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Abstract

The work presented in this thesis is devoted to the study of magnetically ordered

compounds by means of neutron and muon spectroscopy. We have selected four

compounds that belong to specific classes of magnetic systems: The intermetallic

compound M3AI was chosen as the paradigm of the weak itinerant ferromagnets ;

The itinerant ferromagnet Ni was taken as a promising candidate for the study of

longitudinal fluctuations in its magnetically ordered phase; For the study of the

paramagnetic scattering in localised systems we have selected the cubic Heisenberg
system EuS. The last compound on which we focus our attention is the low di¬

mensional spin system CuGe^^S^C^ which exhibits an astonishing characteristic:

an antiferromagnetic ground state that is observed to coexists with a non-magnetic

singlet spin state, although these two ground states are expected to be mutually
exclusive.

After the introducing part, an overview of neutron scattering is presented in Chap¬
ter 2. The underlying theory and the experimental method are outlined within the

framework of linear response theory. After this, Chapter 3 gives a short introduction

to the muon spin rotation (^SR) technique.

Chapter 4 is focused on the theoretical description of the static and dynamical

properties in magnetically ordered systems. As a first step, the basic principles of

critical phenomena and scaling theory are reviewed. The second part of the Chapter
presents step by step the theoretical background for localised spin systems and for

itinerant systems.

In the first part of Chapter 5, we report on the study of critical fluctuations in the

weak itinerant ferromagnet Ni3Al. We have measured the magnetic excitations in

the ordered phase as well as in the paramagnetic phase by means of inelastic neutron

scattering. The linewidth of the spin-waves is observed to decrease with

decreasing temperature, although the theory for itinerant spin systems

predicts the opposite situation. The magnetic excitations have been interpreted
within the framework mode-mode coupling theory (MMT) for an isotropic
ferromagnet. In this model, the scaling behaviour for the spin fluctuations is ex¬

pected to behave in a similar way than what was observed in N^Al. In addition,
the parametrisation of the linewidth for the critical scattering shows that the dy¬
namical critical exponent z c± 2.5 db 0.2 is close to the value expected for an isotropic
Heisenberg model, proving that critical fluctuations are also important in
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weak-itinerant ferromagnets. Moreover, the temperature dependence of the

spin waves compares well with the predictions of MMT. The correlation length in

weak itinerant magnets is very large leading to pronounced short range order and

to critical fluctuations far away from the ordering temperature Tc- Our results

show that it is necessary to include critical fluctuations in the theory for

itinerant magnetism.

In the second part of Chapter 5, the critical scattering of the itinerant magnet Ni is

studied by means of small angle neutron scattering. The predicted 1/Q divergence in

the longitudinal static susceptibility cannot be observed and tentative explanations
are proposed. However, the effect of dipolar forces is clearly seen in the anisotropy
of the scattering.

In the first part of Chapter 6 we present an investigation of the high temperature

paramagnetic scattering in the localised spin compound EuS. We show that, near

the zone boundary, the linewidth of the spin fluctuations remains finite well

above the ordering temperature, as predicted by the theory based on a Heisen¬

berg model, in strong contradiction to an ideal paramagnet where the scattering is

purely incoherent and elastic. Our results show that the correlations between

neighbouring spins persist far away from the ordering temperature.

Finally, we present a study of the static and dynamical properties of the Si-doped
spin-Peierls compound CuGe03. The basic idea is to understand why two

magnetic ground states that are supposed to be mutually exclusive can

coexist in the doped compounds. As a first step, the temperature-concentration
phase diagram of the Si-doped compound is investigated by means of neutron scat¬

tering and /iSR spectroscopy, in order to determine the microscopic distribution of

the magnetic and lattice dimerised regions as a function of doping. The analysis
of the zero-field muon spectra confirms the spatial inhomogeneity of the staggered
magnetisation that characterises the antiferromagnetic superlattice peaks observed

with neutrons. In addition, the variation of the macroscopic order parameter with

doping can be understood by considering the evolution of the local magnetic moment
as well as of the magnetic regions contributing to the muon signal.
As a second step, we present, for selected doped samples, the dispersion of the anti-

ferromagnetic excitations along three symmetry directions. Two important results

can be deduced from the analysis of the spin dynamics: the spin gap arising from spa¬

tial anisotropy is independent on the doping concentration; moreover the exchange
interaction parameters that are extracted from the dispersion curves exhibits values

that do not significantly differ from the values of the undoped compound.
The cumulative information given by neutron scattering and /uSR have provided an

insight on the effect of bond doping in CuGeC-3. The introduction of impurities
destroys locally the spin-Peierls phase, where the antiferromagnetic (AF)
phase sets in. Moreover, the volume fraction of both spin-Peierls and AF

phases is observed to vary with doping, whereas the physical properties
of the AF phase remain almost unchanged.
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Résumé

Ce travail de thèse est consacré à l'étude des matériaux magnétiques par spectro¬

scopic de neutrons et de muons. Nous avons choisi quatre composés, chacun appar¬

tenant à une classe particulière. Le composé intermétallique N13AI a été sélectionné

en tant que paradigme des matériaux ferromagnétiques de type itinérant à faible

magnétisation. Le Ni était présupposé comme candidat pour l'étude des fluctua¬

tions longitudinales dans un métal ferromagnétique. Le composé EuS, ferroaimant

de type Heisenberg, a permis l'étude de la diffusion paramagnétique dans un système
de spins localisés. Le dernier composé magnétique sur lequel nous avons retenu

notre attention est le système à basse dimension CuGei-^Si^Os, dont les propriétés

magnétiques sont pour le moins inhabituelles. En effet, en-dessous d'un certain seuil

de dopage, une coexistence apparaît entre un état fondamental antiferromagnétique
et un état singulet non magnétique, bien que ces deux états fondamentaux sont

supposés s'exclure mutuellement.

Après une introduction sur le magnétisme, le Chapitre 2 propose une vue d'ensemble

de la diffraction de neutrons. L'accent est mis sur les fondements de la théorie ainsi

que sur la méthode expérimentale, en relation avec la physique du solide et sur la

base de la théorie de réponse linéaire. La partie préliminaire de ce travail se prolonge

par le Chapitre 3, qui donne une brève introduction à la spectroscopic de muons.

Le Chapitre 4 est axé sur la description théorique des propriétés statiques et dy¬

namiques dans les matériaux magnétiques ordonnés. Dans un premier temps, les

phénomènes critiques ainsi que les bases de la théorie d'échelle (scaling theory) sont

succinctement présentés. La seconde partie du Chapitre 4 décrit successivement les

fondements théoriques propres aux systèmes de spins localisés, puis ceux spécifiques
aux systèmes de spins itinérants.

La première partie du Chapitre 5 est dédiée à l'étude des fluctuations critiques
dans le composé Ni3Al, un système de spins itinérants à faible aimantation. Nous

avons mesuré les fluctuations de spin dans la phase ordonnée ainsi que dans la

phase paramagnétique par diffusion inélastique de neutrons. Ces excitations ont

été interprétées en parallèle, sur la base de la théorie des spins itinérants ainsi que

par la théorie de "mode-mode coupling" (MMT), dans l'hypothèse d'un matériau

ferromagnétique isotrope. L'analyse de la largeur de ligne des fluctuations à la

température de transition fournit un exposant critique dynamique z o± 2.45 ± 0.2

proche de la valeur prévue par le modèle isotrope de Heisenberg, montrant par-là que
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les fluctuations critiques sont aussi importantes dans les systèmes de spins itinérants

à faible aimantation. En outre, la dépendance en température des ondes de spin
s'accorde avec les prédictions de la MMT. De plus, nous observons que la longueur
de corrélation dans les composés itinérants à faible aimantation est importante. Ceci

implique un ordre magnétique accentué à courte distance, ainsi que la présence de

fluctuations critiques bien au-delà de la température de transition magnétique Te.
Ces résultats expérimentaux indiquent par conséquent qu'il est nécessaire d'inclure

des fluctuations critiques dans la théorie du magnétisme itinérant.

Dans la seconde partie du Chapitre 5, les fluctuations critiques dans le Ni sont

étudiées par diffusion de neutrons à petits angles. La divergence en \/Q de la

susceptibilité longitudinale prévue par la théorie n'a pu être observée, et quelques
explications sont proposées. Cependant, l'effet de l'interaction dipolaire a été mis

en évidence dans l'anisotropie des spectres de neutrons.

Dans la première partie du Chapitre 6 nous présentons une étude de la diffusion

paramagnetique à haute température dans le composé EuS, dont les spins sont

localisés sur les ions Eu2+. Proche du bord de la zone de Brillouin, la largeur de

ligne des fluctuations de spin reste finie bien au-delà de la température de transition,
comme prévu par le modèle théorique fondé sur un système magnétique de type

Heisenberg. Ce résultat est en opposition avec le cas d'un matériau paramagnetique
idéal, où l'on s'attend à un signal de type purement incoherent et élastique.

Pour terminer le Chapitre sur les systèmes de spins localisés, nous présentons une

étude des propriétés statiques puis dynamiques du composé spin-Peierls CuGeÛ3

dopé au silicium. Dans un premier temps, les mesures complémentaires de diffraction

neutronique et de spectroscopic de muons permettent de constituer le diagramme
de phase temperature-concentration du composé dopé au silicium; le but étant de

déterminer la distribution microscopique des zones magnétiques ainsi que celles des

zones dimérisées en fonction du dopage.
L'analyse des spectres de muons en champ nul confirme l'inhomogénéité spatiale
de la magnétisation dans la phase antiferromagnétique; celle-ci a été au préalable
caractérisée via les pics antiferromagnétiques de surstructure observés par neutrons.

D'autre part, la variation du paramètre d'ordre macroscopique en fonction du dopage
peut s'expliquer par l'évolution du moment magnétique local ainsi que par les vol¬

umes des différentes zones qui contribuent au signal du muon. Dans un deuxième

temps, nous avons sélectionné quelques échantillons dans lequels nous avons mesuré

la dispersion des excitations antiferromagnétiques, le long de trois directions de

symétrie. L'analyse de la dynamique de spins dans les composés dopés fournit deux

résultats majeurs: le gap de spin est indépendant de la concentration du dopage, du

moins dans l'intervalle expérimental, et s'explique par l'anisotropie des intégrales
d'échange entre les ions de Cu2+. En outre, les paramètres d'échange qui sont

extraits des courbes de dispersion présentent des valeurs comparables à celles du

composé non dopé.
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Chapter 1

Introduction

The important thing in science is not so much to obtain new facts
as to discover new ways of thinking about them.

Sir William Bragg

Magnetic materials provide an extensive variety of systems for the investigation of

electronic interactions in solid state physics. The character of the interaction be¬

tween the magnetic moments allows to classify magnetic systems into various groups

that are mutually non exclusive. Most of the magnetic materials undergo a phase
transition to an ordered phase at a finite temperature. The type of spin arrangement
that takes place allows to define several classes of spin configurations like ferromag-

nets, antiferromagnets, ferrimagnets, incommensurate structures and spin glasses.

Depending on the geometric arrangement of the magnetic moments, one can distin¬

guish between one (e.g. KCuF3, Sr2Cu03, Ca2Cu03) two (e.g. Rb2Coo.6Mgo.4F4,

SrCr9pGai2-9p0i9 (p=0.92), K2CUF4) and three dimensional (e.g. Fe, Ni, Co, etc.)
spin systems. A additional distinction can be made in relation with the dimensional¬

ity of the order parameter that describes uniaxial (Ising like), easy-plane (XY-model)
and isotropic (Heisenberg) magnets.

Generally, three physical parameters are necessary for the characterisation of a mag¬

netically ordered compound: the ordering temperature Tc, the magnetic moments

p{T) and the spin correlation length £(T) that depends on the temperature, p plays
the role of the order parameter that is non-zero below Tc?, and £(T) is a measure

of the distance over which the spins are correlated: at Tc, £ becomes infinite. The

ordering originates from long range correlations arising between electrons below Tc,
when the energy of the electrostatic interactions exceeds the kinetic energy of the

fluctuations.

Experimentally, the magnetic moment p of the ions is determined above Tc via the

magnetic susceptibility of the bulk material that is given by the Curie-Weiss law

One obtains an effective moment per ion peff — \l{g^B)2S{S +1), where g is the
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gyromagnetic factor, S the spin quantum number of the ion, jab the Bohr magne¬

ton and kß the Boltzmann constant. Below Tc, the moment at saturation ps is

determined via the measurement of the bulk magnetisation, that is extrapolated to

T=0.

Experiments on many materials have shown that the values obtained by both meth¬

ods can differ significantly. The Rhodes-Wohlfarth plot [1] shows the ratio pejf/ps
versus Tc for various ferromagnets (see Fig 1.1). On the basis of the experimental
data reported in the plot, a distinction can be made between two classes of materi¬

als. The insulators, where the electrons are localised at the magnetic ions, exhibit

a value of peff/ps that is close to one. In contrast, the metals where the electrons

are delocalised display a ratio that can be much larger than unity.

400
T

,„.
800 1200

Figure 1.1: Rhodes-Wohlfarth plot for crystalline and amorphous ferromagnetic alloys. It shows

the ratio p<-ff/ps as a function of the ordering temperature Tc, where peff is the effective magnetic
moment in the paramagnetic phase, and ps the saturation moment in the ordered phase. The values

are taken from Ref. [1]. The dashed line represents the case of a perfect localised system, where

Peff = Ps-

In the case of electrons localised on the sites of a lattice, the Hamiltonian is based

on the Heisenberg model

ri-Hets — / y J%j ^«
' ^j ? (1.2)

that involves pair interaction between spins, coupled by the exchange integral J%y
For itinerant electrons, a more appropriate model is the Hubbard Hamiltonian that

accounts for a band electron approach

nHub = -<EE (is- + c-4) + UT n, îniU (1.3)
».J
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where the first term represents the kinetic energy t of the electrons (hopping integral)
and the second term is the electrostatic repulsion U for electrons in the same orbital.

In the limit of large Coulomb interactions (U » t) and at half-filling Eq. 1.3 reduces

to Eq. 1.2 with J given by J = At2/U (see Ref. [2]).
The physical properties of a magnetic system are related to the temporal and spatial

spin correlation function G(r,t), which is the Fourier transform of the dynamical

susceptibility x(q,o;) that is derived from the selected model Hamiltonian. x(q,u;)
describes the static (with w=0) and dynamical properties of a magnetic material,
where q and u> represent the wave vector and the energy of the magnetic fluctuations,

respectively.
For a given system, xi^^) will have different q, energy and temperature behaviour

depending on the degree of localisation of the electrons. For itinerant systems,
the long wavelength and low energy fluctuations are responsible for most of the

thermodynamic properties of the compounds. In contrast, for the localised spin

systems, the information is distributed over a wide range of q = |q| and energy.

The limit in q is given by the wavevector at the zone boundary qzB, that defines

a minimal wavelength \min for the spin fluctuations via the relation q%g — -r^2-.

This consideration is of course not relevant for itinerant systems where the electrons

are delocalised. Furthermore, the spin correlation length is larger in metals than in

insulators. The temperature evolution of the fluctuation spectrum is hence expected
to be different for both types of systems.
An extensive review of the status of the knowledge on magnetic materials can be

found in the books of Borovik-Romanov and Sinha [3] and Moriya [4].

In this work, we present investigations that were performed on various magnetic

systems, each of which belongs to a specific class of materials that were listed above.

On the basis of the current knowledge on localised spin systems, the question
arises if the universality of critical phenomena, i.e. the fluctuations respon¬

sible for the phase transition, can also embrace the itinerant magnets. It is

indeed believed according to dynamical scaling theory on Heisenberg systems that

the decisive parameters are the long wavelength magnetic fluctuations, i.e. the one

that are predominant in the itinerant systems. In order to answer this question, we

study the dynamical magnetic spectrum of two metals, Ni3Al and Ni, by means of

the neutron scattering technique.
In addition, the discovery of magnetic systems with new properties like heavy
fermion systems and non Fermi liquids has opened new fields of investigation, both

experimentally and theoretically. It is known that the spin channel dominates

in the thermodynamic properties of such compounds, and that their mag¬
netic spectrum is similar to the one of weak itinerant ferromagnets. A

detailed knowledge of spin dynamics in these latter compounds can therefore be a

fruitful starting point for understanding the physics of these new materials.

In localised systems one would expect intuitively that the lifetime of the magnetic
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fluctuations becomes vanishingly small when the kinetic energy is infinite. Surpris¬

ingly, theoretical investigations on a Heisenberg system predict that spin fluctu¬

ations can persist near the zone boundary with a finite lifetime, even

in the limit of infinite temperature [5]. It is therefore of interest to test this

astonishing prediction in EuS, which is a well known localised spin system.

Finally, the discovery of high-temperature superconductors has generated a renewed

interest in the experimental investigation of low dimensional spin systems, as the

2D CuC>2 planes are believed to play an essential role in the transport properties
of these compounds. The research in low dimensional spin systems has also been

stimulated by the Haldane conjecture [6] that predicts gapless excitations for half

integer-spin chains, whereas integer-spin chains are expected to exhibit a gap. Fur¬

thermore, the study of spin-lattice interaction has been promoted by the discovery of

a spin-Peierls transition in organic compounds [7], where an antiferromagnetic chain

becomes dimerised at a certain temperature, and a non magnetic ground state is

generated. CuGeC^ is a specimen which holds several of these attractive physical

properties. The pure compound exhibits indeed a spin-Peierls transition at low tem¬

perature. On the other hand, the introduction of doping elements, which is

easier to perform than in organic compounds, can progressively release

the spin-lattice coupling and generate a magnetic phase that is close to

a low-dimensional spin system. An investigation of the static and dynamic
properties of CuGeOs with various doping concentration is expected to provide an

insight into the interplay between the magnetic ground state and the

lattice dimerisation.



Chapter 2

Neutron Scattering

The fundamental principle of science, the definition almost, is this:

the sole test of the validity of any idea is experiment.
Richard P. Feynman

2.1 Introduction

The intrinsic properties of the neutron make it an ideal probe for investigating the

physics of condensed matter. As one of the advantages, its large penetration depth
due to the absence of an electrical charge allows to probe materials of macroscopic
size. The neutron interacts with matter via two types of processes. The nuclear

interaction with the nuclei provides information about structural properties as well

as lattice dynamics. The interaction of the neutron spin with the electronic and

nuclear spins of the system allows the investigation of the static and dynamical

magnetic properties of a compound.
The current neutron sources are able to produce neutron beams in an energy range

that covers the basic excitation energies which are relevant for the understanding of

the physics in solids and liquids. In addition, the corresponding wavelength range

of the neutrons is similar to interatomic distances. The excitations can be therefore

investigated over the whole Brillouin zone, which is not the case with any other

spectroscopic technique. A restriction is however given by the limited flux of the

neutron sources when compared for instance with synchrotron sources.

In this Chapter we present an overview of the principles of neutron scattering and

introduce some concepts and formulae that are relevant for the present work. We

refer to the text books of Lovesey [8] and Squires [9] for the detailed derivation of

the theory.

2.2 Neutron-matter interaction

The interaction of the neutrons with matter is described by the quantum theory
of scattering. In a neutron experiment, the measured quantity is the number of
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neutrons scattered in a solid angle dfl with an energy between Ej and Ej -\- dEj.
This quantity can be expressed as follows:

(Al
^ ,

=?5JkS"4.^.^.^(»« +«>.-&,) (2.1)

where $ is the neutron flux, dû the solid angle in the scattered direction that is

considered, and Wkt(,t\t-+-k.f<Tf\f the transition probability between an initial state

|k,<T,Aj) and a final state |k/<7/A_f ). The delta function guarantees the conservation

of the total energy. The state of the total system neutron+sample is represented by
|k<rA) where k, a and A account for the neutron wavevector, the neutron spin state

and the quantum state of the sample, respectively.
The scattering rate W-k,tatxt-^\afafxf can be calculated by using the Golden Rule of

Fermi:

^ TA/
27r

kfedü
n

{kf<Tj\j \V\kiai\i)
2

(2.2)

where pkf is the density of states for kf, and V is the operator that represents the

interaction between the neutron and the sample.
If the initial and final beams are not polarised, the neutron scattering cross-section

is given by the following relation:

\ J ' Ai-J-Aj
' \ / A,,A^,<7,,ct^

(2.3)
where mn the mass of the neutron and p\t is the probability that the sample is in

the initial state |Aj).
In a scattering process, the usual convention is to define the energy and momentum

transfer conservation laws of the total system as follows:

hu = Ei-Es = ^-ß-k)) (2.4)

hQ = h(ki-kj) (2.5)

where hu> is the energy transfer and HQ momentum transfer. Q is defined as the

scattering vector. Ei and Ej are the initial and final energy of the neutron, respec¬

tively.

2.2.1 Nuclear scattering

The nuclear forces between the neutron and a nucleus are of very short range (of
the order of 1 fm) when

comparedwiththetypicalinteratomicspacing.TheFermi
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pseudopotential can therefore be used as a reasonable approximation of the neutron-

nucleus interaction:

^r) = £^V(r ~ IU (2.6)
3

n

where bj is the scattering length of the nucleus of type j and Rj is its position in

the sample.
After introducing the Fermi pseudopotential in Eq. 2.3, the thermal average and the

sum over all the scattering elements yield (see for example Ref. [9]):

/ da2 \
_

( da2 \ ( da2 \

[dndEjj ~

\düdEf)coh + \dndEf).nc ('*

The scattering function S(Q,u) is the Fourier transform in space and time of the

pair-correlation function G(r,t) of the system:

S(Q,u) = ^— I' G(v,t)é^v-^dvdt (2.8)

In Eq. 2.7, Scoh represents the coherent scattering of elements that are correlated in

space and time, whereas Sinc gives only the space correlation of the same nucleus

at different times. The coherent scattering can thus give rise to interference effects

which provide information about the collective excitations of the material.

The quantities acoh and cr;nc in Eq. 2.7 are defined as follows:

Vcoh = 4vr(6)2, and <Jinc = Ak{& - (b)2} (2.9)

These latter quantities have the dimension of a surface and can be interpreted as

the area of the nucleus that the neutron sees.

Using Eq. 2.6, the nuclear coherent elastic (Ei = Ej) cross-section for an ordered

crystal can be expressed as:

\3

ydfl.
= N"-^J25(Q-t)\Fn(t)\\ (2.10)

coh.el. V°
?

N is the number of unit cells in the sample, r is a reciprocal lattice vector and v0

is the volume of the unit cell.

FN(T) = 'ZbdéiT-de-w< (2.11)
d

is the nuclear structure factor. J2d extends over all the atoms of the unit cell, bd is

the coherent scattering length and e~Wd the Debye-Waller factor of the atom at the

site d.
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In contrast, the incoherent elastic nuclear cross-section is given by the following

relation:

fey =^e(^-ä)vw- (2.12)
V / inc.el. d

This expression does not yield any information about the lattice properties, as this

process describes uncorrelated movements of nuclei.

2.2.2 Magnetic scattering

The interaction between the magnetic moment of the neutron y,n and the magnetic
field generated by the unpaired electrons of an atom makes neutron scattering a

powerful tool for the investigation of the magnetic properties of condensed matter.

For an unpaired electron, the corresponding magnetic interaction operator is:

Vm(v) = -m B = -7Wv<7 • B(r) (2.13)

where 7 = —1.913 is the gyromagnetic ratio of the neutron; fipf the nuclear magne¬

ton; a the Pauli spin operator. B(r) is the magnetic field induced at the position r

by a single unpaired electron:

(-e)ve x r

«'J-MW+W- ^

The first term in Eq. 2.14 is the field generated by the magnetic moment of the

electron (/xe = —2/igS). The second term is related to the electronic orbital motion,
where ve is the velocity of the electron, e its charge and c is the velocity of light.
The magnetic cross-section for a crystal is obtained by evaluating the matrix ele¬

ments (kjajXj I Vm \ki<Tt\t). For an unpolarised neutron beam, by using Eq. 2.13

and Eq. 2.14, one obtains:

( da2 \ (<vv V ke ~ ~ 1
I \ _

Wo)

^(<W-0^£7MF;,(Q)F,(Q) (2.15)
\ J/ % aß ]'}

x /+0° (e-iQ-KA°)eiç>-K^)(Sï{0)SP(t))e-^dt
J— CO

In the latter equation, r^ is the classical radius of the electron. The term [8aß —

QaQß) is the polarisation factor, where a,ß=x,y,z.ItaccountsforthefactthatthecomponentsofthespinoperatorS(t)thatareparalleltothescatteringvectorQcannotbeobservedinaneutronscatteringprocess.g3andFj(Q)correspond,respectively,totheLandefactorandtheFouriertransform(magneticformfactor)ofthespindensityofthemagneticionj.Rj(£)givesthepositionoftheionjattimet.Finally,{S",(0)S^(t)}isthespincorrelationfunction.Ifoneconsidersnowallthemagneticionstobeidentical,Eq.2.15isexpressedasfollows:
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f^-) = ^(7r4^(Q))2£(<W - Q«Qß)Saß(Q^) (2.16)
V // * aß

where the magnetic scattering function ^"^(Q,^;) is introduced:

^(Q,^) =
-i- [+C°Y1 (e-tQ-R^o)eiQ-R^)(Sp{0)S^{t))e-"*dt (2.17)

3,3'

The magnetic scattering function is the Fourier transform in space and time of the

magnetic pair correlation function. It gives the probability for the system to have

a magnetic moment at a position R3{i) with a component S3{t) and a magnetic
moment at a position R3>(0) with a component 5y(0).

2.2.3 Generalised susceptibility

In a sample, the magnetic moment of the neutron can be seen as an external per¬

turbing magnetic field H(Q,u;). The response of the sample can be monitored with

the dynamical magnetisation M(Q,w):

MŒ(Q,w) = E^CQ.wJH/jCQ,«) (2.18)
ß

where the generalised dynamical susceptibility tensor x°^(Q,u;) mirrors the spatial
and dynamical magnetic properties of the sample.
The magnetic scattering function Sa/3(Q,oj) (see Eq. 2.17) can be related to the

imaginary part of the dynamical susceptibility xa/3(Q, ^) via the fluctuation-dissipa¬
tion theorem [10]:

The magnetic neutron cross-section can therefore directly probe the magnetic re¬

sponse function of a system.

Finally, by using linear response theory, the magnetic neutron cross-section can be

rewritten as:

d(j2 ^
= ^br0l-gF3(Q)rexI>{-2W(q)}T^ (2.20)

\dUdEI,

where Fa/3(Q,w) is a normalised spectral weight function and \xb the Bohr magne¬
ton.
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2.3 Instrumentation

2.3.1 Three-axis spectrometer

The three-axis spectrometer is an instrument that allows to measure the intensity of

scattered neutrons for a particular momentum transfer Q and energy transfer Hu.

This feature is particularly useful for a measurement of inelastic scattering from

single crystals.

- Monochromator

Figure 2.1: Layout of a three-axis spectrometer. The three axes consist of (i) monochromator

(ii) sample and (iii) analyser. 6 is the scattering angle. The corresponding scattering geometry m
the reciprocal space is also shown.

(a)
fc> • •

(b)
K •

K
m

W
• • / \*

JQ
->éq •

y V

Q = x

Figure 2.2: (a) Scheme of an inelastic scattering process, |ky| ^ |k, |. The scattering vector Q
is decomposed into a reciprocal lattice vector t and the wavevector q of the excitation that is

analysed, (b) If Q coincides with t and |k/| = |k»|, the process describes Bragg scattering.

The instrument is composed of three main parts (see Fig. 2.1). The incident neutron

wavevector k? is selected out of the white neutron beam via a Bragg reflection from

a monochromator (first axis) consisting of aligned single crystal blades (usually
pyrolitic graphite or copper). The monochromatic beam is scattered from the sample
(second axis) with a selected scattering angle 0. The scattered beam is analysed
via a second Bragg reflection from an analyser (third axis), which defines the final
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wavevector of the neutron k/. The simultaneous selection of kt-, k/ and 0 hence

allows to measure the scattering function of the sample at a given momentum and

energy transfer. For the study of an excitation (magnetic or nuclear), a single crystal
can be oriented such that the scattering vector Q coincides with t + q, where t

is a vector of the reciprocal lattice and q is the wavevector of the excitation (see
Fig 2.2 (a)). For the particular case of q = 0 and (k,| = |k/|, the so-called scattering

triangle reduces to Bragg scattering, as shown in Fig 2.2 (b).
The inelastic neutron experiments presented in this work were performed on the

three-axis spectrometers for cold neutrons FLEX (HMI, Berlin) and TASP (SINQ,
PSI-Villigen).

2.3.2 Small angle neutron scattering

Small angle neutron scattering (SANS) is a diffraction technique for investigating
large scale (small scattering vectors Q) properties in condensed matter. The tech¬

nique consists of illuminating a sample with a monochromatic neutron beam, and

collecting the scattering intensity on a position sensitive two-dimensional detector.

The typical sample-detector distance is usually between 2 and 20 m (see Fig. 2.3).

Neutron

guide

Iris for beam

collimation

#5

'Mi

Primary beam

stop

Sample

"*2P

Velocity selectorcity
ecru(mechanical}

2-dlmensional

position sensitive
detector

Figure 2.3: Layout of a small angle neutron scattering diffractometer.

In a SANS experiment, the measured quantity is /(Q), where Q is the scattering
vector. The SANS experiments that we have performed in the present work are

restricted to scattering processes in the forward direction, i.e. where r= 0, and

therefore Q is equivalent to q. Generally, the entire neutron-sample interaction is

dominated by elastic scattering and can be described by the single parameter Q. If

in addition the interaction is isotropic, /(Q) = I(Q)-
Ideally, /(Q) is proportional to S(Q) = / S(Q,u)cLj. In practice, for a given scatter¬

ing geometry, i.e. for a given pixel X on the detector (see Fig. 2.4), one measures the

integral along a constant scattering angle curve and not along a constant scattering
vector curve:

/(Qo) = / S(Q{tu,2Q),u)du (2.21)

where Q0 is the elastic scattering vector for a given scattering angle 26. The integral
is taken over the energy transfer, i.e. over kj, and the scattering vector Q(cj,20)
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k'f > ki

D

Figure 2.4: Scattering geometry on SANS, k; is the incident wavevector of the neutron. D and

X are the detector and a single pixel of the detector, respectively. 26 is the scattering angle
corresponding to the position X. For elastic scattering |k/| = |k,-| and the elastic scattering vector

is Qo- Another possible scattering process is also shown, with |k* | > |kj|, that may also contribute

to the intensity in the detector for the same scattering angle. In this case, the corresponding

scattering vector is Qi, different from Qo-

is modified according to the kinematical relations (Eq. 2.4 and Eq. 2.5) along the

integral path.
The small angle neutron experiments presented in this work were performed on the

small angle scattering instrument SANS (SINQ, PSI-Villigen) and on Dil (ILL,
Grenoble).



Chapter 3

Muon Spin Rotation Spectroscopy

/ do not see why the men who believe in electrons are regarded
as less credulous than men who believe in angels.

George Bernard Shaw

3.1 Introduction

In contrast to the neutron scattering technique where the information is averaged
over the whole volume of the sample, Muon Spin Rotation (juSR) spectroscopy is

an ideal probe to characterise the local magnetic properties of a system. The two

techniques are therefore expected to provide a complementary approach for the

investigation of magnetism in solid state physics. In this Chapter, a brief overview

of the technique is presented. For a comprehensive review of ^uSR history, technique
and applications we refer to the book of A. Schenck [11].

3.2 /iSR technique

The muon is generated by the decay of a pion via the following reaction:

7T+ -» Ji+ + ^ (3-1)

with a lifetime rv of about 26 ns. According to the conservation of the total

momentum-energy, the muon beam is 100% polarised antiparallel to its flight path
in the rest frame of the pion. This excellent polarisation is conserved in the lab¬

oratory frame for the so-called surface muons that arise from 7r+ decaying at rest

near the surface of the production target. At the muon facility at PSI, the pions
are produced by a high energy proton beam directed on a graphite target, via the

following reaction:

p + p-^7r++p + n (3.2)

In the sample, the muons are implanted at particular crystallographic sites and

interact with the local electromagnetic field via hyperfine interaction and possibly

13
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undergo a depolarisation. The muon subsequently decays with a mean lifetime of

Tß — 2.2 /is via the process:

H+ - e+ + ve + üß (3.3)

The positrons e+ are preferentially emitted along the muon spin direction, due to

the parity violation of this decay. The signal is recorded by a positron detector

which is set up in a particular direction, with a given solid angle of acceptance.
Each muon that is implanted in the sample starts a clock that is stopped when

the corresponding positron is detected. The resolution of the measurement depends
hence on various parameters like the time accuracy of the clock and the ability of

distinguishing correlated events. Eventually, a muon decay histogram is recorded,
collecting typically 107 to 108 events, which provide the positron depolarisation
Ne+ (t) as a function of time:

Ne+{ß,t) = ^°exp(--)[l + AG(t)] + ß (3.4)

and G(t) = jf^§cos*-
iVo is a normalisation constant; B is a time-independent background; A « 0.3 is the

asymmetry factor for the muon decay and G{t) is the time-normalised polarisation
of the muon. 0 defines the angle between the fj,+ spin and the positron trajectory, i.e.

the direction of the detector. G(t) reflects the normalised fj,+ spin autocorrelation

function and is a the signature of the magnetic interaction between the muon and

the crystal. The product AG(t) is often referred as the muon signal.
In the case of static local magnetic fields (B^) at the muon site, the depolarisation
function G(t) is given by:

G{t) = J /(B^)[cos2 0 + sin2 0 coS(7ßBßt)]dBß, (3.5)

where /(BM) is the magnetic field distribution function, 0 is the angle between

the local field and the initial muon polarisation ^^(0)1 and 7M/(27r) = 13.553 879

kHz/G is the gyromagnetic ratio of the muon. For a particular structure the possible

presence of different /j,+ stopping sites with different magnetic environments will be

identified by a /uSR signal with different components Gi(t).
/iSR is essentially performed with /i+ particles. The \T are indeed captured into

atomic orbitals of the target, which eventually reduces considerably their polarisa¬
tion. In addition, the probability of nuclear capture in the target sample is important
and leads to a shortening of the \x~ lifetime. These two drawbacks render the /^~SR
signal much more difficult to observe than the one of ^i+SR. The /^SR experiments
that are presented in Chapter 6 were performed with the /i+SR technique.
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3.3 Zero field ^SR

Zero field /iSR refers to the experimental situation where no external magnetic field

is applied to the sample. In the case of a well defined magnetic field B^ at the muon

site, the magnetic moment of the muon will precess with a Larmor frequency u^.

From Eq. 3.5, the time-normalised polarisation is given by:

G{t) = cos2 6 + sin2 9 cos(w„i + <j>) (3.6)

<f> is the angle between the direction of the detector and the initial muon polarisation

P^(0), and Lu,, = 7M|BM|.
In a more realistic picture, one can assume a local gaussian distribution of the

field components at the muon site. It essentially originates from the nuclear dipole
moments that are static within the /uSR time window. An average over all directions

yields the Kubo-Toyabe function [12]:

G(t) = I + |(1 - 7^AV) exp ( - ItfAV) (3.7)

where A is the width of the local field distribution. The first part of Eq. 3.7 corre¬

sponds to the fraction of muons that do not precess since on average | of the field

distribution is parallel to the initial muon polarisation.
The case of fluctuating magnetic fields leads to a relaxation of the non-precessing
as well as of the precessing muons:

G(t) = ^exp(-A1t) + |exp(-A2*)(l - 7^A2t2)exp ( - ^A2*2) (3.8)

where Ai and A2 are relaxation rates. The time fluctuation of the field distribution

can be caused by spin-lattice or spin-spin coupling.
The advantage of the zero-field /^SR technique is the possibility of investigating
magnetic properties in a non-perturbative environment. This technique is for exam¬

ple very valuable for detecting spontaneous fi+ Larmor frequencies in magnetically
ordered phases.

3.4 Transverse field /iSR

In transverse field ^uSR, a static external magnetic field Hext is applied perpendicular
to the initial muon polarisation. The muon spin precesses around the total field B^
at the muon site, which results from the sum of the local internal field and the

applied field.

In an inhomogeneous field distribution, the fj,+ implanted at different sites will feel

slightly different fields. In transverse fields experiments Hext is usually larger than

the internal fields and only the field inhomogeneity along the direction of Hesct (taken
as the z direction) has to be considered. Noting that 8 = 90°, Eq. 3.6 becomes:

G(t) = gTF(t)coS(lß{B:)t). (3.9)
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Bz is the average of the component along Hearf of the total field at the muon site.

9TF{t) is the depolarisation function and depends on the type of field distribution

in the sample.

3.5 Instrumentation

The fj,SH spectra presented in Chapter 6 were measured on the spectrometers GPS

and LTF at the muon facility of PSI.

The General Purpose Spectrometer (GPS) is equipped with a "top loading" continu¬

ous-flow 4He evaporation cryostat, that operates between 2K and 300K. The external

magnetic fields can be generated by two separate pairs of Helmholtz coils, allowing to

achieve up to 0.6 T parallel to the muon polarisation and up to 10 mT transverse to

it. Five positron detectors are located in the up, down, backward, forward and right
direction with respect to the incoming muon beam. A special additional detector

setup, the so-called veto, acts as a discriminator for ensuring the correlation between

an incoming muon and an emitted positron.
The Low Temperature Facility (LTF) is equipped with a 3He-4He-dilution refrigera¬
tor which operates in the temperature range of 25 mK up to 20 K. As in GPS a set

of two separate Helmholtz coils can generate a longitudinal field (up to 3 T) and a

transverse field (up to 10 mT). The positrons are detected by 4 detectors, forward,
backward, right and left with respect to the incoming muon momentum. Since no

veto system is installed, the background due to non correlated events is higher than

in GPS.



Chapter 4

Theory of the spin dynamics in

magnetically ordered systems

I'm astounded by people who want to 'know1 the universe

when it's hard enough to find your way around Chinatown.

Woody Allen

4.1 Introduction

In this Chapter we present some theoretical models which describe the static and

dynamical properties of magnetic systems.
The fundamental model that depicts a collection of interacting spins in a system
with localised electrons is the Heisenberg Hamiltonian,

ilex — / ,
Jtj^z '

Jj ; \*.1J

where J%3 is the exchange integral between two spins at the sites i and j (J^ = 0).
This latter interaction accounts for the Coulomb repulsion between electrons as well

as for the Pauli exclusion principle. If one considers the dipolar forces between spins,
an additional interaction term can be introduced, which is purely of magnetic origin.
The exchange Hamiltonian (Eq. 4.1) is then modified as follows:

^> = -£EC^f (4.2)

where U"f = Jt3Saf3 + g (Sa^/r^ — 3r? r^/r^), g denotes the strength of the dipolar
interaction that are long range and anisotropic and rv is the distance between the

spins i and j.

For the description of phase transitions and critical phenomena two different sets of

thermodynamical variables have to be distinguished: the intrinsic properties of the

system that are extensive (internal energy U, free energy F, entropy <S, magnetisa¬
tion M), and the applied fields (temperature T, pressure p, external magnetic field
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h) [13]. In the case of a magnetic system, the magnetisation M plays the role of the

order parameter. This latter quantity is the total magnetisation for a ferromagnet

(FM), or the staggered magnetisation for an antiferromagnet (AF). M is zero in

the disordered phase and takes a finite value when the system orders. M as well as

the other thermodynamic equilibrium properties, like the susceptibility x and the

specific heat Cp (Eq. 4.3 to 4.5) can be derived from the free energy F — U — TS,
which accounts for the balance between internal energy U and entropy S in the

system.

dF
M^ =

-M

X{T) =

lh
d2F

CAT) = -TW2

(4.3)
T

(4.4)

(4.5)

F is related to the partition function Z, which is determined via the eigenvalues of

the Hamiltonian:

F = kBT\nZ (4.6)
Z = Tre-^flT (4.7)

The knowledge of the Hamiltonian is therefore the fundamental starting point for

describing and understanding the physical properties of a system.

4.2 Static properties

The temperature, To (FM) or Tjv (AF), at which the magnetisation becomes zero

(for h=0) is called the critical point. Below this temperature the magnetic mo¬

ments are ordered, whereas above it they are randomly oriented and the long range

magnetic order is lost.

In a second order phase transition, the equilibrium variables are observed to diverge
at the transition temperature Te- Near the critical point, these quantities can be

expressed in terms of power laws of the reduced temperature r =T/Tc— 1:

(4.8)

(4.9)

(4.10)

(4.11)

where ß, 7, v and a are the critical exponents. The variable £ is the correlation

length: an estimation of the distance over which the magnetic moments perceive
each other.

M(T) - M0\rf

X(T) = xokP

ecn = £o|rr
p 1 = C0\r\-a



4.2. Static Properties 19

Table (4.1) gives a list of the calculated critical exponents which were obtained

within the framework of different standard models.

d n a ß 7 V

Mean Field 0 0.5 1

Ising 2 1 0 0.125 1.75 1

Ising 3 1 0.013(1) 0.312(3) 1.250(2) 0.638(2)
XY 3 2 -0.02(3) 1.318(10) 0.670(6)

Heisenberg 3 3 -0.14(6) 0.38(3) 1.375(2) 0.703(10)

Dipolar 3 3 -& +
2 17c 1 + ^-e 4/(1-&0

Table 4.1: Critical exponents calculated for several standard models that involve only exchange

interactions [13]. d corresponds to the dimensionality of the system, whereas n represents the

dimension of the order parameter. The last line corresponds to a Heisenberg model including

dipolar interaction [21] (see Section 4.3.2). The variable e is introduced from renormalisation

group theory which can be solved for d = 4 and is then extended to d = 4 — e. All the values are

correct to the order of 0(e2).

In the sixties, Kadanoff [14] has proposed a scaling conjecture in order to explain
the critical behaviour of a spin system near To- The basic idea of this hypothesis
is that the long range correlation of spin fluctuations near Te is responsible for the

phase transition, namely for all singular behaviour. This statement is related to the

existence of a characteristic length £, the above mentioned spin correlation length
(Eq. 4.10), which is infinite at the ordering temperature. In other words the scaling
conjecture states that all physical quantities scale with the spin correlation length.
Under this assumption, the critical exponents are expected to be universal, according
to the fact that for a given class of systems (e.g. Heisenberg ferromagnets) they do

not depend upon the type of compound or the local details of the system, but rather

on global properties like the dimensionality of the system d and the dimension of the

order parameter n (see Table 4.1). Thus two important consequences can be inferred

from the scaling hypothesis: the critical exponents are related via scaling laws, and

the spin correlation function as well as the temperature range of the fluctuations

scale with the correlation length of the system.
In the ordered phase of a single domain isotropic ferromagnet, the direction of the

magnetisation defines three natural directions linked with three diagonal compo¬

nents of the susceptibility tensor, one along M (x||(q)) and two transverse to it

(x±i,2(cl)) which are degenerate. In a mean field theory, the static susceptibilities
for an isotropic ferromagnet are expressed as follows:

xxllM) « i/<z2 (4.12)

X||(q) ex l/(q2 + K2_) (4.13)

where q is the reduced scattering vector and k_ is the inverse correlation length
below Ter. In the disordered phase, the order parameter becomes zero and the

susceptibility is isotropic:



4.2. Static Properties 20

Xp(q)«l/(ç2 + 4) (4.14)

The correlation length in the paramagnetic phase, k+, has the same temperature

dependence as the one below Tc, but the prefactor k0 (= ^j"1 of Eq. 4.10) may be

different.

In the vicinity of Tc and for large scales (i.e. small wavevectors q), the mean field

approximation fails to describe the actual behaviour of magnets, because the fluc¬

tuations are neglected. The theory of critical scattering predicts hence asymptotic
forms for the spin correlation functions, based on the static scaling hypothesis. The

static susceptibility that is connected with the spin correlation function via the

fluctuation-dissipation theorem (See Eq. 2.19) can be expressed as follows [15]:

x{q,K) = <f 2fx(x), (4.15)

where £ is a scaling parameter defined as n/q. The correction term to the mean

field approximation is the 'Fisher' exponent 77, the value of which is 0.042 ± 0.014

[16]. This relation means that the spin correlation function at any temperature and

q near the phase transition is determined by the static properties at Tc, via the

scaling function fx(x)-

Figure 4.1: Diagram for the static susceptibility as a function of wave number q and inverse

correlation length k. Three asymptotic regions can be denned: (I) Hydrodynamic region in the

ordered phase [x = n/q » 1, T <Tc], (II) Critical region [x = KJq « 1], (III) Hydrodynamic

region in the disordered phase [x = KJq » 1, T >Tc]-

The significance of the role played by the correlation length ^ in the spin correlation

function is illustrated in Fig. 4.1, according to the work of Halperin and Hohen-

berg [15, 17]. In the (q,«:)-plane, three regions can be distinguished, in which the

spin correlation function has different asymptotic behaviours. The shaded region
(I), where x = n/q » 1 and T < Tc, corresponds to the situation where the wave¬

length of the spin fluctuations A is much larger than the correlation length £ of the

spins. This latter region is called hydrodynamic, since the dynamics of the system
can be described by macroscopic equation of motion for spin densities. Similarly,
the region (III) is related to a macroscopic regime, but in the paramagnetic phase.
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The region (II), on the other hand, corresponds to the case of phenomena occurring
on a small scale when compared to £ (with x = K±/q « 1) and the hydrodynamic

description of the system is not valid anymore. The values of the spin correlation

functions for the different regions are assumed to merge at the lines k± = ±ç, which

give the separation between the hydrodynamic and the critical regime.
In an isotropic ferromagnet, the Hamiltonian is invariant under rotation. A spon¬

taneous symmetry breaking appears in the ordered phase, as the magnetisation

generates a preferred direction. Moreover, it can be shown that an infinitesimal ro¬

tation of the magnetisation vector costs no energy. This physical effect is responsible
for the divergence of the transverse susceptibility at any temperature below Tc [18].
However, in the mean field approximation the longitudinal susceptibility does not

diverge for small q-values below Tc-

Beyond mean field approximation, the spin dynamics of an isotropic ferromagnet
can be modeled within the framework of mode coupling theory. It has been shown

that the transverse modes influence the longitudinal susceptibility [19]. X||(*ï) ^s

modified as follows:

X

18 + Ax 11

a r^i fVl + Ax2- 1\
l + vf + 4?ln(

-

) +

This latter expression can be simplified for the two asymptotic regimes. In the

critical region, one obtains the Lorentzian behaviour from Eq. 4.13 but in the hy¬
drodynamic regime the parallel susceptibility takes the following form:

X||(q) ex l/(qK-) for x » 1 (4.17)

The longitudinal susceptibility is therefore predicted to diverge at any temperature
below To in the limit q —t 0.

So far the crossover between the two regimes could not be observed experimentally,
since the arrange needed is rather difficult to achieve.

4.3 Dynamic Properties

4.3.1 Scaling theory

Similarly to the static case, the dynamical scaling hypothesis states that the spin
fluctuations at any temperature are related to the fluctuations at Tc via the scaling
relation:

uc{^0 = Aqzfi{x) (4.18)

where A is a non-universal scaling parameter, the subscript i stands for the type
of fluctuation that is considered, and z is the dynamical critical exponent {z =
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K«? + 2 — rj) & 2.5, for d = 3). The characteristic frequency of the system, wc(q, £),
is defined via the spectral weight function of the fluctuations F(q,u;):

F(q,u)dL0 = 2 F(q,Lü)düü (4.19)
-oo J—ujc

The dynamical scaling functions /i(a;) are homogeneous functions of x = n/q, and

have the following asymptotic behaviours:

f(x) -»• 1, when x -j- 0; (4.20)

f(x) oc a;1'2, when x —> oo.

The scaling function /(a:) has been calculated numerically by Résibois and Piette

[20]. The results show that f(x) has a minimum for x ~ 1
,
which is consistent with

neutron experiments performed on Fe, Co and Ni. This feature can be interpreted
as follows. The dynamical scaling function represents the ratio of the linewidth at

any temperature divided by the linewidth at Tc- Therefore in the critical regime,

typically when x < 4.5, the lifetime of the spin fluctuations is larger than the one

at Tc, whereas the opposite occurs in the hydrodynamic regime.

4.3.2 Dipolar interactions

According to the scaling hypothesis, the critical region is approached for q —> 0

and E —f 0. Because the dipolar forces are long range, they are expected to be

of primary importance in the critical properties of the magnetic systems. Aharony
and Fisher have shown by means of renormalisation group calculations that dipolar
interactions modify the critical exponents [21] (see Table 4.1).
The introduction of dipolar interaction between magnetic moments leads to consider

an additional length scale in the system q^1, where qr> is the dipolar wave vector

defined as follows:

gßBV0M(T,H) = Dq2D (4.21)

The left side of Eq. 4.21 corresponds to the dipolar energy of the system that is

equated to the spin-wave energy with q — qo. Above Tc, the dipolar wave vector

qd is linked with the inverse correlation length k+ via the bulk static susceptibility

q2 = 4x(0,r) (4.22)

In addition to x, a second scaling variable y = çd/ç is introduced, which delimits the

boundary between the dipolar regime (qo >> q) and the isotropic regime (qjj << q).
In an ordered system, the introduction of dipolar forces in the Hamiltonian leads to

an anisotropy that lifts the degeneracy of the two transverse modes. The suscepti¬

bility depends therefore not only on the direction of the magnetisation but also on

the relative orientation of the reduced momentum transfer q to M.
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The critical dynamics of dipolar magnets can be derived from mode coupling theory

[22, 23]. In this latter model, the scaling variables (x = n/q and y = çd/ç) are

introduced.

The static susceptibilities for each mode are given via the eigenvalues U and the

eigenvectors v,- of the static susceptibility tensor %(q):

where

and

*<q>Vi = ïkir (4-23)

h{R,fa$) = l and Z2/3(Ä,<M) = 1 + #F_/+(<M) (4.24)

F±(<f>, #) = ^{1 ± v/l-sm2(2^)cos2i?} (4.25)

R = y/r*{x,y) + y*, tan <j> = —^— (4.26)
v r2(x,y)

d is the angle between q and the plane perpendicular to the magnetisation M.

Finally, r(x,y) is expressed as follows:

V ^'^ =

18 + 2a;[l + (l + y2)-1/2]
"

TT

Vl + 4a;2-l
x 1 + vrwln(^ii^i) + • (4.27)

This latter expression is related to the longitudinal susceptibility xjiCq) m the

isotropic case (y — 0) (see Eq. 4.16). Figure 4.2 presents a schematic view of a

scattering process in the dipolar case. The eigenvectors of %(q) are also shown. The

vector V! is perpendicular to the plane defined by M and q, and its eigenvalue is

not affected by the dipolar forces.

The rotation of the eigenvectors v2 and v3, with respect to M, represented by tp^,

is an effect of the dipolar interactions:

<p3 = - arccos/(#, Ä, <£) G [0,tt/2] (4.28)

=

sin2(2^)cOSW-cosV
(4i29)

yl-sin2(2^6) cos2')?

One can observe in Eq. 4.29 that in absence of dipolar forces (y = 0 4=> tan <j) = 0)
the rotation of the (v"2, V3)-plane does not occur, namely p3 = ir/2.
The spin fluctuations are also influenced by the dipolar interactions, via the dy¬
namical scaling functions which are no longer isotropic, but depend on the dipolar
angle i9 (See Ref. [24] for comprehensive description of the different regimes of the

dynamical susceptibility).
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k;

Figure 4.2: Scattering layout for a single domain ferromagnet with magnetisation M. p is the

projection of the scattering vector, q = kj - k/, onto the plane perpendicular to M, thus defining
the angle -d. The v; are the eigenvectors of the static susceptibility tensor %(q). © is the scattering
angle, y>3 the rotation angle due to dipolar effects. \\ is perpendicular to the plane, all other vectors

lie in the plane defined by M and q.

To summarise, the introduction of dipolar forces in the Heisenberg Hamiltonian

leads to the following consequences: First of all, the dipolar anisotropy generates a

complicated tensorial structure for the dynamical susceptibility. The scaling func¬

tions thus depend on the relative orientation of q with respect to M. Secondly, the

transverse scaling function may exhibit a minimum in the dipolar case, whereas it

is monotonically decreasing in the isotropic case. It can be shown that in the case

of dipolar interactions the magnetisation is no longer conserved, and therefore the

damping of the fluctuations can be increased for large x-values, namely when the

wavelength of the fluctuations is larger than the spin correlation length and the long

range interaction begins to influence the lifetime.

4.3.3 Spin dynamics

In a magnetically ordered system two types of modes contribute to the magnetic
excitation spectrum: the fluctuations along, <5S||(q,u;), and transverse, 5Si(q,a>), to

the magnetisation direction. $S||(q,u;) is quasielastic and its static susceptibility is

given by Eq. 4.16. The two £Sj_(q, u>) modes (called spin-wave modes) are dispersive,
and in the isotropic case their susceptibility is degenerate (see Eq. 4.12).
If dipolar forces are included in the model, the spin-wave dispersion near the mag¬
netic zone center can be expressed as follows:

heu = (Dq2 + g/j,B/j,0Hejf)(Dq2 + g^B^oH^j + Dq2D cos' *)
1/2

(4.30)

where D is the spin-wave stiffness, Heff = Hext — N-M the effective field in the

sample, Hext the external applied field, N the demagnetisation factor and i? the

angle between q and the plane perpendicular to M (see Fig. 4.2). This general
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result has been obtained in the forties by Holstein and Primakoff [25], who studied

the dynamics of ferromagnets by means of linear spin-wave theory. The dispersion
at small q for an isotropic magnet is simply deduced from Eq. 4.30 if one sets qo to

0.

The term Dq2D cos2 ê represents the dipolar pseudo-gap that can be observed if the

scattering vector is not parallel to the magnetisation. It reaches its maximum for

q||M.

4.4 Theory of itinerant magnetism

The transition elements exhibit magnetic properties that cannot be explained by
a Heisenberg model based on magnetic moments that are located at the sites of a

lattice. Many unusual features are indeed observed experimentally: the saturation

moment per atom is a non integral number of a Bohr magneton (Ni: ps = 0.6 (iß,

Co: ps — 1.7 Hb, Fe: ps = 2.22 fj,ß); the Curie constant derived from magnetic
susceptibility data does not give half-integral values of the quantum number S,
and there is no correlation between the paramagnetic moment and the saturation

moment in the ordered phase. Finally, the magnetic entropy Sm does not follow the

Heisenberg model: Sm = k \n(2S + 1).
Weakly ferromagnetic metals turn out to be a special case of such magnets. They are

characterised by a small saturated magnetic moment and a low Curie temperature.

However, the susceptibility follows the Curie-Weiss law in the paramagnetic phase,
as it is the case for a system of localised spins.

4.4.1 Stoner theory

The electrons responsible for the magnetism of the 3d metals are situated in the

incomplete e?-shells of the atoms. The physical properties of such elements can be

described on the basis of a band model.

In the thirties, Stoner has developed a first theory for itinerant magnets, by consid¬

ering a gas of interacting electrons, and using a single band model within a Hartree-

Fock approximation [26]. The Hamiltonian of the system, similar to a Hubbard

Hamiltonian, is consequently given by:

n = £ Yl <k)aLaka + T7 EEE al+qA'-^ak'iakt (4-31)
k a

JV
q k k'

where N is the total number of spins, U the exchange interaction between electrons,
k the wave vector of the electron, a the spin state (j- or 4-), a\a and a^ the creation

and annihilation operators of an electron in the quantum state \ka), respectively.
On a thermodynamic point of view, the Hartree-Fock free energy is given by:

FHF(M, T) = F0(M, T) - IM2 - hM (4.32)
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where F0(M, T) stands for the non interacting system, IM2 results from the inter¬

action between electrons, and the third term is the Zeeman energy coming from an

external applied field h. The condition of thermal equilibrium for the free energy

leads to the following magnetic equation of state:

dFHF(M, T)/dM = dF0(M, T)/dM - 21M - h = 0 (4.33)

The magnetic susceptibility of the interacting system can be obtained by determining
the total magnetisation of the system and using Eq. 4.4:

p{tp) is the electron density of states at the Fermi energy and g2p,2Bp{tF) /2 is the

Pauli paramagnetic susceptibility. The magnetic susceptibility of an interacting

system is enhanced by the Stoner factor 1/[1 — Up(ep)] when compared with the

free electron susceptibility. This factor is also related to the criteria for having a

ferromagnetic stability: a0 = Up{tp) > 1.

The Stoner approach is however restricted to the very low temperature regime, where

the spin fluctuations can be neglected. Indeed, the temperature dependence of the

magnetisation is expressed as follows:

M(T) = M(0)(1 - {T/Tcff12 (4.35)

This formula is observed to fit the actual behaviour of itinerant magnets only near

T = 0. The effect of spin-waves and critical fluctuations is expected to modify
significantly the magnetic equation of state at finite temperatures. In addition,
the Stoner model does not predict a T-dependence for x(T) that is in accordance

with the experimental Curie-Weiss law. The Hartree-Fock result provides indeed a

quadratic temperature dependence for the magnetic susceptibility:

1/X(T) ~ ^-JR{T2 - T2), (4.36)

where R is a function of the derivatives of the electron density of states at the Fermi

level.

Finally, the Stoner approach predicts a critical temperature Ta that can be one

order of magnitude larger than the experimental one. Some modifications are there¬

fore necessary to overcome these failures, and it will be discussed in the next two

paragraphs.

4.4.2 Mean field RPA

The dynamical susceptibility of an itinerant spin system can be calculated via the

Heisenberg equation of motion for spin densities, that are solved within a random

phase approximation (RPA).
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At finite temperature two main contributions are expected to occur. On the one

hand, the theory predicts single particle spin-flip excitations, the so-called Stoner

excitations that build a continuous spectrum. In addition, the existence of collective

spin excitations (spin-waves) is predicted at long wavelengths. These do not extend

to the zone boundary since for high ^-values the energy of the spin-waves would

exceed the energy for the creation of a spin-flip excitation. Therefore the spin-waves

merge into the Stoner continuum at a q-value that is smaller than qzB-

As a starting point for RPA calculations, the Heisenberg equation of motion for non

interacting spins provides the following magnetic susceptibility [4]:

;dc(^)=£/(£t+':A):2/'et+A) («7)

2A is the energy gap between the spin-up and spin-down electron band and /(e) the

Fermi-Dirac distribution function.

The standard RPA approximation, introducing an effective interaction / = U/N
between the electrons delivers the following modification:

**"<*">=
i-/*£(«, »)

(438)

The mean field RPA model is a step forward in the description of itinerant magnets.
However the inconsistencies between theoretical predictions and the actual physical
behaviour are still not resolved. As an example the behaviour at finite temperature
still deviates significantly from experiment.

4.4.3 SCR-RPA

In the seventies, Moriya and Kawabata postulated that the inconsistencies presented
in the two preceding paragraphs can be explained by the fact that the RPA dynam¬
ical susceptibility does not agree with the one calculated from the renormalised free

energy [27]. "Renormalised" means that the free energy is determined with inclusion

of spin fluctuations. They have therefore proposed a self-consistent renormalisation

theory (SCR) based on the following statement: x(<?jw) and F must be calculated

at the same time, so that the static as well as long wavelength limit of the dynam¬
ical susceptibility agrees with that calculatedfromtherenormalisedfreeenergy,inaccordancewithEq.4.4[4].AnadditionaltermtotheHartree-Fockfreeenergyisthereforeintroduced,AF(M,T),thataccountsforthethermallyexcitedspinfluctuations(seeEq.4.39).TheSCRmagneticequationofstateishenceobtainedbyminimisingthefreeenergywithrespecttotheappliedfield(Eq.4.40).Fscr{M,T)=FHF(M,T)+AF{M,T)(4.39)dFscR{M,T)/dM=dFHF{M,T)/dM+dAF(M,T)/dM=0(4.40)
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The RPA dynamical susceptibility is accordingly modified as follows:

XmM^)
XmqW>u)

(4.41)

The additional term \mi(<1> u) is then determined by means of the magnetic equation
of state for the free energy (Eq. 4.40), via the condition given by Eq. 4.4.

The effects of the SCR model are seen to be very fruitful. The calculated Tq is

closer to the experimentally determined ordering temperature and generally much

lower than the Stoner value. On the other hand, the temperature dependence of the

magnetisation below Tc is now modified as follows:

M(T) = M(0)(1 - (T/Tc)4/3)1/2 (4.42)

Finally, the magnetic susceptibility above T^ follows a CW law. However this

feature has to be named a "new CW law" because the physics underlying this

feature is different from the law derived for local moments. In contrast to localised

systems where the magnetic moment per ion is constant, the mean square local

spin amplitude (Si) is temperature dependent for itinerant magnets. Figure 4.3

shows the comparison between localised systems and weakly ferromagnetic metals.

For the localised moment case, the magnetic moment is always constant. For the

itinerant electron case, (Si) follows the T dependence of the magnetisation in the

ordered phase (see Eq. 4.42); at To it reaches its minimum (non-zero) of 3/5 of

the saturation value; above Tc, it then increases linearly with temperature, because

of the thermally excited spin fluctuations. As a consequence, the paramagnetic
susceptibility which is proportional to 1/T2 in the HF-RPA model is now modified

by the linear term given by the magnetic moment.

<S2L> Localised spin system

Vf©' afcft
îeïï°'

&&&
t>0& ,t$ve*3X

Figure 4.3: Comparison for the temperature dependence of the mean square amplitude of the

spin density (5£) for a localised spin system and for an itinerant weak ferromagnet [after Ref. [4]].

As a next step, we mention the phenomenological approach by Lonzarich and Taille-

fer [28], which is closely connected to the SCR-RPA theory. The main difference
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is that the longitudinal spin fluctuations are also taken into account in the theory,
which is based on a self-consistent Ginzburg-Landau model.

The magnetic equation of state is again an extension of Stoner's theory, with correct¬

ing terms arising from the enhanced magnetic fluctuations of long wavelength and

low frequencies. In the paramagnetic state the calculated dynamical susceptibility
is given by:

X-\w) = X-1(<z)[l-Wr(<?)] (4.43)

X~\q) = X'1 + cq2 + --- (4.44)

r(«) = iqx-\q) (4-45)

The parameters 7 and c can be derived from the band structure, and compared
with the results of neutron scattering. In the ferromagnetic phase, the model is an

extension from the latter case:

x;W) = X^W-M/^iq)] (4.46)

XZ\<Ù = x:1 + c„q2 + --- (4.47)

r„(g) = i,qx;\q) (4-48)

Where the subscript v accounts for the fluctuations transverse _L and longitudinal
|| to the magnetisation. For small magnetisation and fluctuations, the parameters

c„ and 7„ are presumed to be independent of v and to merge with the ones of the

paramagnetic phase.
At long wavelengths, the spin-waves are expected to occur at finite energy transfer

with a dispersion proportional to the magnetisation M:

Eq = g^BMxll{q) = gßßMixl1 + c±q2 + ...). (4.49)

No scaling theory is explicitly mentioned in the theory of itinerant magnets. How¬

ever, the ratio r(T)/T(Tc) from Eq. 4.48 and Eq. 4.45 for T=TC provides the scaling
function

, q(x~l + q2)
JSRC =

Z •

qö

that can be considered as the itinerant version of Eq. 4.18.

(4.50)



Chapter 5

Itinerant Spin Systems

The great tragedy of science, the slaying of a beautiful theory by an ugly fact.
Thomas Henry Huxley

5.1 Ni3Al

5.1.1 Introduction

Many materials showing interesting physical behaviour like heavy fermion, non-

Fermi liquid and lamellar CuO systems, are metals close to a magnetic instability.
Magnetic excitations are therefore believed to play an important role in the physics
of such materials. Recently, Moriya and Takimoto developed a phenomenological
theory for modeling the spin fluctuations in strongly correlated electron systems

[40]. They have shown that the dynamical susceptibility takes a form similar to the

one of weak itinerant magnets. These latter systems can therefore be used as model

systems for understanding the magnetism in heavy electron systems.

N13AI is known as the paradigm of a weak itinerant ferromagnet. The saturation

moment per magnetic atom ps is 0.07 jib and the Curie temperature Tc = 41K.

In contrast, the effective moment peff = 0.63 /Ug, as obtained from paramagnetic
susceptibility data, is much larger. The theory presented in Section 4.4 for itinerant

spin systems is able to predict values for Tc and for the ratio pes/ps of the moments

above and below Tc that are in good agreement with experiments on this com¬

pound, as well as for MnSi, another well-known itinerant system. In addition, the

predicted quadratic g-dependence of the spin wave dispersion has been confirmed in

experiments [29, 30, 31].
As shown in Chapter 4, the prediction for the ç-dependence of the linewidth of the

magnetic fluctuations is markedly different for localised spin systems when compared
with a localised ferromagnet. From the itinerant theory, the linewidth given by
Eq. 4.48 can be rewritten as follows:

r = Awtq(q2 + (K±)2) = Awiq3(l + (^/q)2) (5.1)

whereas according to scaling theory, the linewidth for localised spins is given by:
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rhc^Al0Cfr(K±/q)q2-5, (5.2)

where fr is a dynamical scaling function (see Eq. 4.18). The latter expression has

been confirmed for T >Tc by Ishikawa et al. in weak itinerant MnSi that exhibits

below Tc a helical structure [29]. More recent experiments on polycrystalline Ni3Al

by Bernhoeft et al. [30, 31] also indicate the validity of Twi.
The critical fluctuations are not taken into account in the theory for weak-itinerant

magnets. Nevertheless, in contrast to a localised magnet, where the magnetic mo¬

ments are confined to single atoms, the magnetic moments in itinerant magnets are

defined over large assemblies of atoms that are correlated over a distance £c ^> a,

where a is the lattice parameter. As soon as the correlation length of the magnetic
fluctuations ^ and the wavelength of the spin fluctuations A = 2ir/q exceed £c one

may argue that one should observe critical fluctuations similarly as in true local

moment systems.
In order to test the existence of critical fluctuations we have determined the q-

dependence of the quasielastic fluctuations at Tc in NisAl. In addition, we have

measured the temperature dependence of the linewddth of the spin waves below Tc
and compared them with the predictions of a very recent mode-mode coupling theory
[22, 24, 23]. We have also studied the temperature dependence of the paramagnetic
excitations, which was found to be in agreement with the scaling function predicted
for itinerant systems above Tc [28]. The results show that N13AI is one of the most

ideal and clean systems to prove the dynamical scaling behaviour in an isotropic
ferromagnet below Tc-

5.1.2 Experimental procedure

The inelastic neutron scattering experiments have been performed on a cylindrical
Nio.75+a;Alo.25-a; single crystal with a diameter of 16 mm and a length of 60 mm,

enriched with Ni (x=l%) [32]. The enrichment has no influence on the fee structure

of the sample, however, it leads to an enhancement of the magnetic moment and to a

larger Tc thus facilitating the experiment. Magnetisation measurements performed
at pieces taken from the top and the bottom of the single crystal yielded consistent

values Tc^ 72.5 ± 0.5 K in excellent agreement with values reported in Ref. [33] for

a sample with 1% enrichment. More evidence for the high quality of the sample will

be given below.

The experiments have been carried out on the cold neutron three-axis spectrometers
FLEX at the HMI in Berlin, and TASP at the Swiss spallation source SINQ. The

same experimental setup has been used for both experiments. The final energy
was fixed at Ef = 2.5, 3.0 and 4.5 meV and tight collimations (guide-20'-20'-40')
were used, leading to a resolution of 0.03, 0.04 and 0.09 meV, respectively. A cold

Be-filter was placed in the incident beam to remove higher order neutrons. The

background was measured at T = 1.5 K for all configurations and subtracted from

the data. As in this work we were primarily interested in spin wave excitations,
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the forward scattering technique was chosen for convenience, thus avoiding phonon
contributions.

The data has been fitted with a scattering function for damped spin waves:

S(,.B)
E Nl

i _ e-ßE q2 2n |_(e + Eqy + r2
+

(e - Eqf + r2J ' ^5'3^

and the deconvolution with respect to the resolution of the spectrometer was per¬

formed. In Eq. (5.3) N is a normalisation constant, Eq = D{T)q2 is the dispersion
and T is the relaxation frequency (linewidth) of the magnetic excitations. The quan¬

tity N/q2 is proportional to the static susceptibility X-l(c)- To fit the data at Te,
the spin wave energy Eq was set to zero.

We have used an iterative process to obtain the parameters N, D and F from the

inelastic scans. In a first step all parameters were free. In a second step we fixed

D for each T at an averaged value. Finally, the linewidth was fixed too and N was

determined. This procedure reduced correlation effects between Eq, F(q) and Xx(0)
considerably.
In order to determine which model best describes the collective excitations in N13AI,
we have systematically analysed the data using itinerant [28] and localised theory
[24, 23], respectively, i.e. we assumed that the ç-dependence of F is given by Eqs. 5.1

and 5.2, respectively.

5.1.3 Experimental results

Some typical results of inelastic scans after subtraction of the background measured

at T — 1.5 K are shown in Fig. 5.1. The error bars around E — 0 meV are large
due to the important incoherent scattering of Ni. The renormalisation of the spin
waves with increasing temperature is clearly visible. The tails of the spectra cannot

be measured because the scattering triangle does not close at high energy transfers

anymore.

For each T the measured spin wave dispersion was fitted with the quadratic expres¬

sion Eq = A+Dq2. The fits show that the energy gap A is vanishingly small at all T.

The T-dependence of D is plotted in Fig. 5.2 and shows clearly the renormalisation

of the spin waves close to To

According to the itinerant model, the spin waves are expected to occur at finite

energy transfer with a dispersion proportional to the magnetisation M:

Eq = gusMxl^q) = 9VbM(X~l +^ + ) (5-4)

The spectroscopic splitting factor g is close to 2 in Ni3Al. As shown in Section 4.4.3,
M is predicted to behave according to:

M(T, 0)/Mo = (1 - (T/Tcyy'2, (5.5)

where e is equal to 2 in the Stoner model and 4/3 in the SCR theory [28].
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Figure 5.1: Inelastic scans at q=0.035 Â"1 for T=0.8 and 0.9 Tc. The solid lines are fits to the

model given by Eq. (5.3) convoluted with the experimental resolution function.

In contrast, the spin wave dispersion for a Heisenberg ferromagnet is given for

T -^Tc by:

Eq = D(T)q2 = A,|t|°-3Y, (5.6)

where r = 1 — T/Tc-
The temperature dependence of the spin-wave stiffness D has been fitted using the

itinerant (see Eq. (5.5)) and the localised model (see Eq. (5.6)). If the ordering tem¬

perature is fixed at Tc = 72.5 K, as obtained from the magnetisation measurements,
the exponent e of the itinerant model differs from the e = 4/3 value (see dashed curve

in Fig. 5.2). On the contrary, fixing e at the predicted value gives a slightly higher
value for the transition temperature (74 ± 0.4K) .

This discrepancy between the

experimental and the theoretical To is of the same order of the one observed for

polycrystalline samples [34]. On the other hand, the fit with the Heisenberg model

gives an exponent of 0.34 ± 0.03, close to the theoretically expected 0.36(5) value,
and is much less sensitive to Tc (solid curve in Fig. 5.2). As a comparison, the ratio

of D(0.8TC) for our sample and Dp for the polycrystalline reference of pure Ni3Al [31]

-i i i i i-

(b) :

i i i L.
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q = 0.035 Â"1 T = 58K
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Figure 5.2: Spin-wave stiffness as a function of temperature, the solid line is related to the

Heisenberg model, and the dashed line to the itinerant model.

gives D/Dp = 1.38 ± 0.08, a value that shows reasonable agreement with the ratio

of the magnetic moments measured in both kind of samples [33] (D/Dp = 1.65).
In Eq. 5.4 x± = X±(<Z = 0) is the static transverse susceptibility that is infinite if

there is no anisotropy. Our results show that xx(<Z = 0) = oo within the accuracy

of the neutron measurements. This behaviour is actually expected, since the spin
waves are Goldstone modes, irrespective of the degree of localisation of the spins.
The static susceptibility x±(<z) resulting from the integration of the inelastic signal
over energy was extracted from the data. Fig. 5.3 shows xlH?) versus Ç2- The

linear relationship is in agreement with the expected 1/q2 divergence for spin waves.

Within the experimental accuracy the inverse correlation length for the spin waves

Kx = 0.016 ± 0.017 A-1 (not to be confused with Kq) is zero, in agreement with

the observation that the spin waves have no gap. In addition, the slope of X-l(<?)
shows a slight T-dependence, which is connected to the fact that x{T)q=o increases

by approaching Ter.

The linewidth of the spin waves is plotted in Fig. 5.4 and compared with SCR theory
(a) (fit parameters Am and k~) and scaling theory based on the Heisenberg model

(b) (fit parameters A\oc and z). The comparison shows that both models provide
good parametrisations of the data. The inset shows that the critical exponent z

is close to the value 2.5 that has been predicted theoretically and measured in

many ferromagnetic systems (see Ref. [23] for a summary). We point out that this

behaviour occurs over a large T-range.
In order to provide a direct comparison of the spin fluctuations in N13AI with scaling
theory we have measured the linewidth of the paramagnetic fluctuations at Tc (see
Fig. 5.5). The solid line is a fit to the data using the expression F = Aqz yielding
z = 2.47 ± 0.16 that is compatible with the dynamical scaling prediction z = 2.5 at

T =Tc- In contrast, the RPA expression F — Awtq3 does not reproduce the data
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Figure 5.3: The inverse of the static susceptibility of the spin waves, x]]1(g), as a function of q2.
The dashed lines are fits to the data using a Lorentzian ^-dependence: x(s)!1 <* (Kî + <72); where

the parameter äj_ is set to zero.

well.

In a second step we divided for each temperature the resolution corrected linewidth

r(T) by T(T = Tc) (measured values) in order to determine /r(^~/<?) (see Eq. 5.2).
The scaling function is plotted in Fig. 5.6 versus the scaling variable x = k~ jq. As

the inverse correlation length k~ is not known below Tc we have adjusted the scale

of the x-axis such that the data points agree with the theoretical curve of mode-

mode coupling theory (MMT) of Ref. [24]. The comparison yields re„ = 0.10 ± 0.04

Â-1.

Finally, we have analysed the scaling behaviour of the magnetic excitations above

Tc, as shown in Fig. 5.7. The scaling variable x = K+/q has been determined

as follows. According to scaling laws from mode-coupling theory in the critical

regime, the ratio for the inverse correlation length below and above Tc is given

by k~ //c+ = 2.02. We have therefore used the experimental value Kq determined

with the scaling of the spin waves, that yielded kJ = 0.049 ± 0.019 Â-1. Since the

paramagnetic signal has to be recovered by background subtraction from the top of

a large incoherent signal, more experimental time is required for obtaining the same

statistics as in the ordered phase, where the magnetic excitations are dispersive.
Therefore we could not gather so many datapoints as for the ferromagnetic case in a

reasonable time. Nevertheless, the experimental scaling function above Tc provides
sufficient information for allowing us to compare it with theoretical predictions.
We have plotted in Fig. 5.7 the Résibois-Piette function [20], which results from

MMT calculations for a Heisenberg system, as well as the "1+x2" scaling law from

SCR theory [4] (see Eq. 5.1). In the case of paramagnetic scattering, we observe

that Ni3Al shows better agreement with the predictions of the theory for itinerant

systems.
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Figure 5.4: Resolution corrected spin wave linewidth T(q), plotted as a function of q, for several

temperatures. The plot (a) shows a fit with the itinerant model, whereas in (b), a fit with the

Heisenberg model has been used. The inset displays the experimental critical exponent zasa

function of temperature. The exponents are close to the 2.5 Heisenberg value (dashed line).

5.1.4 Discussion

The analysis of the magnetisation and the ç-dependence of the spin-waves does not

allow an unambiguous distinction between MMT and SCR. In order to obtain a more

detailed comparison, we have inspected the scaling behaviour of the linewidth of the

spin-waves, fr(x), near Tc, in the light of MMT that includes critical fluctuations

and dipolar interactions (see Fig. 5.6). As the magnetic moments in NI3AI are small,
we considered the special case of the isotropic limit [24].
It is seen that below Tc the data as well as MMT yield a monotonie decrease of

F(q, T) with decreasing T. This behaviour is in contradiction to the RPA result that

predicts an increase of F(q, T) with decreasing T (Ref. [28] and Eq. 4.48). We argue
that the ç-range probed by the experiment corresponds to wavelengths of spin waves

A that are much larger than the correlation distance <fc that defines the magnetic
moments. Therefore, the moments can be considered to be localised with respect to

the spin excitations thus masking itinerant effects.



5.1. Ni3Al 37

0.7

0.6

0.5

» 0.4

g 0.3

u

0.2

0.1

-i | i i i i i i i r

A^q3

A<ocqz(z=2.47±0.16)

0.0
0.00

I I I 1 I I 1 I I I 1

0.02 0.04 0.06

q(Â"1)

0.08 0.10

Figure 5.5: Quasielastic linewidth measured at Te- The solid line is a fit to the Aqz model,
whereas for the dashed line the exponent has been fixed at 3, as expected from itinerant theory.

The universality of the spin-wave frequency for ferromagnets has been highlighted

by Schinz et al. [23] within the framework of MMT. In the critical regime, the

scaling amplitude W- connects the spin-wave frequency and the damping at Tc:

W- =

Da

A\/K:
(5.7)

where Do is the spin-wave stiffness at T = 0, A is related to the spin-wave linewidth

at Tc, r(Tc), and Kq refers the inverse correlation length at T = 0. For Ni3Al, we

obtain W- = 1.88 ± 0.56. This value lies within the range of the parameters for other

ferromagnets like Fe, Ni, Co, EuO, and EuS, where 1.24(14) < W- < 2.07(9) (see
Ref. [23]). Moreover, inelastic neutron scattering experiments performed in these

ferromagnets have shown that F(TC) can be well parametrised by Aq2'5, leading to

the conclusion that the spin dynamics in localised and weak itinerant ferromagnets
show a universal behaviour at 'Tc-

The g-dependence of the linewidth at Tc and the experimental scaling function

below Tc indicate that the critical scattering cannot be neglected for describing the

spin dynamics of Ni3Al in the ordered phase.
Above Tc the interpretation of the results is less clear. Our results from single-
crystal Ni3Al agree well with previous results obtained from polycrystalline Ni3Al

[30, 34]. Tn fact, V(q,T) shows a similar behaviour as in other well-known itinerant

systems like MnSi [35] and C0S2 [36], and the results seem to be in agreement with

predictions of SCR and RPA theory, i.e. T(q) is given by Eq. 5.1 in the paramagnetic
phase.
The question arises why we observe dynamical scaling behaviour below Tc on the

one hand and "itinerant" behaviour above Tc on the other hand. We interpret the

discrepancy between the scaling functions in Fig.5.7 to be caused by the additional
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Figure 5.6: Dynamical scaling function /r(«) for the linewidth of the spin waves as a function

of the scaling parameter x = k~ jq. The solid line is given by mode-mode-coupling theory for an

isotropic ferromagnet [24].

damping of the spin fluctuations by the conduction electrons. In weak itinerant fer-

romagnets, the mean-square local amplitude of the magnetic moments (S2) is known

to be temperature dependent [4]. The variations are particularly important in the

paramagnetic phase where (Sf,) increases linearly with T. The associated damping
compensates for the initial decrease of the Résibois-Piette function at small x. Simi¬

lar deviations from MMT have been observed in the metallic Heisenberg ferromagnet
Pd2MnSn and interpreted in terms of damping by the conduction electrons that pro¬

vide the RKKY-interaction between the local moments [37]. As a second example
we mention Ni, where T(TC) = Aq2,5 (Ref. [38]) although its scaling behaviour above

Tc disagrees with mode-mode coupling theory [39].
In the light of the above discussion on the dynamical scaling function fr(x), we

cannot exclude that damping effects also affect the spin dynamics below Tc- How¬

ever, in contrast to T >Tc, one may argue that the combined effects of conduction

electrons and critical scattering can lead to a scaling function that starts with a

negative slope, if one assumes that the additional damping caused by the spin-flip
excitations in the conduction band is reduced with decreasing temperature. There¬

fore, the latter effects merely lead to a re-scaling of the scaling variable x in fr(x).
The distinction between different contributions can be done by determining the in¬

verse correlation length below Tc, k~. In order to access this information, it is

necessary to study the longitudinal spin fluctuations using polarised neutrons.

Finally, the determination of the fluctuation spectrum in the ordered phase allows

to make a link with heavy fermion systems. A generalised formula was developed by
Moriya [40] for the electronic specific heat coefficient 7 in terms of the characteristic

frequency T(q) of the spin fluctuations

• f(0.8Tc)

0 f(0.9Tc)

f(0.94Tc)

f(0.96Tc)

f(0.98Tc)

- MMT
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7

1

JL (

7T&D — irk2B{
1

,r(q)/„'
(5'8)

where <> accounts for the average over the Brillouin zone. Figure 5.8 shows the

coefficient 7 plotted versus Fave for several compounds. The data are taken from

Ref. [41], except the point for N13AI, that as estimated from our experimental line-

width at Tc-

The value of Tave that we obtain for Ni3Al is in reasonable agreement with the

prediction of Moriya. In this vein, the hypothesis is confirmed that only the long-
wavelength part of the fluctuation spectrum contributes to the bulk properties of

this compound.

5.1.5 Intermediate conclusion

The spin dynamics of weakly itinerant Ni3Al has been studied in detail by means

of inelastic neutron scattering below and above the Curie temperature Ter. The ex¬

perimental data was interpreted within the framework of both itinerant (SCR-RPA)
and mode-mode coupling (MMT) theories for an isotropic ferromagnet. We have

determined experimentally the dynamical scaling function of the magnetic fluctua¬

tions in the ordered phase as well as in the paramagnetic phase. The temperature

dependence of the damping of the magnetic fluctuations could be satisfactorily ex¬

plained in the ferromagnetic phase as well as at Tc by MMT. On the other hand, the

scaling behaviour above Tc matches with the theoretical predictions for an itinerant

spin system.

According to the observed ç-dependence of the damping at Tc, we were tempted
to analyse the dynamical scaling behaviour of the spin fluctuations in the light of
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Figure 5.8: The coefficient 7 of the low-temperature specific heat plotted as versus the spin
relaxation rate Tave that is averaged over the Brillouin zone. The data are taken from Ref. [41].
The dashed line is the theoretical formula proposed by Moriya [40] (see Eq. 5.8).

MMT that includes critical scattering. Nevertheless, this latter model does not take

into account the itinerant character of N13AI, namely the fact that the mean-square

local amplitude of the magnetic moments (Sj) is not constant. This feature leads

to a modification of the mode-mode coupling dynamical scaling functions. The ad¬

ditional damping caused by the conduction electrons requires corrections for fr(x)
in both magnetic phases that are qualitatively consistent with the overall behaviour

of our experimental curves.

On the basis of the results obtained with Ni3Al, we propose that it would be of

interest to include critical fluctuations in the magnetic equation of state of SCR, in

order to explain the dynamical scaling behaviour observed in weak itinerant mag¬

nets, within the framework of an itinerant model.
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5.2 Ni

5.2.1 Introduction

For an isotropic ferromagnet, the work of Mazenko based on mode coupling theory

[19] predicts a crossover for the longitudinal susceptibility x\\ from a non diverg¬

ing behaviour in the critical regime to a diverging behaviour in the hydrodynamic

regime. Additionally, Schinz and Schwabl have shown that this crossover is also

valid for a dipolar ferromagnet (see Eq. 4.27 in Section 4.3.2). However, in the

dipolar regime the symmetry of the equations of motion is reduced, and a tensorial

description is required for the dynamical susceptibility %(Q,a;) [22, 42].
The aim of the present investigation is to measure the longitudinal mode of the spin
fluctuations in the regime where X|| diverges, in order to confirm the theoretical pre¬

dictions. We have chosen Ni, as it is a simple material the basic magnetic properties
of which are already well-known.

The condition for the hydrodynamic regime is given by K-/Q = x » 4.5 (see
Section 4.2). This criterion can be achieved by two means: the increase of /«_ for

a given Q-range, or the decrease of Q for a selected temperature range. The first

solution is not desirable as a large value of /£_ leads to a strong loss in the intensity.
The second solution requires experimental Q that are too small for conventional

three-axis spectrometers. The idea is therefore to use small angle neutron scattering

(SANS). With this technique, the static susceptibility can be directly accessed and

the available Q-ia,nge allows to achieve easily the hydrodynamic regime within a

reasonable temperature range for k_. However, various features due to experimental
conditions as well as to the physics of the sample itself make the data analysis a

difficult task. First of all, the experiments are performed in the dipolar regime,
where the tensorial character of the susceptibility must be taken into account. In

addition, the current status of neutron optics equipment on the SANS devices does

not allow a full polarisation analysis. The measured signal is hence a superposition of

three modes contributing to the fluctuation spectrum (see Section 4.2). Finally, the

divergence of one of the transverse modes in l/Q2 constitutes an intensity problem,
as it dominates the other magnetic signals.

5.2.2 Magnetic scattering with SANS

We present the scattering configuration as well as the various conventions that are

used in this work. A detailed outline is shown in Fig. 5.9, and we briefly discuss the

various elements of the scattering scheme.

In a SANS experiment, the sample is illuminated by a monochromatic neutron beam,
with a wavevector k, that we take as y-axis. By applying an external magnetic field

perpendicular to k,, the direction of the magnetisation M is defined, and taken as

z-axis. Subsequently the x-axis is perpendicular to the plane defined by k, and

M. A given final wavevector k/ defines a particular scattering vector Q as well

as a scattering angle 9. The unit vector p is the projection of Q onto the plane

perpendicular to M. The eigenvectors of the static susceptibility tensor, v, (?=1,2,3)
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are defined with respect to Q and M. In the case of isotropic interactions, V2 is

aligned along p, V3 along M and Vi perpendicular to the (M, Q)-plane. The effect of

dipolar forces introduces an angle ip3 which accounts for the rotation of the vectors

v2 and v3 relative to M and Q. The dipolar angle 973 is defined within the range

[0,7r/2], where ip3 = 7r/2 denotes the isotropic limit.

Figure 5.9: Scattering scheme used for analysing the SANS measurements (see text for details).
k; and k/ are the initial and final neutron wavevector; Q is the scattering vector and M the

magnetisation vector of the sample, p is the projection of Q onto the plane perpendicular to M.

The Vj are the eigenvectors of the susceptibility tensor. 0 is the scattering angle, <ps the rotation

angle due to dipolar effects. Vi is perpendicular to the plane, all other vectors lie in the plane
defined by M and Q.

When the dynamical susceptibility is considered, an additional rotation angle is

introduced in the dipolar regime, which makes the model more complicated. We

refer to the publication of Schinz and Schwabl [23] for a comprehensive description
of the problem.
The theoretical neutron cross-section is obtained in several steps. The X%3{Qiu)
matrix elements are taken from the analytical formulae given by the mode-coupling
theory, in the coordinate system where x(Q,u>) is diagonal [42]. In order to take

into account the finite linewitdh of the spin fluctuations, we have used a quasielastic
spectral weight functions for the longitudinal mode and a dispersive one, according to

Eq. 4.30 of Section 4.3.3, for the transverse modes. As a second step, the dynamical
susceptibility is transformed by matrix rotation into x(Q,w) m the SANS coordinate

system defined by k; and M (see Fig. 5.9), where the neutron polarisation factor as

well as the temperature factor are added. As there is no analysis of the neutron final

energy in SANS, the scattering intensity for a given Q0 is obtained by performing
an integration along a constant scattering angle curve:



5.2. Ni 43

fWmoi

J(Qo) = N duo
Lü

1 — exp(—ßu]
£(<W - Q«Qß)%*ß{Q{0,u),u)- (5-9)
«,/?

a, /? are the cartesian coordinates, and the integration limits are selected according
to the rules of kinematics for a given initial neutron wavevector k;.

5.2.3 Experiment and data analysis

The experiments have been performed on several Ni plates of dimension 20 x 20

x 1 mm3. We have used single crystals for avoiding the nuclear scattering that

arises from the grains of a polycrystalline sample. The background from incoherent

scattering as well as from the sample environment has been determined by the

application of a sufficiently large magnetic field that quenched all the magnetic

signal. The sample was polished in order to reduce scattering arising from the

surface roughness. Figure 5.10 shows an example of measurements on a non-polished
sample for a fixed temperature of 612K (0.97Tc) and various strengths of the applied
magnetic field. The low magnetic field data shows a hump that is due to magnetic

scattering. At the maximal field Hext = 7kG, the magnetic signal is quenched but

the intensity at low Q (< 0.05 nm-1) is still considerable. The shape of the magnetic
signal can be explained as follows: for a given temperature, the dispersion of the

spin-waves does not fulfill the kinematical scattering conditions beyond a cutoff wave

vector Q*(T, H). By increasing the external field, the Zeeman gap shifts the cutoff

to lower Q-values. In contrast, an increase of T would renormalise the spin-wave
and the hump would be shifted towards higher Q-values.

103r
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• Hext=1060G

X Hext = 7120G
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o.os 0.1S 0.20
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Figure 5.10: Scattered intensity integrated over the azimuthal angle of the detector for a Ni

sample where the surface was not polished. For low applied magnetic fields, the magnetic scattering
is visible as a hump in the curve. The drop of the intensity at large Qisduetothekinematicallimitationsforthespin-wavedispersioninsmallanglescattering.Thenonmagneticbackgroundshowstheresidualintensityarisingfromscatteringatthesurfaceroughness.TheCurietemperatureTcofthesamplewasdeterminedbymeasuringthecritical
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scattering as a function of temperature in zero field. The obtained value is To =

631 ± 0.5K, in agreement with the literature value [44].
A further characterisation of the sample consists of determining the demagnetisation
factor Nz, which depends on the shape of the sample. Nz is obtained from the

relation Hejj = Hexi — 4irM(T)Nz, that relates the internal magnetic field Hejj
to the applied field Hext and the magnetisation M(T). A variation of the applied
magnetic field is shown in Fig. 5.11, for a fixed temperature of T=0.99Tc- At the

lowest field value, additional scattering from magnetic domains is visible at low Q

(< 0.05 nm"1). For intermediate applied fields, this additional intensity disappears,
and the spin-wave hump begins to be shifted towards lower Q. The value of Hext for

which Q*(T, H) starts to move defines the situation where Hejj is zero, i.e. where

the Zeeman gap opens in the spin-wave dispersion. Using the literature value for

M(T), we obtain A^ = 0.135 ± 0.005. This value is reasonable for a sample with a

plate-like shape and a finite width.

1 1 1 ! 1 1 :

T = 0.99TC 11^=16.50 :

D HeXt = 163G !

Magnetic Domains • 1^ = 3810
,

m *< X Hex^llSWG :

>
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BGND ***XtZ:
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Figure 5.11: Magnetic scattering in Ni at T=0.99Tc, for several applied fields. The value of

Hext=l&-bG is not sufficient to align the magnetic domains, that adds to the magnetic intensity
(indicated in the plot) at low Q-values. The increase of Hext is observed to reduce drastically
this latter effect. The background at ~Rext — 1.2kG shows the intensity arising from the nuclear

background and the sample environment.

Below To, the magnetic scattering is clearly anisotropic (see Fig. 5.12). According
to the polarisation factor, the signal corresponding to the case M || Q contains

the two transverse modes, whereas the case M 1 Q includes one transverse mode

and the longitudinal mode. On a qualitative point of view, the signal arising from

the two spin-wave modes is larger than the other one, if one considers the corre¬

sponding static susceptibilities. This disparity is indeed observed experimentally.
Furthermore, the dipolar forces modify the spin-wave dispersionforMJ_Q.Asaconsequence,thecutoffwavevectorexhibitsanangulardependencethatisapprox¬imatelyproportionaltotheazimuthalangleoftheSANSdetector.AboveTo,thescatteringisparamagneticandtheanisotropyhasdisappeared(seeFig5.12(d)).ThediscrepanciesatTo(Fig5.12(c))areexplainedbythecumulativeuncertaintyio2alo1§10°10--in-2
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of the determination of the ordering temperature and the stability of the furnace.

Notice that an external field of pa 250G was applied for aligning the magnetic do¬

mains. This low field value does not modify the paramagnetic scattering intensity

significantly.
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Figure 5.12: Azimuthal amsotropy m the magnetic intensity (m arbitrary units) The plots
represent two sectors of the detector taken parallel and perpendicular to the magnetisation M, the

direction of which is selected by the applied field Hext = 250G The data below Tc, (a) and (b),
indicate that the signal is larger for the sector corresponding to M 11 Q This amsotropy is reduced

by increasing the temperature Eventually the signal becomes isotropic for T > Tc, (c) and (d)

A fit of the magnetic intensity at Hea;t = 400G and T = 0.95Tc is presented in

Fig. 5.13. The intensity was integrated over the azimuthal angle for improving the

statistics. For this temperature and Q-i&nge, the dipolar angle cf>^ does not deviate

significantly from ir/2. Hence, the rotation of the eigenvectors of %(Q,u;) does not

play a major role in the experiment. Moreover, the estimation of the scaling variable

y yields çd/Q G [0.8,8.5], if one assumes that the dipolar wavenumbers above and

below Tc are identical (ç^ pa 0.13 nm-1). The system is hence investigated in a

regime that is near the boundary of the dipolar region. On the other hand, the

hydrodynamic regime is satisfactorily covered, as the variable x is in the range

[4.0,50.0]. The physical parameters that are obtained from the fit are shown in

the inset of Fig. 5.13. The dipolar wavenumber does not differ much from the

literature value that was obtained by SANS measurements above Tc [43]. The

value of the demagnetisation factor Nz is also consistent with the one that was

estimated by the study of the field dependence of the magnetic scattering (Fig. 5.11).
However, the contribution of the parallel fluctuations is still negligible for T=0.95Tc-
A calculation of the static susceptibilities within the framework of mode-coupling
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theory predicts that x\\ 1S more than 100 times larger than x±-
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Figure 5.13: Neutron intensity at T = 0 95 Tc, with Hea;t = 400 G The measurements have

been fitted with the mode-coupling model The inset gives the obtained fit parameters M0, N*

and qzi are the saturation magnetisation, the demagnetisation factor and dipolar wave-number,

respectively

Finally, we present a computer simulation of the magnetic scattering that is expected

very close to the ordering temperature (T = 0.99Tc), i.e. where the intensity of the

longitudinal fluctuations is becoming significant (see Fig. 5.14). The calculations

were performed assuming the values for Nz and qr> that were obtained at a lower

temperature (see Fig. 5.13). The plot shows the magnetic intensity at T=0.99Tc

for the case Q J_ M, where the longitudinal fluctuations and one spin-wave mode

contribute to the total intensity. As Te is approached, the interval of the scaling
variable x is inevitably shifted to lower values: [1.5,20]. However, for the smaller Q-
values the hydrodynamic conditions are still fulfilled. Indeed, the calculation of xx.

in the case of a Lorentzian approximation (see Eq. 4.13) shows that the calculated

points deviate from the mode coupling curve below Q = 0.05 nm_1.

To summarise, the simulation indicates that the Q-range in which the \jQ divergence
should be observed is unfortunately dominated by the spin-wave channel, and the

intensities of the two modes become comparable only for higher Q-values, where the

critical regime is achieved.

5.2.4 Intermediate conclusion

In this work, we have tried to measure by means of the SANS technique the predicted

1/Q divergence of the longitudinal magnetic susceptibility x\\- In parallel, computer
simulations based on mode-coupling theory were done in order to interpret the data.

The predicted anisotropy that should occur below Tc was observed and two physical

parameters, the demagnetisation factor Ns and the dipolar wavenumber qn, could be

1^ = 400G,T = 0 95TC

Nj=0 13±0 01

qD = 010±001nm1

_l I L
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Figure 5.14: Magnetic scattering calculated on the basis of the mode coupling model, for the

case Q _L M and for T=0.99Tc The solid line represents the total intensity which is composed of

one spin-wave mode (squares) and the longitudinal mode (open circles). The solid circles represent

the intensity of x\\ m the Lorentzian approximation.

extracted from the measurements. Unfortunately, both experiments and calculations

have shown that the search of the 1/Q divergence is obscured by a serious problem:
The simultaneous requirement to be in the hydrodynamic regime and to achieve a

reasonable signal for SU¬

SANS seems however to be a promising technique, as it allows to achieve an ex¬

perimental geometry that is required for studying the longitudinal susceptibility.
Further investigations should be however performed on SANS with full polarisa¬
tion analysis. The various magnetic contributions can be indeed separated by this

technique, as the spin-wave are spin-flip and the longitudinal fluctuations are non

spin-flip.



Chapter 6

Localised Spin Systems

Chacun sait que la ligne droite ne peut être

le plus court chemin d'un point à un autre.

Sauf, évidemment, si les deux points
sont bien en face l'un de l'autre.

Pierre Desproges

6.1 Paramagnetic scattering in EuS at very high

temperature

6.1.1 Introduction

The magnetic properties of the insulating ferromagnets EuS and EuO are governed
by the localised 4f electrons of the Eu2+ ions that form a fee lattice. These com¬

pounds are therefore an almost ideal realisation of the isotropic cubic Heisenberg
ferromagnet, the model which has been so far the most completely explored theo¬

retically.
In this work, we focus on the paramagnetic scattering of the EuS compound, where

the magnetic excitations of the ordered phase were extensively studied in the past
decades [45, 46, 47, 48]. In this system, the magnetic Eu2+ ions form a ground state

85V/25 with a saturated moment of 7//#. The lattice constant is a=5.95A and the

moments order below the Curie temperature T^ = 16.6K.

Below Ter, the linear spin wave theory based upon the Heisenberg model predicts
the existence of propagating modes that extend over the whole Brillouin zone. The

spin wave dispersion measured with neutron scattering by Bohn et al. [49] can be

well reproduced by taking into account nearest and next nearest neighbour exchange
interactions, J\ = 0.038 meV and J2 = -0.017 meV, respectively.
In the paramagnetic state, two limiting cases have to be considered, depending on the

value of the scattering vector q with respect to the zone boundary wavevector qzs-

Near the zone center (q « qzß)i a model provided by asymptotic renormalisation

theory [50] predicts a quasielastic spectrum that describes a spin diffusion process.

The magnetic scattering function is given by a double Lorentzian function
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S(q,W) = 2**Tx(q)T^ij4^ (6-1)

where ß = 1/kßT. In the molecular field approximation, the static susceptibility

x(q) is in the small q limit [8]:

x(q) = x(o)-^-. (6-2)

k+(T) is the inverse of the correlation length above Tc, and x(0) ^s the bulk sus¬

ceptibility. The inverse correlation length was measured in EuS by Ais-Nielsen et

al. [46] who obtained k+ = 0.55((T - Tc)/Tc)0-702 Â"1.

Near the zone boundary (q ~ Qzb), the theory based on an effective Heisenberg
model does not predict diffusive modes but rather damped modes associated with

short range magnetic correlations [51, 52]. In this case, the scattering function is

given by

S(q, u) = 2kBTX(q)r^F(q, w). (6.3)

For large q values x(ci) is expressed in terms of Fourier components of the exchange
interaction J(q). In the spherical approximation [8] one obtains

*(q> =
J(0)-JW + X(0)-^

(6'4)

The normalised spectral weight function F(q,u>) is derived from the equation of

motion of the spin system by assuming the three-pole approximation [5, 52]

7T [lot{u;2 -öl- S2)\2 + {u>2 ~ Ol)2

Si, 82 and r are quantities related to the first (u;2) and second moment ((a;2 —

<^}q)}qofF(q,u;):

Si = <u;2)q (6.6)

<^2 = {(a;2 - <u;2)q)>q (6.7)

r = (^2/2)-L/2. (6.8)

If <^2 > 2Si the shape of -F(q, u) exhibits one peak centered at oo = 0. In the opposite
situation, F(q,w) has three peaks centered at to = 0 and w = ±wÄ, where u;sw is a

complicated function of Si and 82-
The two models have been proven to be valid up to T — 3Tc with neutron scattering
experiments on EuS [48] and EuO [53], over the whole Brillouin zone in the [100]

and [111] symmetry directions.
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According to the theory, for q near qzB, the linewidth of F(q,ui) is predicted to

remain finite in the infinite temperature limit [5, 52, 54]. In order to prove this

interesting result, we extended the measurements on EuS to the high temperature

regime (up to « 18Tc).

6.1.2 Results

Ef = 4.9 meV, guide-80'-EuS-Be-open-open
1 1 1—r

• T = 50K
.

O T = 10K
.

0

Energy (meV)

Figure 6.1: Paramagnetic spectrum at T=50K (« 3Tc) for q = 0.84 Â-1 (solid circles). The

background (open circles) was determined at T=10K (i.e. below Tc) and is mainly due to the

large incoherent elastic contribution. The solid line is a Gaussian fit to the low temperature scan.

Experimental details

For the experiment, we have used a sample consisting of about 100 small pieces of

single crystal («2x2x1 mm3), which are fixed on a aluminum plate and oriented

with the [100] symmetry direction perpendicular to the plate.
The measurements have been performed on the three-axis spectrometer TASP, with

fixed final neutron energies Ej = 4.9 and 3.6 meV. The higher-order neutrons were

removed by a Be filter. The sample was mounted on the cold finger of a closed

cycle cryostat, allowing an experimental temperature range between 10K and 293K.

The inelastic scans have been conducted in the constant-ç mode of operation, in the

[100] direction, near the zone boundary of the (200) Bragg peak. The background
from the sample environment and from incoherent scattering was determined by
measurements below the ordering temperature Tc = 16.6K.

Data analysis

Figure 6.1 shows an example of an inelastic scan performed at T=50K and q =

0.84Ä-1 (q = 0.8 qzß)- The determination of the background was done by repeating
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Figure 6.2: Inelastic scan of Fig. 6.1 after removing the background. The solid line is a fit to the

data according to the three-pole approximation (see Eq.6.3) taking into account the experimental
resolution of the spectrometer. The values obtained for the two poles usw are mentioned in the

graph. The energy resolution (FWHM), SE = 0.26 meV, is also displayed.

the measurement at T=10K, where the magnetic scattering is known to be out¬

side the experimental energy window [46]. The elastic linewitdh of the background
that arises from incoherent scattering of the sample provides an indication of the

experimental resolution of the spectrometer.
After background subtraction, the scans have been fitted with the scattering function

given by Eq. 6.3, taking into account the experimental resolution of the spectrometer.
As an example, the background-corrected scan from Fig. 6.1 is shown in Fig. 6.2 on

an expanded scale. The large error bars near the elastic position account for the fact

that large intensities have been subtracted. The lineshape is in good agreement with

the theoretical predictions [52] as it has been demonstrated by earlier experiments
[48, 53, 55]. Further measurements have been performed up to room temperature

(s=s 18 Te), where the paramagnetic signal was still visible (see Fig. 6.3).
The parameters Si and S2 obtained from the fit have been compared with theoretical

values provided by the model of the three-pole approximation [5, 52]. The calcula¬

tions were made numerically by using a FORTRAN code [56] based upon a formula

derived in Ref. [52]. We present in Fig. 6.4 a comparison between calculated (open
circles) and measured (solid circles) values. For clarity we have separated the data

obtained for q — 0.84 A-1 and q
— 1.06 A-1. The general trend for both param¬

eters is to decrease with increasing temperature as expected from the theoretical

predictions.

Although the scattering intensity is strongly reduced due to the decrease of the

susceptibility, the lineshapes are still visible in the high temperature limit, and

the £'s are in agreement with the calculated values. The deviation for T=18K (pü
1.08Tc) can be explained by the fact that the three-pole approximation becomes

not appropriate near the transition temperature. In contrast, both experimental
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Figure 6.3: Paramagnetic spectrum at room temperature for q = 0.84 Â-1. The background
has already been subtracted. The solid line is a fit similar to that of Fig. 6.2. Again, the values

obtained for ±usw are indicated m the graph. The energy resolution was improved by lowering
the final energy of the neutrons [Ej — 3.6 meV).

and calculated values indicate that the second and fourth moment of the spectral
function F(q,u>) tend to a constant in the high temperature limit, as indicated by
the dashed lines in Fig.6.4.
The fit of the neutron spectra with Eq. 6.3 have also provided experimental values

for the static susceptibility x(cl)- Figure 6.5 shows the experimental data as well

as the values that have been calculated assuming the spherical model (see Eq. 6.4)
and the exchange interaction parameters J\ and J2 found in the literature [49]. The

measured susceptibility has been adjusted to the theoretical value by using a unique

scaling factor, a normalisation constant that accounts for the neutron counting time

and the efficiency of the various devices composing the three-axis spectrometer. The

agreement between both datasets is a confirmation of the consistency of the model

that was used for analysing the neutron data.

Finally, a careful inspection of the high temperature behaviour of the scattering
function at the zone boundary can explain why the signal is still visible one order

of magnitude above Tc*. Equation 6.3 can be indeed decomposed into three terms.

According to the theory, the spectral function F(q,Lü) does not vary much at high
temperature and the temperature factor ßooj{\ — exp(—ßu>)) tends towards 1. The

decrease of the static susceptibility x(q) is hence compensated by the prefactor kßT.

6.1.3 Intermediate conclusion

The paramagnetic scattering of the Heisenberg ferromagnet EuS was investigated
by means of neutron scattering, and magnetic excitations have been observed up

to room temperature near the zone boundary. The theoretical prediction that spin
fluctuations are still present at high temperatures is confirmed up to « 18Tc- It is
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remarkable to observe paramagnetic scattering at these very high temperatures, as

one would expect the lifetime of the fluctuations to be zero and the spin correlation

to vanish, because of the high kinetic energy when compared with the exchange
interaction between neighbouring spins.
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6.2 The inorganic spin-Peierls compound CuGeO.3

Remark; In this part of the Chapter, we shall use the symbol /j,ejj for the effec¬

tive moment below the ordering temperature, instead of ps that was introduced in

Chapter 1.

6.2.1 Introduction

Among low dimensional magnetic systems with AF interactions, the spin-Peierls

compounds have attracted a renewed interest since the discovery of a similar transi¬

tion in the inorganic compound CuGeOs by Hase et al. [57]. At high temperature,

CuGeOs is considered to be made of magnetic chains consisting of magnetic moments

with a period of c (lattice parameter) and one exchange parameter Jc for nearest

neighbour spin coupling (see Fig. 6.6 (a)). Below the spin-Peierls temperature Tsp
= 14 K, the system undergoes a structural phase transition and the lattice becomes

dimerised, with an alternating intrachain exchange interaction, J\yi = Jc'{~^ i:S(T))
(see Fig. 6.6 (b)), where $(T) denotes the temperature dependent lattice distortion.

The first systems exhibiting a SP transition were organic compounds where spin
substitution was not easy to perform [7, 58, 59]. In contrast, CuGeOs is believed

to be an ideal system to study doping effects on the SP ground state, as the only
magnetic elements (Cu2+ ions) can be easily replaced.
The first study on a Zn-doped compound [60] has revealed the presence of a new

phase transition below the SP ordering temperature Tsp- This has been the starting
point of an extensive investigation of the effect of doping on CuGeOs that has

shown two main effects. The lattice dimerisation is progressively suppressed upon

increasing doping. Moreover an antiferromagnetic ordering sets in, that coexists

with the SP state, and persists for high doping concentration where the lattice

dimerisation does not occur anymore.

(a) T > TSP

(b) T > TSp h h h h

Figure 6.6: (a) Antiferromagnetic spin chain in CuGeOs, above Tsp, characterised by an ex¬

change interaction Jc between nearest neighbours magnetic ions, (b) Below Tsp, a lattice dimeri¬

sation occurs and the exchange becomes alternate.

In this Chapter we present a detailed study of the temperature-concentration (T-x)
phase diagram of Si- doped CuGe03 single crystals by means of neutron diffraction

as well as zero-field and transverse field muon spin rotation (//SR). In addition, the
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magnetic excitation spectrum for selected single crystals is investigated by means of

inelastic neutron scattering.

6.2.2 Overview on pure and doped CuGeOa

CuGeOa crystallises within an orthorhombic structure of space group Pbmm. The

lattice parameters at room temperature are a = 4.81 A, b = 8.43 A and c = 2.95 A.

Below Tsp, the Cu2+ ions form a non-magnetic singlet ground state that is separated
from the first excited triplet [61] by an energy gap proportional to Tsp, A(T = 0) «
1.77&sTsp [62]. The gap is observed to scale directly with the lattice distortion

S(T). The exchange coupling between Cu2+ ions was determined by measuring
the dispersion of the magnetic excitations along the three principal crystallographic
directions, and were found to be Jc = 10.4 meV, J& ~ 0.1 Jc and Ja fti —0.01 • Jc

[62]. CuGeOa is therefore considered as a quasi one-dimensional spin system.
In CuGeOs, there are essentially two possibilities of element substitution: site

(CvL1-xMxGe03) [63, 64, 65] and bond (CuGei-^Si^Os) doping [66, 67]. For site

doping the Cu2+ ions are randomly replaced by another ion (Zn2+ (S=0), Ni2+

(S=l), Mg2+ (S=0)) leading to a break in the dimerised chains. In contrast, the

bond doping induces a local distortion of the lattice that also affects the long range

order of the chains.

Grenier et al. [68] have shown that the temperature-concentration(T-x) phase dia¬

gram for site and bond doping in CuGeOa exhibit a similar behaviour. The main

features are the reduction of Tsp with increasing doping concentration, the suppres¬

sion of the SP transition at a critical concentration xc, the onset of an AF phase
characterised by an ordering temperature Tjv increasing with x, and decreasing for

concentrations larger than xc. The critical concentration xc is of the order of 3% for

site doping and about three times smaller for the bond doping scenario.

An inspection of Mg-doped compounds near xc by means of magnetic susceptibility
[69] and neutron scattering measurements [70] provided a more detailed description
of the phase diagram for the site-doped SP. The ordering temperature Tjv and the

order parameter fiejj of the antiferromagnetic phase exhibit a discontinuity at xc Pi

2.7%. The proposed interpretation is that doped CuGeC"3 undergoes a first order

phase transition at the critical concentration xc that constitutes a compositional
phase boundary. A distinction is therefore introduced between a dimerised AF

phase (D-AF) below xc ,
and a uniform AF phase for higher concentration (U-AF).

Susceptibility measurements near xc performed by Masuda et al. [71] revealed the

presence of a double peak region, which was interpreted as a coexistence of both D-

AF and U-AF phases. In addition they have performed high-resolution
synchrotrondiffractiononthe(3/213/2)superlatticereflection.Forlowdoping,theX-raypeakprofileisresolutionlimited,indicatingthepresenceoflongrangeorderinthelatticedimerisation.Intheregionwheredopinginducesadoublepeakinthesusceptibility,thesuperlatticeX-raypeakbroadens,thusindicatingtheonsetofshortrangeorderintheSPphase.Ontheotherhand,anextensivestudyofSi-dopedcompoundswith

susceptibility
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measurements was performed by Grenier et al. [72]. They have shown that the

introduction of Si ions reduces the intensity of the signal attributed to the dimerised

phase. Moreover an additional peak appears below Tsp, which is interpreted as

the onset of an antiferromagnetic ordering at a temperature T^y. Above T/v~, they
observe an additional intensity in the susceptibility which is attributed to the freeing
of S=l/2 spins near the doping centers. The proportion of the SP signal linearly
decreases with increasing doping, whereas the proportion of free spins increases.

However, no double peak feature is observed in the susceptibility measurements in

the vicinity of the critical doping concentration where the SP phase collapses.

Chemical cell of CuGe03

The chemical structure of pure CuGeO-3 was determined by means of single-crystal
X-ray and neutron diffraction measurements [73, 74]. The projection of the structure

onto the ab- and èc-planes is shown in Fig. 6.7.

Cu r Ge • O ©

ffr -ft &-

w—*
0 >

ft m Uli

1t\

M

Figure 6.7: Low-temperature structure of pure CuGeOs. The rectangles show the unit cell for

the high-temperature structure. Below Tsp, the cell becomes doubled along the a and c directions.

The ellipses symbolise the Cu2+ dimers that are formed in the spin-Peierls state.

The spin chains are aligned along the c-axis, and the unit cell contains two unit

formula. The lattice dimerisation leads to a doubling of the unit cell in the a and

c direction. The Cu2+ dimers that are formed along the spin chain below Tsp are

symbolised by ellipses in Fig. 6.7.

Theoretical background

The magnetic susceptibility x{T) of a linear antiferromagnetic chain was calculated

by Bonner and Fisher [75] and provided a good description of x{T) for the organic
SP compounds. However, the Bonner-Fisher model is not satisfactory for CuGeOs-
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A significant improvement can be achieved in the analysis of the low temperature

susceptibility [57, 63] if one uses the model proposed by Bulaevskii [76], where the

ID AF chains are coupled with the 3D phonon field. On the other hand, the high

temperature susceptibility can be well reproduced by introducing temperature de¬

pendent alternating coupling and extending the spin interaction to next nearest

neighbours in the model of Bulaevskii [77]. Nevertheless, this new model predicts
the presence of a spin gap even above Tsp, which was never observed.

The coexistence of lattice dimerisation with antiferromagnetism in the doped CuGeOs

compounds has been investigated theoretically with a model similar to the one of

Bulaevskii. At T=0, the problem of a 1D-AF Heisenberg chain coupled to the lattice

distortion, u(x), is studied by using a phase Hamiltonian [78]:

/n=
dx \jc{V0{x)f + ~JcV{xf - J\^-smO{x) + —u{xf

O £ C O

(6-9)

where J, c, A and K are the exchange interaction, the lattice parameter, the spin-
lattice coupling constant and the elastic constant, respectively. The position of the

spins, x = le is treated as a continuous variable. The quantum phase variable

0(x) is divided into a classical component 6ci(x) and a quantum fluctuating part

0(x). The magnetisation at the site I, < Sf >, is related to 0(x) via the relation:

(Sf) = (-l)'S(x) = (-l)le-<ê2>/2œs64x) (6.10)

The observation of both SP and AF signatures can be consequently explained by

considering a ground state where two long range order parameters, the lattice dimeri¬

sation u(x) and the staggered magnetisation S(x), coexist with a spatial variation:

u(x) is minimal near the doping centers where S(x) takes its maximal value. A

first experimental evidence of the spatial inhomogeneity for the magnetic moments

was seen with muon spin rotation experiments on Si- and Zn-doped CuGe03 com¬

pounds [79].
The magnetic excitation spectrum has also been calculated assuming a periodic

system with a unit cell containing 2n spins (i.e. an even number of spins) that are

spatially varying [80]. The SP excitations are predicted to persist under low doping

conditions, although they are broader than
inthepurecompound.Moreover,theSPgap(Asp=2.1meVinCuGeOß)isshiftedtolowervaluesforthedopedsystems.FortheAFspectrum,thespatialinhomogeneityofthemagnetisationleadstotheopeningofanadditionalspingap[80],incontrasttoa3DNéelstatewheretheAFexcitationsareexpectedtobegapless.Inthelongwavelengthlimitthespinwavevelocityispredictedtoincreasewithdoping,andtherelaxationfrequencyFisproportionalto7c2.7isexpectedtodecreasewithincreasingdoping,astheAForderingisstabilisedbytheintroductionofimpurities.InelasticneutronscatteringexperimentsperformedonSi-doped[67,66]andZn-doped[65]compoundsnearthemagneticzonecenter(011/2)haveconfirmedtheabovementionedtheoreticalpredictionsforthelowdopingregime,wherebothorderparameterscoexist.
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Magnetic intensity in absolute units

The determination of jxeff for a given magnetic reflection can be performed by

normalising the magnetic intensity with a selected Bragg reflection.

The elastic magnetic cross-section for a simple antiferromagnet is given by the fol¬

lowing relation

= {ir0fNm^- Y, \FM(Tm)\2[l - (Q • vf] *(Q - rm). (6.11)
el V°m

Tm

Nm and vom are the number of magnetic unit cells and its volume, respectively; Tm
is a vector of the reciprocal magnetic lattice; Q is the normalised scattering vector;

T) is the unit vector along the spin direction. FM(Tm) is the magnetic structure

factor:

FM(rm) = ip(^) J2 ^Fd(rm)eiT--de-w" (6.12)
z

d

where (Sv) is the mean value of the spin component along î) and Fd(Tm) is the

magnetic form factor, and J2d extends over the ions in the magnetic unit cell. In

the case of doped CuGeOs, we have a doubling of the unit cell in the c direction,
therefore Nm = N/2 and vom — 2-v0.

The experimental method consists of measuring rocking curves for the magnetic
reflection as well as for a selected nuclear reference. The ratio of the integrated
neutron intensities is related to the structure factors via the following formula:

(6.13)
Pm

=

[1 ~ (rm Vif] \FM(Tm)\2jsmeM
Pn |FiV(riv)|2/sin6'Ar

On and 6m are the nuclear and the magnetic scattering angles, respectively.

Spin-wave dispersion in Si-doped CuGe03

The starting point we use for modeling the AF spin excitations in CuGei-^Si^Oa
is a Heisenberg Hamiltonian including two spin sublattices. According to the ex¬

change parameters that have been determined for the pure CuGeOs compound, we

assume that the nearest neighbours are oriented antiferromagnetically along the b

and c directions, and ferromagnetically along a. Within linear spin-wave theory, the

dispersion relation for the magnetic excitations can be expressed as follows [8]:

Mq) = S[(X(q) + J(0) - J(0) + Df - (J(q))2p (6.14)

where S = 1/2, D accounts for the uniaxial anisotropy, i7(q) and X(q) are the

Fourier transforms of the exchange interaction between sublattices and within a

sublattice,respectively:
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J(q) = £j(r)e-^r (6-15)
r

X(q) = £/(R)e-îqR (6.16)

Figure 6.8: Chemical structure of CuGeO-3 The magnetic cell involves 4 Cu2+ ions. The arrows

indicate the direction of the magnetic moments in the ordered phase.

Figure 6.8 shows the magnetic cell of CuGeOa. According to the propagation vector

kAF = (0 1 1/2) the spins are antiparallel along the [0 1 0] and [0 0 1] directions and

parallel along [1 0 0]. For the analysis of the spin-wave dispersion of the doped com¬

pounds, we have assumed nearest neighbour interactions along the three principal
crystallographic directions. The spin-wave dispersion is consequently given by

(hu(q))2 = S2[(21acos(27rqh) + 2Jb + 2Jc-2Ia + Dy (6.17)

- 4{Jbcos(Trqk) + Jccos(27rç;)J j
where Ia, Jb and Jc are the nearest neighbours exchange interaction along a, b and

c respectively.

6.2.3 Experimental details

The Si-doped CuGeOs single crystals have been grown using the floating zone

method [81]. The impurity concentration was determined by means of inductively
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Figure 6.9: Profile for the magnetic superlattice peak (0 1 1/2) of the x=0.82% doped sample,
at 1.5K. A similar measurement at 5K shows the absence of higher order contamination.

coupled plasma atomic emission spectroscopy (ICP-AES), with an accuracy of about

0.1%. The samples have been characterised by bulk susceptibility measurements

which have been published elsewhere [82].
The neutron scattering experiments have been performed on the three-axis spec¬

trometer for cold neutrons TASP, on a series of doped CuGei-^Si^Os crystals (0.7%
< x < 3.8%). For the diffraction experiments, the incident neutron wavevector was

kept fixed at k{ = 2.662Â-1. The ç-resolution was controlled by using 40'-40'-80'

horizontal coUimations, and higher-order neutrons have been suppressed by using
a pyrolitic graphite filter (PG002). The samples have been oriented with the (Okl)
zone in the scattering plane, and mounted in an ILL-type cryostat, which achieves

a base temperature of 1.5K.

For the inelastic neutron scattering experiments the three-axis spectrometer was

operated in the constant kj mode, with kj = 1.64Â-1. The same PG002 filter was

used. The measurements near the zone center were performed with flat analyser and

40'-40'-80' horizontal coUimations. For higher scattering vectors, the coUimations

have been removed and the analyser was curved. The dispersions were measured

along the principal symmetry axis of the crystal (a, b and c directions) near the

(0 1 1/2) magnetic zone center, with T=1.5K.

The zero field and transverse field /iSR measurements have been performed on the

spectrometers GPS and LTF. The polarisation of the incident muon beam was par¬

allel to the a-axis of the sample. In transverse field experiments, the external field

(Rext = 50G) was applied perpendicular to the initial muon polarisation.
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6.2.4 Results

Neutron diffraction

A typical profile of an antiferromagnetic superlattice peak is shown in Fig. 6.9 for the

0.82% sample. The temperature dependence of the maximum intensity is presented
in Fig. 6.10. In order to confirm the onset of the SP dimerisation in the low doping

regime, the reflection (1/2 3 1/2) was also measured. The magnetic intensity has

been fitted with the following equation [64]:

/(T)=NT{IhT>r)2ßexv I ~ (T2ä|)2]^+BG ^

which describes the critical behaviour of the magnetic intensity near the AF transi¬

tion, weighted with a Gaussian distribution for T^y- that accounts for inhomogeneities
in the sample. N is a normalisation constant, ß the critical exponent and BG the

nonmagnetic background contribution. The parameters that characterise the AF

phase in the doped compounds are listed in Table 6.1. The critical exponent ß
remains almost constant over the whole diagram, with an average value of about

0.20 ± 0.04, similar to that observed in Zn-doped crystals [64]. The inhomogeneity
in the concentration provides a AT/y of about 0.3 ± 0.05K. The temperature depen¬
dence of the SP peak shown in Fig. 6.9 was fitted with a function similar to the one

of Eq. 6.18 (see Ref. [70] for details).

Table 6.1: Physical parameters characterising the AF transition in CuGei-^SixOs as a function

oî x. The ordering temperature Tjv, its distribution ATjy and the critical exponents ß have been

obtained using Eq. 6.18 for fitting the temperature dependence of the superlattice peaks.

x(%) T*(K) AT;v(K) ß
0.7 ± 0.02 2.02 ± 0.07 0.28 ± 0.07 0.14 ± 0.04

0.82 ± 0.01 3.90 ± 0.12 0.59 ± 0.06 0.14 ± 0.03

1.11 ± 0.03 4.13 ± 0.06 0.45 ± 0.01 0.22 ± 0.02

1.23 ± 0.02 4.31 ± 0.09 0.42 ± 0.06 0.20 ± 0.03

1.71 ± 0.03 4.80 ± 0.03 0.23 ± 0.02 0.20 ± 0.01

2.15 ± 0.1 4.84 ± 0.01 0.183 ± 0.011 0.218 ± 0.005

2.38 ± 0.07 4.55 ± 0.03 0.21 ± 0.03 0.21 ± 0.02

2.54 ± 0.08 4.72 ± 0.08 0.27 ± 0.03 0.20 ± 0.02

3.8 ±0.1 4.38 ± 0.02 0.34 ± 0.01 0.19 ± 0.01

The effective magnetic moments /j,ejj have been calculated by normalising the mag¬

netic intensity at the saturation value with the nuclear structure factor of the (0 2 1)
reflection, and corrected for the magnetic form factor of the free Cu2+ ion [83]. We

emphasise that the neutron diffraction technique is a non local probe, and hence

does provide a macroscopic order parameter that is averaged over the whole volume

of the sample.



6.2. CuGeOs 62

ISP (1/2 3 1/2)

200

T(K)

Figure 6.10: Temperature dependence of the (0 1 1/2) antiferromagnetic and (1/2 3 1/2) spin-
Peierls superlattice peaks in the 0.82% Si-doped CuGeOs single crystal. The solid line for (0 1 1/2)
results from a fit according to Eq. 6.18. A similar function was used for the SP peak.

As a next step, selected samples (0.82%, 1.7%, 2.38% and 3.8%) belonging to the

series of single crystals measured with neutrons have been investigated by muon spin
rotation spectroscopy in the three temperature regions that have been determined

with neutron and susceptibility measurements, according to the experimental T-x

diagram presented in Fig. 6.11. The values obtained from the various techniques
are found to be in good agreement with each other, indicating that the muon and

the neutrons observe a magnetic ordering at the same transition temperature. The

observation of the SP dimerisation in susceptibility data for the samples in the low

doping regime is also confirmed by neutrons. The discrepancy between both methods

is due to the fact that the SP superlattice peak that is measured with neutrons

becomes extremely small while approaching the critical concentration. Furthermore,
we emphasise that Tsp is not observed above x=1.2%.

//SR results

In the paramagnetic phase, the zero-field muon spectra have been fitted with the

Kubo-Toyabe function which accounts for the muon depolarisation originating from

the nuclear moments (the depolarisation rate is of the order of 0.08 MHz). By

lowering the temperature, in the low doping regime, the muon spectrum can still

be explained by the same relaxation function [see Fig. 6.12 (a)], as it was observed

for pure CuGe03 [84]. In the magnetically ordered phase, below TV, the muon

depolarisation P,j,(t) in zero field was analysed over the whole doping regime with

the following function [79] [see Fig. 6.12 (b)]:

Pß{t) = Arixexp(-At) + Aoscexp(-rt) • cos(2ttz4 + 4>). (6.19)
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Figure 6.11: Temperature-concentration phase diagram of the Si-doped CuGeOs- The AF

ordering temperature Tn and the spin-Peierls transition temperature Tsp have been determined

by bulk susceptibility [82] and neutron diffraction experiments. The Tjv determined by fxSR
measurements are also reported. The dashed lines are a guide to the eye.

The first term in Eq. 6.19 describes a non-precessing part of the muon signal, which

relaxes at a rate A, whereas the second term reflects a precessing part of the muon

polarisation, where T is the depolarisation rate and <f> the initial phase shift. The

total observed amplitude (Arix + Aosc) is significantly lower than the total ampli¬
tude observed above Tjv, indicating that part of the muon ensemble is depolarised
within the dead time of the spectrometer (i.e. a depolarisation rate higher than ca.

150 MHz).
According to the T-x diagram shown in Fig. 6.11, the emergence at low temperature
of the precessing signal (Aosc) in zero-field is attributed to the ordering of the Cu2+

moments near the doping centers. In this vein, the frequency z/, which is proportional
to the magnetic field By, at the muon site, mirrors the static ordering of the moments.

The relaxing component in Eq. 6.19 is ascribed to sample regions where no coherent

static magnetism is present. However, the similar temperature dependence of A and

v (see Fig. 6.14 and the inset of Fig. 6.15) indicates that these regions have reduced

dimensions, leading to a detectable influence of the ordered neighbouring regions on

the field distribution A/jß (where 7M is the gyromagnetic ratio of the muon) at the

muon sites. This supports the idea that there is no macroscopic phase separation in

the samples over the whole doping range, similarly to what was observed by Kojima
et al. for Si- and Zn-doped CuGe03 compounds in the low doping regime [79].
Therefore, and similarly to the parameter 2/, the parameter A can be taken as a

measure of the static ordered moments. Since Av\x ^> Aosc the parameter A appears

to be better determined than v and consequently A will be utilised in the following
discussion as a measure of the static moment.

The transverse field measurements could be analysed with a function similar to

the one for zero field experiments (see Eq. 6.19). For a sample containing a non¬

magnetic phase, one would expect the spin of the muon to precess according to the
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external applied field, and the depolansation rate to be small [see Fig. 6.13 (a)].
However the transverse field data do show a significant depolarisation as presented
in Fig. 6.13 (b). This is an indication that below Tjv the muon implanted in the

region where the dimerisation is maximal is influenced by the dipolar field arising
from the magnetically ordered regions.
The doping dependence of the relaxation rate A, extrapolated at the saturation value

(T=0) is shown in Fig. 6.15. The dependence upon Si-doping is almost constant

within the precision of the experimental values. A exhibits however an increase

above xw2.4%. According to the direct relation between A and z/, this behaviour

indicates that within the doping range that has been investigated the local magnetic
field at the muon sites increases slightly with increasing doping.
Figure 6.16 shows the evolution of the normalised amplitudes Ar\x (dark grey area)
and Aosc (white area), as a function of Si concentration. The amplitudes have been

normalised with respect to the total muon asymmetry Atot, that was determined

in the paramagnetic phase [see Fig. 6.13 (a)]. We obtain that the amplitude corre¬

sponding to the magnetically ordered phase, Aosc, represents about 10% of Atot. The

relaxing part Ar\x lies on the other hand between 40% and 60%. The part of Atot

(light grey area in Fig. 6.16) that could not be detected (« 40%) will be discussed

below.

In order to compare the local magnetic properties of the doped samples, as provided
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by the muons, with the macroscopic order parameter measured with neutrons, we use

the quantity A • Aosc. In this product, the local magnetic moment (proportional to

A) is hence weighted with the volume fraction (Aosc) of magnetised regions present
in the sample.
The dependence of the AF order parameter /ie// as a function of concentration

is shown in Fig. 6.17, as obtained by both neutron diffraction and zero-field /^SR
methods. fiejf is seen to increase with the doping concentration, reaches a maximum

at xc= 1.7%, where the SP signal is not observed anymore (see Fig. 6.11).

Inelastic neutron experiments

The magnetic excitations have been measured on the three samples (x=2.15%,
x=2.54% and x=3.8%) that have a reasonable size (about 2 x 5 x 10 mm3) for

inelastic neutron experiments.
As a first step, the measurements have been performed near the magnetic zone

center (0 1 1/2) in the [0 1 0] direction, in order to observe the doping evolution

of the AF spin gap. As an example, typical scans are shown in Fig. 6.18 for the

x=2.54% sample. The gap is visible in Fig. 6.18 (a), at about 0.16 meV. A second
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peak is seen at 0.5 meV, albeit weak, due to the geometrical anisotropy because

of the orthorhombic symmetry. This double peak feature was already observed in

other experiments [67, 85] and is visible only at small ç-vafues. The large intensity
of the elastic line is due to the [0 1 1/2] magnetic Bragg reflection. Figure 6.18 (b)
shows a magnetic excitation along the [0 1 0] direction. The elastic line consists

only of incoherent scattering and indicates the experimental energy resolution.

The spin-wave dispersions measured in the [0 1 0] direction near the zone center

are gathered in Fig. 6.19. We observe that within the accuracy of the measurements

the curves do not depend on the doping concentration. The dispersion can be
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reproduced by the expression E(q) = JA2 -f (cq)2- The fit yields an average gap of

0.14 ± 0.02 meV and an average spin-wave velocity of 7.8 ± 0.1 meVÂ-1. These

values are comparable with those observed in a 3.0% Si-doped sample [67].
Furthermore, a similar value for the gap was measured in a low doped compound
[66], where the lattice dimerisation is present. These results indicate that the small

gap, which reflects the magnitude of the axial anisotropy, does not change while

going from the D-AF to the U-AF phase.
In a second step, the spin-wave dispersion of two doped single crystals (x=2.15% and

x=3.8%) was measured along the three principal crystallographic axis. Figure 6.20

summarises the dispersion curves that were measured on the x=2.15% sample.
The model that was used is given in Section 6.2.2, where the nearest neighbour
exchange interactions are taken into account. The fit has yielded Jc = 15.0 ± 0.2

meV, Jb = 0.28 ± 0.02 meV and Ia = -0.012 ± 0.003 meV. For the anisotropy
parameter we have obtained D = 1.2 ± 0.5 fj,eV. This latter value is small but

necessary for the opening of the gap that is shown in Fig. 6.19. Finally, we show in

Fig 6.21 a comparison of the spin-wave dispersion along the 6* and the c* symmetry
axis for the two samples. In the wavevector range that is experimentally investigated,
no significant discrepancy is observed between the two different concentrations.

CuGei-xSix.03 (x=2.54%)

(b)Q = (0 0.9 1/2)



6.2. CuGe03 69

1.0

0.8

% 0.6
S,
s»-.

S 0.4

0.2

0.00 0.04 0.08 0.12

(1 l-qk 1/2)

Figure 6.19: Spin-wave dispersion along the [0 1 0] direction.

12.0

10.0

8.0

>

a 6.o

d
tu

4.0

2.0

"'0.0 0.4 0.8 1.2

q (À"1)

Figure 6.20: Dipersion of the magnetic excitations in the doped CuGei-^SiajOa (x=2.15%)

along the principal crystallographic axis at T=1.5K. The measurements were performed near the

magnetic zone center (0 1 1/2). The solid line is a fit using Eq. 6.17 based on a Heisenberg model.

6.2.5 Discussion

Static properties

The agreement between neutron and //SR results (see Figs. 6.11 and 6.17) allows

to associate the precessing signal, referred to Aosc, with the D-AF phase in the low

doping regime, and with the U-AF phase in the high doping regime.

The purely relaxing signal, Ar;ffi, is attributed, for x < 1.23%, to the regions where

the lattice dimerisation is maximal. However, for higher doping concentrations, this

amplitude does not disappear. It is thought to arise from an increase of the static

magnetic disorder that is induced by high doping.
As the sum of Arix and Aosc constitutes not more than 60% of the total muon asym-
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metry in the whole investigated doping regime, we may attribute the loss of signal
to the boundary between the AF regions and the dimerised regions where a rapid
spatial variation of the magnetisation gives rise to large field gradient and therefore

leads to a depolarisation rate too fast to be observed by the /iSR spectrometer.

However, the neutrons are sensitive to these boundary regions that contribute to

the intensity of the AF peaks.
The /^SR measurements have shown on the other hand that the muon signal de¬

scribed by Aj-fo is influenced by the dipolar fields of the magnetically ordered re¬

gions and still undergoes a depolarisation. This is a clear sign that the domains

contributing to the purely relaxing muon signal have a limited size. Considering the

magnitude of the magnetic moments that are determined by neutron diffraction, 0.1

to 0.4 hb, the maximal distance over which the muon still sees a dipolar field is

estimated to be « 15 A. By considering an homogeneous distribution of impurities
along the spin chains, this distance corresponds to « 5 lattice units in both direc¬

tions on each side of the muon site. The present measurements confirm the spatial
inhomogeneity of the magnetic moments that was predicted theoretically [80, 86].
The maximum in the order parameter fj,ejj that was observed by neutron diffraction

at xc=1.7% refers to a macroscopic value. In other words, the magnetic moment

determined by this technique is averaged over the whole volume of the sample.
The results provided by //SR indicate that the volume fraction of the magnetically
ordered regions as well as the boundary regions varies upon doping. On the other

hand, no anomaly is seen in the local magnetic moment near the critical value xc.

We suggest therefore that the variation of the macroscopic AF order parameter upon
doping is controlled by a variation in the volume fraction of magnetic domains rather

than by a drastic change of the magnetic moments.



6.2. CuGe03 71

Dynamical properties

The exchange parameters that have been extracted from the experimental spin-wave
dispersions in doped CuGeOa do not differ much from the coupling constants deter¬

mined in pure CuGeC>3. Indeed, the intrachain coupling Jc « 15 meV remains close

to the value irJc/2 = 16.3 meV, as obtained by Nishi et al. [62]. The ratio Jb/Jc
fa 0.02, which is an indication of the dimensionality of the system, is thus approx¬

imately reduced by a factor 5, when compared with the pure compound. However,
the measurements along the b* direction could not be extended to reasonably high
q-values, due to experimental restrictions in the neutron intensity.
The similarities in the dispersion for both samples seem to indicate that the exchange
parameters are independent on the doping concentration, at least in the doping
regime where the lattice dimerisation does not take place anymore. It would be of

interest to check this hypothesis below the critical concentration. However, on the

basis of the information provided by the neutron diffraction and /liSR results, one

may argue that only the magnetically ordered regions contribute to the inelastic

signal. The variation of the doping concentration is presumed to modify the volume

fraction and not the intrinsic properties of this latter phase.

6.2.6 Intermediate conclusion

The origin of the various magnetic contributions observed in the Si-doped CuGe03

by means of susceptibility measurements and neutron diffraction have been clarified

via complementary investigation performed with /J.SK spectroscopy. Indeed, the /^SR
results have revealed that the regions which contribute to the antiferromagnetic and
lattice dimerisation peaks observed by neutron and susceptibility in the Si-doped
CuGeOa have a typical size of 5 lattice units along the spin chains. Furthermore, the

doping variation of the magnetic moment measured with neutrons could be explained
via the evolution of the volume fraction attributed to magnetically ordered regions
near the impurity centers.

The spin dynamics of the Si-doped CuGeOs was investigated by means of inelastic

neutron scattering experiments. The analysis of the spectrum near the zone center

has revealed that the AF spin gap and the long wavelength spin fluctuations do not

depend on the doping concentration, in the range that was investigated. Moreover

this behaviour is common in the excitation spectrum of both dimerised and uniform

antiferromagnetic phases.
The dispersion of the magnetic fluctuations was measured along the three main

symmetry directions for selected samples. The interchain exchange parameters is

comparable with the one of CuGeOs. The coupling constants Ja and Jj are found

to be smaller than in the undoped compound. The ratio between interchain and

intrachain coupling is one order of magnitude larger than or the standard quasi
one-dimensional antiferromagnets KCuF3, Sr2Cu03 and Ca2Cu03. The AF phase
which is induced by doping is therefore not strictly speaking quasi one-dimensional.

The anisotropy in the exchange parameters can however account for the spin gap
associated with the AF phase in both doping regimes.



Chapter 7

Concluding Remarks

Le peu que je sais, c'est à mon ignorance que je le dois.

Sacha Guitry

The characteristics of the electrons that play a role in magnetism lead to a classifi¬

cation of the magnetically ordered systems into mutually non-exclusive categories:
itinerant or localised spin systems; weak or strong magnets; isotropic or anisotropic

systems. In this thesis, we have focused our attention on the static and dynamical

properties of several compounds, each belonging to a specific category. The aim was

to emphasise the similarities and the differences that may arise among the various

classes of magnets.

Chapter 5 is devoted to the critical dynamics of itinerant magnets. As a first step,
we have performed an extensive investigation of the spin dynamics of the weakly
itinerant magnet Ni3Al. The results have revealed that the critical fluctu¬

ations must be taken into account in an itinerant model of magnetism,
similarly to what occurs in a model based on localised spins [87]. Further¬

more the calculation of the scaling parameter W- has evidenced that the dynamics
of weak itinerant ferromagnets near the phase transition is similar to the

one of itinerant magnets (Co, Fe and Ni) as well as localised magnets (EuS
and EuO).

In the second part of Chapter 5 we have studied the critical scattering of Ni, which is

an itinerant magnet. The predicted crossover to a 1/Q divergence of the longitudinal
magnetic susceptibility x\\ could not be observed. The underlying reasons are con¬

nected with the physics of the system as well as the current status of polarisation
analysis in small angle neutron scattering. However, the experimental conditions

that are required for the investigation of x\\ have allowed to reach a Q-range where

the effect of the dipolar forces could be demonstrated. The analysis of the data has

shown that the dipolar wavevector qD in the ordered phase is comparable
to qd which characterises the dipolar regime in the paramagnetic phase.
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Chapter 6 was devoted to the investigation of magnetism in systems with localised

spins.
In the Heisenberg ferromagnet EuS, we have shown that local spin fluctuations

can persist at temperatures that are extremely high when compared with

the exchange parameters. However, the intensity of the excitations is reduced

by increasing temperature and limited to wavevectors near to the zone boundary, in

contrast to the itinerant magnets where the long wavelength spin fluctuations are

thermally enhanced.

Finally, we have investigated bond doping effects on the spin-Peierls compound
CuGeC>3. The introduction of Si impurities was observed to progressively suppress

the lattice dimerisation and to generate an antiferromagnetic ordering of the Cu2+

ions. As a first step, the antiferromagnetic phase was characterised by neutron

diffraction. The local properties of the doped compound were investigated by means

of muon spin rotation spectroscopy. The complementary information of both tech¬

niques have provided a detailed insight in the distribution of the two phases present
in the samples. Furthermore, the spatial inhomogeneities that are revealed

by juSR could explain the variation upon doping of the order parameter

fieff that is measured with neutrons.

Secondly, the spin dynamics of the Si-doped CuGeC>3 was investigated by means

of inelastic neutron scattering. As a major result, the AF spin gap and the

exchange interaction Ja do not depend upon the doping concentration, as

far as the AF ordering is observed. Moreover the values of the Ja are similar

to the exchange integrals measured in the pure spin-Peierls compound.
On the basis of the information we obtained from the static properties of the doped
compound, this result can be interpreted as follows: the magnetic properties of the

AF phase are not modified intrinsically by the variation of the doping concentration.

This latter has only an effect on the volume fraction of the AF and dimerised phases.
Therefore the suppression of the lattice dimerisation does not play a significant role

in the spin dynamics of AF phase that appears in the Si-doped CuGe03 compound.
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