a>AMcAiMY±vM(1^ (6.44)

< A2(c, ß, e) Pol(Ihm\)AlAm (6.45)

The bound is independent of J'. By the dominated convergence theorem the exchange of the

7' limit and the integrals over /1 and t2 is allowed and the limiting function (6.31) obeys the

same bound.
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Two denvatncs acting on the same giaph

lire remaining case is cj + b2 - 2 i e the middle subgiaph is differentiated once fiom the left

and once fiom the light Vgam this bounded using a generalization of Theoiem 60 Because

we will need the fact am lines that aie hit bv deiivatives must be in the loop geneiated by

connecting the external lines as m the laiger giaph we use the following indicator function to

do that

Definition 65. Consider a foui legged graph G uith ingoing lines with momenta pi, p2 and

one outgoing momentum pi such that its lalue is gucn bg\A(G)(pi p? pA Let L2(G) be the

set oj all fermion lines boson Inn s and two legged IPI subgraphs in G that are not contained

in other two legged IPI subgraphs 1 ct I 7 J(t G f) for some 7 and t Let k{,I2 c L2(G)

Denote bi/ci d fpi the citer rial lines cor responding to the morne nia pi p2PïP[ "Pi \p> IP

respective!/) Id F\ E> be di^/unet pans oj m and outgoing ertemal lines (note that Fi

specifics F2) Then define

d(P G TEA)- I

X I t 1 ßt G) and there crests a

spanning tree / ( 7) C G com

patibli to I such that k] 7S on

the path in T(I) connecting

the pun of ertemal lines Pi

0 oflu 1 u ?>.(.

C?(ki A G i Pi) = Ç,(P G 7PiPi(^ G J FY

(6 16)

(6 i7(

This definition is useful hex arise oi the following 1 ct 67 be a fom-legged giaph with

external momenta as above 1 et 7 be a tiee md 7 set of scales compatible to P with 100t scale

j Pet Ai E L->(t 67) let T be a s]uninig tice compatible to the scales and fix the momenta

pi accoidmg to this tiee and such that 771 / 7)1
-

p
-

q and ps
— I - q Then foi in

- i d

d

01
m

IP y Ci(/i G 7 (ci cß) (6 PS)

This is an inequality because thcie can be multiple spinning rites compatible to the scales
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Using this we have

Jej(t,G,j)

A-y-à\(G)(l,p-q,l-q)
dlm.

d
^ E E Y\(ArnSG)\\w-Pkß (6.49)

J£J(t,G,j)kl£L2(t,G)s=0
m

1

^ E E Y^l^G^J^e^eAAA(dkimsG)\ (6.50)

J<=J{t.Gj)kieL2(t,G) s=0

1

^ E E E A(h,G,,J,(ei,e3))\VA(dkimsG)\ (6.51)

kieL2(G)s=0 j£J{t,G,j)

The indicator function (P is non-zero exactly then when the two derivatives acting on

the graph can be controlled.

Lemma 66. Pet G be a four-legged graph with value VA(G)(pi,p2,ps) and t a tree of sub¬

graphs compatible to G. Let 6 be the root of t. Let 0 < e < 1. Let ji,j2 < 0. Let max{p,.72} <

j' < 0. Let Ay,Ay E P2(G). Let .si,.s2 77 0,1. 75eZ mi,m2 = 1,... J. Let Wj and IP- each be

one of the functions from Lemma j8 Let W2AJA(dkimiSldk.2m2S.,GJ),ji,j2,q) be given by

/d£+1/l / All2AA)W;Yl2)YA\(dkimiSldk2m2S2GY(h -q,h- q)\ (6.52)

Then if either IP'1(6?(</>)) is overlapping, i.e. lPi(GJ) is overlapping at the root scale j' of GJ,

or G is a, single effective j-vertex build up from a phonon line such that the momentum on

this line depends on I:

Y AkiA-2- Cß J, (ep e2))W2(YA(dkimiSldk2rn.2S2GJ),ji, j2, q)

J<=J(t,G,j>)

< A2(c, /3,e)Pol(|j|)API (6.53)

where j — min{ji,j2}.

Proof. This proof folloAvs that of Lemma 63 and Theorem 60 in representing the value to be

bounded, W2(AA(dkxmxSldk.2m.2S.2GJ ), ji, .72, <?) >
as ^1C value of a construct four-legged graph

that is overlapping times a some scale factors. Let W2(G) be the graph constructed from G

by attaching ei and 63 to a 4-vertex ty and e2, 64 to a vertex ty, i.e. IP2(G) is
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\ P1 Pi +P2-qiM

; Pî IP

ff the two new internal lines connecting try to 67 arc taken to have scale ji with propa¬

gators IP;i(pi) and AI"n respectively and the same is done for the lines connecting v2, thus

having scale j? with propagators IPj^pi) and AI"12 respectively then "/A2(YA(G A;, j1A2, q) is

bounded by AP1+12 times the value of the graph IP2(.4(d^,,7,lSldy,m252G7)). The bound then

follows from the arguments given in the proof for Theorem 60, with Ay and k2 replacing l[

and /(,. Note that (2(/>'!• p7-67. J, sß A 0 implies that p and k2 are both hr loops in IF2(G),

are cither hard lines, 2-legged IPI subgraphs or phonon lines. Moreover if sy 7 1 or ,s2 7= 1

then as remarked earlier the A-alue of the graph vanishes identically.

To illustrate the argument consider the worst case behavior which occurs when both

derivatives act, on the same phonon line A- that is not in any loop of G. A' is contained, however,

in both loops orated bv integrating over ß and P. fhns there is a factor const A'Pc"^--AlA

compared to the normal pow-er counting which just giv-es F>ol( j 71) (j — maxf p, p}). Combined

with the pre-factor AIn + n -- àT-Pd this gives the recpiirecl bound for this term. D

Applying the lemma and dlroorom 60 to tc for c\ \ b2 — 2 (noting that by our simplifying

assumption only the si = 77 = 0 occurs).

É E "'(«,.P.y./;.jp (6.54)

p-i heJVr, G, h,)/

\
II E b'.io|rÎO
y=t J,c-Jdt G, In)J

1 1

jdii jdt2 j d^Yd j A,rYp\Zißpi.tA\skYpA\zrYp2.h)\
(6.55;

0 0

Si±1 (pi)Sh2(p2)IVPl Vp,121

y const A2(r. 3.t)Pol(\h„,\)Mc,î« (6.56)
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Taken together

\T\< E II E )\f(JuJ2,Jz)\ (6-57)
hiMM \i=^Ji&J{tf.,Gi,hi)J

<X2(c,ß,e) Y PoldàmDAf^«. (6.58)
hi,h,2,h3

<MY,ß,eß Y Pol(|Äm|)Mc^ (6.59)

< const, A2(c,p,e) (6.60)

6.2.4 Scale zero lines

Before turning to the treatment of the general case we briefly consider the effect of scale zero

propagators Go in the graph. Note that these can only occur if /y =0 and/or h2 = 0. The

scale sums can then include p =7 0 or j2 = 0. Such a scale sums then gives

Y Y C^ßlßC^Yl - q)
7<0 Si+S2<l

= C(l)C(l - q)S0(l) + G<0(/)Go(Z - q) + Go(/)G<0(/ - q) + Co(DCo(l - q) (6.61)

Because |Go| is bounded by a constant and |G<o| is integrable, the integral

d^/o|dl!G<0(/)||Go(Z-c7)| (6.62)

is finite. Because two propagators give sufficient decay to make the frequency integral finite,

the integral

JdßhJndl\C0(l)\\Co(l-q)\ (6.63)

is also finite. Idrerefore the extra factors are simpler do deal with, it, just remains to show

the factor A2(c, ß. e) can be extracted. For that reason define Wo(G) for four-legged graphs G

with value Val(G)(pi,p2,p3) as

yCo(G) = JdßlojdlTM-i(lo)TM-i(lo - qo)\AA(G)(l,p -q,l-q)\ (6.64)

n

Note that when |Val(G)jo < 00,

yAo(G) < const |Val(G)|o I'dphrM-Ah)rM-Yh - qo) < const |Val(G)|0 (6.65)

Finally note that if ,71 or j2 is zero, then the subgraphs in that bubble must be simple

vertices.
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6.3 Full proof

6.3.1 A decomposition for four legged graphs

Let 67 be a four-legged graph and / a tiee with root 0 such that G(é) is non-overlapping. Then

there exists a subtree /' of/ routed at c7 such that 67(/') (i.e. the graph where all forks above

/' have been replaced by effective vertices) is non-OA-erlapping and does not, contain 2-leggcct

non-loaves. In fact /' can be chosen maximal in the sense that for any other tree /" C / with

this property /" C /'.

As shown in the previous sections, in the piesence the extended localisation operator

L there is also a power counting gain if the graph contains a 2-legged (effective) vertex at

root scale, This allows the the set of graphs that has to be treated specially to be restricted

fmther; For any pair' (G. /) define /\ as the unique maximal subgraph of/ such that G(tyß is

not overlapping and for all forks and leaves / G t,\ . E(Gf) > 2. This implies that when 67(c))

is ovo lapping or contains a two legged subgraph t\ — J. Moreover let the notation /' Y G

denote that /' is a tree of subgraphs of G where the leaves of /' are allowed to be non-trivnal

subgraphs of G. Thus /' 77 G iff there exists a tiee /" --- G Avith /' c /" as trees. For such trees

also define a iicav notation for quotient graphs: Pet // y G. then

G,< - G(A r c /' su< h that /' - r U B(r, /') (6.66)

This notations alknvs keeping tiaek which subgiaphs were collapsed to produce the quotient

graphs. These aie exactly the leaves of/'.

We will factor the sum over the trees compatible to G in the sum over trees for the

non-overlapping part and sums over the tiees for the subgiaphs. HoAvcvcr we must take care

in the latter sums as not all trees compatible to the subgraph can occur: For instance let

t A G with a leaf / such that F(Gf) —- 4 and such that there exists a tree /2 ~ G7 wdth 100t

ct>2 such that 6?/f,y is a Dressed Bubble Chain of length at least one. Bv Lemma 28 Gi is a

DBC of length 7?. Now it is possible that G/ is oriented such that then when Gf is expanded

to <t>2 scale in Gt the total giaph becomes a DBC of length at least n + 1. Thus //y = p but

for the concatenation p - / + 72. the maximal non-oveilapping subgraph I^^ Y L Therefore

the sum over the tiees of G/ only contains those tiees that make G overlapping when the

root scale G/ is expanded or produce 2-legged subgraphs.

We now make that restriction moie formal: Let 'If m(G 7) and Vp 0,,t(67 7) be the set of
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ingoing and outgoing external lines of G/ respectively. As G is a DBC, each external line of

Gf is connected to exactly one other by a path in G. l This introduces a natural pairing on

the external lines of Gf. Let pt, be defined as

p(G, Gf) = {(1,0. Iß E VE,o-at(Gf) x VE,in(Gf)\\ h and k connected in G/Gf} (6.67)

For (li,h) G p£7out(Gy) x PE,in(Py) define IPyi^^G) to be the graph produced by connecting

the two lines p and l2 to a new 4-vertcx v (cf. Whi). If // is a tree compatible to Gf with

root, (pf then replacing the effective vertex for G/ in GtN by the root scale graph G(t)f results

in an overlapping graph if and only if there exists (l0AY E p/ such that W(i0j,)(G((pf)) is

overlapping. Thus we can define for a non-trivial graph G and a pairing p C Vp.out(Gf) x

~^E.m{Gf)

T(G,p) = {/ ~ P||3.f : tt(/) = cP,E(Gf) = 2 V 3(l0,lß E p : IF(w0(G(y)) overlapping}

(6.68)

P(Gf,p(G,Gf)) are exactly those subtrees that appear under the tree /./y. Note that we also

allow p to be empty and then

P(G, 0) 7= {t ~ T||3/ : vr(/) = fa E(Gf) = 2 V G(6) overlapping} (6.69)

In addition for a G the trivial graph containing of just one vertex v define T(G. p) = {v}.

This leads to the decomposition

Val(G) = EE E Val(GJ)
3<0tr~Gj£J{G,t,j)

= EE E II ( E
7<0 t<G J;,-£j{Gf.t,Pf leaf oft \tf£T(Gf,p(G,Gf))Jf£j(Gf,tf.jf

tN=t

where have used the convention that for a single vertex V, YljfÇj(Gf,tf.jr) = ^7/°- ^n 0*her

words we decompose the scale sum in a sum over all partial assignments of scales that make the

1. It, can also be seen to be an immediate consequence of nonoverlappcdncss. If there is a path not through

G/ connecting two external lines of Gf, then this is a loop in GtN/Gf. If there exist another external line

connecting to one of the two, then this means GtN /Gf has another loop sharing at least one line and thus

GtN/Gf is overlapping
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graph non-overlapping (and not containing any 2-legged insertions) at the highest assigned

scale and then sum oven- assignments of higher scales that, do make the graph overlap (or

contain 2-legged vertices) at some scale. Note that jf is fixed by choice of J/v-

Idie sum contairrs, pathologically, the case where the graph is already overlapping at

root scale. In that case / 77 p, Gt 77 G/G0 which is just a single four-legged vertex and the

set J(Gi, t, 7) contains onlv one element where p - ],-,— ]- Thus G/ — G is the whole graph

and 7/ is the root scale. In that case p(G, Gf) — 0 and so the light sum appears by virtue of

definition (6.69).

We want to treat the non-ovei lapping graphs bv resummation of scales where there is

no overlap. In order for this to be piactical the layout of the maximal non-ovei lapping graph

must stav fixed, i.e. we warrt to fix G7 and then sum over all / that produce that, and over¬

all scale assignments 7 and J\ at fixed 77. Note that Gt the quotient graph of G/Gf where

is indexed by the leaves / of /. Thus keeping Gt fixed is the same as keeping the G/P fixed.

Define A,, as

77

AAG) -- {{GJ7'! ,.G, C GV/Ig/s disjoint. (J P(67,) -_ 1 (G),
(-1

G/{G,}(P[ is not-overlapping and docs not corrtain 2-legged veitices. > (6.72)

Note that for |G,};P, C A,ßG) and / - G/{GYYv '\ " i i{ and only if E(Gf) > 2 for all

,/' 6 /.

Taking all this togcthei we can rcordei the sum as

Yai(o--E E E E E
»yi{t;,}>= ;.i„(Glj<û (-0 {(, }[ -\ ,p({o,};y1 / ,)

"-fa
'

(6.73)

Ô E E Va,(G'=<'-<'.»,
>-=i y.. rap piG Go) bcJ[G, /, id/

In order to be able to re-sum the scales on G/{G,}'Yi ^ie range °1 scales for the sum needs

to be fixed. However we also want the G,'s to be the higher scale graphs in the scale decom¬

position. This can be a achieved bv keeping the scales of the leaves of / fixed as we sum over

scale assignments. For a graph 67 with n veitices, {r,}"=i> a tree / ~ G, and a set {p}"--, of

scales define

y(G./.p{PKPL)-{Jy J(G./,7)|7c =/i,V; = t 77} (6 74)
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And thus we have, finally

va(g) =

y E E E F
v- v- v- v- v-

y^
"^PlMPi {a};'=1eAn(c7)7<o t~G/{G,}r=1 P^^{{GAAiP3,AdAß

h,<0\/i E{Gs)>2Vf&
(6.75)

n e e v„.«^..w»)
j=i \t,er(G>.p(G.G,)) TtJiG^uA)/

E
—^ ,_^ ^ „^ ^^—^

/_ „/ / -j / j /,,.,/ / ^

n>i{Gd:ueX(G) PdPi J<o *~g/{g,}^=1 yY e.7({G,}y=1y ?)py }PP
y<0V? E{Gf)>2\/}& (676)

Val((G/{GJ(Pi)JM E E Val(G,7')}r=i)
t,r(G,,p(G,Gy)ye-7(GMt, a,)

Before proceeding with bounding the graphs observe that in our case G is 4-legged

and therefore by Lemma 28 the non-overlapping graph G/{G,}"=1 is a dressed bubble chain.

Because in addition G/{Gl}7f=l does not contain 2-legged subgraphs and because of Wick

ordering the graph at, scale j < 0 it must be a normal bubble chain of length 77 — P consisting

of 77 4-lcgged graphs connected by pairs of single propagators. If j = 0 there is no Wick-

ordering but the graphs must be of the same form as there are no vertices of more than 4 legs

at scale zero. Thus the only sets of graphs that occur in ^4n(G) are sets of 4-legged graphs.

Prom the structure of that graph it is easy to see that there are no subgraphs of G/{G?}(Pt

that are 2-legged and thus the restriction E(Gf) > 2 in the sum above is superfluous.

6.3.2 Bounding bubble chains

Formulating the hound

After all these preliminaries are done we come to the core argument of this thesis which is

captured in the following theorem:

Theorem 67. Let, G be a j-legged IPI graph with the 4-vertices coming from the phonon

lines oriented such that after cutting any phonon line the graph is still connected. Let, n > 1.

Let {GYYi An(G). Let p, = p(G,Gt) for all, 2 < i < n. Let either pi = p(G,Gi) or

pi 77 p(G,Gi) U (hAY where (l0,h) is a pair of external lines of G. Let I and p be fermion

j-m,om,enta and q a boson d-momentum,. Let

LW= Y E Val(Gf) (6.77)

tl£T(G,,pßJleJ(G,.tl,hd
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and

u(Vh}, i
/ p,q)^u({i'YA)YYi Uv q) (6 78)

where

iA{\,YYi i pq)

-E E E XA((G/{GAY AAiYYYYihP qA ?) <679)

;<o/~r,/{ff}_j /%-

PP'}=1op}_J

Moreoucr assume uithout loss of genciality that the G, s are numbered such that Gi is the

ertemal vutei m G/{G }A{ connected to the < itanal lines with momenta 1 and I — q, and

G,, the other ertemal icrtei Ihcn for all 0 v t v 1

i) Theie ensts a constant const such thai foi all 1 p q and with pi -p(G,Gi)

7, ^\U({h YYYl
-

A (< i e)Po](|/l|)A/e/' (680)

where h — mm{/),}'=l

v) Let p[ - p(G Gß U (/0 /,) tilth (hi) the ertemal lines with momentum I flowing

through them I e t A { t / >(Gp ltt^[~0 1 let m\ - 1, el

V\0h h nu sA- Y E ^(*i °t Y (lo lß)\A(chlWlSlGTß)
6-r(Gi Pl) y- 7 e ! 7i ft )

(6 81)

0717/

il(YhYYi Y »n m / pq) AYAMn A >n} ^)}j{i (/y)}(P> i p,q) (682)

Then there ensts a polynomial Pol such that foi all 0 ^ hi ^ /?' |q| v a«, one/

s — 0, 1

7-, v \2(c 3 c)Pol(/p )MeL M l ')hi (6 83)

//io(P({P};PL At nn sx) fß qp) s- t

P> - < (6 81)

//l0(P({P};' Y i>' qp) ' = o

wheic A ~ nrm{7j;P, U {//'}
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Hi) When n = 1. let ki,k2 E L2(Gi), m\,m2 = X,... ,d, si,s2 — 0,X. Denote by

Ûi(hi,{k,,mi,sl}2=Y

= E E (2(ki,k,2,Gi, Ti,(l0,li))\Al(dkimiSldk2m.2S2G'A
tiT(Gi,Pi).heJ(G,,h,h1)

There exists a polynomial Pol ' such that for all h'x < h\ < 0, h2 < hi < 0
,
and

|q| < ks:

l3 = ^/2(^i(/ii,{fci,mi,^?=0^i,^,ç)<A2(c,Ae)Pol(|^|)M^ (6.86)

where hA = ram{h[,h'2, {/y}"P2}.

Proo/ As noted above, Lemma 28 implies that, G/{Gjßlßi is a dressed bubble chain of length

77-1 containing only four legged graphs. For small q, the proof of lemma is by induction on

the length of the chain, i.e. n.

Let n = 1. Here G = Gi, the sums in (6.77) contain only the pathological scale

assignment j = hi, nifiking h\ the root scale and thus U(hp,l,p,q) = U\(h\J,p - q,l - q).

Applying definition (6.69) gives

^ = E E Val(GJ) (6-87)

ter(Gj) jeJ(G.L.in)

= E E Val(«J)+ E E (GY (6.88)
t~G J&J{G,t,hi) .

t~G JeJ(G.t.hi)
G(à) overlapping G(</>) non-overlapping

3/:ir(/)=<^,E(Gf)=2

For the overlapping graphs we can use the standard bound from Theorem 60, Proposition i

to see that

Y Y |Val(GJ)| < A2(c,p,e)Pol(|/y|)A7/lie (6.89)
t~G JeJ(G.l,hi)

G(7>) overlapping

When G(ß) is non-overlapping but contains a two legged graph we can not, use The¬

orem 60 directly, but the result is still a direct corollary of its proof. Construct r and G' as

in the P > 0 case of that proof. Identity (5.67) holds and thus it suffices to find a bound for

Val((G')J). G' is a four legged graph and r is of depth P = 0. Thus

Y |Val((G')J)| < const J] M~W) Y Y \PvfAA(GJ/)\ (6.90)

J£J(T,G',hi) vertices vf jf Jf£j(r,Gfpf)
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(The restriction on the sum ]T depends on the type of fork.) Note that at least one of the

2-legged vertices ty, say cy, has tt(cj) = ß and thus j^^g)
= ''i- F°r a^ others the scale sums

are bounded using inequalities (5.72). (5.73), and (5.71). For vq an R- or a C-fork we can

apply (5.73) and (5.71) respectively for e' — c to see that

iirH<7)E E \PqAA(G,Y)\^X2(c,8,c)l:'ol(\hi\)AP'n (6.91)

lg PeJpG, ;P

When Gq is a SSI avc use (5.71) arrel applv the same technique inductively to Gg to see that

the same bound holds because as a result of witk oidering a SSI eau only occur at scale jq < 0

if it contains a G or an 77 graph. Thus also hoic

Elca/^7] ,' \ /. 7 ,vtt>„i7I7, iv r\ rhic

J=J(G thi

|Val(C7)| < X>(j- 7,c)Pol(|/7i|)/lP,lC (6.92)

and the lemma follows because the sums ovei tiees just give finite constants.

To obtain the bounds for I, and p make a decomposition analogous to (6.88):

rA- Y E Val(G') (6.93)
ter(c; {(pi,)}) r-j{Gth )

E E W)d Y E Val(G')
.

I-G fBJ(Glln) t~-G J (zJ{Gl hi)
It

((o i)(0(o|) o\eiiappmg, It i)o i )(G(i/_>)) non-ov 1

iß,<([)=>< b(Gf)=2

(6.94)

Observe that because of Reniaik 6 t the lemma ieduces to Lemma 63 and Lemma 66 respec¬

tively when W(i0 /y(G(d)) is overlapping. When 67(o>) contains a two-legged vertex the bound

is completely analogous to above. N B. G(o) is a DBC and thus the derivatives only act on

the four-legged graphs at the end of the chain.

Longer chains at small q

Assume as induction hypothesis that the lemma has been proven for all X < n' < n. The

proof proceeds in 2 wavs depending on the value of q.

Wdien |q| <7 hs observe that bv Lemma 28. G/'{G,}"__-) is a bubble chain and in par¬

ticular Gi is connected to the rest of the giaph bv a pah of lines f{ and 72 attached to

Go.
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A

Start, with the case where h\ A 0 and h2 A 0- Denote by (ji,sß the scale and the

hard/soft-Label of the line p for i = 1,2. The sum over trees and compatible scale assignments

to G/{GiYA\ is simply the sum over all scales that produce such a structure and thus includes

all (.p, si) and (j2,.s2) such that S\ + s2 < 1 and max{ji,j2} < hx = mm{hi,h2}. Denote

G* = G\(GiU{P,t'2}). Then

U({hYYiA,P, q) = Jdßxo JdxC(x)C(x - q)Sh(x)Ul (h, ; Z, x, q)g*({hi}?=2; x,p, q) (6.95)

where

9Y{h,VY2;pppi) =

E E E ya((gy/{gyyAyuY YAUYpp -

q,*
- q)

7<0 l~G*/{G,}", Jn

J(0'/{G,}^,tJ,{h,}^=2)

(6.96)

where we have written U2 = U2 with p2 = p(G, G2) 7= p(G*,G2) U {(P J2)} to emphasize

the fact that expanding G2 makes the total graph overlap. Note however that because of

Remark 64 this is redundant when n > 3 because then G* is itself a non-trivial chain.

The expression (6.95) is now in the right form to apply interpolation and integration

by parts. Applying Lemma 13 gives

\A({h,YYdPA-dl)\< COllSi, Y '«aiaaaaft (6-97)
fl| +02+03 <0

6=1.2

with

i

uaia2a3b = J dt Jdpxo J'dxlZYx^Aßl^PSuY^AAßl^gß (6.98)

b

Using the support properties of S and its derivatives

1

uaia2a3b < œnst M-°3^ j dt j'dßxo [dxW^ (x)|VaiC7i||V<VI (6.99)

b
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i((/o

9oP+c(x.qfp<l7AP') , ,
_

,

|u'o-go)+e(xq..)|
W11CU0-- r

lAA^A^ßA^sAY^ whpn 5 ._= o.
|?('o + f'/o)+e(x)|

(6.101

with

WHx)= lim lPf(x,P) (6.100)
A7-» —oo

'
U('o

9oP+c(x.q Q-

TT-7b(.r, P) 77

As in the example case with two bubbles the finite T expression

i

"a,a2aibr = const AFniA j dt j ih,VQ j dxWJ(Jr. P)\AaWß\\An"gß (6.102)

b

is bounded first. As we will see the bound will be independent of J' and therefore interchanging

the limit and the /-integral is allowed, which implies the recmired bound for v„ia2ap).

The ,r-integration is used to extract the factor coming from overlap and/or control

the derivatives. When ^ - Pa factor AIA js needed to compensate and thus we keep the

subgraph that has the lowest scale. If both are equal keep eP. this takes care of the cases

where Gi is the single artificial vertex coming from the line with boson propagator 1.

When ni t: i or op 77 0 and hi < h2. bound j(P| y |cp|o and use expression (6.51) for

the derivative. Phis gives
<v

unia „,p,r < «msr 717 tn-lA^\0irr(ai) (6.103)

, , , ,A\AY\p<,r-hi-q-A «1-0

H{m)={
^

_

(6.104)

A1eL2((^)AAiA^AA\AA(h\-k\.mi,sß)\p^AliPlY) a\ = 1

Here the label b on WY indicates that IP6 appears. When 11 = 2, then G"" is a four legged

graph with scales P h2 and thus |{y*|| y Pol(7?P) bv theorem 60. Inserting this and using the

?7 7= 1 case of the induction hypothesis

a aiCncnbr ^ XAc-d.c)lAl(YA)'Ae-'-AI(-1"a'""^hl <. Apr.Ö.c)!^^^!)^ (6.105)

When n > 2 the bound is analogous: Note that then cp is a nontrivial bubble chain and thus

the value doesn't, change if p)(G. G2) is replaced by p2. g'" is therefore exactly of the form A

with n replaced by 77 — 1 <c 11 and we can apply the induction hypothesis. By the IH we have

\g%\ < const Pol(|p> 2|)7l7t/h>-\ with /[>_, = min{/?,}('__,. which when inserted gives

Uam^bT' < A2p. Pc)Pol(|/y|)47t;^ Pol(J^2|)4/tK '

y A2(c. J. t) Pol(|/i'|)AP*-' (6.106)
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Likewise, when a2 = X or a\ — 0 and h2 < h\

Ua^a.brA constM"a^\Ui\oYR{a2) (6.107)

,^io(9Yhi,q,p) a2 = 0

Yr(02) = {
'

(6.108)

SfeieL2(Gi) ^777=1 ESl=i ^rpo{U2,q,p) a2 = 1

with

7J2 = Z7({P2(/72,A-i,mi,Si)}U{Pî(/y)}(P2,/i1) (6.109)

Here we used that because of the structure of g* any derivative with respect to x acts only

on lines of G2.

After applying the induction hypothesis to iJjR(aß. which is of the form J2 and using

standard povvei counting to bound |P~i |o < Pol(|/y j), we get (denoting m 7= min{/>, }U{/7,}(P2):

Va^a.bi* < X2(c, 8, APolßhißAY1 -'l3"02)h2 Pol(\m\)AFm < X2(c, 8.e) Po1(|/l|)AP^ (6.110)

Inserting these bounds into (6.97) and taking the limit P -» co gives the bound of Ji.

Now we turn to J2. We concentrate s — X, the s 77 0 case is similar but simpler. By the

structure of the graph we once more have

Y2 =7/({/7j(P1;Zi.777i,s1;Z,p,e?) =

dgx0 dxC(x)C(x - q)Sh1(x)Üi(hi,ki,mi,s1;l, r, c?)5*({/y}(P2; r.p.c/) (6.111)

and This implies

72-#i0(y2,P,c2,p) (6.112)

Apply Lemma 13. This gives

I2 < const lim Y "aia,a3bP (6.113)
ai+a2+ci3<0

6=1,2

with

1

v0la2a,bv = J dtJdftloJdlWh,(l)Jdßxo jdx\Zb(x,q, t)||V^/%||V^Pi11V£V| (6.114)

0
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When a2 = 1 or nq = 0 and h2 < hi applying the same bounds as before gives

»aunaibP < const M-a*H<R{u2) sup fd6l0 I dlAßßßA (Ay, Sl, 1)| (6.115)

y const M niA n-R„2 sup yy „([7,, ]ß. q. x) (6.116)
7

< À2(o,Pc)Pol(M)AP"PU^a' odh,Meh'A[(i-,)lu (6 117)

y \2(c. 3.<)Po\{\h!])Mc- M{1~ s)hl (6.118)

when c7 = l or o2 - 0 and h\ <. h2- then

i'au.^br <const\gßo\r"ih>AT(aA (6,119)

where

i jAsXo fdxWr (r./')/Ao(Pi(/y.A',.m,,s1).7',cy c) ot -0

4>(o0-<
-'

(6.120)

1E/,,gl2(g7)E;L ,A2=o^AYhi-Yk,-nh.sY,=i2),lAh.q) 0,-1

and denoting 777' — min{/P/y}. the induction hypothesis gives

Aiav aL
- X

'VMcyr ^ \2(c. 7c)Pol(|m'|)|cP 0 { (6 121)
Mh.i-a l'iAP'1' o, =0

using «'</?, =* AIhU'A ^ M'-AmC

y A>(c. k c)Pol(\rn'ß\qYoAFnY\I(i~s)h] (6.122)

yA,(c. 7.c)Pol(!/7'|)d7^'4P]-0/7i (6.123)

Inserting this in (6.113) gives the bound for P.

Chains at larger q

Consider the case jqj > hs with /y ^ 0. Sinnlai to Section 2.2.1, there is a volume gain

coming from transversality of the Fermi surface and its translate by q. This eliminates the

need for integration by parts. Recall that bv the stnictme of the graph G/{67,}(P1. we have

(cf. (6.95)).

UYhJYp.l.fpq) ~ j ehro j dxC(r)C(r -- q)S!h(Alß(hr-l. r. g)p< ({/r J('=2; .r,/y 9) (6.124)
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Reintroducing the scale decomposition for the propagators we have that

|W({M?=1;Z,p,g)| < const Y E Thh (6-125)
ji<hiJ2<äi

Avith

Ijli2=M- dßx0 /dxl^(1*01)1*(e(|x|))
•; -; (6.126)

lj2(N-go|)li2(e(|x-q|))|t7i(/ii;Z,x,g)|5*({ÄiKl=2;a;!p,g)

Apply the normal power counting bound for the four-legged graph Pi, \Uß < Polßhß). As

|q| > ks and for d = 2, |q| < f < 2 — /y,, Corollary 36 can be applied to see that

Y132 Y Pol(/?.j) sup /d/8a;oln(|a;o|)l,-2(|xo-ço|)|5*({^t}"=2P'c)î'>9)l (6.127)
xeu(s,8) J

When n > 2, we can apply the induction hypothesis to to see that \g*\({hJY2:x-,P> <?) P

A2(c, ß, e) Pol(\h>2\)AP->2, where /i>2 = min{/72, •

, M- Then it, follows that

Lpj2 < A2(c, ß, e) Pol(h)AIcYAI-i (6.128)

where j = min{jt, j2}. When n = 2. g* = U2. Denote by (Z0,/,) the pair of external lines of

G2 that connect to the rest of the graph, then

l'2= Y E Val(G2) (6-129)

t£T(G2,(lo,h)) J&J(G2,tM)

= E E Val(c2)+ Y E Vai(C2) (6.130)

teT(G2,$) JÇ.J(G2,t,h2) teN(G2) JÇ-.J(G2.tM)

where N(G2) the set of all trees / ~ G2 such that G2(<77) non-overlapping. W^ojy(G2) over¬

lapping, and such that there exist no fork / with 7r(/) = ß,E(Gf) = 2}. By the induction

hypothesis the sum on the left-hand side is bounded by A(c, ß, e) Pol(|/72|)i\7<:/'2 as above. For

/ G N(G) there must be a phonon propagator in Aal(GJ)(x,p -

q,x
— q) that depends on ay

when the momenta are fixed compatible to the scales. Therefore by applying Lemma 47 in

the xo integral.

Y fdßXolj.HxoDljAlxo - qo\)AA(Gi)(x,p - q,x - q) < X2(c, ß,e)Pol(\h2\)AIl
Jeu,g<=,{çJ

(6.131)

Summarizing

\U({hY?=iA,p,q)\<X2(c,ß,e)Pol(h) Y E MeiMC~-2 < A2(c,p,e)Pol(/i)M^ (6.132)

h <ki .72 <P
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(6.134)

Scale zero bubble

In the above we have made the restriction /y < 0. In this section we study the case where

/y 77 1. Summing the scales using (6.61) gives

{Poi
+ Po"> f Po3 + Poi G{ and G7 single phonon lines

(6.133)

Poi otherwise

where

Poi - jddrQ fdxC(i)C(v ~q)So(APAAl.r,q)cA(Vh}Y2;x.p,q)

U02 = jdsto jdxCßMACAx-cßPßOA r.q)A(YhYYï-^PPl)

P(n - jdjio jdxCAACßoA ^ qAß{0:l.r.q)cß(YhYY2-x,lpq)

U02 - |d*r0 jdxCoAKoY - q)l YO:l.i.q)gßYhYA-PPPl)

The term P'oi is the result of summing ovci the scales 71.72 <. /y =- 0. If the graphs 67] and

G2 are not single phonon lines, then then- must contain scale 0 fermion lines arrd therefor the

bubble cannot contain them. Thus Pqj iS the only conti ibtition. P~0J is of exactly the same

form as before, so it can bounded analogously

In the new terms Po2 and (p^ we use the fact that |P'o| <. 2AI which means that the

integral behaves just as in the laiger q case with gam 47° — 1 = AIA, Tims we have using

I Pi I y 1 and the induction Iia pothesis

\Uoi\ y const /d
, r0 [dx\CYo(iW({h,}?=2,x.p,q)\ (6.135)

v. \2((- 7e)Pc7l(7>P17^^ _ A2(c. ht)Vo\(h)MclL (6.136)

and a similar bound for Pqv

By definition

It o,l < X/oGP({P};P2;r.pj/)) (6.137)

When 77 > 2. g* is the value of a nontiivial bubble rhain and the result follows from (6.65) and

the induction hypothesis. If n — 2. then 77"( r .p.q) — Val(G2)(r.p, c/) ~ D(x0 —

Po, c|x — p|),

and using Pemma 54

|Pot| < const A2(c. 3. c) - const A2(e. 7. t)A^1 7= const A2(e. ß. AAI1-1 (6.138)
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In case there is a derivative acting from the left, it must, hit Pi and we keep that in

the integral, otherwise that case is completely analogous. D

6.4 The final result

Having done all the leg-work in the previous sections the proof of the Theorem we set out

show is now a direct result.

Theorem 3. For a graph G contributing to P(p, q) construct the corresponding 4-legged graph

G*. Apply decomposition (6.76) and proposition i of Theorem 67.

|Val(G)(p,c7)|<|Val(G*)(p,c?)|<X; E E A2(c.8,e)Po\ßpßW"h- (6.139)

'PPlPP^eAJGypypPi
yyoVî

where h = min{/7j}"=1.

< Y As(c, ß, Y Pol(|Zà|) AP- (6.140)
h<o

<X2(c,ß,e) (6.141)

which is the required result. D
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Appendix A

The one-loop /^-Dependent Term

A.l The self-energy

The main point of this appendix is to argue that the 0( A1) dependent term can be bounded

in complete analogy to contrrbution that is piopoi tional to c. To illustrate this we do the

computation for the self energy in detail.

Continuation of the proof of Lemma IT In section 1.4 3 tlie additional contribution was iden¬

tified as.

1 f dl 1
, , N

o

As stated we will pioceed exactly as in section 1 4 3. First split of the singular region

Po(t»o) =- fTR + cr<, (A.2)

where

-
I f tU YAo\ ß \ dU(D\ > A

(JR
? / (2;rP

""

ipo e(\)~
o

_-

L [ aA ^AaA
(A'3)

fTS
"J ,/ (2ir)'i~iPo- t(lj"

t (so)

The regular contribution <r>? is trivially bounded: |cy?| y 4^Ly .
When \p0\ > 7 then as — 0.

So can wc assrrrrre \po\ < -, 111 the following and drop the indicator function from the nottttion.
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A change to polar coordinates followed by an integration by parts gives

1 / f d» Ji(irfofl))

-5

= Bo — Iq

where

Po =

(A.4)

(A.5)

7y

-1

T Log(ïp0 -^p)liArJ^ApA)
p=ù

P=-S

-i

ö

N
r de d

,,

-s

(27T)d dp
h(7T(p,9))

(A.6)

(A.7)

Because \po\ < \ and \p\ < | we have as before |Log(?po — p)\ < 2|log|p||. Therefore the two

12|log(S|Vol(5rf-1)(l + <5)rf-2.

2
"-"^ IK! -i 2

terms are bounded as

Bo < --

(27
(A.8)

and

|i0|<i|dp|iog|p||/^ Adp JY^(tkO))

4^0^ (A.9)

-5

Therefore the Lemma holds with

A/£=.
vol(Sd"Y (A

(2TT)d V S

2/1 i X\d-2
+ 2(1 + cip^|logcS| + 2/P(l + 6) (A.10)

D

A.2 The vertex correction

Note that the proof given above is in fact identical to that of the 0(c) term, after the re¬

placement of D* by a Kronecker-delta that sets /o = po- Po is still a Fermion frequency, i.e.,

non-zero at fine 8. The p stun is taken last and only computed after an Iq independent bound

has been found for the other factors in the integral.
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Inspection of the proofs in Chapter 2 shows that the same is the case there. A replace¬

ment of D*(lo —po, c\l — p|) by ÔVoi0 gives no problems and leads to bounds where c is replaced

by /3~P In particular note the following

• The integral of the freeniencies does not produce a factor |1 - pj. However these were

only needed to control such factors coming from the derivative of D. In case of the

Kronecker-delta theie are no such terms.

• Although the deiivatives of Spnifl with respect to p vtmisli, integration by parts is strll

necessary because of the presence of cut-off functions and Jacobians.

• The presence of a frequency integral/sum is not needed to do interpolation in the

frcquencv argument. As can be seen from (2.85). the / integral plays the role of the

frequency integral there.

• For |q| > ht the bound for the other factors rs no longer independent of p at the

time the p sum is evaluated. Howevci the logarithmic divergency leads to logarithmic

factors in 6 in exactly the same vvav as for c.

Apart from these points the calculations are simply a repeat of those in Chapter 2, albeit

somewhat simpler at times, so avc refrain hour doirrg them in detail here.
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Zusammenfassung

Eine der Grundlagen der modernen physikalischen Beschreibung von Metallen ist die Elektron-

Phonon-Theorie. Sie beschreibt die Wechselwirkung der Elektronen mit Schwingungen des

Ionen-Gitter (Schalwellen). In der Elektron-Phonon-Theorie funktioniert die Standard-Berech-

nungsmethode physikalischer Größen mit Hilfe einer Störungseutwrcklung in der Kopplungs¬

konstante nicht mehr, weil diese Konstante normalerweise nicht klein ist.

Alle Glieder höherer Ordnung in Betracht ziehen zrr müssen macht die Berechnungen

sehr schwierig. Deshalb ist es üblich, eine Näherung zu machen, die 1953 erstmals von Migdal

vorgeschlagen wurde. Sie besteht, daraus, die Beiträge höherer Ordnung an den Wcchselwir-

kungsvertex zu vernachlässigen. Dies bringt eine sehr starke Vereinfachung der Hauptglei¬

chungen der Theorie hervor. Migdal begründete diese Näherung damit, class (bei Temperatur

Null) die Korrekturen höherer Ordnung linear in der Schallgeschwindigkeit c verschwinden

würden. Für gewöhnliche Metalle ist c tatsächlich klein im Vergleich zu den anderen rele¬

vanten Parametern. Diese 7Vtissage ist unter dem Name „Das Migdalsche Theorem" bekannt,

worden, obwohl nach unseren Kenntnissen, nie ein rigoroser Beweis veröffentlicht wurde. Ful¬

das Korrekturglied tiefster Ordnung gab Migdal ein skizzenhaftes Argument und behauptete

weiter, für höhere Ordnungen würde es nicht anders gehen. Darin sind ihm spätere Autoren

gefolgt, die auch die Aussage auf Temperaturen ungleich Null ausdehnten.

In dieser Arbeit wird die Elektron-Phonon-Theorie in einer ihrer einfachsten Varianten,

dem Jellium-Modcll, betrachtet in Form einer statistischen Quantenfeld-Theorie bei nicht

verschwindender Temperatur und mit einem Ultraviolett-Cut-Off. Es wird rigoros gezeigt,

dass das Korrekturglied tiefster Ordnung tatsächlich von der Ordnung 0(c) ist bis auf ein

mit, der Temperatur verschwindendes Glied, Dies wird mit Hilfe eines Feynman-Tricks und

wiederholter Partieller Integration gemacht.

Eine Formulierung der Theorie in welcher der Temperatur-Null Limes existiert, erfor-
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dert eine Renormierung. In dieser Arbeit wird eine so genannte Fermi-Flächen-Renormierung

vorgenommen, wobei zur Elektron-Energiefunktion neue Glieder hinzugefügt werden. Mit

Hilfe der Renormierungsgruppe und einer Skalenzerlegung werden diese Glieder genau defi¬

niert und es wird duredr bestimmte temperaturunabhängige Schranken für den in der Theorie

auftretende Graphen gezeigt, dass der Temperatur-Null-Limes existiert.

Schliesslich, wird gezeigt, dass für die renormierte Theorie gilt, dass für alle 0 < e < 1

die Vertexkorrekturen der Ordnung r beschränkt sind durch

^{^(fi^)1-}
für eine e-abhängige Konstante Mr(e), wobei ß die inverse Temperatur ist. Dabei wird die

Methode des Feynman-Tricks und der Partiellen Integration mit der Skalenzerlegung kombi¬

niert.


