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Abstract

We examine three invariants of exact loops of Lagrangian submani-

folds that are modelled on invariants introduced by Polterovich for loops
of Hamiltonian symplectomorphisms. One of these is the minimal Hofer

length in a given Hamiltonian isotopy class. We determine the exact values

of these invariants for loops of projective Lagrangian planes. The proof
uses the Gromov invariants of an associated symplectic fibration over the

2-disc with a Lagrangian subbundle over the boundary.
The last two chapters concern different topics and can be read com¬

pletely independently.
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Zusammenfassung

Wir untersuchen drei Invarianten einer exakten 1-parametrigen pe¬

riodischen Schar von Lagrange'sehen Untermannigfaltigkeiten, die mod¬

elliert sind nach den von L.Polterovich eingeführten Invarianten für 1-

parametrige periodische Scharen von Hamilton'sehen Symplektomorphis-
men. Eine davon ist die minimale Hofer Länge in einer gegebenen Hamil-

ton'schen Isotopieklasse. Wir bestimmen die genauen Werte dieser In¬

varianten für Scharen von projektiven Lagrange'sehen Ebenen. Der Be¬

weis verwendet die Gromov Invarianten einer dazugehörigen symplektis-
chen Faserung über der 2-Scheibe mit vorgegebenem Lagrange'sehen Un¬

terbündel auf dem Rand.

Die letzten zwei Kapitel betreffen andere Themen und können völlig

unabhängig gelesen werden.



Seite Leer /

B\anK leaf



Contents

1 Introduction 11

2 Preliminaries 17

2.1 Symplectic manifolds 17

2.2 Symplectic and Hamiltonian diffeomorphisms 18

2.3 Lagrangian submanifolds 19

2.4 Almost complex structures 20

3 The Hofer metric 23

4 Invariants of Lagrangian loops 31

4.1 The minimal length 31

4.2 Relative K-area 32

4.3 The non-symplectic interval 46

5 Loops on the 2-torus 5 5

5.1 Hofer length versus area 55

5.2 Symplectic isotopy on Riemann surfaces 59

6 Relative Gromov invariants 6 5

6.1 J-holomorphic discs 66

6.2 Fredholm theory 71

6.3 Compactness 75

6.4 Gromov invariants 79

7 Complex projective space 83

7.1 Rotations of real projective space 83

7



8 C

7 2 The Maslov index

7 3 Computation of the Gromov invariants

7 4 Calculating invariants

8 A Legendrian knot

8 1 Contact geometry

8 2 Legendrian knots in $l(R")
8 3 Generating functions

9 Travelling wave solutions

9 1 Introduction

9 2 Geometric Singular Perturbation Theory
9 3 The flow on M£
9 4 Rateof change of the wave speed

A Symplectic fibrations

A1 Symplectic connections

A 2 Symplectic curvature

A3 Coupling form and weak coupling

B The Maslov index

C Taubes' argument

C 1 From ee to C°°



Seite Leer /

Blank leaf



Chapter 1

Introduction

Most of this work concerns the study of Hofer geometry for exact loops of

Lagrangian submanifolds of a symplectic manifold (M, <o). Think of such

a loop as a submanifold A C S1 x M such that the projection A -» S1 is

a submersion and

Af := {zeM (e2*i},z) G A}

is a Lagrangian submanifold of M for every /, The loop is called exact if

there exists a Hamiltonian isotopy ft of M such that t^)(Ao) = Ar for

every t. By definition, the Hamiltonian isotopy is the flow defined by a

time dependent Hamiltonian function Ht via

d
—ft = xh, o f, and Vo = id.
dt

Note that the isotopy defines the Hamiltonian function uniquely up to a

time dependent function and hence the Hofer length of an exact Lagrangian

loop A is well defined and given by

i(A) := I (max Ht-mmH, ) dt,
Jo \ a, Ar /

where the Hamiltonian functions Ht : M -* R are chosen such that the

corresponding Hamiltonian isotopy ft : M -* M satisfies ft(Ao) = A{.

It is interesting to minimize the Hofer length over the Hamiltonian isotopy

11



12 CHAPTER 1. INTRODUCTION

class of A. Here two exact Lagrangian loops t k>- Af and t h-> A\ are

called Hamiltonian isotopic if there exists a smooth function [0, l]xR->
X : (s, /) H» A$j such that

A0,f = A,, A|,, = A'r,

the map 11-4- As>t is an exact Lagrangian loop for every s, and the 1-form

Bs ASil e Ç2 (AJ>() is exact for all s and t This infimum is one of the central

notions of this thesis and will be denoted by

v(A) = y(A; M, (a) := inf l(A').
A~A'

As an explicit example consider the space X = X(CPn, RPn) of

Lagrangian submanifolds of CP" that are diffeomorphic to RP". It con¬

tains the finite dimensional manifold PL(n + 1) of projective Lagrangian

planes. The space PL(rc + 1) is the orbit of RPn under the action of

PU(n + 1) and its fundamental group is isomorphic to Zn+i- Consider

the loop A* c Sl x CPn defined by

A*:= \J{e27Ti'}x<f>kl(RPn), (1.1)

where <f>t([zo ' ' zn]) := [emtZQ : Zi : : zn] and k G 1. The

loops Ay and A* are homotopic in PL(aî + 1) (as based loops) if and only
if they are Hamiltonian isotopic (as free loops) if and only if k — j is

divisible by n + 1. If k — j is not divisible by n + 1 then A^ and A* can be

distinguished by the Maslov index. More precisely, every Lagrangian loop

A C 51 x CP", with fibres Af Lagrangian isotopic to RP", has a well

defined Maslov index fi(A) e Zn+i. It is defined as the Maslov index of

a smooth map u : D = {z C ]z| < 1} -> M such that u(e27Z") 6 A,.

Such maps u always exist and the Maslov indices of any two such maps

differ by an integer multiple of n + 1. It turns out that

fji(Ak) = k mod n + 1. (1.2)

In the case n = 1 the loop A1 is obtained by rotating a great circle

on the 2-sphere through 180 degrees around an axis that passes through
the circle. The result is an embedding of the Klein bottle into S x S

.
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The image of this embedding is a Lagrangian submanifold of D x S with

respect to a suitable symplectic form. In contrast A is a Lagrangian torus

in D x S
.
In general, the cases where n is even and where n is odd are

topologically different. If n is even, then A* is diffeomorphic to S1 x RP"

for every k. If n is odd then AJ is diffeomorphic to Afc if and only if k — j
is even, and A* is orientable if and only if k is even. In particular, observe

that A is diffeomorphic to A0 = S1 X RPn whenever k is even.

Fix k e {1, , n} and consider the exact Lagrangian loop

A:=L>27r''}x1MKO,
teR

where

Mzo : : Zw!) := «zo : «""ZI : " : **"** : z*+l : " : Z«D

This loop is Hamiltonian isotopic to A and it has Hofer length 1/2, whereas

A* has Hofer length Jfc/2. The next theorem asserts that A minimizes the

Hofer length in its Hamiltonian isotopy class and hence is a geodesic for

the Hofer metric.

Theorem A Let (0 G Q2(CPn) denote the Fubini-Studyform that satisfies
rhe normalization condition Jpp„ of = 1. Then

v(A*; CP", œ)=\

fork = i,... ,n and v(A°) = 0.

This is a Lagrangian analogue of a theorem by Polterovich [PI] con¬

cerning loops of Hamiltonian symplectomorphisms of complex projective

Space. In order to prove Theorem A we follow the strategy of [PI] and

introduce two other invariants of exact Lagrangian loops A C S1 x M

that can be expressed in terms of Hamiltonian connection 2-forms r on

the trivial bundle D X M that vanish over A. Let 7(A) C Q2(D x M)
denote the space of such connection 2-forms. The relative K-area x(A) is

obtained by minimizing the Hofer norm of the curvature £2r over 7'(A).
The third invariant is related to the relative cohomology classes [r] 6

H2(D x M, A; 2) of t e 7(A). These form a 1-dimensional affine space
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parallel to the subspace generated by the integral cohomology class a :=

[dx A dy/n]. For ro, X\ e 7(A) define s(x\, r0) R by s(x\, zQ)a =

tTi] — [to]. The invariant e(A) is defined by

E(A) := s+(x0, A) - £~(x0, A),

for tq T(A), where

£+(T0, A) := mf{s(x, r0) ] r ë 7(A), x"+ï > 0},

£-(r0, A) := sup{s(r, t0) X T(A), xn+l < 0}.

Theorem B For every exact Lagrangian loop A C S1 x M

e(A)<x(A) = v(A).

A lower bound for «(A) can sometimes be obtained by studying pseu-

doholomorphic sections of D x M with boundary values in A. We as¬

sume that the pair (M, An) is monotone and fix a relative homology class

A £ H2(D x M, A; Z) that satisfies

n±ßA(A) <A/-2,

where n = dim An = dim M/2, N denotes the minimal Maslov num¬

ber of the pair (M, Ao), and /x^ denotes the Maslov class. Under these

assumptions we define Gromov invariants

GrJ(A)//„±MA(A)(Ao;Z2)

A connection 2-form t e 7(A) and an ^-compatible almost complex
structure J on M determine an almost complex structure J = J(r, J) on

D X M. Under our assumptions the moduli space of J(x, f/)-holomorphic
sections of D x M is, for a generic r, a compact smooth manifold of di¬

mension n ± jih(A). The Gromov invariant is defined as the image of

the mod-2 fundamental class under the evaluation map u h» u(l). Now

let A* c S1 x CP" be given by (1.1) with 1 < k < n. Let A£

H2(D X CP", A^; 1) be the homology classes of the constant sections

u+{x, y) = [1 : 0 : : 0] and u~(x, y) = [0 : : 0 : 1].



15

Theorem C GrJ±(A*) # 0.

Theorem C can be interpreted as an existence result for pseudoholomor-

phic sections and we shall use this to prove that e(Ak) > 1/2. On the other

hand the Hamiltonian isotopy class of A contains a loop of length equal
to 1/2. Hence Theorem A follows from Theorem B.

We expect that the same techniques can be used to obtain similar re¬

sults for general symplectic quotients of C" by subgroups of U(n). These

quotients will not, in general, satisfy our assumption of monotonicity for

the definition of the Gromov invariants. However, it should be possible to

derive the same conclusions by using the invariants introduced in Cieliebak-

Gaio-Salamon [CGS] instead. This Programme will be carried out else¬

where.

We conclude the introduction by describing the background of this

problem. In [PI, P2, P3, P4] Polterovich studied the Hofer length of loops

f, = i/r/+1 ; M -> M

of Hamiltonian symplectomorphisms. Let P -» S denote the Hamilto¬

nian fibration associated to the Hamiltonian loop. Polterovich introduced

invariants v±(P), /±(P), and E*(P) on which our invariants are mod¬

elled. Here v+(P) is obtained by minimizing the positive part of the Hofer

length in a given Hamiltonian isotopy class, the K-area X
+ (P) 1S a svrn~

plectic analogue of an invariant introduced by Gromov [G2], and the invari¬

ant £+(P) is based on the coupling construction of Guillemin-Lerman-

Sternberg [GLS]. In [PI, P2] Polterovich proves that these invariants are

equal:
£±(P)= X±(P)= ^(P).

We adopt the convention ±v±(P) > 0. Let us denote by u(P), x(P)i and

s(P) the Hamiltonian analogues of our invariants of Lagrangian loops.
These were also considered by Polterovich and he noted that

e(P) = s+(P) -£~(P) = v+(P) - ü(P) < v(P)

This is the Hamiltonian analogue of Theorem B. Now consider the La¬

grangian loop A c S x M x M given by

A, = graphe).
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The invariants introduced by Polterovich are related to our invariants by

v(A) <v(P), s(A)<e(P).

The Gromov invariants of the fibration P associated to a Hamiltonian loop
were independently studied by Seidel [S2, S3, S4] and his results were

used by Lalonde-McDuff-Polterovich [LMP] to prove that Hamiltonian

loops act trivially on homology. Our results on the Gromov invariants can

be viewed as Lagrangian analogues of results in [PI, S2] on the Gromov

invariants of symplectic fibrations.

The present work is organized as follows. In Chapter 2 we give a brief

introduction into symplectic geometry. The main definitions and some of

the main theorems are stated. In Chapter 3 we discuss background material

about the Hofer metric. The space of Lagrangian submanifolds is naturally
foliated by Hamiltonian isotopy classes and the Hofer metric is defined on

each leaf of this foliation. In Chapter 4 we introduce the invariants u(A),

X(A), and e(A) of exact Lagrangian loops and give a proof of Theorem B.

In the 2-dimensional case the invariant v{A) can sometimes be computed
explicitly. This is done in Chapter 5 for the 2-torus. We also prove a re¬

sult about Hamiltonian isotopy on Riemann surfaces, that is needed in this

chapter. In Chapter 6 we introduce the Gromov invariants and in Chap¬
ter 7 we prove Theorems A and C. Chapters 3 till 7 have appeared as a

joint paper [AS]. The short Chapter 8 is of a different flavour and presents
an example of a non-trivial Legendrian submanifold of the 1 -jet bundle of

R2. Finally, in Chapter 9 a completely different problem is addressed. We

study a fourth order nonlinear partial differential equation and search for

travelling wave solutions. This chapter has appeared as a joint paper [AH].
The appendices concern symplectic connections, the Maslov index and an

argument due to Taubes needed to go from the C£ category to the C°°

category. They are added for the convenience of the reader.



Chapter 2

Preliminaries in symplectic

geometry

In this chapter we will give a brief introduction into symplectic geometry.

We restrict ourselves to the definitions and theorems needed to read the

following chapters. For a more elaborate introduction into the subject see

for example [MS 1] or [P5].

2.1 Symplectic manifolds

Let M be a smooth manifold (throughout this work all manifolds are as¬

sumed to be smooth unless otherwise stated). A symplectic structure on M

is a nondegenerate closed 2-form 0) & (M). If M admits such a structure

we call (M, œ) a symplectic manifold. Note that symplectic manifolds are

orientable and even dimensional. The first example of a symplectic mani¬

fold is C" = R2" with the Standard symplectic form coq = J21=\ d*i Adyi,
where the coordinates on C" are given by (xi + /ji,, xn -+- iyn)- As a

second example we observe that every oriented Riemann surface is a sym¬

plectic manifold. Its symplectic form is given by an area form.

An important class of examples of symplectic manifolds is given by
CPn - the space of complex lines in C"+1. A point in CPn is the equiva¬
lence class of a nonzero complex (n + l)-vector [z] = [zu : : z,] under

the equivalence relation [zo :
. zn] = [^Zo : : \Zn\ for X 7^ 0. One

17



18 CHAPTER 2 PRELIMINARIES

can check that the following 2-form defines a symplectic form

to =

—^ z—Tj Y^ ^(ZjZjdzk A dzk - ZjZkdZj A dlk)-
2(E?=o 'mi)1

k=0 tfk

This symplectic form is known as the Fubini-Study form

Another important class of examples of symplectic manifolds is the

cotangent bundle Given a manifold N, consider its cotangt bundle T*N.

This manifold carries a canonical symplectic form ûjcan = —dXcan. Here

Àcan, locally known as Àcan = J2'!=\ P'd<li, is defined in the following
lemma

Lemma 2.1.1 The i-form Xcan Q](T*N)is uniquely characterised by
the property that

for every \-form a :N -> T*N.

One of the first main results in symplectic geometry is the following
theorem

Theorem 2.1.2 (Darboux's Theorem) Every symplectic form (0 on M is

locally diffeomorphic to the standardform (OQOnC".

This means in particular that, unlike in Riemannian geometry, sym¬

plectic manifolds do not admit local symplectic invariants The type of

invariants that are studied in symplectic geometry are therefore completely
different than the classical Riemannian invariants

2.2 Symplectic and Hamiltonian diffeomorphisms

A diffeomorphism </> M —> M that preserves the symplectic form, i e

<j>*oj = (o, is called a symplectomorphism. The space of such diffeomor¬

phisms forms a group and is denoted by Symp(M, w) As in Riemannian

geometry there is a one-to-one correspondence between vector fields and

1-forms on M via

x h» L(X) û).
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Here X is a vector field X : M -» TM and i denotes the interior product so

that i(X)(o(-) = (o(X, •)• Given a smooth function H : M —» M, we define

the Hamiltonian vector field Xh associated to the Hamiltonian function

H by

i(XH) 0) = dH.

If M is closed, the vector field Xh generates a smooth 1-parameter group

of diffeomorphisms <p'H satisfying

jt<P'H = XH°<fi'H, 4 = id.

A smooth map [0, 1] x M -ï M; (t, q) (-> ft(q) with f, ç_ Symp(A/, co)
for ail t and i/r0 =z id is called a symplectic isotopy. Any such isotopy is

generated by a unique family of vector fields Xs : M -> TM by

—ft = X: oft
at

The I-forms i(Xt) co are closed. If they are exact then there exists a family
of Hamiltonian functions Ht : A/ -» K such that

for all/. In this case H, is called the time-dependent Hamiltonian and

ft is called a Hamiltonian isotopy. A given symplectomorphism f

Symp(M, <y) is called a Hamiltonian difieomorphism if there exists a

Hamiltonian isotopy ft Symp(M, <£>) connecting i^o = id to f\ = f.
The space of Hamiltonian diffeomorphisms Ham(A/, co) is connected and

forms a subgroup of Symp(M, w). The group of Hamiltonian diffeomor¬

phisms is a much studied object in symplectic topology see e.g. [P5]. Ob¬

serve that for simply connected manifolds it coincides with Symp(M, cd).

2.3 Lagrangian submanifolds

Let L c M be a submanifold. We call L a Lagrangian submanifold if

dim L = 1/2 dim M and (o\tl = 0. Going back to the examples of sym¬

plectic manifolds, we immediately obtain some examples of Lagrangian
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submanifolds. R* C (C, (ûq) is a Lagrangian submanifold. Here we have

identified R with yi — = yn = 0. On a Riemann surface every em¬

bedded curve is a Lagrangian submanifold.

An important role in this work is played by the Lagrangian submani¬

fold RP" c CP". As a last example we remark that the zero section Nu in

T*N is Lagrangian.

Analogous to Darboux's theorem we have the Lagrangian neighbour¬
hood theorem which is due to A. Weinstein.

Theorem 2.3.1 (Weinstein neighbourhood Theorem) Given a symplec¬
tic manifold (M, co) and let L c M be a compact Lagrangian submani¬

fold. Then there exist a neighbourhood U cT*Lof the zero section Lq, a

neighbourhood V c M of L and a diffeomorphism <p:U -> V such that

cp*co = —dX,

which identifies Lq in a canonical way with L. Here X = A.can is the canon¬

ical 1 -form onT* L.

As before we see that there are no local symplectic invariants of La¬

grangian submanifolds. This work is concemed with the study of global
invariants of Lagrangian submanifolds.

2.4 Almost complex structures

An almost complex structure on a manifold M is a complex structure

J on the tangent bundle TM. That is, J associates smoothly with every

X M a linear map J — Jx . TXM —y TXM satisfying J = -id.

If (M, co) is a symplectic manifold then there exists an almost complex
structure J on M and a Riemannian metric <, •) on M such that

o)x(u, Jv) = (u, v)x, for all u, V TXM.

Moreover, if VH denotes the gradient of a function H with respect to the

Riemannian metric {, •) then we find the following representation for the

Hamiltonian vector field

XH(x)= JVH(x)eTxM.
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Given a symplectic manifold (M, a>) we say that an almost complex struc¬

ture J is compatible with w if the 2-form co(-, J -) defines a Riemannian

metric. Gromov [Gl] showed that the Space of compatible almost complex
structures %(M, co) is contractible.



Chapter 3

The Hofer metric for Lagrangian
submanifolds

Let (M, co) be a 2«-dimensional symplectic manifold and L be a compact

connected n-manifold without boundary. Denote by

X= {t Emb(L,M) i*a>= O)

the space of Lagrangian embeddings of L into M. The group of diffeomor¬

phisms of L, % = Diff(L), acts on this space by i K> ( o <j> for (f> $. Two

Lagrangian embeddings Iq, L\ X lie in the same $-orbit if and only if

they have the same image A = (o(^) = M (£)• Hence the quotient space

X := Xj%

can be naturally identified with the set of Lagrangian submanifolds of M

that are diffeomorphic to L. A function R —> X : t 1-4- A, is called

smooth if there exists a smooth function M x L -* M : (t, (?) h> if(g)
such that tt(L) = Af for all t. One can think of X as an infinite dimensional

manifold, see e.g. [D].

Lemma 3.0.1 The tangent space of X at a point A G X can be naturally

identified with the space of closed 1 -forms on A:

TAX = J£eß'(A)|J/3=o|

23
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Proof: Let R x L -> M : (t, #) (->• if(<?) be a smooth function such that

it G X for all / and define

a, = co(vt, dtf) 6 Q'(L), vt := 3,i, e C°°(L, J,*rAf), (3.1)

where, as usual, dtit{q) = ^it(q). Then, since i*(i) = 0 for all /,

0 = dt{tt*a>) = t*m(vt)(o)) = d(L*co(vt, •)) = d((o(vt, di,-)) = da,

and hence the tangent space of X at t is given by

TtX = \veC00{L,ifTM)\ü>{v, ^-)eß'(I) is closed}
On the other hand, given <f>t e Diff(L), we see that

Bt(i ocj>,)= di(d,<pt),

where we denote the tangent map Ti by di. Hence the tangent space to the

$-orbit consists of all vector fields of the form v = di 0 £, sometimes also

written as V = di{%), where £ e Vect(L). ' Note that co(di(t;), dt-) — 0

since t(L) is a Lagrangian submanifold. Therefore the map id h» co(w, dt-)
from TtX into the space of closed 1-forms identities the quotient space

Tt Xf T(i §,) with the space of closed 1-forms on L.

If it, i't Ç X are two smooth paths in X that satisfy i't — lt a cpt for

some path <$>t .%> then the vector fields vt ;= 8,it and v't := d,({ are related

by

v{ = dt(t,o<f>t)

= dflt 0 0,+ dl; O 3/0/

= fy if 0 0, + d(, 0 £/ 0 0f

= lif 0 0, + ßf(r 0 |r 0 0,

where £, Vect(L) generates the diffeomorphism 0, via 3,0/ = £, 0 0;.

Hence the 1-forms o?f := <y(vf, dir) and af' := cü(fr', dt't-) are related by

«;() = cv{V'„ di'r)
= co(vt o0,+ dit oÇ/00/, dt, 0 d(j>f)
= (o(vto ft,ditod<t>f)

= 4>*ü)(vt , di,-)

= 0>r(-)-
1 Here Vect(L) denotes the space of vector fields on L.
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Hence two closed 1-forms a, a' e Q (L) corresponding to two Lagrangian

embeddings t and i' — i o 0 represent the same tangent vector of X if and

only if a' = 0*or or, equivalently, i*a
— \!%a!. Here, in abuse of notation,

we have for all q £ L

iMq)(Y(t(q))) := a(q)((di(q)y] Y(t(q))) (3.2)

for all Y (i(q)) im dt(q) C Ttiq)M. This proves the lemma. D

Let M —> X : t h» A( be a smooth path of Lagrangian submanifolds.

We define the derivative of this path at time t by

3,Ar := (/,a, Q\a,\

where the path R -» X : / h» ir is chosen such that i,(L) = At for every t

and a, is defined by (3.1). The proof of Lemma 3.0.1 shows that the 1-form

ß, = L{^oLt 6 Q (A,) is closed and is independent of the choice of the lift

/ h» if used to define it, as we have just seen.

We wish to study Hamiltonian isotopies of Lagrangian submanifolds.

We will see that this corresponds to paths in X = X(% that are tangent to

the subbundle

M= {(A, ß) eTX\ A X, ß e&(A)is exact

where we have used the identification of the tangent space with the space

of closed I-forms on A. Abstractly, one can think of 3t as a distribution

on X. As a side remark we point out that this distribution is integrable,
see [W]. We shall see that the leaf through Ao X consists of all La¬

grangian submanifolds of M that are Hamiltonian isotopic to Ao To be

more precise, let R x M —> R : (/, z) (-» Ht (z) be a smooth Hamiltonian

function and denote by

|xM4M:(t, z)\^ft(z)

the Hamiltonian isotopy generated by H via

-rfi=Xtoft, i(X,)co-dHt, ^o = id. (3.3)
dt

Lemma 3.0.3 and lemma 3.0.4 prove the following proposition.
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Proposition 3.0.2 A path in X is tangent to 3Î ifand only ifit is generated

by a Hamdtonian isotopy.

Lemma 3.0.3 Let R —>• X •' t )-» A, be a smooth path of Lagrangian

submanifolds and ft be a Hamiltonian isotopy on M generated by the

Hamiltonian functions Ht : M —> R via (3.3). Then A( = f,(Ao) for
every t if and only if

3, A, = dH\Al

for every t.

Proof Choose a smooth path R -> X t R> (, such that i{(L) = A,

for every / and let at Q*(L) be defined by (3 1) Recall that 3/A, =

f/*«f. Then 3rA, — dHt\A; if and only if d(H, o i,) = a,. It follows from

definition (3 1) that this is equivalent to

co(Xt(it(q))-dli,(q),dit(q^)=0

for all £ £ TqL, q L and t. Hence, since a Lagrangian submanifold is

maximally isotropic,

Xt(tt(q)) - d,ii(q) imdi,(q)

for all t and all q. This means that there exists a smooth family of vector

fields £, Vect(L) such that

Xt oir = 3,(, +dit o^r.

Equivalently, for the Aows we get ft0to = ito4>t, where ft is the flow of

Xt and where the isotopy 0, Diff(L) is generated by £, via 3,0, = £, o 0,

and 0o — id This proves the lemma D

The previous lemma shows that every path in X that is generated by a

Hamiltonian isotopy is tangent to 3i. The converse is proved next

Lemma 3.0.4 A smooth path [0, 1 ] -» X ' t h» A, is tangent to 3Î if and

only if there exists a Hamiltonian isotopy t h> ft such that f, (Ao) = A,

for every t.
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Proof: The "if" part was proved in Lemma 3.0.3. Suppose that the path
/ R- A, is tangent to M. Choose a smooth function

[0,l]^X:mir

such that i/(L) = A, for every f and let at £ Ql(L) be defined by (3.1).

By assumption, ct( is exact for every t. Fix a smooth path qt e L and, for

every /, choose ht : L - R such that

dh, = or,, ht{qt) = 0.

Then the function R x L -» R : (t,q) l-> ht(q) is smooth. We construct a

smooth function [0, 1] x M -» R : (t, z) h* H,(z) such that

Ht oi, = h,. (3.4)

Choose an almost complex structure J on M that is compatible with 0). Let

S > 0 be so small that, for every t [0, 1], the map

TA, -> M : (z, v) k> expz(/u)

restricts to a diffeomorphism from the ^-neighbourhood of the zero section

in TA, onto the open neighbourhood

U, := (expz(7u) \z e A„ ye TZA,, |v| < e}

of A, in M. Choose a cutoff function p : [0, e] -> [0, 1] such that p(r) = 1

for r < e/3 and p(r) = 0 for r > 2eß. Define H, : M -> R by

///(exp^yv^^/oduD^oi,-1^)

for z e Af and u e TZA, with |u| < s, and by tft(z) := 0 for z e M \ £/,.

Then H, satisfies (3.4) and hence

dHt\Al = it*dht =

iti/at
= dtAt

By Lemma 3.0.3, the Hamiltonian isotopy ft generated by Hr satisfies

f,(Ao) - A, for every /. This proves the lemma,
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Remark3.0.5 The Hamiltonian functions, which are constructed in

Lemma 3.0.4, satisfy

max Ht = max h,, min Ht = min h{ (3.5)

for every t. With a slightly more sophisticated argument one can show that

different Hamiltonian functions can be chosen such that the Hamiltonian

vector fields Xt satisfy d,i, = X, oi( and hence the resulting Hamiltonian

isotopy satisfies

ft o io= i,. (3.6)

However, in general there does not exist a Hamiltonian isotopy that satis¬

fies both (3.5) and (3.6).

Lemma 3.0.6 Let R ->• X : t H> A, be a smooth path of Lagrangian

submanifolds. Let R -> Symp(/V/, co) : f w ft be a symplectic isotopy
and define ßt e &(M)by ßt := t(Yt)(o, where d,f, = Ytof,. Then ß, is

closed and the path A'{:=ft~] {At) satisfies

a, a; = ft* (a,A, - ß,\A,) •

Proof: That ß is closed follows from 0 = Xy^ = d(i(Yt)cù). Now

choose a lift R -* X ' t h» (, oft h» A, and introduce the embeddings
and 1 -forms

i't := ft~] o th at : = (o(dttt, dtf), a't : = <o(dti't, dt,)

Then

«;<-) = <D(dtt'r dt't-)
= ü)(dtf^{ o t, + df~x o 3ftf, df~l o di,-)

= ci)(-df~x o Y, o (,, df~x o dtr) + û)(d,ii, dir)

and hence

a, a; = (,>; = ft%^t = ft* (tua, - ßt) = ft* (a, A, - ßt)
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as claimed

The subbundle M c TG carries a natural norm As in Hofer [H] we

define the norm of an exact 1-form a = dh e Qx (A) by

\\dh\\ := max h — min h.
A A

This norm gives rise to a distance function on each leaf of the foliation

determined by M. Indeed, let oCo be such a leaf By Proposition 3 0 2,

the submanifold ^o C X is the Hamiltonian isotopy class of any given

Lagrangian submanifold A of M in Xq. Let [0, 1] 4 A t \-> A, be a

smooth path in Xq. The length of this path is defined by

£({A,}):= f \\dtAt\\dt, (3.7)
Jo

with the 1-form 3,A( = it^at £2'(A,). Proposition 3 02 together with

the Statement (3 5) in Remark 3 0 5 show that

£({A,)) = inf i({ft}), (3.8)
Vf,(A0)=A,

where the infimum mns over all Hamiltonian isotopies t h> ft that satisfy

ft (An) = A, for all ; and £({ft}) denotes the Hofer length (cf [H]) which

is defined by

Uift)) = / (max Ht- min//,)dt.
JO M M

Here ft is generated by the Hamiltonian function H, via (3 3) Here we

have used that hf in (3 5) is defined in terms oft H>- Af. Now let A, A' e

Xq and denote by P(A, A') the space of all smooth paths [0, 1] -> Xq

t h> A, that connect Ao = A with At = A' The distance between A and

a' (belonging to the same leaf of <£o) is defined by

d(A, A') = inf £((Af}) (3.9)
{A,}^(A,A')

It follows immediately from (3 8) that

d(A, A') = inf J(id, f) (3 10)
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where the infimum runs over all Hamiltonian symplectomorphisms f of M

that satisfy f(A) = A' The distance d(id, f) denotes the Hofer distance

(cf [H]) defined by

d(id, f)\=inf / max F, — min F, dt,
KW) Jo

where ^{f) is the set of all time dependent Hamiltonian functions gener¬

ating f at time one The function (3 9) is obviously nonnegative, symmet¬
ric, and satisfies the triangle inequality That it defines a metric is a deep
theorem due to Chekanov [C].

Theorem 3.0.7 (Chekanov) If A ^ A' then d(A, A) > 0

Remark 3.0.8 (Naturality) The distance function (3 9) satisfies

J(0(A),0(A'))= d(A,A')

for every symplectomorphism 0 (not necessarily Hamiltonian) and any two

Lagrangian submanifolds A, A' that are Hamiltonian isotopic This fol¬

lows from (3 10) and the identity d(id, f) = d(y<\, 0 o f o 0_1) for every

Hamiltonian symplectomorphism f.

Remark 3 0 9 In [Mi] Milinkovic studied geodesies in the space of La¬

grangian submanifolds with respect to the above metric In this paper he

generalizes a result by Bialy and Polterovich [BP] and proves that the dis¬

tance of two exact Lagrangian submanifolds A = graph(JS) and A' =

graph (dS') of the cotangent bundle T*L is given by

d(A, A')=\\d(S-S')\\



Chapter 4

Invariants of Lagrangian loops

In this chapter we shall consider exact loops of Lagrangian submanifolds

In the terminology of the previous chapter we work with loops contained

in any single leaf Xq of the foliation of X determined by M. We shall

construct three new invariants of Hamiltonian isotopy classes of such loops
and study the relations between them

4.1 The minimal length

We shall use the notation introduced in Chapter 3 A Lagrangian loop in

the symplectic manifold (M, co) is a smooth function R -» X t h^ A,
such that

Af+i = A,

for all / R. Such a loop determines a subset A c S x M defined by

A := {(e2n",z)\tR>zz Af| (4 1)

Note that the Lagrangian loop R -> X t h-> Ar is smooth if and only
if this set A is a smooth submanifold of S1 x M We shall frequently

identify the loop R —> X t i~> A, with the corresponding submanifold

A c S[ x M

A Lagrangian loop / i-> Af is called exact if it is tangent to the sub-

bundle M, this means that 3rAr Q (A,) is exact for every /. Two exact

31
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Lagrangian loops t \-+ A, and / h-> A't are called Hamiltonian isotopic if

there exists a smooth function [0, 1] x R -> X (s, t) I-*- Asj such that

A0,, = A,, Ai,, = A'n

the map / \-t As,t is an exact Lagrangian loop for every s, and the 1-

form dsAs,t £ £2'(A,y ,) is exact for all s and /. Here the function [0, 1] x

M —> X (s, /) H«- A^f is called smooth if there exists a smooth map

[0, 1] x IR x L -> M (s, t, q) K> h,t(q) such that is<l(L) = As<t for

ail s and t*. Let A,À'c5'x A/ be two exact Lagrangian loops If A is

Hamiltonian isotopic to A' we denote this by

A-A'

A Hamiltonian isotopy class corresponds to a component in the free loop

space of a leaf JLq q X of the foliation determined by M. To every such

Hamiltonian isotopy class we assign the real number

v(A) ;= inf l(A'), (4 2)
A'~A

where the length 1(A) = £({ A,}) of a loop A /1—> Ar is defined in (3 7)
So v(A) is obtained by minimizing the Hofer length over all exact La¬

grangian loops that are Hamiltonian isotopic to A

Example: Consider the 2-sphere as a symplectic manifold and let Ao be

a great circle passing through the north pole, see Figure 4 1 Rotating this

great circle through 180 degrees yields a loop A,, 0 < t < 1, of Lagrangian
submanifolds This example shows that the images Af = it(S ) form a

loop, while the embedding itself is not a loop, that is tt ^ l,+\.

This example will be the red thread throughout this work and should

be kept in mind

4.2 Relative K-area

Following Polterovich [PI], [P2] we introduce the concept of relative K-

area This invariant is defined in terms of Hamiltonian connections on the

trivial symplectic fibre bundle D x M —> D. We restrict our attention
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Figure 4.1: A Lagrangian loop on the 2-sphere

to those connections that preserve the subbundle A c D x M defined

by (4.1). Here D = {x + iy | x2 + y2 < 1} c C denotes the closed

unit disc, That the set of these connections is not empty will be proved in

Lemma 4.2.2. The basic notions of symplectic connections and curvature

are put together in Appendix A. We will always think of a connection on

D x M as a horizontal distribution. Any such connection is determined by
a connection 2-form on D x M of the form

t =co + a/\dx+ßAdy + fdx A dy

where a =

aX}}, Ql(M), ß = ßx<y e Ql(M), and / = fx,y G

Q°(M) depend smoothly on x + iy e D. The horizontal subspace is the

r-orthogonal complement of the vertical subspace. The tangent space at

the point (x, y, z) splits naturally

T(w)(DxM) = Tx,yD®TzMt

where TZM is the vertical subspace. More explicitly, the horizontal lifts of

3/3x and 3/3y
l
at (x, y, z) D x M are the vectors (3*, X,„(z)) and

'Here Sx = (dx)x,y and 3y = (3^)^,^ are shorthand notation for 3/9x and d/dy

respectively
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(dy, YXty(z)), respectively Here the vector fields X = XX;y,Y = Yx<y
Vect(M) satisfy by definition

T(0„ XX,yU)), Ç) = 0 T((dy, YX,y(z)), £) = 0

for all £ TZM. Hence the vector fields X, Y Vect(M) are given by

i(X)œ= a, i(Y)co= ß.

Observe that the horizontal lifts of dx and dy are independent of the choice

of / and hence the connection associated to T is independent of /. It

is called symplectic if ax^y and ßx>y are closed for all (x,y) 6 D, and

Hamiltonian if the 1-forms on M, <xXiy and ßXj are exact for all {x, y) G

D and t is closed, Thus a Hamiltonian connection 2-form has the form

t = a + dF A dx + dG A dy + (dxG - dyF + c)J* A Jv, (4 3)

where F, G DxM-^R and c Ö ->- R are smooth maps such that the

following functions Fx,y = F(x, y, •) and Gx^y = G(x, y, ) on M have

mean value zero:

f FXty(On = f Gx,yC0" = 0,
Jm Jm

for all (x, y) ç D. Caveat: in (4 3) the d indF denotes the differential on

M and NOT the differential on D x M, i e dF denotes the smooth family

(x, y) \-> dFx,y of 1-forms on M, and similarly for dG. We shall only
consider Hamiltonian connections with the property that parallel transport

along the boundary preserves A Given a Hamiltonian connection 2-form

on D x M of the form (4 3) We can define the family of functions H, :

M -> R as follows

Ht := -lit Sin(2jrr)/rcos(27rf)isin(2jr0 + 2k COS(2jrf)GCOs(2jr/),sin(2jrO-

(4 4)

The Parameter / parametrizes the boundary of the disc as follows

(cos2jrf, sin27Tf),0 <t < 1

2ln [MSI] a connection is called Hamiltonian if parallel transport along every loop

in the base is a Hamiltonian symplectomorphism. In the case of a simply connected base

this's equivalent to the existence of a closed 2-form x that represents this connection.

In contrast, we call a connection Hamiltonian if parallel transport along every path is a

Hamiltonian symplectomorphism. This notion only makes sense when the Structure group

of the bundlein question is the group of Hamiltonian symplectomorphisms.
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Lemma 4.2.1 Let r be a Hamiltonian connection 2-form OHD x M of the

form (4.3) and let Hr be the assodared functions defined in (4.4). Recall

that X is the set of Lagrangian embeddings of L into M. Let R -> X : t \-t

Af be an exact Lagrangian loop and let the associated set of Lagrangian

loops A c D x M be defined by (4.1). Choose a smooth parametrization
I : RxL -> D x M such that t{tt q) = (e2nit, lt{q)) and (f(L) = A,.
Then the following statements are equivalent.

0) The parallel transport of X along a path y in the boundary 3D pre¬

serves thefamily Af.

(ii)i*r = 0.

(iii) dH, | a,
= 3rA, for every t e R.

Proof: We first prove that (i) is equivalent to (iii). Given a curve t h->-

x(0 + iy(t), where x(t)2 + y(t)* — 1. The horizontal lift of its tangent

vector is given by

(x(t) + iy(t)t x(t)XFx(l)m + y(t)XGx{l)M0).

Here Xf, Xq are the Hamiltonian vector fields on M determined by the

functions F and G via (3.3). So parallel transport of r along a path x(t) +

iy(t) is determined by the Hamiltonian functions

Ht = x(t)Fx(t),y(0 + y(t)Gx(t),y(i).

The functions Ht on M in (4.4) correspond to the path / R- e2niS. We
know from Lemma 3.0.3 that the Hamiltonian isotopy ft determined by

H, preserves A if and only if ft(Ao) = A, for all / if and only if dHt \a, =

3r Af for every r. This shows that (i) is equivalent to (iii).

It remains to prove the equivalence of (ii) and (iii). Given two tangent

vectors (a, £), (a', £') Tt^(R x L). Then using complex notation and
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recalling the formula (4.3),

i*r((a, $), (a', |'))= T((a27iie23ti', ad,i, + dl, o £),

(a'2jrie2'r'''/a'a,tr + dtoÇ'))

=w(ö3ftf + ^(f o £, a'3fif + rfif o £ ') +

27T sin(27r/)at(JJF)(ûr/8/ff + d(f o £') -

In sm(27tt)a'(dF)(a3,it + dtt o £) -

2/r cos(2wr)a(rfG)(a'3,t, + rft, o £') +

2tt cos(2jrr)a'(<iG)(a3ft, + Jif o £)

= Jr A co(d,tt -Xto it> dtr)((a, §), (a', £'))
= ^A(af-i;d//,)[(û,|),(fl/,^)]

where Xt e Vect(M) denotes the Hamiltonian vector field of H, as defined

in (3.3). Now t*x = 0 if and only if <xt —ifdHt = 0 if and only if dHt |a, =

(r^ûff = 3f Af. This completes the proof of the lemma. 0

For every exact Lagrangian loop R —> X : / R Af let us denote the

set of Hamiltonian connections that preserve A by

r(A) = It Q?(D X M) | T has the form (4.3), t\ta = oj
Here we have used Statement (ii) of Lemma (4.2.1). We shall prove in

Lemma 4.2.2 below that this set is nonempty. Let R —> X : / (-> Af be

another exact Lagrangian loop. In abuse of the usual notation, a diffeomor-

phism of pairs, mapping the subset A onto A',

*:(DxM,A)->(DxM, A')

is called a fibrewise (Hamiltonian) symplectomorphism if it has the form

ty(x + iy, z) = (x+iy, fXyy(z)), where fXj : M —> M is a (Hamiltonian)

symplectomorphism for all x, y. In the case A = A' we denote by $(A)
the group of fibrewise Hamiltonian symplectomorphisms of (D x M, A).
This group acts on T(A) by r *-» ty*x, see Proposition 4.2.3. Recall that

the curvature of a connection is a 2-form with values in the Lie-algebra of

the structure group of the bundle. In our case the latter is the space of time
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dependent Hamiltonian vector fields which can be identified with the space

of time dependent Hamiltonian functions and we will denote the curvature

of the connection 2-form x of the form (4.3) by Ç2T(x, y, z)dx A dy. Here

Qr : D x M -> R is a function given by

ßr(*. y, z) := {Fx,y, Gx,y}{z) + dyFXJ(z) - dxGXiy(z) (4.5)

for x+ iy eD and z e M. To see this let 3^ and dy be two tangent vectors

to the discs. Their horizontal lifts to the tangent space T(xy^(D X M) are

given by dx + Xpxy and dy + Xcxty Denote by 'vert' the projection onto the

vertical tangent space. The curvature evaluated at dx and dy is by definition

given by •*

[dx + xF,dy+xGrn =

= (Va>1+xG(9, + XF) - Vdx+XF(dy + Xc))ven =

= XdyF + VxcXf - X3xg VXfXc =

= XdyF-3xG+{F,G}-

Be careful, when one changes the 2-form dx a dy then the function Qx

changes accordingly.

Lemma 4.2.2 (i) For every exact Lagrangian loop R -> X : t h-> Af the

set T (A) is nonempty.

(ii) Two exact Lagrangian loops A und A' are Hamiltonian isotopic if and

only if the corresponding pairs (D x M, A) and (D x M, A') are

jibrewise Hamiltonian symplectomorphic.

(iii) If x is a Hamiltonian connection 2-form oriD x M and ty is a fibre-
wise Hamiltonian symplectomorphism ofDxM then the coefficient
functions £2r of the curvature transformas follows

3 Here we have used the convention of the sign of the Lie bracket as in [MS 1 ] Remark

3.3, that\s[XtY]=-£XY-
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Proof: We prove (i). Choose the maps if : L —» M parametrising Ar =

i,(L) fort M. Let 4>t Diff(L) be defined by

tt+[0(f>,= lt. (4.6)

We claim that since L is connected there exists a smooth path JR. —> L :

{ H> qt such that, for every t G R,

qt+[= <PMt)- (4.7)

To prove the claim choose qt in the interval 0 < f < 1 such that qt= q\

for 1 — $ < t < 1 and qs = <p,~l(q\) for 0 < t < . Then define qt for

/ R such that (4.7) is satisfied. Since the loop is an exact Lagrangian

loop, there exists a unique function ht : L —» R

dh, = off := o>(3fi(, dtr), ht(qt) = 0.

From (4.6) and (4.7) we get

tt+\(qt+\) = h o0f_1(0/(^)) = '((<?/)

so that the function / h-> (f (<?,) is 1 -periodic in t. The computation in the

proof of Lemma 3.0.1 yields

which shows that the 1-forms if*af are also 1-periodic in t. Hence, by the

product rule of the d Operator, the functions ht o Lt : At -> R satisfy

ht+ioiT^y = h, oi~l + c(t)

for some function c : M -> R. Evaluating these functions at the point

tf+i (qt+\) we conclude in view of (4.6) and (4.7) that the function C van¬

ishes and hence the functions ht o ijx are 1-periodic in t and hence, so are

the functions H, : M -» IR detined in the proof of Lemma 3.0.4 by the

formula (3.4), namely H, o it = %. Now define Ht : M -» R by
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Choose a smooth cutoff function p : [0, 1] -> [0, 1] satisfying p(r) =

0 for r < S and p(r) = 1 for r > 1 — e and define the 2-form x on

(D \ {0}) x M by

<j5*r = (O + p(r)dH,dt + p(r)Htdr A dr, (4.8)

where the map <£> : [0, 1] x [0, 1] x M -t D x M is given by <t>(r, f, z) =

(re2ïïit, z). Explicitly, x has the form (4.3) where F, G : D x M -> R are

given by

- sin(2;rQp(r)~ cos(2jrQp(r) g

for x +iy = re These functions have mean value zero and satisfy (4.4)
with Ht replaced by Ht. Since H, o i, = ht it follows as in the proof of

Lemma 3.0.4 that

dHt\K, ~ dHt\At = 3fAf.

By Lemma 4.2.1, the parallel transport of x along the boundary preserves

A. Hence r is an element of T(A). This proves (i).
We prove (ii). Assume first that there exists a fibrewise Hamiltonian

symplectomorphism of the form *(jc + iy, z) = (x + iy, fx+ty(z)) such

that

ftfbr.i (h,) = a;

for every t Define

fsj '•- fse2"»' As,t := fs,t(At)

for 0 < s < 1 and / e R. Then t i-> A^f is an exact Lagrangian loop
for every s and ds ASjt ^'(A^f) is exact for all S and t. Hence the

Lagrangian loop Aijf = A| is Hamiltonian isotopic to Arj.r = fa(A[).
Since fo is a Hamiltonian symplectomorphism, the loop / \-> fo(At) is

Hamiltonian isotopic to t (-» Af. Conversely, suppose that f h^ A, and

/ I-»- A'( are two exact Lagrangian loops that are Hamiltonian isotopic.
Choose an exact isotopy (s, t) h> A^f such that Aa,, = A,, At,, = Aj,
and dsASit = 0 for s < 1/2. As in the proof of (i), one can construct a

smooth family of Hamiltonian functions HSit : M -> M. such that

Hs,t+\ = HSil, dHSJ\Asl = dsAStt.
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Denote by XSit the associated Hamiltonian vector fields defined by i(XSft)co =

dHsj and denote by fs,t : M -> M the flow in the Parameters defined by

dsfs,t= xsj ofs,t, fo,t = id.

Then fSit = id for s < 1/2 and the required fibrewise Hamiltonian sym¬

plectomorphism is defined by ty(se2n", z) '— (se2ir", fSlt(z)).
We prove (iii). Let r be given by (4.3) and suppose that

*(* + iy,z) = (x+ iy,fXJ(z))

is a fibrewise Hamiltonian symplectomorphism. Choose the associated para¬

metrised Hamiltonian functions A, B : D x M -» R such that the functions

AXiy := A(x + iy, ) and Bxy := B(x + iy, •) have mean value zero and

the Hamiltonian vector fields X^x =: X/^ and Xßxy =: Xb satisfy

dxf = XAof, dyf = XBof. (4.10)

It follows from Proposition 4.2.3 below that

ty*r =co + dF Adx +dG Ady + (dxG - dyF + c)dx A dy,

where

F =(F -A) oty, G = (G -B) oty.

Recall that d refers to the manifold M only. Hence, recalling the defini¬

tion (4.5),

£Vr = dxG dyF - [F, G)

= Sx(G-B)oty + d(G -B)oXAoty

~dy(F -A)oty-d(F-A)oXBoty

-{(F-A), (G-B)}oty
= (dxG - dyF - {F, G}) o ty

-(dxB - dyA -{A, B}) oty

= QToty.

The last equality follows from the definition of A and B in (4.10). This

proves the lemma.
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Proposition 4.2.3 Let ty.DxM^-DxMbe afibrewise Hamiltonian

symplectomorphism and let x be given by (4.3) then

ty*r = co + dF A dx + dG A dy + (3,C - dyF)dx A dy,

with the functions F = (F — A) o ty and G — (G — B) oty, where the

functions A and B are defined in (4.10)..

Proof: We will prove that

.
ty*co = co-d(A oty)Adx- d(B o ty) Ady + {A, B} o tydx A dy

. ty*(dF a dx) = d(F oty)Adx + {B, F} o tydx A dy

. ty*(dG a dy) - d(G oty)Ady- (A, G) o tydx A dy.

This implies that

0*t = co + d((F - A) o *) A dx + d((G - B) o *) A dy

(8XG - dyF - {A, G} + {B, F] + {A, B}) o tydx A dy.

So we can set F = (F — A) oty and G = (G — B) o ty. It remains to check

that the last term is indeed dxG — dyF. We compute

dxG = dx((G-B)oty)

= (dxG - 3XB) o ty + (dG - dB)(XA o *)

= (3xG-dxB-(A,G}+ {A,B})oty.

Analogously we find,

dyF = (dyF - dyA - (B, F) - {A, B\) o ty.

So we conclude indeed that

3.,G - dyF = (3XG - dyF - {A, G) + {B, F)

+ 2{A,B) -dxB + dyA)oty
= (dxG -dyF- {A, G) + {B, F) + [A, B}) o ty.

The last step follows in view of

dxB -dyA-(A, B}= 0.
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This is true because

XaxB-3yA-{A.B) of= X3ib o f - Xa>A of~[XA, XB] o f

= XdxBof+ (VXAXB)of-Xd>Aof
-(VXBXA)of

= Vx(XBof)-Vy(XAof)
= Vxdyf-VydXf = 0.

It remains to prove the three Statements we started the proof with.

Note that the second and third are of the same nature and can be proved in

one step. But we will first prove the first assertion. Let (a, b, v), (a'r b'r v')
be tangent vectors of D x M in a given point. By this short hand notation

we mean the vector adx + bdy + v where v is a tangent vector to M. Note

that a, b, a', b' R. Then we get

ty*co((a, b, v), (U'r b', v)) = ù>(aXA of+bXBof + df(v),

a'XAof+ b'XBof+df(v'))
= <u(u, W) + aco(XAof,df(v'))
- a'ü)(XA o f,df(v))

+ bcü(XBOf,df(v'))
— b'co(XBo f,df(v))

+ (ab' - a'b)û)(XA of,XBo f).

This proves that

ty*co = co-d(Aoty)Adx-d(Boty)Ady-\-{A,B}o tydx A dy.

We also have

ty*dF = dFodf + dF(XA o f)dx + dF(XB o f)dy

= d(F of)- (A, F} o fdx - {B, F} o fdy,

which implies that

ty*(dF A dx) = d(F o ty) a dx + {B, F] o ty dx A dy,

and similarly for ty*{dG A dy)



4.2. RELATIVE K-AREA 43

D

As in [PI], [P2], after all those definitions, we are ready to introduce

the new concept of the relative K-area of an exact Lagrangian loop A. It

is defined by the formula

X(A):= inf ||ßr||,
TT(A)

where

\\QT\\ :~ j ( maxQT(x, y, z) — minQr(x, y, z) I dxdy.

Note that by Lemma 4,2,2(iii) the Hofer norm of the curvature is invari¬

ant under fibrewise Hamiltonian symplectomorphisms. Hence the relative

K-area of an exact Lagrangian loop A is an invariant of Hamiltonian iso¬

topy classes of loops of exact Lagrangian submanifolds. For the reader's

convenience we recall the definition of the real number v(A) from (4.2)

v(A) := inf l(A').
A'~A

One of our main results is the following theorem.

Theorem 4.2.4 For every exuct Lagrangian loop A c S'x M

x (A) = v(A).

Proof: Let R -» X : t h-> Ar be an exact Lagrangian loop. Let t

Q2(D x M) be the connection 2-form defined by (4.8) in the proof of

Lemma 4.2.2, where the cutoff function p : [0, 1] -> [0, 1] is chosen to be

nondecreasing. Then

<i>*(Fdx + Gdy) = pH,dt,

where F, G : D x M -> R are given by (4.9) and *(r, t, z) = {re2llU, z).

Taking the differential of this 1-form on [0, l]2 x M we find

<t>*((dxG - dyF)dx A dy) = pHtdr A dt.
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Since {F, G) = 0 and <t>*(^jf A dy) = litrdr A dr we obtain

2tta-

Moreover,

Ht = max Ht — min #, = max H, — min //,,
11 "

MM A, A,

and hence

||ßT||= / / p(r)\\Ht\\drdt= f \\Ht| dt = 1(A).
Jo Jo Jo

This implies x(A) < -£(A). If A and A' are Hamiltonian isotopic then, by
Lemma4 2 2 (ii), there exists a fibrewise Hamiltonian symplectomorphism
ty of D X M such that *(A) = A'. Hence r T(A') if and only if

ty*x 5"(A). By Lemma 422 (iii), /(A) = X(A') < *(A'). Hence

X(A) <u(A).

We prove that v(A) < x(A). Let T T(A) We shall construct an

exact Lagrangian loop A' that is Hamiltonian isotopic to A and satisfies

i(A') <||«t||. (4 11)

Suppose that r has the form (4 3) Since the function c in (4 3) has no

effect on the curvature we may assume, without loss of generality, that

c = 0 Define H = Hrt M -» R and £ = K„ M -> R by the

formula

cD*r = ûj + J/C" a rfr + dH A dt + (3r// - 3,W A dt.

Explicitly,

Jfrif = cos(2^r)Fre2ir(r + sin(27Tt)Gre7x,t,

Hrj — 2itr cos(2nt)Gre2*h — 2ixr sm(2Tzt)Fre2*,<.

Define the Hamiltonian symplectomorphisms fr,t M -> M by

drfr,t = XKrlofr<tl fo,,=id.
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Then the loop

K= *u_1(A,)
is evidently Hamiltonian isotopic to A, We shall prove that it satisfies (4.11).
To see this, denote by ty the fibrewise Hamiltonian symplectomorphism of

[0, l]2 x M given by

ty(r, t,z)= (r,t,frAz))-

Then, as in the proof of Lemma 4.2.2, we obtain

ty*<S>*x = co + dH' A dt + drH'dr A dt,

where H'rt — (Hr%, - BrJ) o fr,t and Brt : M ->• R is defined by dtfr,t =

XBrl o fr<l. These functions satisfy

llßT||= f f \\drH'r!\\drdt, H'0 =0.

Jo Jo

Moreover, by Lemma 3.0.6, we have

3,a; = flt* (3fAf - dBlt\Al)
= f\/(dHu\K>)-d(Buofu)\K
= dH'u\K.

Hence the length of A
'

is given by

i(A') = / I max H[
,

- min H[ t ) dt

Jo \ a;
'

a; '*7

< / ( max H',
,
— min H[, ] dt

~ Jo \ M
u

M
!'
/

= I ( max I / drH'dr \ - min ( / drH'rta
k \M \Jo

J

J M \Jo

< / / (max3r//'.-min3r///. ) drdt
~ Jo Jo \ M

r<'
M r''J

1 I

||3r//;r|| drdt
/0 JO

= IIQtII.
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Thus we have proved that for every r T(A) there exists an exact La¬

grangian loop A' that is Hamiltonian isotopic to A and satisfies t(A') <

II £2T ||. Hence / (A) < v (A) and this proves the theorem D

4.3 The non-symplectic interval

Let A c D x M be an exact Lagrangian loop and r T(A) be a

Hamiltonian connection 2-form Since x is closed and vanishes on A (see
Lemma 4 2 1) it determines a relative cohomology class (see [BT] Chap¬
ter 1 6)

[t] eH2(DxM, A;IR)

We will show that this relative cohomology class is not unique. However,

two different Hamiltonian connection 2-forms yield relative cohomology
classes that only differ by a multiple of the pull back of the generator of

//2(D,3D;R).
Let S be a compact oriented Riemann surface with (possibly empty)

boundary 3 E. A smooth map v (SJE)-)-(öxiW, A) determines a

2-dimensional relative homology class

[v] := uJZ] H2(D x M, A; Z).

The pairing of this class with [r] is given by

m,[v])= J v*x.

Since every 2-dimensional relative integral homology class of the pair

(D x M, A) can be represented by a smooth map v as above (see [T]
or [S], Remark after Lemma 1 45) ,

the cohomology class [r] is uniquely
determined by these pairings Define o H (D x M, A;R)by

(a, [v]) = deg(7r o v) (4 12)

for every v (2,3X1) H>- (D x M, A), where

IT (D X M, A) -KD, dD)
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denotes the obvious projection In (4 12) the degree of a smooth map Vq

(S,3E)->-(£>,3£>)is understood as the degree of its restriction to the

boundary It agrees with the number of preimages of an interior regular

value, counted with appropriate signs (cf Minor [M], Chapter 5) Note

that

a
= —[dx Ady]

n

and hence cr agrees with the pull back of the positive integral generator of

H2(D, 3D; R) under the projection jr.

Lemma 4.3.1 Let Xq, X\ 5"(A) be Hamiltoman connection forms. Then

there exists a constant s = s(i\, to) M such that

[*i]-[to] = sa

Proof: Let r; be given by (4 3) with F, G, c replaced by F,, G,-, C\ for

/ = 0, 1 Denote

F = F\ - Fq, G = Gi - Go, c = c\ -cq,

and let H, M - R be defined by (4 4) Since Tq, Ti £ 5~(A) it follows

from Lemma 4 2 1

dH\,\\t = dHot\A, = 3A,

Hence dHt\A, = 0 where H \— H\ — Hq so there exists a function h :

R/Z - R such that

Ht ia, = MO

for every t 6 R. We shall prove that the required identity holds with

s := j h(t)dt + / cdxdy.
Jo Jd

To see this note that, by (4.4),

(Fdx + Gdy)\A = n*ah. (4 13)

where ay, ^ (St) denotes the push forward of the 1-form

hdt e «'(R/Z)
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under the diffeomorphisms M./X —> Sl : [t] h-» e2na. Let S be a compact

oriented Riemann surface and u:£-»DxMbea smooth function such

that u(3E) c A. Denote vq := n o v : (£, 3S) -* (D, 3D). Then

/ u*(tj - T0) = / v*(dF Adx-\-dGAdy

+ (3j;G — dyF + c)dx A dy)

= / v*(Fdx + Gdy) + / Vo*(cdxAdy)
Jan Jt

= I vo*ah+ I vo*(cdx A dy)
JdZ J"E

= s deg(uo).

The penultimate equality follows from (4.13) and the last from the identi¬

ties

/ v0*ah = deg(u0) / ah (4.14)
J$Z Jsi

and

/ VQ*(cdx A dy) = deg(uo) / cdx A dy. (415)
Jï, Jd

Here (4.14) is the degree theorem for maps between compact one dimen¬

sional manifolds and (4.15) is the degree theorem for maps between 2-

manifolds with boundary. More precisely, if the function c : D -> R

has mean value zero then there exists a 1-form a R'(D) such that

da = cdx A dy and a\TS\ = 0. To see this recall that if fD cdxdy = 0

then there exists a function / : D -> M such that

A/ = c

¥l3D=0.

Define the functions a, b : D -> IR by a \— — -^ and b := f^ and the

1-form

a ;= adx + bdy.
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Clearly da — cdx A dy. To see that a vanishes on the boundary, observe

that

0=~\3D = df{v)
dv

= (bdx — ady) (cos 27tt,sin2nt)

= bcos2nt — a sin2jrf

= (adx+ bdy)(-sm2nt, cos2nt)

= adx + bdy\TSi.

This implies that the left hand side of (4.15) vanishes according to the

following computation

/ vl(cdxAdy)= I VQ*da = / v^a
Jt Jt, JdY.

= deg(u0) a = deg(u0) / da
Jdo Jö

= deg(vo) / cdx a dy = 0.

Jù

If c does not have mean value zero then there exists a constant k M. such

that c — k has mean value zero so /2 Vq((c — k)dx A dy) = 0 and hence

it suffices to establish (4.15) for constant functions C and, by Stokes, this

reduces to (4.14). This proves the lemma. Q

Let to ?"(A). We shall now address the question which cohomol¬

ogy classes [to] + set can be represented by nondegenerate Hamiltonian

connection 2-forms. Such a 2-form is a symplectic form on D X M with

respect to which A is a Lagrangian submanifold. Denote

T±(A) := J5 T(A) | ± xn+l >}o
Here the inequality t"+1 > 0 means that r"+1

— f dx A dy A con, where

/: DXiV/->Risa positive function. For to T (A) we define

£+(T0,A):=inf{s(r, t0) xeT+(A)},

£~(xq, A) := sup {s(x, T0) I T T~(A))
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The proof of Theorem 4.3.3 below shows that the class [to] + so~ can be

represented by a symplectic form r T±(A) for ±s sufficiently large and

hence • !c&*(ru, A)<oo.Evidentiy,g±(n,A)-e:t(To,A) = ^(Ti,To).
Hence the number

e(A) := £+(t0, A) - s~(x0, A)

is independent of the connection 2-form To T(A) used to define it. This

number is called the width of the nonsymplectic interval. In some sense

s (A) measures how much A deviates from the trivial loop Af = Ao for all

t.

e(A)
*z >-

e (x0,A) e (x0,A)

Figure 4.2: The non-symplectic interval

We will first state and prove a technical but elementary lemma and

then state a theorem which relates the width of the non-symplectic interval

to the invariants from the previous section.

Lemma 4.3.2 Given a 2-form x and two vectorfields X and Y then

t(X)l(Y)zn+l = (n + 1)(t(X, Y)x" m(X)x A i(Y)z A t""1).
In particular,

ndF AdGAcon-l= {F,G}a>n.

Proof: First of all we have that

t(X)rn+l = (n + l)(i(X)r) A xn

and in general we have that given two forms a and ß we get

i(X)(a A ß) = (i(X)a) Aß + (-\y*aa A (t(X)ß)
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The proof will now go by induction. Clearly the Statement it true for n — 0,

for n = 1 we get

i(X)i(Y)x2 = i(X)(2(l(Y)t)at)
= 2(l(X)i(Y)t) a x - 2t(Y)r AL(X)?.

Now assume the Statement holds for n — 1, then we get

i(X)i(Y)zn+] = i(Y)((c(X)x) A xn + 5 A t(X)rn)
= (t(Y)i(X)x) A 5» - (t(X)z) a t(Y)zn

+ (i(Y)z) A i(X)zn + t A t(Y)i(X)xn

= x(X, Y)zn - n(<(X)r) a f 00* A r""1

+ fl(((y)T)A(WrAT"-'

+ TA (nx(X, Y)xn~]

- w(/i - l)i(X)z a t(Y)x a t"~2)
= (h + l)r(X,y)r"-n(n + IM^tm^tat"-'

The second Statement follows from applying this formula to 0) and observ¬

ing that con+l = 0.

Theorem 4.3.3 For every exact Lagrangian loop A C D xM

HA) <x(A).

Proof: Let R -> <£ : / R- A, be an exact Lagrangian loop and F, G : D x

M -» R be smooth functions such that the functions H, : M -> R defined

by (4.4) satisfy J//r |a, = 3fAf for every t. For every smooth function

c : D -> R let tc T(A) be given by (4.3). In particular, To is given

by (4.3) with c = 0. We shall prove that

£+(to, A) < / max VT0(x, y, z) dxdy, (4.16)

£~(z0,A)> / min £lTo(x,y, z) dxdy. (4.17)
JdzÇM
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From Lemma 4.3.2 we get that

rc"+1 = (n + l)(dxG-dyF + c)dxAdyA(on
+ n(n + l)dF Adx AdG Ady Aw"~l

(,
.„,

= (n+\)(dxG-dyF-{F,G} + c)dxAdyAco"
l '

= (n + l)(c - QXù)dx A dy Acon.

This shows that xc is nondegenerate if and only if c(x, y) ^ ŒTo<X y, z)
for all (x + iy, z) F) x M. Fix a number s satisfying

s > max &t0(x, y, z) dxdy.

Choose a smooth function c : D -> R such that

c(x,y) > maxQTQ(x,y, z)

for all jc + iy e D and

c dxdy = s,I
ip

Then xc is nondegenerate and represents the class [tc] = [to] + so. This

proves (4.16) and (4.17) follows from a similar argument. It follows from

(4.16) and (4.17) that

e(A) = £+(t0, A) - £~(r0, A)

< / (maxfiro(*, y,z) -mmQTo(x,y, z)\ dxdy
Jd \zM zeM /

= Unroll-

Since the curvature of To is equal to the curvature of xc for every c it follows

that e(A) < \\QT\\ for every x T(A) and hence e(A) < x(A). This

proves the theorem. a

Combining the above with Theorem 4.2.4 we get

Corollary 4.3.4

£(A) <x(A)= v(A)
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Remark 4.3.5 Let us denote

T(A) := l[x] e H2(D x M,A;W)\z e T(A)\. (4.19)

Lemma 4 3 1 shows that this set is a 1-dimensional affine subspace of

H2(DxM, A; JR) Denote

T*(A) = {[t] IG r±(A)j

These sets are open and connected Openness follows from the definition

of T±(A). To prove connectedness, let r,- G T+(A) be given by (4 3) with

F, G, c replaced by F,, G,, c, for i — 0, 1 By (4.18), c, > QTi. Assume

without loss of generality that s(x\, To) > 0 Then the path

[0, l]->7+(A) tt->[tQ] + ts(tuTo)o

connects [ro] with [x\]. This shows that the sets T (A) are connected The

complement T(A) \ (T-(A) U T+(A)) is compact and connected It can

be expressed in the form

T(A) \ (T~(A) U T+(A)) = {[rol + scr | ê"(t0, A) < s < £+(x0, A))

for every To G 7(A) We do not know whether this complement is always

nonempty or, equivalently, whether e(A) is always nonnegative.



Chapter 5

Loops on the 2-torus

In this chapter we will construct a 2-dimensional example for which we can

explicitly compute v(A). We will also see that in this case the difference

between exact Lagrangian isotopy and Lagrangian isotopy is a genuine
one. This chapter contains two sections. In the first section we will con¬

struct the example. The second section is devoted to an auxiliary lemma

that is needed in the proof of the first section.

5.1 Hofer length versus area

Consider the 2-torus M = T2 = R2/Z2 with the Standard symplectic form

cd = dx A dy

and let % : R2 -» T2 denote the projection. Let [x, y] = n(x, y) g T2

denote the equivalence class of all points (x, y) + Z
.
Let

Br= {(s, OeR2 s2+ t2<r2}

be a disc of radius r and suppose that S c T2 is the image of an embedding

B\ -> T2. Define

A, := Af(S):=Ib, y + t] \ [x, y] e 35} (5.1)

(see Figure 5.1).

55
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Figure 5.1: A Lagrangian loop on the 2-torus

Theorem 5.1.1 Let S c T2 be a closed embedded disc and t \-+ A, be the

exact Lagrangian loop defined by (5.1). Then

v(A) = area(S).

Proof: We prove that v(A) < area(S). To see this, choose smooth func¬

tions x, y : R —y R with ß as coordinate on R such that

x(0+ 1)= x(9), y(9 + \)=y(0),

and the map it : R/Z -> T2 defined by

it(0):=[x(O),y(9)+t]

is an embedding with f,(M/Z) = Af. Then

a{ := co(d,i,, dir) = -xd9 G Œ!(R/Z).

Hence at = dh, where /jr = —x : R/Z —» R. Hence

||3fAf|| = \\dht\\ — maxx — minx

and this implies

(.(A) = maxx — minx.

By Proposition 5.2.1 in the next section, two loops t \-¥ A,(S) and t h->

A; (S'), associated to two embedded discs S, S' C T via (5.1). are Hamil¬

tonian isotopic if and only if S and S' have the same area. Now for every
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<S > 0 there exists an embedded disc S' (as illustrated in Figure 5.2, which

represents the fundamental domain of the torus) such that

area(5) = area(S'), max x' - minx' < area(5) + 8,

where x', y' : R/Z -¥ R are chosen such that the map

i'(9) = [x'(6), y'm]

defines an embedding R/Z -» T2 whose image is 35'. Hence the length
of the loop t H- A, (50 is bounded above by area(5) + 8. Thus we have

proved that

v(A) < area(5).

1-e { N

k

roughly the

area of s

Figure 5.2: Mnimizing the length

To show the reverse inequality let / w- A[ be an exact Lagrangian

loop that is Hamiltonian isotopic to A, Then

A0 = 3S',

where S'CT is a smoothly embedded closed disc of the same area as 5.

In view of Lemma 3.0.3 we can choose a Hamiltonian isotopy ft : T2 -»

T2 such that

f,(K) = a;.

We shall prove that

area(5) <l({ft}o<t<\). (5.2)
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To see this, choose an embedded closed discs 5 C R2 such that n(S) = Sf

and let ft : R2 -» R2 be a lift of ft- Since A' is Hamiltonian isotopic to

A we have ft+\(S) = ft(S) + (0, 1) and hence

fx(S)nS=0.

Let Ht : R—> R be the Hamiltonian functions that generate ^> and

have mean value zero over the fundamental domain [0, l]2. Choose R > 1

such that ft(S) c BR for every t g [0, 1] and let ß : R2 - [0, 1]
be a compactly supported cutoff function such that ß\BR = 1. Then the

functions

generate a compactly supported Hamiltonian isotopy ft of Mz that satisfies

fi(S)nS = 0.

Now it follows from the energy-capacity inequality in Hofer [H] that the

displacement energy of 5 is bounded below by the area. Hence

area(S) < d(id, fx) < l([fth<t<i) = U{fth<t<i)-

Since

area(S) = area(S') = area(5),

this proves (5.2). It follows from (5.2) and (3.8) that

area(5) < l(Af)

for every exact Lagrangian loop A' that is Hamiltonian isotopic to A.

Hence area(S) <v(A).

Theorem 5.1.1 shows that the invariant v(A) is not necessarily invari¬

ant under Lagrangian isotopy, but only under exact Lagrangian isotopy. As

an example consider two embedded circles S and S', enclosing discs of

different area, as in Figure 5.3. It is quickly seen that there exists a family
of Lagrangian submanifolds Ss, 0 < s < 1 with So = S and St = S'

(shrinking the circle). However, by Proposition 5.2.1 in the next section,

the two loops ( (-> At(S) and t w- At(S'), generated via (5.1) are not

Hamiltonian isotopic since the areas the discs enclosed by S and S' are

not equal, although they can clearly be connected by a path of Lagrangian

loops, use Asj = At(Ss).
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(0,0) (1,0)

Figure 5 3 Two embedded circles

The techniques of proof are specific to the 2-dimensional case. To

establish lower bounds for our invariants in higher dimensions we shall

use existence theorems for pseudoholomorphic discs

5.2 Symplectic isotopy on Riemann surfaces

The following results are known However, we could not find proofs in the

literatme and present them here for the sake of completeness

Proposition 52.1 Let Yj be a compact connected oriented Riemann sur¬

face with area form 0) and S, Sf c £ be two closed embedded discs

with the same area. Then there exists ü Hamiltonian symplectomorphism

f : £ -> S such that f(S) = S'.

The proof relies on the following three lemmata The first asserts that,
in dimension 2, a symplectomorphism is smoothly isotopic to the identity
if and only if it is symplectically isotopic to the identity For the 2-torus this

follows from the characterization of Hamiltonian symplectomotphisms in

Conley-Zehnder [CZ, Theorem 6]. In general the proof is a parametrized
Version of Moser isotopy The work of Seidel [SI] shows that in higher di¬

mensions it is no longer true that a symplectomorphism smoothly isotopic
to the identity is if and only if it symplectically isotopic to the identity is

Lemma 5.2.2 Let Hbe a compact oriented Riemann surface with area

form 0) and f ; £ —>• £ be a symplectomorphism. Then f is smoothly
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isotopic to the identity if and only if it is symplectically isotopic to the

identity

Proof: Let [0, 1] -> Diff(E) t h> ft be a smooth isotopy such that

^o = id and f\ = f. Define

Oit
= ftifCO, COSit

=

SO) + (1 - s)cüt

for 0 < s, t < 1, Then wS(o
=

û>$,i
=

ûJi,r
= co and &>oj

= <*>t for all s and

t. Fix a Riemannian metric on £ with volume form 0) and let Of/ G Œ!(£)
bedefinedby

daf =

tüj — co, at G imd*.

Choose X.JJ G Vect(£) such that i(XS}t)cosj = ty and define a family of

diffeomorphisms fs,t G Diff(E) by

3j^"j,f = X*,t o i/^r, i^o,f = ft-

Then

3j(Vfi.r*û>j,f)= Vrj,t*(3j«j,r + XXsJcos,t)
= fs/(co -û)t + da,)

= o

and since fo,t*coo^ = co we get that fs,t*cosj = 0) for all 5 and t More¬

over, f^Q — id and fir\= if for all s. Hence t I-» Vi,t is the required

symplectic isotopy from id to f.

Note that the above proof relies on the fact that we are in two dimen¬

sions Upon taking the Lie derivative we use that the exterior derivative of

a 2-form always vanishes, which is clearly no longer true in higher dimen¬

sions

Lemma 5.2.3 Let 2 be a compact oriented Riemann surface, S c £ be

an embedded closed disc, und ioq,ù)\£ f22(£) be two area forms such

that

I (co\ - o)0) = / (û>! - ù)o) = 0.

Then there exists a smooth isotopy f, ; £ —> £ such that

fo - id, f\*a>\ = coo, f,(S) = S

for every t [0,1].
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Proof: The result follows again from Moser isotopy We prove that there

exists a 1-form et G ß'(£) such that

da + coi -too =0, a\Tas=0- (5 3)

To see this, choose any 1-form ß 6 Œ1 (£) such that dß + coi — coo = 0.

Such a 1-form exists since &>o and û>i are area forms with the same area

hence they are cohomologous Then the integral of ß over 35 vanishes and

so ß\ds is exact. Hence there exists a smooth function / £ -» R such

that (ß — df)\fQs — 0 and the 1-form a := ß — df satisfies (5 3) Now

let co, = tco\ + (1 - t)coo and define Xt G Vect(E) by i(X,)cot = a. Note

that since <x vanishes on T 3 S we can deduce that Xt must be tangent to 35

for all t. Define now ft G Diff(E) by

dtft = Xt o ft, fo = id

Then ft preserves 35. As before we have dt(ft*cot) = 0 and hence f*cot =

coo for every /. This proves the lemma

Lemma 5.2.4 Let Tibe a compact connectedRiemann surface andS, S' c

£ be two embedded discs. Then there exists a diffeomorphism /:£—»•£
such that f is isotopic to the identity and f(S) - S'.

Proof: Choose orientation preserving embeddings cf>, <p' B\ -» £ such

that cp(Bi) = S and <p'(B\) = S' We prove the result in four steps, see

Figure 5 4 as an illustration.

Step 1: There exists a diffeomorphism g : £ —> £ that is isotopic to the

identity and satisfies g o cf>(0) = cp'(0).

Choose a path y [0, 1] - £ such that y(0) = 0(0) and y(l) = ^'(0).
Next choose a smooth family of vector fields X, G Vect(£) such that

Xt(y(t)) = y{t) for every t. Then the diffeomorphisms gt £-)£,

defined by dtgt = Xt o gt and go = id, satisfy gr(K(0)) = y(t) for every

/, Hence g[ satisfies the requirements of Step 1

Step 2: f can be chosen such that d(g o cp) (0) — d@ '(O).

Define * R2*2 by

d(go<t>KQ)* = d(l>l(0)
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Figure 5.4: Embedded discs in a Riemann surface

Then det ty > 0 and hence there exists a path

[0, 1] -> GL(2) : t h> *(/)

such that W(0) = 11 and ty(l) = ty. Choose a family of vector fields

X, : B\ — R2 that vanish near the boundary and satisfy

X,(0)= 0, dXt(0)= ty(0*(0_1.

Here dXt(0) : T0B\ -+ TqU2. Let f,-.B\-> B\ be the isotopy generated

by X,. Then

ft(0)= 0, dft(0)= ty(r)

for every /. To see this observe that we have

^-df,(0)= d^-fM
dt dt

= d(Xt o ft)(0)

= dX,(ft(0))df,(Q)

= 4>(t)^(t)-ldf,(Q)

and integrate with respect to /. Now replace <p by ct>of\.

Step 3: f can be chosen such that g o <p(z) = <p'(z) for \z\ sufficiently
small.
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By Step 2, we may assume that d{g° 0)(O) = d<p'(0). Choose <S > 0 such

that <p'(.Bg) c g(S) and consider the function

h = d>-[ o g~l o <p' B&^ B\.

This function is an embedding and satisfies dh(0) = H, Choose a smooth

cutoff function ß [0, 1] -> [0, 1] such that ß(r) = 1 for r < 1/3 and

ß(r) = 0 for r > 2/3. For 0 < s < § define hs : B{ - ßt by

MO =^|/e)A(z) + (l«/3(|z|/e))z.

Then h
s

is a diffeomorphism for e > 0 sufficiently small and

g ocj>o h£(z) = <p'(z)

for \z\ < e/3. Hence the embedding f o hs satisfies the requirements of

Step 3 for £ > 0 sufficiently small

Step 4: We prove the lemma.

By Step 3, there exist embeddings <p,cp' Bt -» £, a constant S > 0, and

a diffeomorphism g £ —> £ such that g is isotopic to the identity and

\z\ < s =>• gocf>(z) = 0'(z).

Choose S > 0 such that cj> and 0' extend to embeddings of #i+<s into £.

Choose a smooth function p [0, 1 + S] -> [0, 1 + 8] such that p(r) > 0

for every r and

r, for r < e/2,
p(r) = 1, forr = £,

r, forr > 1 +8/2.

Let / : E — Cbegivenby

/(0(z)) := 0(p(|z|)z/kl)

for ^ G B\+s and by / zz id in £ \ f(B\+g). Then / is isotopic to the

identity and / o cb(Be) = S Similarly, there exists a diffeomorphism /'
2 ->. £ that is isotopic to the identity and satisfies /' o cp'(Be) = S' The

diflfeomotphism f o g o f~^ is isotopic to the identity and maps 5 to S'

This proves the lemma
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Proof of Proposition 52.1: By Lemma 5.2.4, there exists a diffeomor¬

phism /:£->£ that is isotopic to the identity and satisfies f(S) = S'.

Since S and S' have the same area, we obtain

j (fco-co) = j(fco-co)=0.
By Lemma 5.2.3, there exists a diffeomorphism f : £ -> £ that is iso¬

topic to the identity and satisfies

f*f*co = co, f(S)=s.

Hence <p := f o f is isotopic to the identity and

cb*co = co, 0(5) = 5'.

By Lemma 5.2.2, </> is symplectically isotopic to the identity. Let / (-> cpt
be a symplectic isotopy such that <£o = id and <p\ = cf>. Then the embedded

discs St := cp,(S) all have the same area and 5o = S, 5i = S'. Hence

t h> 35, is an exact Lagrangian path (this follows by combining the fact

that the area is preserved and the definition of exact). By Lemma 3.0.4,

there exists a Hamiltonian isotopy t H> ft of £ such that ft(dSo) = dSt

for all t. Hence f\ (S) = S' and this proves the proposition. Ü



Chapter 6

Relative Gromov invariants

Throughout we assume that our symplectic manifold (M, co) is compact

and dim M = 2n. The relative Gromov invariants of an exact Lagrangian

loop A c D x M are detined in terms of holomorphic sections of the

bundle D xM ->• D with boundary values in A, where A = {(e2?m, At) c

D x A/}. Let us denote by MapA(Z), M) the space of smooth functions

u : D -> M that satisfy u(e2nit) G A, for every / G R. The Maslov class

is a function

At a : MapA [D,M)^Z

defined as follows. Given u G MapA(D, M) choose a trivialization of the

tangent bundle u*TM. Then the tangent spaces Tu^einu^At define a loop of

Lagrangian subspaces in (R2", coq) and /^a(«) is defined as the Maslov in¬

dex of this loop (cf. [RS 1 ] or see Appendix B). This integer is independent
of the choice of the trivialization used to define it, and it depends only on

the homology class of « in fyiDx M, A; Z). We shall assume throughout
that the pair (M, Ao) is monotone, i.e. there exists a X > 0 such that, for

every smooth map v G MapA()(0, M),

v*co = k(j,Aft(v).

Here p^0 denotes the Maslov class corresponding to the constant loop

11-> Ao. The minimal Maslov number of the pair (M, Ao) is defined by

N := inf j^Ao(u) I v : (D, 30) - (Af, Ao). fiAo(v) > 0)
,

k

65
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hence N > 0. hi this chapter we shall define relative Gromov invariants

for every tuple t = (t\, ,
tk) e Rk with 0 < t\ < < fy < 1 and

every class A G H2(D x M, A; Z) that satisfies n± p,\ (A) <N - 2. The

invariants are homology classes

GrJ t(A) e Hn±llA(A)(At; Z2),

where At := A,t x x Afyt. These homology classes arise from certain

moduli spaces Ma(x, ±J) of (anti-)holomorphic sections of the bundle

D X M with boundary values in A that represent the class A. The points
(e ',..., e2n"k) determine an evaluation map

evt : MA(x, ±J) -> At

and Grjr t(A) is defined as the image of the fundamental cycle of the com¬

pact manifold Ma(x, +./) under the induced homomorphism on homo¬

logy. We shall work with almost complex structures on/) xM that are

compatible with the fibration. Every such structure is determined by a fam¬

ily of almost complex structures on M and a connection 2-form T T(A).

6.1 J-holomorphic discs

Let A C St x M be an exact Lagrangian loop and x G T(A) be a Hamil¬

tonian connection 2-form that preserves A. Throughout we shall denote by

%(M, co) the space of smooth almost complex structures on TM that are

compatible with co as defined in Chapter 2. Let D — ${M, co) : (x, y) H>

Jx y
be a smooth family of such almost complex structures. Associated to

the triple (r, J, A) there is a natural boundary value problem for smooth

functions u : D -* M:

dxu - X,(u) + J{dyu - Xc(u)) =0
^ ,

(°-U
u(e2n")eAt, fGlR.

Here x is the connection 2-form determined by the two functions F and

G given by (4.3). We use the following abbreviations J = JXiy, X? =

Xf(x, y, •) Vect(M) denotes the family of Hamiltonian vector fields

defined by the functions F — F(x, y, ) : M -> M, and similarly for

Xc- Following Gromov [GI] we observe that the solutions of (6.1) can be

thought of as pseudo-holomorphic curves in D x M.
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Remark 6.1.1 Consider the almost complex structure J on Dx M given

by

/ ° -i o\

J = J(x, J) = 1 0 0

\ -JXF+ Xc -XF-JXc J J
Then U : D -> M is a solution of (6.1) if and only if the function

ü(x,y) = (x,y,u(x,y)) (6.2)

is a J-holomorphic curve in D X M, i.e.

3*« + Jdyü — 0
.

If r is given by (4.3) and we denote a tangent vector

£3* + rç3y + < erw(Z)xilf)

by (£, ?/, C) then, for every J = (£, jj, Ç) e TXJ}Z(D x M),

z(l JO = r(£ 3, + 7J3,. + f, -^ 3,+ ^
+ $(-JXF + Xc) - n(XF + jxg) + j;)

= û>(f, £(-JXF + XG) - ,7(XF + JXC) + JÇ)

+ (3,G-3^F + c)(£2+f?2)
- ^F(£) - ^dF(^(-JXF + XG) - /?(XF + JXC) + y f )

+ ^G(C) ~ rjdG(^-JXF + XC) - ^(XF + JXG)+ JO
= co(Ç, Ç(-JXF + xc) - n(XF + JXG) + JO

A-(dxG-dyF+ c)(l2+ n2)
- co(nXF, o - (o{^xF, %(-jxf + xc) - 77(xF + yxG) + jo
+ û>(£Xc, f ) - a>(r}XCt Ç(-JXF + Xc) - 7/(XF + JXG) + y f )

= <y(f, £(-./XF + Xc) - t](Xf + JXC) + yf )

+ (9xC?-ayF+c)(^2 + jî2)
+ <ü(f, r?XF) - co(^XF, H~JXF + XG) - /j(XF + JXG) + yç)
- <u(f, ÇXG) - co(r]XG, l(~JXF + X,) - n(XF + JXG) + yf )
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= co(r, -ÇJXF - nJXG + yf ) + (3,G - 3^F + c){? + rj2)
-co(!;XF,-ïJXF~nJXG + JO-co(t;XF, ÇXG- nXF)

- co(r)XG, -ÇJXF - nJXG + J%)-m{y\XGt%XG nXF)

= <u(f, -ÇJXF- nJXG + JO + (dxG - dyF + c)(f + n2)
- co(!-XF, -$JXF - ,,yXc + ./£)-£2{F,G}
- co(nXG, -UXF- rjJXc + JO + n2{G, F}

= co(Ç - ÇXF - 7]XC, -ÇJXF-nJXc + JO

+ (£2 + /?2)((3JCG-3>,F-{F,C}+c)
= co(; - £XF - nXG, J(^-^XF - nXG)) + (c- £2r)(£2 + iy2)

= If - $XF - nXG\2 + (c- QT)(t=2 + n2).

Hence J is tamed by x whenever c(x, y) — Qz(x, y, z) > 0 for all

(x, y, z) G D x M which means precisely that r G T + (A) (see (4 18))
On the other hand, consider J(x, -J), then one verifies easily

x(t,J{x-J)b=-\r-$XF - nXG\2 + (c - Slx)(? +n2)

The above expression is strictly negative if c(x, y) — £ïz(x, y, z) < 0 for

all (jc, y, z) G D x M So if x G T~(A) then y(r, -J) is tamed by -x.

The energy of a solution h of (6 1) is defined by

E(u) :~ j \dxu - *F(w)|2 rfjcrf)».

The next lemma shows that the solutions of (6 1) that represent a given

homology class A g Hi{D X M, A; Z) satisfy a uniform energy bound.

Lemma 6 12 Let w.D-^Mbe a smoorh solution of (6.1) and denote

by A £ H2(D x M, A; Z) rhe homology class represented by the map

Ü.D^DxM defined by (6.2). Letc.D^Rbe thefunction in (4.3)

entering the definition oft. Then

E(u) = <[r], A) + / (ßT(x, y, u) - c(x, y)) dxdy.
Jd
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Proof: We compute

E(u) = / \dxu-XF(u)\2 dxdy

= I co(dxu - XF(u), J(dxu — XF(u))) dxdy
Jd

= f co(dxu —X,(u), dyu — XG(u))dxdy
JD

"itco(c)xu, dyu) - dF(u)dyu + dG(u)dxii

+{F, G}(u\dxdy

= j {co(dxu,dyu) — dF(u)dyU-\-dG(u)dxii\dxdy

+ f \QT(x, y,u)-(dyF)(u) + (dxG)(u)jdxdy

— f ( x(dxü, dyü) - c(x, y) J dxdy + f QT(x,y, u) dxdy

= j ü*x dxdy + j ( Qr(x, y, u) - c(x, y) J dxdy

This proves the lemma. D

Let us denote the moduli space of solutions of (6.1) that represent a

given homology class A G /^(^ x M, A; Z) by

MA(x, T) := {u : D ~+ M u satisfies (6.1), [U] = A},

where ä is defined in (6.2). We shall prove that, for a generic pair (t, J),
this space is a smooth manifold of dimension n + p,\(A). Moreover, if

the pair (M, Ao) is monotone with minimal Maslov number N and n +

(a-a(A) < N, we shall prove that Ma(?, J) is compact, again for a generic

pair (r, J). The key tool for establishing compactness is the energy bound

of Lemma 6.1.2. Under these assumptions the moduli spaces will be used

to define Gromov invariants of A. The significance of these invariants for

exact Lagrangian loops lies in the following Observation.
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Lemma 6.1.3 Let A be an exact Lagrangian loop and let

A £H2(DxM, A;Z)

be a relative homology class. Suppose that for every X G T
+ (A) there

exists a J such that M.A(t,J) ^ 0. Then

e+(x0, A) + {[to], A) > 0

for every Xq e T (A).

Proof: Let r e T+(A) and u G Ma(t, /). Let m D -+ D x M be

given by (6 2) Then « is a J(x, J)-holomorphic curve. By Remark 6 11,

y(r, /) is tamed by r. Hence

/.""*
0 < / Ü*X = <[t], A) = <[r0] + s(x, x0)cr, A) = <[t0], A) + s(j, t0).

The infimum of the numbers on the right is {[to], A) + 8+(xq, A). This

proves the lemma Ü

A similar estimate for £~(tq, A) can be obtained by studying anti-ho-

lomorphic curves These are solutions of the equation

dxu - X,(u) - J(dyu - XG(u)\= 0

r (6 3)
uie") G Af, I GlR

Let us denote the moduli space of solutions by MA(x, -J).

Lemma 6.1,4 Let A be an exact Lagrangian loop and let

A G H2(D x M, A; Z)

be a relative homology class. Suppose that for every X G 5 (A) there

exists a J such that Ma(x, -J) / 0. Then

£"(to,A) + ([to],A)<0

for every Xq G 7(A)
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Proof: Let r G T~(A) and u G MA{t, -J). Let it : D -> D x M be

given by (6.2). Then ü is a 7(t, — J)-holomorphic curve. By Remark 6.1.1,
J(r, —7) is tamed by —%, Hence

0 > / ü*x = {[x], A) = ([t0] +s(x, ro)a,A) = {[xq], A) + s(x, x0).

The supremum of the numbers on the right is {[to], A) + s~(xq, A). This

proves the lemma. G

6.2 Fredholm theory

hi this section we examine the moduli spaces MA(r, J) in more detail

and show that, for a generic 7, these spaces are smooth manifolds of the

predicted dimensions n ± Ma (A). Here M\(t, J) is the moduli space of

solutions of (6.1) which represent the class A and MA(x, J) is the moduli

space of solutions of (6.3) representing the class A. The arguments are

standard (cf. [FHS, MS2]) and we shall only outline the main points and

sometimes briefly sketch the proofs. Fix an exact Lagrangian loop A c

S1 x M, a homology class A £ Hi(D x M, A; Z), and a constant p > 2.

Consider the Banach manifold

&=WX*A(D,M)

of all functions u : D -> M of class W],p that satisfy the boundary con¬

dition u(e2nxl) G Af for all t and represent the class A. There is a natural

vector bundle S -> <S with fibres

8U = Lp(D, u*TM)

and the left hand sides of (6.1) and (6.3) define Fredholm sections 3T± :

S -» 8 given by

p±(u) := F(h; t, ±y) := 3*w - Xf(m) ± y(3yM - XG(u)).

The moduli spaces MA{x, ±7) are the zero sets of these sections. The

tangent space

Tu£ = WX;p(D,u*TM)
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consists of all vector fields £ G W]'P(D, u*TM) along u which are of

class Wl'p and satisfy the boundary condition £(e2im) g Tu^it)At. The

vertical differential of 5r± ata zero u G <A<A (t, J) is the linear Operator

Df = £>^±(«) ; ^(D, W*FM) ->• Lp(Dt «*rM)

given by

d±£ = v^ - v^xF(M) ± y(v^ - v^xG(»)) ± (vçy)(3y« - xc(«)).

(6.4)

Here V denotes the Levi-Civita connection of the Riemannian metric

(•. -)x,y = 0>(; Jx,y-)

and thus depends on x + iy G D. The expression VXF denotes the covari-

ant derivative of XF = XFx with respect to the Levi-Civita connection

at the point x + iy- The next theorem follows from the Riemann-Roch

theorem for discs (see for example [RS2] for a recent exposition) and the

infinite dimensional implicit function theorem (see for example [S, Ap¬

pendix B]). The proof is standard (see for example [MS2]) and will only
be sketched.

Theorem 6.2.1 Tor every u G W^A(D, M) the Operators Df dejined

by (6.4) are Fredholm and their indices are

indexD^ = n ± Aa(")-

If Df is surjectivefor every u G MA(x, ±/) then MA(x, ±J) is a smooth

manifold of dimension

dim^^r, ±7) = n ± u,k{A)

Proof: (Sketch) That Df is an elliptic first order partial differential op¬

erators and hence Fredholm follows from general theory. This means that

D^ has closed range and finite dimensional kernel and cokemel. The Fred-

holm index of such an Operator is defined as the dimension of the kernel

minus the dimension of the cokemel. The index formula follows from the

Riemann-Roch theorem, see [RS2].
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hi order for MA(x, ±J) to be a manifold, it is required that 5r± is

transversal to the zero section. This means that the image of the lineariza¬

tion

d^iu; X, ±J) : TUS -> T(u,0)fi

is complementary to the tangent space TUB of the zero section. Hence, we

must require that the linearized Operator Df, which is the composition of

dT±(u; x, ±y) with the projection nu : T(_Uiq)B - Su, is surjective for

every u G MA(x, ±7). Since Df is also Fredholm, it follows from the

infinite dimensional implicit function theorem that MA(x, ±7) is a finite

dimensional manifold whose tangent space at u is the kernel of Df.

Fix an exact Lagrangian loop A and fix a connection 2-form r G 3"(A).

Let us denote by $(D\ M, co) the space of all smooth families of smooth

almost complex structures J : D -» #(Af, w). We call such a family

y G #(£>; M, co) regular for (6.1) if Df is surjective for every class A G

Hi(D x M, A; Z) and every « <A^(t, y). Similarly, / G #(D; M, û>) is

called regular for (6.3) if D~ is surjective for every A G Hi(D x M, A; Z)

and every « ^^(r, —7). We shall denote set of all families of almost

complex structures that are regular for (6.1). respectively (6.3), by

%%{t,A)C${D;M,co).

The proof of the next theorem is a Standard application of the Sard-Smale

theorem (cf. [MS2]) and will only be sketched. Strictly speaking the the¬

orem only holds true in the C?f category. It follows from Taubes, see Ap¬

pendix C, that we can also apply it to the G°° category.

Theorem 6.2.2 The sets #reg(T> A) are ofthe secondcategory (in the sense

of Baire) in ${D;M, co), i.e. they are countable intersections of open and

dense subsets of $(D\ M, co). In particular, they are dense.

Proof: (Sketch) Define the universal moduli space by

M±(A, 7 x $)= {(«; T, /) G S X T(A)x$(D; M, co) \

F(u;t,±J)= 0}.
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It follows from the infinite dimensional implicit function theorem that this

space is a smooth Banach manifold. ' Consider the projection

One can show, us in [FHS], that dn±(u; x, J) is a Fredholm Operator
whose kernel is isomorphic to the kernel of Df and whose image has

the same codimension as Df. The Operator dn (u; x, J) is onto precisely
4- -I-

when the Operator Df is onto. This means that the regular values of it

are in one-to-one correspondence with the regular J e #(Z); M, co). By
the Sard-Smale theorem the set of regular values is of the second category
in the sense of Baire. Q

Let tq, X\ G 7(A) and choose regular families of almost complex
structures

h G #«g(r0, A), yi G #reg(Ti, A).

We saw in Theorem 6.2.1, the spaces MA{to, ±7q) and MA{x\, ±J\) are

smooth manifolds of the same dimension. We will now discuss the depen¬
dence of these manifolds on the choice of (r, J). We will show that these

manifolds are cobordant. To construct a cobordism choose a smooth path

[0, 1] —> T(A) : X t-> tx that connects Xq to x\. Let us denote by

%= %([K,\]xD,JoJ\\M,co)

the space of smooth homotopies [0, 1] -» %(D\ M, co) : X h-» Jx that

connect 7o to y| Given {7*,} G $ denote

WA({xk},[±Jx}) = {(X,u)\0<X< 1, ueMA(Tx,±A)}-

In general we cannot find a homotopy such that 7x G $Kg(tx, A) for ev¬

ery X, that is, MA(xx, ±7x) may fail to be a manifold of the right dimen¬

sion for some X. However, there is always a smooth homotopy such that

the space ^({r^}, {±7x}) is a manifold of the right dimension. Such a

homotopy {7^} G $ is called regular. More explicitly, this means that

1
Strictly speaking we are dealing with Frechet manifolds here. We should first develop

this theory in the Gl-category and then use a Taubes' like argument to extend it to the

smooth category, but we will omit that here. The arguments carl be found in [MS2] or

Appendix C.
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for every homology class A G M2(D x M, A; Z) and every pair (A, u) G

yvA({xx},{±Jx)),

imDfu+Ri;±u=Lp(D,u*TM).

Here Z\ w
is defined by (6 4) with r and y replaced by T>, and 7^., respec¬

tively, and Çfu g LP(D, u*TM) is given by

%t,u '= XhF>.(u) ± 7^(«)XgAGÀ(M) =p dXJx(u)(dyU - XC]i(u)).

The set of all regular homotopies will be denoted by

#4(1^}, 70, 7i,A)C#.

The proof of the next theorem is again standard and analogous to the proof
of Theorem 6 2 2 It will be omitted

Theorem 6.2.3 Let [0,1] ->• T(A) : Xv+X\be a smooth family of con¬

nection 2-forms. Suppose that 7o G ^rtg(ro, A) and J\ G $f.g{t\, A). Then

the sets $f>g(.{tx\, Jo, Ji, A) c # are of the second category in the sense

ofBaire. Moreover, if{J\} G $^g({xx}, Jo, J\, A) then TVUtfo}, {±7J) is

a smooth manifold ofdimension

dim WA({xx], {±Jx}) = n±ßA(A) + ]

with boundary

dWA([xx}, [±Jx})= MA{xQ,±J0)iJ MA{ti, ±7i).

This shows that the manifolds Ma(xq, ±7o) and Ma(x\, ±7i) are

cobordant This will only be of significance once we have established cer¬

tain compactness properties This will be the topic of the next section.

6.3 Compactness

Theorem 6.3.1 Let A c S1 x M be an exact Lagrangian loop and suppose

that thepair (M, Ao) is monotone. Let A çHi{DxM, A; Z) and denote

by N c N the minimal Maslov number of the pair (M, Ao)
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(i)//

n±fiA(A) <N-\

then the manifold MA (t, ± J) is compact for every x G 7 (A) and every

j G gfeg(x, A).

(Ü) //

n±pA(A) <N -2

then "Wa ({tx\,{±Jx}) is compactfor every smooth path

[0, 1] - T(A) :X^Xx,

every Jo G #reg(T0t A), every J\ G $Kg(t{, A), and every regular homo¬

topy Vx) e $feg({tx}, Jq, J\,A).

The proof of Theorem 6.3.1 relies on the following theorem about

Gromov compactness for J-holomorphic discs. This result is implicitly
contained in Gromov's original paper [Gl] and has been folk knowledge

since then. However, the full details of the proof have not so far appeared
in the literature. They were recently carried out by Frauenfelder [F] in his

Diploma thesis. In his thesis Frauenfelder also discusses the corresponding
notion of stable maps for pseudoholomorphic discs.

Theorem 6.3.2 (Gromov) Let (xu, ]") e T(A) x $(D;M, co) be a se¬

quence that converges to (x,J) eT(A)x $(D; M, w) in the Gx'-topology.

Let A G H2(D x M, A; 1) and uv G MA{t\ ±7V). If uv has no C00-

convergent subsequence then

(1) there exist finitely many points (*,, y{) G D and maps u,- ; S -» M,

/ = 1, ...,*,

(2) there exist jinitely many points tj G 3R and maps uij : D -> M,

7 = 1...,£,

(3) there exists a map Uq ! D —> M,

such that the Vt are nonconstant Jx^yi-(anti)holomorphic spheres for
\ = 1, , k, the Wj are nonconstant J 2aiij -(anti)holomorphic discs with
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Wj(3D) c At] for j = 1
, ,1, «o G «W^0(t, ±7) for some AQ e

H2(D x M, A; Z), and

k i

a=ao +X><]+E[u;J- <6-5>

Were [u(] and [wj] denote the induced relative homology classes in H2(D x

M, A ; Z) awd one o/tfee integers k and I is nonzero.

Remark 6 3 3 (i) Let M be a compact manifold and L C M be a com¬

pact submanifold of half the dimension Suppose that a>v is a sequence of

symplectic forms on M that converges to co in the C00-topology such that

L is a Lagrangian submanifold of (M, cov) for every v.Jïuppose that Jv is

a sequence of Sv-tame almost complex structures on M that converges in

the C°°-topology to 7. In [F] Frauenfelder proves, in particular, that a se-

quence of 7 "-holomorphic discs u^ (D, 3D) -* (M, L) that represent a

fixed homology class A g H2(M, L; Z) has a subsequence that converges

(in a precisely defined sense) to a tree consisting of J-holomorphic spheres
in M and y-holomorphic discs in M with boundary in L such that the sum

of their homology classes in H2(M, L; Z) is equal to A. The techniques
in [F] are an adaptation of those in Hofer-Salamon [HS] for holomorphic

spheres to the case of holomorphic discs

(ii) The moduli space MA(t, ±y) does not depend on the function c

D —>• M in (4 3) Hence we may assume without loss of generality that the

connection forms xv in Theorem 63 2 lie in T^(A). Under this assump¬

tion our case fits in this framework The manifold M is given by Dx M, the

submanifold L by A, the symplectic forms wv by ±t\ the almost complex
structures Jv by J (tv, ± J") defined in Remark 6.1.1, and the functions «"

are given by (6 2) They satisfy the requirements of (i)

(iii) Theorem 6 3 2 follows from (i) and (ii) since each bubble in (1) and

(2) of Theorem 6 3 2 in the limit curve is contained in a fibre of the (trivial)
fibration D x M. To see this, note that each curve vt appears as the limit

of a sequence

v!(x,y)=uv(x?+evx,y? + evy)t
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where jc" —> Xj, y? -> yif ev -> 0, and

ev
lim =0.
v"~

i - yW2 + W)2

One can show that, after passing to a suitable subsequence, the sequence

v" converges to u, in the e°°-topology on the complement of some finite

set. The functions v? satisfy

dxv? - evXFv + 7v(3y< - svXGv) _- 0,

where the vector fields XF», XGv, and the almost complex structure J"

are evaluated at the point (x" + svx, y? +svy,v"). It follows that the limit

curve Vj extends to a Jx„y, -holomorphic sphere. The holomorphic discs Wj

appear as similar limits with Xj -f- iyj = e tj and

sv
lim

.
> 0.

w-*°°
i - y^;)2 + (yp2

A similar argument as above, with coordinates on the upper halfplane, then

shows that the limit curve wj is a 7 h,ui -holomorphic disc with boundary
values in A, .

(iv) The limit curve in (i) is a stable map consisting of 7-holomorphic discs

and spheres. For closed curves this concept is due to Kontsevich [K]. Some

of the components of the stable map may be constant. However, these do

not contribute to the homology class and can be neglected for our purposes.

If the original sequence uf does not have a e°°-convergent subsequence,
then the limit curve has more than one nonconstant component. This shows

that in Theorem 6.3.2 either k or t is nonzero.

Proof of Theorem 6.3.1: We prove the Statement (ii). Suppose, by contra¬

diction, that ^({tx}, {±7x}) is not compact and non-empty. Then there

exists a sequence

(X\uv)e-WA({rx),[±Jx})

that has no convergent subsequence. We may assume without loss of gener¬

ality that Xv converges to Xq. Then, by Theorem 6.3.2, there exist noncon¬

stant 7A0;A:,,>',-(ant^no^omorPmc spheres Vi : S2 -> M for / = 1, ,
k,
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there exist nonconstant 7 2mt} -(anti)holomorphic dises Wj (D, BD) -»

(M, Lt]) forj = 1, ,
t, andthereexistsanelementuo G MAo(xx0, ±Ao)

for some Ao G H2(D x M, A; Z) such that (6 5) is satisfied Since the pair
{M, A,) is, by assumption, monotone with minimal Maslov number N for

every t we have

±/*a(w<) > N, ±Ha(wj) > N

for / = 1, ;k and j = 1,
,
Ü, Since either & or £ is nonzero this

implies

* e

n ±tiA(A) = n ± ^a(Ao) ±5^a*a(uj) ±^/iA(wy)
1 = 1 y=l

> n ± aia(^o) +
JV.

Since {7x} G #rtg({^}, 7o, J\, A), the moduli space W^Qr^}, {±7^}) is

a smooth manifold of dimension

dim -WAq({tx), {±Jx)) -
n ± /xA(A0) + 1

< «±|LtA(A)+l-A/
< N - 2 + 1 - N

= -1 <o

-V^o({rx},{±7x}) = 0,

in contradiction to the fact that

{Xo,uo)e-WAii({xx\,i±Jx}).

Thus we have proved (ii) The proof of (i) is almost word by word the same

and will be left to the reader a

6.4 Gromov invariants

Fix an exact Lagrangian loop A eS x M and a relative homology class

A G Hi{D x M, A; Z). Throughout we shall assume that the pair (M, Ao)
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is monotone and

n±u.A(A)<N -2, (6.6)

where N G N denotes the minimal Maslov number of the pair (M, An)
Fix a tuple t = (ft, ,

tk) G Rk such that 0 < t\ < < /* < 1 and

denote

At = Afl x • • x A„

For T G !T(A) and 7 G $(D; M, co) we define evt Ma{x, ±J) ->• At by

ev,(M) = (u(e27:iu), , «(<>'''*)).

If 7 G ^reg(r' A) men> W Theorems 62 1 and 6 3 1, the moduli space

MA (t, 7) is a compact smooth manifold (without boundary) of dimension

n ± pa(A). It is not necessarily orientable Let

[MA(x, ±7)] G Hn±ßA(A)(MA(x, ±7); Z2)

denote the fundamental cycle The Gromov invariants are defined by

Gr± t(A) = evu[M^(zt 7)] e //„±MA<A)(At; S2). (6 7)

Lemma 64 1 The homology classes Gr^fA) G //n±^A(A)(At; Z2) #/*£

independent of the choices of the connection 2-form x G 7" (A) awd tfee

ö/mosr complex structure J e %f%it, A) used to dejine them.

Proof Given two connection 2-forms To and X\ and two families of al¬

most complex structures 7o G #reg(to, A) and 7i G $f&{t\, A). Choose

a path {xx\ connecting Xq to x\ and choose a corresponding path {7^} G

$%{{tx), Jo, 7i, A). $ theorems 6 2 3 and 6 3 1 (ii), ^({u}, {±7X}) is

a smooth compact manifold with boundary

3"Wa({tx}, {±7X}) = ^A(ro,±70) U MA(xu ±y,).

The evaluation map extends in the obvious way to

evt :-WA({Tk},{±Jk})^ At.
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Since

evt*([^A(ro, ±-A>)] - [Ma(tu ±JX))

= tyu[d-WA(lxx],[±Jx})]

= d(tvu[-WA({xx},{±Jx})])

= 0.5 //n±MA(A)(At;Z2)

we deduce that

evtJcA^To, ±y0)] = e\u[MA(x{, ±7i],

which proves the lemma. D

Corollary 6.4.2 Let A^ G H2{D x M, A; Z) satisfy (6.6) and suppose
rhat

Gr±±t±(A)#0

for some t±. Then

e+(t, A) > -<[t], A+), s'(x, A) < -<[t], A-}

for every r T(A).

Proof: Since GrJ±t±(A) = cvu[MA(x, • J)] ^ 0 it follows that

MA (x, ±y) 7^ 0. Now lemmata 6.1.3 and 6.1.4 state that

e+(T, A) + {[t], A+) > 0, e~(t, A) + {[r], A") < 0,

which proves the corollary. D



Chapter 7

Complex projective space

In this section we shall use the Gromov invariants to compute the K-area

of certain exact Lagrangian loops in CP". The archetypal example is the

half turn of a great circle in the 2-sphere. An explicit computation shows

that the Hofer length of this loop is 1/2. We shall use Corollary 6 4 2 and

Theorems 4 2 4 and 4 3 3 to show that this loop minimizes the Hofer length
in its Hamiltonian isotopy class.

7.1 Rotations of real projective space

Consider the complex projective space

M = CPn

equipped with symplectic form co that is induced by the Fubini-Study met¬

ric and satisfies the normalization condition

/ con = 1

JtP"

Let L = MP" and fix an integer k G { 1, , n}. As in the introduction, we

consider the exact Lagrangian loop

A := \J{e2n,t} x ft(RPn), (7.1)

83
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where

Mzo : : zn]) = ([zo : e3"'*! : : emtzk : ZJt+1 : .. : Zn\),

for some 1 < k < n to be specified later. A tedious computation shows

that the Hamiltonian isotopy tj/t is generated, via (3.3), by the the time

independent Hamiltonian function H, = H : CPn -> R given by

//(U° : "' : Zn])
=

In- 2 2(N2 +
+ \Zn\2Y

{72)

It can be shown that this function has mean value zero and Hofer norm

||//|| = maxff-mintf = -

Since H attains its maximum and its minimum on A, = fjrt(RPn) it fol¬

lows that 1(A) = \/2.

7.2 The Maslov index

In this section we will show that the example described in the previous
section satisfies the assumptions of Theorem 6.3.2 and Corollary 6.4.2

Lemma 7.2.1 The minimal Maslov number N of the pair (CPn, RP") is

as follows

N = n + 1. (7.3)

Proof: For n = 1 this is well known (it follows basically from the axioms,
see Appendix B). For n > 1 consider the homology exact sequence of the

pair (CP", RP"). It has the form

0 ->. H2(CP"; 1) -> H2(CPn, RP"; Z) -> #i(RP"; Z) - 0,

because H\{CPn; 1) - H2(RPn; Z) = 0. Since H2(CPn; Z) = Z and

H] (RP"; Z) = Z2 we deduce that H2(CPn, RP"; 1) equals either Z or

Z ® Z2. Now MP'1 decomposes the line CP1 c CP" into two discs that
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represent the same homotopy class in n2(CPn, M.P"). This implies that the

homomorphism

H2(CPn; T) -» //2(CP", RP"; Z)

is given by multiplication by two and that H2(CPn, RP"; Z) = Z. Let

[CP1] G H2(CPn; Z) be the generator. Hence there is an element A e

//2(CP", MP"; Z) such that 2A is equal to the image of [CPn] under the

homomorphism

Z = H2(CPn; 1) -^ H2(CPn, MP"; Z).

This implies that A is the generator of H2(CPn, MP"; Z) = Z. Since the

Maslov class of 2A G jr2(CP", RP") is equal to (see [RS2])

2(cx(TCPn),[CPl) = 2(n+ 1)

we have proved the lemma. D

Lemma 7.2.2 Let (M, co) be a symplectic manifold and AcSlxMbe an

exact Lagrangian loop such that (M, Ao) is a monotonepair with minimal

Maslov number N. Then

pA(u\) = HA(uo)modN

for all uo, u\ G MapA(D, M).

Proof: If uo(e2n") = U \ {e2nit) for every f G M. then uq (with reversed

orientation) and u\ form a sphere and the difference jjla(u\) — /xa(«o) is

equal to twice the first Chem number of this sphere. Hence the difference

of the Maslov numbers is an even multiple of N. This continues to hold

whenever «olao is homotopic to u \ |ao as a section of the bundle A —> S
.

For any two maps wo. « 1 G MapA (D, M) there exists a smooth func¬

tion y ' (D, 3D) —> (M, Ao) such that v(— 1) = uq(1) and the connected

sum uq#v is homotopic in A to u \ along the boundary. Since, by the defi¬

nition of the Maslov index in Appendix B, pa(uq#v) = pA(tio) + ßA(v),

we find, by what we have just proved

/aa("i) - ^a(«o#u) = ma(«*i) - ma(«o) - AiA0(u) 2A/Z.
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Since, by the monotonicity assumption, ßAo(v) is an integer multiple of

A/, the lemma is proved

Returning to the loop A C S1 X CP" we observe that the Hamiltonian

function H in (7 2) is a Morse-Bott function with critical manifolds

c+ = {[0 z\ Zk 0 0]| (zi , , zù G C* \ {0}} ,

c~ := {[zo : o : : o :^+i ' -' zn]

(zq, Zk+l., z»)GC"-*+1\ (0}}.

Note that H attains its minimum, which equals (k — n — l)/(2rc + 2),

on C+ and its maximum, which equals k/(2n + 2), on C~. Moreover,

C* 0 RP" C At for every r. Let us denote by

A± G //2(D x CP", A; Z)

the homology classes represented by the constant functions D —> CP"

with values in C^ 0 RP". The next lemma shows that A has Maslov index

k e Zn+\, that is k mod n + 1, us claimed in the introduction (see (1 2)) It

also follows from the next lemma that the homology classes A* G H2(D X

CP", A; Z) satisfy the condition (6 6) for the definition of the Gromov

invariants

Lemma 7.2.3

pA(A+) = k -1-«, pA(A~) = k. (74)

Proof: In the case of A-, consider the constant function

h(jc,v) =p
= [1 0 ,. 0]

Then a trivialization of the pull back tangent bundle u*TCPn is deter¬

mined by the coordinate chart [zu zn] (-> {z\/zo,
, zn/zo). In

these coordinates the Hamiltonian flow is

f H>(eir'''fi,...,e3r"fjfc,ft+i,...,fB)

Since TpAo = f C C" = TpCPn, we see that the Maslov index of the

loop / \-+ TpA, is equal to k, see Theorem B O 1 This proves the second

equation in (7 4) and the first follows from a similar argument
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7.3 Computation of the Gromov invariants

Since N = n -f 1 it follows from Lemma 72 3 that the classes A^ sat¬

isfy (6.6), that is

n + fJLA(A+) =n+k-l-n<n-l=N-2
n - pA(A~) — n —k <n - I — N -2

and hence the requirements of Theorem 6 3 1 The next theorem shows

that the Gromov invariants Gr^ 0(A) are nonzero Here the subscript 0

corresponds to the choice t = t\ == 0 for the evaluation map

Theorem 7 3 1

GrJ+i0(A) = [MP*"1] G //*_i(MP"; Z2).

Gr;_0(A) = [RP""*] g Hn-k(RPn; Z2).

Proof: Let x G T(A) be given by (4 3) with c = 0 and

-s\n(2nt)p(r)
u

G cos(2jrQp(r)
u

txj -

litr
"' x'y =

2^r7 "'

where re2nu = x + iy and H is given by (7 2) As in (4 9)

P : [0,1] -> [0, 1]

is a smooth nondecreasing cutoff function such that P(r) = 0 for r near

0 and p(r) = 1 for r near 1 The formula for the curvature introduced in

Chapter 4 yields

QT(re2mt, Z) = -~-H(z) (7.5)
Litr

for z g CP" shows that Qt(jc, y, z) > 0 for z G C+ and ßT(x, y, z) < 0

for z e C". From (7 5) and Lemma 6 1 2 with c = 0 and £(«) = 0 (since

M is constant and takes values in the set of critical values of F and G) we

get that

<[r], A+}= - [ QT(x, y, u)dxdy = f Önz)r drdt
Jd Jd wr
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and similarly for A~. Since H attains its minimum on C+ and its maxi¬

mum on C- it is easy to compute the above integrals and we get

The explicit formulae for F and G show that C± consist entirely of crit¬

ical points of FXty and Gx,y for all x + iy G D. This shows that the

constant functions u : D —> CP" with values in C+ U C- are hori¬

zontal for the symplectic connection determined by r. hi explicit terms

Bxu = XF(u) and dyu = XG(u). Hence these constant functions satisfy
both equations (6.1) and (6.3) for every 7 G $(D; CP", co). The constant

functions with values in (C+ U C~) HMP" satisfy in addition the boundary
condition u(e2nit) g A, for all t. The formula (7.4) shows that the constant

solutions with values in C+ f] RP" and those with values in C~ C\ RP"

represent different homology classes (since they are distinguished by their

Maslov index).
We prove that, for every 7 G ${D; CP", co),

MA+(t,J) = {« : D^ C+nWPn\du = 0}. (7.7)

To see this, let u G MA+(x, J). Then, by Lemma 6.1.2 and (7-5),

0 < E(u)

= ([t], A+) + f QT(x,y,u(x,y))dxdy

- f f p(r)H(u(re27!it))drdi
Jo Jo

p(r) min H drdt

Jt-ji-1

2n + 2

k-n-1
' [

~

2n + 2 So
= 0.

Hence every u G MA+(x, 7) satisfies E(u) = 0, therefore

p(r) ^ 0 => H(u(re2nit)) = min H

The latter implies that u(xq, yo) G C+ for some point xq + iyo G D.

We would like to show that u(x, y) = u(xq, yo) for all (x, y) G D. From
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E(u) = o we conclude that u is a horizontal section of Dx M with respect
to T. Now let X\ + i'yi G A choose a path [0, 1] - 7J : t H- x(t) + (>(/)
that connects Xo + *yo to jci + iy\, and define z ' [0, 1] -» M by

z(f):=«(^(0,y(0).

Then z(0) G C+ and

z(0= x(t)XFm^(z(t))+ y(t)XGm,y{l)(z(t)).

Since C+ consists of critical points of Fx<y and GXty for all jc + iy G £> it

follows that z(r) = z(0) for all t G [0, 1]. Hence u is constant. The bound¬

ary condition shows that this constant lies in C+ DSP". This proves (7.7).
Hence Ma+(x, J) is diffeomorphic to RP for every J and, in particu¬
lar, for every J G $%Jj, A). The evaluation map u \-> u(\) is obviously

an embedding of MA+(x, J) = RP*-1 into WP". A similar assertion holds

for MA- (t, -J) and this proves the theorem in view of the definition of

the Gromov invariants in (6.7).

7.4 Calculating the invariants v, x and s of pro¬

jective Lagrangian loops

Identify CP" with the quotient S2n+i/SK The action of SU(n + 1)
descends to the quotient, since for X g S] and w = Xzfor w,z G S +

and for A g SU(n + 1) we have Aw = AXz = XAz and hence

[Aw] = [XAz] = [Az]

where [ ] denotes the equivalence class in the quotient. A matrix A G

SU(« + 1) acts as the identity on CP" if Az = Az for some X G S1

and for all z G CP" this means that A = Aid. Since A G SU(n + 1),
1 = det(A) = Xn+l and therefore X is an n + 1-th root of unity. So the

projective special unitary group can be identified with the quotient

PSU(n + 1) = SU(n + !)/{<3+f \ k = 0,. . , «}.
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Since JTi(SU(n + 1)) = jr0(SU(n + 1)) = 0 (because SU(n + 1) is simply

connected,see the proof of Proposition 2 21 in [MSI]) we deduce that

jri(PSU(n + l))=ZB+l-

Let PL(n + 1) denote the manifold of projective Lagrangian planes in CP ",

which can be identified with the quotient PSU(n + l)/SO(n + 1)

Lemma 74 1 7t\ (PL(n + 1)) = 1n+\.

Proof: We have the following long homotopy exact sequence (see for

example [Br], Chapter VU)

0 =jr2(PSU(rc + 1) -> Ti2(?L(n + 1)) -> 7r,(SO(n + D) 4-

jri(PSU(n + 1)) -* 7Ti(PL(n + 1)) - 7T0(SO(n + 1)) = 0,

where jiy (SO(n -f 1)) = Z2 and ti\ (PSU(n -f- 1)) = Zrt+i Here we have

also used that it2 of a compact Lie group is zero (see [BD] Proposition 7 5)
For n + 1 odd the map ß can only be the zero map and hence n\ (PSU(rt +

1)) = tti (PL(rc +1)), which proves the lemma If n + 1 is even, we need

to study the map ß in more detail This map is induced by the composition
of maps

SO(n + 1) <-» SU(n + 1) - PSU(« + 1),

which maps id and -id to the same element of PSU(ra +1) Therefore the

map ß is again the zero map, which proves the lemma also in this case.

For k e Z we denote by A* C S1 X CP" the exact Lagrangian loop
defined by (1 1) in the introduction, i.e Af = 0£,(RP"), where

M*0 Z„]) = [e«ltZ0 Zl Zn]

If k is divisible by n + 1 then this loop is contractible (since the Maslov

index is defined modulo n + 1 and since it is a homotopy invariant, divis¬

ibility by n + 1 is equivalent to being contractible) If k e (1, , n] and

k = k'modn -\- 1 then A* is Hamiltonian isotopic to A*. Our main result

is the following corollary of theorem 7 3 1

Corollary 7.4.2 If k is not divisible by n A- 1 then

v(Ak)= x(Ak)= (Ak)=~.

}fk is divisible by n -\- 1 then v(Ak) = x (A*) = 0
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Proof: Let/c [1,..., n}. Then the loop A, given by (7.1) namely

A= (Jfe2*1''} x^f(KP"),
/el

is Hamiltonian isotopic to A* and hence

e(Ak) = e(A), X(Ak) = x(A), v(A*) = u(A).

By Theorem 7.3.1, Gr++ 0(A) / 0 and Gr^_ 0(A) ^ 0. Hence, by Corol¬

lary 6.4.2 and (7.6),

£+(r, A) > -([r], A+) = ^J^f
*"<r. A) < -([t], A-) = -^~

Here r G !T (A) denotes the connection 2-form introduced in the proof of

Theorem 7.3.1. Hence

,
1

e(A) = £+(x,A)~e-(x, A)>-

Recalling from section 7.1 that v(A) < 1(A) = 1/2 the result now follows

from the inequality
*(A) <x(A)= v(A)

proved in Corollary 4.3.4. D

Remark 7.4.3 Our invariants do not distinguish between AJ and A^ un¬

less one of the numbers is divisible by n + 1 and the other is not. However,

if

gcd(j, n+ \) ^ gcd(k, n + 1)

then the iterated loops Amj and Am* have different invariants for some

m. To see this suppose, without loss of generality, that gcd(j, n + 1) <

gcd(k, n -f- 1) and denote

n + 1 n + 1
m := —— —<-

gcd(fc, n+1) gcd(/\ n + 1)
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Then mk is divisible by n + 1 whereas mj is not. By Corollary 7.4.2,

v(Amj) ? v(Amk).

In the case of Hamiltonian loops the analogue of the line T(A) has a nat¬

ural basepoint and in that case there are separate invariants £+(P) and

e~(P) that contain finer information than their difference.

Remark 7.4.4 We conjecture that the constant loop A0 = S1 x RP" sat¬

isfies s (A0) = 0. This does not follow from the techniques of this paper.

The homology class A0 G H2(D x£Pn,Six RP"; Z), represented by
the constant maps D -+ RP", satisfies /xAo(A°) = 0. Hence A0 does not

satisfy our condition (6.6) for the definition of the Gromov invariants, al¬

though the arguments of Theorem 7.3.1 carry over to the constant loop A0

with A+ = A~ = A0. It should be possible to circumvent the problem of

compactness in the sense of Gromov described above by using the invari¬

ants introduced in Cieliebak-Gaio-Salamon [CGS]. We expect that these

techniques apply to the constant loop A in CP".

Remark 7.4.5 Let (M, co) be a symplectic 2n-manifold and L be a closed

n-manifold with Hl(L; M) = 0. In [W] Weinstein considers the space

of all pairs (A, p) where A c Af is a Lagrangian submanifold diffeo¬

morphic to L and p is a volume form on A (or a smooth measure in the

nonorientable case). He interprets this space as the cotangent bundle of

X = X(M, (O, L) and examines the symplectic action functional on the

loop space of T*X. hi [D] Donaldson interprets this cotangent bundle as

a symplectic quotient of the space of all embeddings L : L -+ M with

vanishing cohomology class t*[co] by the group of volume preserving dif¬

feomorphisms of L (with respect to a given smooth measure). The group

action is Hamiltonian and the zero set of the moment map is the space of

Lagrangian embeddings of L into (M, co). It would be interesting to ex¬

amine analogues of the invariants studied in the present paper for loops in

T*X and relate these to the work of Weinstein and Donaldson.



Chapter 8

A non-trivial Legendrian 'knot'

hi this chapter we present an example of a non-trivial Legendrian 2-sphere
in the 1-jet bundle of R2, A certain familiarity with contact geometry is

assumed and we claim no completeness here. For definitions and proofs of

theorems that we use, we give the necessary references.

8.1 Contact geometry

See e.g. [MSI] for a more rigourous introduction in contact geometry. A

contact structure on a manifold M of dimension 2n + 1 is a field of hy-
Perplanes £ C TM which is as far as possible from being integrable. The

complete non-integrability of £ can be expressed by the inequality

a A (da)" # 0

where £ is locally described by £ = kerot for a local I-form a. For sim¬

plicity, we will assume that £ is transversally orientable so that it can be

globally described as the kernel of some 1 -form a. The model example of

a contact manifold is the 1-jet bundle $l(N) = T* N x R of an n-manifold

N with the 1-form a locally given by Of = dz — X described in section 8.2.

A diffeomorphism ty : M ~> M is called a contactomorphism if it

preserves £ so that

ty*a = eha,
for some function h : M —> R. A contact isotopy is a smooth 1-parameter
family tyt of contactomorphisms such that tyo = id. For non-compact

93
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manifolds we will always assume that the isotopy has compact support An

integral submanifold L of £ of dimension n is called a Legendrian sub¬

manifold of (M, £) i e TL c £. We call two Legendrian submanifolds Lq
and L\ Legendrian isotopic if there exists a Legendrian isotopy tyt (this
means that tyt(L) is Legendrian for 0 < t < 1) such that tyo(Lo) = £0 and

tyi (£0) = ^1- The question when two Legendrian submanifolds are Leg¬
endrian isotopic is one of great interest and has at the moment of writing

only been answered in a few special cases, see for example [EF].

Remark 8.1.1 The Legendrian isotopy extension theorem, see for a proof

e.g. [Tr], states that for a closed Legendrian submanifold L of (M, £) and

an isotopy it L -> M with io(L) = L and it(L) Legendrian for all

t g [0, 1] there exists a contact isotopy tyt (M, £) ->- (M, £) such that

ty(\L — tt. This justifies the name Legendrian isotopic instead of for exam¬

ple contact isotopic

8.2 Legendrian knots in $l (Rn)

Consider the 1-jet space #'(R") = T*Rn x R of real valued functions

on R" with coordinates (x, y, z) = (x\,. , x„, y\,
, yn, z) This is a

contact manifold with contact form

a
— dz — X,

where X = Acan = Z^f=i yidxt. Observe that the zero section

{(x,y,z)e$l(^n)\y = z=0]

is a Legendrian submanifold and so is the 1-jet

jif.= {(x,df(x),f(x))^$l(Rn)]

of a function / : R" -+ R. A Legendrian knot is an embedding 1 R" ->

#'(R") such that f(R") is Legendrian and such that f(K") coincides with

the zero section outside a compact set We also say that t(R")is flat at

infinity hi this chapter we study Legendrian knots Let

jr :|'(R")^ #°(R")=R" xR
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denote the obvious projection sending (x, y, z) to (x, z). We call the im¬

age n(L) of a Legendrian submanifold L its wave front. Note that the

wave front determines the Legendrian submanifold uniquely. So it suf¬

fices to study the wave fronts of Legendrian submanifolds to determine

whether the corresponding Legendrian submanifolds are Legendrian iso¬

topic to each other or not.

If « = 1 there are the so called Bennequin number and the Maslov

number, hi case of the topological unknot, theses can be used to determine

whether two oriented Legendrian knots are isotopic or not, see [EF]. These

are calculated by studying the wave front. The Bennequin number tb(L) of

a Legendrian knot L is equal to the number of positive crossings minus the

number of negative crossings minus half the number of cusps (a crossing
is positive when the two rays exiting the crossing are on the same side of

the vertical and negative otherwise). The Maslov number p~(L) is equal
to half the number of cusps passed downward minus half the numbers of

cusps passed upward, see eg. [FT]. Consider the following wave front, see

Figure 8.1.

Figure 8.1: A non-trivial and a trivial Legendrian knot

This knot can easily be seen to be smoothly isotopic to the zero sec¬

tion. Consider the lift to $
'
(W) see Figure 8.2.

Now project the knot onto the xy-plane. We then get an ordinary knot

diagram, see Figure 8.3. We know that two knots are isotopic (sometimes
also called equivalent) if we can deform one knot diagram into the other

through Reidemeister moves, see e.g. \L]. It is easily seen that this is pos¬

sible here.

On the other hand, this knot is not Legendrian isotopic to the zero sec¬

tion, which can be seen by computing the above mentioned invariants. The

wavefront of this knot has no crossings, two upward cusps and two down-
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Figure 8.2: Lifting the knot

Figure 8.3: Projecting the knot on the xy-plane
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ward cusps and therefore the Bennequin number is -2 and the Maslov

number is 0. For the zero section these numbers are both zero and since

these numbers are in this case Legendrian invariants, we deduce that these

two knots are not Legendrian isotopic.

Figure 8.4: A non-trivial Legendrian 2-sphere

Consider now the following wave front, see Figure 8.4, of a

2-dimensional Legendrian knot in #'(R2), which is a generalisation of

the above described one dimensional knot, obtained by rotating the wave

front around the z-axis. We quote the following theorem from [RS] where

we have applied the remark about codimension 3 and the exercise about

manifolds, which are not closed.

Theorem 8.2.1 Suppose fo, f\ : Mm -+ int Nn are homotopic embed¬

dings, which arefixed outside a compact m-manifold Mq C int M, and

suppose m —' m> 3. Then fo(M) and f\{M) are ambient isotopic by an

isotopy supported in a compact set in int N.

This theorem applies by setting M which is not closed and

Z 1t-by setting N =; $ (Mz). We know that the above embedding of Mz into

#' (R2) is homotopic to the standard one (i.e. the l-jet of the zero function).
This follows from the Hopfs degree theorem for spheres. Computing the

degree outside the compact subset we see that the number of inverse im¬

age points is one and hence the embedding is homotopic to the Standard

one. Theorem 8.2.1 implies that the embedding is also isotopic through an

ambient isotopy to the standard embedding.
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However, in higher dimensions there are so far no Legendrian knot in¬

variants, like the Bennequin number and the Maslov number, to determine

whether they are also Legendrian isotopic. So we need to use other tools

to determine whether or not this is Legendrian isotopic to the trivial knot,

hi the next section we will prove the following theorem.

Theorem 8.2.2 The above wave front is not Legendrian isotopic to the

zero section.

8.3 Generating functions

We observed earlier that the 1-jet of a function determines a Legendrian
submanifold of $} (JR"). It is, however, not true that every Legendrian sub¬

manifold Can be described as the I-jet of a function. In this section we will

extend the idea of I-jets and introduce generating functions. We will see

how they can be used to say something about Legendrian submanifolds.

Consider the trivial vector bundle E := R" X M —» R" for some

k G N. Let S : R" x K* -* R, (jc, q) h» S{x, q) be a function that equals

zero for 1 jc | ^§> 0 and whose fiber derivative is transverse to zero, that is, the

Jacobian of y-(x, q) has maximal rank whenever §^(*. q) =0. Observe

that

£5 := {(x, q) G E; f|(x, q) = 0)

is a submanifold of E Define the map ( : E5 —> $l(R") by

t(x, q) := (x, |f (x, q), S(x, q))

then i(*£s) is an (immersed) Legendrian submanifold. If for \q\ >• 0,

S(x, q) — Q(q), where Q is a non degenerate quadratic form, S is called a

generating function quadratic at infinity abbreviated by g.f.q.L Given a

Legendrian submanifold L then S is said to be a g.f.q.i. for L if i(S^) = L,

I is an embedding and dim E,y = n.

Theorem 8.2.2 is proved by combining the following two theorems,

which we will only state (for proofs see the references).

Theorem 8.3.1 (Bhupal [B], Theret [Th]) Let Lbeil Legendrian subma¬

nifold of $' (R"). If L is isotopic to the zero section then L has a g-f-Q-i..
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This theorem has first been proved in the Lagrangian case by Viterbo [V]
and Sikorav [Si]. Theorem 8.3.1 may also be attributed to Chekanov, al¬

though he has not published it.

Theorem 8.3.2 (Chaperon [Ch]Joukovskaia [Joui], [Jou2]) Let L be a

Legendrian submanifold of #' (R"). // L possesses a g.fqi- then its wave

front n(L) has a Lipschitz continuous section.

Proof of Theorem 8.2.2: Figure 8.4 shows that the wave front does not

possess a Lipschitz continuous section (it does not even have a continuous

section). By Theorem 8.3.2 L does not have a g.fqi. and hence, by Theo¬

rem 83.1, L is not Legendrian isotopic to the zero section. This proves the

theorem. G



Chapter 9

Travelling wave solutions of a

fourth order semi-linear

diffusion equation

And now
....

for something completely different.This chapter has appeared
as the joint paper [AH].

9.1 Introduction

In this chapter we are interested in travelling wave solutions, that is solu¬

tions of the form u = u(x, t) = u(x — cr) for some c, of the fourth order

equation

Tt
=

~Y~dx* +

dx2'
+ f(u)' /(w) = (u " a)(1 )! ( °

where -1 < a < 0 and y > 0. We are looking for solutions that connect

the two stable states u(x, t) = ±1 of the ordinary differential equation
u1 = (u — a)(l — u ). This equation has many applications in e.g. popula¬
tion genetics and pattern formation, for references see [PT1].

101
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When y
= 0 a travelling wave solution is given by

u(x, IJ = tanh(-—%. J, (9 2)

with wave speed ca = ay/2, which is negative if a < 0 The wave profile is

independent of a and for a — 0 this travelling wave solution is a stationary
solution of (9 1) with y = 0

Equation (9 1) with y = 0 with a slightly more general non-linearity
has been studied extensively in [AW1], [AW2], [FM] amongst many oth¬

ers It has been shown that for this type of non-linearity there exists a

unique (except for symmetry and translation) travelling wave solution, i e

a solution of the form u(x, t) = «(£) where £ = x — ct for some c, con¬

necting the stable states u = ± 1.

Ff y > 0 and a = 0 equation (9 1)) is called the Extended Fisher-

Kolmogorov equation (EFK), which is a fourth order extension of the

classical Fisher-Kolmogorov equation (FK) In a series of papers [PTl],

[PT2], [PT3], [PT4], [PTV] existence results on stationary solutions and

their properties have been proved In these papers one studies, in view of

the symmetry of the non-linearity, odd solutions and hence the conditions

u(0) = 0, «"(0) = 0 and u(oo) = 1 are imposed One distinguishes two

different cases y < 1/8 and y > 1/8 where the behaviour of solutions is

different

In both cases an energy identity can be used to reduce the order of the

equation If y < 1/8 the order can be reduced further by assuming mono¬

tonicity of the solutions and the remaining problem is of second order. In

[PTl] this is used to show that there is a unique solution for y < 1/8. If

/ > 1/8 monotonicity is lost, This can be seen by linearising the equation
at u = ± 1. The eigenvalues are now complex so that any solution con¬

verging to u = ± 1 must be oscillatory. In [PT4] a shooting method is used

to prove the existence of families of different kinks In [PTV] the varia¬

tional structure of the stationary equation is used to prove existence of odd

equilibrium solutions connecting the stable states u = fl

hi this chapter we look for travelling wave solutions of equation (9 1)
The resulting travelling wave equation neither has a conserved energy nor

a variational structure and also the symmetry is lost Thus the methods

of [PTl] and [PTV] cannot be applied directly here For small y however,
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equation (9.1) can be seen as aperturbation of (9.1) with y
= 0 and it is this

view that is taken in this chapter. With the methods of geometric Singular

perturbation theory as developed in [Fe] and [J] we prove the following

Theorem 9.1.1 For y > 0 sufficiently small there exists a c = c(y) for
which there is a travelling wave solution of (9.1) connecting the steady
states u = ±1, The rate of change of the wave speed with respect to y is

given by

^- =-l/5%/2a(2a2-3).
dy y=o

The chapter is divided as follows. In section 2 we describe how geo¬

metric perturbation theory is used to construct a locally invariant manifold

My for the travelling wave equation when y is small and positive. In sec¬

tion 3 we use this manifold to obtain a travelling wave solution. In the last

section we compute the rate at which the wave speed changes when the

fourth order term is added.

9.2 Geometric Singular Perturbation Theory

Our approach in this section is similar to that in [GJ] where existence of

a travelling wave solution is proved for a sixth order equation, but our

calculations are more explicit. After substituting u = k(£), where £ =

X — ct, and setting y = s where £ > 0 in (9.1) we obtain the following

boundary value problem:

(Ps)

-e2u"" + u" + «u- + (u - ö)(1 - u2) = 0 on

lim a(£) = -1, Jim limt_>co«(É) = h

where primes mean differentiation with respect to £.
We can write the differential equation in problem (Pe) as a first order

system
u'= v

(Se){

V' = W

v EJ '
ew = z

ez' = w + cu + (u - a)(l - ul),
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and setting £ = en we obtain

ü = ev

.„ .
ii = ew

(Fe)
W = Z,

z
- w + cv + (u - a)(l - u2),

where dots denote differentiation with respect to n. Note that (Se) is sin¬

gular at S = 0 because (So) is not a well-defined dynamical system in R4.

Having set £ = en we overcome this problem. The time scale given by £ is

said tobe slow whereas that for r} is fast, hence the corresponding systems

are called the slow system (Se) and the fast system (Fs). The latter is well-

defined for all £ including £ = 0. Tor e ^ 0
,
(FE) and (Se) are equivalent

and the critical points are (-1,0, 0, 0), (a, 0, 0,0) and (1, 0, 0, 0).
If s

= 0 we define Mn to be the two dimensional manifold of critical

points of (Fo):

Mo := {(«, v, w, z) e R4| z = 0, w = -cv - (u - a)(l - u2)}.

Geometric perturbation theory uses both the above Systems: (Fe) provides
us with an invariant manifold Me close to Mq and we study the flow of (S£)

restricted to this manifold. The main theorem that we use is the invariant

manifold theorem due to Fenichel and we use the Version formulated by
Jones [J]. In our context this theorem yields the following:

Theorem 9.2.1 (Fenichel) // Mo is a normally hyperbolic manifold, then

for allR >0, for all open intervals I with Cq£ I and for all k 6 N there

exists an £q>0 depending on R, I and k such thatfor all eG (0, £o) there

exists a manifold Me, given by

ME = {(«, V, w, Z) R4| W = <p(u, v, c, £), z = ty(u, v, c, s),

(u, v) e br(0), cei}

with ty and ty in C (Br(Q) X / X f0, eol), which is locally invariant under

the flow of(Fe).

hi order to apply this theorem we must ensure that the hypothesis on

Mo is satisfied. The radius R that we choose must be so large that Mo Pi

5/^(0) contains the connection from — 1 to 1 at S = 0. We also fix k > 2.
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For Mo to be normally hyperbolic we must check that the eigenvalues

Il associated to the eigenvectors of the linearised problem for any point in

Mo at r\
= 0, which are transversal to the tangent space, have non-zero real

part Note that c can either be seen as a Parameter in which case Mo is a

two-dimensional manifold, parametrised by u and u, or as an extra variable

in which case we need to add the equation c' = 0 and Mo becomes a three-

dimensional manifold

The linearisation of (Fq) at the point (u, v, W, z) Mq is given by the

matrix

/ 0 0 0 o\
0 0 0 0

0 0 0 1

\f(u) c 1 O)
Its set of eigenvalues is always (0, 0, —1,1}. Only the two zero eigenval¬
ues have eigenvectors tangent to Ma Thus Mo is normally hyperbolic If

we view c as a variable instead of as a Parameter, Mo remains normally

hyperbolic
Since ty and ty are Ck functions in u, V, c and e we can write down

their Taylor series in e, i e

k

ty(u, v, c, e) = ^cpi(u,v, c)sl + <&(u,v,C,£)ek, (9 3)
(=0

k

ty(u, v, c, s) = £ tyt(u, v, c)el + *(«, ll, c, £)£*, (9 4)
i=0

where O and * are continuous in £ = 0 with <!>(«, v, c, 0) =0 and

*(«, v, c, 0) =0 In the remainder of this section we compute the co¬

efficients of cp and ty explicitly Clearly we have

0o(«> v, c) — ~cv - (« — a)(l - « ) a n d ^o("> v, c) — 0

Since Me is locally invariant, the fast vector field

(ev, nw, z,w + cv + /(«))
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is perpendicular to the two normals

(«£.!. _i,o) «*(»*.!*. 0,-d

of Mf. Taking the inner product of the fast vector field with each of these

normals we obtain the following two coupled non-linear partial differential

equations

/ dcp(u,v,c,e) dty(u,v,c,s)\
ty(u,V,C,E) = e[v Vty(u,v,c,£) ), (95)

V ou dv J x '

ty(u,v,c,e)+-cv + /(«) =

/ dty(u,v,C,e)
Xl

dty(u,v,c,E)\
S[V + cp(u,v,c,£)^^- , 96

V du dv f '

for ty and ty. We now successively compute the coefficients in (9 3) and (9 4)
from (9 5) and (9 6) We already know the zero-th order coefficients for cj>

and ty and substituting the zero-th Orderterm of </> into (9 5) gives the first

order term for ty. Substituting the zero-th order term of ty, which equals

zero, into (9 6) we see that the first order term of ty vanishes Thus

<j}\ (u, v, c) = 0 and

tyx (u, v, c) = v(\ -\-c2- 3h2 + 2a») + c(u - a)(l - u2).

Similarly we find second order terms

ty2(u, v, c) =[-v2(-6u + 2a) + 2v[-2u(u - a) + 1 - u2]c - c3v

+ (1 - u2)(u - a)[-2u(u - a) + 1 - u2]

-0-u2)(u-a)c2} (9.7)

tyi(u, v, c) _- 0. (9.8)

Continuing in this way we can solve for all the coefficients whereby we

remark that all the odd coefficients of 4> and all the even ones of ty are

zero.
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9.3 The flow on Ms : construction of the travel¬

ling wave

hi this section we prove the existence of a travelling wave solution for (9.1)
for sufficiently small y by showing that the heteroclinic orbit correspond¬

ing to (9.2) as a solution of the second order problem (Po), is a transversal

intersection of the unstable and stable manifolds of respectively u = -1

and u = 1. We consider the slow equations restricted to the invariant mani¬

fold Me in Theorem 9.2.1. The resulting reduced slow system is well de¬

fined for e = 0:

u' = v

v' = w
= ty(u, v,c, E),

<*( :<'=Vf(u).
The latter are the phase plane equations for the second order travelling
wave equation in (Pu). This system has three non-degenerate critical points

(-1, 0), (a, 0) and (1,0) and thus it follows from the implicit function

theorem that for e small there are still three critical points, which depend
in a Ck fashion on c and e. Since these three points must correspond to

the three critical points (-1,0, 0, 0), (a, 0, 0, 0) and (1 , 0, 0, 0) of the full

system (Se), they are independent of £ and c.

For s
— 0 and c = Co = av2 the travelling wave solution (9.2)

corresponds to a saddle connection in the phase plane of (S0) connecting
the saddle points (- 1,0) and (1,0). This connection is given by

V
= -L(i~u2).
V2

By the stable manifold theorem we can for small s still parametrize the

unstable manifold of (- 1, 0) and the stable manifold of (1, 0) in the phase
plane of (S'E) locally as Ck functions of u. Denoting these functions by

ho(u,c,e) md h\(u,c,E), we have/io(-l, c, s) - 0 and/i|(l, c, e) = 0.

Using smooth dependence on initial data we can continue ho and h\ to

u
— 0 if g is small. We want to show that, for possibly even smaller £,

(S'e)
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there exists a unique c — c(e) such that ho(0, c(e), s) = h\ (0, c(e), e).
Thus we introduce

G(c,e) = ho(0, c, e) - h\(0,c,e).

The existence of c(e) will follow from the implicit function theorem if we

prove that U (c0, 0)^0
For v ^ 0 we can rewrite (S'£) as

dv ty(u,v,c,£)
T

= (9 9)

du v
v '

When we first differentiate (9 9) with respect to c and set c = cq and £ = 0,

we get

:T(u) = -1 + ^/^ m^u) for WW = T^". c°, 0). (9.10)
du hç(u, c0,0) de

Since Ao(— 1, c, Ej = 0we have io(- 1) = 0 Note that all the higher order

terms of cj> have disappeared because we have set £ — 0 Similarly, we get

for w(u) = ^-(u, c0, 0), that

du h^(u,CQ,0)

and w(l) - 0. Since h0(u, c0l0) = hx(u, c0, 0) = -^(1 -u2), (9.10) and

(9 11) both read

(9 12)
dw

du
= -1 +

2(w

1-

— a)

- ul

whence, in view of w(-l) = W(l) = 0,

w(0)= -
/ (1 -s)l-"(l+s)1+ads

and

W(0)= [ (l~s)l-a(l + s)1+ads.
JO
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Thus

—(c0, 0) = w(0) - w(0) = - / (1 s)l~a(l + s)i+ads =: h < 0.

(9 13)

Hence by the implicit function theorem there exists a neighbourhood U of

0 such that we can find a Ck map c U -» E such that G(c(e), e) = 0

for all £ e t/. So we have found a connecting orbit of (5^.) from (—1,0) to

(1, 0) for s sufficiently close to 0 and thus we have proved existence of a

travelling wave equation of equation (9 1) for sufficiently small y > 0

9.4 Rate of change of the wave speed

The implicit function theorem also gives us the dependence of the wave

Speed on £ or rather on y = s2, because as we saw earlier, the only non-

vanishing terms in ty, see (9 5) and (9 6) and thereafter, are the even powers

of e. We next compute ^-.
As before we start with (9 9) and differentiating with respect to y

followed by setting y = 0 and c = Co we get, in view of (9 7) and (9.8),

—(«) = -2^2u(3u2 - 2) + ^—%(u) for z(u) = ^(«, c0, 0).
du \-u2 dy

(9 14)

Similar calculations as before show that for z and z(u)= -^-(u,co, 0)

dG
—(co, 0)

= ,{0) _ i(0)

= -2^2 f sQs2 - 2)(1 - s)'-ö(l + s)l+ads =: h,

(9 15)

whence, with (9.13), using either the calculus of residues or gamma func¬

tions,

dc
^^ /^^\

dy

dG (dG\
'

h 1
f- ,n 2 ..

= — =—- = —V2a(2öz-3)
=0 dy V de J h 5
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Note that
-j-

is negative, so by adding a fourth order perturbation to the

second order travelling wave equation the wave speed, which is negative
for our choice of a, decreases In other words the absolute value of the

wave speed increases under the perturbation of (9 1) with y = 0 with the

fourth order term in (9 1)
In the special case when a = 0 the wave speed Co = 0 and the travel¬

ling wave is an odd stationary Solution It is shown in [PTl] that this 'kink'

Solution satisfies

< «'(0, y) < -tL- for 0 < y < -. (9 16)
V2(l + 4y)ï

'

y/2 8

Here w'(0, y) is the derivative of u with respect to £. From our calculations

we have

^(O.0) = ^(O,O,0) = z(0)
dy dy

= -[ 2^2sOs2 - 2)(l - s)(l + s)ds=
—j^,

which is consistent with (9 16) and shows that the lower bound is sharp



Appendix A

Symplectic fibrations

In this appendix we will briefly discuss some facts about symplectic con¬

nections and their curvature. The manifolds under consideration are closed

i.e. compact and without boundary. All that is written down here can be

found in [MSI] and [GLS] and we have added it for the sake of complete¬
ness only. Most lemmata will be stated without proof, but we will give

precise references for the proofs. We will start by recalling some defini¬

tions.

A.l Symplectic connections

A smooth map jt : P -> B between smooth manifolds is said to be a

locally trivial fibration with fibre M (also a smooth manifold) if there

is an open cover {Ua} of B and a collection of diffeomorphisms tya :

n~l(U&) -+ UaX M such that

pr o tya = jt

where jt : ïï~l(Ua) —> Ua and pr : Ua x M -> Ua. We always assume

that B is 2-dimensional although this is not necessary. The maps tya are

called local trivialisations. Denote by Mb := jt-1 (b) the fibre over b e B

and by tya(b) : Mb - M the restriction of tya to M\, followed by the

projection onto M. The maps tyaß : Ua C\ Uß-+ Diff(M) defined by

tyaß(b) := tyß(b) o tya(b)~]

111
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for b Ua fi Uß are called the transition functions. A fibration is said

to have structure group G C Diff(M) if the transition functions all take

values in G

We are interested in the case that the tibre is a compact symplectic
manifold (M, co) and the structure group is G c Symp(M, co) i.e.

tyaß(b) e Symp(M, co)

for all a, ß and all b e Ua H Uß. In this case we call Tt : P -> B a

symplectic fibration. Each fibre Mb carries a natural symplectic structure

(x>b £ Q<2(Mb) defined by

(Ob = 4>*a(b)co
for b eUa. Since

ty*ß(b)co = (tyaß(b) o tya(b))*œ = ty*(b) o ty*ß(b)co = #0)a>

it follows that cot, is well defined.

Given a symplectic fibration TT : P —>• 5 Define Vertc := ker dn(x)

for j e P to be the vertical tangent space to the fibre. A connection is a

field of horizontal subspaces Hor^ c Tx P such that

T, P = Horr e Vert^ for all jc P. (A.l)

Now every path y : [0, 1] —> B determines a diffeomorphism

<$>y : My(Q) - Afy(l)

assigning to jco A/^(0) the endpoint X\ jWy(i) of the unique horizontal

lift of the path y. This diffeomorphism is called the holonomy of the path

y. We call a connection a symplectic connection if the holonomy along

every path preserves the symplectic structures in the fibres. Let r be a 2-

form in Q2(P) which restricts to co on the fibre that is

(Ob = 4r>

for every b Ç.B. Here lb ' Mb —> P denotes the inclusion of the tibre.

Then % defines a natural connection in the following way

Hor* = {% e Tx P | r (I, n) = 0 for all n e Vert,}. (A.2)

Conversely every connection is given by such a 2-form, see [MSI] page

211. The following lemma tells us when a connection is symplectic.
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Lemma A.1.1 Assume that x Q (P) restricts on the fibre to the sym¬

plecticform co. Then the connection dejined by x is symplectic ifand only

ifl is vertically closed. This means thatfor all x eP andfor all vertical

tangent vectors n\,r)2E Vertx, the 1-form dx(n\, ni, •) Ç. Q'(P) satisjies

dx(nu m*-)= 0,

Proof: See [MSI] Lemma 6 18 D

We call a 2-form that restricts to 0) on the fibre and which is vertically
closed a connection 2-form. One can prove the following

Theorem A.1.2 Every symplectic fibration admits a symplectic connec¬

tion.

Proof: See [GLS] Theorem 1.2.5.

It is, however, not true that every symplectic connection can be repre¬
sented by a closed 2-form.

Lemma A.1.3 Let jt : P —» B be a symplectic fibration and let V be a

symplectic connection on P. Then the following Statements are equivalent

(i) There exists a closed connection 2-form x Q2(P) generating the

connecting T via (A.2).

(ii) The holonomy ofY around any contractible loop in B is Hamiltonian.

Proof: See [MS 1] Theorem 6.2.1. D

Note that the closed 2-form generating the connection V is not unique
If Ti, Xi ß2(P) are two closed connection 2-forms generating the same

connection then they differ by n*a where cr is a closed form in Q (B)

(see [MS 1] Theorem 6 2 1 for a proof)-
A connection is called a Hamiltonian connection if the holonomy

around every loop in the base is a Hamiltonian symplectomorphism A

fibration 7t P -± B is called a Hamiltonian fibration if it admits a

Hamiltonian connection Note that Lemma A 1 3 tells us that if the base is

contractible then the existence of a closed connection 2-form implies that

the fibration is Hamiltonian The following theorem characterises Hamil¬

tonian fibrations
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Theorem A.1.4 Let tx : P -> B be a symplectic fibration whose restric¬

tion to every loop in B admits a symplectic trivialisation. (This means that

for every loop y c B there exists a diffeomorphism h \ir~x(y)^>yxM
such that h(b)*co = a>b).Then the following Statements are equivalent

(i) tx :P -* B is a Hamiltonianfibration.

(ii) The structure group reduces to Ham(M, co)

(iii) There exists a closed connection 2-form T <E Q2(P).

(iv) There exists a cohomology class a çH2(P;R) which restricts to the

class of the symplectic structure on the fibre.

Proof: See [MS 1] Theorem 6 36

A.2 Symplectic curvature

Given a symplectic connection V and a connection 2-form x generating
this connection We will explain here what we mean by the curvature of T.

From the splitting (A.l) we get a map

A2 Hor - Vert

which measures the extent to which the horizontal bundle fails to be inte-

grable Given b B. Let Tt> B be the tangent space to the base, which can

be identified with horizontal space Hor, at the point/? e P with n(p) = b

and let Mj, be the fibre above b in P. We obtain a map

A2TbB - Vectra); (v, W) i-> [vB, w*?ert.

Here v^ and w^ denote the horizontal lifts to P of the vector fields v and w

on B and [v^, u>ö]vert is the vertical component of the commutator [v^, u^],
see Figure (A.l).

This map is by definition the curvature of the connection and is de¬

noted by Qz. It vanishes if and only if the horizontal distribution is inte-

grable Since the connection is symplectic, the image of this map is con¬

tained in the Lie algebra of symplectic vector fields on Mb- The following
lemma is known as the curvature identity
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Fiber

'Horizontal'

Figure A.l: Symplectic curvature

Lemma A.2.1 (Curvature identity) Given a connection 2-form x and

two vectorfields V\, Vi \B -*• T B then the curvature satisfies

t(nx(vuv2))x := (([^^r^T^iC^fujMr+rf^uJjiCuJ)!),

where we write = to mean that the restrictions of the two sides to any

fibre agree.

Proof: See [MSI] Lemma 6.28. G

It shows in particular that if the connection is Hamiltonian, i.e. the

connection 2-form r is closed then the curvature is a globally Hamiltonian

vector field its Hamiltonian function being the restriction of (i(u1)f(u2)r)
to the fibreMft.

A.3 Coupling form and weak coupling

Guillemin, Lerman and Sternberg [GLS] address the following question:
When does a symplectic connection T admit a closed connection form?

They show that if the fibre is a compact, connected, simply connected sym¬

plectic manifold then there exists a unique closed connection 2-form xr on
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P with the property that jr*Tp = 0. This form xr is called the coupling
form associated to the symplectic connection T. Here n is half the dimen¬

sion of the fibre and tt* is the Gysin map or 'fibre integration' map. This

means that for any 2n -f 2-form x on P, jt^x is the 2-form on B given by

i(v\ A V2)n*x(b) =
/ ((ujAi)')' .

J Mb

where u, and v^ denote the horizontal lifts of V\ and Vi- Any other closed

connection 2-form is of the form

xr + TT*a,

where <r is a closed 2-form on B (for a proof see [GLS] Theorem 1.4.3).
Note that although the coupling form is closed, it is not necessarily sym¬

plectic (although it restricts to a symplectic form on the fibre, it may degen¬
erate in horizontal directions). A first attempt to make it symplectic would

be to add a horizontal correction term. This might however not work since

the coupling form itself might already have a nonzero horizontal compo¬

nent (even adding a symplectic horizontal correction term might not work).
One way to make the coupling form symplectic is via weak coupling:
Rescale the symplectic form on the fibre by a fixed (but small) positive

constant. The effect of this reseating on the coupling form is to multiply it

by this constant as well, hi [GLS] the following is shown.

The weak coupling construction: For s > 0 sufficiently small there

exists a smooth family of closed 2-forms cot on P with t 6 [0, £) such that

• coo = n*°

• [ü)(] = t[cor] + TT*[cr]eH2(P,R)

• t*bcot = t (Ob

. û)t is symplectic for all t > 0.
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The Maslov index

In this appendix we recall how the Maslov index is defined for loops of

Lagrangian subspaces of C" and how this definition is used to define a

general Maslov index for loops of Lagrangian submanifolds We closely
follow [MSI] or see [RSI].

Consider C" with the standard symplectic form coq. Denote by A(n)
the set of Lagrangian planes. The fundamental group of A(n) is isomorphic
to the integers (see e.g. [MSI] Lemma 2 29) and an explicit isomorphism
is given by the Maslov index homomorphism, ji tt\ (A(n)) -> Z, which

is defined by the following theorem

Theorem B.O.I There exists a unique junctor p, called the Maslov in¬

dex homomorphism, which assigns an integer ß(L;) to every loop of La¬

grangian subspaces R/Z —>A(n) sending t to Lt and which satisfies the

following axioms:

. (homotopy) Two loops in A(n) are homotopic if and only if they
have the same Maslov index.

. (product) For any two loops Lt e A(n) and tyt Sp(n) (the group

of linear symplectomorphisms) we have that

ß(VtLt) = fi(L,) + 2iJL(yt).

In particular, a constant loop L, = Lq has Maslov index 0.

117
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. (direct sum) If n~n' + n" and we identify A(n')© A(n") in the

obvious way with a submanifold of A(n) then

fx(L'l®Lfl>) = fJi(L't) + iJi(L't').

• (normalisation) The loop R/Z ->• A ( 1 ) defined by

L, - e""R CC = K2

has Maslov index I.

Proof: See [MSI] Theorem 2 33 D

Given a symplectic manifold (M, co) and a Lagrangian submanifold

L. We can now define the Maslov index as a homomorphism from jti(M, L)
to % as follows Given a class A tii(M, L), choose a representative

« : (D, dD) -> (M, L),

Choose a trivialisation of the tangent bundle u*TM ^ D xC". This defines

us a map yu Sl -> A(n); e2n" i-y Tu^ir,t)L where we have identified

0 D with S1 We define the Maslov index of the class A by

p.(A) = p(yu).

One can verify that this index is independent of the choice of representative

u. This Maslov index is invariant under symplectic isotopies of M.
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Taubes' argument

In the chapter 6 we have skipped over the fact that if the almost complex
structure is smooth then the manifolds in question are not Banach but only
Frechet manifolds (modelled on complete metric spaces) in which case we

Cannot apply an infinite dimensional Version of the Sard Smale theorem. To

overcome this problem Taubes (see [MS2]) showed that it suffices to prove
the theorem for Ce almost complex structures since one can deduce the

theorem for smooth structures from this, hi this appendix we will outline

Taubes' argument.

C.l From Ct to C°°

Define ^(M, co) to be the space of almost complex structures of class

<3£ on TM that are compatible with (p. Let $ (D; M, co) be the class of

all families of almost complex structures J : D -> # (M, co) of class

C£. For the sake of simplicity we will denote by Du either D+ or D~

in equation (6.4). Here u is either a solution of (6.1) or a solution of

(6.3). For brevity we will call u an J-curve. An almost complex struc¬

ture J % (D\ M, co) is called regular if Du is surjective for all rela¬

tive homology classes A and for every J -curve u. We denote this set by

#L,(t, A). Theorem 6.2.2, stating that the sets $^„(x, A) are of the sec¬

ond category (in the sense of Baire) in $(D; M, w), truely holds for this

case and it shows that #fee(r, A) is dense in %t(D; M, co) with respect to

119
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the C-topology. Define for K IV the set

$rtg,K(T,A)C$(D;M,co)

of all smooth almost complex structures J $(D; M, co) such that the

Operator Du is onto for every /-curve M that satisfies

\\du\\Loo < K.

Note that for every K, #reg(r, A) c $teg,K(t, A) and that

#reg(r, A)= f]$rc$,K(r,A).

So it suffices to prove that each $reg,K(x, A) is open and dense in

$(D; M,co) with respect to the C°°-topology in order to deduce that

$tt%(x, A) is dense in %(D;M, co) with respect to the e°°-topology.
We will first show that #reg,Ar(r> A) is open or equivalently that

$(D; M, co) \ $k^k(x, A) is closed. Given a sequence

Jv e$(D;M,co)\$Kg,K(T,A)

which converges to J 6 §,(D;M, co) in the C^-topology. Then there exists

a sequence of /u-curves uv which satisfy \\duv \\l°° < K such that the oper¬

ator DUv is not surjective. It follows from elliptic bootstrapping (see [MS2]

Appendix B) that uv has a subsequence u'v which converges uniformly with

all derivatives to a smooth /-curve li. This limit curve clearly still satisfies

\\du \\i<x><K We will now show that Du is not surjective. Assume that Du

is surjective. For every & > 0 there exists v such that DUv is not surjective
and for which we have

\\Du-DUv\\<5,

Hence for all f we have

\DuÇ-DUvÇ\<&\Çl

Since Du is not surjective we can find a v with |u| = 1 such that

dist (u,im DUv) = 1
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Since Du is surjective we can find % with Du£ = v and |£ <
ytti- So we
II ^u II

get

l=dist(u,imDHlP)=dist(DHÇ,imDHl))< \DUÇ - DUJ\

< -J_
- II ou II

•

Choose 5 = 51| Du|| then we obtain a contradiction, which shows that

Du cannot be surjective. This proves that / ^ #reg,jf(T. A) and therefore

#reg,A;<T, A) is open.

Denote the set of all / %i(D; M, co) such that the Operator Du
is onto for every /-curve u of class Ql that satisfies H^uH/,00 < K by

#fegA:(r, A). We claim that

Uë,K(r, A) = ^4giJf (t, A) n %(D; M, a>).

It is clear that %l K(x, A) C\ $(D; M, co) c $Kg,K(x, A)- To see this note

that if / $L ^(t, A) f] $(D\ M, co) then the Operator Du has tobe onto

for a group of Q1 curves, whereas for / to lie in $.Kg,K(x, A) it only has

to be onto for a group of C00 curves (a smaller group). Hence the set itself

is smaller. The other inclusion follows from elliptic regularity (we have

stated the proposition here in a general form) and remark 3.2.3 in [MS2].

Proposition C.1.1 (Elliptic regularity) Assume J %*" is an almost com¬

plex structure of class C with l> 1. Ifu'. D — Mis a J-holomorphic

curve of class Wx,l> with p> 2 then u is of class Gl.

Proof: See [MS2], Theorem B.4,1.

A similar argument as above shows that

#?eg,tf (T> A) c $e(D'< M> <*>)is °Pen w-1*-1 the C£-topology.

We already saw that

#reg(T> (o)C$t(D;M, co) is dense w.r.t. the C£-topology.

Since $^Ax, co) c %\ K(x, co) this implies that
Teg

.,
(r CiA t

Teg
#reg

A" (r' w)
c $*(&> M> (o)is dense w.r.t. the (3£-topology.
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We will show that this implies that $rtg,K.(x, co) is dense in $(D; M, co)

with respect to the C^-topology.
Let / %(D;M, co) C %l(D\M, co). Since $^$K(x, co) is dense in

$i(D\ M, co) we can C£-approximate / by an almost complex structure

/' $reg,K^Ty (o)- Now $j^x(t, co) is open and dense in $}(D; M, co)

and $(D;M, co) is dense in ^(D\M, co), so from Lemma C.1.2 it follows

that

#reg,K(r. «O n %(D; M, co) C f(D; M, co)

is dense w.r.t. the C£-topology.

So we can approximate /' by J" #£, K(x, co) Ü %(D\M, co) in the Gl-

topology. This shows that

#reg,je(r, co)C$(D;M, co)

is dense w.r.t. the C?£-topology.

The above argument holds for any I, so given a / $.(D\ M, co) choose

a sequence Jv e $reg,K(x, co) such that

\V-Jv\\e»<2-\

Thus /„ converges to / in the G°°-topology. This proves that the set

%icg,K.(x, co) is of second category and since $Kg(x, co) is a countable in¬

tersection of open and dense sets it must be dense itself.

Lemma C.1.2 Let X be a topological space. Let A c X be open and

dense and let B c X be dense. Then A C\B is dense in X

Proof: Given p e X and an open neighbourhood Vp of p. Since A is

dense in X, there exists an a A such that a Vp. Since A is open we can

find an open neighbourhood Va of a that lies entirely in Vp 0 A. Since B is

dense in X we can find ab e Va and hence b V„. Therefore b ÇB f] A.
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