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Abstract

The dynamical behaviour and stability properties of the circular cylinder wake subject

to passive control is investigated using Direct Numerical Simulation (DNS) and stability

analysts. The control action consists of either suction or blowing at a steady flow rate

from a control arc symmetrically placed at the c\ linder base. The study is limited to two-

dimensional flows, at low Reynolds numbers (R( < %). where the non-manipulated flow is

either steady or characterized bv \ortex shedding.

DNS results show that, in the supercritical Reynolds number regime (Re > 47), slight

blowing or high enough suction stabilizes the wake; in the subcritical regime, suction can

destabilize the wake for lh > 17. and result in vortex shedding, whereas blowing does not

affect the How stability in this regime.

At supercritical Reynolds numbers, suction can siiongly modify the dynamics of vor¬

tex shedding, in comparison to the uncontrolled How. With increasing suction, the flow

frequency can drastically decrease, while the fluctuation amplitudes increase. At a critical

suction flow rate, the flow undeigoes a first bifurcation: it becomes steady and asymmetric

simultaneously. At a higher critical suction flow rate, the flow undergoes a second bifurcation

and becomes steady symmetric.

With increasing suction flow rate, the flow state is naturally alfectcd away from the

cylinder base. However, the computational domains used have finite size, and the assumption

of free stream velocity is made at the inflow and lateral boundaries. The study of the effects

of computational domain size on the simulation results suggests that the transition from a

steady asymmetric flow to a steady symmetric flow at very high suction flow rates, found

with the use of computational domains of finite size, may not exist in an infinite flow domain.

This transition occurs at increasing suction How rate with increasing domain size.

Global linear stability analysis calculations confiim the main results of the numerical

simulations. They show furthermore that, at supercritical Reynolds numbers, small suction

has an even further destabilizing elfect, as it increases the global growth rate of small per¬

turbations supeiimposed on the steady symmetric base flow solutions. High enough suction

is necessary to inverse the global growth late trend and lead to negative values, as also

deduced from DNS. Stability analvsis siiongly supports 1 he hypothesis that the transition

from steady asymmetric to steadx symmetric flow would not exist in an infinite flow domain.





Übersicht

Das dynamische Verhalten und die Stabilitätseigenschaffen der gesteuerten Nachlaufströ¬

mung hinter einem kreisförmigen Zylinder werden mittels direkter numerischer Simulationen

(DNS) und Stabilitätsanalyse untersucht. Zur Steuerung wird Fluid durtli einen symmetrisch

auf der Zylinder basis angeordneten Bogen stationär entweder abgesaugt oder eingeblasen.

Die Studie beschränkt sich auf zwei-dimensionale Strömungen bei tiefen Reynoldszahlen

(Ä? < 90), im stationären Zustand oder mit Wirbelablösung.

Die DNS-Ergebnisse zeigen, class bei überkritischen Reynoldszahlen (Bc > 47) sowohl

leichtes Blasen als auch genügend starkes Absaugen die Nachlaufströmung stabilisieren kann.

Im subkritischen Regime, und für Ec > 17. kann nur Absaugen die Strömung destabilisieren,

wobei sich eine Wubelablösung ergibt: Blasen hat keine Auswirkung auf die Stabilität der

Strömung in diesem Regime.

Im Vergleich zum ungesfeuerten System kann bei überkritischen Reynoldszahlen die

Dynamik der von Kärmän-Wirbelstrasse durch Absaugen stark modifiziert werden. Mit

zunehmendem Absaugen kann die Frequenz der Strömungsschwingungen stark reduziert

und dabei deren Amplitude erhöht werden. Bei einem kritischen Absaugdurchfluss tritt

eine erste Bifurcation auf: die Strömung wird gleichzeitig stationär und asymmetrisch. Bei

einem höheren kritischen Absaugdurchfluss wird eine zweite Bifurcation beobachtet, wobei

die Strömung stationär und symmetrisch wird.

Mit zunehmendem Absaugdurchfluss wird die Strömung in immer grösserer Distanz vom

Zylinder beeinflusst. Zur Simulation jeder Strömung wurde jedoch stets ein begrenzter

Bereich betrachtet, unter Annahme freier Strömungsgeschwindigkeit an den seitlich und

ström-aufwärt s vom Zylinder plazierten Bereichs-grenzen. Aus einer Studie der Auswirkun¬

gen, der Netzgrösse auf die Simulationsergebnisse ergibt sich, class der Übergang voti stationär-

asymmetrischen zu stationär-s\ m metrischen Strömungen üblicherweise im begrenzten Netz

ermittelt - in einem unendlichen Strömlings fehl wahrscheinlich nicht stattfinden würde. Mit

zunehmender Bereichs-grösse tritt dieser Übergang bei steigendem Absaugdurchfluss auf.

Die Stabilitätsanalysen bestätigen die Ergebnisse der direkten numeiischen Simulation.

Sie zeigen ausserdem, class bei überkritischen Reynoldszahlen leichtes Absaugen eine ver¬

mehrt, destabilisicren.de Wirkung hat, da die Wachstumsrate kleiner Störungen dadurch er¬

höht wird. Wie schon anhand der direkten Simulationen beobachtet, ist genügend starkes



Absaugen notwendig, um diese Tendenz umzukehren und die Wachstumsratc aul Werte unter

Null zu reduzieren. Die Resultate der Stabiütätsanalyse stützen die Hypothese, class der

Übergang vom stationär-asymmetrischen zum stationär-symmetrischen Strömungszustand

in einem unendlichen Strömungsfeld nicht existieren würde.
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Chapter 1

Introduction

1.1 Flow around a circular cylinder:

a prototype flow past bluff bodies

Flows around bluff bodies have been extensively studied for more than a century, with first

efforts dating back to 1878, with the experimental observations of Strouhal (1878) on the»

frequency dependence of aeolian tones, lie found that the frequency depends on the sur¬

rounding fluid velocity rather than on the properties of the wire material. Since then, a

very important, parameter in bluff body flows, the "Strouhal number", representing the non-

dimensional flow oscillation frequency, is named after firm. Subsequently, a large number of

experiments, and much later, numerical simulations have been carried out to characterize

flows past bluff bodies, with the flow around a circular cylinder being the orre studied most,

extensively. Thus, a large amount of information and data on the dynamics and other flow-

properties is now available in the literature. However, the» topic is far from being closed, and

detailed studies on the prototype problem of the ciicttlar cylinder wake are still underway.

The practical importance of wake» flows (for example in aeiochnamies), and the fact that

they still defy our understanding make them a subject of particular interest. As indicated

in Fornberg (1993), the cvlinder wake belongs to those systems that arc easy to define, but

represent a real challenge to solve and understand their behaviour, making them only more

attractive. Up to the last few decades, reseaich objectives were focused on the dynamics

and physical properties of the uncontrolled flow in the steady or Aortex shedding regime

(for experimental results, sec at>u Karman 19Li. Roshko 1954. liittou 1959, Acha'os et ai.

1



1968, Hammache and Ghaiib 1991, Green and Gerrarcl 1993, and for numerical studies, see

Dennis and Chang 1970. Fornberg 1985. Braza et al. 1986). Detailed information related to

the problem is also reviewed by Williamson (1996), wlro has significantly contributed to 1 his

field. Currently, a large number of wake flows studies focuse on stability properties (see e.g.

Dùsek et al. 1991, Jackson 1987, Barkley and Henderson 1996, Diisek 1996) and to issues

related to low order modeling, primarily for control purposes (Park 1994. Monkewitz 1996,

Lloussopoutos and Monkewitz 1996. Gillies 1998. Graham et al. 1999a k 1999b).

In the absence of external forces, the dynamics of the incompressible flow of a Newtonian

fluid around a circular ca finder depends onK on the Reynolds number (here defined in terms

of the free stream velocitv and the cylinder diameter). Properties of this flow are» well known

for a wide range of the Reynolds number, from creeping (lows (Re —y 0) to fully turbulent

flows (Re « 107). The flow regimes can be classified as foil oats:

For R( < 6. the flow is steady and two-dimensional, with only one separation point,

at the rear stagnation point. This is the creeping flow regime, where the motion can be

accurately described by the Stokes model -a simplification of the» Navier-Stokes equations ,

Avhere the inertial terms (ach-cction) are neglected and only the viscous and pressure stresses

are considered in the momentum conservation equation.

In the range 6 < Re <-. 47. the flow is still steady and two-dimensional, but a Arortex pair

appears behind the cylinder, the recirculation length of which increases linearly with Re.

As Re is increased above Rt 2nr> ~ ^Y a periodic vortex shedding mode is excited in the

wake. This transition corresponds to a Hopf bifurcation of the dynamical system (Jackson

1987, Diisek 1994). Note that the critical value of 47 is found by means of computational

methods, which allow a perfectlv two-dimensional flow. In the absence of end-wall effects,

the flow remains strictly two-dimensional up to Re ~ 200. and forms a dynamical system

which can be described bv the» Stuart-Landau equation (Matfiis ct al. 1981, Pixwansal et al.

1987).

At Re ?s 200. the flow undergoes a second bifurcation and becomes three-dimensional,

as first reported in the numerical studies of Tomboulides et al. (1992) and Karniadakis

and Triantafyllou (1992). Noack and Fckeflmann (1991) and Barkley and Henderson (1996)

performed Floquet stability anahsis of the two-dimensional flow, and determined the critical

Reynolds number at which the Avnkc becomes three dimensional. I hey reported the \7du0s of



R^3D,n — 1 70 and Rt n) u
= 188.5, respectively; the different numerical methods used, with the

one used by Barkley and Henderson being more accurate, lead to the discrepancy between

the reported values. Nevertheless, they both concluded that the bifurcation occurs via a

seconclaiw instability mode in the» spanwise direction.

As the» Reynolds number is further increased above i?C3p,,,, a number of other transi¬

tions occur, represented in the» plot of 'base suction coefficient' Arersus Reynolds number (see

Roshko. 1993); the base suction coefficient (3) is defined by

where» />x and pi, represent the static pressure of the free stream and at the base rear stag¬

nation point on the cylinder, respectively.

To summarize, in the range 0 <, R( <. 200. there are two critical Reynolds numbers.

R("2D.ci — -17 and Rt j/>, ,
= 188.5. Rt 2D a

's Ihe threshold at which the Avake first become»s

oscillatory but remains two-dimensional, while Re {/•>,, represents the threshold above which

the AAvtko becomes three-dimensional.

1.2 Brief review of hydrodynamic stability concepts

Early investigations on flow instability and transition to turbulence were conducted by

Reynolds (1883). and Ra\ leigh (1892). An extensive revicAv on the subject is given by

Drazin and Reid (1981). and more recent theoretical advances can be found in. Huerre and

Monkewitz (1990).

Hydrodynamic instability is classified into two typos: global and local. Global stability

is related to the most common concept in dynamical systems. In two-dimensional flow

problems, it is referred to as the asymptotic stability of a steady flow field. A globally

unstable flow is characterized bv the» growth of self-sustained oscillations until a saturated

non-linear state is reached. In the case of the circulai ca linder wake, this results in the well

known von Karman a ort ex street, which is illustrated by the instantaneous vorticity contour

plot for Re =90 (Figure l.L). Those oscillations, characterized bv a single frequency over the

entire How field, form a limit evele in the saturated non-linear regime». I hey are- also referred

to as a 'global mode", linear at the eailv stage of its formation, and non-linear in the limit

cycle regime. A linear global mode becomes unstable when a system parameter, e.g. the

3



I rgttie 1 1 Colour coded voiticitA isocontoms of the circulai c\lmclei wake at R( - 90

ReA nolds number is me lease el above a critical Aaluc 1 meat global modes can be obtained

bv lineari/ing the \aviet Stokes equations aiounel the steach solution and bv solving the

coi re spending e tsemalue pioblem In two dimensions I he dv namics of a linear tdobal mode

has the foim Avhen expressed rn a caitcsran cooidmdc Astern

u'(i i, f)- ( '(i i,)t YY)

i'(i V t) =\'(i y)<
u

(21))

p'(i y t) =P'(i <j)e
°*

(2c)

where (Y ;;) and // aie tfit instantaneous acIocUa and pressure peitutbations fields u

spectne Iv uicl O is the complex line at global frequencA (e igenviluc of the Imean/ecl s\ stein)

^ - °/? x ?°j Lfif condition tot global mstabilih i 'In existence of eigcnmodes defined

bv the fields (J M
'

H such that 0,^0

Global stabihtA anahsis is a °ennal concept m chnamic il s\ stems w Inle local nbilitv

malv sis is spe cific to the held of In droelvn mues fo p< > fo' m loc il s(abiht\ anah si1- one nut (:

make the assumption of localh par rile 1 flow In a pat alle 1 (low the velocitv i unidne c tional

md doc -, not de pend on the stremiww coordinate ^s fir xamplc m the ease of the flov



inside a long pipe. In a spatially developing flow, which is not, parallel by definition, the

parallel flow assumption is legitimate if the wave-length A of a typical instability is nrrrch

shorter than the characteristic length scale L of the spatial ewolution of the» flow, i.e.:

A « L. (3)

The characteristic length scale L is defined as:

i
_

J dl

where 0(x) represents a characteristic width, for example the momentum thickness.

m

Under the parallel flow assumption, the A-eloeity vector of a two-dimensional steady

('base') flow, expressed in a cartesian coordinate system (x.y). reduces to (lî'(y), 0). We

now consider a small initial perturbation superimposed on the base flow, and study its time»

evolution in terms of velocity ( Y, v') and pressure p' fluctuations:

u'=u'(x,y,t) (5a)

i-'= v'(x.y.i) (5b)

//= p'(.r, •/. 0 (5c)

The superposition of the base flow arrcl the perturbation field must satisfy the Navier

Stokes equations. In linear stability analysis, the quadratic terms of velocity disturbances

are neglected, since one» studies the eA'olution of infinitesimal perturbations. The following

partial differential equations goA'ornmg the perturbation dynamics carr be derived:

+ ( — h v — h -—— — //\'-(/ 6a)
at ox ay p e)x

dv' ,,0c' i dp' _, ,

— + l —4 -^ ^//VV (6b)
or ox p oy

—- 4 TT-
"-= 0 6c)

<)x oy

where P is the pressure of the base» flow, p is the fluid density and v the kinematic viscosity.

A combination of equation (6a) and (6b) eliminates the pressure contributions, and to¬

gether with equation (6c) yields a system of two partial differential equations for the un¬

knowns u'(x,yd) and v'(x.yj). with coetlicients that are functions of ;/ only. Particular



solutions of this system have the form ]'\y)e'ikr~^tl, where k=k,+\kt and cj-=uj,+\uj, repre¬

sent the complex AvaA'euumbe»r and frequency, respectively. The frequency to contains as real

part the 'local linear frequency' uy, and as imaginary part the 'local linear temporal growth

rate' uy. These particular solutions are called 'normal modes'.

To proceed further, we need to introduce the streamfunction of tfie disturbance field,

ty'(x.yj), defined in two-dimensional flows by:

u = — ( I )

^'
v'=--- (8)

Ox

Hence, ~fy'(x,y,t) necessarily has the form

^(x.i,J)--f[yy^'-'i\ (9)

and

u'(*,ilJ)=-f'(<l)t'u'-»V (10a)

v'(x,y,t) = -/Ä-/(r/)e'(A,^t) (10b)

where f'(y) denotes Y-, Substituting the last two equations for u' and v' into equation (6a,

6b, 6c) yields the Orr-Sommcrfdrl equation:

(kr - o,-)(/" ^ L2 f) - LI '"f 4 w(f"" - 2k2f" 4 k\f) =0, (11)

where primes denote ;/—dom-at'iA'cs. Note that the pressure does not appear in the final equa¬

tion, which indicates that in local stability analysis, one invokes the stability of a YelocitA

profile'.

Equation (11) is a fourth order partial differential equation in /. and can be solved AAitfi

appropriate boundary conditions. In the case» of wall-bounded flows, the velocity perturba

lions must vanish at the walls due to the no-slip condition. Thus equation (10) gives f=0.

f'=0 on the walh. and the trivial solution f = 0 satisfies equation (11) for any combination

of the throe parameters (k,^.i>). Irr tfie case of Avake flows (and similarly in other open

flows). A-anishing \relociU perturbations can aho be used as boundary conditions at the pro¬

file boundaries, as long as the boundaries lie far enough, to a region where the effect of the

bluff-body on the surrounding flow vanishes.



Non-trivial solutions to equation (11) exist only for particular combinations of the pa¬

rameters k, u, v. 1 hese combinations are expressed by the dispersion relation, as follows:

F(P,k,^) = 0. (12)

Typically, the A'iscosity u is known, therefoie» this expiation involves two complex unknown

eigenvalues, 'thus, in local stability calculations, one needs to assign the viscosity (Reynolds

number) and either k or aj. and solve for the» eigenvalues of the other complex unknown.

Local instabilities may be classified into absolute and convective type. Tfie concepts of

absolute» and comvetivo instability have been first introduced by Twiss (1952), in his work

on plasma physics. I he» absolute oi conA-ecthe character of instability can be determined bv

performing temporal and spatial stability analysis.

In temporal stability anal) sis, one studies the ewolution in time of spatially uniform waA*e

packets, i.e». with real waA (»numbers k = k,. If for a certain value of k,, u,\ becomes positive,

then the profile» is said to be absolutely unstable. In this case, a local small disturbance

is amplified exponentially in lime at an initial growth rate uy, and subsequently spreads

throughout the entire flow field.

In spatial stability anahsis, one» studies tfie spatial c\'olution of time harmonic distur¬

bances, i.e. u,' = to, is pure real. If for a certain A'alue of u,, kt becomes negative, then the

profile is said fo be eonvectively unstable, and small disturbances will grow in space in the

downstream direction, but can decay at a fixed point at large times.

As mav be deduced from equation (11). temporal stability analysis may be easier than

spatial stability. Gaster (1962) derhxxl an efficient transformation from temporally to spa¬

tially growing modes, which simplifies the spatial stability analysis. Fo every temporal mode

(u,\ Yi^-'o Y). there exists a corresponding spatial mode 4y . kt- iu^/c,,), where c; = jjf- is

the group velocity. A schematic illustration of com'eelh-e and absolute instability is gh'en in

Figure 1.2.

A numbet of necessary or sufficient conditions for each type of instability can be derived

from either the Orr-Sommerfeld equation or from its inviscid form, the Rayleigh equation,

which may be appropriate for free shear (lows (e.g. shear layers and wakes). For instance,

one can show for the imiscid case, that the existence of an inflection point in the velocity

profile is a necessary condition for absolule instabilitA (Dra/in and Rcid 1981). Near wakes



(a) x (b) x (C)

Figure 1.2: Sketch of spatio-temporal evolution of a perturbation it' in a parallel flow, in the

cases of (a) linearly stable, (b) convectivcly unstable, and (c) absolutely unstable flow. Flow

direction: left, fo right.

Figure L.3: Sketch of a typical near wake Axiocity profile.



are characterized bv a truite region of back flow, and thus inflection points exist in the

velocity profiles (see Figure 1.3). Therefore, wake» flows are good candidates for absolute

instability. Koch ( 1985) showed evidence of the existence of the two types of local instability

in ava kos and the strong influence of the near wake instability ou the instability of the global

How. It is now recognized that wake profiles arc absolutely unstable from tfie bluff boelv

base until sliglitly downstream the recirculation zone (thus global instability is expected to

depend on the recirculation zone length), and become» convecthxly unstable in region farther

downstream.

ft is reasonable to expect that local and global instability are related. In particular,

attempts for finding a condition for tfie existence of global instability, oi a criteria for the

selection of the unique» shedeling-frcqnoucy in wakes using local stability anahsis has been

an important topic m stability reseaich. \Ye might cite, among many others, the pioneering

woik of Koch (1985), and the subsequent conttibut ions of Monkewitz and Nguyen (1987),

Hannemann and Gerte»! (1989), Friantafv llou et al. (1986), Karniadakis and 1 riantafyllou

(1989), and Chomaz et al. (1988. 1990, 1991).

Chôma/et al. (1988) suggested that the existence of a region of local absolute instability

in tfie wake is a necessary but not a sufficient condition to turn the base flow globally unstable.

Chomaz et al. (1990) proposed a qualitative criterion for the existence of oscillatory global

modes in a spatially doAeloping flow, which depends only on the» absolutely unstable region:

/ y^.u")</r-ou)' (i3)
' v«

where u.'0i(,r) demotes the local linear temporal growth rate of the modes which fiavx zero

group velocity, and [A"0.A5,] is the streamwise extent of absolute instability. This formula

shows that a "global intensity" of absolute instability can be» defined as tfie square root of tfie

local growth rate» integrated over the length of the absolutely unstable region; this quantity

must exceed a certain threshold to excite» unstable global modes. This assertion and tfie

presence of absolutely unstable profiles in the near Avake confirms the possible implication of

local instability on tfie global flow instability.

Mauy propositions have also been made to determine the» linear and tfie non-linear global

frequency, based on local unstable» frequencies. Hammond and Redekopp (1997a) concluded

that the criterion proposed bv Chomaz et al. (1991) gives most accurate results. This is

based on simulation data, for tfie same flow setup as in the experiments of Leu and llo
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(2000), Avhere the stability of a planar wake subject to steady base suction is invest igatecl.

Chomaz et al. (1991) showed that the frequency of a Linear unstable global mode can be»

accurate»])* determined by the imaginary part of the absolute frequency u at the saddle point

at the sfrcaniAvise coordinate Xs:

Since in general the first derivatives of u;, and a.», do not vanish at the same streamwise

location, the saddle point does not lie on the real x-axis, but, at a complex coordinate Ys -

A',,, 4 iXst. obtainable through analytic continuation methods. This frequency selection

criterion, which is very accurate in a nearly parallel flow, becomes deficient in spatially

developing flows, i.e. when the assumption of weak deviation from parallel IIow is no longer

applicable. This issue has been investigated by Monkewitz et al. (1993). who proposed

a correction teim for the» global frequency, for both doubly-infinite and semi-infinite flow

domains. Their results were successfully applied in the» work of Leu and Ho (2000).

1.3 Flow control: motivation and applications

Flow control can be defined as the action of manipulating a flow in order to obtain a beneficial

change. From control theory terminology, tfie» manipulation of the flow is performed via

an 'actuator*, whose action is defined by a 'controlloY, and the beneficial change is the

'control goal". One distinguishes betAveen the "feedforward'' and 'feedback' control strategy

(respectively 'passive»' and "active" in (low control terminology). In the former category, the

action of tfie actuator is predefined, and does not depend on the current state» of tfie system

under control. In the» second category, the state of the system is taken info account through a

measurement signal (provided by a 'sensor'), which is fed back to the controller. Based on the

information contained in the» measurement signal, the actuator signal is updated adequately

by the controller to approach a given control goal. Passive flow control has been applied

already in the prehistoric times, with for instance the» manufacture of boomerangs; feedback

flow control strategics appeared much later! i fie piiman moth-ation in modern flow control

lies in the enormous financial savings that can be achteweel, for example in the case of drag

reduction in airerafts. Other impôt taut reasons include pollution control in reactive» flows,

and issues of safety and product quality. I ypical How eont rol tasks include transit ion advance»

10



or delay, turbulence enhancement or suppression, and separation prevention or provocation.

In many cases, tfie contiol strategy used fias unclesired secondary effects (like drag increase

with turbulence enhancement), thus the final goal of flow control consists in an optimization

task, i.e. achie\ing the desired effect while minimizing negative effects.

Flow control studies related to vortex shedding originated a few decades ago. It is well

known that the vortex shedding forming behind an immersed body can cause structure

damage through the oscillations of the flow, increase drag and noise, although if, can have

achantageous effects, such as enhancement of mixing and heat or mass transfer. All these

issues are also relevant in applications more complex than tfie simple case of circular cylin

der considered here. Since the experiments of Roshko (1955), a\1io, by placing a splitter

plate in tfie near wake of a cylinder, suppressed vortex shedding, many experimental and

computational studies have been peifoimecl in otclci to contiol wake flows at supercritical

Reynolds numbers (Rt > i?f2/m, ). Tfie most common approach has been for long time

tfie approach of passive control, by means of endplates (Nishioka and Sato 1978, Stansby

L97I), splitter plates (Gerrard 1966. Apelt et al. 1973, Apelt and West 1975), wake heating

(Schummei al. 1994), base bleed or suction (Wood 1961, Wong 1985, Schumm et al. 1991,

Hammond and Redekopp 1997a 1997b, Leu and Ilo 2000), a thin cylinder placed in the near

Avake (Strykowski and Sreenivasan 1990). cylinder rotations ( faneda 1978. Tokumaru and

Dimotak'ts 1991), and tfie use of magnetic fields (MuYchko el al. 1997). Berger ( L964, 1967)

first implemented a feedback controller foi the circular ca linder wake using cylinder trans

veise oscillations. Supported by Borger \s findings, Monkxwitz (1989) performed an analytical

study on flic efficiency of feedback control in global flow stabilization, and concluded that

the suppression of self-sustained oscillations like vortex shedding might be possible only OAxr

a small range in Reynolds number. I his is due to the fact that the fiigfi level of feedback-

control en erga input nece»ssarv to stabilize the dominant global mode at higher Reynolds

number would destabilize higbei stable modes. Roussopoulos (1993) confirmed this theorv

by stabilizing the circular cylinder wake up to Rt = \.2Re2D :• • using feedback control with

loudspeakers. Since them, other feedback control strategies have boon explored (Park et al.

1994, Gillies 1998, Min and Choi 19991. whereby in the last reference, a suboptimal feedback

control to suppress vortex shedding was successfully applied up to Rc= 160, i.e. %ARe2Dc>

well above the critical Reynolds numhei.

Interestingly enough, the numeiical simulations of Hammond and Reclekopp (1997a,b)

11



showed that, in the» case» of an asymmetric wake set up consisting of two parallel streams of

di lieront ambient velocities passing over a forebody with a rectangular trailing edge, base

suction can result in simultaneous suppression of unsteadiness and flow vectoring, i.e. deflec¬

tion of the low-speed stream towards tfie high-speed stream. Flow vectoring has attractive

properties, such as vehicle maneuverability enhancement. A thorough review and classifica¬

tion of aerocLvnamio and hydrodynamic means fo suppress \ ort ex shedding was given two

decades ago by Zclravkovicfi (19S1).

As several of the» flow control studies cited above», the present work is motivated by the

basic stability properties of wake flows. Since global stability is strongly affected bv tfie

local stability properties in the legion tight behind the bluff-body, one mav device a control

strategy consisting in the proper modification of tfie near wake velocity profiles. This is

why control actuators are commonh" placed in the» neat wake region. In the» case of wake

flows controlled by suction or blowing, one can interpret tfie flow's global stabifity state

by considering tfie modification of the near wake profiles and its implications on the» flow's

global stability properties. Tfie suction applied (e.g. at tfie cylinder base) tends to decrease

tfie length of the recirculation zone (back flow), and thus decreases the streamwise extent

of absolute instability. On tfie other hand, suction aho increases the magnitude of nega¬

tive velocities which acts in favor of instability, as it incicases local temporal growth rates.

Hence, recalling the qualitative ciiteiion of Chôma/et al. (1990), tfie effect of suction on the

wake is twofold: it in< leases the local linear growth rates in tfie near wake but, decreases tfie

streamwise extent of absolute instability. Note that blowing has exactly the opposite effects

of suction: linear temporal growth rates in the near Avake are expected to decrease, clue to

the decreased back flow: lioweAei, the extern! of absolute instability is expected to increase.

Therefore, in both cases, one has to rely on phenomenological observations to deTermine

which acfiou preATiils foi a gh-en combination of the» problem parameters. These compel

ing (»fleets clue to suction or blowing icquiie detailed investigation and have motivated tfie

control studies of cylinder wake in the two-dimensional flow regime presented in this work.

Our primary objective is to investigate the (»fleets of base bleed and suction on the stability

properties and dynamics of the circulai cylinder wake in the two-dimensional regime, using

numerical simulation and stability analysis.

12



I he thesis is oigaiit/ecl as follows in chapter (2), we define the pioblem investigated

and present the governing equations and tfie numerical methodology used to solve them

In chapter (]), we piesenf some tests petfotmed on tfie controlled and uncontioUed flow to

validate the computer code and the computational grids used In chapteu (I), we present

the numerical simulation results of the flow under control, and discuss the» Hova piopeitics

m the diflcie»nt flow regimes In chapter (5), we» present m detail tfie» eflects of the compu

tational domain si/e on the flow dv namics. as well as the eflects of boundaiv conditions In

chapter (6), we present the results of global stability analysts and telate them to numerical

simulation lesults 1 malh, m chapter (7), we summarize the prrmaiy conclusions of the

present work
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Chapter 2

Problem definition

2.1 Basic flow setup

We consider an infinitely long circular cylinder of diameter D immersed in a uniform cross

flow of a Newtonian fluid, with free stream vxlocitA' fY- A steady fluid suction or blowing

flow rate is imposed along a control arc of angle 2t9o—45°, symmetrically placed in the

central part of the cylinder base (see Figure 2.1). A similar flow set-up has been used in

the experimental work of Schumm et al. (1991), with 2tY=60\ The base mass transpiration

is perfectly symmetric with respect to the axis parallel to the free stream, on which the

cylinder is also centered. 1 his axis of symmetry will here to forth be termed the central axis

or centetiine. The present study is carried out using Direct Numerical Simulation (DNS);

the details of control implementation are given together with the gewerning equations and

boundary conditions, in the following section.

2.2 Problem formulation

l he present flow problem is fully describexl by the incompressible lYav'tor-Stokes equations,

written here in non-dimensional form:

^ = Hv.V)y-V/) + -ÎYv (la)
(II he

V-v--=0 (lb)

where v = (T\ Y) is the» Aoloc'rtv vector, and p the» s tat Y pressure. 'Y' denotes (Y7;, -y). "Y2'

is the Laplace» operator. Yy; Y^Y. and "•" denotes the scalat product. All variables are defined

15



Ih

-HB'*

vi

290 Suction/Blowing

•"A'V-8-

290=45°

/

Figuie 2.1: Sketch of the flow set-up with contiol action (ficie ouhr the blowing case» is

illustrated).

in a cartesian coordinate system ('.(/), whose ongin coincides with the cylinder center.

Physical Aaiiables (length, time. velocih. and pressure cfiflciences) aie non-dimensionalized

with piopei scales, based on the cylinder chametei D. the free stream acIocUa l'^, and the

fluid density p 4he Reynolds number is defined as

I D
Re =
^

(2)
v

where i> is the» kinematic viscosity ol the fluid.

The system of equations (La. lb) is discietizecl in space and time, and solved within a

fiuite-size computational domain using a spectral element metliocl. The definition of domain

size fias been a major issue» in this work It is found to have» non-negligible effects on the

flow behaviour. Detailed lesults on domain size and external flow boundaiv effects are

reported in a subsequent cliaptei. Most of the simulations have been peifoimecl on the

computational domain shown in Figure 2 2. This domain is decomposed into bS spectral



(dements paiticulailv fine elements aie piesctibed neai the legion of control action (see

1 tgine 2 2b), to résolve the high velocity and piessuie giachents piesent J ne computat louai

domain extends M)D upstieam from the cylinder center and 36D clownsfieam The lateial

boundaiies he» HD away fiom the cential axis, at this distance from the cylinder, and at

moderate suction flow rates tfie Aelocth is not affected by the presence of the bluff boch

and can Ihorefoie be approximated bv the fiee stieatn Aclocitv this domain size has been

chosen due to the corresponding relafiveh small numbex of elements and because it Aielels

reliable results until high enough suction flow tates If is expected that increasing suction

might affect the» flow farthei horn the cylinder Hence, the results obtained al vcxy high

suction flow lates with this domain should not be extiapolafed to the minute flow pioblem

AVithout careful investigation 1 he» e ffc e t ol suction fai aAvav fiom the cvlinde r or mveiselv,

the effix t of domain size» on flow solutions is the subject of an entne cfiaptei

1 une fitstoties ol velocity and piessuie aie ice ended at fiye observation jxunts during the

simulations fliese points aie lepiesented on the mesh (f igute» 2 2) and then coordinates

aie given m lable 2 1

(Y r ] X r

'

1 j
, 1
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.J 4- 1 I |—
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- (Ir
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f tgute 2 2 Spectial element skeleton used foi the flow atomic! a circulai cvltnclei (a) entne

mesh, (b) elements c lose» to the cylinder
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Point A B C D E

X 1.50 4.0 7,50 12.0 20.0

Y 0.0 -0.75 -1.50 0.0 0.0

Table 2.1: Coordinates of tfie observation points.

The» following conditions are» imposed at the domain boundaries:

at the inflow and lateral boundaries, tfie velocity is approximated by tfie free stream:

at tfie outflow boundary :

r -- i. r = 0;

,

or or
^

cAr 0 r

Y)

velocity boundaiv conditions at outflow being only imposed in weak form.

A no-slip condition (?"—Y=0) is imposed on tfie wall part, of tfie cylinder. Since flic»

control action is applied locally, and is not spatially distributed in the» entire flow, it appears

in the system through a spatial boundary condition, and not, in the governing equations. The

suction or blowing velocity profile is specified on the» cylindei boundary, i.e. on the circle,

and the» direction of the» velocity vectors is radial. \ uniform suction or blowing velocity

amplitude is imposed on £ of tfie control arc used, in its central part; a smooth profile

(cubic function of tfie angle, with zeto derivatives at the two boundaries) is prescribed close

to 0=±#o, biinging the vxlocitv to zero at the cylindei wall (Figure 2.1). Rased on the

prescribed suction volume» flow rate Qsuc (for unit cy finder length), and a reference flow rate

Qrtf = L^-L), wo define a suction coefficient as follows :

c
e s;,

Q».
(•>)

Here, positive suction coefficient values correspond to suction, and negative values to blowing.

Tfie dynamics of the full system under control depends on two independent parameters:

the Reynolds number. Re. and the» suction coefficient, Y5>, .

2.3 Numerical method

Tfie solution of the Navier-Stokes expiations with the boundary conditions piosoufod above

is based on a spoctial (dement code ( lomboulielcs 1993). Here», the spatial discieti/ation
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is based on a Legendte spectral element metliocl (Pateia 1984), while the» time integration

is based on a second-order accurate mixed stiffly stable scheme, with proper high-order

boundary conditions for tfie pressure (Karniadakis et al. 1991). The numerical method used

is briefly reviewed in the next subsections.

2.3.1 Temporal discretization

The time integration of equation (la) is performed using the combination of a second-order

accurate mixed stiffly stable scheme and the 'splitting' method, summarized below.

Mixed stiffly stable schemes

In a stiffly stable scheme, tfie ordinary differential eeptation

(hi
_ = , (6)

is discretizecl bv

Eyy,!»'

whore superscripts denote discrete time. ,/ is the order of accuracy (in our case .7=2), and

(ciq)(}-o.j- j) is a set of appropriate coefficients.

The» mixed treatment of the right hand side term /' consists in splitting it into au implicit

and an explicit contribution (/ = /, 4 f\). 1 he explicit part is an extrapolation from

previous time steps using a series of coeflicients ( h)(q=-0,i~-i)- The final expression for the

time discretization takes tfie form

Y\/Y1loï(Y<+1 - h"-J) 4-J

Application to the Navier-Stokes equations with the splitting method

The time integration of the» incompressible»- Navier-Stokes equations is performed in three

substeps, using tfie splitting method, flic» tight hand side of the momentum equation (la)

is expressed explicitly foi the convex tive term, and implicitly for the pressure and viscous

terms. The full discretized \av ier-Stokes equation takes the form:

I-*-
„ /-.r' li ^><-n /-i

z,,=0»Y(v ~~v

At
£ ^[N(v"-M]-V//,+1 + /'V2v'141. (9)
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In a first step, tfie non-linear terms N(v) = (v • Y)v are treated, with tfie introduction

of an intermediate Amiable v:

v _ y^-i- n v»-q J-l

—^r1 = -E^[N(v"-')] (10)
<;=0

For the integration of the pressure part, a second intermediate variable v is used, which also

obeys the incompressibility condition:

^ = -V/H („)

V-v = 0 (12)

From the» above system, the» expiation for pressure can be recombinedin a Helmfioltz equal ion:

V2/)"41 --= V- (—) (13)
AY

and can be soheel with the follow ing high-order boundary condition, proposed by Karniadakis

et al. (L991):

ft „+i ./-] j-i

-t— = n • [- £ J,N(v-0 - v £W * (V ^ v"-')J (YD

where n is the unit normal to the boundary Oil of the computational domain 0.

In a last step, viscosity contribution and boundary conditions for the velocity arc con¬

sidered to solve» v',+i:
;"! « W"+i

(E,J:<Jo,)v - v

V

Al
= iYV+l (15a)

= 0vn+l on Où. (15b)

The decoupled equations for vxlocitv (15a) and pressure ( 13) are both Helmfioltz equa¬

tions, and can be written in the» form:

(X2~~\2)o(x,y) = g{x.y) (L6)

with 6 denoting velocity v"+L or pressure» p. where A—0 for the pressure equation and A2 -

=~^j— for the velocity equation. The numerical solution of equation (16) necessitates a

spatial discretization, which is carried out using a spectral clement method, outlined in the

next subsection.
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2.3.2 Spatial discretization

In this section, we illnstiate the» application ol the speetial elexiient metliocl to solve tfie

Helmfioltz equation (16). In the geneial two dimensional case, the computational domain

Û is broken up into speetial elements, as illusUated in Figure 2.2. Each clement is mapped

isopaiamel ticallv to the canonical square. The spectral clement metliocl is based on the

Galeikin vaiiational statement ol the equation (16) fo be sohed, which is wiitferi'

/ YvYôdrtly- - I dgtlrdy. (17)
Jn In

fiho test functions r belong to the standaul Sobole»v space //0l with homogeneous bouuelaiv

condition r-O. For the speetial elexiient discretization. 1 he Aatiational form (17) is restricted

to the discrete space Y/ C /i0l. lelattveh to the» speetial element cliscictization paiametets

(J\\ X]_, Y 2), where 7v is the numbei of (dements. Y <"uul Yj are the piecewisc liigh-otele»i

pohnomial degrees in the dnectioiis r and y. lespectiveh local coordinate system. With tfie

selection of appropriate (lauss-Lobat to points £* and coiie»sponding weights /y,, = pvpq, the

cfisciete loim of equation (17) can be viiften as:

EElY^jvrVc^^^EYAh«^ (is)
K i;,=-0/=0 A-lp-07=o

Avlieie .Tq is the Jacobian of the transformation from global to local coordinates ( r, (/) => (r. s)

foi the quadrilatéral element A. I he Jacobian is calculated from the pattial deiivatives of

the geometry transformation. Next, test functions vn, ,
aie chosen in texms of Legendic-

Lagtangian interpolants, such that r„, P(CP1) — (l,(\i,, wfieie S is the Kionccker-delta sym¬

bol. If has been shown (Patera 1984) that this implementation makes the numeiical solution

converge spec! talk to the» exact solution, foi a fixed numbei of elements h, and Ai, N2 -> oq.

Increasing the pohnomial oidets Yt, Aj cotiesponds to "p refinement', whereas increasing

the number of elements A is the "h-reunemeut". Tfie test (unctions, also constituting a basis

of V/,, being cliosen, the appioximation (or Y referred to the» element k can be \\litten as:

n -A, / =.A,

<>V^)- E Ï1 <W, s (hi)
n -0 /i-O

whcie â'mi is the local nodal value of o, 1 he same basi-, (unctions ate used to represent

geometry :

(i-vr(r.s)= E" Ë"<'*«-0<W',, (20)
» -0 ; -0
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vvhete i\n ,y\ aie the global physical coordinates of the node mr> m the A, th element

Lmalh, the matrix sa stem corresponding to tfie discrete foim of the Caleikm vatiational

statement (18) takes the foim

È' E rev/ -f p/,km )<>kn= £/E E JîXAgL»' (2D
A-1 i =0 =0 A_L J -Om-0

wfieie YY denotes direct stillness summation loi the global system to ensure thai the en

semble is peifoimecl m space Z71

Because ol the large sizes of the matrices P k
using a direct solver loi the entire system

yvould be much too demandttig m terms of (TT memory lhcrefote a diiect sol a or is used

foi the piessuie par t only and an iterative pioceduie is employed, based on a preconditioned

conjugate gtachent method (Colub and Aan loan 198 5) for the velocity If was found that

coiYvoigonce in ptossute» with the itctatiAc sober could be teacfied at the» same accuracy

as with the cluec t solvei aftei a huge» numbei of delations onh (one oicle»i of magnitude

mote than for the Aelocih) thus the dnect soher solution has been chosen for the piessuie

( Jomboulicles 199T)

))



Chapter 3

Resolution and validation tests

In this chapter, we perform several tests, to xxiliclate tfie» computer code, as well as resolution

tests, to investigate the» effect of numerical resolution on the accuracy of results. In general,

the quality of results cYpends on a number of parameters, mainly computational domain

size, spatial and tempotal resolution, and the tolerance prescribed in the velocity iterative

soh'cr. Our initial domain size choice is based cm a previous study carried out by Barkley

and Henderson (1996). The domain and grid adequacy will be illustrafe»d here only for

the uncontrollexl system, by comparing our simulation results with literature data. For

the system under control, the domain size is in fact a crucial parameter; its effect on tfie

computed flow states results will be reported in del ail in another chapter. 4 lie influence of

all other parameters is studied in this chapter, for the entire range of system parameters of

the present work, i.e. Re < 90 and C\u„ < 2.6.

3.1 Basic validation tests

First, we compare results obtained for tfie uncontrolled flow to literature data. If not other¬

wise indicated, results reported below have been obtained with a 9x9 elemental resolution.

and a time step Af—0.01.

The drag coefficient is an important eleme»nt in bluff body flows, especially for aerody¬

namical applications, expressing a non-dimensional form of the force exerted by the» fluid on

the body, in the streamwise direction. The lift coefficient is the non-dimensional form of the

force in the direction normal to the free» stream. Here we follow the standard definitions for
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(lie» drag (Cu) a.3"icl the lift (CT) coefficients found in the» literature (Zdravkovich, 1997). In

tfie special case of flow around a circular cylinder, they obtain the form:

L\
C

c,=

ipi'i»
(i

L\

\pi :.n

Avhere F\ (resp. 7Y ) is the x- (resp. y-) component of the total force per cylinder unit-lengtli

exerted by the fluid on tfie cviinder surface. In Figure 3.L, we present the computed drag

coefficient values in the ste»ady flow re»ginie. and the time-averaged values in the unsteady

regime, and compare them to the cutve fits found by ffcnclerson (1995). The figure indicates

a very good agreement between exit computations and Henderson's data.

3.0

2.5 -

C?2.0

1.5 r

1.0 -

Steady wake (Present computations)
Vortex shedding (Present computations)
Henderson's curve fits (1995)

0 10 20 30 40 50 60 70 80 90

Re

Figure 3.J: Time-averaged total drag coefficient versus Reynolds number (uncontrolled flow).

Another characteristic property of wake flows is tfie non-dimensional shedding fivquency

(Strouhal number. St). In the case of the» circulai ev linder flow, tfie Strouhal numbex- is
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delined as:

Si =
FY

' 3)

where / is tfie frequency of flow oscillations. In Figure 3.2, we report our computed Strouhal

number value»s versus Reynolds number for the uncontrolled how, and compare them to the

empirical formulas of Roshko (19Y1). Williamson (198S). Fey et al. (1998) and to tfie 2-D

simulation results of Barkley and Henderson (1996). (food agreement is found between the

present results and the literature data.

CO

0.17

0.16

0.15 i-

0.14

0.13

0.12

Present computations
<> Barkley and Henderson (1996)
Roshko (1954)
Williamson (1988)

Feyetal. (1998)

50 60 70

Re

n.

80 90

Figure 3.2: Strouhal numbe»r versus Reynolds number (uncontrolled How).

A representative flow feature» is the presence of two recirculation zones, extending over a

length A',, from the cylinder base at ( r, ?/)-(y.O) to the stagnation point on the centeiline.

at (.i\y) = (~ Y A',.0). The recirculation zone» length A, can be precisely defined for both

the steady and the time ave»raged fields (in the unsteady tegime). Regarding the steady flow

solutions, it is well known that X, is a lineatlv increasing function of the Reynolds numbei

(also at supercritical Aalues. Re "^ 47). On the» cuber hand, in the vort<»x shedding regime.



tfie recirculation length of the time-averaged flow decreases with Reynolds number, because

of the» action ol Reyxiolds stresses. In Figure» 3.3. we present the computed values of the

le»ngth of recirculation zones versus Reynolds number, corresponding to tfie solutious of tfie

steady (low equations, and to the time-averaged solutions in tfie unsteady regime. Since we

are solving the time-dependent Navier-Stokes equations, in order to corrverge to the solution

of the» steady equations at supeicritkal Reyxiolds numbers, we had to solve for half of the

computational domain, imposing a symmetry boundary condition (y^=0 and Y=0) along

the cent eu line.

8

6

5

A

3

2

1

0

Present computations (steady flow)
Present computations (time-averaged unsteady flow)

\Takami and Keller 1969

o Acrivos et al. 1968

o Dennis and Chang 1970
_

^

'

o %Y

S o

oo

10 20 30 40 50 60 70 80 90

Re

Figure 3.3: Recirculation length, normalized by cylinder diameter, versus Reynolds number

(uncontrolled flow).

Our te»stilts accuratedy rxproduce the» linear dependence of the recirculation length with

the Reynolds number, as already shown bv Fornberg (1985) for a wide tange of Reyxiolds

numbers (Rt up to 600). Yho. thew are in good agreement with tfie simulation results

of iakami and Ixclfor (1969) and Dennis and Yhang ( L970). and the experimental data of

Acrivos et al. (1968). Regaiding tfie time-averaged flows, we observe a decrease in A, at

supercritical Reynolds numbers. I his decrease» of A, in the vortex shedding regime is clue to
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the Reyxiolds stte»sses (absent in the steady regime), which increase the momentum ttansfct

through the process of "'turbulent'' diffusion. The rapid momentum transfer towards tfie

centerline results in shorter recirculation /ones, as well as in reduced wake thickness, the

wake being limited laterally by tfie isocontours U ~ 1.

The above tests provide confidence in the computer code and basic resolution used, and

also indicate the adccptacv of computational domain. I his is not surpiising, as our domain is

larger than t he one» suggested bv Barkley and Henderson ( 1996), which was already opt imizecl

for the uncontrolled flow. We use a larger domain, as wo e»xpect that t he control action affects

tfie flow held farther awav from the cylinder surface. Ulis issue will be analyzed in detail in

chapter (5).

3.2 Tolerance in velocity iterative solver and

system stability

Applying the» numerical approach outlined in chapter (2) to a specific problem requires build¬

ing a numerical gtid and specifying a time ste»p value. As already mentioned in section 2.3.

an algebraic equation of fy pe I v — B is solved iteratively for the velocity at each time step,

by means of a conjugate gradient metliocl. Convergence depends on the prescribed tolerance

level, denoted here In TOL. Compaiexl to a direct metliocl. which consists in inverting di¬

rectly the system matrix S. y ielding x — -Y1!?, an iterative procedure has the advantage» of

being much less memory consuming, but aho presents tfie drawback of being less accurate

and slower. Indeed, a direct method producxs a solution vector x with a relative error on

each of its components of machine accuracy IoaxI (10-lh, for a code written in double preci¬

sion), whereas the» iterative method v ielch a solution with an averaged user-defined accuracy,

controlled bv TOL. The» convergence criterion in the iterative solver is:

i]| [r-B\\ < TOL. (4)

with || || denoting the euclidian norm: ||> || ---

y
V i2. and A" the» rank of the system matrix

A. A common tole»rance level iu the Helmfioltz solver is of single precision order, i.e. 10"Y

An initial guess x0 foi the solution at each new time» step is also necessary. The most

natural choice for r() is tfie converged solution of the» previous time step. 1 herefore, if the

time variation of the flow eve»r becomes extremely slow, it is possible that the condition
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Y|| lr — B\\ ^ 10L is alteacly verihecl at the fust iteration of the iterative sohci. which

would lesult in a strictly satuiaied steadv state. This scexiaiio is practicallv impossible» with

a diiect sohe»i: the probability of the solutions to two distinct systems of alge»biaic equations

being equal (even at macfiine accuracy level) is zeto. In some cases discussed in detail in tfie

next subsection, an unphvsical satuiatiou to steady flow is indeed computed. The problem

can be overcome bv decreasing the piesciibed 'I Oh" value, which natuiallv increases the»

CPF costs.

3.2.1 Instability suppression due to numerics

We begin out investigation of the eflec is of tolerance» level in the ve»locitv iterative sohci on

the» computed flow states, bv consideimg the development of global mode at supercritical

Reynolds numbeis (hexe C\u — 0). In a fust atte»mpt, the steady flow solution (obtained

with half the eomputat tonal domain and a sy mmetiv boundaiy condition on the center line) is

used as initial condition. Huts, icgaicling tfie flow dcAolopment in the lull domain, the initial

peitui bal ions ate due to numeiical enois onh. and ate tints of vciv low level. In the initial

test runs, we piesciibe» a tolerance» value TOI — 10 "Y We» find that, for Reynolds numbeis

up to 90, after a shoit chaotic transient, tfie global mode starts growing exponentially in

time, however, after a numbei ol time units, oscillations stop abtuptlv, and a satuiaied

time-independent flow state is leached1 This hcTiavlotti is tvpiealh icptesented in signals

as those in Figure 3 1, where we plot the time»-histoiv of the Y-volocitA offset fiom tfie

steadv (initial) value»s at Re = 70. at points \, P. F. as the flow evolvxs from tfie base steady

solution. Here, some induced initial tanclom pei tin bat ions rapicllv evolve into the least stable

cigenmode (in loss than 30 time units), which then starts growing exponentially. However,

after approximately 30 time units, all oscillations stop, and the solution 'freezes" in time.

To fuithei explore the issue, we test the effect of several vaiiations in the piesciibed

tolerance level, desciibed in the next subsection.

3.2.2 Instability triggered by a jump in the system parameter

An important test in calibrating mimetic al paiameteis h the eonfii mat ion ol the critical

Reynolds number value. Yo definitive conclusion has boon armed at m the prcA ious subsec¬

tion, since numeiical errors we»ie not amplified up to Rt -70. which is well above tfie cubical
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point A

point D

point E

-1 00e-10 ' '

0 10 20 30 40 50 60 70 80 90 100

Time

Figure 3 1 I rnie-lustoiv ol \ velocity offset at ponds V. D and F, foi /Y —70 Csl =0 flic

mtftal condition is tfie» steady symmetric solution

value /it— 17

v mote piomisuig pioceduie m trigger ing global instability consists ni disturbing tfie

steady flow solution with small physical (and not numerical) peiturbafions loi example, a

discontinuous increase m Reynolds numbei pioduces a peituibation field in the entire do

mam, and is thus expected to disturb suffit lenth tfie steady solutiou and lead to unsteadiness

loi Rt Y^O We have proceeded as follows starting fiom the steady solution at Rt = \0. we

have mc teased the Reynolds numbex stepwise bv an inclement of i, and computed the flow

tiansient to the» new saturated state fhe piocess is iterated (Re furthei mc teased bv a

step of 5) until perturbations caused bv the Rt jumps aie» self amplified and lead to sus

tamed unsteadiness Since the discontinuous mc tease m Rewnolds numbei coiiesponds to

finite global pcxlutbations, one could expect amplification of the» global mode for Reynolds

numbeis as low as Rt = iO Instead, with LOI = 10
s

unsteady flow was lust obtained al

Rt =60 In 1 iguie ) i we plot tfie» t une histoires of F- and v velocity at point \ du ting tfie

above» numerical expei iment, indicating the satuiation to steadv flow for Reynolds numbeis

lower than bt) 4 he initial exponential mc lease ol \ velocity fluctuations at 7?t=")5, and

the subsequent satuiation to a steady value apparently due to the» effect of tolcxance m the

velocity iterative solver is chatlv illustrated

Interestingly at /?t=b0 at which t he» wake» becomes unsteady (m this experiment ) the
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transient II-ve»iocitv signal at early times is similat to those obtained at smaller Reynolds

numbers: it texids initially and within a verv short time scale to the steady solution value.

After large times, the unstable mode can be observed, and the flow tends asymptotically to

a limit cycle.

We focus now on flie transient signal at Re=60. and attempt fo interpret its different parts

by considering tfie different factors that influence» the system. Within about the first, 60 time

units after t he jump of Rt from 5") to 60. the flow lias ixached its new quasi-steady state in its

upstream region (see Figure 3.5. F-vxdocily plot ). I his initial behaviour is not surprising, as

the initial state of the system (steadv solution at /Y=o5) has no fundamental differences in

structure, compared to tfie» new base flow, and because tfie growth of perturbations is rather

slow at this low Rewxiolcls numbei. Fhe sA*stem is driven by two different physical processes,

diffusion and coirvection, characterized lw different time scales, tu and Ty<. respecth'ely, 1 he

diffusion time scale is tvpicalh of ordei Tn
~ ^Y and tfie convecFive time scale of order

Tr
~ -P-. In non-dimensional form, tfiese time» scales are rcspectivxh of order Re. and 1.0.

At Re=00, the fastest process is therefore tfie convection, fhe time needed for the system to

rééquilibrâto at a new quasi-steadv state after initial perturbations (here caused by the Re

jump), is given by the» slowest process, i.e. diffusion. At i?t=60. diffusion w ill equilibrate after

the otxlex of 60 time units, which can be well veiified by the framed zoom in the F-velocify

plot of Figure 3.5. Flu» long time» gap that follows the initial transient of about 60 time

units (during which the nenv cpiasi steadv state is teaehed), and prece»de»s the visible growth

of oscillations, results from the» combination of vaiious factors. At Re=60, perturbations

are indeed expected to giow exponentially, but only whe»n their spatial structure becomes

close enough to the structure of the unstable eigenmode. Before being able to grow, the

perturbation field must therefore rearrauge itself into the global eigcnmodc, which might

take a non-negligible time if its initial shape differs significantly from the eigcnmodc. Flits

seems to be the case here: the» initial perturbation held is ielated to the difference between

the» base flows at, Ih = Y> and /fc =00. and should not be structurally close to the unstable

mode at /ire--60. The time needed for the perrui bat ion field to ge»f tfie shape of the unstable

mode is longer than the» corresponding characteristic time of diffusion. As the perturbation

field starts growing exponentially, tfie» poi tut bâtions level is therefore» \erv low. thus it will

take a long time to become visible. Furthermoie. the» giowth rate of distmbances at Re=b0

is also small; ProAansal et al. (1087) proposed the» following relation between the temporal

31



growth rate and the Rewnolds number for the ehculai cylinder wake at slightly supercritical

Reynolds numbeis:

This formula yields a non-dimensional growth rate value of 0.043 at, /iY=60. Considering an

initial perturbation le»vel of the order of HY8, about 350 time units ate necessary to multiply

if by a factor of order LO'Y which would bring it to a level of YY2, and make it visible. This

corresponds to the gap of time during which tfie signal lemaiiis at a cpiasi steady state, and

tfie oscillations at an unvisible» level (see F-velocitv plot in Figure 3.5).

We now investigate the» effect of prescribed tolerance in the velocity iterative solver, lo

this end, we focus on the plot of the» \'-velocity at point A. This enables a 'clean' observation

of the unstable mode growth, since the steady state value (zero) of the \"-velocity at point

A is not affected by flic» consecutive jumps in Rt. As can be seen in Figure 3.5 (Y-plot),

initial perturbations caused bv ihe Rt jumps are rapidly clamped at the subctitical Reynolds

number onlv (Re=45). whereas at Re = 50 and Re — 55 1 boy grow exponentially until they

abruptly saturate at a non-zero value. This behaviour is clearly unpliysical, and caused by

numerical factors, in partial Lu the effect of the» tolerance level in the velocity iterative solver.

At a supercritical Reynolds numbei, e.g. /?e=5(). the expected physical F-velocitv transient

at point A would consist of three parts; the first two parts are present in Figure» 3.5, and

correspond to fhe fast initial convergence to the new s teach solution, and a rather long time»

interval during which the flow remains at a cpiasi steady state. The third part, expect exl

but, missing in Figure» 3.5. would be the growth of oscillations until a non-linear periodic

state is reached. '1 he sudden termination of exponential growth (see Figure 3.5) can only be

attributed to the» velocity iterative solver: due to fhe» low lewel of perturbations in the entiie

flow field, the condition y||4r — B\\ < TOh already holds at a fust solver iteration, and

continues to be valid in the subsequent time steps.

To investigate more thoroughly the contribution of LOL and time» step At on the com¬

puted stability states, we» caniexl out flow simulations at />Y=50 with three different TOL

A-alues (TOh = 10" l0. 10"11 and JO-16) and foui different time step values (Af=0.02, 0.01,

0.005 and 0.001). with the saturâte»d steadv flow field at 7?t—45 used as initial condition.

Time histoties of the corresponding Y-volocitv at point A ate plotted in Figure 3.6. Some

signals (at TOh=UYn and / Oh= ItY'Y are not chawu over the time range, because thev

tend asymptotically to a limit cycle, and their representation up to large Limes would hide the
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other signals. Growth of the unstable eigenmode could be obtained for only TOT < 10~H.

although not fot all time step values tested he»ie. Inteicstmgh enough, we find that at a given

TOL value, instability growth is bet toi pieclicted with huge time step values, this can be

atttibuted to the efle»ctive enhancement of pei tuibations bv the larger temporal discretiza¬

tion ex tots, thus exceeding a threshold level to tttggei global instability. At lowex At values,

the initial etlective pcxtutbation levels lemain small at eaih times, being less enhanced bv

errors due to time disciettzation. I his niav inhibit fhe formation and growth of an unstable

global mode. 1 hits, latget time» steps aie préfet able, m tenus of tiiggeiing the global mode.

We conclude that, to investigate the (low stability near the» ciitical patamefei value using

UNS, one must not only impose a sufficiently sttong initial peitutbation on tfie steadv flow

field, but aho dec î ease tfie toleiante value to vcrv 1cm levels, ol machine accuracy otder

(O(10_lb)). We expect that spatial i(»solution simihuh affects flow stabilitA. Since the

onset of instabilitA also depends on time step value, wfiicfi ni.iv in turn depend on spatial

resolution (due» to the numeiical stabilitA constraints), it is not straight for ward to stuck the»

effect of spatial resolution, independently of othet numeiical parameteis, as time step. We
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can, fiowevei. icasonablv afhitn that, as foi time» step, lowei resolution introduces higliet

numerical enois and tliexelore liighei perfuibation levels to the steacfo base floAV, which acts

in tfie fayoi of instabilitA growth. Thus the accuracy won La increasing spatial resolution

may be a drawback in tetms of tracking global inst ability growth. This confirms tfie assex Hon

that the onh measure for increasing fhe» system sensitivity to small per fui bâtions, without

decreasing numeiical accuracy, is to decre»ase the toleiance value TOL. In oui simulations,

we have used TOT, - HFS to compute flows evolving far enough from steadv iegime»s.

Flows evolving in the neighborhood ol a steady state» have been treated with / OL = 10"" 14.

The CPU time per time step is thetebv incieased bv 27%. In Figure 3.7, we piesenf some

repiesentative CPU times pei time» step veisus the / OL value». These data wete calculated

fiom simulations peiformexlon the limit ca clc at />x=bÛ, YsUL-0.9, on a IW Com ex Exemplar

SPP2000/X 12 machine», and the CRT time»s have been aveiaaed o\ei 100 time steps.

3.3 Spatial and temporal resolution tests

Spatial and tempotal lesolntion are typical numeiical factors allée ting the qualhy of results.

Having validated the computational domain fox the uiicontiolled flow, and the tolerance

value in the velocity itetative solvet. we also peifoimecl spatial resolution (p-iefinement, i.e.

increase of the order in polynomial expansions) and temporal lesolntion tests fox the flow

undci contiol action. Results fiom the spatial i(»sohltion tests aie reported in Table 3.1. for

seven tepi(»se»ntative paramete»t sets. Here, we compaie values of two global flow quantities,

fhe non-dimensional shedding frequency and the time-a\etaged drag coefficient. We find

that flows corresponding to parameter sets fai from transitions (see tfie map of flow regimes,

in next cliaptei) and at tathei low suction coefficient values aie tvpicalh well resolved using

7\7 clexnexttalicsolution. Howevot. (lows coi responding to paramcte»t sets neai ciitieal lines

oi at high suction coeflictents values Y Y ^ FO) require 9 \ 9 elemental resolution (loi

which disciepancies in Stioulial numbei and mean chag coefficient with ilxll elemental

lesolntion simulations fall below 2(x ). In all test tuns, the time step is chosen small enough

not to affect the computed (folds \s vuR be shown, the time step value lias practically

no effect on the simulation results, except foi Hows evoking fiom a quasi steady state (see

pievious section): in this case tfie pnmaiv paiametei to adapt in oidci to get physically

conect lesults is the 7 01 value
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To check foi tempoial icsolution, we have peifonned a number of tests at several time»

steps and system parameter values. Concerning saturated limit cycles, different Al values

result, in practically indistinguishable signals. This is not surprising, as the large values

of fluctuation intensities in a saturated limit cycle, accompanied by small At values and

overall second order accuracy in time, result in negligible levels of relative error. Jo check

for levels of relative erroi for cases with small fluctuation intensities, we have performed

simulations cot responding to tfie growtli of the global mode at four parameter sets, namely

(/Y=30, (\^=0.9), (Rt =50. YiU,= 1.5). (/Y=90. CiH --0A), and (7?c=90. C,ur=0.9). Lot-

each parameter set, two different values of At and two different elemental resolutions are

used, in order to investigate the» effect of At1 at different spatial resolutions. In eac h case, two

different types of init iai condit ions are considered: the» fust is t lie steady field computed at flic

same Rt — and ( \u — values and the same resolution. I he second type of initial condition is

obtained as follows: the» base» steadv solution is obtained with low (5x5) elemental resolution:

subsexjuenf lv, a simulation is pet formed on the full flow domain, in order to obtain the

initial stage of the global mode growth, and pert m bat ions of single precision order. Tfie

resulting flow Held was used as initial condition for tfie simulations with tfie various time

steps and spatial resolutions. Simulations have be»en carried out with a very small TOL

value, TOL = I0"~lb, so that convergence in the iterative solver is not an additional factor

affecting computations.

Results are plotted in Appendix A. Tor each parameter set, we display two separate

figures, one for each elemental resolution. On each figure, we show the V-velocity at point

A, indicating: (a) the growth of the global mode» from the slightly disturbed steady solution

to its non-linear saturated state, with a zoom on the linear and non-linear states; and

(b) tfie initial gtowfli of tfie global mode from tfie steadv solution. When tfie slightly

disttubed steadv flow is used as initial condition, simulations with different time steps result

in practically identical signals at the observation points, from the linear to non-Jine»ar states.

This proves t he acfoquacy of tempotal resolution foi the» entire range» of simulations performed

in the present stuck, fhe cfiffexe»nces in time histoifos when the strictly steadv flow is

used as initial condition can be» explained bv tfie fact that machine round-off and temporal

discretization errors are of the same order (double piecision simulation). From Figures

(b), we can also identify tfie rearrangement of initial distuibanccs (caused bv discretization

errors) into the dominant eigenmocle (unstable frequency ). Tfie effect of time resolution is
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Table» 3.1: Spatial resolution tests: Strouhal number and drag coefficient values correspond¬

ing fo seven parameter sets.

37



in all cases negligible», since» it does riot affect the basic flow state and its piopexties (St. Cp.

etc) both in the linear and non-linear states (again for parameters choices not too close to

transition points). In terms of discrepancies in time-asymptotic states, these are also kept

at very low level. For example, in the case presented in Figure A.4(a) (/Y = 50, CY,L = F50).

the relative difference in asymptotic Y-velocitv values, after transients of 1500 time units, is

about 10-l.

In summary, spatial resolution tests have sfiovvn that a 9x9 elemental resolution yields

accurate» results for a wide range of the system parameters. Thus, for consistency, we will

only report simulation results obtained with 9x9 elemental lesolntion. Foi the range of A/

values required to fulfill the» numeiical stability constraint, temporal resolution lias practically

no effect on results. The maximum At value used in the present woik is 0.02 (used for

uncontrolled flow cases).

3.4 Validation with the Stuart-Landau model

As has been shown by several e»xpc»iimental (Alathis et al. 1984, Provansal et, al. 1987). and

numerical and theoretical studios (Jackson 1987, DiYek et al. 1991. Xoack and Eckelmann

1994), the von Karman vortex street is a direct consequence of a supercritical Hopf bifur

cation. This type of bifurcation is characterized bv the continuous growth of an unstable

global mode towards a limit cycle, at supercritical system parameter (here the Reynolds

number). At slightly supercritical Reynolds numbei, tfie time variation of small disturbances

superimposed on the steadv solution can be divided into three parts. First, disturbances

arrange themselves info the most unstable mode, wheicbv all but one discrete frequencies

arc» being damped. In general, this initial step lasts for a sfioit time, compared to the next

step, where the dominant eigenmode. or unstable» "global mode' grows exponentially, at a

rate referred to as the» "global" growth täte. 1 he exponential growth of distutbances can

be observed as long as thev remain small (i.e. if tin» square of disturbance terms remains

negligible with respect to the other terms in tfie governing equations) so tfiat tfie system

dynamics is hi verv good approximation linear around the» steady solution, \fter some time,

clisftii bances reach a non-negligible» level, and non linear effects (clue to tfie quadratic terms

of fluctuations) tend to moderate their growth until saturation (unsteady flow or steadv

state). The development of tfie global mode» at Reynolds number Re—bO is illustrated in
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Figure 3.8, wfieie» we» pi osent tfie time-history of the U- and V-velocily at point A (here the

initial condition is tfie steady solution at Rt=60). The initial exponential growth of the

instability, as well as its non-linear saturation are clearly illustrated. On tfie U-velocity plot,

notice that tfie steady solution (used here as initial condition) differs from tfie time-averaged

value on tfie limit cwxlo. 1 fiis characteristic of periodic floAvs is clue to momentum transfer

increase, caused by tfie action of Reynolds stlosses.

As shown in the experimental studies on the circular cylinder wake (Mafhis et al. 1981,

Provansal et al., 1987). the dynamics of a single characteristic (complex) amplitude» A(l) of

the unstable mode can be accutate»ly modeled by the Stuart-Landau equation:

lll^sA-YA]A\2YO(\A\") (6)
tit

dhis equation has been introduexd bv Landau (1911), who laid the foundations of the

theory of non-linear hvdrodynamic instability. Stuart (1958. 1971) fui titer developed this

tfieoiy, showed how Landau's equation cau be derivxxl. and applied his findings on tfie plane

Poiseuille flow (Stuart and Watson I960, Watson 1962). The amplitude A can represent anv

global quantity (e.g. the ehag ot lift coefficient) or a local quantity (e.g. tfie Y-velocity at a

given point), s = a, + irr, Y the global frequency, cy is referred to as tfie global growth rate,

and ax is the linear frequency. I fie» global frequency cle»pends, of course, on tfie» bifurcation

parameter, which is here the Rewnolds number, and is a global (i.e. spatially-independent)

quantity. / - / F Y is the» Landau constant, and in general depends on spatial location (i.e.

the» choice of A), but the ratio L/l, is also a global parameter.

Experimentally, the development of global instability and its control in circular cylinder

wakes has been studied bv Schlimm et al. (199 1). To observe tfie unstable global mode

from a steady state at supe»icritic al Reynolds numbers. Sclutmm et al. first suppressed the

How unsteadiness using a ceitain control action (transverse oscillations or base blowing), and

subsequently triggered tfie global mode b\ switching off' tfie control action. They measured

transient signals corresponding to the clc»ve»lopment of the» global mode at several Reynolds

numbers close» to the» critical, and analyzed tliexn to compute» tfie coefficients of tfie Stuait-

Lanclau equation (6). As a general validation test of oui simulations to experimental results,

we followed the same signal analysis procedure outlined in Scfiumm et al. (1991). and

computed tfie Stuart-Landau equation coeflicients of the uncontrolled flows at Rt-'iO and

7?t=60. An advantage of simulation in this case is that the steady solution at exactly the
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same ci it ic a I paiamofei value» c an seive» as initial tondit ton, which results ma smooth inciease

of distuibances from acxa small IcacIs. Couseciuenth. this is expected to yield mote accuiate

values for the eoeffie rents ol tfie Stuait-Landau equation.

We now present the pioceduie for calculating these coefficients from a raw signal obtained

from the simulation corresponding to the» growth of an unstable» mode at a given Reynolds

numbei. Equation (6) gov cms the dynamics of any local amplitude of tfie dominant global

mode. This can. lot example, be the Y-veloc'itv at a point on the» cential axis, 01 the lift

coefficient, the advantage» of these» choices being that the values oscillate around zero dm ing

tfie entire tiansient. Tfie» stroamvisc» velocity at the same point 01 the drag coeThciont

have different values in the steaek How and in the time-average limit cacIc (sec Ligine 3.8).

Processing ol such a signal would icquiie moie opetations. in paiticulat the extraction ol the»

low fiequencA componexit (mean Aaltie») of the signal, and would make the» entile pioceduie

more complex and probably less accuiate», since the coiicsponding filteiing might introduce

additional errors in the» ove»iall signal processing.

i he computation of the eoelln tents lequiies a numbei of tiansfotmations to tfie otiginal

model. Fitst. thedvnamical behaviour of t fie magnitude | II of tfie chosen amplitude vaiiable

xl can be easily cfotived from (6). bv introducing complex conjugates, denoted h) tfie tilde

sv m bol:

e/| l\2 c/( \ I)

tit tit

,
el \

j
el 1

Y'1 Y

l(s i - / i| I)2) 4 l(s l~Y4|Y|2)

(»is)i !-(/ + /) [A\A\2

21 li'v! * 2(t,\ ll2
-

21A Al1
1

tit
l i " '

1 e/l II
, . ,

Both expiations (h) and (7) ate» commonly used to model non-linear instabilities, and aie

lefetted to as the Sluait-Landau model I quation (7) v icJcls an exptesston for the saturated

magnitude» | i|i7t in the» non-lineat regime (limit cvele). miko AY^± _ q_

i \„t *[«,/!,] (8)
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Fhis last equation yields in turn a new form foi ecpiation (7):

I d\A\
,

|.4|2
N

Ml._ XJ_) (9)
|.4| elt \A\iat

Finally, expressing the complex variable A by its modulus \A\ and phase a. A(/) = |.\)(/)t ' ^
,

and introducing this expression in equation (6) yields:

^ « sA^IA\A\2

dt
l l

(M + /| At" ~ [<rr+«T,\A -[lr + il,]\A\*A
at (It

« [(er,.--/.|Y|2)Y/(tT(-/,|Y|2)]|.4|Y^ (10)

Equating real and imaginary parts on both sides of the above equation yields two relations,

one for the eptanFdy ru Yy^ (^vbrch represents an instantaneous growth rate), already derived

in (7), and one for ~y.
which is proportional to the instantaneous flow frequency /:

= 2-/ « CT,-/,|.lp

x

e/e>
_

/ IA I2
« ai _^ )_!_ (U)

9 YLvx

From the latter equation, we find

h
~

^YIyIIyt (\'-)\

I, CT,

where f\ai h Aie non-linear limit cycle frequency, fhis reflation shows that the ratio lt/lr is

indeed a global quantity, since all quantities on the» right hand side are space independent.

We proceed further by following the signal analysis procedure outlined in Schumm et

al. to construct the complex variable A(t) = A, fl iA, = \A\c'a from the raw signai A,,

e.g. the Y-velocity transient at point A. as obtained from the simulations, do obtain the

full complex signal A(t), we just need to calculate» its imaginary part, An by performing the»

Hubert transform of tfie real part A,:

A; = ITIhcrt(A,) (13)

An ideal Hilbert traiisfbrme»r is an all-pass Hlter witfi a constant phase» sfiift of 7. Its transfer

function in the frequency domain is:
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Knowing tfie real and imaginary part of the signal, we can then obtain its magnitude

|AJ(/) = JA- Y A2 and its phase cv(t)=arct an (-—-). Time derivatives of \A\ and a can then be

approximated by finite differences. The coefficients ar and oy are obtained by extrapolating

the functions Ay /r"
and xy as |.4|2 —Y) (see equations (9) and (II)). The remaining global

coefficient 'f follows immediately from equation (12).

Scfiumm el al. filtered tireur experimental raw signal with a band-pass filter, centered

on tfie non-linear frequency I\af, of bandwidth A/ « f\lt. 'fhis was necessary in their case,

because an expeiiment is not free of external high frequency noise. In our case, signals

obtained cfiiectlv from the» simulations are not contaminated by any fiigli freciuency noise

source and tfiere'fore do not need am preliminary filtering.

We have analyzed Y-ve»locitv signals at point A. fn Figures 3.9 and 3.10, we show tfie

variations of the instantaneous growth täte jY /T
and the instantaneous frequency /(/) =

xryy
A-ersus | 1|2. at /?t-50 and Rt = 60. rcspettivek. On both tfie growth rate and frequency

plots, we show the data obtained fiom our signal piocessiug (circles) and the prediction of

the Stuart-Landau modefl. represented by tfie straiglit line joining tfie points corresponding

to tfie linear state and tfie saturated limit eye le data (see equations (9) and (11)). Fac h circle

corresponds to a local maximum of |,4,| in the» transient signal. Since the growth rate at

Rt =60 is about 4 times larger than at /?t=50 (equation (5)), while frequencies do not differ

significantly (by less than iOY). the» data spacing is wider at, Re—60. Tbe extrapolation of

data as ].i| —> 0 yields accurate values foi the linear growth rates and frequencies; the non¬

linear frequencies are also readily obtained from the» data. Fhe same processing of V-velocity

signals at other points on the central axis (situated between tfie streamwise coordinates

X—1.5 and X - 22) yields very close values foi the growth rates and frequencies, with a

maximum discrepancy of tfie order of 0.1 VC From the frequency; data, we can identify the»

frequencies of fhe limit evefos /,lf at | 1|2 - | l|2lf. and thus tfie Strouhal numbers. They are

in Act a good agreement with those of numerical simulations (-,eo Figure 3.2): Yf(50)=0.F239,

8»7(6())=0.1362. wide h is another validation of the» signal processing procedure used here. The

precise evolution of the instantaneous growth rates and frequencies with amplitude can serve

as an indication of the adequacy of the Stuart-Landau model. I lu» model is clearly more

accurate at //e-50 than at Rt =60. since the» former value is closoi to tfie citttcal Rt value».

The deviation from the ex ideal Rewnolds number can be eA'aluated bv -l!-—^li'ij.< \ft ]s about

6% at i?c=00 and 30fY at Rt =60.
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As we have noticed, tfie» cuives representing the» instantaneous growth rate and frequencA

as functions of the amplitude |.4|2 do not perfectly follow the linear function prediction of the

Stuart-Landau model, in particular at Re=60. These curves are much better approximated

by square functions of | 1|2, i.e. functions of |-4|F This suggests that, to betten' approximate

the flow dynamics for Rt Y 60 with a model of the Stuart-Landau type», one should expand

the» Stuart-Landau model to higher oider tetms. i.e». | I]1 instead of |Yp in equation (6).

In Table 3.2. we txport the» computed Stuait-Landau coefficients ar and cy, nondimeii-

sionalized In the time scale» I)2fi>. as well as tfie ratio /,//, (otained from relation (12)), at

/?t-50 and Rt=60. flic» results of Scfiumm et al. aie also included in the fable for compar¬

ison. We find good agreement between numeiical and expetimental results. As previously

indicated. Scfiumm ef al. used a controlled steady fkwv as initial condition and triggered

the global mode by turning off the control action. As also see»n in our numeiical experiment

(Figute 3.5), fhe process consists in an initial coiiA-ergence to the new quasi steady state,

and the subsequent formation and amplification of the global mode. Evidently. Scfiumm ef

al. have excluded the» initial transients from their signal analysis.

Rt = 50 AY=60

a, D2jv (present vvoik)

cr,D2/i' (Sthumm et al.)

0.70

0.69 Y 0.08

2.9

2.8 Y 0.1

oy/Y/x (present work)

tr,D2 j\> (Scfiumm et al.)

37.1

35.7 Y 0.6

15.0

12.f i 0.8

/,//, (present work)

/,//, (Schumm et al.)

-2.51

-2.90 i 0.15

-2.00

-2.90 ± 0.45

Table 3.2: Coefficients of tfie Stuart-Landau equation at /?t=50 and /iY=60, corresponding

to the» present (computational) and previous (experimental) studies.
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3.5 Mass conservation

In incompressible flow simulation, tfie divergence of the computed velocity field must remain

at a verv low level, to satisfy mass eonse»rvation (expiation 1 b, section 2.2), and is thus a good

indicator of computational accuracy Note that, in fhe splitting scheme used in the present

Avoik, incompressibilitv is not directly imposed on the» final velocity field v"+l, but on the

intermexliate field v (e»qnatioii 12. section 2.3). IFv icletit ly. in an open flow, as the one of this

study, global mass conse»t vat ion slrould also be verified. Fulfillment of the integral form of

mass conservation equation, taking tfie computational domain as the control volume, has

been confirmed with accuracy of the» order of 0.01Y. for the entire range» of sv stem parameters

investigated. On the other hand, tfie divergence field Dl\ (x.y) = yy Y yy,
while always

being verv close to zero far from the» cylinder, can get high values close to the contiol action

region, (»specially at high suction coeflicients. At Rt—90, (\tr.=0.2 (corresponding to a max¬

imal suction vxlocitv of 0.55 7 Y F the divergence of an instantaneous velocity field readies

a maximum of \DL\'\m ,,=()( 1 ) close» to tfie cylindei base, whereas for the uncontrolled flow

at, the same» Reynolds numbei, \D1 Yjn,,, —0(10"2). compare Figures 3.11(a) and (c). At the

same» suction coefhcYnt (Y,„ =0.2. but at lower Rex nolcls numbei, fît = 10. the maximum of

the divergence field is also 0(1), and located close to the cylinder base (Figure 3.1 lb).

fhe reason for high divergence cuors is spatial underresolntion. 4 herefore. spatial refine¬

ment of p- or h-type is necessary. For verv high gradients present in the How field, obtaining a

divergence-fret» solution can be» a tedious task. In all cases, one should make sure, with proper

grid refinement studies, that basic flow properties and flow transitions are gricFindepenclcnt.

Mote tfiat. in the» presence of a discontinuity in the boundary conditions, local refinement

can increase tfie local divergence value. Spectral element solutions, while being very accu

rate for smooth fields, can be» cliaraeteiized bv high-amplitude oscillations in discontinuous

regions (Gibbs problem). Increasing the number of expansion functions corresponds to a

p-refmement, and increases the» accuracy of computations: however, in the presence of a pure

discontinuity, p refinement concentrates the» eirois closer to tfie cliscoutinuiiv, with groAving

amplitude and frequencA*.

In our case, the suction Acflocitv imposed on the» cylinder surface is smoothed out at fhe»

two boundaries, but nevertheless, induces verv high velocity giadients for C,u, > 0.2. Fo

check for the» effect of the suction profile on the divergence field, we also used a parabolic
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Figure 3.11: Instantaneous divergence fields at different system parameter values and spatial

resolutions. Tfie region of suction is delimited by the two white lines. The structure of the

grid near the cylinder base is shown for (a) the» original grid and (f) the h-refined grid.



profile along a stiaiglit line, joining tfie two edges of tfie suction hole. This profile is smoot her

than our standard one», sketched in Figure 2.1. as its maximum suction vxlocitv gradient is

smaller. We find that, with the ne»w suction profile, divergence errors are slightly increased,

and, moreover, are spread along the boundary (compare Figure 3.11c and 3.1 lc).

fo investigate in more detail the dependence of divergence en ors on resolution, we

have poiformed p- and h- lefmement tests, using the» same tlow parameter values (Re=90.

C\Ul =0.2). In Figure 3.11. we present tfie divergence field obtained with llxll elemental

resolution on the oi'iginal spe»ctral element skeleton (Figure 3.11c!), and with 14x41 elemental

resolution on a skeleton refined near the cylinder base bv the introduction of six suppfomen

taty elements (Figure 3.11f). We» observe that the» particular p refinement performs better

in decreasing tfie levxl of divergence enots, wfiile» h-refinemeni pei forms better in terms of

increasing the region of dive»igencc-fre»(» solution. Xote» tfiat, despite tfie local high levels in

divergence errors, we have compfote contiol over their effects using resolutions tests. For ex¬

ample, in all computations with the standard suction profile, the non-dimensional shedding

period is T = 6.81. 4 he shedding period corresponding to the parabolic suction profile is

T = 6.80. More extensive resolution te»sfs (performed within tfie range C\u~ x 2.0), includ¬

ing combined h- and p-icfinexnent up to 13x13 elemental resolution, show that transitions

and major flow properties are practically independent of the» spatial resolution used in tfie

present work (see also discussion on spatial resolution (»fleets, section 3.3).

In Figure» 3.12, we plot the V-velocity profile along tfie cxxiterline, corresponding to tfie

saturated steady flow at Rt =90 and Yv^ = l,4. for two elemental resolutions (9x9 and

llxll), and two spectral element skeletons: the original one, and the one corresponding

to refinement In the addition of six elements in tfie region of suction. 4 he Figure is a good

repicsentation of the Gibbs problem. We» have encountered tfie» Gibbs problem in simula¬

tions with the original skeleton, foi ("s„~ > 1-1
•

\t these high suction flow rales, and for

locally underrosolved domains, the ve»locitv boundaiv condition is equivalent fo a disconti¬

nuity. Refining the giid with botlt li and p-refinement shows tfie continuous cliaracter of

the» boundary condition, and may significantk reduce tfie» amplitude of oscillations near tfie»

boundary Xote» that the Gibbs problem is onk present in tfie first element next to the

cylinder base, and that for X > 0.6 the» Y-velocitv profile is smooth and accurately pre¬

dicted for all grids tested. The dtag coclhtient cliffeis In" 3% between the coarsest and finest

grid, a verv teasonable value», given the sensitivity of chag to vxlocitv giadients close to the
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cylinder surface. The imptovement in maximum divexgence error with a combined h- and

p-re» fin exilent is an order of magnitude, however divergence errors remain still flight. Tfie re¬

duction of divergence errors in the» suction region to foveh characteristic of the far wake would

require» extremely fine local h-iefinetnont. Because of tfie numeiical stability constraint, this

would results in such small At values, making simulations impossible» with present computer

resources. In summary, despite local high levels of divergence, there are no eflects on flow

transitions and only slight effects on the accuracy of major flow quantities. Based on these

conclusions, and unless otherwise indicated, we» will be» using the otiginal spectral element

skeleton (348 elements), with 9x9 elemental ie»solution. in the detailed simulations reported

in the following chapters.
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3.6 Summary

T he detailed tests reported in this chapter have sir own tfiat, for a number of combinations in

flow parameters and initial conditions, the solution can be very sensitive to seAxxal numerical

parameters. For supercritical system parameters, f he linear evolution from (steady) base flow

is strongly affected by tfie tolerance level in tfie velocity iterative solver: in tfie non-linear

regime (e.g. on the limit cycle»), the» flow dynamics is insensitive to tolerance, if this is

of tfie order of 10~~8 and lowei. finis, we use 'TOT — 10~8 for flow parameters far from

transitions, and TOL = KYlh close to critical states. For flows evolving from a base state,

instability can often be successfully triggered by either increasing tfie time» step, or decreasing

tfie tolerance level, the former being ewidently less expensivx computationally. Based on the

tests performed, we choose a 9x9 elemental resolution for flic detailed studies of the next,

cfiapters. Finally, the» type of control action used here (suction/blowing) can result in high

Levels of divergence errors 'm the proximity of cv finder base. Based on spatial resolution tests,

we have shown that divergence errors cfocroaso at increased resolution and, most importantly,

that their presence» docs not affect flow transitions and oA'erall accuracy in computed basic

(low parameters (drag and lift coefficients, Strouhal numbers, etc).
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Chapter 4

Flow control simulations

4.1 The flow under control action

As previously mentioned, wc expect that the wake stability is affected by suction and blowing,

both at supercritical and subcritical Reynolds numbers. Our first objective is to calculate

asymptotic states for a large number of parameter sets (Re,CsllL)- To this end, we procxed

as follows: uncontrolled flows (Y,,, -- 0) are first calculated for several Reynolds numbers.

Subsequently, the control action is progressively increased, i.e. Csuc h increased (suction)

or decreased (bkwving). until a transition occurs. Then, the precise value of critical suction

coefficient is approximated by a dichotomy approach, until a precision of 0.005 in absolute

or 1% in relative value is achieved.

Simulations have been performed over a wide range of the system parameters, including

high suction coefficient value»s. for which expe»iime»ntal data are hard fo get. Figure LI

summarizes the computed flow states in the system parameter plane (Rc,C\uc), obtained

with the standard domain. The flow states corresponding to uncontrolled flow are indicated

by the» dashed horizontal line, which crosses the critical curve» at Re = 47.

For a given Re. we report (squaies) a value corresponding to the mean Csll~ of the»

computed two closest flow states, separated by a critical line, due circles correspond to

the critical parameter sets ohsoived experimentally by Sehumm et ai. (1991) in a similar

flow configuration. As illustrated in Ligure» 4.1, in tfie subcritical Reynolds number regime

(Re < 47), we find that suction leach fust to unsteadiness, and then again to a steady flow at

high enough suction coefficient values \ovxr 1.80 or so F In this regime. bloAving has no effect
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on the wake stability loi Rt < 17, no control action can leuclei the wake unsteady Vt

supeteiitical Reynolds numbeis (Re > 17) even small blowing flow rates stabilize the wake

whereas much stiongei suction is necessaiv to achieve this goal fn spite of the differences

in tfie details of flow setup, the computed critical suction coefficient values aie» m good

agteement to the ones found bv Scfiumm et al (L991)

Ü
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Based on then data, Scfiumm et al report a fitgliei thitshold value (7it = 27), bel ova

which the wake cannot become unsu adv 1 his threshold value is sfigfilh higfici, compatedlo

the observations ol Berger (1961) and \isfiioka and Sato(J97Y who îepoit a cotiesponclmg

value of Rt - 20 4 fits limit m Rt »iven bv Sehummct al is based on observations at iatliei

low suction coefficient values (around 0 b 0 7) The fiiahesf suction coefficient thev tested

is about 0 b2 at Rt ~ )0 which is veiv close to the» cut ic al value foi C\, wre also find at

Re = 10 To fuithe»! explore the» issue» we aho p(»ifotme»d simulations with a suction velocity
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vortex shedding limit cycle, for all Re, the ciitical suction coefficient is indicated bv the

dashed line at tfie light end of the curve. The dotted-dasfied line stands for tfie uncontrolled

flow. At supercritical Rt. tfie Strouhal number first increases and then decreases quite rapidly

with increasing suction. The decrease of Strouhal number wit li suction is steeper at higher

Re. and the function Sl(Rt) becomes de»creasing at high suction coefficients, whereas it is

increasing for the uncontiolled flow. Ihese values confirm tfie dramatic effect of suction on

t he flow structure and dv namics. and also indicate» tfiat tfie flow is more sensitive to suction

at higher Reynolds numbers: this results in fhe previously mentioned earlier stabilization of

tfie wake at higher Reynolds immbors.

To bolter undeistancl tfie unsteady flow patterns at subcritical suction coefficients, in

addition to ,S7, the amplitude of velocity fluctuations is also an important parametei. A

global intensity of flow oscillations can be expressed in terms of tfie maximum value of the

RMS fluctuation intensities («„,,, and rmil) o\et the whole domain. In Figure 1.3, umnr

and vinn values arc» presented as function of the suction coefficient, for different Reynolds

numbers. Clearly, the fluctuation intensities increase» with (\IU. reaching a maximum close»

to tfie» ciitical suction coefficient. Fluctuation intensities arc» also increasing functions of Rt.

as would fiave been intuitively expected.

Figuie 4.1 shows the maximum values of a and r RMS fluctuation intensities along lines

of constant ,r. as functions of the streamwise coordinate ,r, at Rt = 90. The figure» provides

more precise information on tfie» effects of suction and blowing in the near and far wake.

Suction tends to increase tfie vxlocitv fluctuations in t fie entire wake, but most in tfie vet v

near wake. On tfie» other hand, with blowing, tfie fluctuations are smootfilv clamped to zero

in the near wake, from an almost constant non-zero loved farther downstream, ffius, bkwving

displaces the fluctuation maxima downstream (see Figure 1.4). ifliis can be interpreted on

tfie basis tfiat blowing naturally tends to 'blow awav
"

flow patterns from fhe near wake.

Consequently, vortex formation and shedding appear at increasing streamwise location with

increasing blowing flow late», fhis phenomenon is cleatIv illustiated on Figure 4.5, showing

colour-coded instantane»ous voitieitv isocontours at Re=90 and C,u;;--0.14.

Based on Figuics 1.2. 1.3 and 4.1. we» expect that, at (positive! suction coefficient values

close to the ciitical, tfie flow structure» is verv dilleie»ut fiom that in the uncontrolled case.

Note that fieie an increase» in RMS fluctuations can be accompanied by an increase in flow

intermit ten eyv : tfie» time-fiistorv of \'-velocity at point A, foi Rt = 90 aud L\,u — 0.85,
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Figure 4.4: Re=90: maximum R MS fluctuations along lines of constant x, ty and ty, versus

streamwise abscissa, for cl ifforent suction coefficients.

figure 4.5: Re=90, CY,;.=-0.14; colour-coded instantaneous vorticitv isocontours.
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eoiiespondmg to ,\ point slightly below the ciitical curve, shows that suction indeed tends

to make the flow inteimittent and to amplify fluctuations (see Figrne 4.G). Time fiistoiies at

lowex C\Uc values confiim the tfie fiigli differences in amplitudes and frequencies at diflexeut

(Y,1;r values (Figure 4.6). 1 he stiong modification of votte-x sfiedding with laige suction is

illusttatcd in Figtue t.7, where we piesent a se<[uence of instantaneous vortieity isocontottis

OAct one» shedding period, for Rt =90 and C\Uu=0 8. flic laige inciease in shedding period

results in tfie formation ol distinct a oit ices in tfie How domain. Here tfie shape of each vortex

is not affected bv tfie piescnce of othcx voitices, as in tfie uncontiolled flow; thus the voitices

acquire a circulai foim.

Tfie f ime vatiation of \ -velocity at the centeiline point A, as C\„c is impulsively ine roaseel

fiom 0 85 to the superciitie al value I 0 at Rt=90 is piesented in Figure 4.8. Fhe» sudden

inciease of c'su„ (indicated bv the clashed fine») lesults m suppiession of flow unsteadiness.

witli tfie Y-velocitA at tfie centetline comoiging to a ste»aeh non zcio value, icpiesentathe

of flow as\ mmeYiv.

Csuc=0 85 j Csuc=1 0

-0 8
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Figure» 18: Rt—90. wake ttansient (Y-velocitv at point V) as tfie suction coefficient is

impuhiveh ittcieased from C\u =0 85 to (.',„ =1 0.
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The transition from unsteady 1o steady flow bv means of suction control is chaiacterizecl

by a simultaneous transition to asymmetry onh for Rt >36, and to symmetry for fie<36.

Tfie previous discussion on RMS and intermittency helps in understanding the transition

from a limit cycle to a steady asymmetric flow at fiigli enough Reynolds numbers. As indi¬

cated, just below the critical curve» and for all Reynolds numbers, tfie unsteady flows exhibit

very low frequencies, associated witli long wavelengths, and high values of RMS fluctuations;

moreover, at high enough Rt values, tfie flows are intermittent. In an intermittent case, the

combined effect is an instantaneous flow structure» cltaiaeterized bv strong asymmetry over a

significant, streamwise extent, foi long time-periods (due» to tfie low sfiedding frequency). It

lias been observxel (Hammond and Rodekopp 1997b), tfiat wakes exhibiting stronger asym¬

metry are bv nature more stable (or stabilizablc witli less control effort). From Figures 4.2

and 4.3. it is clear tfiat flows attain higfier levels of asymmetry and intermittency at in¬

creasing Reynolds numbers. 4 his is consistent witli our results indicating that stabilization

is accompanied by transition to asymmetry onk at high e-nough Re values, and tfiat tfie

critical C\u~ value is a decreasing function of Reynolds number.

tn Figure» 1.9 we present tfie \'-velocity time-fiistory at point A, for 7?e—30 and ( 'bUL.=l .65.

just below tfie critical curve separating unsteady and steady symmetric flow regimes. By

comparing it with Figure 1.6. we find that tfie normal velocity fluctuation amplitude is

not as large as for higfier Reynolds numbers: in addition, fluctuations are regular and not

inlet mittent in nature. In this case, tfie observed transition at a slightly higher Csuc is to

a symmctne steady How. Figure FLO presents instantaneous vorticity fields at Re=30, fen-

two suction coefficient values. (\„ =1.2 and Ci!L = l.l, within tfie unsteady regime. Note

tfie different foim of vortices, compared to the case rcpresentecl in Figure 4.7. as well as tfie

corresponding decrease in the intensity of votticitv. Fhe figure indicates that, at subcritical

Reynolds numbers, an increase» in suction coefficient results in the displacement of vortex

shedding farther downstream, whicfi is accompanied by reduced vorticity magnitudes. As

shown in Figuie 1.10, at CY(„ = 1.2, two distinct vortices evolve within the computational

domain, whereas at C,,,- —1. F onh one voitex is present; at CiU -1.6, tfie outflow length of

tfie standard domain is not sufficient to visualize voitex sfiedding. These combined eflects

of suction on the dynamics of voitex sfiedding at subctitical Reynolds numbers clarify tfie

smootli transition to steadv symmetric flow at a ciitical suction coefficient.

We now emphasize on tfie transitions that tfie flow undergexs at Re=90. with increasing
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Figure 4.9: /»>e=30, CYj, =4.65: time fiistory of \"-velocity at point A on tfie limit cycle.

C'suc within the suction regime. Figure 4.11 is a bifurcation diagram at Rt =90, showing the

absolute value of tfie time-aAx»ragecl \'\ (Y-vclocity at point A) of tfie flow in the asymptotic

state, as a function of the bifurcation parameter C,uc. We now consider the Reynolds numbex

fixed at, this value until otfierwisc stated, so the system depends on only one bifurcation

parameter, YM;,. For steady flows, (C\uc > 0.855), fhe time-averaged value coincides witli

tfie asymptotic value. The flow is unsteady and symmetric in the mean for subcritical values

of the suction coefficient ((",„ < 0.855). so the tinic»-aA-erage»el Y-volocity along the centerfine

is zero.

After the first bifurcation, occurring at Ys,,-i =0.855, two stable, steady asymmetric

solutions exist (tfiey are mirror-image» of e»ach other), and tfie centerfine Y-Avelocify can be

positive or negative. Convergence to eitliex one of tfie two solutions depends on the initial

condition. In tfiis regime, tfie ste»adv symmetric H°w solution is unstable. These properties

are typical of a pitchfork bifurcation. Figure 4.12 shows tfie streamline pattern corresponding

to one of tfie two asymmetric solutions for tfie parame»ter set (Re=90, Csuc = l.O), indicating

a strong deflection of the front stagnation point and overall flow asymmetry. No separation
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Tnuue I 10 Rt 10 colour coded instantaneous vottuiY contours (a) (Y, l 2 (b)

(\t Y l

fiom (fie cvhncfot suilace» is pnsont Yote that tieauilmes ate conveigent m the region

belenv tfie» cylinder and slighth divergent above the evlindei lins indicates that tfie» flow is

atteletatod below tfie cvjiudoi and is sligfitk de»telc iate»d abo»c» it As a consequence» the

stieaniwiso velocity field is stiongh asvmmcttie around the e \ Itnelct. u dli much fiigfie»i values

below than above the cylindei (see I iguie I 13) Then lore the death piessuie he hi around

the» e v bilde»! is also highly asvntmetne witli much lowei value xn tfie x gion of fiigli velocity

Uns is also illnstiatexl on I mure 1 1] whom we see a laige legion of stiongk negative

piessuie» belcnv tfie c \ lmde»i, especially neai the» legion ol Miction a fieie velocity ge»fs fiigli

amplitude» I his flow confitutation is therefore» tfiaratte n/e tl bv a luth üff coefficient value»

m this case negative vvfiicfi coiiesponds to a foiet dncct d downward 'towards the Law

pi(»ssuie ie»gion) Quantitativ, data of tfie dng and lib coeffie xnts ai »

] ie-ented below

\t a second critical valu' (fo 2-112 the flow bifttic ales aixun and the s' advsvmmdri

solution b »come s aho stable \bov a thud citical value ' -1 90 oil flnsvmmYu
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ligure I fl Rt =90 absolute value ol time av ex atydl t value versus Csu

solution tcmatns stable lints, at Rt--90. the second bi fui cation is charactetized bv a fivs

feiesis legnne in the îauge (Yu 2 <. Chu ^ CstL_ > llvstetesis is chaiacteijstic of subcntical

bifuications Within this nanow lange of the» btfutcahon parametei C\llc, both the symmet-

tic and asvmmetiic solutions aie stable and can be ioali/od pfivsicalk Again, convergence to

either fhe symmetitc oi to the sf tough asv mmetnt solution depends on the initial condition

For example, a flow (»yoking at (
,,

-1 75 will otthei converge to a symmetitc state if the

initial flow state is sfigfilh asymmctiic (oi svmmetitc) oi to a stionglv asvmmettic (low if

the initial state is more asvmmetiic Ffie fivsteresis icgion is also indicated m tfie» map of

flow states (1 iguie 1 I)

Subcntical bifurcations aie a ho eitaiae te nzed In tfie» e»xistcnce of a branch ol unstable»

solutions m the Iia stetes is legime. connecting tfie two stable» btanclte»s Ffie biancli of unstable»

solutions is tcpiesented bv tfie daslied part of tfie eiuve m Liguie 1 11 Tfiese unstable

solutions aie steady and slightly asvmmetiic Since we use» a time» dependent havicts Stokes
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Figure 1 12: i?t=90. (\u =1 0. stieamlino pattern o( tfie time-asymptotic flow state.

sohei and thus cannot solve fot unstable steadv flows, vve liave implemented a feedback

cont loi module in the numeiical code, to stabilize t hose unst able» flow solutions. I he feedback

contiol strategy is piesented in detail m the next section

idle» overall flow asvmmeftv can be expiesse»d in terms of the deflection of the Iront

stagnation point, with respee t to the centeiline. 4 fie precise location of the stagnation point

can be determined fiom tfie piessuie maximum on tfie cylindei surface. In Figuie 4.11.

we plot tfie angle (in degtees) fot med between the centeiline and the line connecting tfie

stagnation point and the c a findet center, as function of C,u (Rt = 90). Tfie transitions

are indicated In dashed vertical lines. 4 his figuie clcailv illustiates tfie abrupt transition

to asvmmetiic flow, as well as tfie» multiplicity of solutions within the hvsteiesis regime.

Note the veiv high values of tfie deflection angle» m the» asvmmetiic icgime, especially for

C "^ 1 •>

We empliasize now on the loi te» excited bv the fluid on tfie» cvlindet via aIscous stiosses

and piessuie». The total force is cxptessed in uon-dimensional foim bv the diag (streamwise

component) and lift (nonnal component) coefficients, both defined in cliaptei (3). We calcu¬

late drag and lift b\ inlegiating the local foue enei the full cvlindet surface, i.e. we consider
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the case» of a porous cylinder. Compute»d values at Re -- 90 (pressure and viscous compo¬

nents, and total values) arc» presented in Figure 1.15 as functions of C\uc. Here, we report

time-averaged A*alues of the drag coefficient: since» the timo-averagcel lift coefficient is zero in

unsteady flow around a cvflinder, the reported lift coefhciexit for (saturated) unsteady flow

corresponds fo its amplitude, i.e. half the difference bed ween its maximum and minimum

values.

As shown in Figure 1.15. tfie» drag coefficient is minimal at the ciitical blowing flow rate

((\uc ~ -0.145). Compared to tfie» uncontrolled flow, there is a decrease in drag coefficient

by 11%. Botlt tfie pressure and viscous components increase monotonically with suction

coefficient in the unsteady and in tfie» steadv (asymmetric and symmetric) regimes, witli

tfie pressure component contributing most in total drag. Around tfie transition from steadv

asymmettic to steadv symmetric flow, the» value of total (bag coefficients exceeds that of the

uncontrolled flow by an order of magnitude.

idle lift coefficient is also monotonieallv increasing with (\,,c, botfi in the unsteady and
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in tfie steady asymmetric flow regime»s (Figure 4.15). In all cases, the pressure component

is most significant. In tfie unsteady flow regime, due» to the phase shift between the instan¬

taneous pressure and viscous lift, tfie sum of tfie two component amplitudes does not ecpial

the» amplitude» of total lift (see Figure 1.15). We empfiasize the pronounced effect of suction

on the lift coefficient: in the steady asymmetric regime, for example», the values of lift and

drag coefficients are similarly fiigli.

4.2 Feedback control method

Ffie concept of tfie control strategy used to track unstable asymmetric solutious can be»

related to Landau's theory ou non-linear hydrodynamic stability.

As already described in chapter (3). Landau proposed a dynamical modefl for tfie ampli¬

tude .1 of tfie» dominant global mode about a steady ("base") (low (see equation 7, section 3. f).

Depending on tfie sign of oy and /,., four different cases can be classified. The combination

ar < 0, /,. < 0, corresponds to a subcritical bifurcation. In this case», there exists a hysteresis

regime, with a threshold value for the» amplitude of initial perturbations |.4|P — Y7Y If at

/ = 0 |.4| < |A|p, then |.4| decreases with time and tench asymptoticly to zero. If at 1 = 0

\A\ > |/4|c, then |.1| grows continuously and tends to infinity (to account for saturation and

convergence» to tfie» second stable» branch, higher order terms should be considered in tfie

model equation (6) of chapter (3)). 4 fie evolution of |.4| as a function of time is sketched in

Figure 4.16 for two different initial values, one smaller and one larger than \A\C.

A combination of tfie» Stuart-Landau equation (7) with a first order Taylor expansion of

the growth rate er, around the critical value R. of a system parameter /?,

er, =k(R-nc) + 0((R-R;)2). (1)

yields the approximation | l| x J\R — R0\ for the saturated amplitude |AA,?|. This result has

been verified in this study for tfie variable |F\|: tfie function h 15YC'S„L — Csuc,2 accurately

fits tfie unstable branch in the» range» 0 < Ufl| < 0.35, with a maximal relative error of less

than 1% at the computed points.

Thus, there should be a threshold value |\fl|L for the variable |F||, below which \\\\

decreases and above» which \\\\ increases (after a short oscillatory transient, depending

on initial conditions). 4 his has been obsenxd on flows evolving in tfie livsteresis regime at

70



time

Figure 4.16: Sketch of tfie time evolution of the dominant global mode for two levels of initial

perturbation, in tfie case of a subcritical bifurcation (er, \ 0, /, < 0).

various l'm„- and |1 4| levels. We» have also obsexved tfiat small disturbances superimposed on

tliese flows always result<»d in a short "chaotic" transient of maximum 30 time units, followed

by a very long and regular vaiiation in |\fl|(f). In gcneial. shortly after the perturbation (for

example due» to a small jump in Csu ). the flow development is in very good approximation

linear in time during at least O(10!) time» units (sex» Figuie 4.17. note the very slow system

dynamics). At very large times, the» flow approaches either tfie symmetric or tfie stable

asymmetric solution and filially lends to it exponentially.

Based on tfie previous remarks, and assuming tfiat tfie unstable branch joining fhe two

stable branches at (\nr2 and C\,u ->. is a Injection, we could derive a control strategy to

track the» unstable flow solutions. In feedback control, one needs to define a control goal, an

actuator, and a measurement signal. We do not attempt to track unstable steady flows at

fixed 0,,R values, but rather to drive flows to an asymptotic unstable steady state, thus with

Y/p=0, by tuning ( \tl, at discrete» times. Hence, our control goal is -L^' —y 0 as / —y 00,

C6U is used as actuator, and the sign of -^Y- seive»s as feedback signal, wliicli decides fiow

tfie actuator must be updated to teach the fixed goal. -Vsvmptotically tfie procedure ghxs

\ 4 —y \ 1 /,„ jet
and C\uc —y C Yi . n,p t both I \ t7) ;

• and C Y,„ ,JUIJht being unknown a piiori.

The veiv slow dynamics of the flow after the» sfioit irregular transient (caused by a

small FY; jump within the liAstoiesis icgime) implies infinitesimal variation of all flow vai'i

a files during O(10) time units, ffie initial flow field for tfie control simulation thus verifies

Yi.P7jfm/~Yi tn,jf.t.
and in general 1 \^,vt doe-, not differ from \\imt,ai by more than 5%.
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non-saturated flow to a small (\tl- jump (from 1.7 fo J.72 at, 1=0).

This enables a rat hex good approximation of the» value of the» state variable» \a for the target,

flow, if the initial field is well chosen. A suitable» initial condition can be an instantaneous

field of a flow evolving from its unstable symmetric solution to its stable asymmetric solution

at a suction coefficient just below C\lu.2- <">s Y\ crosses the desired value for \'\ t„><jeh Doing

so, tfie initial flow state is not fundamentally different from the 'target' unstable» steadv

state, which also has the adv ant age of short and small amplitude initial oscillations. As ini

tial suction coefficient, a landom value can be taken in the range [CSUCi2, C\u ,-fl, or, possibly,

a bet 1er guess for Cslu ^JU;ht-

The» control algorithm is sketched in ligure 1.18. Fverv 30 time units, the quantity c-ltjXx

is measured, ff this quantity is positive, the flow is necessarily evolving above the unstable»

branch (Figure 1.11) towards tfie stable asvmmetiic solution corresponding to the currexil

C,!(L value; jf-YY }s negative, then the instantaneous flow state corresponds to a point below

tfie unstable braneli, and tfie flow tends asymptotically to tfie stable symmetric solution. In

tfie fot mer case. C\Ul must be» increased to resist the giowth of |lfl|; in the latter case C\u



must be ieduced. Koto tfiat, the approach assumes that the unstable brauch îepicsents a

one»-to-one» function from CY« to |Vi) (Figure 4.11).

Considering the» case of decreasing \Va\, at ffie first control iteration (after 30 time units).

(Yuc h decreased by 2% and its previous value is stored lo define an upper limit Cim,m n
n°l

to exceed in tfie following iterations. Fhis is repealed until the first occurence of increasing

\\\\, where» the cunent Csi(< value defines a lower limit (Yucmm, <uid the new value of C,,,- is

obtained by taking tfie me»an of the curre»nt limits (\„-miri and C^jr,mnr- At each subsequent

iteration, depending on the» sign of -yyY either C\H mn! or Csl,:,mai takes the current Csuc

value, and the new value of ( Y, L obtaine»d by taking the mean of Osuc.mm and FY^.nnr-

Initial Conditions:

1 )VA*VA>target
2) initial guess for CS11C

VJ increasing Simulation at present Csuc
during 30 TU, or until

exponential growth

I Vd decreasing

Ysuc.min-^ sue

if F\uc,ma\ h already defined then

Cmic=0--"> (Csuc,inax+<~siic,mifosue

else

*-suc_l -u" ^'suc.min

No

*-sue.max-*-sue
if Csuc.min is already defined then

*- sue^Y ((--snc,niax+<-'siic,miri')
else

C suc-0. )8 Csuc max

C -Cu
sue.max *-suc,mm A ,r/ 0

- <ü.lVf .'

C
v
sue,mm

Yes

End of simulation

Figure 1.18: Contiol algorithm used to compute» unstable asymmetric solutions.
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As tfie flow approaches an unstable state after a lew control iterations, small perturbations

in C'sil: naturally result in the growth of the dominant, mode corresponding to this unstable

solution. In this case», the exponential growth of the perturbation field usually manifests

itself in less than 10 time units after implementing the control action. This suggested that

the control algorithm could be» improved, by updating (\ll3 more frequently than every 30

time units. If is important to note fiete» that tfie dominant eigenmodes of tfie unstable steady

solutions liave zero frequency (sec» section on stability analysis), and thus do not oscillate

around the base flow. In older to capture tfie exponential growth of an unstable mode, we

perform an online» curve fitting of |Fi|(/) with tfie exponential function c/=Aq Y Ai expYYO

on 35 values computed at equal intervals ov<»r the past 9 time units. As soon as the correlation

coefficient between |Yi|(0 and tfie fitting function is larger tfian 0.999, we consider tfiat, an

unstable» eigcnmodc mode is giowing, and C\uc can be» updated accordingly. Tfie control

action is thus updated either 30 IF (time units) aftcx the previous control action (at the

latest), or as soon as the growth of an unstable eigcnmodc is justified (earliest: 9 time units).

A furtfier improvement to tfie controller lias been implemented: instead of updating Csu~

based only on tfie sign of yy, we fiave also taken info account ffie absolute value of '-jf2-.

which allows for a more accuiate approximation of C^iC,SOuqht- Inched, when the» flow ap¬

proaches a ste»ady state». |Ymi| tends to zero. 1 herefoie», tfie control algorithm has been

improved as follows: the values of Ay- corresponding to the limiting values Csllù,mm and

Csllc,mn fii-O also stored ((~^yY,„„ and (yy)m-n- lespectivxflv) at each control update, and

C,„c is updated bv the value vvfiicfi would correspond to yy — 0, based on tfie linear inter

polation between tfie points (C\u .„,„,. (—^)m,Y) and (C\uc.m,r, (~yy')mai). sec Figure 4.19.

Simulations were stopped when Cbir,vun and CS!lu,m„ differed by less than 0.1%. In all

cases, tfie error made on Yu„,,f was less than 0.1%). In Figure 4.20, the time history of

\\\\ is represented for the last time units of a simulation witfi control switched on. The

corresponding time fihtoiv of tfie controller output Cs„ is represented em tfie same» graph.

Tfie figure clearly illustrates the control piocess. witfi tfie update» of C\Ui depending on tfie

slope of |Yt](0-

Intuitively, one» could expect that results aie mote» sensitive to spatial resolution on tfie

unstable braneli tfian on the stable branches; we have compared several points on this branch,

obtained from simulations with 9 x 9 and llxll elemental resolution. Tfie two brandies

obtained very well superimpose at four computed points. 1 his furtfier confirms tfie adequacy
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Figure 1.19: Sketch of tfie improved (Y,,,- update, ffie ""new CSUY corresponds to -===0.

in the lineal interpolation between (F„;,m„„ (^y,yYmi, ) and (CSUc,m,u , (-^)mn)-

of the» 9x9 elcme»nfal resolution ove»r the entire range of the system parameters investigated

here. The» computations of unstable asvmmetiic solid ions with t he control module have been

performed with TO/,= 10~Y Because of tfie very slow system dynamics near steady states

(Figure L17). saturation of tfie» How variables was often obtained after few control iterations.

To investigate the effect of tolerance in the velocity iterative solvei, we fiaA'c computed a few

unstable» points witfi _TO/x=l(Y11. Wc find tfiat these points also lie on tfie same curve as

tfie ones computed witfi TOL=\0~S.
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Chapter 5

Domain size and boundary conditions

effects

5.1 Domain size effects

In contrast to wall-bounded flows, for which physical bouudarfos are well-de fined, wake» flows,

like all frtt sluar flow*, must be computed in a truncated finite domain. The domain trun¬

cation is a supplementary source of errors, in addition fo the other types of numerical errors

pi osent in numeiical flow computation. (Note, howevei, that finite domain effects are» also

present in the experimental stuck of free shear flows). Fvidently, increase of computational

domain size» results in reduced truncat ion errors, while increasing computer memory and CPU

time reeiuirements. All tesults of the previous chapter correspond to the domain presented

in Figuie 2.2. The size of tfih domain exceeds literature suggestions for the uncontrolled

flow (Barkley and Henderson 1996). as Ave expect tfiat tfie» use of base mass transpiration

affoots tfie» flow field many diameter lengths away from the cylinder.

In the case of uncontrolled (low around a cylinder, the» deviation fiom an infinite (in

cross-flow direction) domain is (»xprcssed in tenus of the bloelaye ratio, D/ D\', D\~ being

the total domain witli li. Domain size eflects vanish fot very small blockaee ratio values. In
C_J

tfie» case of (low controlled by means of base mass tianspiraf ion, the suction ratio, defined

here as the ratio of suction flow rate» to the domain total flow late, may be» a more appropriate

parameter to express domain size (widtli) eflecls:



ffs„ =

^/ S tit.

(\„
/7

(F
txD) DY

Note tfiat /?,„ = 0 is icacfied in the» limits of eitliex infinite domain width, ot uncontrolled

flow (wfieie domain size recommendations ate available (Barkley and Henderson 1996)).

4 he tesults presented in tfie pievious c hapten correspond to suction ratio values up to 0.0 58

(domain width is 68P, maximum suction coefficient value is 2.6).

Jo investigate the eflexts ol domain size on computational results, a numbei of computa

tional domains of different inflow and outflow length, and widtli, have been used. The main

domains used ate» skotcfiod to scale» in Figuie 5.1. including chaiacteristic names and total

efoment numbeis. The e vlindci F also lepiesented. I he domain dimensions aie summaii/ed

in Table 5.L. Domains 'OFF. A\ ", "L" and 'LW' wore constiucted bv adding elemental tows

and columns at the» boundaries of the» basic domain 'M V1N' piesented in Figure 2 2. i.e. tfie

spatial lesolntion of the coinciding pail is the same» in all cases. Domains 'XL1 and "X1AV

have compaiativeh bigger elements in the legion defined by A < —30 and —1.5 < Y < F5.

Y

-34

Figuie 5.L: Computational domains used, and corresponding numbeis of elements 4 fie

cv findet is also i opt osent od (to scale).

At fixed parameter sets (Rt,C\u ). we compaie the» computed values of flow fieepiencv

equivalentk : period- fot difleient flow domains We also compaie the critical values obtained
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Figure 5.2: BounclaiA of unsieach flow regime in tfie parameter plane (Re, 6\„,). Païametci

sets (crosses) chosen foi fieque»ne \ compaihon tests aie» aho indicated.

frequency and stabilitA can be» acia substantial. Accoiding to oui lesults, tfie choice of

domain widtli can diasticalk allée t flow frequencies and fluctuation amplitudes, close to the

transition fiom unsteady, to steadv asy mmettic flow. At (/?c=90, CSiK=0 85). foi e»xampfo»,

tlie shedding peiiod eotie»sponding to domain 'XFW' is about 5 times finget than the pcxiod

corresponding to domain "XL" (see lable 5.2). \i C,î/L—0.80. tfie difference falls to 5VY and

becomes negligible at C\„ =0 40.

In addition to the equality of the» flov\ ItequoncA at [Rt=90. ( Y< =9 4) fot all glich used,

flic» pfiase space plot ol ccloeitA components |[ 1) at points \ and E confinm-5 that tfie»

flow dynamics is identical for domain sizes fiom Al \1X' to 'XLW
'

at this suction lcwel (see

Figuie 5. ?) The huge peiiod of oscillations (Y=726) found with tfie Fügest domain at

(i?c=90, C\i, =0 S5) suggests that, in the limit ol infinite (low domain, the» transition to

steadv asvxiimctiv may be viewed as a convergence to a state ol ze»io shedding ficquencv.

Domain width can aho (slightly) affect the ptecho position of the limiting cutve: foi

(Y», =0.85, the asymptotic flow state is unsteady witfi 'Al MX", and steady asvmmetiic witfi

Yl



Re {-suc MAIN W XF XLW OUT

90

90

90

90

0.85

0.80

0.40

-0.12

107

72.8

12.1

7.56

Steady

76.3

12.1

7.59

150

87.1

12. L

7.59

726

91.6

F2.L

7.66

103

71.9

12.1

7.55

60

60

1.00

0.80

71.01

34.0

73.5

31.0

81.5

33.1

85.0

33.1

70.1

31.0

30

30

1.65

0.65

139

13.65

178

13.65

L53

13.68

L78

13.68

132

13.66

Table 5.2: Flow oscillation period at different parameter sets.

AY.

Interestingly enough, we find tfiat inflow length can also drastically affect, sfiedding fre¬

quencies, in the vicinity of tfie critical curve in tfie suction regime. For all Reynolds numbers

used in this test, tfie shedding period is dramatically increased near fhe transition to asym¬

metry, for increasing domain size (from X\F\4X* to "XLW"). On the otfier fiand. the dynamics

of flow controlled by blowing appears rallier unafleclcd by the domain sizes used here. For

example, at Re=90 and (7!;,=-0.12 (a point close to tfie critical curve in the» parameter

plane), the maximum difference in flow period for all combinations of domains used, is less

than 2%.

fn summary, domain size can significantly affect tfie» sfiedding period, especially tfie» inflow

length and domain widtli.

5.1.2 Effects on flow transitions

In the present subsection, we» investigate tfie effect of domain size on flow transitions. We

perform a number of tests to cfieck tfie influence of tfie domain size on ffie location of tfie

critical curve delimiting the region of unsteady flow. We lind a maximum discrepancy on

tfie ciitical suction coefficient delimiting the unsteady regime of about 6VY this occurs at

i?e=30, near tfie triple point (see Figure 4.1), in cotupating "MYIX" fo all otfier domains.

The discrepancy decreases at lower and higher heynolch numbers, if is about 2% at Re=20

and for Rt >40. We conclude t hat the» curve delimit ing 1 he unsteady flow regime is accurately
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sketched in Figuio Fl. and onk slightly depends on tfie domain size in ffie» legion around

the ttipie point.

We now empliasi/e on the transition between the steadv- symmetric and steady asvm

metric regime at lew Reynolds numbeis and high C\, values. This transition coiiesponds

fo a supetciitieal bifuication. f fins, tlieic is no Iia stenosis, and tfie amplitude of satuiated

perturbations at a fixed point continuously grows witfi the ciitical pa i am etor (Re, or C\tn),

as tfiis is 'mcieased above the ciitical value, figuie 5 1 presents a bifuication diagiam, simi¬

lar Iv as Figure 4.11: fieie the amplitude |1 t| is i (»presented veisus tfie Reynolds numbei, at

a fixed CsllL value (( \u =2 0). 1 he» graph shows t hat the» ciitical Reynolds numbe»is obtained

with the smallest ('MAIN') and the laige»st ("XI W') domains differ bv less than 2%. We

can conclude tfiat this bifurcation is accuiateh tepiesented on liante 4 1 lot tfie infinite

pioblem, as it is not influenced bv the extension ol tfie domain F\f VtN' in all cliiections.

Tfie last t lansit ion studied in detail in the pioA torn cliaptei vsas tfie sube litical bifuication

fiom steadv asvmmetiic to steady svmmetnt flow, we» will show that it depends stiongh on

inflow length and domain width. Ttguie 5 5 represents |\ F veisus C\, in tfie steady ie»giraes
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Figure» 5.4: C,u~=2.0: bifurcation diagram for the transition from steady symmetric to steady

asymmetric flow : Ifl versus Rt.

at Re=90 for six different domains. All these domains have the same outflow length. They

constitute all possible combinatiotis from three different inflow and two lateral boundary

locations. We observe tfiat the effects due to inflow length are very strong. Note that, at

a given CA»„ value, tfie suction ratio corresponding to tfie wide domains (AY. 'FW, and

'XLW) is about half tfie ratio of fix» 1 bin domains ('MAIN'. TT, 'XI/). Irrespective of tfie

influence of suction ratio, we find tfiat the difference in the critical suction coefficient Csucj

(and also t\u~ >) between the two domain types is mainh influenced bv DAfoy. In particular,

the difference in (%u~2 between tfie tltin and wide» domains increases witfi DXj\ as follows:

it is about 2Vf between AIA1X" and AY". 5Y between T/ and TAY", and $% between 'XL"

and 'XIAV (sex» Figure 5.5). Moreover, vutfi increasing DY, tfie critical suction coefficients

increase» for small DXj\ value»s (compare AIA1X" and AV). whereas theyy decrease at higher

D Vjv values. We can tlieicfoie» not cone lüde on ffie effec t of DY indepe»ndenlly of DXf\ .

but can confidently assess that the transition mainh depends on DX)x, which acts in this

case as a limiting factor. Indeed, it seems that low values of 0\fo can limit tfie effects
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caused by increased DY values.

As shown in Figure 5.6. tfie critical suction coefficient, vralues Csuc,2 and CA»-„i increase» very

significantly with inflow lengtli. Thus, at high, values of DXin, ffie corresponding critical

curves e»xc(»cd the range of Figure 1.1 (Csuc > 2.6). In spite of the use of tfie very long

inflow fongf h of 160 diameters, much longer than in any literature simulations of cylinder

flow we are aware of, we are still unable to assess critical suction coefficients, for tfie (Iflgher

Reynolds number) transition from steady asymmetric to steady symmetric flow, in tfie limit

of infinite flow domain. This is clearly indicated in Figure 5.6, where the critical values CiUC_2

and (Y;(x are plotted versus DXi\. for DY='M and DY=67, at Re=90. This particularly

strong effect of the inflow length on the subcritical bifurcation can be explained by the fact

that the inflow boundary condition imposes a symmetric velocity profile (Y = 1,Y = 0).

At a given suction coefficient, decreasing DXj\ te»neh to impose a symmetric flow pattern

closer to tfie cylinder, and therefore acts in favour of transition to a symmetric steady state.

On the other hand, increasing Z)A'/\ tends to delay transition to symmetry, as shown in

Figure 5.5. Figure 5.7 shows tfie \'-velocity profile versus (/-coordinate» at X — —30, of

ffie saturated asymmetric flow obtained with 'XLWY At this streamwise coordinate, the V-

velocity on domain 'MAJX' is imposed as a boundary condition, and is equal to zero; this is

epialitativelv different from the profile in 'XIAV, which takes a non-negligible value» close to

—0.04LY, at, the centeiline. 'Ffie comparison illustrates tfie strong effect of inflow lengtli on

tfie symmetry properties of tfie» flow, which can e»xplain tfie fact, tfiat asymmetric solutions

are more stable in longer domains.

5.2 Boundary conditions effects

As a final test, we cfieck tfie effect of different velocity boundary conditions on tfie com¬

puted flow fields. All computations are» performed using tfie smallest computational domain

'MAIAY for wfiicli difleient boundary conditions are» expccfocl to affect tfie flow field most.

Tfiree new types of velocity boundary conditions are implemented:

(a) Symmetry on tfie» lateral boundaries.

(b) Periodic boundary conditions for tfie two lateral boundaries.

(c) Potential flow solution for the inflow and lateral boundaries; due to tfie relative large» do¬

main dimensions, tfiis is very close to tfie standard fieestream velocity boundary condition.
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We perform several computations at high suction coefficient values. We find that, tfie sub-

critical bifuication is very sligfitlv affected by the new boundary conditions. In Table 5.3,

we i op ort, the values of the» ciitical suction coefficients CSin,2 and YSUL,i computed witfi tfie

standard and tfie three different boundary conditions. Ifcre, we aho report tfie values ob¬

tained witfi tfie domain "OFF and tfie standard boundary conditions, fo confirm tfiat tfie

outflow length aho has a ne»gligible effect ein C\u^ 2 and Cst,cs-

Yleaily, all boundary conditions implemented have practically no effect on the flow tran¬

sitions, i'fiis has be»e»n further verified for various domain sizes, flcnce, regarding the sub¬

cntical bifurcation, the problem of domain size dependency is still present, inespective of

the boundary conditions.

Another foim of velocity boundaiv condition, with the advantage of corresponding CPU

savings, has been proposed and used lw Hannemann and Oortel (1989), for (fie simulation of

the wake behind a flat plate. Ibev conducted computations in two steps using two different

domains: one full domain, with tfie» plate centered on the central (symmetry) axis, and

one 'half domain", corresponding to half of a full domain, truncated at the central axis,
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and fluffier extended upstream and laterally, in comparison to ffie full domain, fficv first

computed the steaeh symmetric flow on the "half domain', implementingiiee stieam velocity

on tfie» inflow and lateial boundaties. and a svmmettv boundaiv condition on tfie centeiline.

Af(c»t comctgonto to tfie steaeh sv mmetiic solution, thev icstaited tfie (omputation on tfie

full domain, using tfie velocity computed witli the "hall domain' as boundary condition at

tfie now inflow and lateial boundaties I lie two disc te»tizecl domains may have the same»

oielci ol nodes, while the flow field fai ftom the plate end is better approximated bv the

steaeh sv mmetiic solution tfian bv the dee stieam velocity. Although we have not tested fhis

ptocedute, we can assess that it would not have been effect ive» for oui simulations. Indeed, we

have extended out slandatcl domain far upstream and laterally from the cvlindet, without

coming up with any asymptotic befiavioru of tfie subcntical bifuication. flic pioceduie

pioposed bv Ilannemann and Oertelis m essence equivalent to increasing domain size witfiout

increasing tfie computational cost In e»xtcnd'tng "M MX' fo 'XLW', we have followed the

same» basic idea, wfiilo aho increasing (Tl requuemonts. \ho note tfiat the full domain

boundary conditions of flannemann and Oei tel aie sv mmetiic with respect to tfie centeiline.
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MAIN Potential Symmetry Periodicity OUT

(- MU,2 1.72 1.72 1.72 1.72 F7L

Ysii- 'i 1.90 1.89 1.89 1.90 1.89

Table 5.3: Ciitical suction coefficient values obtained with ffie domain "MAIN" and four dif¬

ferent tvpes of velocity boundary conditions on the lateral boundaries (tfie velocity imposed

at tfie inflow boundary is the free stieam velocity, if not otliexwise stated): free stream, po¬

tential (also at the inflow boundary ). svmmetiy boundary condition, and periodic boundary

conditions. Also reported: values obtained with tfie domain "OUT', whereby the free stream

boundary condition is applied.

witfi veiy large, but still finite domains, ffie» eaiiier transition to steady symmetric flow at

shorter inflow domain lengths can be explained bv the» fact tfiat inflow boundaiv condition

imposes a symmetiie velocity profile (Y = h Y - 0); sfioiter inflow lengths impose a sym-

metiA condition closer to the ca linden, and this favouts transition to a steady symmetric flow

state.

If tfie above subcritical bifuication is actualh present at infinite flow domain, one can

expect tfiat the two critical curves separating steady symmetric and asymmetric flow states

(see Figure 1.1) (»ither have a veitieal asymptote as C\u tends to infinity, or join forming a

single curve. Tn the latter case, there would exist a threshold value for C\u ,
above» which

all asymptotic flow states are steady symmetric. We believe» however that fhe» subcritical

bifurcation is a consequence of domain truncation, and thus is not present in tfie limit of

infinite flow domain. At present, for a given Rev nolds number, we» can merely identify a

suction coefficient value below which our results are insensitive to domain size (for example,

at Rt = 90, results are insensitke to present domains for C\u < 1.5, see Figure 5.5).

Note tfiat. in all simulations, wltfio the range of Reynolds numbers is arbitrarily limite»d

to Rt x 90. (',„, is. instead. le»ss tfian 2.6 for reasons ielated fo tfie numerical stability

constraint. At Csuc=2.0 and Rt =90. a time step as low as Af=0.0005 is necessary to satisfy

numerical stability, which is nntcfi smaller than tfie value AY-0.01 usee! for the uncoutrolfod

flow. Given tfie very large integiation times, even hi a lien suction coefficients than the ones

already used would result in prohibitively expensive simulations.

Implementation of difl'orent types of boundaiv conditions has shown that tfie flow tran¬

sitions aie practically hisensithe to boundary conditions, foi the domain sizes used in the
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piesent woik. Indeed, it appeals tfiat the subcritical bifuication is always present for finite

domains, and depends strongly on domain size.
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Chapter 6

Stability analysis

To cliaractcrize in more detail tfie flow stability properties in tfie various regimes, we have

pei formed global stability anahsis calculations at Rt = 90, for a wide range of suction

coefficient valtte»s. Global stability analysis can aho serve» as an additional test for DNS

results.

In tfiis efiapter, we fiist present tfie numerical algorithm utilized by the stability code,

which, was kindlv pioa fifed to us In R. Henderson and D. Barkley. Then, we report stability

analysis tesults, at Re=90.

All types of steady solutions fiave been analyzed: symmetric (stable and unstable).

strongly asymmetiic (stable), and sliglitly asvmmetiic (unstable) flows within tfie» hysteresis

regime. The steady symmetric base (lows fiave been obtained witfi time-dependent simula¬

tions on liaif tfie domain, implementing a symmetry boundary condition on tfie centeiline.

Tfie unstable sfigfilh asymmetric (lows within hystctesis fiave» been computed by means of

tfie feedback control presented in section 4.2.

To perform global linear stability analysis, the dtsctettzed Navier-Stokes equations must

be linearized about a steady base flow Y. ibis yields a linear dynamical system for the

evolution of small distuibances Y supeiimposed on tfie steady base solution U, tfiat can be

expressed I>a means of a linear operator If ,
as follows;

A primaiA" task in linear stabilitA anahsis consists in finding ffie leading eigenmode (i.e.

tfie one corresponding to the largest growth täte) of the» steady solution Y, or, eqttivalenttlv.
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tfie leading ctgenpau (eigenvalue, eigenvector) of tfie lincai opeiator fo Indeed, m the frame

ol linear stability theoiy, infinitesimal disturbances superimposed on the steaeh solution

evolve exponentially at tfie rate corresponding to tfie eigenvalue with the fingest real pail

s = er, (icy wine li is tficueloie of paitieulat interest f( tfie leading eigenvalue now also

lefened fo as the global fineai frequency lias a positive ical pait, then tfie steady flow

solution is unstable, and infinitesimal distuibances inciease at a gtovvlfi rate of a,, while

oscillating vv itfi a frequency equal fo ,fo foi negative» values of ey, disturbances decay witfi

tfie» corresponding values ot decay rate» and frequency

fo leduce the fiigli computational eifott m solving tfie full eigenvalue problem fi \ =

A Y, since onh tfie leading cigenmodo is sougfit, the stability code used exploits ffie effic icnitv

ot an iterative Ivivlov med hod (Edwaith et al 1991) to accurately compute tfie dominant

mode A series a is construe te el as follows

u u - fo « n Y 0 (2)

starting from an initial guess y0 fot tfie dominant eigen mode Au r IS Aie integration

opeuatot associated witfi tfie fineai system (1) ovei a sampling peiiod T

h i »'(/)- »VH ff"! k u'di, (1)

In equation (2) a actually it presents tfie solution of (1) at time / —»/, witfi tfie

mitral condition Uq Fiom tins seues of pettuibation fields, a sencs of hivlov subspates

Yi-=[»A »Â + i, i'À + \/-i] of dimension 1/ is constituted, which can also be defined lecui

sivelv

\0 = [«0 »1 î'V-l]

A
+i - k , \

, »
^ 0 (1)

Cfi)

Hence, onk a single» mattix vector opeiation is necessatA to compute Y + thom \7 Tfie

eigenipaiis of \, tend to those of fi as n —> -\_ convetgenee being fastest aclueveclfot tfie

dominant e»igenpan I fie seues ol the dominant eigenvalue A and tfie dominant eigenmode

en ol \, is consideied to accuiate k ap])io\imate the leading eigenvalue and eigcnmodc of

92



Au wfien tfie residual r=||/fo • t„
- A„en|| falls below 10 F In ail cases, a htylov subspace

dimension M=10 appears sufficient fo reacfi tfiis level of accuracy. Tfiis is consistent witfi

tfie stability calculations of Taylor-Couelle flow reported in Edwards et al. (1994); tfiev

obtained fast convergence witli a subspace of dimension 30. Tfie sampling peiiod T depends

on tfie» base flow and lias been chosen in the range [0.5, 5]: for base flows c fiaracteiized bv

very low giowth rates. T should be fiigli enougfi to give the eigenmode enougfi time to grow,

whereas for liigfi giowth rates. T should be chosen small enough so that the series it„ docs

not get too high values due» to fast eigenmode giowifi. In general, for il/— 10. convergence» is

already achieved witfi tfie first computed Krvlov subspace X0.

As a validation te»st. we» compare stability analysis results to Stuart-Landau equation

coefficients, obtained by analyzing DNS data, in tenus of global growth rates and linear

temporal frequencies, tn Fable 6.1, we present tfie global linear frequencies (growth îatcs

and temporal ftequeneies) computed bv global stability analysis at Re=00 and Rc=60, for

uncontrolled flow. Results corresponding to tfie Stuart-Landau model are also reported. At

both Reynolds number values, 1 he agtecment is excellent.

exfl s'/) er, (SA) er, (SL) er, (SA)

AY =50 0.0110 0.0110 0.712 0.742

Jit =60 0.0483 0.0181 0.750 0.751

Table 6.1: F neon I rolled flow: global linear growtli rates and temporal dequeue ies. based on

the Stuart-Landau model (SL). and on stability analysis calculations (SA).

It has been sliown for tfie uncontiolled cylinder wake (Barkley and Henderson, 1996) tfiat

computation of tfie eigcnmodes can be» performed witfi ecpial accuracy on a much smaller

domain than the one used for base flow computation, because» these eigcnmodes vanisfi

rather close to tfie cylinder. We fiave veiified tfiis witfi few test-calculations. At Re=90

and CSIU=0.0, the steady base flow computed on "MAIN' lias been strongly tiuncated onto

a smaller domain, witfi the following dimensions: D\;\ = 1. /)Y—4. DXoi t"=4. Global sta¬

bility analysis petfotme»d both on the small domain and on 'AF-MN* a folded very close values

for the growth täte. 0.110 and 0.104, respectively. Nevertheless, all stability calculations

fiave been perCoimed witli the same giid and resolution (0x9) used for tfie associated base

flows. ScAeial resolution tests at various suction coefficient values have been petformed using

il x 1 L elemental resolution in both base (low and stabilitA calculations, and verified the
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accuracy of 9 x 9 resolution, fot example, at Re=90. C,U( = F76, the global giowth talcs

corresponding to ffie unstable asymmetiic steady flow (chosen for its potential sensitivity to

spatial discretization) computed witfi 9x9 and llxll elemental resolution are 0.000405 and

0.000117 respectively, and thus differ by only 3%.

We now ptesenl stability anah sis tesults obtained witfi tfie domain 'MAIN", and compare

fliem with some» tesults obtained witfi ffie» largest domain 'NFAY'. In Figure 6.1, global linear

growtli rates and frequencies corresponding to sv mmetiic base flows at Re = 90 are» presented,

for a wide range of (\u .
4 fie» non-linear frequencies in tfie unsteady legi me are also presented.

First, we» note that the suction coe»fficients at wfiieli the symmetric steady flows become

unstable (er, =0) practicalh coincide with the ciitical values found by DNS (marked bv the

vertical clashed lines).

We emphasize now on tfie unsteady regime and tfie transition from steady symmetric to

unsteady flow. Up to CiU^=0.2, the linear frequency remains at a constant level, while tfie»

growth rate varies linearly witfi Cu ,
wfiieli is consistent witfi the first order approximation

of ci, near tfie critical value», used in tfie Stuart-Landau model. Note tfiat, as expected, as

Cu approaches its critical value (~ —0.145), tfie non-linear frequency (of tfie limit cycle)

tends to tfie linear frequency

Ffie linear variation in both tfie» growth rate and linear frequency stops at L\,u ~ 0.3. Fur

then increasing ( \m only sliglitly increases er, up to ( \„ =0.6, wfiile a, drastically decreases

from YS)lt=0.3 to 0.6. wfieie it becomes zero. We believe tfiat tfie sudden modification in

tfie shape of the» er, versus Cu~ curve for ( 'suc Y 9.3 is clue to a less parade»! flcwv in tfie near

wake. Fern and llo (2000) conducted a similar ex pet fence in their contiol studies of wake»

flow produced bv tfie merging of two boundary layers.

Around FY(X=0.6, tfie growtli late starts incieasing again, while ffie linear temporal

frequency remains at a zero value. Still in tfie unsteady regime, if is interesting to note

tfiat the linear and non-lineai frequency start deviating (torn each otfiet not too far from the

critical suction coefficient, fliis indicates a substantial difference in the structure of linear

and saturated global modes. J fie difference is even mené ptonounced in tfie Csuc range [0.6.

0.855], wfieie tfie linear mode» is asymmetric (non-oscillatory: a,
— 0), while tfie non-linear

state is oscillatory (SI "> 0) and intermitte»nt. In Figuie 6.2, the structure of tfie oscillât on

dominant eigenmode cone»sponding to tfie base flow at Y,,, =0.4 (a), and of the asymmetric

eigcnmodc coriesponeling to tfie» base flow at C\ ^=0Y (h) is illustrated, in terms of velocity
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components isocontours. Spatial oscillatory patterns aie clearly identified at FY,c=0.4. witfi

maximum mode amplitudes rallier close to the cylinder base; tfiis is also tfie case for the

non-linear saturated flow state at tfie same parameter set (see Figure l.'l). xVt (\Uc=0Y, we

find a pronounced asymmetry of tfie linear eigenmode, also very close fo ffie cylinder base.

At a higher suction coefficient. Y,uc=F0. the streamline pattern (see Figure 4.12) shows

tfiat flow asymmetry is maximal in the region close to fhe cylinder base». Note tfiat, while

the eigcnmodc» structure» at C\u =0.8 and Cfo^ = I.O is epiite similar, the saturated non-linear

flow states differ dramatically: the satuiate»d flow is oscillatory at CLu^=0Y ,
and steady

asymmetiic at C\uc=i-0.

The growih rate <y reaches a maximum at Y,„~=0.7Ü (see Figure 6.J), before transition to

asymme»try. and then decreases rapidly in a first stage (until ( \„c ~ 1.1), followed bv a rafftet

slow decrease (for C\„. Y Ft). Fhe» giowlfi rate becomes zero at tfie second critical suction

coefficient C\lu _>
= 1.72, in agreement with tfie DNS results. For (\lu > 1.6. a, remains

smaller tfian 10" F

A number of stability computations lias been performed with tfie largest domain 'XLW'

at Re—90, to cfieck tfie influence of domain size» on results. Ffie base (steady symmetric)

flows at different suction coefficients in tfie range [-0.2. 2.0] have» been computed vv'dfi 9x9

elemental resolution on "XLW"; stability calculations utilized tfie same ('XLW'") domain and

elemental resolution (9x9). ffie leading eigenvalues computed are also presented in Fig¬

ure 6.L. Tfie agreement in linear temporal frequencies bed ween FMAIN' and 'XLAY is very

good, witfi botfi becoming zero at tfie same suction coefficient value (Csu^=0.6). In tfie

range C,u < 1.1, tfie agreement in growtli rate is also good, even close to tfie non-lineai

transition Unsteady- Steady asymmetric flow, wfieie tfie disci epancy in non-linear fiequency

is about 580% (Table 5.2). This shows tfiat domain size lias a stronger effect on tfie sat

mated non-linear flow state» (limit cvelc). tfian on the steadv symmetric flow. The trend

appears reasonable, as smaller domains impose a sv mmetiic condition at tfie inflow and lat¬

eial boundaties (I =[. F=0) much closer to the» e vfindet tfian larger domains. The unsteady

(instantaneously asymmetric) flow solution is tints much mote affected bv tfie symmetitc

Diricfilet boundaiv condition at tfie inflow and lateral boundahes. tfian tfie steady svmmet

ric solution. Consequently, stability calculations of sv mmetiic base flows are less sensitive

to domain size, in comparison to DNS of saturated flow states.

For <Y,„ > L.L tfie telathe» discrepancy in growtli lates be»fween 'MALST and 'XLW"
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(hardly noticed fiom Figuie 6.1) evidently increases, since a, becomes zero at C\u, = l.72

with "MAIN' and ai (\Mt=2.27 with 'XLW'.

Figuie 6.3 sliows tfie growtli rates corresponding lo all symmetric and asymmetric (stable»

or unstable) solutions in tfie steady regime, obtained witfi domain 'MAUST. Ffie growth rates

corresponding to tfie stead) symmetric and to fhe strongly asymmetric steady solutions

in tfie asymmetric regime», obtained witfi "XIAV. aie aho presented. The Aertical clashed

lines stand foi tfie critical suction coefficients corresponding fo domain 'MAIN'. Tfie linear

temporal frequencies are» not represented for claktv. and because (key are non-zero only for

the asymmetric flows at C\,„ Y 1.0.

First, considening only the data obtained with 'ALMNY we note that, in tfie asvmmetiic

regime, growtli rates depend exponentially (since linearly in a 1 in/log plot) on suction coeffi¬

cient, for both symmetric and asymmetiic base flow, fhe er, values obtained with tfie "XkW"

domain, also presented in Ligure 6.3. ftutfier coulirm tfie exponential dependence» of err witfi

C\Ul. for the two types of base flow, ft appears plausible tfiat the exponential dependence

would bold up fo (\uc —y ce in an infinite domain. In that case, transition fo symmetric

flow would ncvei occur, since none of tfie two growtli rates would ewer become negative. T his

strongly supports our previous hypothesis, tfiat only asymmetric flows exist at high suction

coe»(ficienfs, in tfie limit of infinite flow domain.
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Chapter 7

Conclusions

In the present work, we have investigated flic effects of base» suction and blowing on the

dynamics and stability properties of tfie flow around a circular cylinder at low Rewnolds

numbers, using numerical simulation and stability analysis. Both suction and blowing modify

the velocity profiles in the» near wake», and. consequently, affect the stability properties of the

entire flow.

Numerical simulât ion result s show that, at supercritical Reynolds numbers, sligfit blowing

can stabilize tfie wake, as result of reduced back flow, and. thus, reduced absolute» instability

in the near wake. High enougfi suction can also stabilize tfie» wake at supercritical Reynolds

numbers, resulting in strongly asymmetric ste»ady flow fieflds. While suction can have an

inherent stabilizing eflfect. due» to the decreased streamwise» extent of absolute instability,

the primary cause of transition to steady asymmetric flow appears to be the increased flow

intermit tenicy with incteased suction: the» non-linear flow frequency decreases witfi suction

and readies a zero value, corresponding to transition to steady- asymmetric flow. At even

higher suction flow rates, we find a subctitical bifurcation fo a steady symmetric flow state.

At subcritical Reynolds numbers, sufficient suction can result in global instability and

flow unsteadiness, due to increased back flow, and. thus, increased absolute instability in the

near wake. With ffie present definition of contre)! action, no control measure can render tfie

wake unsteady for Reynolds number values belcnv /?c = 17.

Since low levels of blowing are» enougfi to stabilize the» wake at supercritical Reynolds

numbers, overall, blowing does not affect the sfiedding frequency significantly. On the otfier

liand, tlic drastic reduction in Stroulial number with suction corresponds to strong moclifi-
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cation of the voitex sfiedding piocess. Win le suction incteases drag and lift, slight blowing

lias the opposite effect, until flow stabilization. Thus, taking info account tfie» difference in

tfie reepiired transpiration flow rates for wake stabilization, blowing is energetically a much

more efficient metliocl for stabilizing tfie wake, tfian suction. Suction is only preferable when

a constant non-zero value of tfie lift coefficient is desired.

Global linear stability analysis sliovvs tfiat suction drastically increases the global growth

rate. After a maximum is reached, the global growth rate rapidly decreases at even liigficr

suction coefficient values, wficue. in general, tfie flow is characterized by veiv slow dynamics.

Exploiting tfiis slow dv namics. we clevciope»d a feedback control scfieme, witfi wfiiefi we could

stabilize» the unstable asymmetric solutions within tfie livsteresis regime, in the transition

from steady asvmmetiic to steady symmetric flow.

Extensive te»sfs fiave been pet fot med. to investigate the dependence of the flow ch namics

and the transitions reported on domain size. Wo find tfiat results are only sensitive to domain

size at fiigli suction coefficients, in particular, tfie transition fiom steady asymmetiic to

steady symmetric flow is veiy sensitive to domain width, and, primarily, inflow lengtli. We

believe tfiat tfie» presence of inflow and lateral domain boundaries at finite distance from tfie

cylindei in fact provokes this transition, a hypothesis aho supported by tfie» global stability

analysis results.
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Appendix A

Temporal Resolution Tests
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