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Abstract

Bagging is one of the most effective computationally intensive procedures to im-
prove on instable estimators or classifiers, useful especially for high dimensional data
set problems. Here we formalize the notion of instability and derive theoretical re-
sults to explain a variance reduction effect of bagging (or its variant) in hard decision
problems, which include estimation after testing in regression and decision trees for
continuous regression functions and classifiers. Hard decisions create instability, and
bagging is shown to smooth such hard decisions yielding smaller variance and mean
squared error. With theoretical explanations, we motivate subagging based on sub-
sampling as an alternative aggregation scheme. It is computationally cheaper but still
showing approximately the same accuracy as bagging. Moreover, our theory reveals
improvements in first order and in line with simulation studies; in contrast with the
second-order explanation of Friedman and Hall (2000) for smooth functionals which
does not cover the most popular base learner for bagging, namely decision trees.

In particular, we obtain an asymptotic limiting distribution at the cube-root rate
for the split point when fitting piecewise constant functions. Denoting sample size by
n, it follows that in a cylindric neighborhood of diameter n−1/3 of the theoretically
optimal split point, the variance and mean squared error reduction of subagging can
be characterized analytically. Because of the slow rate, our reasoning also provides an
explanation on the global scale for the whole covariate space in a decision tree with
finite many splits.

Heading: Explaining bagging
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1 Introduction

Advances in data collection and computing technologies have led to the proliferation of
large data sets. Bagging is one of the recent and successful computationally intensive
methods for improving instable estimation/classification schemes. It is extremely useful
for large, high dimensional data set problems where finding a good model/classifier in one
step is impossible because of the complexity and scale of the problem. Bagging [bootstrap
aggregating] was introduced by Breiman (1996a) to reduce the variance of a predictor. It
has attracted much attention and is frequently applied, although deep theoretical insight
has been lacking. Here we take a substantial step towards a better understanding of
bagging and its variant subagging [subsample aggregating].

Consider the regression set-up. The data is denoted by Li = (Yi, Xi) (i = 1, . . . , n)
with Yi the real-valued response and Xi a p-dimensional explanatory variable for the i-th
instance. Given a new explanatory feature or covariate x, a predictor for E[Y |X = x] =
f(x) [or of the response variable corresponding to x] is denoted by

θ̂n(x) = hn(L1, ..., Ln).

This estimator could involve a complex model or learning algorithm, for example linear
regression with variable selection via testing, regression trees such as CART [Breiman et
al., 1984] or MARS.

Definition 1.1 [Bagging]. Theoretically, bagging is defined as follows.

(I) Construct a bootstrap sample L∗i = (Y ∗i , X
∗
i ) (i = 1, . . . , n) according to the empirical

distribution of the pairs Li = (Yi, Xi) (i = 1, . . . , n).

(II) Compute the bootstrapped predictor θ̂∗n(x) by the plug-in principle; i.e., θ̂∗n(x) =
hn(L∗1, . . . , L

∗
n), where θ̂n(x) = hn(L1, . . . , Ln).

(III) The bagged predictor is θ̂n;B(x) = E
∗[θ̂∗n(x)].

In practice, the bootstrap expectation in (III) is implemented by Monte Carlo: for every
bootstrap simulation j ∈ {1, . . . , J} from (I), we compute θ̂∗n;(j)(x) (j = 1, . . . , J) as in

(II) to approximate θ̂n;B(x) ≈ J−1
∑J

j=1 θ̂
∗
n;(j)(x). J is often chosen in the range of 50,

depending on sample size and on the computational cost to evaluate the predictor, see
Breiman (1996a, section 6.2).

Breiman (1996a) describes heuristically the performance of bagging as follows. The
variance of the bagged estimator θ̂n;B(x) is equal or smaller than that for the original
estimator θ̂n(x). There can be a drastic variance reduction if the original predictor is
‘instable’. On the other hand, the magnitudes of the bias are roughly the same for the
bagged and the original procedure. It implies that bagging improves the mean squared
error a lot for ‘instable’ predictors whereas it remains roughly the same for ‘stable’ schemes.
This has been observed in empirical studies, cf. Breiman (1996a). We add here deeper
insight based on theoretical results and correct some previous beliefs about bagging.

Breiman (1996b) gives a heuristic definition of instability: a predictor is ‘instable if
small changes in the data can cause large changes in the predicted value(s). We formalize
here a precise definition that is not inconsistent with Breiman’s.
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Definition 1.2 [Stability of a predictor]. A statistic θ̂n = hn(L1, . . . , Ln) is called stable
if θ̂n = θ + oP (1) (n→∞) for some fixed value θ.

Although this definition resembles very much the one for consistency, it is very different
since the value θ here is only a stable limit and not necessarily the parameter of interest.
Instability thus takes place whenever the procedure θ̂n is not converging to a fixed value:
another [even infinitely long] realization from the data generating distribution would pro-
duce a different value of the procedure, with positive probability. Much of our coverage
of bagging will be on instable predictors as defined above. They arise mainly when hard
decisions with indicators are involved as in decision trees [see sections 2 and 3].

The only theoretical investigation on why bagging works is Friedman and Hall (2000).
They argue that, for a class of smooth estimators, the first order or leading variance term
in an asymptotic analysis remains unchanged under bagging, but the second order variance
term is improved (effects on the mean squared error are not studied). This is unsatisfactory
since simulation and empirical studies show improvements too large for the second order
explanation, for example when sample size is large. Despite of the fact that Friedman and
Hall (2000)’s framework is nonlinear, it excludes the prominent case of decision trees: this
seriously limits the scope of explanation of bagging provided by their work.

For non-smooth and instable predictors, we demonstrate in this paper that bagging
does improve the first order dominant variance and mean squared error asymptotic terms,
as much as a factor 3. Such prediction schemes include decision trees like CART and
subset model selection techniques via testing, where indicators play a prominent role. We
pay special attention to decision trees and analyze an original predictor that is a tree
with one or finitely many binary splits, a so-called stump or best-first induced binary tree
[without pruning], respectively. The asymptotics are non-standard: the splitting variable
turns out to have a convergence rate n−1/3 and the limiting distribution can only be
characterized in terms of Airy functions [see Groeneboom, 1989] not leading to a closed
[or at least ‘simpler’] expression. In such non-standard problems, the bootstrap in the
bagging procedure described above does not work in the conventional sense and is hard
to analyze, at least from a theoretical point of view. As a promising variant of bagging,
more accessible for analysis, we propose subagging [subsample aggregating] in section 3.2.
But unlike more standard approaches to subsampling without replacement, we choose the
subsample size m = [an] with 0 < a < 1. This has appeared in Friedman and Hall (2000)
but without much justification. Based on rigorous results for subagged stumps and best-
first induced decision trees with finitely many splits, we show that subagging improves
upon variance and mean squared error. Besides theoretical arguments, subagging also has
substantial computational advantages since the original predictor is only evaluated many
times for m instead of n data points. Our results also illuminate why bagging combined
with boosting [cf. Bühlmann and Yu, 2000] can be a very effective method achieving both
variance and bias reduction for decision trees.

Unlike previously suggested, the success of bagging is not exclusively restricted to
high-dimensional schemes, since it works also well for stumps which involve only three
parameters [when the coordinate axis to split is assumed fixed]. When the original pre-
dictor involves a hard-thresholding indicator decision, our results show that bagging [and
variants thereof] can be interpreted as some data-driven soft-thresholding schemes, which
are characterized analytically. In order to compare with hard decision tree schemes like
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CART, we give a rigorous asymptotic result for the basic element in MARS [Friedman,
1991], as a prime example for a predictor involving a continuous, but non-smooth decision.
There, bagging, or variants thereof, do not increase [substantially] the prediction perfor-
mance. We also touch upon classification where the set-up can be somewhat different. In
the two-class case and under the assumption that the predictor has favorable ‘classification
bias’, small-order subagging asymptotically drives the misclassification rate to the Bayes
rate as subsample size m→∞ with m = o(n). Such an optimality result with subagging
does not hold in the regression case.

The rest of the paper is organized as follows. Section 2 contains results for predictors,
discontinuous and continuous, involving the conventional n−1/2-convergence rate. Section
3 introduces subagging, gives the non-standard n−1/3-rate result for the split in a binary
tree, and explains the variance reduction effect of subagging for such trees. The theoretical
arguments and interpretations are supported by some numerical experiments in section 4.
Conclusions are given in section 5 and the more involved proofs are collected in section 6.

2 Bagging with indicators: the standard case

A linear predictor remains the same under bagging. The simplest example is

θ̂n(x) ≡ Y n = n−1
n∑
i=1

Yi

with no explanatory variable x. Then

Y n;B(x) = E
∗[Y ∗1 ] = Y n.

Thus, the only interesting case has predictors θ̂n(x) that are nonlinear functions of the
data. For θ̂n(x) allowing an expansion into linear and higher order terms, Friedman and
Hall (2000) show that bagging reduces the variance of the only the higher order but not of
the leading first order asymptotic linear term. Moreover, they do not analyze theoretically
the bias term and thus not the mean squared error.

A very different type of estimators is studied here: we consider non-differentiable,
and even discontinuous, predictors θ̂n(x) which cannot be easily expanded. The classical
smooth function theory used by Friedman and Hall (2000) does not apply. We particularly
consider predictors involving indicator functions. They arise whenever a hard decision is
made. For example, CART as a decision tree or variable selection in regression models, for
which most of the empirical success of bagging has been reported, cf. Breiman (1996a),
Bauer and Kohavi (1999).

2.1 Plug-in applied to an indicator

One of the main ideas behind why bagging works can be demonstrated with a simple toy
example. Consider the predictor

θ̂n(x) = 1[d̂n≤x], x ∈ R, (2.1)
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where d̂n is a real-valued estimator based on data Li = (Yi, Xi) (i = 1, . . . , n). If d̂n is
asymptotically normal at rate b−1

n → 0,

bn(d̂n − d0)→D N (0, σ2
∞)

with an asymptotic variance 0 < σ2
∞ <∞. Then for an x in the b−1

n -neighborhood of the
parameter d0

x = xn(c) = d0 + cσ∞ b−1
n , (2.2)

we have the distributional approximation

θ̂n(xn(c))
D
≈ 1[Z≤c], Z ∼ N (0, 1). (2.3)

Denoting by Φ(·) the c.d.f. of a standard normal distribution, it follows that

E[θ̂n(xn(c))]→ P[Z ≤ c] = Φ(c) (n→∞),
Var(θ̂n(xn(c)))→ Φ(c)(1− Φ(c)) (n→∞). (2.4)

Thus, θ̂n(xn(c)) is inconsistent since the variance does not converge to zero. Moreover, it
is instable in the sense of Definition 1.2: the predictor assumes the values 0 and 1 with a
positive probability, even as n tends to infinity. On the other hand, the bagged predictor

θ̂n;B(xn(c)) = E
∗[1[bn(d̂∗n−d̂n)/σ∞≤bn(xn(c)−d̂n)/σ∞]]

D
≈ Φ(c− Z), Z ∼ N (0, 1), (2.5)

where the last approximation follows by assuming that the bootstrap works [see (A1)
below] and using (2.3). To formally summarize formulae (2.3) and (2.5), we need the
following assumption:

(A1) For some increasing sequence (bn)n∈N,

bn(d̂n − d0)→D N (0, σ2
∞),

sup
v∈R
|P∗[bn(d̂∗n − d̂n) ≤ v]− Φ(v/σ∞)| = oP (1),

with 0 < σ2
∞ <∞.

(A1) requires only that the bootstrap works. Due to the results in Giné and Zinn (1990),
this essentially holds by assuming i.i.d. observations and d̂n a smooth functional evaluated
at the empirical distribution.

Proposition 2.1 Assume (A1). For the predictor in (2.1) with x = xn(c) as in (2.2),

θ̂n(xn(c))→D g(Z) = 1[Z≤c],

θ̂n;B(xn(c))→D gB(Z) = Φ(c− Z),

where Z ∼ N (0, 1).
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Figure 2.1: Indicator predictor from (2.1) at x = xn(0) = d0 as in (2.2). Function
g(z) = 1[z≤0] [solid line] and gB(z) [dotted line] defining the asymptotics of the predictor
and its bagged version [see Proposition 2.1].

The distributional approximation of θ̂n(xn(c)) is g(Z) with g(z) = 1[z≤c] a hard-
threshold function; the bagged analogue is gB(Z) with gB(z) = Φ(c − z) a soft-threshold
function. Figure 2.1 illustrates the two functions g(·) and gB(·). Bagging reduces variance
due to the smoothing or soft- instead of hard-thresholding operation.

Before giving more details, let us consider the instructive case where x = xn(0) = d0;
i.e., x is exactly at the most instable location, where Var(θ̂n(x)) is maximal. Proposition
2.1 gives

θ̂n;B(xn(0))→D Φ(−X) = U, U ∼ Uniform([0, 1]).

Thus,

E[θ̂n;B(xn(0))]→ E[U ] = 1/2 (n→∞)

Var(θ̂n;B(xn(0)))→ Var(U) = 1/12 (n→∞).

Comparing with (2.4), bagging is asymptotically unbiased [the asymptotic parameter to be
estimated is limn→∞ E[θ̂n(xn(0))] = Φ(0) = 1/2], but the asymptotic variance is reduced
by a factor 3! We will see below that for a whole range where c 6= 0 in (2.2) [i.e., x 6= d0],
bagging still reduces variance while adding only little to the bias.

We compute now the first two asymptotic moments in the instable region with x =
xn(c). Denote the convolution of f and g by f ∗g(·) =

∫
R f(·−y)g(y)dy, and the standard

normal density by ϕ(·).

Corollary 2.1 Assume (A1). For the predictor in (2.1) with x = xn(c) as in (2.2),

(i) limn→∞ E[θ̂n(xn(c))] = Φ(c),
limn→∞Var(θ̂n(xn(c))) = Φ(c)(1− Φ(c)).

(ii) limn→∞ E[θ̂n;B(xn(c))] = Φ ∗ ϕ(c),
limn→∞Var(θ̂n;B(xn(c))) = Φ2 ∗ ϕ(c)− (Φ ∗ ϕ(c))2.

Proof: Assertion (i) is straightforward. Assertion (ii) follows by Proposition 2.1 to-
gether with the boundedness of the function gB(·) therein. �
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Figure 2.2: Indicator predictor from (2.1) at x = xn(c) as in (2.2). Asymptotic variance,
squared bias and mean squared error [AMSE] for the predictor θ̂n(xn(c)) from (2.1) [solid
line] and for the bagged predictor θ̂n;B(xn(c)) [dotted line] as a function of c.

Numerical evaluations of these first two asymptotic moments and mean squared error
[MSE] are given in Figure 2.2. We see that for |c| ≤ 2.3, bagging improves the mean
squared error. The biggest gain is at the most instable point x = d, corresponding to
c = 0. The squared bias with bagging has only a negligible effect on the MSE [note the
different scales in Figure 2.2].

2.2 Variable selection via testing in linear models

Consider the linear model

Yi = (Xβ)i + εi, i = 1, . . . , n,

where X is the n×p random design matrix (Xij), β is a p×1 parameter vector and ε1, . . . , εn
are i.i.d. with expectation zero and variance σ2. Assume that the columns in X are
orthogonal [in expectation]: this simplifies the mathematical problem, although the results
are expected to be relevant by weakening this requirement. The least squares estimate β̂n
is then asymptotically normally distributed at rate n−1/2 [assuming the finiteness of the
second moment of the covariate vector] with independent components; testing individual
hypotheses H0,j : βj = 0 (j = 1, . . . , p) is thus a reasonable model selection procedure. A
predictor of interest is then

θ̂n(x) =
p∑
j=1

β̂j 1[|β̂j |>un,j ] x
(j)

with x(j) the j-th component of x. For example, the thresholds could be un,j = Cjn
−1/2

[the choice Cj = t(1−α/2)(n − 1)σ̂/
√
n−1

∑n
i=1X

2
ij would correspond to the [conditional]
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t-test on significance level α]. Due to the asymptotic independence of the components of
β̂n, the MSE is asymptotically additive with p individual MSEs. We thus consider without
loss of generality the predictor

θ̂n(x) = β̂ 1[|β̂|>un] x, x ∈ R
1, (2.6)

where β̂ is the least squares estimator in the model

Yi = βXi + εi, X1, . . . , Xn R-valued and i.i.d. with E|Xi|2 = 1,
{εi}i i.i.d. and independent from {Xi}i, E[εi] = 0, Var(εi) = σ2 <∞. (2.7)

The threshold is assumed to be of the form

un = un(c) = cσn−1/2. (2.8)

Under the null-model β = 0, this choice leads to a stable predictor θ̂n(x) according to
Definition 1.2. But instability arises when scaling the predictor θ̂n(x) = β̂ 1[|β̂|>un] x with

n1/2 which becomes an interesting case for bagging.

Proposition 2.2 Assume model (2.7) with β = 0 and E|εi|4 <∞, E|Xi|4 <∞. For the
predictor in (2.6) with un = un(c) as in (2.8),

n1/2σ−1θ̂n(x)→D g(Z) = (Z − Z 1[|Z|≤c])x,

n1/2σ−1θ̂n;B(x)→D gB(Z),

where Z ∼ N (0, 1), and

gB(Z) = (Z − {ZΦ(c− Z)− ϕ(c− Z)− ZΦ(−c− Z) + ϕ(−c− Z)})x.

Proof: See section 6.

The interpretation is similar to the one in section 2.1: the original predictor is approx-
imated by g(·) which involves a hard-threshold indicator, whereas the bagged predictor
by gB(·) which is a soft-threshold function. The functions g(·) and gB(·) are displayed
in Figure 2.3. From Proposition 2.2 we can numerically compute the bias, variance and
MSE of θ̂n(x) and θ̂n;B(x) as a function of un(c) [similarly as in Corollary 2.1 and using
uniform integrability]: the results are displayed in Figure 2.4. The gain with bagging is
quite substantial around c = Φ−1(0.975) = 1.96 which arises for n large under two-sided
t-testing on significance level 5%. The bias and mean squared error are here defined for
estimating the quantity βx ≡ 0 since β = 0; this is different from the centering in section
2.1 where the original predictor is assumed to be asymptotically unbiased [this version can
also be deduced from the information in Figure 2.4]. In this particular situation, bagging
even has smaller asymptotic bias [for most values of c]; but the bias effect plays again a
negligible role in terms of MSE.
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Figure 2.3: Predictor from (2.6) in linear model (2.7). Solid line: function g(z) from
Proposition 2.2, defining the asymptotics of θ̂n(xn(0)). Dotted line: function gB(z) from
Proposition 2.2, defining the asymptotics of θ̂n;B(xn(0)).
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Figure 2.4: Predictor from (2.6) with threshold un = un(c) from (2.8) in linear model
(2.7). Asymptotic variance, squared bias and mean squared error [AMSE], standardized
by the factor nσ−2, as a function of c. Solid line: predictor θ̂n(1). Dotted line: bagged
predictor θ̂n;B(1).

9



2.3 MARS: a soft decision algorithm

We investigate here the effect of bagging on the soft decision algorithm MARS [Friedman,
1991]. For a one-dimensional predictor space, the basic function in MARS is a piecewise
linear spline function [x− d]+ = (x− d) 1[d≤x]. Its estimated version takes the form

θ̂n(x) = β̂n[x− d̂n]+, (2.9)

with the least squares estimates

(β̂n, d̂n) = argminβ,d
n∑
i=1

(Yi − β[Xi − d]+)2 (2.10)

for the best projected values

(β0, d0) = argminβ,d E[(Y − β[X − d]+)2]. (2.11)

These estimators behave differently from the hard decision algorithms in a crucial way.
We illustrate it in the regression model,

Yi = f(Xi) + εi, supp(Xi) = D ⊆ R1 an open set, supp(εi) = R (i = 1, . . . , n), (2.12)

where {Xi} and {εi}i are i.i.d. sequences, independent of each other. Moreover, E[εi] =
0, Var(εi) = σ2 <∞.

Proposition 2.3 Consider the regression model (2.12) with E|Yi|2 < ∞, E|Xi|2 < ∞.
Assume the density function for Xi is positive everywhere and bounded over a neighborhood
of the best projected parameter d0. Then, the estimators in (2.10) are asymptotically
independent and

√
n(β̂n − β0)→D N (0, σ2

β),
√
n(d̂n − d0)→D N (0, σ2

d),

where β0, d0 are as in (2.11).

Proof: The argument is essentially the same as that in Chan and Tsay (1998), noting that
finite second moments are sufficient for independent data. �

Proposition 2.4 Under the assumptions of Proposition 2.3, the bootstrap works:

sup
v∈R
|P∗[
√
n(β̂n − β0) ≤ v]− Φ(v/σβ)| = oP (1),

sup
v∈R
|P∗[
√
n(d̂n − d0) ≤ v]− Φ(v/σd)| = oP (1),

with σ2
β, σ

2
d from Proposition 2.3.

Proof: We sketch an outline. The bootstrap works here for empirical processes needed
to deal with the problem, cf. Giné and Zinn (1990). Then, the proof for Proposition 2.3
can be adapted for the bootstrap. �
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Figure 2.5: MARS basis function. Solid line: function g(z) from Proposition 2.5 defining
the asymptotics of θ̂n(xn(0)). Dotted line: function gB(z) defining the asymptotics of
θ̂n;B(xn(0)).

Following Proposition 2.3, the MARS predictor (2.9) in the simplest case is stable in
the sense of Definition 1.2, even for x in an n−1/2-neighborhood of d0. Note that this
is not true for the indicator case in section 2.1, but it does hold for the predictor in the
variable selection problem from (2.6). Due to the hard decision in the latter case, bagging
brought in an substantial improvement in terms of the leading MSE of order O(n−1) [see
Proposition 2.2 and Figure 2.4].

Consider now explanatory variables which are in a region around the non-differentiable
point [the ‘kink’] of the MARS predictor,

x = xn(c) = d0 + cσdn
−1/2. (2.13)

We can write

θ̂n(xn(c)) = β0(xn(c)− d̂)+ +OP (n−1), (2.14)

due to the convergence properties of β̂, d̂ and the neighborhood definition of xn(c). The
smoothing effect of bagging with MARS is described below.

Proposition 2.5 Under the conditions of Proposition 2.3,

n1/2σ−1
d θ̂n(xn(c))→D g(Z) = β0(c− Z) 1[Z≤c],

n1/2σ−1
d θ̂n;B(xn(c))→D gB(Z) = β0{(c− Z)Φ(c− Z) + ϕ(c− Z)},

where Z ∼ N (0, 1).

Proof: The first assertion is immediate from (2.14) and Proposition 2.3. The second
assertion follows by using Proposition 2.4 and analogously to the proof of Proposition 2.2
in section 6; in particular, we use again formula (6.3). �

The functions g(·) and gB(·) are displayed in Figure 2.5, and the MSEs displayed
in Figure 2.6 are obtained by integrating the limiting quantities from Proposition 2.5
[assuming enough moment conditions of the data]. In contrast, for the continuous MARS
decision [see Figure 2.5], the bagging improvement is almost negligible.
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Figure 2.6: MARS predictor θ̂n(xn(c)) from (2.9) with xn(c) from (2.13). Asymptotic vari-
ance, squared bias and mean squared error [AMSE], standardized by the factor nσ−2

d , as
a function of c. Solid line: predictor θ̂n(xn(c)). Dotted line: bagged predictor θ̂n;B(xn(c)).

The results for the basic MARS predictor (2.9) are also found to be relevant for more com-
plex predictions with MARS in section 4. In summary, our theoretical analysis does indeed
explain [partially] when bagging works for the standard n−1/2-rate and non-differentiable
estimators: it improves very little in the case of the continuous-decision MARS procedure,
but very much upon procedures involving hard, discontinuous decisions.

3 Subagging decision trees

A slight extension of the simple example in section 2.1 is a predictor of the form

θ̂n(x) = β̂` 1[x<d̂n] +β̂u 1[x≥d̂n] = β̂` + (β̂u − β̂`) 1[d̂n≤x],

where β̂` and β̂u are estimated constants for the regions where x is lower and ‘upper’ than
d̂n, respectively. If these β̂` and β̂u are converging in probability to their expectation,
they can be asymptotically treated as fixed and the results of section 2.1 apply [for x as
in (2.2)], provided that d̂n is asymptotically normal.

Decision trees such as CART are of the above type, with the predictor

θ̂n(x) =
J∑
j=1

β̂j 1[x∈Rj ], x ∈ R
p,

where {Rj : j = 1, . . . , J} is a partition of Rp and β̂j =
∑n

i=1 Yi 1[Xi∈Rj ] /
∑n

i=1 1[Xi∈Rj ].
The partition cells Rj are random and the information that x belongs to Rj can be written
as product of indicators of the form

1[x∈Rj ] = 1[x(i1)</≥d̂n,1] 1[x(i2)</≥d̂n,2] . . .1[x
(ikj

)
</≥d̂n,kj ]
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for some i1, . . . , ikj ∈ {1, . . . , p}, kj ∈ N and some estimators d̂n,i (i = 1, . . . , kj); < / ≥
denotes either one or the other relation, and x(j) the j-th component of x. However, the
asymptotic normality assumption for d̂n,i in (A1) from section 2 fails to be true. For
a simple decision tree we give in the next section a rigorous non-standard result, which
generalizes to more general decision trees.

3.1 Cube-root asymptotics for the one-split stumps

For a one-dimensional predictor space, a non-normal limit distribution is derived for the
split point in stumps, i.e. a binary tree with two terminal nodes. It is the basis for our
rigorous analysis of aggregation with stumps and its implications for large binary trees.
In model (2.12), consider now the decision tree predictor with stumps,

θ̂n(x) = β̂` 1[x<d̂n] +β̂u 1[x≥d̂n], (3.1)

where the estimates are obtained by least squares as

(β̂`, β̂u, d̂n) = argminβ`,βu,d
n∑
i=1

(Yi − β` 1[Xi<d]−βu 1[Xi≥d])
2. (3.2)

The best projected values are defined by

(β0
` , β

0
u, d

0) = argminβ`,βu,d E[(Y − β` 1[X<d]−βu 1[X≥d])
2]. (3.3)

Solving the normal equations of (3.3) gives

β0
` = E[Y |X < d0], β0

u = E[Y |X ≥ d0], f(d0) =
β0
` + β0

u

2

with f(·) from (2.12). When β̂` and β̂u are consistent for β0
` and β0

u, the asymptotics of the
predictor in (3.1) for x in a neighborhood of d0 is equivalent to θ̃n(x) = β0

` 1[x≤d̂] +β0
u 1[x>d̂].

To proceed, we make the following assumptions for model (2.12).

(A2) (i) [smoothness condition on f ] f(·) is continuous; and its first and second derivatives
f ′, f ′′ exist and are uniformly bounded in a neighborhood of d0 and f ′(d0) 6= 0.

(ii) [smoothness condition on the density functions of X and ε] X and ε have density
functions pX and pε respectively; the first derivative p′X exists and is uniformly
bounded in a neighborhood of d0, and pX(d0) 6= 0.

(iii) [moment condition] E[ε] =
∫∞
−∞ ypε(y)dy = 0, σ2 =

∫∞
−∞ y

2pε(y)dy <∞;

(iv) [tail condition] the marginal density pY of Y satisfies pY (y) = o(|y|−(4+δ)) for
some δ > 0 and as |y| → ∞.

Condition (iv) is satisfied, for example, when the same tail condition holds for pε as in the
case of Gaussian noise, and f is bounded on its domain D.

13



Theorem 3.1 Suppose assumption (A2) holds, β0
` 6= β0

u, and the best projected values
(β0
` , β

0
u, d

0) are unique. Then as n→∞,

n1/3(d̂n − d0)→D W := argmaxt[Q(t)sign(β0
` − β0

u)],

where the limiting process Q is a scaled, two-sided Brownian motion, originating from
zero, with a quadratic drift:

Q(t) = σ0B(t)− 1
2
V t2,

where σ2
0 = pX(d0)σ2, B(t) a two-sided Brownian motion, originating from zero, and

V = −pX(d0)f ′(d0) 6= 0.

Proof: see section 6.

Remark 3.1. Theorem 3.1 generalizes to the case where X in (2.12) is p-dimensional
with p > 1. All what is required is that the theoretically optimal component ι0 ∈ {1, . . . , p}
to split is unique.

Remark 3.2. The analysis for best-first induced binary trees with finitely many splits
[i.e. without pruning] is similar to Theorem 3.1. More details are given by Fact 3.1 in
section 3.4.

Groeneboom (1989, corollary 3.1) studies the distribution of the maximizer of process
B(t)− ct2 (c > 0) and gives its density function. Unfortunately, this density is not normal
and involves functions whose Fourier transforms are characterized by Airy functions. Since
it is in no sense simple and does not give any insights into the distribution of W, we refer
interested readers to Groeneboom (1989). Thus the asymptotic normality assumption
(A1) for d̂n in section 2 does not hold! Moreover, the bootstrapped estimator d̂∗n, when
centered around d̂n, does not converge to the same limiting distribution as that of W . The
proof of Theorem 3.1 offers some insights. The empirical LS objective function involves an
indicator function being not smooth itself. The n−1/3-asymptotics in Theorem 3.1 holds
largely due to the smoothness conditions in (A2) on the population density and conditional
density functions. These conditions are violated for the bootstrapped samples, for which
the underlying ‘population’ distribution is discrete.

It is worth-noting that (A1) about bootstrap consistency is not necessary for bagging
to work as long as the resulted bagged estimator is sensible itself. Conditional on the
original sample or the ‘population’ for the bootstrapped samples, d̂∗n spreads around d0

by taking one of the discrete values in the original sample. The resulted bagged stump
estimator is a weighted average of the stump estimators with split points at the original
sample values of Xi. So E∗[1[d̂∗n≤·]

] is still a smooth thresholding operation, similar to
the assertion in Proposition 2.1, although exact analysis seems difficult and we leave it as
an open research problem. As a computationally more efficient alternative which is also
accessible for analysis, we study next a variant of the bagging procedure.

3.2 Subagging

Subagging is a sobriquet for ‘subsample aggregating’ where subsampling is used instead
of the bootstrap for the aggregation. A predictor θ̂n(x) = hn(L1, . . . , Ln)(x) is aggregated

14



as follows:

θ̂n;SB(m) =
(

n
m

)−1 ∑
i1,...,im∈I

hm(Li1 , . . . , Lim), (3.4)

where I is the set of m-tuples whose elements in {1, . . . , n} are all distinct. This aggrega-
tion can be approximated by a stochastic computation: random sampling m times of the
data L1, . . . , Ln without replacement and averaging over the predictors based on random
subsamples, cf. Bickel et al. (1997).

We first consider an arbitrary predictor and then specialize to the examples in (2.1)
and (3.1).

Proposition 3.1 Let θ̂n(·) = hn(L1, . . . , Ln)(·) be any predictor which is symmetric in the
data L1, . . . , Ln. Assume that m ≤ n and E|hm(L1, . . . , Lm)(x)|2 < ∞ for all x. Then,
for any x,

E[θ̂n;SB(m)(x)] = E[hm(L1, . . . , Lm)(x)],

Var(θ̂n;SB(m)(x)) ≤ m

n
Var(hm(L1, . . . , Lm)(x)).

Proof: The subagged predictor θ̂n;SB(m)(x) is a U-statistic with kernel of order m. The
result then follows from a well known formula for the variance of a U-statistic, cf. Serfling
(1980). �

3.2.1 Fraction and half subagging

An interesting case is subagging with m = [an] with 0 < a < 1 [i.e. m a fraction of n]
and often a = 1/2 [half subagging]; and not with m of smaller order than n. The choice
a = 1/2 is also considered by Friedman and Hall (2000), mainly in simulations.

We assume now the following very mild condition.

(A3) For some increasing sequence (bn)n∈N,

P[bn(d̂n − d) ≤ x]→ G(x)

where G(·) is the c.d.f. of a non-degenerate distribution.

By Theorem 3.1, assumption (A3) holds for the split point in stumps with

bn = n1/3σ−1
∞ , σ2

∞ = lim
n→∞

n2/3 Var(d̂n) = V ar(W ). (3.5)

We evaluate expectation and variance of subagged estimators for the predictors in (2.1)
and (3.1) at instable locations. In the case of stumps (3.1), the explanatory variable x is
in an n−1/3-neighborhood of d0,

x = xn(c) = d0 + cσ∞n
−1/3, (3.6)

with σ2
∞ from (3.5).
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Theorem 3.2 [Fraction subagging for indicators and stumps]
Consider predictors as in (2.1) or (3.1) with x = xn(c) as in (2.2) or (3.6), respectively.
Assume that (A3) holds. Suppose m = [an] with 0 < a < 1. Then,

lim
n→∞

E[θ̂n;SB(m)(xn(c))] = β0
` + (β0

u − β0
` )G(cbm/bn),

lim sup
n→∞

Var(θ̂n;SB(m)(xn(c))) ≤ (β0
u − β0

` )2aG(cbm/bn)(1−G(cbm/bn))

lim sup
n→∞

E[
(
θ̂n;SB(m)(xn(c))− E[θ̂n(x(c))]

)2
]

≤ (β0
u − β0

` )2
(
(G(cbm/bn)−G(c))2 + aG(cbm/bn)(1−G(cbm/bn))

)
,

where β0
` = 0, β0

u = 1 for the predictor in (2.1).

Proof: See section 6.

The evaluation of the asymptotic MSE [AMSE] bounds in Theorem 3.2 depends on
the normalizing constants bn and the limiting distribution G(·) in (A3). If bn = C

√
n [C a

constant] and G(·) = Φ(·) the standard Gaussian c.d.f., the evaluation is straightforward
and the result is displayed in the top panel of Figure 3.1. In the case of the stumps
predictor, we know that bn = Cn1/3 [C a constant] and G(·) can be characterized in terms
of Airy functions: a more explicit form for G(·) is not possible. We thus rely on simulating
the asymptotic distribution G(·) and display the result in the bottom panel of Figure 3.1.
The description of subagging with larger decision trees is postponed to section 3.4.

3.2.2 Small order subagging

We refer to small order subagging when using a subsample size m = m(n) so that m →
∞, m = o(n). This is a classical approach with subsampling for distribution estimation,
cf. Bickel et al. (1997). However, such a choice is not very appropriate for subagging, as
explained in the next Theorem.

Theorem 3.3 [Small order subagging for indicators and stumps]
Assume the same conditions as in Theorem 3.2 but with m → ∞, m = o(n). Then, for
any c ∈ R,

lim
n→∞

E[θ̂n;SB(m)(xn(c))] = β0
` + (β0

u − β0
` )G(0),

lim
n→∞

Var(θ̂n;SB(m)(xn(c))) = 0,

lim
n→∞

E[(θ̂n;SB(m)(xn(c))− E[θ̂n(x(c))])2] = (β0
u − β0

` )2(G(0)−G(c))2,

where β0
` = 0, β0

u = 1 for the predictor in (2.1).

Proof: The results follow as for Theorem 3.2 by noting that m/n = o(1) [which plays
the role of a in Theorem 3.2] and bm/bn = o(1) since bn = Cn1/3. �

Numerical evaluation for the small order subagging is also displayed in Figure 3.1. In
the very regular case corresponding to the top panel in Figure 3.1, fraction subagging with
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Figure 3.1: Asymptotic mean squared error [AMSE] of original predictor and a bound
for the subagged version. Top: indicator predictor θ̂n(xn(c)) in (2.1) [solid line] and
θ̂n;SB(m)(xn(c)), with xn(c) as in (2.2). Bottom: θ̂n(xn(c)) in (3.1) [solid line] and
θ̂n;SB(m)(xn(c)), with xn(c) as in (3.6). In both cases: subsample size m = [an] or
m → ∞, m = o(n). The situation corresponds to Theorems 3.2 and 3.3, assuming
(A3) with bn = Cn1/3 and G(·) from Theorem 3.1. Everything scaled to β0

` = 0, β0
u = 1.
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a = 1/5 can already become quite bad for ‘weak instable regions’ where 1.5 ≤ |c| ≤ 4.5.
The situation is contrasted somewhat with stumps displayed in the bottom panel of Figure
3.1 [which displays a representative case; the asymptotics depends to a minor degree
on various characteristics of the true underlying data-generating mechanism]: fraction
subagging with a = 1/5 is not behaving poorly at ‘weak instable regions’ but improves
very much at ‘strong instable regions’ with |c| small [the latter is also true in the top
panel of Figure 3.1]. Small order subagging with m = o(n) can be very bad at ‘weak
instable regions’, in both cases corresponding to Figure 3.1. All this should be cautiously
interpreted because we give only an upper bound for the AMSE in fraction subagging and
actual performance may be better than this bound. Generally, the subsample size m can
be interpreted as a ‘smoothing’ parameter: m large corresponds to a small bandwidth
leading to small bias but large variance, and vice versa. From this view, small order
subagging has a bias being too large.

3.2.3 Small order subagging in classification

Aggregation in classification is often found empirically to improve similarly as in regres-
sion, see also section 4. However, from a mathematical perspective there is at least one
noticeable exception as described in the sequel.

Consider the two class problem: the data consists of the pairs Li = (Yi, Xi) (i =
1, . . . , n) but now with binary responses Yi ∈ {0, 1} and explanatory variables Xi ∈ Rp.
The task is to classify a new variable Y based on its corresponding explanatory X. Given
X = x, we wish to minimize the following misclassification risk for a classifier C(·),

MCR(x) = λ0P[C(x) = 1, Y (x) = 0] + λ1P[C(x) = 0, Y (x) = 1], λ0, λ1 > 0,

where λ0, λ1 are the misclassification losses. The classifier is chosen to be of the form [as
an estimated version of the optimal Bayes classifier],

Ĉn(x) = 1[P̂n(x)>λ], λ = λ0/(λ0 + λ1), (3.7)

where P̂n(x) is an estimate of P (x) = P[Y = 1|X = x]. (Su-)bagging of the classifier can
be constructed by voting [Breiman, 1996a] or as in another version [cf. Amit and Geman,
1997]

Ĉn;SB(m) = 1[P̂n;SB(m)(x)>λ], λ = λ0/(λ0 + λ1),

with P̂n;SB(m) as in the regression case and analogously for bagging instead of subagging.
We focus here exclusively on the case where P̂n(·) is given by stumps with a one-

dimensional explanatory variable, as described in section 3.1. The regression technique
is applied for an estimate of E[Y |X = x] = P[Y = 1|X = x] = P (x) and the estimator
thereof is as in (3.1). This is suitable if tree models are used for P̂n(·), cf. Hastie, Tibshirani
and Buja (1994). As in the regression case, we consider the case where x = xn(c) is in
a neighborhood of d0, described in (3.6). Then, the probability estimator P̂n(xn(c)) is
instable and hence potentially also the classifier Ĉn(xn(c)). At stable locations with x not
in a neighborhood of d, (su-)bagging doesn’t change the stump classifier in the first order.

Next a condition is introduced to ensure that the asymptotic stump predictor has
classification potential; otherwise, the classifier is asymptotically trivial.
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(A4) β0
` ≤ λ and β0

u > λ for the projected values in (3.3), λ = λ0/(λ0 + λ1).

The case with β0
` ≥ λ and β0

u < λ instead of (A4) leads to analogous results, but the
notation would need to be given separately. Moreover, we need the following assumption
for the classification case as in (A2).

(A5) (i) the conditional distribution P (x) = P[Y = 1|X = x] exists; P (·) is continu-
ous, and its first and second derivatives P ′, P ′′ exist, are uniformly bounded in a
neighborhood of d0 and P ′(d0) 6= 0;

(ii) the marginal density pX of X exists with support being an open set D ⊆ R;
the first derivative p′X exists, is uniformly bounded in a neighborhood of d0 and
pX(d0) 6= 0.

Theorem 3.4 [Small order subagging for classification]
Consider a classifier Ĉn(x) as in (3.7) with P̂n(x) from stumps in (3.1) with x = xn(c)
from (3.6). Assume (A4) and (A5). Suppose the best projected values β0

` , β
0
u, d

0 from
(3.3) are unique and subsample size m → ∞, m = o(n). Denote by MCRn;SB(m)(·) and
MCRn(·) the small order subagging stumps and the original stumps misclassification rate,
respectively. Let λ = λ0/(λ0 + λ1). Then,

MCRn;SB(m)(xn(c)) = 1[β0
`+(β0

u−β0
` )G(0)>λ](λ0 − P (d0)(λ0 + λ1)) + λ1P (d0) + o(1),

MCRn(xn(c)) = G(c)(λ0 − P (d0)(λ0 + λ1)) + λ1P (d0) + o(1).

Proof: See section 6.

Note that a rigorous analysis for bagging or fraction subagging seems very difficult at
this point. One needs the entire distribution of the asymptotic bootstrap (or fraction sub-
sampling ) for P̂ ∗n(·) which is highly nontrivial due to non-standard cube-root asymptotics
of the original P̂n(·). For regression, only the first two moments are involved for MSE
calculations.

We now give an extended discussion about Theorem 3.4. We always denote in the
sequel by λ = λ0/(λ0 + λ1). If P (d0) = λ, small order subagging does not change the
performance. This is actually a consequence of a general fact:

any classifiers MCR (xn(c)) converges to the Bayes-MCR(d0), (3.8)

provided that P (d0) = λ and P (·) continuous. This follows from formula (6.4) in section
6. A situation where this occurs is as follows: P (·) is continuous, point-symmetric around
1/2, i.e. P (x) = 1 − P (−x) and P (0) = 1/2, and the design density pX(·) for X is
symmetric around 0, i.e. pX(x) = pX(−x). Then, d0 = 0. It is then natural to choose
λ0 = λ1 = 1/2 as a priori probabilities since the overall chance for an event Y = 0 equals
1/2 and assuming equal costs for misclassification. Therefore, P (d0) = P (0) = 1/2 = λ.
Note that the condition P (d0) = λ describes that classification [even with the true P (·)]
is not sharp at x = d0: the classifier in (3.7) could as well be defined with the relation ‘≥’,
instead of ‘>’, which would lead in this case to the opposite result.

The interesting result is thus for P (d0) 6= λ. In most reasonable cases, the indica-
tor 1[β0

`+(β0
u−β0

` )G(0)>λ] in the MCR for subagging from Theorem 3.4 then ‘flips to the
advantageous side’: that is, sign(λ− P (d0)) = sign

(
λ− (β0

` + (β0
u − β0

` )G(0))
)
.

19



Theorem 3.5 Assume the situation in Theorem 3.4 with sign(λ−P (d0)) = sign
(
λ−

(
β0
`+

(β0
u − β0

` )G(0)
))

, where λ = λ0/(λ0 + λ1). Denote by MCRn;SB(m)(·) and MCRBayes(·)
the small order subagging stumps and Bayes misclassification rate, respectively. Then, for
any c ∈ R,

MCRn;SB(m)(xn(c)) = MCRBayes(d0) + o(1).

Proof: The Bayes classifier at xn(c) is 1[P (xn(c))>λ] → 1[P (d0)>λ] if P (d0) 6= λ [for
P (d0) = λ, use (3.8)]. The result then follows from (6.4) and Theorem 3.4. �

Small-order subagging can thus be asymptotically optimal among all possible clas-
sifiers [provided the assumptions in the above theorem hold]! This result fails to be
true with bagging or fraction subagging, since the random fluctuations in P̂n;B(·) or
P̂n;SB(m)(·) do not disappear at instable locations. The condition sign(λ − P (d0)) =
sign

(
λ− (β0

` + (β0
u − β0

` )G(0))
)

can be interpreted as ‘classification bias’ equaling zero:
β0
` + (β0

u − β0
` )G(0) is the asymptotic value of P̂n;SB(m)(xn(c)) and we only need it to be

on the same side as P (d0) relative to λ. We know that small order subagging induces
an estimation bias term, as described in Theorem 3.3: but this estimation bias might be
small enough to cause zero ‘classification bias’.

AMCR for subagging with stumps
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Figure 3.2: Classifier from (3.7) with λ0 = 0.55, λ1 = 0.45 and stumps from (3.1) at
x = xn(c) from (3.6). Asymptotic MCR(xn(c)) for original [solid line] and small order
subagged [dotted line] classifier as a function of c. The dotted line represents also the
Bayes MCR at xn(0) = d. The underlying model is as in (4.1).

We now argue that the condition about ‘classification bias’ equaling zero, i.e. sign(λ−
P (d0)) = sign

(
λ− β0

` + (β0
u − β0

` )G(0))
)

is plausible. We consider a particular example
[the argument easily translates to other examples]. Assume that P (x) = 1 − P (x) with
P (0) = 1/2. But now, suppose that the design density pX is symmetric around some
point −s (s > 0), i.e. pX(s − x) = pX(s + x). Then, d0 < 0. Moreover, assuming equal
costs for misclassification, we choose the misclassification losses λ0, λ1 as reasonable a-
priori probabilities for the events Y = 0 and Y = 1, respectively. Due to symmetry of P (·)
around 0 and of pX(·) around −s, a reasonable choice satisfies λ0 > 1/2, λ1 = 1−λ0 < 1/2.
Again due to symmetry, β0

` < 1 − β0
u [or β0

` + β0
u < 1]; since G(0) = 1/2, we then obtain

β0
` + G(0)(β0

u − β0
` ) = 1/2(β0

` + β0
u) < 1/2 < λ0 = λ; this is the ‘correct side’ since

P (d0) < λ. This example is simulated in section 4 to see whether small order subagging
approaches the Bayes rate for finite sample sizes; compare also with Figure 3.2.
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3.3 Discussion

All the quantifications in the above sections hold in the limit. But Table 3.1 and Figure
3.3 show finite-sample situations for stumps θ̂n(x) with n = 100 and n = 10 in the model
(2.7) with f(x) = 2 + 3x, Xi ∼ Uniform([0, 1]) and εi ∼ N (0, 1); similarly as before, the
centering for bias and mean squared error is always around θn(x) = E[θ̂n(x)]. Bagging

n unbagged [MSE] bagging [MSE] half subagging [MSE]
100 0.076 0.033 (56%) 0.031 (59%)
10 0.244 0.172 (30%) 0.170 (30%)

Table 3.1: Overall mean squared error E[(θ̂n(X)−θn(X))2] [with X independent from the
training data] for stumps θ̂n(·) in (3.1) and its bagged and subagged (m = n/2) version.
Reduction with (su-)bagging is given in parentheses.

and half subagging are almost identical; a fact which we discover again in more complex
situations in section 4. The reduction in MSE with (su-)bagging is larger for n = 100
than for n = 10: but still substantial for the small sample size. The result with n = 10
is quite important because with a deep split in a decision tree such as CART, only such
a small number of observations belong to the partition cell to be refined. Figure 3.3 with

MSE for (su-)bagging with stumps
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Figure 3.3: Mean squared error of stumps θ̂n(x) in (3.1) [solid line] and its (su-)bagged
version θ̂n;SB(m)(x) for x ∈ [0, 1] . Sample size n = 100 and subsampling size m = [an].
Everything multiplied by the factor 1/(β0

u − β0
` )2 = 1/2.25 to obtain [asymptotically] the

scale from Figure 3.1.

n = 100 is qualitatively as the asymptotic situation in Figure 3.1 [bottom panel]. There
is a quantitative difference due to the fact that Figure 3.1 only shows bounds for the
asymptotic mean squared error. In other words, the bounds can be too conservative. For
this case, we get a bound of about 50% on the MSE reduction around the most instable
point c = 0 while the actual reduction is about 65%.
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Our theoretical analysis and its numerical illustrations have only been dealing with
a somewhat limited notion of bias. We have always given an a priori advantage to the
unbagged predictor and considered performance for estimating θ(x) = limn→∞ E[θ̂n(x)].
(Su-)bagging adds a small bias from this view. We decompose, even for general θ(x),

bn;SB(m)(x) = E[θ̂n;SB(m)(x)]− θ(x) = (E[θ̂n;SB(m)(x)]− E[θ̂n(x)]) + (E[θ̂n(x)]− θ(x)).

The first term reflects the bias due to aggregation with subagging, the second term rep-
resents the bias of the original predictor being independent of m. If m ≤ n increases, the
bias |bn;SB(m)(·)| decreases. One way to see this is from

bn;SB(m)(x) = E[hm(L1, . . . , Ln)(x)]− E[hn(L1, . . . , Ln)(x)],

where θ̂n(x) = hn(L1, . . . , Ln)(x): naturally, this is now expected to decrease in absolute
value as m increases. Another explanation is given through inspection of Theorem 3.2 and
also Theorem 3.3. More finite sample results about bias are given in section 4.

As an alternative to subagging, we briefly point to moon-bagging, standing for ‘m out
of n bootstrap aggregating’. The idea is to replace the bootstrap step by the m out of n
bootstrap [Bickel et al., 1997]: sample with replacement

L∗1, . . . , L
∗
m i.i.d. ∼ F̂n, (3.9)

where F̂n is the empirical distribution of the data L1, . . . , Ln and m is an integer smaller
than sample size n. Then, calculate

θ̂∗m(x) = hm(L∗1, . . . , L
∗
m)(x)

where θ̂n(x) = hn(L1, . . . , Ln)(x). The moon-bagged predictor with resampling size m is
then

θ̂n;MB(m)(x) = E
∗[θ̂∗m(x)].

The difference between moon-bagging and subagging essentially disappears for m small
[with respect to n]; particularly, Theorem 3.3 also applies for moon-bagging [if hn(·)(x) is
not greatly affected by ties], cf. Bickel et al. (1997).

3.4 Trees with many terminal nodes

This section discusses the relevance of our results about (su-)bagging with stumps to a
general binary decision tree with many terminal nodes and predictor space Rp with p > 1.

First we use Theorem 3.1 to assess the effect of subagging on the global mean squared
error for the one-split stumps. Recall that θ(x) = limn E[θ̂n(x)] has been defined as the
asymptotic value of the original predictor which is a suitable target when comparing the
original with the (su-)bagged procedure, because

E[(θ̂n(x)− f(x))2] ∼ E[(θ̂n(x)− θ(x))2] + (θ(x)− f(x))2,

where the last term will not be affected by the (su-)bagging aggregation. Denote by

MSEn = E[(θ̂n(X)− θ(X))2]

22



for a new test observation X ∈ R [notationally simpler than Rp] which is independent
from the data, having the same distribution as one data point. Denoting by pX(·) the
density for X, we rewrite

MSEn =
∫

MSEn(x)pX(x)dx,

where MSEn(x) = E[(θ̂n(x) − θ(x))2] for fixed x. Consider first the case with one split
[stumps]: the instability region is in a n−1/3-neighborhood of the best projected value d0.
Rewrite by setting x = d0 + vn−1/3,

MSEn = n−1/3

∫
MSEn(d0 + vn−1/3)pX(d0 + vn−1/3))dv.

Assuming that pX(·) is continuous in a neighborhood of d0 we have pX(d0 + vn−1/3)) →
pX(d0). Moreover, Theorem 3.1 indicates that MSEn(d0 + vn−1/3)→ m(v) for some func-
tion m(·) : R→ R

+. Assuming regularity conditions to interchange the integration with
the limiting operation [e.g. for applying Lebesgue’s Dominated Convergence Theorem],
we get

MSEn ∼ n−1/3pX(d0)
∫ ∞
−∞

m(v)dv.

Analogously, we obtain for the (su-bagged) predictor, but now with a different function
mSB(·),

MSEn;SB ∼ n−1/3pX(d0)
∫ ∞
−∞

mSB(v)dv.

Our rigorous analysis in subsection 3.2 has shown that mSB(v) << m(v) for v close to
zero, mSB(v) < m(v) for most v ∈ R with m(v), mSB(v) not very close to zero. We thus
conclude that the gain with (su-)bagging for stumps is asymptotically given by

MSEn;SB/MSEn ∼
∫
mSB(v)dv/

∫
m(v)dv, (3.10)

which is usually much smaller than one. Using Remark 3.1 and the same arguments from
above, this easily generalizes to stumps with p-dimensional covariate space.

A general binary decision tree with k splits is given by a sequence of component indices
ι̂(i) ∈ {1, . . . , p} and a sequence of splitting variables d̂i ∈ R (i = 1, . . . , k): the ith split,
the component ι̂(i) of Rp and the threshold d̂i, then describes the decision to make a
refinement of the previous partition, cf. Breiman et al. (1984).

Let us first consider a two split [three terminal node] decision tree in the case of a
1-dimensional predictor space as a generalization to the stumps result in Theorem 3.1.
The first split d̂1 is estimated as with stumps in (3.2), leading to two partition cells
R` = {x : x < d̂1} and Ru = {x : x ≥ d̂1}. The second split d̂2 is defined as

(β̂2;`, β̂2;u, d̂2) = argmind2<d̂1

∑
i=1

(Yi − (β2;` 1[Xi<d2] +β2;u 1[Xi≥d2] +β̂1;u 1[X1≥d̂1]))
2,

where β̂1;u is the estimated location for the upper partition cell Ru from the first split.
The following can then be shown.
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Fact 3.1 Under similar conditions as in Theorem 3.1, but now for the conditional densi-
ties of Y |X < d0

1 and X|X < d0
1 [where d0

1 is the best projected value for the first split as
in (3.3)],

n1/3(d̂2 − d0
2)→D W2,

where W2 is a maximizer of a two-sided Brownian motion with quadratic drift, similar to
Theorem 3.1.

A sketch of a proof is given in section 6. Note that the second split has the same
convergence rate n−1/3 but the limiting distribution of W2 might have a different scale
[variance] from the one from the first split described in Theorem 3.1. Nevertheless, (su-
)bagging has about the same relative variance reduction effect on the second as on the
first split.

Consider now the global MSE with two splits and optimal projected values for the
first and second split d0

1 and d0
2, respectively [for notational simplicity again with one-

dimensional covariates]: without loss of generality assume d0
1 > d0

2. Then, we write

MSEn =
∫ d0

2+κ

−∞
MSEn(x)pX(x)dx+

∫ ∞
d0

2+κ
MSEn(x′)pX(x′)dx′,

where κ > 0 is arbitrary small. Now use the substitutions x = d0
2 + vn−1/3 and x′ =

d0
1 +v′n−1/3. Due to Theorem 3.1 and Fact 3.1, MSEn(x) and MSEn(x′) converge to m2(v)

andm1(v′), respectively. Assume that regularity conditions to interchange integration with
the limiting operation hold, as in the case with stumps. Then, for a two split tree,

MSEn ∼ n−1/3[pX(d0
1)
∫
m1(v)dv + pX(d0

2)
∫
m2(v)dv].

Using the same arguments for (su-)bagging suggests

MSEn;SB ∼ n−1/3[pX(d0
1)
∫
m1;SB(v)dv + pX(d0

2)
∫
m2;SB(v)dv].

Now, Theorem 3.2 [use also Fact 3.1 for the seconds split] suggests a reduction so that
both ∫

mi;SB(v)dv/
∫
mi(v)dv << 1, i = 1, 2. (3.11)

For a two split tree, elementary algebra then leads to

lim sup
n→∞

MSEn;SB/MSEn ≤ max
i=1,2

(∫
mi;SB(v)dv/

∫
mi(v)dv

)
,

which is substantially smaller than one due to (3.11). The relative gain with (su-)bagging
should thus be similar to the one for stumps in (3.10).

Fact 3.1 and the arguments about the MSE easily extend to a finite number of splits
and even to the case where the number of splits grows slowly. Moreover, the argument
carries over to high-dimensional covariate space and thus to the case where decision trees
are most popular, see also Remark 3.1.
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      predictor space

Figure 3.4: Schematic representation of instability regions in 2-dimensional predictor
space. 5 binary splits [indicated by horizontal or vertical lines], instability regions [in-
dicated by diagonals].

We now argue that a large decision tree is strongly instable. Suggested by Theorem
3.1 and Fact 3.1, every splitting variable d̂i has a range An,i of instability in the predictor
space,

An,i = {x ∈ Rp : x(ι̂(i)) = d0
i + cσi,∞n

−1/3
i , c ∈ R}. (3.12)

Thereby, d0
i denotes the best projected value of the i-th splitting variable, σ2

i,∞ the limiting
variance of d̂i, and ni the number of observations involved for determining this split. We
have implicitly assumed here that the asymptotic quantities are well defined. Already a
moderate number of instability regions An,1, An,2, . . . , An,k fill out the predictor space Rp,
see Figure 3.4 [note that also with p > 2 dimensions, instability regions are large; they are
p-dimensional subsets with one coordinate diameter O(n−1/3) and all others infinite]. The
reason for this is given by the relatively large diameter for a coordinate of instability region
An,i behaving as O(n−1/3

i ) with ni ≤ n. [We recognize that we are using our asymptotic
results to situations where ni have orders such as 10. The legitimacy of such a use is
supported, to a certain extent, by the simulation results in Table 3.1 for n = 10, in a
special model]. Figure 3.2 exploits this empirically: a relatively large instability region for
n = 100 with stumps having one-dimensional predictor space [0, 1] [with uniform design
for the explanatory variables]. We then conclude that ‘very many points’ in the predictor
space are instability point. Instability of hard threshold decision trees has been exploited
from a different view also by Loh and Shih (1997).

4 Numerical Examples

We reconsider the two examples from Breiman (1996a) by reporting here additionally on
bias and variance. Subagging as a variant of bagging is also investigate. The original
predictors are either decision trees as implemented in S-Plus with the function tree, or
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Figure 4.1: Performance for a large regression tree and MARS and their (su-)bagged
versions in the simulated model Friedman #1.

MARS as implemented with the function mars from the library MDA in S-Plus, available
from the internet at ‘http://lib.stat.cmu.edu/S/mda’.

4.1 Regression setting

We consider a simulation model, called Friedman #1 [Friedman, 1991]:

Yi = f(Xi) + εi (i = 1, . . . , n),
X1, . . . , Xn i.i.d. ∼ Uniform10([0, 1]10), ε1, . . . , εn i.i.d. ∼ N (0, 1),

where {Xi}i, {εi}i are independent from each other, and Uniformp([0, 1]p) is given by p
i.i.d. univariate Uniform([0,1]) distributions. The regression function is

f(x) = 10 sin(πx(1)x(2)) + 20(x(3) − 1/2)2 + 10x(4) + 5x(5),

so that the other coordinates 6 to 10 of x are not contributing to f(·). Sample size is chosen
as n = 500. Our analysis is based on 100 simulation runs over the model; aggregation
is computed by 50 replicates [for each model realization]. Figure 4.1 displays the results:
the bias is here defined in the usual sense, namely for the true quantity f(·) [instead of
θ(·) = limn E[θ̂(·)]]. Note the different scales for decision trees and MARS. (Su-)bagging
works well for trees, whereas the original MARS is already close to optimal [optimal MSE
is 1] and (su-)bagging doesn’t really improve, being consistent with the analysis of bagging
in section 2.3.

We consider next the ozone data set [Breiman, 1996a]: it consists of 330 measurements
of maximum daily ozone in the Los Angeles area, and 8 meteorological predictor variables.
Aggregation is here computed with 25 replicates; and the mean squared error is estimated
as in Breiman (1996a): random division in 90% training and 10% test set, then calculating
the L2 test set error and finally averaging them over 50 training-test-set random divisions.

26



regression tree for ozone data

m

M
S

E

0 50 100 150 200 250 300

15
20

25
30

subagging
bagging
original

MARS for ozone data

m

M
S

E
0 50 100 150 200 250 300

15
20

25
30

subagging 
bagging
original

Figure 4.2: Mean squared error performance for a large regression tree and MARS and
their (su-)bagged versions for the ozone data.

Figure 4.2 displays the results. (Su-)bagging works well for decision trees, whereas it
yields no improvements for MARS; the (su-)bagged tree is about as good as the original
[or (su-)bagged] MARS predictor.

Note that in both examples, the MSE reduction with (su-)bagging is not quite as large
as in Table 3.1: this is due to the fact that the size of the bias [when centering around the
true value] somewhat decreases the relative performance gain.

4.2 Classification

We consider first a simulated example which corresponds to the situation described at the
end of subsection 3.2.2, and to Figure 3.2,

Y1, . . . , Yn independent, Yi ∼ Bernoulli(P (Xi)), log(P (x)/(1− P (x))) = x,

X1, . . . , Xn i.i.d. ∼ N (−0.25, 1). (4.1)

Sample sizes are n = 100 and n = 500. The numbers of simulations over the model and
replicates for aggregation are 100 and 50, respectively. Figure 4.3 displays the results.
As expected from Theorem 3.5 [the model (4.1) implies the conditions of Theorem 3.5],
subagging with a small subsample size m comes close to the Bayes MCR and outperforms
bagging, and more clearly the original classifier.

We consider here also the real data example about glass types [Breiman, 1996a]: there
are 6 classes and 9 chemical measurements as predictor variables. Sample size is n = 214.
The misclassification rate is estimated with random division in training-test-sets, analo-
gously as for the MSE with the ozone data set in the previous section. [The misclassi-
fication rate is P[C(X) 6= Y (X)], i.e. equal misclassification losses]. Figure 4.4 displays
the results. Bagging is slightly better than half subagging. This is one of the examples
showing among the worst [but still small] magnitude of loss with subagging compared to
bagging: relatively large subsample sizes are needed for good performance [maybe due
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Figure 4.3: Misclassification rate [MCR] for the classifier in (3.7) with P̂n(·) a stump and
its (su-)bagged version. The data is described by (4.1). Left panel: sample size n = 100.
Right panel: sample size n = 500.
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Figure 4.4: Misclassification rate [MCR] for the classifier in (3.7) with P̂n(·) a large tree
and its (su-)bagged version.
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to the relatively small training sample size, namely 189, for trees with many splits], in
contrast to Figure 4.3.

5 Conclusions

We have given new theoretical arguments to explain why bagging and its variant subagging
work asymptotically: they rely on the fact that the predictor is instable in the sense of
Definition 1.2. Generally, (su-)bagging doesn’t make the predictor stable, but it stabilizes
to a certain extent: with one mathematically noticeable exception where small order
subagging for classification stabilizes completely to the optimal Bayes predictor [provided
that assumptions (A4) and (A5) holds]! In cases where instability comes in through hard
decision indicators [arising often in many modeling techniques], (su-)bagging smoothes out
the hard- thresholds yielding a soft decision scheme. Our analysis also gives more insights
to the combined procedure with bagging and boosting [Bühlmann and Yu, 2000] which is
very competitive. In particular, non-standard asymptotic results about stumps are given
upon which we build our explanation how (su-)bagging works for decision trees with many
terminal nodes. The theoretical results are augmented by a small simulation study with
finite sample sizes to show that asymptotics kicks in rather quickly.

Moreover, we establish the fact that (su-)bagging also works for low-dimensional pre-
dictors such as stumps. This has not been recognized before. For example, Breiman
(1996a) and Dietterich (1996) [in his second implication] exclusively mention high dimen-
sional schemes. We show that half subagging is as accurate as bagging but computationally
cheaper. The latter is interesting for very large data sets, where fraction subagging with
m = [an], a > 0 requires much less computations but still maintains good performance
[due to the fact that m has still reasonable size]. The computational advantage of sub-
agging can be even compounded with a better performance in classification where small
order subagging can become optimal. In addition, we discuss why (su-)bagging can be
less effective for predictors such as MARS involving continuous decisions. This provides a
partial answer to the fifth implication in Dietterich (1996), which poses the question about
‘the degree of instability’, or in other words the degree of improvement with (su-)bagging.

Lastly, Freund and Schapire [1998, sec. 1] raise the issue about randomness for aggre-
gation in bagging in contrast to boosting [by deterministic reweighting]. (Su-)bagging, at
least as defined theoretically, doesn’t use extra randomness in the procedure. The aggre-
gates, namely the bootstrap expectation E∗[·] for bagging, or summing over the set I in
(3.4) in subagging are just fixed functions of the data: but the practical computation is
implemented by Monte Carlo. We believe that this random Monte Carlo approximation
has a negligible effect on the whole problem [which is the usual view in bootstrapping or
subsampling].

6 Proofs

Since the proof for Theorem 3.1 is long, we leave it to the end. Other proofs are given in
order.
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Proof of Proposition 2.2:
Since β = 0, β̂ →D N (0, σ2). Then, by the Continuous Mapping Theorem,

n1/2σ−1θ̂n(x) = g(n1/2σ−1β̂)→D g(X),

because the set of discontinuity points of g(·) has Lebesgue measure zero. This proves the
first assertion.

For the bagged predictor we use that

sup
v∈R
|P∗[n1/2(β̂∗ − β̂) ≤ v]− Φ(v/σ)| = oP (1),

cf. Freedman (1981): or in other words, n1/2(β̂∗ − β̂)→D N (0, σ2) in probability. There-
fore, using uniform integrability in probability for β̂∗ [which is ensured by E∗|β̂∗|2 =
OP (1)],

n1/2σ−1θ̂n;B(x)→D EW [W 1[|W |>c] |Z]x, (6.1)

where W ∼ N (Z, 1), Z ∼ N (0, 1). The right hand side of (6.1) is

EW [W 1[|W |>c] |Z]x = (Z − (EW [W 1[W≤c] |Z]− EW [W 1[W<−c] |Z]))x. (6.2)

Now, for any v ∈ R,

EW [W 1[W≤v] |Z] =
∫ v

−∞
wϕ(w − Z)dw =

∫ v−Z

−∞
(Z + s)ϕ(s)ds

= ZΦ(v − Z) +
∫ v−Z

−∞
wϕ(s)ds = ZΦ(v − Z)− ϕ(v − Z). (6.3)

Using (6.3) with v = c and v = −c for (6.2), we complete the proof by (6.1). �

Proof of Theorem 3.3:
According to (3.4),

E[θ̂n;SB(m)(xn(c))] = E[hm(L1, . . . , Lm)(xn(c))],

and the first assertion follows by the definition of xn(c) in (3.6).
For the variance, we invoke the bound in Proposition 3.1 and use straightforward

calculation as with the expected value, but now for Var(hm(L1, . . . , Lm)(xn(c))). �

Proof of Theorem 3.4:
Under assumption (A5), arguments similar to the proof of Theorem 3.1 below establish the
n1/3-asymptotics of d̂n. The misclassification rate MCR of a classifier C can be rewritten
as,

MCR(x) = π(x)(λ0 − P (x)(λ0 + λ1)) + λ1P (x), (6.4)

where π(x) = P[C(x) = 1]. For the original classifier,

P[Ĉn(xn(c)) = 1] = P[d̂n ≤ xn(c)] + o(1) = G(c) + o(1),
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according to (A4), Theorem 3.1 and the definition of xn(c) in (3.6). For the subagged
classifier, P[Ĉn;SB(m)(xn(c)) = 1] = P[P̂n;SB(m)(xn(c)) > λ] (λ = λ0/(λ0 + λ1)) follows
from Theorem 3.3. This completes the proof. �

Now we turn to the proof of Theorem 3.1:
Recall the definition of (β̂`, β̂u, d̂n) in (3.2). Under weak conditions [implied by (A2)],
β̂`, β̂u converge at the conventional n−1/2-rate to the projected values β0

` and β0
u defined in

(3.3). Without loss of generality, we concentrate on the limiting distribution of d̂n when
β` and βu take the projected values β0

` and β0
u in (3.3). That is, we consider in the sequel

d̂n = argmind
n∑
i=1

(Yi − β0
` 1[Xi<d]−β0

u 1[Xi≥d])
2.

Rewrite

(Yi − β0
` 1[Xi<d]−β0

u 1[Xi≥d])
2 − Y 2

i

= (β0
` )2 1[Xi<d] +(β0

u)2 1[Xi≥d]−2Yiβ0
` 1[Xi<d]−2Yiβ0

u 1[Xi≥d]

= (β0
` − β0

u)[(β0
` + β0

u)− 2Yi] 1[Xi<d] +β0
u(β0

u − 2Yi).

Assume now β0
` > β0

u [the other case β0
` < β0

u is analogous]. It follows that

d̂n = argmaxd
n∑
i=1

g(Li, d), g(Li, d) = (Yi −
β0
` + β0

u

2
) 1[Xi<d] . (6.5)

In general, let {g(·, θ) : θ ∈ Θ} be a class of functions indexed by a subset Θ in Rk. Its
envelope function GR(·) is defined as the supremum of g(·, θ) over the class

GR = {|g(·, θ)| : |θ − θ0| ≤ R}, R > 0.

We will apply the main theorem in Kim and Pollard (1990) which gives a cube-root
asymptotic limiting distribution of the maximizer of

Png(·, θ) :=
1
n

n∑
i=1

g(ξi, θ)

where {ξi}i is a sequence of i.i.d. observations from a distribution P .

Theorem 6.1 [Kim and Pollard, 1990].
Let {θn} be a sequence of estimators. Suppose

(i) Png(·, θn) ≥ supθ∈ΘPng(·, θ)− oP (n−2/3);

(ii) θn converges in probability to the unique θ0 that maximizes Pg(·, θ) = EP g(·, θ);

(iii) θ0 is an interior point of Θ.

Let the functions be standardized so that g(·, θ0) ≡ 0. Suppose the classes GR for R near
0 are uniformly manageable for the envelopes GR and satisfy
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(iv) Pg(·, θ) is twice differentiable with second derivatives matrix −V at θ0;

(v) H(s, t) = limα→∞ αPg(·, θ0 + t/α)g(·, θ0 + s/α) exists for each s, t in Rk and
limα→∞ αPg(·, θ0 + t/α)2{|g(·, θ0 + t/α| > εα} = 0 for each ε > 0 and t in Rk;

(vi) PG2
R = O(R) as R → 0 and for each ε > 0 there is a constant K such that

PG2
R 1[GR>K] <> εR for R near 0;

(vii) P |g(·, θ1)− g(·, θ2)| = O(|θ1 − θ2|) near θ0.

Then, the process n2/3Png(·, θ0 + tn−1/3) converges in distribution to a Gaussian process
Q(t) with continuous sample paths, expected value −1

2 t
′V t and covariance kernel H. If V

is positive definite and if Q has nondegenerate increments, then n1/3(θn − θ0) converges
in distribution to the [almost surely unique] random vector that maximizes Q.

We apply Theorem 6.1 by taking ξi = Li, θ = d, θn = d̂n, θ0 = d0 and with standard-
ized

g(L, d) = (Y −
β0
` + β0

u

2
)(1[X<d]−1[X<d0]).

First let’s find out the covariance kernel H:

Pg(·, θ0 + t/α)g(·, θ0 + s/α)

= E[(Y −
β0
` + β0

u

2
)2(1[X<d+s/α]−1[X<d])(1[X<d+t/α]−1[X<d])].

The above expression equals to 0 if s and t are on opposite sides of 0 or st < 0. If st > 0,
it equals ∫ min(s,t)

α
+d0

d0

pX(x)dx
∫ ∞
−∞

(y −
β0
` + β0

u

2
)2pε(y − f(x))dy.

Hence when st < 0, H(s, t) = 0 and when st > 0,

H(s, t) = lim
α→∞

α

∫ min(s,t)
α

+d0

d0

pX(x)dx
∫ ∞
−∞

(y −
β0
` + β0

u

2
)2pε(y − f(x))dy

= min(s, t)pX(d0)
∫ ∞
−∞

(y −
β0
` + β0

u

2
)2pε(y − f(d0))dy

= min(s, t)pX(d0)
∫ ∞
−∞

(y + f(d0)−
β0
` + β0

u

2
)2pε(y)dy

= min(s, t)pX(d0)
∫ ∞
−∞

y2pε(y)dy = min(s, t)pX(d0)σ2,

since pX(·) is continuous at x = d0 by assumption (i) in (A2).
If the other conditions are satisfied, then, as n→∞,

n1/3(d̂n − d0)→D W := argmaxtQ(t),
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where the limiting process Q is a scaled two-sided Brownian motion, originating from zero,
with a quadratic drift:

Q(t) = σ0B(t)− 1
2
V t2 = σ0(B(t)− 1

2σ0
V t2),

where σ2
0 = pX(d0)σ2, B(t) is two-sided Brownian motion, and

V = −h′′(d0) = −pX(d0)f ′(d0) > 0,

where h(d) := Pg(·, d) = E[(Y − β0
`+β0

u

2 ) 1[X<d]]; positivity of V is due to the assumption
that h(·) has a unique maximizer and the conditions in (A2)(i-ii).

Now let’s verify conditions (i-vii) one by one and in order.
Condition (i): Since Png(·, d) takes only finite values, this condition is trivially satisfied

with an equality.
Condition (ii): The graphs of our function class {g(·, d) : d ∈ (−∞,∞)} form a VC

class. Hence the class is manageable if it also has a square integrable envelope function.
An obvious envelope function is 2|Y − β0

`+β0
u

2 | and E|Y − β0
`+β0

u

2 |2 <∞ by assumption (iii)
in (A2).

It follows [cf. Pollard, 1990] that almost surely

supd|Png(·, d)− Pg(·, d)| → 0.

Expanding

h(d) =
∫ ∞
−∞

∫ d

−∞
(y −

β0
` + β0

u

2
)pX(x)pε(y − f(x))dxdy

makes it clear that h(·) is continuous by the smoothness conditions in assumption (A2).
Because d0 is the maximizer of h(·),

supd|Png(·, d)− Pg(L, d)|+ h(d0) ≥ |Png(·, d̂n)− h(d̂n)|+ h(d0)
≥ |Png(·, d̂n)− h(d̂n)|+ h(d̂n) ≥ Png(·, d̂n)
≥ Png(·, d0)→ h(d0).

The last limit holds due to the LLN. It follows that almost surely,

lim
n→∞

h(d̂n) = h(d0),

which implies that d̂n → d0 almost surely, because d0 is the unique maximizer of h(·) and
h(·) is continuous. Hence d̂n is a consistent estimator of d0.

Condition (iii): d0 is an interior point of D since D is assumed open and the maximizer
is assumed unique.

Now we calculate the envelope function with ξ = (x, y)

GR(x, y) := sup{g(x, y, d) : |d− d0| ≤ R}

= sup|d−d0|≤R[(y −
β0
` + β0

u

2
) 1[x<d]−1[x<d0]]

= |y −
β0
` + β0

u

2
|1[|x−d0|<R] .
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PG2
R = E(y −

β0
` + β0

u

2
)2 1[|x−d0|<R]

=
∫ d0+R

d0−R

∫ ∞
−∞

pX(x)pε(y − f(x))(y −
β0
` + β0

u

2
)2dydx

= 2R pX(d0)
∫ ∞
−∞

(y −
β0
` + β0

u

2
)2pε(y − f(d0))dy(1 + o(1))

[by the moment conditions in (A2)]
= O(R). (6.6)

Hence the envelope function is uniformly square integrable for R near 0 and therefore the
classes GR are uniformly manageable.

Condition (iv): h(d) := Pg(·, d) is twice differentiable at d = d0 because

h(d) =
∫ ∞
−∞

∫ d

−∞
pX(x)pε(y − f(x))(y −

β0
` + β0

u

2
)dxdy,

h′(d) =
∫ ∞
−∞

pX(d)pε(y − f(d))(y −
β0
` + β0

u

2
)dy = pX(d)(f(d)−

β0
` + β0

u

2
),

h′′(d) = p′X(d)(f(d)−
β0
` + β0

u

2
) + pX(d)f ′(d).

The existence of the derivatives in the calculation for h′′(d) follows from assumptions (i-ii)
in (A2). When the maximizer is unique, f(d0) = β0

`+β0
u

2 . It follows that

V = −h′′(d0) = −pX(d0)f ′(d0).

Condition (v): H(s, t) has been found in the beginning of this proof so that it is enough
to verify the second part. For each ε > 0 and t ∈ R1,

αP [g(·, d0 + t/α)2 1[g(·,d0+t/α)>εα]

= αE(y −
β0
` + β0

u

2
)2 1[x<d0+t/α] 1

[|y−
β0
`

+β0
u

2
|>εα]

≤ αE(y −
β0
` + β0

u

2
)2 1

[|y−
β0
`

+β0
u

2
|>εα]

≤ O(α
∫ ∞
εα

y2/y4+δdy) [by the tail condition (iv) in (A2)]

≤ O(α
∫ ∞
εα

1/y2+δdy) ≤ O(α/(εα)1+δdy)→ 0 as α→∞.

Condition (vi): The first part has been shown in (6.6). We now verify the second part.
For any ε > 0 and K > 0,

PG2
R{GR > K}
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≤ E(Y −
β0
` + β0

u

2
)2 1[|X−d0|<R] 1

[|(Y−
β0
`

+β0
u

2
|>K]

=
∫ d0+R

d0−R
pX(x)

∫
|y−

β0
`

+β0
u

2
|>K
|y −

β0
` + β0

u

2
|2pε(y − f(x))dydx

≤ MpXR o(1) as K →∞.

The last inequality follows from the fact that both f and pX are continuous at d0 hence are
bounded by constants Mf and MpX near d0 respectively and from the moment condition
(iii) in (A2).

Condition (vii): Without loss of generality, assume d1 < d2 which are near d0. Then,

|Pg(., d1)− Pg(., d2)| ≤MpX |d2 − d1|
∫ ∞
−∞

(|Y |+Mf + |
β0
` + β0

u

2
|)pε(y)dy,

because pX is bounded near d0 and the last integral is finite due to the moment condition
(iii) in (A2). �

Proof of Fact 3.1:
We provide only a sketch here. It is not hard to show that d̂2 is a consistent estimator
of d0

2 which is the population optimal split point when dividing the original domain of X
into two by d0

1 the limiting point of the first level split. Assume that these two split points
d0

1, d
0
2 are distinct and unique. Because of the consistency of their estimators, without loss

of generality, we assume d̂2 < d̂1. Then,

d̂2 = argmind2<d̂1

n∑
i=1

(Yi − β0
2,` 1[Xi<d2]−β0

2,u 1[Xi≥d2])
2 1[Xi≤d̂1],

where β0
2,` and β0

2,u are the best projected values corresponding to the lower partition
region. Rewrite

(Yi − β0
2,` 1[Xi<d2]−β0

2,u 1[Xi≥d2])
2 − Y 2

i

= (β0
2,`)

2 1[Xi<d2] +(β0
2,u)2 1[Xi≥d2]−2Yiβ0

2,` 1[Xi<d2]−2Yiβ0
2,u 1[Xi≥d2]

= (β0
2,` − β0

2,u)[(β0
2,` + β0

2,u)− 2Yi] 1[Xi<d2] +β0
2,u(β0

2,u − 2Yi).

It follows that, assuming β0
2,` > β0

2,u [without loss of generality]

d̂2 = argmaxd2<d̂1

n∑
i=1

g(Li, d2) 1[Xi<d̂1], g(Li, d2) = [Yi −
β0

2,` + β0
2,u

2
] 1[Xi<d2] .

Moreover,
n∑
i=1

g(Li, d2) 1[Xi<d̂1] =
n∑
i=1

g(Li, d2) 1[Xi<d0
1] +∆,

where

∆ =
n∑
i=1

g(Li, d2) 1[Xi<d̂1]−
n∑
i=1

g(Li, d2) 1[Xi<d0
1]

=
n∑
i=1

[Yi −
β0

2,` + β0
2,u

2
] 1[Xi<d2][1[Xi<d̂1]−1[Xi<d0

1]].
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Because d̂1 converges to d0
1 and d̂2 converges to d0

2, and d0
1 and d0

2 are distinct, so with
high probability,

1[Xi<d2](1[Xi<d̂1]−1[Xi<d0
1]) = 0

for d2 in a neighborhood of d0
2. That is, ∆ = 0 for d2 in a neighborhood of d0

2 and with a
high probability. It follows that with high probability,

d̂2 = argmaxd2<d̂1

n∑
i=1

g(Li, d2) 1[Xi<d̂1] = argmaxd2<d0
1

n∑
i=1

g(Li, d2) 1[Xi<d0
1] .

Comparing with (6.5), we have just shown that d̂2 will have the same asymptotic distri-
bution [but with possibly different distribution parameters] as the estimator for the first
level split. The key in this argument is that the instable regions are non-overlapping when
the tree is ‘finite’ relative to the sample size.
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