
ETH Library

Formal background and algorithms

Other Conference Item

Author(s):
Biere, Armin

Publication date:
2001

Permanent link:
https://doi.org/10.3929/ethz-a-004239730

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004239730
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Formal Methods

n Goal: complete coverage
n 1st Step: precise semantics
n 2nd Step: property languages
n Tool: rigorous mathematical reasoning



Complete Coverage
n execute all possible behavior
n simulate all possible input vectors
n check abstract properties

&

&

&

&

&

&
&

&&
&& & &

0XXX XXXX
X0XX XXXX
XX0X XXXX

...
XXXX XX0X
XXXX XXX0
1111 11111

symbolic test vectors output

1
1
1

...
1
1
0

n+1
instead of

2n

n inputs



Complete Coverage
n execute all possible behavior
n simulate all possible input vectors
n check abstract properties

&

&

&

&

&

&
&

&&
&& & &

0XXX XXXX
X0XX XXXX
XX0X XXXX

...
XXXX XX0X
XXXX XXX0
1111 11111

symbolic test vectors output

1
1
1

...
1
1
0

n+1
instead of

2n

n inputs



Precise Semantics

circuit mathematics

functional
behavior

structure

hierarchy



Mathematical Representation of
Combinational Circuits

n structural representation
net lists, equations,  signed-and-graphs
propositional formulae, CNF
terms (first order), lambda-calculus (higher order)

n semantic representation
karnaugh maps, function tables
decision diagrams (BDD, BMD, ADD, ...)
term rewriting systems (no other canonical)



Equivalence Checking of
Combinational Circuits

&

a b c

&

≥1

f

ab c

g

≥1

&

∀ a,b,c.    f (a,b,c ) = g (a,b,c )

initial design optimized design



Sequential Properties

next
state
logic

register
block

sequential circuit finite automata

0 0

1 1

1 0

0 1

safety property:  can              be reached?1 1



Sequential Properties

next
state
logic

register
block

sequential circuit finite automata

liveness property:  will              always be reached?1 1

0 0

1 1

1 0

0 1



Structural Properties
library IEEE;
use IEEE.std_logic_1164.all;
entity ADDER is
  generic (N : in integer := 32);
  port(
    A, B : in  std_logic_vector(N-1 downto 0);
    CI   : in  std_logic;
    S    : out std_logic_vector(N-1 downto 0);
    COUT : out std_logic);
end ADDER;
architecture RTL of ADDER is
...
end RTL;

∀ n,a,b,s,c.    RTL(n,a,b,0,s,c)  ⇒  a + b = s + (c << n)

first order
formula

generic
parameter



Reasoning Techniques about Circuits

LINT

SAT

TP

Equivalence Checking ATPG

SAT

Model Checking
Term Rewriting

Theorem Proving

Lint CheckingDesign Rule Checking

Static Analysis



Automation   versus  Interaction

n Push-Button Tools with YES/NO Answer
n Inspection of (spurious) Counterexamples
n Abstraction, Environment Constraints
n Invariant/Lemma Generation
n Compositional Reasoning
n Tactical Proof-Construction
n Proof-Checking Tools



Automation versus Expressiveness

Expressiveness

A
ut

om
at

io
n

LINT

SAT

TP

Model Checking



n State Space Exploration
n Breadth First Search (BFS)
n Depth First Search (DFS)
n Look for Traces as well
n Find States with certain Properties
n Find Loop on which certain Properties hold
n Specify Properties with Temporal Logic

Model Checking
Goal

Start



BUS

Typical Properties (Safety)

n No Bus Contention
(drivers never access the
 bus simoultaneously)

n Some vector is a one-hot-encoding
n No grant without a previous request
n Generally: Verilog $assert() does not fail

Driver  A

Driver  B

Search for violating states starting
from the initial states (after reset)



Typical Properties (Liveness)

n requests will finally be granted
n no deadlocks or livelocks
n For instance:

root assignment in FireWire terminates

Search for unsuccessful looping traces starting
from the initial states (after reset)

req

no grant



Temporal Logic

n LTL, CTL, µ-calculus
n Mathematical language for describing

sequential properties
n Formulation of complex properties require skill

n Templates
n Verilog extensions
n Open Verification Library (OVL)
n Look at templates, learn from others, change parts

(if you are not a mathematician)



LTL

n Linear Temporal Logic fixes one execution
trace, relates properties along this traces

n Safety:       G exclusive                (globally)
n Liveness:   F initialized               (finally)
n Nesting:     G (request → F grant)
n easy to comprehend, compositional

(but harder to check)



State Explosion Problem

Block A Block CBlock B Block D

Design

|A|    defined as number of flip-flops of Block A

|Design| = |A| + |B| + |C| + |D|

||A||  defined as number of states of Block A

||Design|| = ||A|| ⋅ ||B|| ⋅ ||C|| ⋅ ||D||



State Explosion Problem Example

8 bit register

8 bit register

8 bit register

8 bit register

accumulator

control

8 bit processor
4 registers, 8 bit wide
16 bit accumulator, controlP

||P|| ≈ 28⋅28⋅28⋅28⋅216⋅216 = 24⋅8+2⋅16 = 264

State space grows exponentially
with the number of flip-flops



Explicit Model Checking

n Traverse state space in DFS
(because the search stack needs less space)

n Save reached states explicitely in hash table
n Size of hash table  ||model|| ⋅ |model|
n Limit: several millions of states (= ||model||)
n Typical Application: interacting state machines

Small Designs with small number of flip-flops (<80)
and small number of primary inputs (<20)

Otherwise usually the fastest model checking technology



Partial Order Reduction
n Factor out independent state transitions!

(typical for asynchronous communication as in
Software- and Protocol-Checking)

n May result in exponential reduction
in the number of states

Synchronization

Irre
lev

ant
Sta

tes

One Relevant Trace of States

Process
 B

transition

Process
 A
transition



Explicit Model Checking

n Invented by [Clarke,Emerson]
n Academic Tools:

n SPIN [Holzmann]
C like input language (PROMELA)
partial order reduction, large user base,
applicable to protocol & software validation

n Murphi [Dill]
hardware oriented input language
symmetry reduction, smaller user base



Symbolic Model Checking

n Explicit Model Checking:
number of states limited (< 1010)

n Symbolic Representation of States:
potentially many more states (> 1020)

n However: Complexity Theory tells us that model
checking is PSPACE hard in the number of state
bits (flip-flops), so probably exponential!

n In Practice: works for hundreds of state-bits



Symbolic Model Checking

n Set of States instead of Single States
n Represent Set of States with their

Characteristic Functions
n Usually Boolean Encoding leads to

Boolean Characteristic Functions
n Set Operations as Boolean Operations
n Efficient Data Structure for Boolean Functions:

Binary Decision Diagrams (BDDs)



Set of States instead of Single States

Start States
2nd Image

Breadth First Search (BFS)

1st Image

3rd Image



Characteristic Functions for Sets

0 0

1 1

1 0

0 1

0  1 1

1  0 0

0   0 0

1  1 1
x ⋅  (1 - y)  +  (1 - x) ⋅  y

Boolean Expression

Set of States
Function



0 0

1 1

1 0

0 1

Symbolic Operations on Set of States

x ⋅  (1 - y)  +  (1 - x) ⋅  y

(1 - x)

intersection as conjunction

(1 - x) ⋅ 
simplifies to

(1 - x) ⋅  y

x ⋅  (1 - y)  +  (1 - x) ⋅  y



Binary Decision Diagrams

n Fixed global variable order
n Reduced Ordered BDDs by [Bryant]
n Canonical data structure for

boolean functions
n Efficient (linear) boolean operations
n Good variable orders are necessary …
n … but often do not exist (e.g. multipliers)



Binary Decision Diagrams

x

y

0 1

if x then
  if y then 1
  else 0
else 0

x ⋅ y

x

y

0 1

y

if x then
  if y then 1
  else 0
else
  if y then 0
  else 1

x = y



BDD Reduction:
Merge Equivalent Nodes

xx

yy

… …

x

yy

… …

one level deep look-ahead



BDD Reduction:
Eliminate Redundant Nodes

one level deep look-ahead

x

y

…

y

…



Recursive Step for
Conjunction of BDDs

x

g0 g1

x

f0 f1

&
f g

x

g0 g1f1f0

&&



Generic BDD Operation Apply

cofactors(f,g)
  x = min(topvar(f),topvar(g))
  (f0,f1) = (x == topvar(f)) ? (lo(f), hi(f)) : (f,f)
  (g0,g1) = (x == topvar(g)) ? (lo(g), hi(g)) : (g,g)
  return (x,f0,f1,g0,g1)

apply(op,f,g)
  if({f,g} subset {0,1}) then return op(f,g)
  if(cached(op,f,g)) return cache(op,f,g)
  (x,f0,f1,g0,g1) = cofactors(f,g)
  l = apply(op,f0,g0)
  r = apply(op,f1,g1)
  n = node(x,l,r)
  cache(op,f,g) = n
  return n

generic
operator

Like
 AND,

 OR, etc

reduce locally before
generating new nodere

cu
rs

io
n

base case



Variable Order for
Comparison of Vectors

(u0, u1, u2, u3) = (v0, v1, v2, v3)

u0

u1

u2

u3

v0 v0

v1 v1

v2v2

v3v3

1

u0

u1

u2

v0

v1
v1

v2v2
v3

1

u1

u2 u2u2

u3 u3 u3 u3 u3 u3 u3 u3

v0 v0 v0v0 v0 v0 v0

v1v1



Variable Ordering
in Practice

n Static Heuristics
n Use Circuit Structure (e.g. DFS occurrence)
n Model Checking usually does not benefit

n Dynamic Reordering [Rudell]
n Inplace Swapping of variable levels
n Necessary (no success without reordering)
n Very Expensive (often dominates runtimes)
n Fails (sometimes good orders do not exists)



Bounded Model Checking

n Invented by [Biere,Cimatti,Clarke,Zhu]
n No Calculation of Images
n Symbolic Unrolling of Transition Relation
n Incomplete in Practice:

Can not show absence of a bug in general
n SAT procedures for detecting reachability of a

bug in a fixed number of time steps
n No Variable Ordering Problem:

much larger designs (thousands of state bits)



Bounded Unrolling

Monitor Generated from Temporal Formula

5 copies of state bits

4 copies of primary inputs4 copies of transition logic



Capacity of Algorithms for
Checking Sequential Properties

Symbolic MC (BDD)

Explicit MC

Bounded MC (SAT)

Simulation > 10000

100-500

30-100

200-2000

typical number of
state bits (flip-flops)

(primary inputs counted as state bits)

complete

incomplete



Recipe for Applying Formal Methods

n Theorem Proving for checking algorithms
n Equivalence Checking for refinements
n Model Checking:

n Check protocols and complex interacting state
machines in high-level design

n Check sequential properties on RTL-level
n Simulation
n Explicit Model Checking
n Bounded Model Checking
n BDD based Model Checking



Commercial Model Checkers

n 0-in
n Avanti
n Averant
n Cadence

n Innologic
n Real Intent
n Synopsys
n Verplex

...


