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On robust exponential convergence of hp �nite

element methods for problems with boundary layers
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December 	� 
��	

Abstract

The hp version of the �nite element method for a one dimensional� singularly

perturbed elliptic�elliptic model problem with analytic input data is considered�

It is shown that the use of piecewise polynomials of degree p on a mesh consisting

of three suitably chosen elements leads to robust exponential convergence� i�e��

the rate of convergence depends only on the input data and is independent of

the perturbation parameter�
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� Introduction

The approximation of singularly perturbed problems by numerical methods has lately
attracted much attention�we mention here only the recent books ���� ���� ��� and the
many references therein	 The methods for the approximation of singularly perturbed
problems discussed in the literature are mostly concerned with robust h versions� that
is� they aim at proving that the error 
in some suitable norm� is O
hp� in the mesh
width h for some p � � uniformly in the perturbation parameter	 Schemes like this
lead to algebraic rates of convergence only	 Often� however� the solution is analytic 
or
piecewise analytic�	 Then spectral approximation� i	e	� approximation with piecewise
polynomials of increasingly higher degree leads to exponential approximation rates	
Of course� as the solution depends on the singular perturbation parameter� we expect
the rates of the exponential approximability to depend on that parameter as well	
The aim of the present paper is to show for a model problem that indeed under the
assumption of analyticity of the input data� spectral approximation of the solution leads
to exponential convergence and that� with the proper mesh design� robust exponentially
converging hp 
nite element methods 
hp FEM� are available	
Robust exponential convergence of hp FEM for an elliptic�elliptic problem with bound�
ary layers was 
rst proved in ���	 However� the analysis of ��� is restricted to problems
of the form 
�� with polynomial right hand side and constant coe�cients	 The pur�
pose of this note is to extend these results to general analytic right hand sides� we
show that the �Three�element� mesh approach of ��� leads indeed to robust exponential
convergence for general analytic right hand sides	 The novel feature in the proof over
the techniques used in ��� is a more careful use of the classical asymptotic expansions
available for problems of the type 
��	 More precisely� the analyticity of the input data
gives us complete control over the terms arising in the classical asymptotic expan�
sions and allows us to bound the remainder explicitly both in terms of the perturbation
parameter d and the expansion orderM 	 In particular� this explicit control over the re�
mainder is the essential ingredient for the proof of robust exponential approximability	
An additional extension over the results of ��� is that the case of variable coe�cients
is considered	
Whereas the books mentioned above are mostly interested in singularly perturbed
problems of elliptic�hyperbolic type� we will discuss here a singularly perturbed elliptic�
elliptic reaction�di�usion equation	 The solution of that equation is the archetype of
the boundary layers arising in solid mechanics� for example� in various plate and shell
models at small thickness	 The results of this paper therefore give insight in how to
design appropriate meshes for two or three dimensional problems	
Although we analyze in this paper a simple one dimensional model problem� the scope
is wider	 The main tool for our robust exponential approximability result is the ability
to use the analyticity of the input data to control the classical asymptotic expansions in
terms of the perturbation parameter and the expansion order	 Thus� whenever classi�
cal asymptotic expansions are available� the techniques employed in the present paper
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may be used to obtain similar approximation results	 For example� the one dimen�
sional convection�di�usion equation with analytic coe�cients falls into that category	
In ���� ���� the analysis of the present paper was successfully extended to a two dimen�
sional reaction�di�usion equation for the design of an hp FEM converging at a robust
exponential rate	
Let us note that the robust exponential approximability obtained in this paper yields
automatically exponential rates of convergence of the 
nite element method for our
elliptic�ellipticmodel problem as the FEM is trivially stable	 The situation is more deli�
cate in elliptic�hyperbolic equations� a typical representative of which is the convection�
di�usion equation	 Whereas the approximability results of this paper hold true for the
convection�di�usion equation as well� the stability of 
nite element methods for that
equation is a non�trivial issue	 A stable hpmethod for the convection�di�usion equation
featuring robust exponential rates of convergence will be presented in ���	
In the elliptic�elliptic model problem analyzed in this paper the solution is analytic up
to the boundary	 Likewise the limiting solution� i	e	� the solution of the problem when
the perturbation parameter tends to zero� is analytic up to the boundary	 In many cases
of practical importance� however� neither the solution nor the limiting solution have
that much smoothness	 Furthermore� the limiting solution may have a substantially
di�erent character	 For example� in the case of the Reissner�Mindlin plate model with
polygonal mid�plane� the solution has corner singularities	 The limiting solution� which
solves the Kirchho� equation on a polygonal domain� has also corner singularities�
albeit of a di�erent type than those of the solution of the Reissner�Mindlin model	
We model this behavior in our one dimensional numerical studies by using singular
right hand sides	 Of course� such a situation is not covered by the mathematical
theory presented in this paper as the classical asymptotic expansions have no meaning	
However� we show numerically that a �union� of the �Three�element� mesh to resolve
the boundary layer and a geometrically graded mesh� which is well suited to absorb
both the singular behavior of the solution as well as the limiting solution� leads to very
satisfactory schemes	

��� The model problem

We consider the approximation by the p and hp version of the 
nite element method
of the following singularly perturbed boundary value problem�

Ldud �� �d�u��d � b
x�ud � f on � �� 
��� ���
u
��� � �� � R�


��

where f � b are functions analytic on the closed interval I �� ���� ��� b
x� � b� � � on I�
and d � 
�� �� is a small parameter which may approach zero	 We will make henceforth
the assumption that there are Cf � �f � Cb� �b � � such that

kf �n�kL��I� � Cf�
n
f n�� �n � N� � 
��

kb�n�kL��I� � Cb�
n
b n�� �n � N� � 
��

b � b� � � on I� 
��
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The weak formulation of this boundary value problem is


nd ud � H�
D
�� such that Bd
ud� v� �

Z
�
fv dx �v � H�

� 
�� 
��

where we set

Bd
ud� v� �
Z
�

�
d�u�dv

� � b
x�udv
�
dx�

H�
D
�� � fu � H�
�� j u
��� � ��� u
�� � ��g�

H�
� 
�� � fu � H�
�� j u
��� � �g�

and we denote H�
�� the usual Sobolev space of all square integrable functions whose

distributional� derivative is also square integrable	 Associated with the weak formu�
lation 
�� is an �energy norm�

kukd �� 
Bd
u� u��
��� � 
��

We have the following a�priori estimate for the solution ud of 
��

kudkd � kfkL���� � C
�
j��j� j��j

�
� C � �

q
d��� � ��� � �

q
���� 
��

In the 
nite element method� for a given 
nite dimensional space S� � H�
� 
�� of

dimension N and a 
xed u� � H�
D
�� 
e	g	� a linear function�� the a�ne spaces H

�
D
��

and H�
� 
�� are replaced with a�ne spaces SD �� u� � S� � H�

D
��� S� � H�
� 
�� of

dimension N 	 The 
nite element solution is then given by


nd uFE � SD such that Bd
u� v� �
Z
�
fv dx �v � S�� 
��

By the well�known orthogonality relation the 
nite element solution uFE is the best
approximant of the exact solution u in the energy norm� i	e	�

ku� uFEkd � inf
v�SD

ku� vkd� 
��

This paper is therefore only concerned with the approximation properties of the spaces
SD �� S
�� p� �H�

D
�� de
ned ahead in Section �	
Because the right hand side f and the coe�cient b are analytic� the solution ud is also
analytic and therefore spectral approximation of the exact solution� i	e	� approximation
by polynomials of increasingly higher degree on the whole domain� is exponential for
su�ciently large p	 However� this exponential approximation is not robust� that is�
the rate of convergence depends on the parameter d	 More precisely� the exponential
convergence is only visible if p � d�� 
cf	 the discussion following Theorem �	��	 In
the range p �� d�� which is of practical interest� we will only observe convergence
of the type p�� ln p 
see ����	 The main result of this note is Theorem �	� in which
we demonstrate that the �Three�element� approach of ��� leads to robust exponential
convergence� that is� the rate of convergence depends only on the coe�cient b and the
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right hand side f but does not deteriorate as d approaches zero	 The deterioration of
the performance of the usual spectral method is due to the presence of boundary layers	
In the �Three�element� approach� these boundary layers are resolved by splitting the
domain � into three elements and approximate by piecewise polynomials of degree p	
The two elements adjacent to the boundary points �� and � are of size O
dp� and thus
small enough to capture the boundary layer behavior of the solution near the boundary
points ��	 It is the introduction of these two additional small elements that allows us
to obtain exponential convergence for the approximation of solutions of 
�� which is
robust� i	e	� the convergence rate is independent of the small parameter d	

� Regularity of the Solution

Clearly� in order to 
nd spaces SD in which the exact solution ud of 
�� can be approx�
imated well� we have to be able to describe the behavior of ud precisely	 In this section
we therefore present the necessary regularity results for the solution ud	

Theorem ��� Let ud be the solution of ���� Then there are constants C� K � �
depending only on the right hand side f � the coe�cient b� and the boundary data ��

such that

ku
�n�
d kL���� � CKnmax 
n� d���n �n � N� � 
���

Proof� Choose K � max 
�� �f � �b� such that�
�CfK

��
�
�f
K

�n
� CbK

�� �

�� �b�K

�
� � �n � N� �

By 
�� we may now choose the constant C � � such that 
��� holds true for n � ��
�	 Theorem �	� is now proved by an induction argument	 The constants C� K are
such that the induction hypothesis holds true for n � �� �	 Let us assume that the
induction hypothesis 
��� holds for � � 	 � n � � and show that it holds for n � �	
Di�erentiating the di�erential equation n times 
note that we know already that ud is
analytic� we get

�d�u
�n���
d � f �n� � 
bud�

�n� � f �n� �
nX

���

�
n

	

�
b���u

�n�v�
d �

Using the induction hypothesis� we get

d�ku�n���kL���� � kf �n�kL���� �
nX

���

�
n

	

�
Cb�

�
b 	�CK

n�� max 
n� 	� d���n��

� �Cf�
n
f n

n � CCbK
n

nX
���

n�


n� 	��

�
�b
K

��
max 
n� 	� d���n��

� �Cf�
n
f max 
n� d

���n � CCbK
n �

�� �b�K
max 
n� d���n

� CKn��max 
n� �� d���n
�
�CfK

��
�
�f
K

�n
� CbK

�� �

�� �b�K

�
�
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By the choice of K the expression in the brackets is bounded by � which concludes the
induction argument after dividing both sides by d�	 �

Note that Theorem �	� yields estimates for the nth derivative of the solution ud which
are independent of d provided that n � cd�� for some c � �	 Roughly speaking� this
means that derivatives of order su�ciently large �don�t see� the boundary layer arising
for small perturbation parameters d	 It is also not too hard to see that from this
theorem we can obtain robust exponential convergence of the p version of the 
nite
element method provided that the polynomial degree p is at least O
d���	
Theorem �	� does not re�ect the boundary layer behavior of the solution ud very well	
This boundary layer behavior can be described in terms of the classical asymptotic
expansions for the solution of 
��	 For M � N� we can decompose ud in a 
smooth�
asymptotic part� two boundary layer parts� and a remainder as follows�

ud � wM � A�Mu
�

d � A�
Mu

�
d � rM � 
���

This decomposition is obtained as follows	 Upon inserting the formal ansatz ud 	P
�

j�� d
juj in the di�erential equation 
�� and equating like powers of d� we can de
ne

the asymptotic 
smooth� part wM by partial sums of this formal series�

wM
x� ��
MX
j��

d�ju�j

where the terms u�j are de
ned recursively by

u�
x� �
f
x�

b
x�
� uj�� �

�

b
x�
u��j 
x� j � �� �� �� � � � �

A simple calculation shows that Ld 
ud � wM� � d�M��u���M which tends to zero as d
tends to zero for each 
xed M 	 Thus the functions wM satisfy 
asymptotically� as d
tends to zero� the di�erential equation but they do not satisfy the boundary conditions	
This incompatibility can be removed with the aid of two boundary layer functions u�d �
u�d de
ned as the solutions of

Ldu
�

d � � on �
u�d 
��� � �� u�d 
�� � �

	
Ldu

�
d � � on �

u�d 
��� � �� u�d 
�� � ��

	

���

Upon setting
A�M �� �� � wM
���� A�

M �� �� � wM
��

the function wM � A�u�d � A�u�d satis
es the correct boundary and still the same
di�erential equation as wM 	 Finally� let us de
ne the remainder rM in such a way that
the decomposition 
��� holds true� i	e	� de
ne rM as the solution of

LdrM � d�M��u���M on �
rM
��� � ��


���

Our aim is now to analyze the behavior of each of four terms in the decomposition

���	
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Lemma ��� Let G � C be a complex neighborhood of I � ���� ��� Let B� u� � G
 C

be two functions holomorphic and bounded on G� De�ne functions u�j recursively via

uj��
x� �� B
x�u��j 
x� j � �� �� �� � � � �

Then there are C� K �
�� K

�
� � � depending only on G and kBkL��G� such that

ku�n�j kL��I� � Cj�n�K �j
�K

�n
�ku�kL��B� j � �� �� �� � � � � �n � N� �

Proof� For � � 
 � �� de
ne the sets �� by

G� �� fz � G j dist
z� �G� � 
g�

The claim of the lemma follows immediately from Cauchy�s integral theorem for deriv�
atives� if we can show the following� stronger assertion� There is K � � such that for
� � 
 � �

kujkL��G�� � 
�jKjj�ku�kL��G�� j � �� �� �� � � � � 
���

Fix K� � �kBkL��G�	 Clearly 
��� is true for j � �	 We proceed now by induction on
j	 If 
��� holds true for a given j � �� we get with Cauchy�s integral for derivatives
and any � � � � �

kuj��kL��G�� � kBkL��G�ku
��

jkL��G�� � kBkL��G�
�

��
���


�


�
�	
kukL��G�������

� �kBkL��G�
�
�
��j�Kj 

�� ��
��j ku�kL��G�

� 
��j���Kj��
j � ���ku�kL��G�

�
�kBkL��G�

K���
�� ��j
j � ��
j � ��

�
�

Choosing � � ��
j � �� and observing that this choice implies

�

��
�� ��j
j � ��
j � ��
�


j � ��
�� ��
j � ����


�� ��
j � ���j��
j � ��
� � �j � N�

allows us to infer that the expression in brackets is bounded by one by the choice of
K	 �

Theorem ��� There are constants C� K�� K� � � depending only on the input data
f � b� and �� such that the functions wM of ���� satisfy the following estimate� Under
the assumption � � �MdK� � �

kw
�n�
M kL���� � CKn

� n� �n � N� �

Proof� As the function B
x� �� ��b
x� is analytic on I and bounded there is a complex
neighborhood G of I where B is holomorphic and bounded	 As f is analytic on I� we
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may assume without loss of generality that f is holomorphic on G as well	 Hence
Lemma �	� is applicable to the terms u�j appearing in the de
nition of wM and yields�

ku
�n�
�j kL��I� � CK �

�
n
n�K ��j

� 
�j�� �n� j � N� �

Hence we obtain

kw
�n�
M kL��I� � CK �

�
n
n�

MX
j��

d�jK �

�
�j

�j�� �n � N� �

Estimating d�jK �
�
�j
�j�� � 
dK �

��M�
�j we see that the sum can be majorized by a

converging geometric series provided that dK �
��M � q for some 
xed q � �	 The claim

of the theorem follows	 �

This theorem allows us to control the growth of the derivatives of the asymptotic part
wM 	 An immediate corollary is that we can control the coe�cients A

�

M � A
�
M 	

Corollary ��� With K� as in Theorem 	�	 there is C � � depending only on the input
data f � b� and �� such that for any d� M satisfying �MdK� � �

jA�M j� jA
�
M j � C�

Proof� Noting that A�M � �� � wM
���� A
�
M � �� � wM
��� the proofs follows from

Theorem �	�	 �

Let us now consider the two boundary layers	

Theorem ��� Let u�d � u
�
d be the solutions of ��	�� Then there are C� K	 � � depend


ing only on the function b such that

j
u�d �
�n�
x�j � e�b�x����dCKn

	 max 
n� d
���n �x � I� n � N� 
���

j
u�d �
�n�
x�j � e�b���x��dCKn

	 max 
n� d
���n �x � I� n � N� 
���

Proof� We will only show the estimates 
��� as 
��� is proved similarly	 We observe
that an induction argument similar to the one of the proof of Theorem �	� leads to the
desired estimates provided that we can show the induction hypothesis for n � � and
n � �	 These are� however� standard 
see� e	g	� ��� for a nice exposition�	 For the sake
of completeness� let us outline the main ideas	
By the maximum principle 
����� we have by comparing u�d with the function

u�
x� �� e�b���x��d

and the zero function that it satis
es � � u�d � u�	 Hence 
��� holds true for n � �	
Let us now consider the case n � �	 Let us 
rst obtain a bound on 
u�d �

�
��	 Introduce

the short hand c
x� ��
q
b
x�� B
x� ��

R x
�� c
t� dt	 A simple calculation shows that u

�

d

satis
es �
e�B�x��d

�

u�d �

�
x� �
c
x�

d
u�d 
x�

���
�

c�
x�

d
u�d 
x�e

�B�x��d�

�



Integrating from x to � and multiplying with e�B�x��d� we obtain using u�d 
�� � ��

�eB�x��d
�

u�d �

�
x� �
c
x�

d
u�d 
x�

�
�
Z �

x

c�
t�

d
u�d 
t�e

��B�x��B�t���d dt�e��B�x��B�����d
u�d 
���
�

Observing that the left hand side equals �
eB�x��du�d �
�� we obtain after integrating over

���� �� and using the boundary conditions satis
ed by u�d together with the fact that
B
��� � �

� � �
u�d �
�
��

Z �

��
e��B�x��B�����d dx�

Z �

��

Z �

x

c�
t�

d
u�d 
t�e

��B�x��B�t���d dt dx

A simple calculation allows us to estimate

Z �

��
e��B�x��B�����d dx �

Z �

��

�c
x�

d
e��B�x��B�����d

d

�c
x�
dx �

d

b
sinh
B
���d��

Furthermore� as we have � � u�d 
x� � u�
x� � e�b�x����d� we can bound 
after some
calculation�







Z �

��

Z �

x

c�
t�

d
u�d 
t�e

��B�x��B�t���d dt dx






 � �

b
kc�kL��I�e

�B�����b��d

As we have B
�� � �b� we can conclude that

j
u�d �
�
��j � Cd��e��b�d

for some C � � independent of d	 Finally� we write





u�d ��
x�


 � j
u�d �
�
��j�






Z �

x

u�d �

��
t� dt




 � j
u�d �

�
��j� d��





Z �

x
b
t�u�d 
t� dt






� Cd��e��b�d � Cd��e�b�x����d � Cd��e�b�x����d�

This concludes the proof for the case n � � and hence the proof of Theorem �	�	 �

Remark ���� Let us remark that we used the maximum principle in the proof of
Theorem �	� for convenience only	 Energy methods lead to corresponding results in
exponentially weighted spaces and these estimates are su�cient for the approximation
results of Section �	

Let us 
nally consider the remainder rM 	

Theorem ��� There are constants C� K
 � � depending only on the functions f and
b such that the remainders rM de�ned in ���� satisfy

kr
�n�
M kL���� � Cd��n 
�MdK
�

�M � n � �� �� ��

�



Proof� The functions rM satisfy

LdrM � d�M��u���M on ��

rM
��� � ��

We saw in the proof of Theorem �	� that

ku
�n�
�MkL���� � CK �

�
�M

�M��K �

�
n
n� �n � N� �

The a�priori estimate 
�� therefore gives

krMkd � Cd�M��K �

�
�M

�M��

which gives the desired estimates for n � � and n � �	 Using the di�erential equation
satis
ed by rM gives the result for n � �	 �

Remark ���� We see that an induction argument would allow us to control also all
derivatives of rM explicitly in terms of M � d� and the order n of the di�erentiation	

Remark ���� Theorem �	� asserts that the remainder rM is indeed small provided
that �MdK
 � �� i	e	� if �Md is small	 In the complementary case �Md large the
asymptotic expansion looses its meaning	

� Polynomial Approximation Results

The aim of this section is to show that for the H� conforming approximation with
piecewise polynomials� it is enough to control the growth of the derivatives on each
element	
Let I � ���� ��	

Lemma ��� Let u � C�
I� satisfying

kDpukL��I� � Cup��
p 
���

for some Cu� � � �� Then there is a sequence of polynomials 
Pp�
�
p�� of degree p such

that
ku� PpkL��I� � k 
u� Pp�

� kL��I� � C�Cue
��p

where the constants C�� 
 � � depend only on ��

Proof� From Sobolev�s embedding theorem� we have that kDpukL��I� � CuC�p��
�p

for some C�� �
� depending only �	 Therefore� u is analytic on the closed set I and

can be extended analytically to a complex neighborhood of I	 The result follows from
standard theory� For example� the polynomial Pp may be taken by interpolating u in
the Tschebysche� points 
see ��� for the details�	 �

De
ne on the space C
I� for p � � the operator ip by interpolation in the p � �
Gauss�Lobatto points	 By ���� we have the following stability estimate

kipukL��I� � CG
� � ln p�kukL��I�� 
���

�



Lemma ��� Let u � C�
I�� Then

ku� ipukL��I� � 
� � CG�
� � ln p�kukL��I�

k 
u� ipu�
� kL��I� � ku�kL��I� � CG
� � ln p�p

�kukL��I�

Proof� The proof of the 
rst estimate follows immediately from the stability estimate

���	 For the second one� we use Markov�s inequality kvpkL��I� � p�kvpkL��I� valid for
all polynomials vp of degree p to get

k 
u� ipu�
� kL��I� � ku�kL��I� � k 
ipu�

� kL��I� � ku�kL��I� � p�kipukL��I�

and then use 
���	 �

For the interpolation error in the Gauss�Lobatto points� we have

Lemma ��� Let u satisfy the assumptions of Lemma ���� Then there are C� 
 � �
depending only on � of Lemma ��� and CG such that

ku� ipukL��I� � k 
u� ipu�
� kL��I� � CCue

��p�

Proof� Let Pp be the approximant constructed in Lemma �	�	 As the interpolation
operator ip reproduces polynomials of degree p� we have

ku� ipukL��I� � ku� Pp � ip
u� Pp�kL��I� � �� � CG
� � ln p�� ku� PpkL��I�

k
u� ipu�
�kL��I� � k
u� Pp�

�kL��I� � k �ip
u� Pp��
� kL��I�

� k
u� Pp�
�kL��I� � p�kip
u� Pp�kL��I�

where the estimate involving the factor p� was obtained using Markov�s inequality	
Appealing to Lemma �	� concludes the proof	 �

For completeness� sake� let us 
nally note that piecewise interpolation in the mapped
Gauss�Lobatto points yields a global H� conforming interpolant with global approxi�
mation properties as good as the local approximations permit	

Proposition ��� Let �� � x� � x� � � � � � xn�� � �� For u � C
I� de�ne the
piecewise Gauss
Lobatto interpolant �p
u� by

�p
u�j�xi�xi��� � ip 
u � li� � l
��
i � i � �� �� � � � � n

where

li � I 
 �xi� xi���

x 


xi � xi��

�
�
xi�� � xi

�
x�

Then �p
u� � C
I�� �p
u� � u at x � ��� �p is as piecewise polynomial of degree p�
and

ku� �p
u�kL��I� � max
i
k
u � li�� ip
u � li�kL��I�

k 
u� �p
u��
� kL��I� � max

i

�

xi�� � xi
k 

u � li�� ip
u � li��

� kL��I��

��



Proof� The points x � �� are interpolation points of the Gauss�Lobatto interpolation
operator ip	 This implies immediately that �p
u� is continuous on I and that �p
u� � u
at x � ��	 The linearity of the maps li gives that �p
u� is a piecewise polynomial of
degree p and the error formulae are obvious	 �

� Main Theorem

De�nition ��� Denote  p
J� the set of all polynomials of degree p on the interval J�
For � � � and p � N de�ne spaces S
�� p� � H�
�� of piecewise polynomials of degree
p by

S
�� p� ��

��

 p
I� for �pd � ���

fu � C���� �� j ujIi �  p
Ii�� i � �� �� �g for �pd � ���

where for the case �pd � ��� we set

I� �� ������ � �pd�� I� �� ��� � �pd� �� �pd�� I	 �� ��� �pd� ���

Remark ���� We see that the spaces S
�� p� are based on three elements for the
range of practical interest p �� d��	 In this case the elements at the boundary are of
size O
dp�	 Since we expect exponential rates of convergence for p su�ciently large�
we switch to one element at p � O
d���� cf	 also the discussion following Theorem �	�	

Theorem ��� Let f � b be analytic on I and let ud be the solution of ���� Then there
is �� � � such that for all � � � � �� there are C� 
 � � independent of d and p such
that the following holds� There is vp � S
�� p� with vp
��� � ud
��� and

kud � vpkL���� � dk 
ud � vp�
� kL���� � Ce��p �p � N �

Remark ���� Let us remark that the value of �� is in principle accessible from the
proof of Theorem �	�	 It depends on f and b	 It can be shown that for the case of
b � �� �� � ��e as suggested by the analysis of ���	

Proof� We will choose as the function vp the piecewise Gauss�Lobatto interpolant of
Proposition �	�	 Therefore� we merely have to control the interpolation error on the
subintervals	
Let us 
rst consider the asymptotic case� i	e	� �pd � ���	 By Theorem �	� we have

ku
�n�
d kL���� � CKnmax 
n� d���n �n � N� �

We have furthermore

max 
n� d���n � max 
nn� n�d�n�n�� � max 
nn� n�e��d� � Cn�ene��d 
���

��



where we used Stirling�s formula in the last estimate	 Lemma �	� allows us to conclude
that

kud � ip
ud�kL���� � k 
ud � ip
ud��
� kL���� � Ce��de��p

for some C� 
 � � independent of p and d	 The assumption �pd � ��� implies
e��d � e��p� and hence the claim of the theorem follows if �� � ��� � 
	
Let us now turn to the pre�asymptotic case �pd � ���	 We write

ud � wM � A�Mu
�

d � A�
Mu

�
d � rM 
���

where we choose M as

�M � ��p 
���

with � � � being a 
xed parameter satisfying

�K�
�

�
� �� �

�

�
K
 �� q � � 
���

where the constants K�� and K
 are the constants of Theorems �	�� �	�� respectively	
Strictly speaking� we should take M as the integer part of ��p��!for notational con�
venience� however� we will ignore this point henceforth	 The choice of � guarantees
that� as �pd � ����

�MdK� � ��pdK� � �
�

�
K� � �� �MdK
 � ��pdK
 � �

�

�
K
 � q � �

and thus the assumptions of Theorem �	� are satis
ed and the remainder rM in Theo�
rem �	� is indeed small	
As in the statement of Proposition �	� let li� i � �� �� � be the three linear maps that
map the reference element I onto the physical elements Ii	 We will now analyze the
interpolation error of each of the four terms in the decomposition 
���	 Let us 
rst
consider wM 	 We have by Theorem �	�� the chain rule� and the observation that l�i is
a constant function with jl�ij � � for i � �� �� �

k 
wM � li�
�n� kL��I� � CKn

� n� �n � N� �

Thus Lemma �	� is applicable and Proposition �	� yields

kwM � �p
wM�kL���� � Ce��p

k 
wM � �p
wM��
� kL���� � max

�
��

�

�pd

	
Ce��p �

�

�pd
Ce��p

where the constants C� 
 � � are independent of d� p� and �	
Let us now consider the approximation of the boundary layer parts by their piecewise
Gauss�Lobatto interpolants	 We will only provide the arguments for A�Mu

�

d as the argu�
ments for the other boundary layer are similar	 From Corollary �	� and our particular

��



choice of �� we have that the constant A�M � C for some C � � independent of d	 We
may therefore concentrate on the approximation of u�d 	 On I� Theorem �	� yields

k
�
u�d � l�

��n�
kL��I� � CKn

	 
�pd���
nmax 
n� d���n � C
K	���

nmax 
��pdn� ��p�n

� C
K	���
nmax 
nn� n�
��p�n�n�� � C
eK	���

nn�e��p

where we made use of the assumption that �pd � ��� and argued as in estimate 
���	
Hence� Lemma �	� allows us to conclude that

ku�d � l� � ip
�
u�d � l�

�
kL��I� � k

�
u�d � l� � ip

�
u�d � l�

���
kL��I� � Ce��pe��p


���

for some C� 
 � � independent of d� p� and �	 Note that under the assumption
�� � ��� � 
� this is exponentially small	
Let us now control u�d on I�� and I		 Theorem �	� gives

ku�d � l�kL��I� � Ce�b�p� k
u�d � l��
�kL��I� � Cd��e�b�p

ku�d � l	kL��I� � Ce�b����pd��d� k
u�d � l	�
�kL��I� � Cd��e�b����pd��d�

These estimates together with Lemma �	� give for the approximation properties of the
Gauss�Lobatto interpolant of u�d � l� and u

�

d � l	�

ku�d � l� � ip
�
u�d � l�

�
kL��I� � C
� � ln p�e�b�p

k
�
u�d � l� � ip
u

�

d � l��
��
kL��I� � C
d�� � 
� � ln p�p��e�b�p

ku�d � l	 � ip
�
u�d � l	

�
kL��I� � C
� � ln p�e�b����pd��d

k
�
u�d � l	 � ip
u

�

d � l	�
��
kL��I� � C
d�� � 
� � ln p�p��e�b����dp��d


���

In view of the assumption �pd � ��� 
note that this implies ��d � ��p�� estimates

���� 
��� allow us to conclude with Proposition �	��

ku�d � �p
u
�

d �kL���� � Ce��p

k
�
u�d � �p
u

�

d �
��
kL���� � max f�� ��
�pd�gCe��p

for some C� 
 � � independent of d and p 
but depending on � � �� � ����	 Hence
the term u�d can be controlled in the desired fashion	
Let us 
nally turn our attention to rM 	 We have from Theorem �	� and the embedding
theorem

krMkL���� � CkrMkH���� � Cd
�MdK
�
�M �

kr�MkL���� � CkrMkH��I� � C
�MdK
�
�M �

As �MdK
 � �pdK
 � q � � by the choice of M and �� we obtain by Lemma �	� and
Proposition �	� 
reasoning just as for the approximation of u�d �

krM � �prMkL��I� � Cq�Md
� � ln p�

k 
rM � �prM�
� kL��I� � Cmax

�
��

�

�pd

	 h
q�M � CG
� � ln p�p

�q�Md
i
�

��



As �M is proportional to p� and q � �� all the terms in the piecewise Gauss�Lobatto
interpolation of rM are exponentially small as well which concludes the proof of the
theorem	 �

Theorem �	� leads to the following corollary for the FEM discretization 
��	

Corollary ��� In ��� set S� �� S
�� p� � H�
� 
�� and SD �� l
x� � S� with l
x� �

��
�� x������
x������ Denote uFE the �nite element solution of ���� Then there
is �� � � depending only on the input data f � b� and �� such that for all � � � � ��
there are C� 
 � � independent of d� p such that

kud � uFEkd � Ce��p�

Proof� Follows immediately from the quasi�optimality result 
�� and Theorem �	�	
As we remarked in Remark �	�� the constant �� may be chosen as ��e for the case of
b � �	 �

� Numerical Examples

In this section we want to present a few numerical examples to illustrate Theorem �	�	
We consider the problem

�d�u�� � u � fa
x� �� 
a � x����
� on � � 
��� ���
u
��� � ��


���

where a � � is a parameter	 Note that in the case a � �� the right hand side fa is
analytic on ���� ��� and thus Theorem �	� and Corollary �	� apply	 For the case a � ��

��� is still a well�posed problem for all d � � as f� � L�
��� ��	 However� as the right
hand side is not analytic on the closed set ���� ��� the mathematical theory developed
in this paper does not cover this case	 Nonetheless� this case is interesting as it is a
one dimensional model for two dimensional problems with corner singularities	
For 
��� � a particular solution is given by

upart
x� � �
�

d

Z x

��
sinh

x� t

d
fa
t� dt

and hence the solution is seen to be

u
x� � upart
x��
sinh
x� ���d

sinh
��d�
upart
��� 
���

��� Description of the numerical set�up

Figs	 ��� show the results of the numerical experiments for various choices of a and d	
The parameter a is chosen to range from the relatively smooth case of a � ��� down
to the limiting case a � ���	 The perturbation parameter d varies from d � ���� to

��



d � ����	 In all the graphs� we report the relative error in energy versus the number of
degrees of freedom� here the energy is the square of the energy norm de
ned in 
��	 All
calculations are performed using MATLAB� that is� in double precision FORTRAN	
We consider in our calculations the p version of the FEM with three types of meshes�
that is� the 
nite element formulation 
�� is used with three di�erent choices of 
nite
element spaces SD � SI � SII � and SIII� each one consisting of continuous� piecewise
polynomials of degree p	 In order to describe these three ansatz spaces SI � SII � and
SIII� let us introduce the following notation	 For any mesh determined by a set of
nodes N � we de
ne the 
nite element spaces by

S
N� �� fu j u is a piecewise polyn	 of degree p on mesh with nodes Ng �H�
� 
��� ���

The 
rst type of meshes are the �Three�element� meshes� i	e	� the mesh consists of two
small elements of size �pd near the endpoints x � �� and one large element in the
middle	 In the notation of De
nition �	� the 
nite element spaces are then the spaces

SI
p� �� S
NI� � S
�� p� �H�
� 
��� ��

NI �� f����� � �pd� �� �pd� �g� � � �����

The choice � � ���� was already made in ��� for their calculations� and we refer to
the discussion there for the optimal choice of �	 Let us point out that the numerical
studies of ��� indicate that the �Three�element� approach is fairly insensitive to the
precise choice of � as long as it stays away from � and ��e	
For the other two types of meshes� we use �unions� of boundary layer meshes and
geometric meshes	 In our particular examples� all geometric mesh re
nements are
towards the left endpoint x � ��	 Let us therefore de
ne a geometric mesh with
grading factor � � 
 � � and L � N layers by the nodes

� � �� x� � x� � �� � 
L � x� � �� � 
L�� � � � � � xL � �� � 
� � xL�� � ��

���

In all our calculations� we use the grading factor 
 � ���� 
cf	 ���� for a justi
cation
of this choice�	 The �union� of such a geometric mesh and the �Three�element� mesh
is a mesh with L�� elements whose nodes are given by the nodes of 
��� and the two
additional nodes �� � �pd� � � �pd 
again with � � �����	 The 
nite element spaces
are then given by

NII
L� �� f����� � 
i��� � �pd� �� �pd� � j i � �� � � � � Lg� 
 � ����� � � ����

SII
L� p� �� S
NII
L���

Finally� the third type of meshes considered in our numerical studies is a �union� of
the boundary layer mesh at the right endpoint and the geometric mesh 
���	 The mesh
is determined by the nodes of 
��� and the one additional node at �� �pd	 Hence it is
a mesh with L � � elements� and we get for the 
nite element spaces

NIII
L� �� f����� � 
i� �� �pd� � j i � �� � � � � Lg� 
 � ����� � � ����

SIII
L� p� �� S
NIII
L���

��



��� Discussion of the numerical results

����� The case a � �

Let us 
rst consider the case a � �	 In Figs	 ��� we see the performance of the �Three�
element� approach for a � ���� a � ����� and a � ����� and various choices of d	 We
see indeed that the �Three�element� approach� i	e	� the 
nite element spaces SI
p��
yields robust exponential convergence� The error curves are practically straight lines
in the semi�logarithmic plot which indicates exponential convergence� and for 
xed a�
the error curves tend to a limiting curve as d approaches zero 
the curves for d � ���


and d � ���� are practically on top of each other in Figs	 ���� in agreement with our
theoretical results on robustness	
As a approaches �� the overall approximation rate deteriorates	 This is to be expected
from the proof of Theorem �	�	 Essentially� the solution is split into an asymptotic
part and a boundary layer part	 The boundary layer part can be approximated well
with the aid of the two small elements at the endpoints	 However� the approximation
of the asymptotic part is poor on the large middle element of size O
�� if a is close to
�	 In the limiting case a � �� the exponential rate of convergence breaks down with
the �Three�element� mesh 
cf	 Fig	 ��	
For the case a close to �� we are thus lead to considering meshes designed such that the
asymptotic part as well as the boundary layer can be approximated well	 As the �Three�
element� mesh can approximate the boundary layer well� let us turn our attention to
the approximation of the asymptotic part	 The asymptotic part is analytic on ���� ��
but has a singularity at x � �a � ��	 Piecewise polynomials on meshes which
are graded geometrically towards the point closest to the singularity 
here� the left
endpoint x � ��� deal very successfully with this kind of singularities	 A simple scaling
argument suggests that the mesh should be chosen such that the ratio of the length
of the elements to the distance 
of the elements� to the singularity should be bounded
from below	 This can be achieved with geometric meshes of the type 
��� where the
number of layers L is such that smallest element 
x�� x�� has length proportional to
dist
a���� i	e	� 
L 	 ja � �j	 For 
 � ���� and a � ����� we can choose L � � and
for a � ����� we may choose L � � to get 
L 	 ja � �j	 As the spaces SII
�� p�
and SIII
�� p� are based on the �union� of these geometric meshes and the �Three�
element� meshes� we expect these ansatz spaces to perform well for the nearly singular
cases a � ���� and a � �����	 We report the numerical results of the FEM with these
ansatz spaces in Figs	 �� �	 We see that indeed this �union� of the geometric mesh
and the �Three�element� mesh leads to a very robust method both with respect to the
perturbation parameter d and the parameter a	

����� The case a � �

Let us now turn out attention to the limiting case a � �	 This case is of course no
longer covered by the mathematical theory of this paper as the right hand side is no
longer di�erentiable at x � ��	 We study this case numerically because it is a simple
one dimensional model for various singularly perturbed elliptic�elliptic problems	 For

��



example� as alluded to in the Introduction� the solution of the Reissner�Mindlin plate
model with polygonal mid�plane has corner singularities	 The limiting solution 
as the
thickness of the plate tends to zero� is the solution of the Kirchho� plate equation	 The
solution of that equation has also corner singularities which are� however� of a di�erent
character than those of the Reissner�Mindlin equation	
For a � �� the solution u of 
��� has a 
weak� singularity at the left endpoint x � ���
From 
��� we see that the leading singular part of the solution u is

u 	 �
�


�� �����
�� �����d�

x� ������
� 
���

in an O
d� neighborhood of x � ��	 On the other hand� as d tends to zero� the
limiting solution is the singular function f� which has a di�erent� stronger singularity
at x � ��	 It is reasonable to expect that the proper mesh should be such that it
can resolve boundary layers� if present� that it can deal with the 
weak� singularity
at x � �� for d � �� and that it can also resolve the stronger singular behavior of
the limiting solution f�	 Functions of the type 
��� and the limiting solution f� are
analytic on � but have a singularity at the left endpoint	 The approximation of such
functions by the hp version of the FEM was analyzed in ����	 The mesh proposed there
is a geometric mesh where the number of layers is proportional to p� the polynomial
degree	 For our problem� we therefore advocate a union of the �Three�element� mesh
and such a geometrically re
ned mesh	
Let us remark that the hp FEM analyzed in ���� which is based on geometric meshes
with a number of layers proportional to p has several noteworthy features	 Firstly�
exponential rates of convergence can be achieved in this way for the approximation
of singular functions of the type considered here	 Secondly� the same geometric mesh
achieves this exponential convergence for singular functions of the type 
��� and f�
simultaneously	 This is a very convenient feature of p or hp extensions	 If singular
functions are approximated using the h version of the FEM� the optimal� �radical�
meshes depend strongly on the type of the singularity 
cf	 �����	 Hence� an h�version
approach with optimal mesh design would be much more complicated in this situation
as the type of mesh has to change as d tends to zero	
Let us return to the use of geometric meshes for our problem	 Although the geometric
meshes of ���� are optimal in some sense and lead to exponential rates of convergence�
it is more convenient in practical applications to 
x a mesh and increase the polynomial
degree p	 This approach is taken in the numerical experiments of Figs	 �� �	 In those
computations� the perturbation parameter d is chosen as d � ���
 or d � ���
� and
a �union� of a geometric mesh and a boundary layer mesh for the right endpoint is
used� i	e	� the 
nite element spaces are SIII
L� p� for various numbers of layers L	 This
�union� thus takes care of the boundary layer at the right endpoint x � �	 As the
mesh design at the left endpoint x � �� is independent of the perturbation parameter
d� we cannot expect the 
nite element spaces SIII
L� p� to perform completely robustly
with respect to d	 However� as soon as the number of layers L is O
j lndj�� the smallest
element of the geometric mesh is of size O
d�	 We may therefore assume that the
dependence of the method on the perturbation parameter d is rather weak as geometric

��



meshes with few layers create elements of size O
d�	 For d � ���
 or d � ���
 and

 � ���� already L � �� resp	 L � � leads to meshes whose smallest element at the
left endpoint is O
d�	
Because the mesh is 
xed and the solution has a singularity at x � ��� the asymptotic
rate of convergence is algebraic and given by that of the p version of the FEM	 For
singular functions of the type 
���� the analysis of ���� shows that the H� error of the
smallest element behaves like p�������
����� i	e	� a rate of DOF�
�� for the asymptotic
error behavior in the energy	 Indeed� asymptotically� the error curves in Figs	 �� �
are practically straight lines with slopes slightly over �	 However� depending on the
number of layers� the pre�asymptotic range can be quite large� For example� in Fig	 �
with � layers� the asymptotic behavior is not visible until the global error in energy is
ca	 ����	 For a mesh with � layers� the asymptotic behavior does not start until the
energy error is ����
	 In this pre�asymptotic range the global error is not dominated by
the error in the 
rst element abutting on the singularity	 Rather� the error reduction is
determined by the error reduction possible in the elements away from the singularity	
There� exponential rates of convergence 
in p� are possible and this exponential rate of
convergence is visible in the pre�asymptotic regime	

����� The �nal conjecture

We saw that in the case of an unsmooth right hand side the use of a �union� of a
geometric mesh with a �Three�element� mesh is very successfully	 This is due to two
facts	 Firstly� �Three�element� meshes are designed such that the two small elements
can resolve the boundary layers well	 Secondly� geometric meshes can absorb both the
singular behavior of the solution for positive d as well as the singular behavior of the
limiting solution for d � �	 This �union� of meshes is therefore very versatile	
For practical purposes� the introduction of small boundary layer elements is unneces�
sary at those boundary points towards which a strong geometric re
nement is done
because the geometric mesh leads to small elements of size O
d� with fairly few layers	
Although the use of a 
xed geometric mesh can� asymptotically� only lead to algebraic
rates of convergence� the use of a su�cient number of layers can ensure that the as�
ymptotic behavior of the p version is pushed beyond the practical ranges of polynomial
degrees p� and we have the pre�asymptotic exponential convergence	

� Concluding Remarks

In the present paper� we analyzed the hp FEM for a one dimensional singularly per�
turbed problem of elliptic�elliptic type	 We showed that for analytic input data� the
introduction of two small elements of size O
pd� near the boundary leads to robust
exponential convergence of the hp FEM	
Although we considered a simple model problem� the techniques used here apply to
more general situations	 The essential tool for the proof of the approximation result
Theorem �	� are classical asymptotic expansions for which the asymptotic part as well
as the remainder can be controlled explicitly in terms of the perturbation parameter d

��



and the expansion order M 
Theorems �	�� �	��	 Similar asymptotic expansions hold
true for the convection�di�usion equation with analytic coe�cients	 The approximation

result Theorem �	� holds therefore for the convection�di�usion equations with analytic
coe�cients as well	 Of course� as the solutions of the convection�di�usion equation
have a boundary layer at the out�ow boundary only� it would be enough to use two
elements where the small element is located at the out�ow boundary	 Let us conclude
our remarks on the convection�di�usion equation by stressing that stability of 
nite
element methods for the convection�di�usion equation is� as opposed to the reaction�
di�usion equation considered in this paper� a non�trivial issue� a stable hp FEM for the
convection�di�usion equation able to make use of robust exponential approximability
results of the type proved in the present paper will be presented in ���	
Finally� the ideas developed in this paper were successfully employed in ���� ��� for the
construction of robust exponentially converging hp FEM in two dimensions	
We con
rmed our theoretical result of robust exponential convergence by numerical
experiments	 Additionally� we studied numerically the case when the solution and the
limiting solution 
as the perturbation parameter tends to zero� are singular	 There� we
advocated the use of a �union� of the proper boundary layer mesh with a geometrically
graded mesh which is able to absorb the singular behavior of the solution and the
limiting solution	 We showed numerically that this approach leads to very satisfactory
results	
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Figure �� Three�Element mesh for various d� a � ���
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Figure �� Three�Element mesh for various d� a � �����
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Figure �� union of geometric mesh and Three�Element mesh� a � ����� � layers
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Figure �� union of geometric mesh and Three�Element mesh� a � ������ � layers
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