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Abstract

The dynamical behaviour and stability properties of the circular cylinder wake subject
to passive control is investigated nusing Direct Numerical Simulation (DNS) and stability
analysis. The control action consists of either suction or blowing at a steady flow rate
from a control arc symmetrically placed at the cylinder base. The study is limited to two-
dimensional flows, at low Reynolds numbers (Re < 90), where the non-manipulated flow is
either steady or characterized by vortex shedding.

DNS results show that, in the supercritical Reynolds number regime (Re > 47), slight
blowing or high enough suction stabilizes the wake; in the subcritical regime, suction can
destabilize the wake for Re > 17, and result in vortex shedding, whereas blowing does not
affect the flow stability in this regime.

At supercritical Reynolds numbers, suction can strongly modify the dynamics of vor-
tex shedding, in comparison to the uncontrolled flow. With increasing suction, the flow
frequency can drastically decrease, while the fluctuation amplitudes increase. At a critical
suction flow rate, the flow undergoes a first bifurcation: it becomes steady and asymmetric
simultaneously. At a higher critical suction flow rate, the flow undergoes a second bifurcation
and becomes steady symmetric.

With increasing suction flow rate, the flow state is naturally affected away from the
cylinder base. However, the computational domains used have finite size, and the assumption
of free stream velocity is made at the inflow and lateral boundaries. The study of the effects
of computational domain size on the simulation results suggests that the transition from a
steady asymmetric flow to a steady symmetric flow at very high suction flow rates, found
with the use of computational domains of finite size, may not exist in an infinite flow domain.
This transition occurs at increasing suction flow rate with increasing domain size.

Global linear stability analysis calculations confirm the main results of the numerical
simulations. They show furthermore that, at supercritical Reynolds numbers, small suction
has an even further destabilizing effect, as it increases the global growth rate of small per-
turbations superimposed on the steady symmetric base flow solutions. High enough suction
is necessary to inverse the global growth rate trend and lead to negative values, as also
deduced from DNS. Stability analysis strongly supports the hypothesis that the transition

from steady asymmetric to steady symmetric flow would not exist in an infinite flow domain.
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Ubersicht

Das dynamische Verhalten und die Stabilitidtseigenschaften der gesteuerten Nachlaufstro-
mung hinter einem kreisformigen Zylinder werden mittels direkter numerischer Simulationen
(DNS) und Stabilitdtsanalyse untersucht. Zur Stenerung wird Fluid durch einen symmetrisch
auf der Zylinderbasis angeordneten Bogen stationar entweder abgesaugt oder eingeblasen.
Die Studie beschrankt sich auf zwei-dimensionale Stromungen bei tiefen Reynoldszahlen
(Re < 90), im stationaren Znstand oder mit Wirbelablosung,.

Die DNS-Ergebunisse zeigen, dass bei liberkritischen Reynoldszahlen (Re > 47) sowohl
leichtes Blasen als auch gentugend starkes f‘-\bsal,tgen die Nachlaufstromung stabilisieren kann.
Im subkritischen Regime, und fur Re > 17, kann nur Absaugen die Stromung destabilisieren,
wobei sich eine Wirbelablosung ergibt; Blasen hat keine Auswirkung aufl die Stabilitat der
Stromung in diesem Regime.

Im Vergleich zum ungesteuerten System kann bei tiberkritischen Reynoldszahlen die
Dynamik der von Karman-Wirbelstrasse durch Absaugen stark modifiziert werden. Mit
zunehmendem Absaugen kann die Frequenz der Stromungsschwingungen stark reduziert
und dabei deren Amplitude erhoht werden. Bei einem kritischen Absangdurchfluss tritt
eine erste Bifurcation auf: die Stromung wird gleichzeitig stationar und asymmetrisch. Bel
einem hoheren kritischen Absaugdurchfluss wird eine zweite Bifurcation beobachtet, wobei
die Stromung stationar und symmetrisch wird.

Mit zunehmendem Absaugdurchfluss wird die Stromung in immer grosserer Distanz vom
Zylinder beeinflusst. Zur Simulation jeder Stromung wurde jedoch stets ein begrenzter
Bereich betrachtet, unter Annahme freier Stréomungsgeschwindigkeit an den seitlich und
strom-anfwarts vom Zylinder plazierten Bereichs-grenzen. Aus einer Studie der Auswirkun-
gen der Netzgrosse auf die Simulationsergebnisse ergibt sich, dass der Ubergang von stationfr-
asymmetrischen zu stationar-symmetrischen Stromungen - tiblicherweise im begrenzten Netz

ermittelt - in einem unendlichen Stromungsfeld wahrscheinlich nicht statthinden wirde. Mit
zunehmender Bereichs-grosse tritt dieser U bergang bei steigendem Absaugdurchfluss auf.

Die Stabilitatsanalysen bestatigen die Ergebnisse der divekten numerischen Simulation.
Sie zeigen ausserdem, dass bei tiberkritischen Reynoldszahlen leichtes Absaugen eine ver-
mehrt destabilisierende Wirkung hat, da die Wachstumsrate kleiner Storungen dadurch er-

hoht wird. Wie schon anhand der direkten Simulationen beobachtet, ist gentigend starkes




Absaugen notwendig, um diese Tendenz umzukehren und die Wachstumsrate auf Werte unter
Null zu reduzieren. Die Resultate der Stabilitatsanalyse stiitzen die Hypothese, dass der
Ubergang vom stationar-asymmetrischen zum stationar-symmetrischen Stromungszustand

in einem unendlichen Stromungsteld nicht existieren wurde.
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Chapter 1

Introduction

1.1  Flow around a circular cylinder:

a prototype flow past bluff bodies

Flows around bluff bodies have been extensively studied for more than a century, with first
efforts dating back to 1878, with the experimental observations of Strouhal (1878) on the
frequency dependence of aeolian tones. He found that the frequency depends on the sur-
rounding fluid velocity rather than on the properties of the wire material. Since then, a
very important parameter in bluff body flows, the ‘Strouhal number’, representing the non-
dimensional flow oscillation frequency, is named after him. Subsequently, a large number of
experiments, and much later, numerical simulations have been carried out to characterize
flows past bluff bodies, with the flow around a civcular cylinder being the one studied most
extensively. Thus, a large amount of information and data on the dynamics and other flow
properties is now available in the literature. However, the topic is far from being closed, and
detailed studies on the prototype problem of the circular cylinder wake are still underway.

The practical importance of wake flows (for example in aerodynamics), and the fact that
they still defy our understanding make them a subject of particular interest. As indicated
in Fornberg (1993), the cylinder wake belongs to those systems that are easy to define, bui
represent a real challenge to solve and understand their hehaviour, making them only more
attractive. Up to the last few decades, research objectives were focused on the dynamics
and physical properties of the uncontrolled flow in the steady or vortex shedding regime

(for experimental results, see von Karman 1911, Roshko 1954, Tritton 1959, Acrivos et al.




1968, Hammache and Gharib 1991, Green and Gerrard 1993, and for numerical studies, see
Dennis and Chang 1970, Fornberg 1985, Braza et al. 1986). Detailed information related to
the problem is also reviewed by Williamson (1996), who has significantly contributed to this
field. Currently, a large number of wake flows studies focuse on stability properties (see e.g.
Ditsek et al. 1994, Jackson 1987, Barkley and Henderson 1996, Disek 1996) and to issues
related to low order modeling, primarily for control purposes (Park 1994, Monkewitz 1996,

Roussopoulos and Monkewitz 1996, Gillies 1998, Graham et al. 1999a & 1999hb).

In the absence of external forces, the dynamics of the incompressible flow of a Newtonan
fluid around a circular evlinder depends only on the Reynolds number (here defined in terms
of the free stream velocity and the cylinder diameter). Properties of this flow are well known
for a wide range of the Reynolds number, from creeping flows (Re — 0) to fully turbulent

flows (Re ~ 107). The flow regimes can be classified as follows:

For Re < 6, the flow is steady and two-dimensional, with only one separation point,
at the rear stagnation point. This is the creeping flow regime, where the motion can be
accurately described by the Stokes model —a simplification of the Navier-Stokes equations—,
where the inertial terms (advection) are neglected and only the viscous and pressure stresses
are considered in the momentum conservation equation.

In the range 6 < Re < 47, the flow is still steady and two-dimensional, but a vortex pair
appears behind the cylinder, the recirculation length of which increases linearly with Re.

As Re is increased above Reyp . = 47, a periodic vortex shedding mode is excited in the
wake. This transition corresponds to a Hopf bifurcation of the dynamical system (Jackson
1987, Dusek 1994). Note that the critical value of 47 is found by means of computational
methods, which allow a perfectly two-dimensional flow. In the absence of end-wall effects,
the flow remains strictly two-dimensional up to Re ~ 200, and forms a dynamical system
which can be described by the Stuart-Landan equation (Mathis et al. 1984, Provansal et al.
1987).

At Re =~ 200, the flow undergoes a second bifurcation and becomes three-dimensional,
as first reported in the numerical studies of Tomboulides et al. (1992) and Karniadakis
and Triantafyllou (1992). Noack and Eckelmann (1994) and Barkley and Henderson (1996)
performed Floquet stability analysis of the two-dimensional flow, and determined the critical

Reynolds number at which the wake becomes three-dimensional. They reported the values of

)




Resp =170 and Resp ..=188.5, respectively: the different numerical methods used, with the
D, ; ’ It M )
one used by Barkley and Henderson being more accurate, lead to the discrepancy between
the reported values. Nevertheless, they both concluded that the bifurcation occurs via a
secondary instability mode in the spanwise direction.

As the Reynolds number is further increased above Resp .., a number of other transi-
tions occur, represented in the plot of ‘hase suction coeflicient’ versus Reynolds number (see

Roshko, 1993); the base suction coefficient (3) is defined by

A P — D -
/Aj - —_];P[V\ZZM (ll)

where p., and py vepresent the static pressure of the free stream and at the base rear stag-
nation point on the cylinder, respectively.

To summarize, in the range 0 < Re < 200, there are two critical Reynolds numbers,
Resp o = 47 and Resp . = 183.5. Reap . is the threshold at which the wake first becomes
oscillatory but remains two-dimensional, while Reyp .. represents the threshold above which

the wake becomes three-dimensional.

1.2  Brief review of hydrodynamic stability concepts

Farly investigations on flow instability and transition to turbulence were conducted by
Reynolds (1883), and Rayleigh (1892). An extensive review on the subject is given by
Drazin and Reid (1981), and more recent theoretical advances can be found in Huerre and
Monkewitz (1990).

Hydrodynamic instability is classified into two types: global and local. Global stability
is related to the most common concept in dynamical systems. In two-dimensional flow
problems, it is referred to as the asymptotic stability of a steady flow field. A globally
unstable flow is characterized by the growth of self-sustained oscillations until a saturated
non-linear state is reached. In the case of the circular cylinder wake, this results in the well
known von Karmdn vortex street, which is illustrated by the instantaneous vorticity contour
plot for Re=90 (Figure 1.1). These oscillations, characterized by a single frequency over the
entire flow field, form a limit cycle in the saturated non-linear regime. They are also referred
to as a ‘global mode’, linear at the early stage of its formation, and non-linear in the limit

cycle regime. A linear global mode becomes unstable when a system parameter, e.g. the




Figure 1.1: Colonr-coded vorticity isocontours of the circular cylinder wake at Re = 90,

Reynolds number, is increased above a critical value. Linear global modes can be obtained
by linearizing the Navier-Stokes equations around the steady solution, and by solving the

corresponding eigenvalue problem. In two dimensions. the dynamics of a linear global mode

has the form, when expressed in a cartesian coordinate system:
W,y t) = U, y)e (2a)
(g, t) = Ve y)e (2b)
placyt) = Plley)e (2¢)

where (v/,v) and p’ are the instantaneous velocity and pressure perturbations fields, ve-
spocﬁ\foly, and @ is the complex linear global frequency (eigenvalue of the linearized svstem):
Q = Qp +1Q7. The condition for global instability is the existence of eigenmodes, defined
by the fields ({7, V7, P’), such that Q7 > 0.
Global stability analysis is a generval concept in dynamical systems, while local stability
analysis is specific to the field of hydrodynamics. To perfori local stability analysis, one must
make the assumption of locally parallel flow. In a parallel flow, the velocity is unidirectional

and does not depend on the streamwise coordinate, as for example in the case of the flow



inside a long pipe. In a spatially developing flow, which is not parallel by definition, the
parallel flow assumption is legitimate if the wave-length A of a typical instability is much

shorter than the characteristic length scale [ of the spatial evolution of the flow, i.e.:
A< L. (3)

The characterigtic length scale L is defined as:
1 1do N
L0 ®
where 0(x) represents a characteristic width, for example the momentum thickness.
Under the parallel flow assumption, the velocity vector of a two-dimensional steady
(‘base’) flow, expressed in a cartesian coordinate system (x,y), reduces to (/(y),0). We
now consider a small initial perturbation superimposed on the bhase flow, and study its time

evolution in terms of velocity (v, v") and pressure p’ fluctuations:

w = '(x,y.t) (5a)
vl = (a,y.t) (5b)
po=pe st (5c)

The superposition of the base flow and the perturbation field must satisfy the Navier-
Stokes equations. In linear stability analysis, the quadratic terms of velocity disturbances
are neglected, since one studies the evolution of infinitesimal perturbations. The following
partial differential equations governing the perturbation dynamics can be derived:

ou’ Jou! L AU 1oy . )
—— + U= 4 v ——— = 1V ?y (6a)
ot dx dy — p dx o

oo’ o' 1oy
T

—_ U+ ——— = /Y"ZE y/ 6]
ot dx * p Jy e (6b)
L0 g (6¢)

where P is the pressure of the base flow, p is the fluid density and v the kinematic viscosity.
A combination of equation (6a) and (6h) eliminates the pressure contributions, and to-
gether with equation (6¢) vields a system of two partial differential equations for the un-

knowns w/(z,y,t) and v'(x,y.t), with coeflicients that are functions of y only. Particular




solutions of this system have the form F'(y)e'**=~ where k=k,+ik; and w=w,+iw; repre-
sent the complex wavenumber and frequency, respectively. The frequency w contains as real
4 4 b RN G 44 I 4 ] $ oy - M oy . 4 ¢ . M oy . .
part the ‘local linear frequency’ w,, and as imaginary part the ‘local linear temporal growth
rate’ w;. These particular solutions are called ‘normal modes’.
To proceed further, we need to introduce the streamfunction of the disturbance field,

W(x,y,t), defined in two-dimensional tflows by:

, O -
U = *(-)‘}/“ ( ,)
, o’
P e s S
l dx (8)

Hence, ¥'(x, y,t) necessarily has the form
W,y t) = fly)e e, (9)

and

W,y t) = f(y)eltrn (10)
. t) = =ik f(y)e' D (10h)

where f'(y) denotes ii{« Substituting the last two equations for v’ and v into equation (6a,

6b, 6¢) vields the Orr-Sommerfeld equation:
(U = &) (f" = k2 Fy = kU f v (" = 2k2 f" 4+ k4 f) = 0, (11)

where primes denote y-derivatives. Note that the pressure does not appear in the final equa-
tion, which indicates that in local stability analvsis, one invokes the stability of a ‘velocity
profile’.

Fiquation (11) is a fourth order partial differential equation in f, and can be solved with
appropriate boundary conditions. In the case of wall-bounded flows, the velocity perturba-
tions must vanish at the walls due to the no-slip condition. Thus equation (10) gives {=0,
=0 on the walls, and the trivial solution f = 0 satisfies equation (11) for any combination
of the three parameters (k,w,r). In the case of wake flows (and similarly in other open
flows), vanishing velocity perturbations can also be used as boundary conditions at the pro-
file boundaries, as long as the boundaries lie far enough, to a region where the effect of the

bluff-body on the surrounding flow vanishes.




Non-trivial solutions to equation (11) exist only for particular combinations of the pa-

rameters &, w, . These combinations are expressed by the dispersion relation, as follows:

Pk, w) = 0. (12

Typically, the viscosity v is known, therefore this equation involves two complex unknown
eigenvalues. Thus, in local stability calculations, one needs to assign the viscosity (Reynolds
number) and either & or w, and solve for the eigenvalues of the other complex unknown.

Local instabilities may be classified into absolute and convective type. The concepts of
absolute and convective instability have been first introduced by Twiss (1952), in his work
on plasma physics. The absolute or convective chavacter of ingtability can be determined by
performing temporal and spatial stability analysis.

In temporal stability analysis, one studies the evolution in time of spatially uniform wave
packets, i.e. with real wavenumbers k& = k.. If for a certain value of k., w; becomes positive,
then the profile is said to be absolutely unstable. In this case, a local small disturbance
is amplified exponentially in time at an initial growth rate w;, and subsequently spreads
throughout the entire flow field.

In spatial stability analysis, one studies the spatial evolution of time harmonic distur-
bances, i.e. w = w, is pure real. If for a certain value of w,, k; becomes negative, then the
profile is said to be convectively unstable, and small disturbances will grow in space in the
downstream direction, but can decay at a fixed point at large times.

As may be deduced from equation (11), temporal stability analysis may be easier than
spatial stability. Gaster (1962) derived an efficient transformation from temporally to spa-

tially growing modes, which simplifies the spatial stability analysis. To every temporal mode

(wyetiw;, k), there exists a corresponding spatial mode (w,, k- iw;/¢,), where ¢, = %f’ 18
; ) [ { Gy
the group velocity. A schematic illustration of convective and absolute instability is given in

Figure 1.2.

A number of necessary or sufficient conditions for each type of instability can be derived
from either the Orr-Sommerfeld equation or from its inviscid form, the Rayleigh equation,
which may be appropriate for free shear flows {e.g. shear layers and wakes). For instance,
one can show for the inviscid case, that the existence of an inflection point in the velocity

profile is a necessary condition for absolute instability (Drazin and Reid 1981). Near wakes




(a)

Figure 1.2: Sketch of spatio-temporal evolution of a perturbation v’ in a parallel flow, in the

cases of (a) linearly stable, (b) convectively unstable, and (c) absolutely unstable flow. Flow

divection: left to right.
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Figure 1.3: Sketch of a typical near wake velocity profile.
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are characterized by a finite region of back flow, and thus inflection points exist in the
velocity profiles (see Figure 1.3). Therefore, wake flows are good candidates for absolute
instability. Koch (1985) showed evidence of the existence of the two types of local instability
in wakes and the strong influence of the near wake instability on the instability of the global
flow. It is now recognized that wake profiles are absolutely unstable from the bluff body
base until slightly downstream the recirculation zone (thus global instability is expected to
depend on the recirculation zone length), and become convectively unstable in region farther
downstream.

It 1s reasonable to expect that local and global instability are related. In particular,
attempts for finding a condition for the existence of global instability, or a criteria for the
selection of the unique shedding-frequency in wakes using local stability analysis has been
an important topic in stability vesearch. We might cite, among many others, the pioneering
work of Koch (1985), and the subsequent contributions of Monkewitz and Nguyen (1987),
Hannemann and Oertel (1989), Triantafyllou et al. (1936), Karniadakis and Triantafyllou
(1989), and Chomaz et al. (1988, 1990, 1991).

Chomaz et al. (1988) suggested that the existence of a region of local absolute instability
in the wake is a necessary but not a sufficient condition to turn the base flow globally unstable.
Chomaz et al. (1990) proposed a qualitative criterion for the existence of oscillatory global

modes in a spatially developing flow, which depends only on the absolutely unstable region:

Ay
/ ) \/u:o,(}z?) de > O(1), (13)

. A2
where wo,(2) denotes the local linear temporal growth rate of the modes which have zero
group velocity, and [X,, N3] is the streamwise extent of absolute instability. This formula
shows that a ‘global intensity’ of absolute instability can be defined as the square root of the
local growth rate integrated over the length of the absolutely unstable region; this quantity
must exceed a certain threshold to excite unstable global modes. This assertion and the
presence of absolutely unstable profiles in the near wake confirms the possible implication of
local instability on the global flow instability.

Many propositions have also been made to determine the linear and the non-linear global
frequency, based on local unstable frequencies. Hammond and Redekopp (1997a) concluded

that the criterion proposed by Chomaz et al. (1991) gives most accurate results. This is

N

based on simulation data, for the same flow setup as in the experiments of Leu and Ho
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(2000), where the stability of a planar wake subject to steady base suction is investigated.
Chomaz et al. (1991) showed that the frequency of a linear unstable global mode can be
accurately determined by the imaginary part of the absolute frequency w at the saddle point

at the streamwise coordinate X,:

x.= 0 (14)

Since in general the first derivatives of w, and w; do not vanish at the same streamwise
location, the saddle point does not lie on the real x-axis, but at a complex coordinate X, =
N, + 1N, obtainable through analytic continuation methods. This frequency selection
criterion, which is very accurate in a nearly parallel flow, becomes deficient in spatially
developing flows, 1.e. when the assumption of weak deviation from parallel flow is no longer
applicable. This issue has been investigated by Monkewitz et al. (1993), who proposed
a correction term for the global frequency, for both doubly-infinite and semi-infinite flow

domains. Their results were successfully applied in the work of Leu and Ho (2000).

1.3 Flow control: motivation and applications

Flow control can be defined as the action of manipulating a flow in order to obtain a beneficial
change. From control theory terminology, the manipulation of the flow is performed via
an ‘actuator’, whose action is defined by a ‘controller’, and the beneficial change is the
‘control goal’. One distinguishes between the ‘feedforward’ and ‘feedback’ control strategy
(respectively ‘passive’ and ‘active’ in {low control terminology). In the former category, the
action of the actuator is predefined, and does not depend on the current state of the system
under control. In the second category, the state of the system is taken into account through a
measurement signal (provided by a ‘sensor”), which is fed back to the controller. Based on the
information contained in the measurement signal, the actuator signal is updated adequately

by the controller to approach a given control goal. Passive flow control has heen applied

flow control strategies appeared much later! The primary motivation in modern flow control
lies in the enormous financial savings that can be achieved, for example in the case of drag
reduction in aircrafts. Other important reasons include pollution control in reactive flows,

and issues of safety and product quality. Typical flow control tasks include transition advance
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or delay, turbulence enhancement or suppression, and separation prevention or provocation.
In many cases, the control strategy used has undesired secondary effects (like drag increase
with turbulence enhancement), thus the final goal of flow control consists in an optimization
task, i.e. achieving the desived effect while minimizing negative effects.

Flow control studies related to vortex shedding originated a few decades ago. It is well
known that the vortex shedding forming behind an immersed body can cause structure
damage through the oscillations of the flow, increase drag and noise, although it can have
advantageous effects, such as enhancement of mixing and heat or mass transfer. All these
issues are also relevant in applications more complex than the simple case of circular cylin-
der considered here. Since the experiments of Roshko (1955), who, by placing a splitter
plate in the near wake of a cylinder, suppressed vortex shedding, many experimental and
computational studies have been performed in order to control wake flows at supercritical
Reynolds numbers (Re > Reyp..). The most common approach has been for long time
the approach of passive control, by means of endplates (Nishioka and Sato 1978, Stanshy
1974), splitter plates (Gerrard 1966, Apelt et al. 1973, Apelt and West 1975), wake heating
(Schumm et al. 1994), base bleed or suction (Wood 1964, Wong 1985, Schumm et al. 1994,
Hammond and Redekopp 1997a 1997b, Leu and Ho 2000), a thin cylinder placed in the near
wake (Strykowski and Sreenivasan 1990), cylinder rotations (Taneda 1978, Tokumaru and
Dimotakis 1991), and the use of magnetic fields (Mutschke et al. 1997). Berger (1964, 1967)
first implemented a feedback controller for the circular cylinder wake using cylinder trans-
verse oscillations. Supported by Berger’s findings, Monkewitz (1989) performed an analytical
study on the efficiency of feedback control in global flow stabilization, and concluded that
the suppression of self-sustained oscillations like vortex shedding might be possible only over
a small range in Reynolds number. This is due to the fact that the high level of feedback
confrol energy input necessary to stabilize the dominant global mode at higher Reynolds
number would destabilize higher stable modes. Roussopoulos (1993) confirmed this theory
by stabilizing the circular eylinder wake up to Re=1.2Re, D.ery Using feedback control with
loudspeakers. Since then, other feedback control strategies have been explored (Park et al.

1994, Gillies 1998, Min and Choi 1999), whereby in the last reference, a suboptimal feedback

well above the critical Revnolds number.

Interestingly enough, the numerical simulations of Hammond and Redekopp (1997a,b)
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showed that, in the casc of an asymmetric wake set-up consisting of two parallel streams of
different ambient velocities passing over a forebody with a rectangular trailing edge, base
suction can result in simultaneous suppression of unsteadiness and flow vectoring, i.e. deflec-
tion of the low-speed stream towards the high-speed stream. Flow vectoring has attractive
properties, such as vehicle maneuverability enhancement. A thorough review and classifica-
tion of acrodynamic and hydrodynamic means to suppress vortex shedding was given two

decades ago by Zdravkovich (1981).

As several of the flow control studies cited above, the present work is motivated by the
basic stability properties of wake flows. Since global stability is strongly affected by the
local stability properties in the region right behind the bluff-body, one may device a control
strategy consisl’iing in the proper modification of the near wake velocity profiles. This is
why control actuators are commonly placed in the near wake region. In the case of wake
flows controlled by suction or blowing, one can interpret the flow’s global stability state
by considering the modification of the near wake profiles and its implications on the flow’s
elobal stability properties. The suction applied (e.g. at the cylinder base) tends to decrease
the length of the recirculation zone (back flow), and thus decreases the streamwise extent
of absolute instability. On the other hand. suction also increases the magnitude of nega-~
tive velocities which acts in favor of instability, as it increases local temporal growth rates.
Hence, recalling the qualitative criterion of Chomaz et al. (1990), the effect of suction on the
wake is twofold: it increases the local linear growth rates in the near wake but decreases the
streamwise extent of absolute instability. Note that blowing has exactly the opposite effects
of suction: linear temporal growth rates in the near wake are expected to decrease, due to
the decreased back flow; however, the extent of absolute instability is expected to increase.
Therefore, in both cases, one has to rely on phenomenological observations to determine
which action prevails for a given combination of the problem parameters. These compet-
ing effects due to suction or blowing recuure detailed investigation and have motivated the
control studies of cylinder wake in the two-dimensional flow regime presented in this work.
Our primary objective is to investigate the effects of base bleed and suction on the stability
properties and dynamics of the civcular evlinder wake in the two-dimensional regime, using

numerical simulation and stability analysi



The thesis is organized as follows: in chapter (2), we define the problem investigated
and present the governing equations and the numerical methodology used to solve them.
In chapter (3), we present some fests performed on the controlled and uncontrolled flow to
validate the computer code and the computational grids used. In chapter (4), we present
the numerical simulation results of the flow under control, and discuss the flow properties
in the different flow regimes. In chapter (5), we present in detail the effects of the compu-
tational domain size on the flow dyvnamics, as well as the effects of boundary conditions. In
chapter (6), we present the results of global stability analysis and relate them to numerical

simulation results. Finally, in chapter (7)., we summarize the primary conclusions of the

present work.
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Chapter 2

Problem definition

2.1 Basic flow setup

We consider an infinitely long circular evlinder of diameter DD immersed in a uniform cross-
flow of a Newtonian fluid, with free stream velocity U.,. A steady fluid suction or blowing
central part of the cvlinder base (see Figure 2.1). A similar flow set-up has been used in
the experimental work of Schumm et al. (1994), with 20,=60°. The base mass transpiration
1s perfectly symmetric with respect to the axis parallel to the free stream, on which the
cylinder is also centered. This axis of symmetry will here to forth be termed the central axis
or centerline. The present study is carried out using Direct Numerical Simulation (DNS);
the details of control implementation are given together with the governing equations and

boundary conditions, in the following section.

2.2 Problem formulation

The present flow problem is fully described by the incompressible Navier-Stokes equations,

written here in non-dimensional form:

av T,
B £ VA RV v e N la
gr = VNIV SN e
V- ove=10 (lb)
where v = (U, V) is the velocity vector. and p the static pressure. ‘¥ denotes (£, £-), ‘V?

o

is the Laplace operator, - + and *-" denotes the scalar product. All variables are defined
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Figure 2.1: Sketch of the flow set-up with control action (here only the blowing case is

illustrated).

in a cartesian coordinate system (z,y), whose origin coincides with the cylinder center.
Physical variables (length. time, velocity, and pressure differences) are non-dimensionalized

with proper scales, based on the cylinder diameter D, the free stream velocity U, and the

fluid density p. The Reynolds number is defined as

where v is the kinematic viscosity of the fluid.

The system of equations (la, 1b) is discretized in space and time, and solved within a
finite-size computational domain using a spectral element method. The definition of domain
size has been a major issue in this work. It is found to have non-negligible effects on the
flow behaviour. Detailed results on domain size and external flow boundary effects are
reported in a subsequent chapter. Most of the simulations have been performed on the

computational domain shown in Figure 2.2. This domain is decomposed into 348 spectral
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elements; particularly fine elements are prescribed near the region of control action (see
Figure 2.2b), to resolve the high velocity and pressure gradients present. The computational
domain extends 30D upstream from the cylinder center and 36D downstream. The lateral
boundaries lie 34D away from the central axis; at this distance from the cylinder, and af

moderate suction flow rates, the velocity is not affected by the presence of the bluff body,

and can therefore be approximated by the free stream velocity. This domain size has been
chosen due to the corresponding relatively small number of elements and because it yields
reliable results until high enough suction flow rates. It is expected that increasing suction
might affect the flow farther from the cylinder. Hence, the results obtained at very high
suction flow rates with this domain should not be extrapolated to the infinite flow problem
without careful investigation. The effect of suction far away from the cylinder, or inversely,
the effect of domain size on flow solutions is the subject of an entire chapter.
Time-histories of velocity and pressure are recorded at five observation points during the
simulations. These points are represented on the mesh (Figure 2.2), and their coordinates

are given in Table 2.1.

()
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<—— 30D e 36D
Figure 2.2: Spectral element skeleton used for the flow around a circular cylinder: (a) entire

mesh, (b) elements close to the cylinder.



Point | A B C D E
X 150 40 | 7.50 | 12.0 | 20.0
Y| 0.0 [-0.751-1.50 | 0.0 | 0.0

Table 2.1: Coordinates of the observation points.

The following conditions are imposed at the domain boundaries:

at the inflow and lateral boundaries, the velocity is approximated by the free stream:
U=1,V =0 (3)

at the outflow boundary :

p =0, S “'“ = (), (4)
velocity boundary conditions at outflow being only imposed in weak form.

A no-slip condition (U=V=0) is imposed on the wall part of the cylinder. Since the
control action is applied locally, and is not spatially distributed in the entive flow, it appears
in the system through a spatial boundary condition, and not in the governing equations. The
suction or blowing velocity profile is specified on the cylinder boundary, i.e. on the circle,

and the dirvection of the velocity vectors is radial. A uniform suction or blowing velocity
amplitude is imposed on g of the control arc used, in its central part; a smooth profile
(cubic function of the angle, with zero derivatives at the two boundaries) is prescribed close
to @==+6,, bringing the velocity to zero at the cylinder wall (Figure 2.1). Based on the
prescribed suction volume flow rate Q. (for unit cyvlinder length), and a reference flow rate

Qre=Us D, we define a suction coeflicient as follows :

G sue
Cszm - 2 —

,/.\_
oy
-

Q ref

Here, positive suction coefficient values correspond to suction, and negative values to blowing.

The dynamics of the full system under control depends on two independent parameters:

y

the Reynolds number, Re, and the suction coefficient, C',..

2.3 Numerical method

The solution of the Navier-Stokes equations with the boundary conditions presented above

is based on a spectral element code (Tomboulides 1993). Here, the spatial discretization
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is based on a Legendre spectral element method (Patera 1984), while the time integration
is based on a second-order accurate mixed stiffly stable scheme, with proper high-order
boundary conditions for the pressure (Karniadakis et al. 1991). The numerical method used

is briefly reviewed in the next subsections.

2.3.1 Temporal discretization

The time integration of equation (la) is performed using the combination of a second-order

accurate mixed stiffly stable scheme and the *splitting” method, summarized below.

Mixed stiffly stable schemes
In a stiffly stable scheme, the ordinary differential equation

du ’)
e (6)
is discretized by
}:({7:1 x,,(u““ )
At

where superscripts denote discrete time, J is the order of accuracy (in our case J=2), and

- (7

R

(g )(g=0,7-1) is a set of appropriate coefficients.

The mixed treatment of the right hand side term f consists in splitting it into an implicit
and an explicit contribution (f = fi + f.). The explicit part is an extrapolation from
previous time steps using a series of coeflicients (3,)(,=0,7-1). The final expression for the

time discretization takes the form

Vi og(umtt —uty 2 ,
N o= /1 -+ L ,_!3_,1,_/': 9, (

g=0

D
2

Application to the Navier-Stokes equations with the splitting method

The time integration of the incompressible Navier-Stokes equations is performed in three
substeps, using the splitting method. The right hand side of the momentum equation (1a)
is expressed explicitly for the convective term, and implicitly for the pressure and viscous

terms. The full discretized Navier-Stokes equation takes the form:

-1 N o J-1
Lt gz2() ﬂq(VAT V ) _ Z 3 f\’ _”} . \—77)7:,+1 + I/VZV"Z_H. (())
) g=0
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In a first step, the non-linear terms N(v) = (v - V)v are treated, with the introduction

of an intermediate variable v:

Z (](Vn—w) J-1 o )
=0T Y AING) | (10)
' g==0

For the integration of the pressure part, a second intermediate variable v is used, which also

obeys the incompressibility condition:

Vv

»»»»»»» = U™ 1
_\f}\ ]) ( )
Vv = 0 (12)

From the above system, the equation for pressure can be recombined in a Helmholtz equation:

A

2okl X7 13
V=V (o (13

and can be solved with the following high-order boundary condition, proposed by Karniadakis

et al. (1991):

apn+1 J—=1 J-1 )
B —n S BN = Y BT (V% v )] (14)
. q==0 =0

where n is the unit normal to the boundary 99 of the computational domain 0.

In a last step, viscosity contribution and boundary conditions for the velocity are con-

sidered to solve vt

(/- oy )y v ‘ . o
= A‘l‘ = pViymH! (15a)
Vi = gyt on IO (15h)

The decoupled equations for velocity (15a) and pressure (13) are both Helmholtz equa-

tions, and can be written in the form:
(V2 = A)o(a,y) = (e, y) (16)

with ¢ denoting velocity v or pressure p, where A=0 for the pressure equation and A\? =

S_‘ ! G a . . r . . " e . .
——‘1:\0—— for the velocity equation. The numerical solution of equation (16) necessitates a
" 1

spatial discretization, which is carried out using a spectral element method, outlined in the

next subsection.
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2.3.2 Spatial discretization

In this section, we illustrate the application of the spectral element method to solve the
Helmholtz equation (16). In the general two dimensional case, the computational domain
0 is broken up into spectral elements, as illustrated in Tigure 2.2, BEach element is mapped
isoparametrically to the canonical square. The spectral element method is based on the
Galerkin variational statement of the equation (16) to be solved, which is written:

VL N dody = / g dedy. (17)

Jo Ja

The test functions * belong to the standard Sobolev space H} with homogeneous boundary
condition ¥==0. For the spectral element discretization, the variational form (17) is restricted
to the discrete space X, € H}, relatively to the spectral element discretization parameters
(K, Ny, N2), where N is the number of elements, Ny and N, are the piecewise high-order
polynomial degrees in the directions = and y, respectively local coordinate system. With the
selection of appropriate Gauss-Lobatto points g;‘w and corresponding weights p,, = pppq, the

discrete form of equation (17) can be written as:

K Ny N K Ny Ny

T .
L Z Z /)1”1' p« EY«PVU - }__, 2_4 L /)1”?' 7)/1 g]g S (18)
ke p=0 =0 k=1 p==0 r],.()

where J) is the Jacobian of the transformation from global to local coordinates (z,y) = (r. s)
for the quadrilateral element k. The Jacobian is calculated from the partial derivatives of
the geometry transformation. Next, test functions v, ., are chosen in terms of Legendre-
Lagrangian interpolants, such that ¢,,,(&,,) = 850, where § is the Kronecker-delta sym-
bol. It has been shown (Patera 1984) that this implementation makes the numerical solution
converge spectrally to the exact solution, for a fixed number of elements K, and Ny, Ny — oo.
Increasing the polynomial orders N, Ny corresponds to ‘p-refinement’, whereas increasing

the number of elements A" is the ‘h-refinement’. The test functions, also constituting a basis

of X}, being chosen, the approximation for & referred to the element k can be written as:

m=Ny Ny
ki R . -
@ (7‘. &) = L L @ Wy s (j())
m=0  n=0
where ¢Fis the local nodal value of ¢. The same basis functions are used to represent
geometry:
g :‘:,.\'1 m ::A\M:
a0V = N N ¢
(‘;Z‘ } Z/) (l * ‘5) - },,_, Z ( it U/?Z)z ) mn z"‘/;":s (20)
n==0  n=0
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where @ y* = are the global physical coordinates of the node mn in the k-th element.
Finally, the matrix system corresponding to the discrete form of the Galerkin variational

statement (13) takes the form:

K Ny Ny L N K N1 N»

P SUE — NV, NN NN 7k opk k -
L Z L L mn + [zmm) mn T >_4/ L L ] Bmz L? gnm (‘21>
k=1 m=0m=0 k=1 m=0m=0

where 37/ denotes direct stiffness summation for the global system to ensure that the en-
semble is performed in space !,

sz

Because of the large sizes of the matrices P2 using a divect solver for the entire system
would be much too demanding in terms of CPU memory. Therefore, a direct solver is used
for the pressure part only, and an iterative procedure is employed, based on a preconditioned
conjugate gradient method (Golub and Van Loan 19383) for the velocity. It was found that
convergence in pressure with the iterative solver could be reached at the same accuracy
as with the direct solver after a large number of iterations only (one order of magnitude
more than for the velocity), thus the divect solver solution has been chosen for the pressure

(Tomboulides 1993).



Chapter 3
Resolution and validation tests

In this chapter, we perform several tests, to validate the computer code, as well as resolution
tests, to investigate the effect of numerical resolution on the accuracy of results. In general,
the quality of results depends on a number of parameters, mainly computational domain
size, spatial and temporal resolution, and the tolerance prescribed in the velocity iterative

solver. Our initial domain size choice is based on a previous study carried out by Barkley

and Henderson (1996). The domain and grid adequacy will be illustrated here only for
the uncontrolled system, by comparing our simulation results with literature data. For
the system under control, the domain size is in fact a crucial parameter; its effect on the
computed flow states results will be reported in detail in another chapter. The influence of

all other parameters is studied in this chapter, for the entire range of system parameters of

the present work, i.e. Re < 90 and C,. < 2.6.

3.1 Basic validation tests

First, we compare results obtained for the uncontrolled flow to literature data. If not other-
wise indicated, results reported below have been obtained with a 9x9 elemental resolution,
and a time step A#=0.01.

The drag coefficient is an important element in bluff body flows, especially for aerody-
namical applications, expressing a non-dimensional form of the force exerted by the fluid on
the body, in the streamwise direction. The lift coefficient is the non-dimensional form of the

force in the direction normal to the free stream. Here we follow the standard definitions for
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the drag (Cp) and the lift (C) coefficients found in the literature (Zdravkovich, 1997). In

the special case of flow around a circular cylinder. they obtain the form:

(1)

I
Cp o et

o 9
LpU2 D)’ (2)
where Fy (resp. Fy)is the x- (resp. v-) component of the total force per cylinder unit-length
exerted by the fluid on the cylinder surface. In Figure 3.1, we present the computed drag
coeflicient values in the steady flow regime, and the time-averaged values in the unsteady
regime, and compare them to the curve fits found by Henderson (1995). The Figure indicates

a very good agreement between our computations and Henderson’s data.
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Figure 3.1: Time-averaged total drag coeflicient versus Reynolds number (uncontrolled flow).

Another characteristic property of wake flows is the non-dimensional shedding frequency

(Strouhal number, St). In the case of the circular cyvlinder flow, the Strouhal number is

-’) »71




defined as:

G, = it (3)
where f is the frequency of flow oscillations. In Figure 3.2, we report our computed Strouhal
number values versus Reynolds number for the uncontrolled flow, and compare them to the
empirical formulas of Roshko (1954), Williamson (1988), Fey et al. (1993) and to the 2-D
simulation results of Barkley and Henderson (1996). Good agreement is found between the

present results and the literature data.
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Figure 3.2: Strouhal number versus Reynolds number (uncontrolled flow).

A representative flow feature is the presence of two recirculation zones, extending over a

at (@, y)=( '—; + X, 0). The recirculation zone length X, can be precisely defined for both

the steady and the time-averaged fields (in the unsteady regime). Regarding the steady flow

solutions, it is well known that X is a linearly increasing function of the Reynolds number

(also at supevcritical values, Re > 47). On the other hand, in the vortex shedding regime,
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the recirculation length of the time-averaged flow decreases with Reynolds number, because
of the action of Reynolds stresses. In Figure 3.3, we present the computed values of the
length of recirculation zones versus Reynolds number, corresponding to the solutions of the
steady flow equations, and to the time-averaged solutions in the unsteady regime. Since we
are solving the time-dependent Navier-Stokes equations, in order to converge to the solution
of the steady equations at supercritical Reynolds numbers, we had to solve for half of the
computational domain, imposing a symmetry boundary condition ( U—=0 and V=0) along

the centerline.
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Figure 3.3: Recirculation length, normalized by cylinder diameter, versus Reynolds number

(uncontrolled flow).

Our results accurately reproduce the linear dependence of the recirculation length with
the Reynolds number, as already shown by Fornberg (1985) for a wide range of Reynolds
numbers (Re up to 600). Also, they are in good agreement with the simulation results
of Takami and Keller (‘1969) and Dennis and Chang (1970), and the experimental data of
Acrivos et al. (1968). Regarding the time-averaged flows, we observe a decrease in X, at

supercritical Reynolds numbers. This decrease of X in the vortex shedding regime is due to
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the Reynolds stresses (absent in the steady regime), which increase the momentum transfer
through the process of “turbulent” diffusion. The rapid momentum transfer towards the
centerline results in shorter recirculation zones, as well as in reduced wake thickness, the
wake being limited laterally by the isocontours U =~ 1.

The above tests provide confidence in the computer code and basic resolution used, and
also indicate the adequacy of computational domain. This is not surprising, as our domain is
larger than the one suggested by Barkley and Henderson (1996), which was already optimized
for the uncontrolled flow. We use a larger domain, as we expect that the control action affects
the flow field farther away from the cylinder surface. This issue will be analyzed in detail in

chapter (5).

3.2 Tolerance in velocity iterative solver and
system stability

Applying the numerical approach outlined in chapter (2) to a specific problem requires build-
ing a numerical grid and specifying a time step value. As already mentioned in section 2.3,

an algebraic equation of type Ar = B is solved iteratively for the velocity at each time step,

by means of a conjugate gradient method. Convergence depends on the prescribed tolerance
level, denoted here by TOL. Compared to a direct method, which consists in inverting di-
rectly the system matrix A, vielding @ = A~ B, an iterative procedure has the advantage of
being much less memory consuming., but also presents the drawback of being less accurate
and slower. Indeed, a direct method produces a solution vector = with a relative error on
each of its components of machine accuracy level (1071, for a code written in double preci-
sion), whereas the iterative method yields a solution with an averaged user-defined accuracy,

controlled by T'OL. The convergence criterion in the iterative solver is:

1 o .
<Az - Bl < TOL, (4)
with || || denoting the euclidian norm: |Jx|| = v iml? and N the rank of the system matrix

A. A common tolerance level in the Helmholtz solver is of single precision order, i.e. 1075,
An initial guess xy for the solution at each new time step is also necessary. The most
natural choice for xq is the converged solution of the previous time step. Therefore, if the

time variation of the flow ever becomes extremely slow, it is possible that the condition
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%{;[[;‘lm — Bl| < TOL is already verified at the first iteration of the iterative solver, which
would result in a strictly saturated steady state. This scenario is practically impossible with
a direct solver: the probability of the solutions to two distinct systems of algebraic equations
being equal (even at machine accuracy level) is zero. In some cases discussed in detail in the
next subsection, an unphysical saturation to steady flow is indeed computed. The problem
can be overcome by decreasing the preseribed ‘T’'OL’ value, which naturally increases the

CPU costs.

3.2.1 Instability suppression due to numerics

We begin our investigation of the effects of tolerance level in the velocity iterative solver on
the computed flow states, by considering the development of global mode at supercritical
Reynolds numbers (here Cy,. = 0). In a first attempt, the steady flow solution (obtained
with half the computational domain and a symmetry boundary condition on the centerline) is
used as initial condition. Thus, regarding the flow development in the full domain, the initial
perturbations are due to numerical errors only, and are thus of very low level. In the initial
test runs, we prescribe a tolerance value TOL = 107%. We find that, for Reynolds numbers
up to 90, after a short chaotic transient, the global mode starts growing exponentially in
time, however, after a number of time units, oscillations stop abruptly, and a saturated
time-independent flow state is reached! This behaviour is typically represented in signals
as those in Iligure 3.4, where we plot the time-history of the V-velocity offset from the
steady (initial) values at Re=70, at points A, D, F, as the flow evolves from the base steady
solution. Here, some induced initial random perturbations rapidly evolve into the least stable
eigenmode (in less than 30 time units), which then starts growing exponentially. However,
after approximately 50 time units, all oscillations stop, and the solution ‘freezes’ in time.
To further explore the issue, we test the effect of several variations in the prescribed

tolerance level, described in the next subsection.

3.2.2 Instability triggered by a jump in the system parameter

An important test in calibrating numerical parameters is the confirmation of the critical

Reynolds number value. No definitive conclusion has been arrived at in the previous subsec-
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Figure 3.4: Time-history of V-velocity offset at points A, D and E, for Re=70, C,.=0. The

initial condition is the steady symmetric solution.

value Re=A7.

A more promising procedure in triggering global instability consists in disturbing the
steady flow solution with small physical (and not numerical) perturbations. For example, a
discontinuous increase in Reynolds number produces a perturbation field in the entire do-
main, and is thus expected to disturb sufficiently the steady solution and lead to unsteadiness
for Re >50. We have proceeded as follows: starting from the steady solution at Re=40, we
have increased the Reynolds number stepwise by an increment of 5, and computed the flow
transient to the new saturated state. The process is iterated (Re further increased by a
step of 5) until perturbations caused by the Re jumps are self-amplified and lead to sus-
tained unsteadiness. Since the discontinuous increase in Reynolds number corresponds to
finite global perturbations, one could expect amplification of the global mode for Reynolds
numbers as low as Fe = 50. Instead, with TOL = 1075, unsteady flow was first obtained at

Re=60. In Figure 3.5, we plot the time histories of U- and V-velocity at point A during the

above numerical experiment, indicating the saturation to steady flow for Reynolds numbers
lower than 60. The initial exponential increase of V-velocity fluctuations at Re=55, and
the subsequent saturation to a steady value, apparently due to the effect of tolerance in the
velocity iterative solver is clearly illustrated.

Interestingly, at Re=60, at which the wake becomes unsteady (in this experiment), the
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transient U-velocity signal at early times is similav to those obtained at smaller Reynolds
numbers: it tends initially and within a very short time scale to the steady solution value.
After large times, the unstable mode can be observed, and the flow tends asymptotically to

a limit cycle

We focus now on the transient signal at Re=60, and attempt to interpret its different parts
by considering the different factors that influence the system. Within about the first 60 time
units after the jump of Re from 55 to 60, the flow has reached its new quasi-steady state in its
upstream region (see Figure 3.5, U-velocity plot). This initial behaviour is not surprising, as
the initial state of the system (steady solution at Re=55) has no fundamental differences in
structure, compared to the new base flow, and because the growth of perturbations is rather
slow at this low Reynolds number. The system is driven by two different physical processes
diffusion and convection, characterized by different time scales, 7p and 7¢, respectively. The
diffusion time scale is tyvpically of ovder ™n & 1—:: and the convective time scale of order
To R frw In non-dimensional form, these time scales are respectively of order Re, and 1.0
At Re=60, the fastest process is therefore the convection. The time needed for the system to
reequilibrate at a new quasi-steady state after initial perturbations (here caused by the Re
jump), is given by the slowest process, i.e. diffusion. At Re=60, diffusion will equilibrate after
the order of 60 time units, which can be well verified by the framed zoom in the U-velocity
plot of Figure 3.5. The long time gap that follows the initial transient of about 60 time
units (during which the new quasi steady state is reached), and precedes the visible growth
of oscillations, results from the combination of various factors. At Re=60, perfurbations
are indeed expected to grow exponentially, but only when their spatial structure becomes
close enough to the structure of the unstable eigenmode. Before being able to grow, the
perturbation field must therefore rearrange itsell into the global eigenmode, which might
take a non-negligible time if its initial shape differs significantly from the eigenmode. This
seems to be the case here: the initial perturbation field is related to the difference between
the base flows at Re=55 and Re=60. and should not be structurally close to the unstable
mode at Re=60. The time needed for the perturbation field to get the shape of the unstable
mode is longer than the corresponding characteristic time of diffusion. As the perturbation
field starts growing exponentially, the perturbations level is therefore very low, thus it will
take a long time fo become visible. Furthermore, the growth rate of disturbances at Re=60

is also small; Provansal et al. (1987) proposed the following relation between the temporal
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growth rate and the Reynolds number for the circular cylinder wake at slightly supercritical

Revnolds numbers:
o = (R(: - .[‘Z(;Q])’(\,.)l/ (
50> '

This formula yields a non-dimensional growth rate value of 0.043 at Re=60. Considering an

(452
S

)78, about 350 time units are necessary to multiply

initial perturbation level of the order of 1(
it by a factor of order 10%, which would bring it to a level of 1072, and make it visible. This
“corresponds to the gap of time during which the signal remains at a quasi steady state, and
the oscillations at an unvisible level (see U-velocity plot in Figure 3.5).

We now investigate the effect of prescribed tolerance in the velocity iterative solver. To
this end, we focus on the plot of the V-velocity at point A. This enables a ‘clean’ observation
of the unstable mode growth, since the steady state value (zero) of the V-velocity at point
Ais not affected by the consecutive jumps in Re. As can be seen in Figure 3.5 (V-plot),
initial perturbations caused by the Re jumps are rapidly damped at the subcritical Reynolds
number only (Re=45), whereas at Re = 50 and Re = 55 they grow exponentially until they
abruptly saturate at a non-zero value. This behaviour is clearly unphysical, and caused by
numerical factors, in particular the effect of the tolerance level in the velocity iterative solver.
At a supercritical Revnolds number, e.g. Re=50, the expected physical U-velocity transient
at point A would consist of three parts: the first two parts are present in Figure 3.5, and
correspond to the fast initial convergence to the new steady solution, and a rather long time
interval during which the flow remains at a quasi steady state. The third part, expected
but missing in Figure 3.5, would be the growth of oscillations until a non-linear periodic
state is reached. The sudden termination of exponential growth (see Figure 3.5) can only be
attributed to the velocity iterative solver: due to the low level of perturbations in the entire
flow field, the condition =[|Ax — Bl| < TOL already holds at a first solver iteration, and
continues to be valid in the subsequent time steps.

To investigate more thoroughly the contribution of TOL and time step At on the com-
puted stability states, we carried out flow simulations at Re=50 with three different TOL

values (T'OL = 107", 107" and 107'%) and four different time step values (A#=0.02, 0.01,
0.005 and 0.001), with the saturated steady flow field at Re=45 used as initial condition.
Time histories of the corresponding V-velocity at point A are plotted in Figure 3.6. Some
signals (at TOL=10""" and TOL=10"") are not drawn over the time range, because they

tend asymptotically to a limit cycle, and their representation up to large times would hide the
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other signals. Growth of the unstable eigenmode could be obtained for only TOL < 1071,
although not for all time step values tested here. Interestingly enough, we find that at a given
TOL value, instability growth is better predicted with large time step values. This can be
attributed to the effective enhancement of perturbations by the larger temporal discretiza-
tion errors, thus exceeding a threshold level to trigeger global instability. At lower At values,
the initial effective perturbation levels remain small at early times, being less enhanced by
errors due to time discretization. This may inhibit the formation and growth of an unstable

Ty

global mode. Thus, larger time steps are preferable, in terms of triggering the global mode.

We conclude that, to investigate the flow stability near the critical parameter value using
DNS, one must not only impose a sufficiently strong initial perturbation on the steady flow
field, but also decrease the tolerance value to very low levels, of machine accuracy order
(O(107"%)). We expect that spatial resolution similatly affects flow stability. Since the
onset of instability also depends on time step value, which may in turn depend on spatial
resolution (due to the numerical stability constraints), it is not straightforward to study the

effect of spatial resolution, independently of other numerical parameters, as time step. We
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can, however, reasonably athrm that, as for time step, lower resolution introduces higher
numerical errors and therefore higher perturbation levels to the steady base flow, which acts
in the favor of instability growth. Thus the accuracy won by increasing spatial resolution
may be a drawback in terms of tracking global instability growth. This confirms the assertion
that the only measure for increasing the system sensitivity to small perturbations, without
decreasing numerical accuracy, is to decrease the tolerance value TOL. In our simulations,
we have used TOL ~% to compute flows evolving far enough from steady regimes.
Flows evolving in the neighborhood of a steady state have been treated with T'OL = 107!,
The CPU time per time step is thereby increased by 27%. In Figure 3.7, we present some
representative CPU times per time step versus the T'OL value. These data were calculated
from simulations performed on the limit cyele at Re=80. C,.=0.9, on a HP Convex Exemplar

SPP2000/X-32 machine, and the CPU times have been averaged over 100 time steps.

3.3 Spatial and temporal resolution tests

Spatial and temporal resolution are typical numerical factors affecting the quality of results.
Having validated the computational domain for the uncontrolled flow, and the tolerance
value in the velocity iterative solver, we also performed spatial resolution (p-refinement, i.e
increase of the order in polynomial expansions) and temporal resolution tests for the flow
under control action. Results from the spatial resolution tests are reported in Table 3.1, for
seven representative parameter sets. Here, we compare values of two global flow quantities,

the non-din

nsional shedding frequency and the time-averaged drag coefficient. We find
that flows corresponding to parameter sets far from transitions (see the map of flow regimes,
in next chapter) and at rather low suction coefficient values are typically well resolved using
7 x 7 elemental resolution. However, flows corresponding to parameter sets near critical lines
v at high suction coefficients values (Cy,. > 1.0) require 9 x 9 elemental resolution (for
which discrepancies in Strouhal number and mean drag coeflicient with 11 x 11 elemental
resolution simulations fall below 2% ). In all test runs, the time step is chosen small enough
not to affect the computed fields. As will be shown, the time step value has practically
no effect on the simulation results, except for flows evolving from a quasi steady state (see
previous section): in this case the primary parameter to adapt in order to get physically

correct results is the T'OL value.




To check for temporal resolution, we have performed a number of tests at several time
steps and system parameter values. Concerning saturated limit cycles, different At values
result in practically indistinguishable signals. This is not surprising, as the large values
of fluctuation intensities in a saturated limit cycle, accompanied by small At values and
overall second order accuracy in time, result in negligible levels of relative error. To check
for levels of relative error for cases with small fluctuation intensities, we have performed
simulations corresponding to the growth of the global mode at four parameter sets, namely

(Re=30, C5.=0.9), (Re=50, Cp.=1.5). (Re=90, ('y,.=-0.1), and (Re=90, Cy.=0.9).

each parameter set, two different values of At and two different elemental resolutions are
used, in order to investigate the effect of At at different spatial resolutions. In each case, two
different types of initial conditions are considered: the first is the steady field computed at the

same Re— and Cg,.— values and the same resolution. The second type of initial condition is
obtained as follows: the base steady solution is obtained with low (5x5) elemental resolution;
subsequently, a simulation is performed on the full flow domain, in order to obtain the
initial stage of the global mode growth, and perturbations of single precision order. The
resulting flow field was used as initial condition for the simulations with the various time
steps and spatial resolutions. Simulations have been carried out with a very small TOL
value, TOL = 1071, so that convergence in the iterative solver is not an additional factor

affecting computations.

Results are plotted in Appendix A. For each parameter set, we display two separate
figures, one for each elemental resolution. On each figure, we show the V-velocity at point
A, indicating: (a) the growth of the global mode from the slightly disturbed steady solution
to its non-linear saturated state, with a zoom on the linear and non-linear states; and
(b) the initial growth of the global mode from the steady solution. When the slightly
disturbed steady flow is used as initial condition, simulations with different time steps result
in practically identical signals at the observation points, from the linear to non-linear states.
This proves the adequacy of temporal resolution for the entive range of simulations performed
in the present study. The differences in time histories when the strictly steady flow is
used as initial condition can be explained by the fact that machine round-off and temporal
discretization errors are of the same order (double precision simulation). From Figures
(b), we can also identify the rearrangement of initial disturbances (caused by discretization

errors) into the dominant eigenmode (unstable frequency). The effect of time resolution is
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Re | (. | Resolution At St Cp

20 | 1.60 TXT 0.001 | 0.0187 | 17.38
20 | 1.60 9x9 0.001 | 0.0187 | 17.21
20 1 1.60 | 11 x 11 0.001 | 0.0188 | 17.18

50 1 0.40 T T 0.01 0.1029 | 281
50 | 0.40 9x9 0.01 0.1038 | 2.78

50 1 0.40 | 11 x 11 0.01 | 0.1039 | 278
50 | 1.00 TxT 0.001 | 0.0195 | 8.57
50 | 1.00 9 x 9 0.001 | 0.0196 | 8.46
50 | 1.00 | 11 x 11 0.001 | 0.0196 | 8.43
50 1 1.30 Tx T 0.001 | steady | 11.9
50 | 1.30 9x9 0.001 | steady | 11.7
50 1 130 | 11 x 11 0.001 | steady | 11.6
0.00L | 0.0176 | 6.37
80 | 0.80 9x9 0.001 | 0.0171 | 6.32
80 | 0.80 11T x 11 0.001 | 0.0169 | 6.30
90 | 0.85 TxT 0.001 | 0.0105 | 6.35
90 | 0.85 9x9 0.001 | 0.00935 | 6.32
90 1 0.85 | 11 x 11 0.001 | 0.00958 | 6.26
90 | 1.80 Tx T 0.0009 | steady | 22.72
9x9 0.0007 | steady | 22.20

90 | 1.80 1T x 11 0.0006 | steady | 21.80
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Table 3.1: Spatial resolution tests: Strouhal number and drag coefficient values correspond-

ing to seven parameter sets.
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in all cases negligible, since it does not affect the basic flow state and its properties (5S¢, Cp,
etc) both in the linear and non-linear states (again for parameters choices not too close to
transition points). In terms of discrepancies in time-asymptotic states, these are also kept
at very low level. For example, in the case presented in Figure A.4(a) (Re=50, C},.=1.50),
the relative difference in asymptotic V-velocity values, after transients of 1500 time units, is
about 1074,

In summary, spatial resolution tests have shown that a 9x9 elemental resolution vields
accurate results for a wide range of the system parameters. Thus, for consistency, we will
only report simulation results obtained with 9x9 elemental resolution. For the range of At
ralues required to fulfill the numerical stability constraint, temporal resolution has practically
no effect on results. The maximum A? value used in the present work is 0.02 (used for

uncontrolled flow cases).

3.4 Validation with the Stuart-Landau model

As has been shown by several experimental (Mathis et al. 1984, Provansal et al. 1987), and
numerical and theoretical studies (Jackson 1987, Disek et al. 1994, Noack and Eckelmann
1994), the von Karman vortex street is a direct consequence of a supercritical Hopf bifur-
cation. This type of bifurcation is characterized by the continuous growth of an unstable
global mode towards a limit cycle, at supercritical system parameter (here the Reynolds
number). At slighly supercritical Reynolds number, the time variation of small disturbances
superimposed on the steady solution can be divided into three parts. First, disturbances
arrange themselves into the most unstable mode, whereby all but one discrete frequencies
are being damped. In general, this initial step lasts for a short time, compared to the next
step, where the dominant eigenmode, or unstable ‘global mode’ grows exponentially, at a
rate referred to as the ‘global’” growth rate. The exponential growth of disturbances can
be observed as long as they remain small (i.e. if the square of disturbance terms remains
negligible with respect to the other terms in the governing equations) so that the system
dynamics is in very good approximation linear around the steady solution. After some time,
disturbances reach a non-negligible level, and non-linear effects (due to the quadratic terms
of fluctuations) tend to moderate their growth until saturation (unsteady flow or steady

state). The development of the global mode at Reynolds number Re=60 is illustrated in
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Figure 3.8, where we present the time-history of the U- and V-velocity at point A (here the
initial condition is the steady solution at Re=60). The initial exponential growth of the
instability, as well as its non-linear saturation are clearly illustrated. On the U-velocity plot,
notice that the steady solution (used here as initial condition) differs from the time-averaged
value on the limit cycle. This characteristic of periodic flows is due to momentum transfer
increase, caused by the action of Reynolds stresses.

As shown in the experimental studies on the circular cylinder wake (Mathis et al. 1984,
Provansal et al., 1987), the dynamics of a single characteristic (complex) amplitude A(1) of
the unstable mode can be accurately modeled by the Stuart-Landau equation:

A LAJAP 5 O(1A) (6)

This equation has been introduced by Landau (1944), who laid the foundations of the
theory of non-linear hydrodynamic instability. Stuart (1958, 1971) further developed this
theory, showed how Landau’s equation can be derived, and applied his findings on the plane
Poiseuille flow (Stunart and Watson 1960, Watson 1962). The amplitude A can represent any
global quantity (e.g. the drag orv lift coefficient) or a local quantity (e.g. the V-velocity af a
given point). s = o, + 10, is the global frequency, o, is referred to as the global growth rate,
and o; is the linear frequency. The global frequency depends, of course, on the bifurcation
parameter, which is here the Reynolds number, and is a global (i.e. spatially-independent)
quantity. [ = [, +l; is the Landau constant, and in general depends on spatial location (i.c.
the choice of A), but the ratio [;//, is also a global parameter.

Experimentally, the development of global instability and its control in circular cylinder
wakes has been studied by Schumm et al. (1994). To observe the unstable global mode
from a steady state at supercritical Reynolds numbers, Schumm et al. [irst suppressed the
flow unsteadiness nsing a certain control action (transverse oscillations or base blowing), and

subsequently triggered the global mode by switching off the control action. They measured

OO

transient signals corresponding to the development of the global mode at several Reynolds
numbers close to the critical, and analyzed them to compute the coefficients of the Stuart-
Landau equation (6). As a general validation test of our simulations to experimental results,

we followed the same signal analysis procedure outlined in Schumm et al. (1994), and

computed the Stuart-Landau equation coeflicients of the nuncontrolled flows at Re=50 and

Re=60. An advantage of simulation in this case is that the steady solution at exactly the
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Figure 3.8: U- and V-velocity time-history at point A, illustrating the growth and saturation

of global instability at Re=60.
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same critical parameter value can serve as initial condition, which results in a smooth increase
of disturbances from very small levels. Consequently, this is expected to yield more accurate
values for the coefficients of the Stuart-Landau equation.

We now present the procedure for calculating these coefficients from a raw signal obtained
from the simulation corresponding to the growth of an unstable mode at a given Reynolds
number. Equation (6) governs the dyvnamics of any local amplitude of the dominant global

mode. This can, for example, be the V-velocity at a point on the central axis, or the lift

coeflicient, the advantage of these choices being that the values oscillate around zero during
the entire transient. The streamwise velocity at the same point or the drag coeflicient
have different values in the steady flow and in the time-average limit cycle (see Figure 3.8).
Processing of such a signal would require more operations, in particular the extraction of the
low frequency component {(mean value) of the signal, and would make the entire procedure
more complex and probably less accurate, since the corresponding filtering might introduce
additional errors in the overall signal processing.

The computation of the coellicients requires a number of transformations to the original
model. Iirst, the dynamical behaviour of the magnitude | A] of the chosen amplitude variable
A can be easily derived from (6), by introducing complex conjugates, denoted by the tilde

symbol:

dAP S d(Ad)

dt dt
_o A

z

~ ABA = LA + A(sA = 1AJAP)
~ (s 8)Ad = (1+1)AAA]?
dj Al
) L RN 2o — !
21A| 7 20, 1A = 20| A]
J_ (/1‘” Ly
~~~~~ - w1 AL 7
1\‘ dt / \' (1)

Both equations (6) and (7) are commonly used to model non-linear instabilities, and are
o

referved to as the Stuart-Landau model. Equation (7) viclds an expression for the saturated

magnitude |A]g;: in the non-linear regime (limit cyele), since il—%-l’— == )

\ 1 -
Al [0,/1]5, (s)
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This last equation yields in turn a new form for cquation (7):

LdAl AR -
e e () 1 e ())
lf‘,[ (ﬁ 7 ( l[\ lgal‘. ) ( /

Al and phase o, A(H)=]A| (e,

Finally, expressing the complex variable A by its modulus
and introducing this expression in equation (6) yields:

A ca g

dt
. '3];' lov L . 2
(E{L‘l -+ sz'il](mg)<i""‘ ~ o Fio]A [l ]| AFA
dt dt

~ (o = LA (o — LA Ale” (10)

Equating real and imaginary parts on both sides of the above equation yields two relations,

one for the quantity '—Lﬂﬁ{—:l (which represents an instantaneous growth rate), already derived

in (7), and one for %7’ which is proportional to the instantaneous flow frequency f:

da

— =27 f & o= []AP
dt / “ 4]
7 ('Tg““((_’r,ﬁ]"‘”)""“z E (]1)

From the latter equation, we find

]i i — 2w '.9‘«1‘ ;
Yo i — 2 faat (12)
[, a, S

where fo 15 the non-linear limit cycle frequency. This relation shows that the ratio [;/1,. is
indeed a global quantity, since all quantities on the right hand side are space independent.

We proceed further by following the signal analvsis procedure outlined in Schumm et
al. to construct the complex variable A(t) = A, +i4; = |A]e™ from the raw signal A4,,
e.g. the V-velocity transient at point A, as obtained from the simulations. To obtain the
full complex signal A(t), we just need to calculate its imaginary part A;, by performing the

Hilbert transform of the real part A,:
Ay = Hilbert{ A,) (13)

An ideal Hilbert transformer is an all-pass filter with a constant phase shift of Z. Its transfer
function in the frequency domain is:
- if F >0

H(F) = (14)
i F <0 |
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Knowing the real and imaginary part of the signal, we can then obtain its magnitude

|Al(t) = VA 1 and its phase o(t)=arctan(<%). Time derivatives of |A] and « can then b

A,
approximated by finite differences. The coeflicients o, and o; are obtained by extrapolating
the functions 2= and 22 as |A]2 —0 (see equations (9) and (11)). The remaining global

coefficient []— follows im rnc‘diatCL from equation (12).
A ,

Schumm et al. filtered their experimental raw signal with a band-pass filter, centered
on the non-linear frequency fo, of bandwidth Af ~ fs,;. This was necessary in their case,
because an experiment is not free of external high frequency noise. In our case, signals
obtained directly from the simulations are not contaminated by any high frequency noise

source and therefore do not need any preliminary filtering.

We have analvzed V-velocity signals at point A. In Figures 3.9 and 3.10, we show the

variations of the instantancous growth rate ~-—J]7—L and the instantaneous frequency f(1) =

LAy yergys

5 A%, at Re=50 and Re=60, respectively. On both the growth rate and frequency

plots, we show the data obtained from our signal processing (circles) and the prediction of
the Stuart-Landau model, represented by the straight line joining the points corresponding
to the linear state and the saturated limit cycle data (see equations (9) and (11)). Each circle

corresponds to a local maximum of |A4,] in the transient signal. Since the growth rate at

Re=60 is about 4 times larger than at Re=30 (equation (5)), while frequencies do not differ
significantly (by less than 10%), the data spacing is wider at Re=60. The extrapolation of
data as |A] — 0 vields accurate values for the linear growth rates and frequencies; the non-

linear frequencies are also readily obtained from the data. The same processing of V-velocity

signals at other points on the central axis (situated between the streamwise coordinates

and X=22) vields very close values for the growth rates and frequencies, with a

maximum discrepancy of the order of 0.1%. From the frequency data, we can identify the

frequencies of the limit cycles fi,; at |A]* = Hf‘fﬁ and thus the Strouhal numbers. They are
in very good agreement with those of numerical simulations (see Figure 3.2): St(50)=0.1239,

St(60)=0.1362, which is another validation of the signal processing procedure used here. The
precise evolution of the instantaneous growth rates and frequencies with amplitude can serve
as an indication of the adequacy of the Stuart-Landau model. The model is clearly more
accurate af Re=50 than at Re=60, since the former value is closer o the critical Re value.
The deviation from the critical Reynolds number can be evaluated by

6% at Re=50 and 30% at Re=60.

Le it s about




As we have noticed, the curves representing the instantaneous growth rate and frequency
42

Stuart-Landau model, in particul ar at Re=060. These curves are much better approximated

as functions of the amplitude do not perfectly follow the linear function prediction of the

. functions of

by square functions ‘his suggests that, to better approximate

the flow dynamics for Re > 60 with a model of the Stuart-Landau type, one should expand

the Stuart-Landau model to higher order terms, i.e. [A]” inste: ? in equation (6).

In Table 3.2, we report the computed Stuart-Landau coeflicients o, and o;, nondimen-
sionalized by the time scale D? /1, as well as the ratio [;/[, (otained from relation (12)), at
Re=50 and Re=60. The results of Schumm et al. are also included in the table for compar-
ison. We find good agreement between numerical and experimental results. As previously
indicated, Schumm et al. used a controlled steady flow as initial condition and triggered
the global mode by turning oft the control action. As also seen in our numerical experiment
(Figure 3.5), the process consists in an initial convergence to the new quasi steady state,
and the subsequent formation and amplification of the global mode. Evidently, Schumm et

al. have excluded the initial transients from their signal analysis.

Re=50 Re=60
o, D* /v (present work) 0.70 2.9

o.D*/1r (Schumm et al.) | 0.69 4 0.08 2.8 + 0.1

o;D? /v (present work) 37.1 45.0
o;D? /v (Schumm et al.) | 357 4 0.6 | 42.1 + 0.8
i/, (presem‘ work) -2.51 -2.00
i/l (Schummet al.) | -2.90 £ 0.45 | -2.90 & 0.45

Table 3.2: Coeflicients of the Stuart-Landau equation at Re=50 and Re=60, corresponding

to the present (computational) and previous (experimental) studies.
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3.5 Mass conservation

In incompressible flow simulation, the divergence of the computed velocity field must remain
at a very low level, to satisfy mass conservation (equation 1b, section 2.2), and is thus a good
indicator of computational accuracy. Note that, in the splitting scheme used in the present
work, incompressibility is not directly imposed on the final velocity field v**1, but on the
intermediate field v (equation 12, section 2.3). Evidently, in an open flow, as the one of this
study, global mass conservation should also be verified. Fulfillment of the integral form of
mass conservation equation, taking the computational domain as the control volume, has
been confirmed with accuracy of the order of 0.01%, for the entire range of system parameters
investigated. On the other hand, the divergence field DIV/(x,y) = "[ o ';‘z/, while always
being very close to zero far from the cylinder, can get high values cloqo to the control action
region, especially at high suction coefficients. At Re=90, Cy,.=0.2 (corresponding to a max-
imal suction velocity of 0.55 I7..). the divergence of an instantaneous velocity field reaches
a maximum of [ D/ V]7,,,(,.,,;::(?('1, ) close to the cylinder base, whereas for the uncontrolled flow

mar=0(107%), compare Figures 3.11(a) and (c). At the

at the same Reynolds numbe
same suction coeflicient Cy,.=0.2, but at lower Reynolds number, Re=40, the maximum of

the divergence field is also O(1), and located close to the cylinder base (Figure 3.11b).

The reason for high divergence errors is spatial underresolution. Therefore, spatial refine-
ment of p- or h-type is necessary. For very high gradients present in the flow field, obtaining a
divergence-free solution can be a tedious task. In all cases, one should make sure, with proper
grid refinement studies, that basic flow properties and flow transitions are grid-independent.
Note that, in the presence of a discontinuity in the boundary conditions, local refinement
can increase the local divergence value. Spectral element solutions, while being very accu-
rate for smooth fields, can be characterized by high-amplitude oscillations in discontinuous
regions (Gibbs problem). Increasing the number of expansion functions corresponds to a
p-refinement, and increases the accuracy of computations; however, in the presence of a pure
discontinuity, p-refinement concentrates the errors closer to the discontinuity, with growing
amplitude and frequency.

In our case, the suction velocity imposed on the cvlinder surface is smoothed out at the
two boundaries, but nevertheless, induces very high velocity gradients for Cy,. > 0.2. To

check for the effect of the suction profile on the divergence field, we also used a parabolic
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Figure 3.11: Instantancous divergence fields at different syvstem parameter values and spatial
resolutions. The region of suction is delimited by the two white lines. The structure of the

id near the evlinder base is shown for (a) the original grid and ({) the h-refined grid.



profile along a straight line, joining the two edges of the suction hole. This profile is smoother
than our standard one, sketched in Figure 2.1, as its maximum suction velocity gradient is
smaller. We find that, with the new suction profile, divergence errors are slightly increased,

and, moreover, are spread along the boundary (compare Figure 3.11c and 3.11e).

To investigate in more detail the dependence of divergence errors on resolution, we
have performed p- and h- refinement tests, using the same flow parameter values (Re=90,
(0e=0.2). In Figure 3.11, we present the divergence field obtained with 11x11 elemental
resolution on the original spectral element skeleton (Figure 3.11d), and with 11x11 elemental
resolution on a skeleton refined near the cylinder base by the introduction of six supplemen-
tary elements (Figure 3.11f). We observe that the particular p-refinement performs better
in decreasing the level of divergence errors, while h-refinement performs better in terms of
increasing the region of divergence-free solution. Note that, despite the local high levels in
divergence errors, we have complete control over their eflects using resolutions tests. For ex-
ample, in all computations with the standard suction profile, the non-dimensional shedding
period is T = 6.84. The shedding period corresponding to the parabolic suction profile is
T = 6.80. More extensive resolution tests (performed within the range Cy. < 2.0), includ-
ing combined h- and p-refinement up to 13x13 elemental resolution, show that transitions
and major flow properties are practically independent of the spatial resolution used in the

present work (see also discussion on spatial resolution effects, section 3.3).

In Figure 3.12, we plot the V-velocity profile along the centerline, corresponding to the
saturated steady flow at Re=90 and (y,.=1.4, for two elemental resolutions (9x9 and
11x11), and two spectral element skeletons: the original one, and the one corresponding
to refinement by the addition of six elements in the region of suction. The Figure is a good
representation of the Gibbs problem. We have encountered the Gibbs problem in simula-
tions with the original skeleton, for 'y, > 1.1. Af these high suction flow rates, and for
locally underresolved domains, the velocity boundary condition is equivalent to a disconti-
nuity. Refining the grid with both h- and p-refinement shows the continuous character of
the boundary condition, and may significantly reduce the amplitude of oscillations near the
boundary. Note that the Gibbs problem is only present in the first element next to the
cylinder base, and that for X' > 0.6 the V-velocity profile is smooth and accurately pre-
dicted for all grids tested. The drag coellicient differs by 3% between the coarsest and finest

grid, a very reasonable value, given the sensitivity of drag to velocity gradients close to the
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Figure 3.12: V-velocity profile along the centerline (y = 0) at Re=90, C,.=1.4.

cylinder surface. The improvement in maximum divergence error with a combined h- and
p-refinement is an order of magnitude, however divergence errors remain still high. The re-
duction of divergence errors in the suction region to levels characteristic of the far wake would
require extremely fine local h-refinement. Because of the numerical stability constraint, this
would results in such small At values, making simulations impossible with present computer
resources. In summary, despite local high levels of divergence, there are no effécts on flow
transitions and only slight effects on the accuracy of major flow quantities. Based on these
conclusions, and unless otherwise indicated, we will be using the original spectral element
skeleton (348 elements), with 99 elemental resolution, in the detailed simulations reported

in the following chapters.
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3.6 Summary

The detailed tests reported in this chapter have shown that, for a number of combinations in
flow parameters and initial conditions, the solution can be very sensitive to several numerical
parameters. For supercritical system parameters, the linear evolution from (steady) base flow
is strongly affected by the tolerance level in the velocity iterative solver; in the non-linear
regime (e.g. on the limit cvele), the flow dynamics is insensitive to tolerance, if this is
of the order of 107% and lower. Thus, we use TOL = 107° for flow parameters far from
transitions, and TOL = 1071° close to critical states. For flows evolving {rom a base state,
instability can often be successfully trigegered by either increasing the time step, or decreasing
the tolerance level, the former being evidently less expensive computationally. Based on the
tests performed, we choose a 9x9 elemental resolution for the detailed studies of the next
chapters. Finally, the type of control action used here (suction/blowing) can result in high
levels of divergence errors in the proximity of eylinder base. Based on spatial resolution tests,
we have shown that divergence errors decrease at increased resolution and, most importantly,
that their presence does not affect flow transitions and overall accuracy in computed basic

flow parameters (drag and lift coeflicients, Strouhal numbers, etc).
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Chapter 4

Flow control simulations

4.1 The flow under control action

As previously mentioned, we expect that the wake stability is affected by suction and blowing,
both at supercritical and subcritical Reynolds numbers. Our first objective is to calculate
asymptotic states for a large number of parameter sets (Re, (). To this end, we proceed
as follows: uncontrolled flows (.. = 0) are first calculated for several Reynolds numbers.
Subsequently, the control action is progressively increased, i.e. (. is increased (suction)
or decreased (blowing), until a transition occurs. Then, the precise value of critical suction
coeflicient is approximated by a dichotomy approach, until a precision of 0.005 in absolute
or 1% in relative value is achieved.

Simulations have been performed over a wide range of the syvstem parameters, including
high suction coeflicient values, for which experimental data are hard to get. Figure 4.1
summarizes the computed flow states in the system parameter plane (Re, Cy,.), obtained
with the standard domain. The flow states corresponding to uncontrolled flow are indicated
by the dashed horizontal line, which crosses the critical curve at Re = 47.

For a given Re, we report (squares) a value corresponding to the mean (. of the
computed two closest flow states, separvated by a critical line. The circles correspond to
the critical parameter sets observed experimentally by Schumm et al. (1994) in a similar

flow configuration. As illustrated in Figure 4.1, in the subcritical Reynolds number regime
7

(Re < 47), we find that suction leads first to unsteadiness, and then again to a steady flow at

high enough suction coeflicient values (over 1.80 or so). In this regime, blowing has no effect
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on the wake stability. For Re < 17, no control action can render the wake unsteady. At
supercritical Reynolds numbers (Re > 47), even small blowing flow rates stabilize the wake,
whereas much stronger suction is necessary to achieve this goal. In spite of the differences
in the details of flow setup, the computed critical suction coefficient values are in good

agreement to the ones found by Schumm et al. (1994).
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Tigure 4.1: Flow states and critical curves in the parameter plane, Re — Cyye.

I51vd

Based on their data, Schumm et al. report a higher threshold value (Re = 27), below
which the wake cannot become unsteady. This threshold value is slightly higher, compared to
the observations of Berger (1964), and Nishioka and Sato(1978), who report a corresponding
value of Re == 20, This limit in Re given by Schumm et al. is based on observations at rather
low suction coefficient values (around 0.6-0.7). The highest suction coeflicient they tested
is about 0.62 at Re = 30. which is very close to the critical value for Cy,. we also find at

Re = 30. To further explore the issue, we also performed simulations with a suction velocity
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vortex shedding limit cycle. For all RRe, the critical suction coeflicient is indicated by the
dashed line at the right end of the curve. The dotted-dashed line stands for the uncontrolled
flow. At supercritical Re, the Strouhal number first increases and then decreases quite rapidly
with increasing suction. The decrease of Strouhal number with suction is steeper at higher
Re, and the function St(Re) becomes decreasing at high suction coefficients, whereas it is
increasing for the uncontrolled flow. These values confirm the dramatic effect of suction on
the flow structure and dynamics, and also indicate that the flow is more sensitive to suction
at higher Reynolds numbers; this results in the previously mentioned earlier stabilization of
the wake at higher Reynolds numbers.

To better understand the unsteady flow patterns at subcritical suction coeflicients, in
addition to St, the amplitude of velocity fluctuations is also an important parameter. A

global intensity of flow oscillations can be expressed in terms of the maximum value of the

P . '
RMS fluctuation intensities (v, .. and v, ) over the whole domain. In Figure 4.3, w,,.,
and v, .. values are presented as function of the suction coefficient, for different Reynolds

numbers, Clearly, the fluctuation intensities increase with Clyy., reaching a maximum close
to the critical suction coefficient. Fluctuation intensities are also increasing functions of Re,
as would have been intuitively expected.

Figure 4.4 shows the maximum values of «" and »" RMS fluctuation intensities along lines
of constant 2, as functions of the streamwise coordinate x, at Re = 90. The figure provides
more precise information on the effects of suction and blowing in the near and far wake.
Suction tends to increase the velocity fluctuations in the entire wake, but most in the very
near wake. On the other hand, with blowing. the fluctuations are smoothly damped to zero
in the near wake, from an almost constant non-zero level farther downstream. Thus, blowing
displaces the fluctuation maxima downstream (see Fignure 4.4). This can be interpreted on
the basis that blowing naturally tends to ‘blow away’ flow patterns from the near wake.
Consequently, vortex formation and shedding appear at increasing streamwise location with
increasing blowing flow rate. This phenomenon is clearly illustrated on Figure 4.5, showing
colour-coded instantaneous vorticity isocontours at Re=90 and Cy,.==-0.14.

Based on Figures 4.2, 4.3 and 4.4, we expect that, at (positive) suction coefficient values
close to the critical, the flow structure is very different from that in the uncontrolled case.
Note that here an increase in RMS fluctuations can be accom;panied by an increase in flow

intermittency: the time-historv of V-velocity at point A, for Re = 90 and (g, = 0.85,
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corresponding to a point slightly below the critical curve, shows that suction indeed tends
to make the flow intermittent and to amplify fluctuations (see Figure 4.6). Time histories at
lower Cj,. values confirm the the high differences in amplitudes and frequencies at different
Coue values (Figure 4.6). The strong modification of vortex shedding with large suction is
lustrated in Figure 4.7, where we present a sequence of instantaneous vorticity isocontours
over one shedding period, for Re=90 and C,.=0.8. The large increase in shedding period
results in the formation of distinet vortices in the flow domain. Here the shape of each vortex
is not affected by the presence of other vortices, as in the uncontrolled flow; thus the vortices
acquire a circular form.

The time variation of V-velocity at the centerline point A, as C,, is impulsively increased
from 0.85 to the supercritical value 1.0 at Re=90 is presented in Figure 4.8. The sudden
increase of C'y,. (indicated by the dashed line) results in suppression of flow unsteadiness,

with the V-velocity at the centerline converging to a steady non-zero value, representative

of flow asymmetry.
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Figure 4.8: Re=90: wake transient (V-velocity at point A) as the suction coefficient is

impulsively increased from (g,.=0.85 to (/y,.=1.0.
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The transition from unsteady to steady flow by means of suction control is characterized
by a simultancous transition to asymmetry only for Re>36, and to symmetry for Re<36.
The previous discussion on RMS and intermittency helps in understanding the transition
from a limit cycle to a steady asymmetric flow at high enough Reynolds numbers. As indi-
cated, just below the critical curve and for all Reynolds numbers, the unsteady flows exhibit
very low frequencies, associated with long wavelengths, and high values of RMS fluctuations;
moreover, at high enough Re values, the flows are intermittent. In an intermittent case, the
combined effect is an instantaneous flow structure characterized by strong asymmetry over a
significant streamwise extent, for long time-periods (due to the low shedding frequency). Tt
has been observed (Hammond and Redekopp 1997h), that wakes exhibiting stronger asym-
metry are by nature more stable (or stabilizable with less control effort). From Tigures 4.2

and 4.3, it is clear that flows attain higher levels of asymmetry and intermittency at in-

creasing Reynolds numbers. This is consistent with our results indicating that stabilization
is accompanied by transition to asymmetry only at high enough Re values, and that the

N

critical Oy, value 1s a decreasing function of Reynolds number.

In Figure 4.9 we present the V-velocity time-history at point A, for Re=30 and (,,.=1.65,
just below the critical curve separating unsteady and steady symmetric flow regimes. By
comparing it with Iigure 4.6, we find that the normal velocity fluctnation amplitude is
not as large as for higher Reynolds numbers; in addition, fluctuations are regular and not
intermittent in nature. In this case, the observed transition at a slightly higher Cy,. is to
a symmelric steady flow. Figure 4.10 presents instantaneous vorticity fields at Re=30, for
two suction coefficient values, Cy,.=1.2 and Cy,.=1.4, within the unsteady regime. Note
the different form of vortices, compared to the case represented in Figure 4.7, as well as the
corresponding decrease in the intensity of vorticity. The figure indicates that, at subcritical
Reynolds numbers, an increase in suction coefficient results in the displacement of vortex
shedding farther downstream, which is accompanied by reduced vorticity magnitudes. As
shown in Figure 4.10, at (,.=1.2, two distinct vortices evolve within the computational
domain, whereas at C',.=1.4, only one vortex is present; at Clyue=1.6, the outflow length of
the standard domain is not sufficient to visualize vortex shedding. These combined effects
of suction on the dynamics of vortex shedding at suberitical Reynolds numbers clarify the

smooth transition to steady symmetric flow at a critical suction coefficient.
We now emphasize on the transitions that the flow undergoes at Re=90, with increasing

2
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Figure 4.9: Re=30, (5,.=1.65: time history of V-velocity at point A on the Limit cycle.

Cone within the suction regime. Figure 4.11 is a bifurcation diagram at Re=90, showing the
absolute value of the time-averaged Vy (V-velocity at point A) of the flow in the asymptotic
state, as a function of the bifurcation parameter Cy,.. We now consider the Reynolds number
fixed at this value until otherwise stated, so the system depends on only one bifurcation
parameter, (.. For steady flows, (Cy,. > 0.855), the time-averaged value coincides with
the asymptotic value. The flow is unsteady and symmetric in the mean for suberitical values
of the suction coeflicient (Cy,, < 0.8535), so the time-averaged V-velocity along the centerline
18 zero.

~

After the first bifurcation, occurring at '5,.1=0.855, two stable, steady asymmetric
solutions exist (they are mirror-image of each other), and the centerline V-velocity can be

positive or negative. Convergence to either one of the two solutions depends on the initial
condition. In this regime, the steady symmetric flow solution is unstable. These properties
ave typical of a pitchfork bifurcation. Figure 4.12 shows the streamline pattern corvesponding
to one of the two asymmetric solutions for the parameter set (Re=90, (',,,=1.0), indicating

a strong deflection of the front stagnation point and overall flow asymmetry. No separation

63



Figure 4.10:  Re=30: colour-coded instantaneous vorticity countours. (a) C.=1.2, (b)

from the cylinder surface is present. Note that streamlines are convergent in the region
below the cvlinder and slightly divergent above the cylinder. This indicates that the flow is
accelerated below the cylinder and is slightly decelerated above it. As a consequence, the
streamwise velocity field is strongly asymmetric around the evlinder, with much higher values
below than above the cylinder (see Figure 4.13). Thevefore, the steady pressure field around
the cylinder is also highly asyvmmetric, with much lower values in the region of high velocity.
This is also illustrated on Figure 4.13, where we see a large region of strongly negative
pressure below the cylinder, especially near the region of suction, where velocity gets high

3

amplitude. This flow configuration is therefore characterized by a hi

<

gh 1ift coefficient value,
in this case negative, which corresponds to a force directed downward (towards the low

pressure region). Quantitative data of the drag and lilt coeflicients are presented below,

At asecond eritical value, (s, »=1.72, the flow bifurcates again and the steady svimmetric

solution becomes also stable. Above a thivd critical value, C,.2=1.90. only the svinmetric
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solution remains stable. Thus, at Re=90, the second bifurcation is characterized by a hys-
teresis regime in the range g < Cyye < Coen. Hysteresis is characteristic of subecritical
bifurcations. Within this narrow range of the bifurcation parameter 'y, both the symmet-
ric and asymmetric solutions are stable and can be realized physically. Again, convergence to
either the symmetric or to the strongly asymmetric solution depends on the initial condition.
For example, a flow evolving at (7;,.=1.75 will either converge to a symmetric state if the
initial flow state is slightly asymmetric (or symmetric), or to a strongly asymmetric flow if
the initial state is more asymmetric. The hysteresis region is also indicated in the map of
flow states (Figure 4.1).

Suberitical bifurcations are also characterized by the existence of a branch of unstable
solutions in the hysteresis regime, connecting the two stable branches. The branch of unstable
solutions is represented by the dashed part of the curve in Figure 4.11. These unstable

solutions are steady and slightly asymmetric. Since we use a time-dependent Naviers-Stokes
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Figure 4.12: Re=90, C,.=1.0: streamline pattern of the time-asymptotic flow state.

solver and thus cannot solve for unstable steady flows, we have implemented a feedback
control module in the numerical code, to stabilize these unstable flow solutions. The feedback
control strategy is presented in detail in the next section.

The overall flow asymmetry can be expressed in terms of the deflection of the front
stagnation point, with respect to the centerline. The precise location of the stagnation point
can be determined from the pressure maximum on the cylinder surface. In Figure 4.14,
we plot the angle (in degrees) formed between the centerline and the line connecting the
stagnation point and the cylinder center, as function of C,. (Re = 90). The transitions
are indicated by dashed vertical lines. This figure clearly illustrates the abrupt transition
to asymmefric flow, as well as the multiplicity of solutions within the hysteresis regime.
Note the very high values of the deflection angle in the asymmetric regime, especially for
Clope > 1.2,

We emphasize now on the force exerted by the fluid on the cylinder via viscous stresses
and pressure. The total force is expressed in non-dimensional form by the drag (streamwise
component) and lift (normal component) coefficients, both defined in chapter (3). We calcu-

late drag and lift by integrating the local force over the full cylinder surface, i.e. we consider
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in the region

velocity and (b)) pressure fields

close to the cvlinder.
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Figure 4.14: Re=90: deflection of front stagnation point (angle in degrees) with respect to

the centerline, versus suction coeflicient.

the case of a porous cylinder. Computed values at Re = 90 (pressure and viscous compo-
nents, and total values) are presented in Figure 4.15 as functions of C,.. Here, we report
time-averaged values of the drag coeflicient; since the time-averaged lift coefficient is zero in
unsteady flow around a cylinder, the reported lift coefficient for (saturated) unsteady flow
corresponds to its amplitude, i.e. hall the difference between its maximum and minimum
values.

As shown in Figure 4.15, the drag coellicient is minimal at the critical blowing flow rate
(Csue = —0.145). Compared to the uncontrolled flow, there is a decrease in drag coeflicient
by 14%. Both the pressure and viscous components increase monotonically with suction
coefficient in the unsteady and in the steady (asymmetric and symmetric) regimes, with
the pressure component contributing most in total drag. Around the transition from steady
asymmetric to steady symmetric flow, the value of total drag coefficients exceeds that of the

uncontrolled flow by an order of magnitude

The lift coefficient is also monotonically inc reasing with C’y,., both in the unsteady and
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in the steady asymmetric flow regimes (Iigure 4.15). In all cases, the pressure component
is most significant. In the unsteady flow regime, due to the phase shift between the instan-
taneous pressure and viscous lift, the sum of the two component amplitudes does not equal
the amplitude of total lift (see Figure 4.15). We emphasize the pronounced effect of suction
on the lift coefficient: in the steady asymmetric regime, for example, the values of lift and

drag coeflicients are similarly high.

4.2 Feedback control method

The concept of the control strategy used to track unstable asymmetric solutions can be
related to Landau’s theory on non-linear hydrodynamic stability.

As already described in chapter (3), Landau proposed a dynamical model for the ampli-
tude A of the dominant global mode about a steady (*base’) flow (see equation 7, section 3.4).
Depending on the sign of o, and [, four different cases can be classified. The combination

o, < 0,1, <0, corresponds to a subcritical bifurcation. In this case, there exists a hysteresis

Alp = \/TT’ If at

regime, with a threshold value for the amplitude of initial perturbati

t =0 [A] < |A]., then |A] decreases with time and tends asymptoticly to zero. If at ¢ = 0
[A] > A, tl grows continuously and tends to infinity (to account for saturation and

convergence to the second stable branch, higher order terms should be considered in the
model equation (6) of chapter (3)). The evolution of | 4| as a function of time is sketched in
Figure 4.16 for two different initial values, one smaller and one larger than |A]..

A combination of the Stuart-Landan equation (7) with a first order Taylor expansion of

the growth rate o, around the critical value R, of a system parameter R,

o, =k(R—R.)+ O((R— R.)?), (1)

yields the approximation |. l[ \/fz - ]? for the saturated amplitude m} "his result has

fits the unstable branch in the range 0 < |} ,;1 < 0.35, with a maximal relative error of less

than 1% at the computed points.

Thus, there should be a threshold value [Vy|. for the variable 1Vil, below which |V,
decreases and above which [V4] increases (after a short oscillatory transient, depending

on initial conditions). This has been observed on flows evolving in the hysteresis regime at
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Pigure 4.16: Sketch of the time evolution of the dominant global mode for two levels of initial

perturbation, in the case of a subcritical bifurcation (o, < 0, [, < 0).

various C's,. and [Va] levels. We have also observed that small disturbances superimposed on
these flows always resulted in a short ‘chaotic’ transient of maximum 30 time units, followed
by a very long and regular variation in [V4](1). In general, shortly after the perturbation (for
example due to a small jump in Cy,. ), the low development is in very good approximation
linear in time during at least O(10%) time units (see Figure 4.17, note the very slow system
dynamics). At very large times, the flow approaches either the symmetric or the stable
asymmetric solution and finally tends to it exponentially.
Based on the previous remarks, and assuming that the unstable branch joining the two
stable branches at Cyue and Cy,.5 1s a bijection, we could derive a control strategy to
track the unstable flow solutions. In feedback control, one needs to define a control goal, an
actuator, and a measurement signal. We do not attempt to track unstable steady flows at
fixed (. values, but rather to drive flows to an asymptotic unstable steady state, thus with
(M“O by tuning C,. at discrete times. Hence, our control goal is “—1——— L s 0ast —s o0,
Ceve 15 used as actuator, and the sign of ﬁii serves as feedback signal, which decides how
the actuator must be updated to reach the fixed goal. Asymptotically the procedure gives
Vi — Vi arger and Coe = Claposonghes both Vi paper and Cye sougne being unknown a priori.
The very slow dynamics of the flow after the short irregular transient (caused by a
small Cyye jump within the hysteresis regime) implies infinitesimal variation of all flow vari-
ables during O(10) time units. The initial flow field for the control simulation thus verifies

Vit initial=Va targer, and in generval Vi, 0 does not differ from Vi i by more than 5%.

7l



O L L B I A
0.09359 - 7
0.09357 - 1
slope=1.95 10" T
\\k ) T
0.09355 ~
. 009353 - - .
- o
0.09351
-~ A B B
A 93800-02 - 1
0.09349 | 9.3496-02 - 1 -
| E/
9.348e-02 §~/_‘ :
iy
0.09347 0.3476-02 T
0 10 20 30
Lt b SR T SN RSSO WVE O ! TSRS TV FUNC OV OO SOU 1

0.00345 bbb e L e ,
0 50 100 150 200 250 300 350

Time

400 450 500

Figure 4.17: Re=90: time history of V-velocity at point A, indicating the response of a

non-saturated flow to a small C's,. jump (from 1.7 to 1.72 at t=0).

This enables a rather good approximation of the value of the state variable V4 for the target
flow, if the initial field is well chosen. A suitable initial condition can be an instantaneous
field of a flow evolving from its unstable symmetric solution to its stable asymmetric solution
at a suction coefficient just below Uy, as Vi crosses the desired value for Vi yurger. Doing
so, the initial flow state is not fundamentally different from the ‘target’ unstable steady
state, which also has the advantage of short and small amplitude initial oscillations. As ini-
tial suction coefficient, a random value can be taken in the range [Cyye 2, Chues], o, possibly,

a better guess for Coe sought

iy : N e T I o o dVal
The control algorithm is sketched in Figure 4.18. Every 30 time units, the quantity =52

is measured. If this quantity is positive, the flow is necessarily evolving above the unstable

branch (Figure 4.11) towards the stable asymmetric solution corresponding to the current
1 .

. o IV . . ) . . ; . ;
oo value; 1f —Jm%— is negative, then the instantaneous flow state corresponds to a point below

the unstable branch, and the flow tends asymptotically to the stable symmetric solution. In

the former case, C'y,. must be increased to resist the growth of [Vyl; in the latter case (.

-
|



must be reduced. Note that the approach assumes that the unstable branch represents a
one-to-one function from Clye to |Va] (Figure 4.11).

Clonsidering the case of decreasing [Vy], at the first control iteration (after 30 time units),
Clone 15 decreased by 2% and its previous value is stored to define an upper limit Csye mar, 00t
to exceed in the following iterations. This is repeated until the first occurence of increasing
V4|, where the carrent €y, value defines a lower limit Cuemin, and the new value of Uy, is
obtained by taking the mean of the current limits Cyyomin and Cyyeman. At each subsequent

. . . . ETLVN
iteration, depending on the sign of ‘{“f‘

, either Clpemin 0t Cyyemar takes the current Oy,

alue, and the new value of (g, is obtained by taking the mean of Ceepmin and Cueman -

Initial Conditions:

DVaAzVA target

2) initial guess for Csm

l\{gli“CWﬂSi“S Simulation at present Cgyye lV\l decreasing

during 30 TU, or until
exponential growth

Y

Csue,min=Csuc Csuc.max®Csuc
if Csyc max is already defined then f if ( suc, mm is already detined then
Csuc=0-3 (Cgue, maxtCsuc,min) Csuc=0-5 (Cgue, max+Csuc,min)
else e,,lse
— o) . —
Csuc=192 Cgye, min ; Cue=0-98 Cgye,max

No

___________ *D-J sue,max~Csue, min <0.1% .7 — |
) Csuc,min ;

Yes

C

End of simulation

Figure 4.18: Control algorithm used to compute unstable asymmetric solutions.



As the flow approaches an unstable state after a few control iterations, small perturbations
in (e naturally result in the growth of the dominant mode corresponding to this unstable
solution. In this case, the exponential growth of the perturbation field usually manifests
itself in less than 10 time units after implementing the control action. This suggested that
the control algorithm could be improved, by updating Cs,. more frequently than every 30
time units. It is important to note here that the dominant eigenmodes of the unstable steady
solutions have zero frequency (see section on stability analysis), and thus do not oscillate
around the base flow. In order to capture the exponential growth of an unstable mode, we
perform an online curve fitting of [V4[(¢) with the exponential function y=Aq -+ Ay exp(Aat)
on 35 values computed at equal intervals over the past 9 time units. As soon as the correlation
coefficient between [V4](¢) and the fitting function is larger than 0.999, we consider that an
unstable eigenmode mode is growing, and (', can be updated accordingly. The control
action is thus updated either 30 TU (time units) after the previous control action (at the
latest), or as soon as the growth of an unstable eigenmode is justified (earliest: 9 time units).

A further improvement to the controller has been implemented: instead of updating Cl,.
based only on the sign of AVl we have also taken into account the absolute value of ﬂ(—‘”—‘i

dt

which allows for a more accurate approximation of . sougne. Indeed, when the flow ap-

; d]V., i . . ; .
proaches a steady state, |~Lj~i—‘—1] tends to zero. Therefore, the control algorithm has been
improved as follows: the values of -—ﬁd corresponding to the limiting values Cyemin and

AV 43 e
Csuemar are also stored ( (Jm;-‘i)m,, and (M)nm respectively) at each control update, and
Cue 18 updated by the value which would correspond to %,T‘l = 0, based on the linear inter-

d[Val

N iV .
polation between the points (Ciuemin. (‘ lt)mz,‘) and (Csuemary (57 Jma ), see Figure 4.19.

Simulations were stopped when Cyyepmin and Ciyepmas differed by less than 0.1%. In all
cases, the error made on Vi yrper was less than 0.1%. In Figure 4.20, the time history of
V4| is represented for the last time units of a simulation with control switched on. The
corresponding time history of the controller output . 1s represented on the same graph.
The figure clearly illustrates the control process, with the update of (', depending on the
slope of |V4|(1).

Intuitively, one could expect that results are more sensitive to spatial resolution on the
unstable branch than on the stable branches; we have compared several points on this branch,
obtained from simulations with 9 x 9 and 11 % 11 elemental resolution. The two branches

obtained very well superimpose at four computed points. This further confirms the adequacy
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of the 9 x 9 elemental resolution over the entire range of the system parameters investigated
here. The computations of unstable asymmetric solutions with the control module have been
performed with TOL=10"%. Because of the very slow system dynamics near steady states
(Figure 4.17), saturation of the flow variables was often obtained after few control iterations.
To investigate the effect of tolerance in the velocity iterative solver, we have computed a few
unstable points with TOL=10"'". We find that these points also lie on the same curve as

the ones computed with TOL=10"%,

~
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Chapter 5

Domain size and boundary conditions

effects

5.1 Domain size effects

In contrast to wall-bounded flows, for which physical houndaries are well-defined, wake flows,
like all free shear flows, must be computed in a truncated finite domain. The domain trun-
cation is a supplementary source of errors, in addition to the other types of numerical errors
present in numerical flow computation. (Note, however, that finite domain effects are also
present in the experimental study of free shear flows). Evidently, increase of computational
domain size results in reduced truncation errors, while increasing computer memory and CPU
time requirements. All results of the previous chapter correspond to the domain presented

3

in Figure 2.2. The size of this domain exceeds literature suggestions for the uncontrolled

flow (Barkley and Henderson 1996), as we expect that the use of base mass transpiration

affects the flow field many diameter lengths away from the cvlinder.

In the case of uncontrolled flow around a cvlinder, the deviation from an infinite (in
cross-flow dirvection) domain is expressed in terms of the blockage ratio, D/DY , DY being
the total domain width. Domain size effects vanish for very small blockage ratio values. In
the case of flow confrolled by means of base mass transpiration, the suction ratio, defined

here as the ratio of suction flow rate to the domain total flow rate, may be a more appropriate

parameter to express domain size (width) effects:



. @su‘c e D
—Rsuc - LQ\\]))’ - ("'S“‘{'\DY’

(1)
Note that Rg,. = 0 is reached in the limits of either infinite domain width, or uncontrolled
flow (where domain size recommendations are available (Barkley and Henderson 1996)).
The results presented in the previous chapter correspond to suction ratio values up to 0.038
(domain width is 630, maximum suction coeflicient value is 2.6).

To investigate the effects of domain size on computational results, a number of computa-
tional domains of different inflow and outflow length, and width, have been used. The main
domains used arve sketched to scale in Figure 5.1, including characteristic names and total
element numbers. The cylinder is also represented. The domain dimensions are summarized
in Table 5.1. Domains “OUT", "W ‘L" and ‘LW’ were constructed by adding elemental rows
and columns at the boundaries of the basic domain “MAIN’ presented in Figure 2.2, i.e. the
spatial resolution of the coinciding part is the same in all cases. Domains ‘XL’ and ‘XLW’

have comparatively bigger elements in the region defined by X' <« —30 and —1.5 < Y < 1.5.

67
XLW (690) LW (620) W (504)
34
XL (498) L (448) MAIN (348) . OuT
| (456)
v . |
|
I
| f
I |
~34 i ’
-67 -
~160 ~100 ~30 0 3 56 80
X

Figure 5.1: Computational domains used, and corresponding numbers of elements. The
cylinder is also represented (to scale).
At fixed parameter sets (fle, ('y,.), we compare the computed values of flow frequency -

equivalently: period- for different flow domains. We also compare the critical values obtained
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Figure 5.2: Boundary of unsteady flow regime in the parameter plane (Re, Cy.). Parameter

sets (crosses) chosen for frequency comparison tests are also indicated.

frequency and stability can be very substantial. According to our results, the choice of
domain width can drastically affect flow frequencics and fluctuation amplitudes, close to the

transition from unsteady to steady asymmetric flow. At (Re=90, C4,.=0.85), for example,
the shedding period corresponding to domain ‘XTAW" is about 5 times larger than the period
corresponding to domain ‘XL’ (see Table 5.2). At C;,.=0.80, the difference falls to 5 Y, and

becomes negligible at (y,.=0.40.

In addition to the equality of the flow frequency at ( Re=90, C,.=0.4) for all grids used,
the phase space plot of velocity components (V) af points A and E confirms that the
flow dynamics is identical for domain sizes from ‘MAIN" to ‘XTAW” at this suction level (sce
Figure 5.3). The huge period of oscillations (1'=726) found with the largest domain at
(Re=90, C,.=0.85) suggests that, in the limit of infinite flow domain, the transition to
steady asymmetry may be viewed as a convergence to a state of zero shedding frequency.

Domain width can also (slightly) affect the precise position of the limiting curve: for

(0e=0.85, the asymptotic flow state is nunsteady with ‘MAIN’ and steady asymmetric with

S0




Re | Cge | MAIN W XL | XIW | OUT

90 | 0.85 107 | Steady | 150 726 103
90 | 0.80 | 72.8 76.3 87.1 1 91.6 | 71.9
90 | 0.40 | 12.1 12.1 12.1 ) 12,1 | 121

90 | -0.12 ] 7.56 7.59 7.59 1 7.66 | 7.55
60 | 1.00 | 71.01 70.1
60 | 0.80 | 34.0 34.0 33.1 | 33.1 | 34.0
30 | 1.65 139 17 132
30 1 0.65 | 13.65 | 13.65 | 13.68 | 13.68 | 13.66
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Table 5.2: Flow oscillation period at different parameter sets.

‘WL

Interestingly enough, we find that inflow length can also drastically affect shedding fre-
quencies, in the vicinity of the critical curve in the suction regime. For all Reynolds numbers
used in this test, the shedding period is dramatically increased near the transition to asym-
metry, for increasing domain size (from ‘MAIN" to ‘NLW?"). On the other hand, the dynamics
of flow controlled by blowing appears rather unaffected by the domain sizes used here. For
example, at Re=90 and Cy,.=-0.12 (a point close to the critical curve in the parameter
plane), the maximum difference in flow period for all combinations of domains used, is less
than 2%.

In summary, domain size can significantly affect the shedding period, especially the inflow

length and domain width.

5.1.2 Effects on flow transitions

In the present subsection, we investigate the effect of domain size on flow transitions. We
perform a number of tests to check the influence of the domain size on the location of the
critical curve delimiting the region of unsteady flow. We find a maximum discrepancy on
the critical suction coeflicient delimiting the unsteady regime of about 6%; this occurs af
Re=30, near the triple point (see Figure 4.1), in comparing ‘MAIN" to all other domains.
The discrepancy decreases at lower and higher Reynolds numbers, it is about 2% at Re=20

and for Re>40. We conclude that the curve delimiting the unsteady flow regime is accurately
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Figure 5.3: Re=90, C,.=0.4: phase space plot at points A and E: V-velocity vs. U-velocity.

sketched in Figure 4.1, and only slightly depends on the domain size in the region arvound
the triple point.

We now emphasize on the transition between the steady symmetric and steady asym-
metric regime at low Reynolds numbers and high ;.. values. This transition corresponds

to a supercritical bifurcation. Thus, there is no hysteresis, and the amplitude of saturated

perturbations at a fixed point continuously grows with the critical parameter (Re, or Cl,.),
as this is increased above the critical value. Figurve 5.4 presents a bifurcation diagram, simi-

larly as Figure 4.11; here the amplitude [Vy] is represented versus the Reynolds number, at
a fixed (g, value (Cy,.=2.0). The graph shows that the critical Reynolds numbers obtained
with the smallest (‘MAIN) and the largest (*XLW") domains differ by less than 2%. We
can conclude that this bifurcation is accurately represented on Fignre 4.1 for the infinite

problem, as it is not influenced by the extension of the domain ‘MAIN’ in all directions.
The last transition studied in detail in the previous chapter was the subcritical bifurcation
from steady asvmmetric to steady symmetric flow; we will show that it depends strongly on

inflow length and domain width. Figure 5.5 represents [Vy| versus (. in the steady regimes
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Figure 5.4: (',,=2.0: bifurcation diagram for the transition from steady symmetric to steady

asymmetric flow: 1y versus Re.

at Re=90 for six different domains. All these domains have the same outflow length. They
constitute all possible combinations from three different inflow and two lateral boundary
locations. We observe that the effects due to inflow length are very strong. Note that, at
a given (g, value, the suction ratio corresponding to the wide domains (“W’, ‘LW’, and
‘XLW?) is about half the ratio of the thin domains (‘MAIN’, *L’, ‘XL’). Irrespective of the
influence of suction ratio, we find that the difference in the critical suction coeflicient Clsye2

(and also Cy,e3) between the two domain types is mainly influenced by DX v, In particular,
the difference in Cy,. 5 between the thin and wide domains increases with DXy as follows:
it is about 2% between ‘MAIN" and “W", 5% between ‘L™ and ‘LW’, and 8% between ‘XTI,
and ‘XLW’ (see Figure 5.5). Moreover, with increasing DY, the critical suction coefficients
increase for small D X7y values (compare “MAIN" and “W'), whereas they decrease at higher
DXy values. We can therefore not conclude on the effect of DY independently of DXy,
but can confidently assess that the transition mainly depends on DN py, which acts in this

case as a limiting factor. Indeed, it seems that low values of DXjn can limit the effects

83



caused by increased DY values.

As shown in Figure 5.6, the critical suction coeflicient values Uy, o and Clyp 5 increase very
significantly with inflow length. Thus, at high values of DXy, the corresponding critical
curves exceed the range of Figure 4.1 (Cy. > 2.6). In spite of the use of the very long
inflow length of 160 diameters, much longer than in any literature simulations of cylinder
flow we are aware of, we are still unable to assess critical suction coefficients, for the (higher
Reyvnolds number) transition from steady asyminetric to steady symmetric flow, in the limit
of infinite flow domain. This is clearly indicated in Figure 5.6, where the critical values Cly. 2
and Cl,.3 are plotted versus DXy, for DY =34 and DY =67, at Re=90. This particularly
strong effect of the inflow length on the subcritical bifurcation can be explained by the fact
that the inflow boundary condition imposes a symmetric velocity profile (7 = 1,V = 0).
At a given suction coefficient, decreasing DX yny tends to impose a symmetric flow pattern
closer to the cylinder, and therefore acts in favour of transition to a symmetric steady state.
On the other hand, increasing DXy tends to delay transition to symmetry, as shown n

5.7

Figure 5.5. Figure 5.7 shows the V-velocity profile versus y-coordinate at X' = —30, of
the saturated asymmetric flow obtained with ‘XLW'. At this streamwise coordinate, the V-
velocity on domain “MAIN' is imposed as a boundary condition, and is equal to zero; this is
qualitatively different from the profile in “XLW", which takes a non-negligible value close to
—0.04U,, at the centerline. The comparison illustrates the strong effect of inflow length on
the symmetry properties of the flow, which can explain the fact that asymmetric solutions

are more stable in longer domains.

5.2 Boundary conditions effects

As a final test, we check the effect of different velocity boundary conditions on the com-
puted flow fields. All computations are performed using the smallest computational domain
‘MAIN’, for which different boundary conditions are expected to affect the flow field most.
Three new types of velocity boundary conditions are implemented:

(a) Symmetry on the lateral boundaries.

(b) Periodic boundary conditions for the two lateral boundaries.

(¢) Potential flow solution for the inflow and lateral boundaries; due to the relative large do-

main dimensions, this is very close to the standard freestream velocity boundary condition.
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Figure 5.5: Re=90: Bifurcation diagram: [Vy4| versus Ciye.

We perform several computations at high suction coefficient values. We find that the sub-
critical bifurcation is very slightly affected by the new boundary conditions. In Table 5.3,
we report the values of the critical suction coefficients Cyyen and Cyyes computed with the
standard and the three different boundary conditions. Here, we also report the values ob-
tained with the domain ‘OUT" and the standard boundary conditions, to confirm that the
outflow length also has a negligible effect on Cy,.0 and Cypues.

Clearly, all boundary conditions implemented have practically no effect on the flow tran-
sitions. "T'his has been further verified for various domain sizes. Hence, regarding the sub-
critical bifurcation, the problem of domain size dependency is still present, irrespective of
the boundary conditions.

Another form of velocity boundary condition, with the advantage of corresponding CPU
savings, has been proposed and used by Hannemann and Oertel (1989), for the simulation of
the wake behind a flat plate. They conducted computations in two steps using two different
domains: one full domain, with the plate centered on the central (symmetry) axis, and

one ‘hall domain’, corresponding to half of a full domain, truncated at the central axis,

(v s]
it
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Figure 5.6: Re=90: critical suction coefficients Cgyen and Ciyes versus DXy

and further extended upstream and laterally, in comparison to the full domain. They first
computed the steady symmetric flow on the ‘half domain’, implementing free stream velocity
on the inflow and lateral boundaries, and a symmetry boundary condition on the centerline.
After convergence to the steady symmetric solution, they restarted the computation on the
full domain, using the velocity computed with the ‘half domain’ as boundary condition at
the new inflow and lateral boundaries. The two discretized domains may have the same
order of nodes, while the flow field far from the plate end is better approximated by the
steady symmetric solution than by the free stream velocity. Although we have not tested this
procedure, we can assess that it would not have been elfective for our simulations. Indeed, we

have extended our standard domain far upstream and laterally from the cylinder, without

coming up with any asymptotic behaviour of the subcritical bifurcation. The procedure
proposed by Hannemann and Oertel is in essence equivalent to increasing domain size without
increasing the computational cost. In extending “MAIN' fo ‘XLW’, we have followed the

same basic idea, while also increasing CPU requirements. Also note that the full domain

boundary conditions of Hannemann and Oertel are symmetric with respect to the centerline.
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MAIN | Potential | Symmetry | Periodicity | OUT

Copes | 1.90 1.89 1.89 1.90 1.89

Table 5.3: Critical suction coeflicient values obtained with the domain ‘MAIN” and four dif
ferent types of velocity boundary conditions on the lateral boundaries (the velocity imposed
at the inflow boundary is the free stream velocity, if not otherwise stated): free stream, po-
tential (also at the inflow boundary), symmetry boundary condition, and periodic boundary
conditions. Also reported: values obtained with the domain “OUT’, whereby the free stream

boundary condition is applied.

with very large, but still finite domains. The earlier transition to steady symmetric flow at

shorter inflow domain lengths can bhe explained by the fact that inflow boundary condition
imposes a symmetric velocity profile (7 = 1,V = 0); shorter inflow lengths impose a sym-
metry condition closer to the cylinder, and this favours transition to a steady symmetric flow
state.

If the above subcritical bifurcation is actually present at infinite flow domain, one can
expect that the two critical curves separating steady symmetric and asymmetric flow states
(see Figure 4.1) either have a vertical asymptote as Cy,. tends to infinity, or join forming a
single curve. In the latter case, there would exist a threshold value for Cj,., above which
all asymptotic flow states are steady svmmetric. We believe however that the suberitical
bifurcation is a consequence of domain truncation, and thus is not present in the limit of
infinite flow domain. At present. for a given Reynolds number, we can merely identify a
suction coefficient value below which our results are insensitive to domain size (for example,
at Re = 90, results arve insensitive to present domains for Cy,. < 1.5, sec Figure 5.5).

Note that, in all simulations, while the range of Reynolds numbers is arbitrarily limited
to Re < 90, (V. is, instead. less than 2.6 for reasons related to the numerical stability
constraint. At (/;,.=2.0 and Re=00, a time step as low as A7=0.0005 is necessary to satisfy
numerical stability, which is much smaller than the value At=0.01 used for the uncontrolled
flow. Given the very large integration times, even higher suction coeflicients than the ones
already used would result in prohibitively expensive simulations.

Implementation of different tvpes of boundary conditions has shown that the flow tran-

sitions are practically insensitive to boundary conditions, for the domain sizes used in the
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present work. Indeed, it appears that the subcritical bifurcation is always present for finite

domains, and depends strongly on domain size.
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Chapter 6
Stability analysis

To characterize in more detail the flow stability properties in the various regimes, we have
performed global stability analysis calculations at Re = 90, for a wide range of suction
coeflicient values. Global stability analysis can also serve as an additional test for DNS
results,

In this chapter, we first present the numerical algorithm utilized by the stability code,
which was kindly provided to us by R. Henderson and D. Barkley. Then, we report stability
analysis results, at Re=90.

All types of steady solutions have been analyzed: symmetric (stable and unstable),

strongly asymmetric (stable), and slightly asymmetric (unstable) flows within the hysteresis
regime. The steady symmetric base flows have been obtained with time-dependent simula-
tions on half the domain, implementing a symmetry boundary condition on the centerline.
The unstable slightly asymmetric flows within hysteresis have been computed by means of
the feedback control presented in section 4.2.

To perform global lincar stability analysis, the discretized Navier-Stokes equations must
be linecarized about a steady base flow {7, This vields a linear dynamical system for the
evolution of small disturbances v superimposed on the steady base solution U, that can be

expressed by means of a lincar operator A, as follows:

= Ay (1)

A primary task in linear stability analysis consists in finding the leading eigenmode (i.e.

the one corresponding to the largest growth rate) of the steady solution {7, or, equivalently,
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the leading cigenpair (eigenvalue, eigenvector) of the linear operator Ay. Indeed, in the frame
of linear stability theory, infinitesimal disturbances superimposed on the steady solution
evolve exponentially at the rate corresponding to the eigenvalue with the largest real part,
s = o,+io;, which is therefore of particular interest. If the leading eigenvalue, now also
referred to as the global linear frequency, has a positive real part, then the steady flow
solution is unstable, and infinitesimal disturbances increase at a growth rate of o,, while
oscillating with a frequency equal to Zt: for negative values of o, disturbances decay with
the corresponding values of decay rate and frequency.

To reduce the high computational effort in solving the full eigenvalue problem Ay X =
AX, since only the leading eigenmode is sought, the stability code used exploits the efficiency
of an iterative Krylov method (Edwards et al. 1994) to accurately compute the dominant

mode. A series wu,, is constructed as follows:

< {40‘
N/

U1 = Apr-u, . n >0, (

starting from an initial guess wug for the dominant eigenmode. App is the infegration

operator associated with the linear system (1) over a sampling period 7'

t+1 .
Apre ( ) —% / S U (l[ (3)

In equation (2), w, actually represents the solution of (1) at time t=nT, with the
initial condition wg. From this series of perturbation fields, a series of Krylov subspaces
Ne=[t, Upg1y ooy Upgpar—1] of dimension M is constructed, which can also be defined recur-

sively:

No = [uosups s unr_1]

;\'_',,,4‘1 = ;i\[f_j[' . \’n N n o> ‘N (Ll)

Hence, only a single matrix-vector operation is necessary to compute X, 41 from X,,. The
eigenpairs of X, tend to those of A;- as n — oo, convergence being fastest achieved for the
dominant cigenpair. The series of the dominant eigenvalue A, and the dominant eigenmode

en of X, is considered to accurately approximate the leading eigenvalue and eigenmode of
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Arr when the residual r=[|Ay - e, — A, e,]] falls below 107°. In all cases, a Krylov subspace
dimension M=40 appears sufficient to reach this level of accuracy. This is consistent with
the stability calculations of Taylor-Couette flow reported in Edwards et al. (1994); they
obtained fast convergence with a subspace of dimension 30. The sampling period 1" depends
on the base flow and has been chosen in the range [0.5, 5]: for base flows characterized by
very low growth rates, 7' should be high enough to give the eigenmode enough time to grow,
whereas for high growth rates, 7" should be chosen small enough so that the series u, does
not get too high values due to fast eigenmode growth. In general, for M=40, convergence is
already achieved with the first computed Krylov subspace Xj.

As a validation test, we compare stability analysis results to Stuart-Landau equation
cocflicients, obtained by analyzing DNS data, in terms of global growth rates and linear
temporal frequencies. In Table 6.1, we present the global linear frequencies (growth rates
and temporal frequencies) computed by global stability analysis at Re=50 and Re=60, for
uncontrolled flow. Results corresponding to the Stuart-Landau model are also reported. Af

both Reynolds number values, the agreement is excellent.

o (SL)y o, (SA) | o; (SL) o; (SA)
Fe=50 | 0.0140  0.0140 0.742 0.742
Re=060 | 0.04833 0.0481 0.750 0.751

Table 6.1: Uncontrolled flow: global linear growth rates and temporal frequencies, based on

the Stuart-Landau model (SL), and on stability analysis calculations (SA).

It has been shown for the uncontrolled cylinder wake (Barkley and Henderson, 1996) that
computation of the eigenmodes can be performed with equal accuracy on a much smaller
domain than the one used for base flow computation, because these eigenmodes vanish
rather close to the cyvlinder. We have verified this with few test-calculations. At Re=90
and Ce=0.0, the steady base flow computed on “MAIN™ has been strongly truncated onto
a smaller domain, with the following dimensions: DXyyv=4, DY =4, DXppr=4. Global sta-
bility analysis performed both on the small domain and on “MAIN’ vielded very close values
for the growth rate, 0.110 and 0.109. respectively. Nevertheless, all stability caleulations
have been performed with the same grid and resolution (9x9) used for the associated base
flows. Several resolution tests at various suction coefficient values have been performed using

LT x 11 elemental resolution in both base flow and stability caleulations, and verified the
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accuracy of 9 x 9 resolution. For example, at Re=90, C,,,=1.76, the global growth rates
corresponding to the unstable asymmetric steady flow (:Chosen for its potential sensitivity fo
spatial discretization) computed with 9x9 and 11x11 elemental resolution are 0.000405 and
0.000417 respectively, and thus differ by only 3%.

We now present stability analysis results obtained with the domain ‘MAIN', and compare
them with some results obtained with the largest domain ‘XLW’. In Figure 6.1, global linear
erowth rates and frequencies corresponding to symmetric base flows at Re = 90 are presented,
for a wide range of (y,.. The non-linear frequencies in the unsteady regime are also presented.
First, we note that the suction coefficients at which the symmetric steady flows become
unstable (o,=0) practically coincide with the critical values found by DNS (marked by the
vertical dashed lines).

We emphasize now on the unsteady regime and the transition from steady symmetric to
unsteady flow. Up to ('y,.=0.2, the linear frequency remains at a constant level, while the
growth rate varies linearly with (., which is consistent with the first order approximation
of o, near the critical value, used in the Stuart-Landau model. Note that, as expected, as
Csue approaches its critical value (= —0.145), the non-linear frequency (of the limit cycle)
tends to the linear frequency.

The linear variation in both the growth rate and linear frequency stops at Cy,. &~ 0.3. Fur-
ther increasing (', only slightly increases o, up to 5,.=0.6, while o; drastically decreases
from Csp.=0.3 to 0.6, wheve it becomes zero. We believe that the sudden modification in
the shape of the o, versus Cy,. curve for Cy,. > 0.3 is due to a less parallel flow in the near
wake. Leuw and Ho (2000) conducted a similar experience in their control studies of wake
flow produced by the merging of two boundary layers.

Arvound (,.=0.6, the growth rate starts increasing again, while the linear temporal
frequency remains at a zero value. Still in the unsteady regime, it is interesting to note
that the linear and non-linear frequency start deviating from each other not too far from the
critical suction coeflicient. This indicates a substantial difference in the structure of linear
and saturated global modes. The difference is even more pronounced in the C'y,. range [0.6,
0.855], where the linear mode is asvinmetric (non-oscillatory: o; = 0), while the non-linear
state is oscillatory (St > 0) and intermittent. In Figure 6.2, the structure of the oscillatory
dominant eigenmode corresponding to the base flow at (5,.=0.4 (a), and of the asymmetric

eigenmode corresponding to the base flow at C';,.=0.8 (b) is illustrated, in terms of velocity
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components isocontours. Spatial oscillatory patterns are clearly identified at C',.=0.4, with
maximum mode amplitudes rather close to the cylinder base; this is also the case for the
non-linear saturated flow state at the same parameter set (see Figure 4.4). At Cy,.=0.8, we
find a pronounced asymmetry of the linear eigenmode, also very close to the (::y].i:n.d(-:r base.
At a higher suction coefficient, (/5,.=1.0, the streamline pattern (see Figure 4.12) shows
that flow asymmetry is maximal in the region close to the cylinder base. Note that, while
the eigenmode structure at Cy,.=0.8 and (',.=1.0 is quite similar, the saturated non-linear
flow states differ dramatically: the saturated flow is oscillatory at C,.=0.8 , and steady
asymmetric at C,.=1.0.

The growth rate o, reaches a maximum at ('y,,=0.70 (see Figure 6.1), before transition to
asymmetry, and then decreases rapidly in a first stage (until Cy,. &~ 1.1), followed by a rather

slow decrease (for (. >1.1). The growth rate becomes zero at the second critical suction

coefficient 'y, »=1.72, in agreement with the DNS results. For (s, > 1.6, o, remains
smaller than 107°

A number of stability computations has been performed with the largest domain “XLW’
at Re=90, to check the influence of domain size on results. The base (steady symmetric)
flows at different suction coefficients in the range [-0.2, 2.0] have been computed with 9x9
elemental resolution on “NLW"; stability calculations utilized the same (*XTW’) domain and
elemental resolution (9x9). The leading eigenvalues computed are also presented in Fig-
ure 6.1. The agreement in linear temporal frequencies between ‘MAIN” and ‘XLW’ is very
good, with both becoming zero at the same suction coeflicient value (Csue=0.6). In the
range Cy,. < 1.4, the agreement in growth rate is also good, even close to the non-linear
transition Unsteady - Steady asymmetric flow, where the discrepancy in non-linear frequency
is about 580% (Table 5.2). This shows that domain size has a stronger effect on the sat-
urated non-linear flow state (limit cycle), than on the steady symmetric flow. The trend

appears reasonable, as smaller domains impose a symmetric condition at the inflow and lat-

eral boundaries ({/=1, V'=0) much closer to the cylinder than larger domains. The unsteady
(instantaneously asymmetric) flow solution is thus much more affected by the symmetric

Dirichlet boundary condition at the inflow and lateral boundaries, than the steady symmet-
ric solution. Consequently, stability calculations of svmimetric base flows are less sensitive
to domain size, in comparison to DNS of saturated flow states.

For Cs,. > 1.4, the relative discrepancy in growth rates between ‘MAIN and *XLW’
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(hardly noticed from Iigure 6.1) evidently increases, since o, becomes zero at C,.=1.72
with ‘MAIN and at (V,,.=2.27 with ‘XLW’.

Figure 6.3 shows the growth rates corresponding to all symmetric and asymmetric (stable
or unstable) solutions in the steady regime, obtained with domain ‘MAIN’. The growth rates
corresponding to the steady symmetric and to the strongly asymmetric steady solutions
in the asymmetric regime, obtained with *XLW?", are also presented. The vertical dashed
lines stand for the critical suction coefficients corresponding to domain ‘MAIN’. The linear
temporal frequencies are not represented for clarity, and because they are non-zero only for
the asymmetric flows at Cy,. < 1.0.

First, considering only the data obtained with "MAIN", we note that, in the asymmetric
regime, growth rates depend exponentially (since linearly in a lin/log plot) on suction coethi-
cient, for both symmetric and asymmetric base flow. The o, values obtained with the *XLW’
domain, also presented in Figure 6.3, further confirm the exponential dependence of o, with
Cone, for the two tvpes of base flow. It appears plausible that the exponential dependence
would hold up to 'y, —» oo in an infinite domain. In that case, transition to symmetric
flow would never occur, since none of the two growth rates would ever become negative. This
strongly supports our previous hypothesis, that only asymmetric flows exist at high suction

coeflicients, in the limit of infinite flow domain.
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Chapter 7

Conclusions

In the present work, we have investigated the effects of base suction and blowing on the
dynamics and stability properties of the flow around a circular cylinder at low Reynolds
numbers, using numerical simulation and stability analysis. Both suction and blowing modify
the velocity profiles in the near wake, and, consequently, affect the stability properties of the
entire flow.

Numerical simulation results show that, at supercritical Reynolds numbers, slight blowing
can stabilize the wake, as result of reduced back flow, and, thus, reduced absolute instability
in the near wake. High enough suction can also stabilize the wake at supercritical Reynolds
numbers, resulting in strongly asymmetric steady flow fields. While suction can have an
inherent stabilizing effect, due to the decreased streamwise extent of absolute instability,
the primary cause of transition to steady asymmetric flow appears to be the increased flow
intermittency with increased suction: the non-linear flow frequency decreases with suction
and reaches a zero value, corresponding to transition to steady asymmetric flow. At even
higher suction flow rates, we find a subcritical bifurcation to a steady symmetric flow state.

At subcritical Reynolds numbers, suficient suction can result in global instability and
flow unsteadiness, due to increased back flow, and, thus, increased absolute instability in the
near wake. With the present definition of control action, no control measure can render the
wake unsteady for Reynolds number values below Re = 17.

Since low levels of blowing are enough to stabilize the wake at supercritical Reynolds
numbers, overall, blowing does not affect the shedding frequency significantly. On the other

hand, the drastic reduction in Strouhal number with suction corresponds to strong modifi-
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cation of the vortex shedding process. While suction increases drag and lift, slight blowing
has the opposite effect, until flow stabilization. Thus, taking into account the difference in
the required transpiration flow rates for wake stabilization, blowing is energetically a much
more efficient method for stabilizing the wake, than suction. Suction is only preferable when
a constant non-zero value of the lift coeflicient is desired.

Global linear stability analysis shows that suction drastically increases the global growth
rate. After a maximum is reached, the global growth rate rapidly decreases at even higher
suction coeflicient values, where, in general, the flow is characterized by very slow dynamics.
Exploiting this slow dynamics, we developed a feedback control scheme, with which we could
stabilize the unstable asymmetric solutions within the hysteresis regime, in the transition
from steady asymmetric to steady svmmetric flow.

Extensive tests have been performed, to investigate the dependence of the flow dynamics
and the transitions reported on domain size. We find that results are only sensitive to domain
size at high suction coefficients. In particular, the transition from steady asymmetric to
steady symmetric flow is very sensitive to domain width, and, primarily, inflow length. We
believe that the presence of inflow and lateral domain boundaries at finite distance from the
cylinder in fact provokes this transition, a hypothesis also supported by the global stability

analvsis results.
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Appendix A

Temporal Resolution Tests
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