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Abstract

In this paper we present an extension of the wra for solving large systems

of odes� The wra is well suited for parallel computation because it decomposes

the solution space into several disjoint subspaces� Allowing the subspaces to

overlap� i�e� dropping the assumption of disjointness� we obtain an extension

of this algorithm� This new algorithm the so called msa is also well suited for

parallel computation� As numerical examples demonstrate this overlapping of

the subsystems heavily reduces the computation time�
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�� Introduction

In the area of simulation of large electrical circuits the equations describing the
circuit often yield a m dimensional nonlinear sti� initial value problem


���� x�
t� � f
t� x
t�� x
�� � x�

with t � ��� T �� x � C�
��� T �� IRm�� f � C
��� T �� IRm� IRm�� x� � IRm� If one has to
simulate a Very Large Scale Integrated 
VLSI� circuit the dimension of the problem
can reach up to more than ����� �WhSa���� Very often the circuit consists of fast
and slow components and the fast components force one to use implicit integration
methods� Therefore one must solve a m dimensional nonlinear system of equations
at each timepoint before advancing to the next timepoint�

In the beginning of the �����s a new approach for solving these problems was
developed at the Electronic Research Laboratory at Berkeley that circumvents these
di�culties� In this approach called waveform relaxation algorithm the full system is
decomposed into smaller subsystems which can be solved independently by di�er�
ent processors on a parallel computer� The subsystems are integrated over certain
small time intervals so called windows� Inputs from other subsystems are taken
from the previous iteration� The advantages of this method are obviously not only
the possibility to use several processors in parallel and the smaller dimension of the
subsystems but also to use di�erent step sizes for di�erent subsystems� Subsystems
with slow components only can be integrated with larger step sizes than those con�
taining fast components� A major drawback is the slow convergence of the iteration
in case of a strong coupling between the subsystems� Moreover much more mem�
ory is needed to store all values of each component at each timepoint of the last
iteration�

Multi�splitting methods were �rst introduced by O�Leary and White in �OLWh���
for solving large linear system of equations on a parallel computer� This idea was
extended to nonlinear problems by White in �Whit�
�� In this paper we adapt the
ideas of O�Leary and White and study the use of multi�splitting methods for solving
large systems of ordinary di�erential equations� It turns out that with a special set
of parameters one recovers the waveform relaxation algorithm� We restrict ourselves
to linear problems� this means that we are dealing only with linear m�dimensional
initial value problems


���� x�
t� �Ax
t� � f
t� x
�� � x�

with t � ��� T �� A � IRm�m� f � C
��� T �� IRm�� x� � IRm� x � C�
��� T �� IRm��

In the second section of this paper we brie�y review the usual formulation of the
waveform relaxation algorithm� The third section contains the presentation of the
multi�splitting algorithm a �rst analysis of which is given in the fourth section� In
the �fth section we discuss a practical implementation of the multi�splitting algo�
rithm� In the last part we present some numerical examples which demonstrate the
faster convergence of the multi�splitting algorithm when overlapping splittings are
used�

�



Let us introduce some notation� In order to avoid too many indices	 we refer to
the element in the i�th row and j�th column of a matrix C by C
i� j�� The matrix
Is indicates the s� s identitymatrix�

�� The Waveform Relaxation Algorithm

For linear initial value problems 
���� the waveform relaxation algorithm is based
on a splitting of the matrix A into A � M �N which yields


���� x�
t� �Mx
t� � Nx
t� � f
t� x
�� � x��

This is written as an iteration where the right hand side is taken as an input to the
iteration


���� x�n��
t� �Mxn��
t� � Nxn
t� � f
t� xn��
�� � x��

The starting function x�
t� is chosen as constant initial values x�
t� � x�� In the
case of Block�Gauss�Jacobi the matrix M is chosen to be block diagonal and in the
case of Block�Gauss�Seidel M has block lower triangular structure� With a block
diagonal M the algorithm is well suited for parallel computers� Suppose

M �

�
BBB�
D�

D� �
� � �

� Dr

�
CCCA

where we assume that each Dj is a real mj � mj matrix� By this the problem is
naturally decomposed into r subsystems� On a parallel computer each subsystem
is now assigned to a processor and the solution of each subsystem is computed in
parallel� This is done not only for one timepoint but over the whole domain of
integration� ��� T �� After each subsystem has been solved the index of the iteration
is increased and another iteration is performed until convergence has occurred�

We observe that the sum of the dimensions of the subsystems always equals the
dimension of the underlying problem� In the next section we will show that it
is possible to allow the sum of the dimensions of the subsystems to exceed the
dimension of the original problem�

�� The Multi�splitting Algorithm

In ���� O�Leary and White presented a method for solving Ax � b on a parallel
computer by splitting the matrix A not just once but several times into A � Ml �

�It has turned out that it is more advantageous to break the domain of integration into time
blocks so called windows ��� T��� �T�� T��� � � � � �Ts� T � and to perform the integration only on one
window� After convergence is reached on that particular window one proceeds to the next window�
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Nll � �� � � � � L� Frommer and Mayer demonstrated in �FrMa��� that it can have
computational advantages to split A more than once and to overlap the subsystems�

We need the following de�nition�

De�nition ����
Let L � � be a �xed integer which will be called the number of splittings� Let
A�Ml� Nl� El be real m � m matrices� The set of ordered triples 
Ml� Nl� El�l �
�� � � � � L is called a multi�splitting of A if

�i�


���� A � Ml �Nl l � �� � � � � L

�ii� The matrices El are diagonal matrices and satisfy the consistency condition


����
LX
l��

El � Im�

Using 
���� we can rewrite 
���� as

x�
t� �Mlx
t� � Nlx
t� � f
t� x
�� � x� l � �� � � � � L

As in the waveform relaxation algorithm we will take the right hand side as input
and the left hand side as unknown� Again this is solved in an iterative way


���� y�l�n
t� �Mlyl�n
t� � Nlxn
t� � fl
t�� yl�n
�� � x�l � �� � � � � L

After having solved each subsystem we compute a new approximation to the solution
of 
���� by


���� xn��
t� �
LX
l��

Elyl�n
t�

De�nition ��	�
For any l � f�� � � � � Lg we will refer to

y�l
t� �Mlyl
t� � Nlx
t� � f
t� yl
�� � x�

as a subsystem of 
�����

Remark ����
If we take a closer look at 
���� we see that there is no interaction between two dif�
ferent subsystems� Therefore we can solve these subsystems on di�erent processors
in parallel�

Remark ��
�
From 
���� we see that we do not need to compute those components i of yl�n
t�
where El
i� i� � �� Therefore in practical implementations we will not compute

�



these components at all� We will return to this aspect in a discussion of a practical
implementation in section ��

We conclude this section by describing the Multi�splitting Algorithm in an al�
gorithmic way �

initialize
x�
t� � x� �t � ��� T �
n���

repeat
solve for l � �� � � � � L f in parallel g

y�l�n
t� �Mlyl�n
t� � Nlxn
t� � f
t� yl�n
�� � x�

xn��
t� ��
PL

l��Elyl�n
t�
until stopping criterion

�� The Analysis of the Multi�splitting Algorithm

In �Neva��� Nevanlinna analyzed the waveform relaxation algorithm� In this section
we will adapt the means presented in that paper to analyze the multi�splitting
algorithm�
First we introduce the following notation


���� kl
t� � exp
�tMl�Nl for l � �� � � � � L�

kl
t� is the kernel of the linear integral operator de�ned by


���� Klu
t� �
Z t

�
kl
t� s�u
s� ds for l � �� � � � � L�

If we denote


���� �l
t� � exp
�tMl�x� �
Z t

�
exp

s� t�Ml�f
s� ds for l � �� � � � � L

we can write the solution yl
t� of a subsystem 
���� using 
�����
���� as

yl�n
t� � Klxn
t� � �l
t�

Having computed the solution of each subsystem we have to weight the solutions
by the El matrices� Then we sum the weighted solutions over all subsystems to get
a new approximation to the solution of 
����� Therefore the following notation will
be used frequently

�k
t� �
LX
l��

Elkl
t�

�K u
t� �
LX
l��

ElKlu
t�

��
t� �
LX
l��

El�l
t�

�

�



Using this notation the next iteration can be written as


���� xn��
t� � �K xn
t� � ��
t�

The following lemma is obvious and is given without proof�

Lemma 
���
x
t� is the exact solution of 
���� if and only if x
t� is also a solution of each subsystem

x
t� � Klx
t� � �l
t� for l � �� � � � � L�

We shall make use of Lemma ��� in the following

Lemma 
�	�
x
t� is the solution of 
���� if and only if x
t� is the solution of the �xpoint equation
x
t� � �K x
t� � ��
t��

Proof�
Let x
t� be the solution of 
����� We get for l � �� � � � � L�

Elx
t� � ElKlx
t� � El�l
t�

�
LX
l��

Elx
t� �
LX
l��

ElKlx
t� �
LX
l��

El�l
t�

� x
t� � �K x
t� � ��
t��

The other direction of the lemma will be shown later�

Disregarding convergence one can verify by substitution that


���� x
t� �
�X
i��

�K
i
��
t��

is a formal solution of the �xpoint equation� Using 
���� inductively yields�

Lemma 
���
For n � � we obtain


��
� xn
t� � �K
n
x�
t� �

n��X
i��

�K
i
��
t��

We observe that the convergence of the iteration depends only on the behaviour of
the linear operator �K

n
�

Before we show that the �xpoint equation has unique solution	 we take a closer look
at the operator �K

n
�

�K
n
u
t� �

LX
l���

LX
l���

� � �
LX

ln��

El�Kl�El�Kl� � � �ElnKlnu
t��

The next lemma shows that �K
n
can be regarded as an n�fold convolution�

�



Lemma 
�
�
Let �ki� with i � IN be recursively de�ned by

�k�i���� � �k � �ki�

�k � u
t� �
Z t

�

�k
t� s�u
s�ds

Then


���� �K
n
u
t� �

Z t

�

�kn�
t� s�u
s�ds�

Proof�
The proof is done by induction with respect to n�
For n � � we get

�K u
t� �
LX
l��

El

Z t

�
kl
t� s�u
s� ds �

Z t

�

�k
t� s�u
s� ds

Assuming that 
���� holds for some n we get for n� �

�K
n��

u
t� � �K 
 �K
n
u
t��

� �K 

Z t

�

�kn�
t� s�u
s� ds�

�
Z t

�

�k
t� s�
Z s

�

�kn�
s� v�u
v� dv ds

�
Z t

�

Z t

v

�k
t� s� �kn�
s� v� ds u
v� dv

Substituting now w � s� v yields

�K
n��

u
t� �
Z t

�

Z t�v

�

�k

t� v�� w� �kn�
w� dw u
v� dv

�
Z t

�

�k � �kn�
t� v�u
v� dv

�
Z t

�

�k�n����
t� v�u
v�dv

If we want to show convergence of the series 
���� we need that the operator �K is a
contraction operator�

Let us introduce the following norm�


���� kukT � max
t����T 	

ju
t�j

where j 	 j denotes any vector norm� By k 	 kT we also denote the induced matrix or
operator norm�






Since ��� T � is a �nite interval we can suppose that for the kernel kl the following
bound holds�


���� kklkT 
 Cl for l � �� � � � � L

We de�ne


����� C �
LX
l��

Cl and assume kElkT 
 E for l � �� � � � � L�

Using 
���� and 
����� we get the following bound�


����� j�k
t�j 
 k�kkT 
 CE �� �C�

Before estimating �K
n
we derive a bound for its kernel �kn��

Lemma 
���
For the kernel of the iteration operator �K

n�
we have

j�kn�
t�j 
 �C
Z t

�
j�k�n����
s�j ds

and


����� j�kn�
t�j 
 �C

 �Ct�n��


n� ���
�

Proof�

j�kn�
t�j � j�k � �k�n����
t�j � j
Z t

�

�k
t� s��k�n����
s� dsj



Z t

�
j�k
t� s�j j�k�n����
s�j ds



Z t

�
k�kkT j�k

�n����
s�j ds 
 �C
Z t

�
j�k�n����
s�j ds

�From this 
����� follows by induction�

Now we derive a bound for the iteration operator �K
n
itself� Using Lemma ��� and

Lemma ��� we get�


����� k �K
n
kT 



 �CT �n

n�

since

k �K
n
kT � sup

kukT��
k �K

n
ukT � sup

kukT��
sup

t����T 	
j �K

n
u
t�j

� sup
kukT��

sup
t����T 	

j
Z t

�

�kn�
t� s�u
s�dsj

�




 sup
kukT��

sup
t����T 	

j
Z t

�

�kn�
t� s�kukTdsj

� sup
t����T 	

Z t

�
j�kn�
t� s�jds

� sup
t����T 	

Z t

�
j�kn�
v�jdv



Z T

�

�Cn vn��


n� ���
dv




 �CT �n

n�

We return to the �xpoint equation and we will show that it has a unique solution�

Since k �KkT 
 �CT we can �nd an interval ��� T�� with T� � � �C� Therefore the
operator �K is a contraction operator on that particular interval� It is easily seen
that with 
����� we also have convergence of the series 
����� We now complete the
proof of Lemma ����

Proof� �Continuation of Lemma 
�	�
We have that

x
t� �
�X
i��

�K
i
��
t�

is a solution of the �xpoint equation� Since �K is a contraction operator on su�ciently
small intervals the solution of the �xpoint equation is unique� Moreover we already
know that if x
t� is a solution of 
���� then it is also a solution of the �xpoint
equation� Combining this results completes the proof�

Remark 
���
This approach of splitting the domain of integration ��� T � into subintervals ��� T��� �T�� T��� � � � � �Ts� T �
so called windows is used in implementations to accelerate the rate of convergence�
The iteration is performed only on one particular window �Ti��� Ti� and one proceeds
to the next interval �Ti� Ti��� after convergence has occurred on �Ti��� Ti��

If we now subtract 
��
� from 
���� we have a �rst form of the error of the n�th
approximation�

x
t�� xn
t� �
�X
i�n

�K
i
��
t�� �K

n
x�
t��

Using this result we can prove the following lemma�

Lemma 
�
�
The error of the n�th approximation is bounded by


����� kx� xnkT 


 �CT �n

n�

�
exp
 �CT �k ��kT � kx�kT

�

�



Proof� Using 
����� 
��
� and 
����� we have

kx� xnkT 
 max
t����T 	

�X
i�n

j �K
i
��
t�� �K

n
x�
t�j



�X
i�n

k �K
i
kT k ��kT � k �K

n
kT kx�kT



�X
i�n


 �CT �i

i�
k ��kT �


 �CT �n

n�
kx�kT




 �CT �n

n�

�
�X
i��


 �CT �ii�


i� n��
k ��kT � kx�kT

�

Using the inequality
a�


a� b��



�

b�

completes the proof�

�From Lemma ��� we see that we can achieve convergence of the multi�splitting
algorithm on a �xed interval ��� T �� If T is large however	 the convergence can get
very slow� It is possible to circumvent this di�culty by introducing an exponentially
weighted norm	 in which convergence can be achieved on ������ We will discuss
this di�erent approach in future work�

�� A Multi�Splitting based on Overlapping Block

Decomposition

In this section we discuss a practical implementation of the multi�splitting algorithm
which is based on an overlapping block decomposition of the matrix A� In section �
we have seen that we do not need to compute the i�th component of yl�n whenever
El
i� i� � �� We give a formalism to eliminate all these unused components� This
results in a reduction of the dimensions of the subsystems�

We need the following de�nition�

De�nition ����
Let S � f�� � � � �mg which will be referred to as the set of the components of
problem ���	��

First we choose L subsets S�� S�� � � � � SL of S satisfying the condition

L�
l��

Sl � S

We get immediately that if ml denotes the number of elements of Sl for l � �� � � � � L
then

LX
l��

ml � m

�



Furthermore we have equality if the S�� � � � � SL are disjoint�

De�nition ��	�
If there exists at least one pair of indices i �� j with i� j � f�� � � � � Lg so that
Si 
 Sj �� � then we will call a multi�splitting an overlapping multi�splitting
otherwise it will be named a disjoint multi�splitting�

Remark ����
We use a block decomposition which means if i � Sl and i � r � Sl then j � Sl

with i 
 j 
 i� r� We overlap only adjoining subsystems where moreover we only
encounter the case that one component is in at most two subsystems�

For simplicity we assume that the number of overlapping components between two
adjoining subsystems is constant�

De�nition ��
�
By overlap k we mean that

k � jSl 
 Sl��j for l � �� � � � � L� ��

Next we de�ne the elements of the El matrices by setting those diagonal elements
El
i� i� nonzero	 where the according index i is an element of Sl� Furthermore we
require that the consistency condition 
���� is satis�ed�

El
i� j� �

	

�

� if i �� j
� if i � j and i �� Sl

�� � if i � j and i � Sl

Now we know which components i of the l�th subsystem will be weighted by a
factor El
i� i� �� � and which will be dropped by multiplying it with El
i� i� � ��
By computing values for components that will be thrown away afterwards not only
computing time is wasted but also more memory is used� Therefore we will compute
a component i of subsystem l only if El
i� i� �� � or equivalently if i � Sl� Using
the subsets S�� S�� � � � � SL we can de�ne L projection matrices P�� P�� � � � � PL in the
following way

Pl
i� j� �

	

�
� if i �� j
� if i � j and i �� Sl

� if i � j and i � Sl

where i� j � f�� � � � �mg and l � f�� � � � � Lg i�e� only those diagonal elements of Pl

are nonzero where the according index is an element of Sl�

By using these projection matrices we project problem 
���� into L di�erent sub�
spaces� We solve now the projected problems in each subspace but we use compo�
nents from outside the particular subspace as an input�

Remark ����
In a disjoint multi�splitting the matrices Pl and El coincide�

Lemma ����
The following relations hold� 
i� PlEl � ElPl � El for l � �� � � � � L 
ii� If a disjoint
multi�splitting is used then EiEj � EjEi � � for i �� j�

��



Recalling the algorithm we see that the iterate xn�� is computed by

xn��
t� �
LX
l��

Elyl�n
t� �
LX
l��

ElPlyl�n
t�

where Lemma ��
 
i� is used� This means that in the l�th subsystem we only have
to compute Plyl�n� In order to have only the components i with i � Sl as unknowns
in the l�th subsystem in a practical implementation of the algorithm not the matrix
A but the projected matrix PlA is split� This saves computing time and much less
memory is needed� Therefore we use from now on

PlA � Ml �Nl l � �� � � � � L

Remark ��
�
It is easy to see that the case L � � yields exactly the waveform relaxation algorithm
as presented in section �� Moreover the Block Gauss Jacobi iteration in Example
��� can be expressed as a disjoint multi�splitting with L � r and Ml � PlAPl�

Example ����
We consider the ��dimensional problem�

x�
t� �

�
BBBBB�

� �� � � �
�� � �� � �
� �� � �� �
� � �� � ��
� � � �� �

�
CCCCCA x
t� �

�
BBBBB�

��
�
�
�
��

�
CCCCCA � x
�� �

�
BBBBB�

�
�
�
�
�

�
CCCCCA

where x
t� � 
x�
t�� x�
t�� x

t�� x�
t�� x�
t����

The splitting is given by the subsets of S�

Block Gauss Jacobi	 S� � f�� �g � S� � f�� �� �g�

M �

�
BBBBB�

� �� � � �
�� � � � �
� � � �� �
� � �� � ��
� � � �� �

�
CCCCCA N �

�
BBBBB�

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
CCCCCA

Multi�Splitting	 S� � f�� �� �� �g � S� � f�� �� �g�

M� �

�
BBBBB�

� �� � � �
�� � �� � �
� �� � �� �
� � �� � �
� � � � �

�
CCCCCA N� �

�
BBBBB�

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
CCCCCA

M� �

�
BBBBB�

� � � � �
� � � � �
� � � �� �
� � �� � ��
� � � �� �

�
CCCCCA N� �

�
BBBBB�

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
CCCCCA

��



E� �

�
BBBBB�

� � � � �
� � � � �
� � s� � �
� � � s� �
� � � � � �

�
CCCCCA E� �

�
BBBBB�

� � � � �
� � � � �
� � � � s� � �
� � � � � s� �
� � � � �

�
CCCCCA

with � 
 s�� s� 
 ��

�� Numerical Results

In this section we present some numerical experiments that have the same charac�
teristics� The number of iterations necessary to satisfy a given accuracy is for the
multi�splitting algorithm always lower than for the waveform relaxation algorithm�
Throughout this section we will refer to the waveform relaxation algorithm as a
disjoint multi�splitting or as a multi�splitting with overlap ��

The problem�
We always use the same dimension of the test problem	 the same number of time�
points and the same interval of integration� The dimension m is always ���	 the
number of timepoints is ��� and the interval of integration is ��� T � � ��� ��� As the
right hand side function f
t� we have chosen� f
t� � �� sin
�t��
We vary the number of subsystems and the number of overlapping components�
The matrix A is de�ned as follows�
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As a stopping criterion we require that all components i of the solution satisfy
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X
t

jxn���i
t�� xn�i
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 ���
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where t is a timepoint� The subsystems were solved with the semi�implicit mid�point
rule �BaDe��� and as already mentioned constant stepsize h � �

��
�
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How do we split�
Since the structure of the matrixA is simple we have chosen the subsets S�� S�� � � � � SL

that each subset contains at least m

L
elements� If L is not a factor of m	 i�e�

m � �L � � with � �� � we add to the last � subsets SL����� � � � � SL one ele�
ment� If we use overlap j we add to all but the last subsystem j elements� By this
we achieve that the workload is distributed evenly among the di�erent processors if
a parallel computer is used�
This strategy is illustrated in Example ��� with m � �� L � � and overlap � and
overlap � respectively�
How do we choose the elements of the El matrices�
It seems natural to use as a �rst approach El
i� i� �

�
�
whenever component i of the

l�th subsystem is in two subsystems�
The number of iterations necessary to satisfy a given stopping criterion is as expected
a monotone decreasing function of the number of overlapping components� If we
increase the overlap however the number of necessary iterations suddenly increases�
We can explain this by considering a component i for which either i� � or i � � is
not an element of the same subset� Lets suppose that i � Sl� i�� �� Sl	 i�� � Sl���
We have two approximate solutions of component i	 one solution computed from
subsystem l and one solution computed from subsystem l��� Since the phenomenon
only occurs if we use a large number of overlapping components we can assume that
i � �� i � �� i� i � � and i � � are elements of Sl��� Therefore we expect that the
computation of component i from the subsystem l � � is more accurate than the
other computation� But with the above mentioned weighting scheme we use the
same weight for both solutions and we introduce an error that causes an increased
number of iteration steps required�
Instead of the above choice of El we now give a di�erent setting of the weight
matrices wherefore we need the following de�nition�

De�nition ����
We call a component i of Sl a border component if 
i��� �� Sl or 
i��� �� Sl� The
lower border component of Sl is denoted by lmin and the upper border component is
denoted by lmax� For the �rst and last subsystem we de�ne �min � � and Lmax � m�
The distance dl
i� from the border of component i is de�ned as dl
i� � lmax� i�

Suppose we use overlap k� We propose the following choice of weights for the
overlapping components i � lmax � k � �� � � � � lmax

El
i� i� �
dl
i� � �

overlap � �
for l � �� � � � L� ��

By this we de�ne the last k diagonal elements of E�� E�� � � � � EL��� Since the El ma�
trices satisfy the consistency condition the �rst k diagonal elements of E�� E
� � � � � EL

are also uniquely de�ned� Using this weight scheme we get for the matrices E� and
E� of Example ��� with overlap k � ��
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We will vary the number of splittings L and the number of overlapping components�
The quantity that is given in the tables is the necessary number of iterations that


��� is satis�ed�

Table �� number of subsystems L � �
overlap � � � � � � 
 � � �
iterations � � 
 � � � � � � �
time�!� ��� �� �� 
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