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Abstract

A method for calculating the Coulomb energy in a periodic system is discussed
for the case that the number N of charges is large�so that it would be too time
consuming to calculate ���N��N��� pairs	



�� Introduction

In the 
rst part �� identities for sums were derived which allow a rapid calculation of
the Coulomb energy of an in
nite periodic system� This system consists of a basic cell
containing N charges �with charge neutrality� and all their periodic images� These pe�
riodic images can 
ll the whole space or� as is required in some applications� only a
two�dimensional layer of 
nite height� The latter case was not treated by Ewald �	� but
in the present treatment it is just a special case�

An important feature of the formulae derived in �� is the application to dense systems�
i�e� when N gets large� ��� or more� For the Coulomb energy and the Coulomb forces one
has to calculate �

�
N�N � �� pairs and therefore the CPU time will increase drastically

with N � It is desirable to have a method for which the number of terms required is not
proportional to N��

It will be shown that one can proceed in such a way that the CPU time is at most
proportional to N � �logN���

The basic idea is simple� one needs a complete product decomposition of the terms
required for the computation of the energy� It turns out that the formulae derived in ��
and �� are best suited for this procedure�

�� Product decomposition

In order to illustrate the basic idea we start with a somewhat simpli
ed example� Suppose
we have to calculate an expression of the form

�	��� S �
NX

i�j��

f�xi� xj�

and N may be large� For practical applications this means that we need an approximation
for S with a given accuracy�

Assume now that a product decomposition formula for f is known of the form�

�	�	� f�xi� xj� �
�X
���

p��x
i� � q��xj� �

More precisely� assume that we know that

�	���
���f�xi� xj��

LX
���

p��x
i� q��x

j�
��� � � for � � i� j � N �

If we now replace f in �	��� by the product approximation and rearrange the sums we

nd

�	��� S ��
LX
���

NX
i��

p��x
i�

NX
j��

q��x
j� �

LX
���

P� �Q� �

�



The important feature of the approximation �	��� is now that we have to calculate 	L �N
terms instead of N� terms�

This procedure can be applied to both the Coulomb energy and the Coulomb forces�
but it is somewhat delicate since the associated formula �	�	� puts a condition on the xi

and xj�

�� Application of the product decomposition method to the

calculation of the Coulomb energy

We 
rst reproduce the formula for the Coulomb energy �Eq� ������ in ���� The basic cell
is assumed to be the unit cube

C �
n

�x� y� z�
��� jxj � �

�
� jyj � �

�
� jzj � �

�

o

and the N charges qi � C have coordinates �xi� yi� zi�� We then introduce the following
notations

�����

�������������
������������

�ij���m� � ��yi � yj � ��� � �zi � zj � m�
�

� � ��m � ZZ

Be��� x � �
�X
p��

K��	�p � �� cos�	�px�� � � �

K� � Bessel function

L�y� z � logf�� 	 cos�	�y� e��� jzj � e��� jzjg
Q� � �����		�� � � � �

Then the Coulomb energy contained in C due to the N charges and all their periodic
images is given by

���	�

E �
�

�

NX
i��j��

qiqj
n �X
m�����

Be��ij���m�� xi � xj

�
�X

n���
L�yi � yj� zi � zj � n

�
	�

�

� NX
i��

qi �xi
��

� 	���zi � zj�
� � jzi � zjj�

o
� Q� �

NX
i��

q�i

�� EB � EL �
	�

�
D� � Ez � Q� �

NX
i��

q�i �

with the obvious de
nitions of the 
ve energy contributions� and �x � �x� y� z��

	



Remarks�

a� If the periodic system is only in x� y�direction and z ranges in a 
nite height then
the corresponding expression is �see ��� formula �������

�����

E �
�

�

NX
i��j��

qiqj
n �X
����

Be��ij��� ��� xi � xj� L�yi � yj� zi � zj

� 	� jzi � zjj
o

� �Q� �
NX
i��

q�i

with �Q� � ��������� � � � �

b� If the basic cell is not a cube� but still orthorhombic� the expressions are just slightly
changed �see ���� putting x � a � 	� y � b � 
� z � c � �

e�ij���m� �
�
b

a

��
�
i � 
j � ��� �

�
c

a

��
��i � �j � m�� �

eL�
� � � log��� 	 cos�	�
� e��� j�j�
c
b � e��� j�j�

c
b 

one now has in the place of ���	�

�����

E �
�

�a

NX
i��j��

qiqj
n �X
m�����

Be�e�ij���m�� 	i � 	j

�
�X

n���
eL�
i � 
j� �i � �j � n � 	�

c

b
���i � �j�

� � j�i � �jj�
o

�Q��a� b� c� �
NX
i��

q�i

with

�����

Q��a� b� c� � 	
�X
���

�X
m�n���

� K�

�
���

a

q
�b �m�� � �c � n��

�

�	
�X
n��

log��� e���n
c
b � � � � log

�
��

a

b

�
�

where � �� �����	�� � � � is Euler�s constant and the prime on the summation sign
indicates that the term with �m�n� � ��� �� is to be omitted� The alterations for
the analog of ����� are obvious except for �Q which now becomes

����� �Q�a� b� � �
�X

��m��

K�

�
	�� �m � b

a

�
� � � log

�
��

a

b

�
�

c� If �ij���m� � �� which is possible for �� � �� m � �� then the two terms Be��  and
L��  in ���	� or ����� that become singular have to be combined and yield a regular

�



term� One is led to the following result� Set

�����
G��� x ��

�p
x� � ��

�
�X
���

� ��
�

�

�
���
n
��	�� �� � � x� � ��	�� �� �� x�

o

��� � x�� ��� x� �

where  is the Digamma function and

��n� s� �
�X
k��

�

�s � k�n
� n �� ������	

is the Hurwitz Zeta�function �a multiple of the polygamma function�� Further�
de
ne

�����

H�y� z � log�y� � z��� L�y� z � log�����

� 	 � z � �

�
�y� � z�� �

�

��
�y� � �y�z� � z��

�
�

����
�y� � ��y�z� � ��y�z� � z�� � higher order terms �

If �ij���m� becomes small �say � ���� then the combination Be��ij���m�� xi� xj�
L�yi � yj� zi � zj � m in ����� may be replaced by

�����
Eij �� G��ij���m�� xi � xj � H���yi � yj � ��� ��zi � zj � m�

�����	���� �

We now develop the product decomposition for the Coulomb energy as de
ned by
���	�� For the term involving the Bessel function this is based on

Lemma � �Gegenbauer�s Addition Theorem�

Assume that R � r � �� Then one has

������ K�

hq
R� � r� � 	r R cos�

i
� K��R� I��r� � 	

�X
���

K��R� I��r� cos���� �

For the proof of ������ and related theorems the interested reader is referred to the classical
book of Watson ���

For the terms of the form L�yi � yj� zi� zj �m we can use identities ����� and ������
of �� which lead to the identity given in

Lemma � For any 
� � with 
� � �� � m�� � �� � � � � � one has

������
�

�X
m���

L�
� � � m � 	
�X
���

�

���� exp��	����
fexp��	����� j�j�

� exp��	�� j�jg cos�	��
� �

�



Lemmas � and 	 are the basis for the complete product decomposition of the Coulomb
energy� First we now derive the general expression and then in a separate section the
actual calculation is developed�

Let qi be a charge in the basic cell C and qn another charge which may be in C or any
periodic image of a charge in C� Denote by r and � polar coordinates in the �y� z��plane
so that the distance between qi and qn is given by

����	� ��i� n� �
q
r�i � r�n � 	rirn cos��i � �n� �

For the moment a convenient assumption is that all charges in the basic cell C are ordered
according to their distance to the center in the �y� z��plane and one has

������ � � r� � r� � � � � � rN �
p
�

�
�

We will skip the strict inequality signs later on� In this notation the part of the Coulomb
energy in ���	� involving the Bessel functions may be written as

������ EB �
�

�

NX
i��

qi
X
n�i

qnBe���i� n�� xi � xn �

We can then apply Lemma � and the addition theorem for cosines to 
nd the complete
product decomposition in ������� To this end� it is convenient to introduce the following
abbreviations�

������

���������������
��������������

cpi � cos�	�p xi�

spi � sin�	�p xi�

c�i � cos�� � �i�

s�i � sin�� � �i�

K�
pi � K��	�p � ri�

I�pi � I��	�p � ri� �

In this notation one gets

������

Be���i� n�� xi � xn � �
�X
p��

�cpi cpn � spi � spn�
n
K�

pn � I�pi �

� 	
�X
���

K�
pn � I�pi �c�i � c�n � s�i � s�n�

o
�

For the application of ������ a rather careful analysis is necessary and this will be carried
out in Section ��

�



We also need the product decomposition of the term

Lij �� �
�X

n���
L�yi � yj� zi � zj � n �

It is again convenient to introduce the following abbreviations�

������

���������
��������

e� � exp��	��

ei � exp��	� zi�

ei � exp��	���� zi��

�cpi � cos�	�p yi�

�spi � sin�	�p yi� �

Then Lemma 	 and the addition theorem for cosines immediately lead to

������ Lij � 	
�X
p��

�

p��� �e��p�

n
�ei � ej�p �

�ej
ei

�po
��cpi � �cpj � �spi � �spj� �

Of course this is only de
ned if � � zi � zj � �� Finally the contribution to the energy
stemming from the term

�

�

X
i��j

qi qj ��zi � zj�
� � jzi � zjj� �� Ez

can be rewritten such that �
�
N�N � �� pairs �i� j� are avoided�

Using the charge neutrality some algebra shows that one can write

������ Ez � 	�
h N��X
i��

qi �Di
z � Qi zi��D�

z

i

where we have set

���	�� Dz �
NX
i��

qi zi � Di
z �

NX
j�i��

qj zj � Qi �
iX

j��

qj �

�� Calculation of the Coulomb energy

���� Estimates for truncation errors

We 
rst analyze the convergence behaviour of the term Be���i� n�� xi�xn in ������� Since
we are dealing with sums of alternating signs it seems sensible to assume that if all terms
occurring are given with an error less than e�a� where a is a measure for the accuracy
required� then the total sum has the same accuracy�

Now

����� Be��� x � �
�X
p��

K��	�p�� cos�	�px� �

�



and the error if we truncate the series at p � P can be estimated as follows

��� �X
p�P��

K��	�p�� cos�	�px�
��� � �X

p�P��

K��	�p�� �
Z �

P
K��	��p� dp �

For the integral we can use the estimates given in ��� p� ���� � ������� leading to the
bound

���	� �
�X

p�P��

K��	�p�� �
�����

	��

�p
	�� � P exp��	�� � P � �� Fe��� P  �

The estimate ���	� is not applicable for P � �� For this case one can determine the
values � directly for which

����� Be��� � � e�a �

This condition determines the cut�o� distance Rc� if ��i� n� � Rc then all charges qn may
be neglected whose distance to qi is greater than Rc�

In 
gure � we show a plot of ��� �Be��� �� It tells us e�g� that for an error � ���� one
has Rc

�� 	�	��

	g�
��ewaldsums
ps
� � �� mm

�

	

�

�

	��	��	��	�		��
�

Be��� �

�

Fig� �

For a given distance � on the other hand the number P giving the term Be��� x with the
required accuracy is de
ned by the smallest number P � Pa��� � lN such that

����� Fe��� P  � e�a �

�



As an illustration we show in Figure 	 some typical curves Pa���

	g��ewaldsums
eps
�� � � mm

��

Pa���

�

	�

��

��

���� ��� ���� ��	���	 ���

a � �	
a � ��

a � ��

Fig� 	

The next important information concerns the number of ��terms needed in the Gegenbauer�
Theorem ������� This now requires by ������ that

����� �
�X

�����

K��R� I��r� � e�a �

In our applications typically � � r � R � �� so that we may assume that � � R and
the asymptotic expansions for large � are valid as given in ��� p� ���� � ����� and ������
reading

����� I��� � z� �
�p
	��

e���z�

�� � z��
�

�

n
� �

�X
k��

uk�t�z��

�k

o

����� K��� � z� �

r
�

	�

e����z�

�� � z��
�

�

n
� �

�X
k��

����k
uk�t�z��

�k

o
�

where

����� 
�z� �
p

� � z� � log
� z

� �
p

� � z�

�

and

������ t�z� � �� � z����	� �

�



The functions uk�t� are given in ��� p� ���� ������� The 
rst three are

������ u� � �� u��t� �
�t� �t�

	�
� u��t� �

��t� � ��	 t� � ��� t��

���	
�

We now set � � z � r in ����� and � � z � R in ������ The important term now is the
combination

����	� exp
�
� � 


�r
�

��
� exp

�
� �


�R
�

��
�� Pr��� r� R� �

After some rearrangement one 
nds

������ Pr��� r� R� �
� r
R

��
exp

h
� �

�
w
�R
�

�
� w

�R
�

��i
�

where w�s� �
p

� � s� � log�� �
p

� � s���

For jsj � � we can expand w�s� in a power series�

������
w�s� � �� log 	 �

s�

�
� s�

�	
�
s�

��
� � � s�

��	�
� � � �

� �� log 	 � w��s�

with the obvious de
nition of w��s�� The important point now is that the �large� term
���� log 	� cancels� and we can write

������ I��r� �K��R� �
�

	�

� r
R

�� � exp
h
� �

�
w�

�R
�

�
� w�

� r
�

��i
� U�

� r
�

�
� U�

�R
�

�
�

where we have abbreviated

������ U��s� � �� � s���
�

� �
n

� �
�X
k��

uk�t�s��

�k

o

������ U��s� � �� � s���
�

� �
n

� �
�X
k��

����k
uk�t�s��

�k

o
�

Note that U��s�� U��s� are close to � for s small� i�e� for large ��

For � � R � r 	 � one has the simple estimate

������ I��r�K��R� �
�

	�

� r
R

��
�

We now return to ����� and use the bound ������ to deduce

������ �
�X

�����

K��R� I��r� � �
Z �

�

�

�

� r
R

��
d� � � �E��� log

�R
r

��
�

�



where E��s� denotes the exponential integral �see ��� p� 		�� for which we may use the
bound ���� p� 	���

���	�� E��s� �
�

s
e�s �

Combining ������ and ���	�� we arrive at the truncation condition for � �setting � �
log�R

r
��

���	��
�

� � � e���
 � e�a �

We can put this into a more convenient form� Set

���		� f�s� � s � log�s�

and let � be the solution of

���	�� f�s� � a � log � �

Then the cut�o� condition for the largest values � � � to be taken for given accuracy a is

���	�� � 	 �

log�R
r
�
�

As a last item we need the cut�o� condition for the sum on the right of ������� This
requires

���	�� 	
�X

��L��

�

�
exp��	�� � d � e�a �

with d � jzj � zij or d � �� jzj � zij� Again we have

���	�� 	
�X

��L��

�

�
exp��	�� � d � 	

Z �

L

�

�
exp��	�d � � d� � 	E��	�d � L� �

and therefore the calculation leading to ���	�� can be repeated and one arrives at

���	�� L 	 �

	� � d �

where � is the solution of

���	�� f�s� � a � log 	 �

��



���� Procedure for EB

The main issue of this work is the calculation of the energy contribution EB de
ned by
������ � ������ as

���	��

EB � 	
NX
i��

qi
X
rn�ri

qn

�X
p��

�cpicpn � spispn�
n
K�

pn I
�
pi �

� 	
�X
���

K�
pn I

�
pi �c�i c

�
n � s�i s

�
n�
o
�

We assume that the accuracy required is given by the condition that the error is to be at
most e�a� a � accuracy parameter� Since a will usually be chosen once for all we omit
the dependence of various quantities on a later on�

The 
rst information we use concerns the �in�uence region� given by condition ������
only charges qn within the region G 
 C have to be considered in ���	�� �see Figure 	�

	g��ewaldsums
eps
�� � �� mm y

z

G

Rc

rn

C qi qjri

Fig� �

The cut�o� distance Rc is given in equation ������

In C we introduce a partition into sectorial domains as follows�

Let �r� �� be polar coordinates in the �y� z��plane� Set

�� �
	�

L
� �� � � �� � � � � L �

where L will be chosen depending on the number N of charges in C� Further select a
sequence

� � r� � r� � � � � � rK �

p
	

	
� rK�� �

��



where K will also depend on N � We then de
ne the domains

������ Sk� � f�r� ��j rk�� � r � rk� ���� � � � ��g

and the annular domains

������ Sk � f�r� �� j rk�� � r � rkg

as well as the disk

����	� S� � f�r� �� j r � r�g �

The calculation of EB consists of two parts� for all charges qi � C� qn � C 
 G whose
distances ri� rn to the origin di�er only slightly we calculate pairwise� and for the other
pairs the product decomposition is applied�

a� Pairwise calculation

We denote the associated energy contribution by EBP which can be calculated as

������ EBP � 	
KX
k��

X
qi�Sk��	C
qn�Sk��
Sk

qiqnEin �

Here Ein is given by �����

�����a� Ein � G���i� n�� xi � xn � H��yi � yn� � �� �zi � zn� � �� ����	����

if ��i� n� �
q
r�i � r�n � 	ri rn cos��i � �n� � � and

�����b� Ein �
�

�
Be���i� n�� xi � xn

if ��i� n� � �� Here � �� ��� may be chosen and the functions G� � H�  and Be�  are
de
ned in ������ ����� and ������

b� Product decomposition� Recursions for � � �

We now consider any k with � � k � K � � and assume that qi � Sk��� qn � G 
 C �
S� 
 S� 
 � � � 
 Sk� i�e� rn � rk�

Our aim now is to calculate of ���	�� the sums

	
X

qi�Sk��
qi

X
rn�rk

qn

PX
p��

�cpi cpn � Spi Spn�K�
pn I

�
pi �

�	



where the limit P is determined by inequality ����� with � �
q
r�n � r�i � 	rnri cos��n � �i�

there� This can be done in the following way� Let Pk be the smallest number satisfying

������ Fe�rk � rk��� P  � e�a �

with Fe�  de
ned in ���	�� For any � � p � Pk let R�p� the solution of

Fe�R� p � e�a � �R � rk � rk��� �

Note that roughly one has R�p� � const�
p

� For any sectorial domain Sk� we now de
ne a

domain Gp�k� �� containing the charges qn that are su�ciently far from Sk� �see Fig� ��

	g��ewaldsums
eps
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������ Gp�k� �� � f�r� �� j r � rk � r� � r�k�� � 	r rk�� cos��� ��� � R��p�g �

We will also need the intersections

������ Ip�k� �� �� Gp�k� �� �Gp�k� � � �� �

We now de
ne a recursion for 
xed k and p� with � � k � K � �� � � p � Pk�

Start of the recursion� Set

������ A�
p�k� �� �

X
qn�Gp�k���

qn cpnK
�
pn �

Recursion step� Set

������ A�
p�k� � � �� � A�

p�k� �� �
X

qn�I�p �k���

qn cpnK
�
pn �

X
qn�I�p �k���

qn cpnK
�
pn �

��



Here the regions I�p �k� ��� I�p �k� �� �see Fig� �� are de
ned by

������ I�p �k� �� � Gp�k� � � ��nIp�k� �� �

����	� I�p �k� �� � Gp�k� ��nIp�k� �� �
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Remark� a� The recursion scheme avoids unnecessary overlaps in the sums arising from
���	�� and the domains Gp�k� �� ensure that no terms are calculated whose contribution
to the energy would be smaller than e�a�

b� The domains Sk� Sk��� Gp�k� ��� I
�
p �k� �� have to be determined only once and remain

the same for possibly many calculations�

We also need the associated terms

������ a�p�k� �� �
X

qi�S�k�����
qi cpi I

�
pi �

The contribution to EB then is

������ E�
B�k� p� � 	

LX
���

a�p�k� �� A
�
p�k� �� �

We can repeat the recursions with terms

������ ea�p�k� �� �
X

qi�S�k���
qi spi I

�
pi

��



and analogously

������ eA�
p�k� �� �

X
qn�Gp�k���

qn spnK
�
pn �

leading to the corresponding energy contribution

������ eE�
B�k� p� � 	

LX
���

ea�p�k� �� eA�
p�k� �� �

The energy contribution to EB stemming from the product decomposition then 
nally is

������ E�
B
�

K��X
k��

PkX
p��

�E�
B
�k� p� 	 fE�

B
�k� p�� �

c� Recursions for � � �

There is one additional di�culty arising in the calculations involving the Bessel functions
I�� K�� both numbers may be huge or extremely small if � is large� Products of the
two terms however will in our case stay moderate� We now can take advantage of the
asymptotic behavior described by formula �������

If � � R 	 r � � then one has

������
���I��r�K��R�� �

	�

� r
R

����� � e�a

provided

������
�

	�

� r
R

�� �
�� exp

h
� �

�
w�

�R
�

�
� w�

�r
�

��i
� U�

�r
�

�
U�

�R
�

��
� e�a

with w�� � de
ned in ������ and U�� U� in ������� �������

If we replace R by 	�prn� r by 	�p � ri then a su�cient condition for the validity of
������ is �see Appendix�

������ H��� ri� rn� p ��
�

	��

� ri
rn

�� h�
� �

�

�

�
r�n �

�
�� �

�

�
r�i

i
��p� � e�a �

where it is assumed that � � 	��Rc �
p
�
�

� 	 	�p � rn and rn � ri�

As a simple approximation one may take �see Section ��

����	� � 	 ���rn� p� � �r�n �
� p� ea��	� �

As an illustration we give a numerical example�

��



Choose a � ��� so that e��� �� ����������

ri � ��	� rn � ��		� p � ��

From ����	� one 
nds that for � 	 	� one has

n �

	�

� ri
rn

��� �K��	�prn� I��	�pri�
o
� ���������

while in fact f g �� ����������

The approximation ����	� yields � � �� as the critical value�

The condition ������ is useful as long as p is not too large �which is possible if rn � ri
is small��

Setting

Ha��� ri� rn� p �
� �

	�

� ri
rn

�� �K���prn� � I���pri�
�
ea

a typical plot looks like 
gure ��

level line Ha��� ri� rn� p � �
for ri � ����� rn � ���� ea � ���
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Values for error � �����
y � ���� condition ���	��
Pa����	� � �	�� condition �����

�� is the smallest integer satisfying

����	a�
�

	�

� ri
rn

�� � e�a �

��



and p� is the value for which

����	b� K���prk� I���pri� � e�a �

Note that �� and p� are substantially smaller than the associated values y and Pa����

We now can de
ne the recursions involving the Bessel functions of index � 	 ��

We 
rst use the cut�o� condition for the ��values given by ���	��� if rn � ri and

������ � 	 �m 	 �

log� rn
ri

�
�

then these values of � may be neglected�

We turn this condition around in the following way� any charge qn with distance rn
from the center may be neglected if

������ rn � ri e
�
� �

Here � is determined by ���	�� and depends only on the accuracy parameter a� The
recursion scheme is thus as follows�

Take a 
xed value of k� 
xed value of p � Pk and de
ne the disk Ck� as

������ Ck� �
n

�r� �� j r � rk e
�
�

o
�

Then� set in analogy to ������

������ A�
p�k� �� �

X
qn�Gp�k���	Ck�

qn cpn c
�
nK

�
pn �

with the same recursion step

������ A�
p�k� �� �� � A�

p�k� �� �
X

qn�I��k���	Ck�

qn cpn c
�
nK

�
pn �

X
qn�I��k���	Ck�

qn cpn c
�
nK

�
pn �

The associated terms are

������ a�p�k� �� �
X

qi�S�k�����
qi cpi c

�
i I

�
pi �

The recursions run for all values of � from � � � to � � �m�k� � �
log�

rk
rk��

�
�

The value of �m�k� may be rather large and one can therefore use the simpli
cation
suggested by inequality ������� for given � � �m�k� let Rk��� p� the solution of

������ H��� rk� R� p � e�a �

��



Then in the disk

������ C�kp � f�r� �� j r � Rk��� p�g

one can replace in ������
K�

pn by �K�
n �� r���n

and in ������

I�pi by �I�i ��
�

	�
� r��i �

The recursions for � 	 � have to be repeated for slightly modi
ed terms which we get
from the expressions in ������ according to the following list�

������

�������������
������������

eA�
p�k� �� �

X
qn�Gp�k���	Ck�p

qn spn c
�
n

�K�
n

B�
p �k� �� �

X
qn�Gp�k���	Ck�p

qn cpn s
�
n

�K�
n

eB�
p �k� �� �

X
qn�Gp�k���	Ck�p

qn spn s
�
n

�K�
n �

The associated terms are then

����	�

������������
�����������

ea�p�k� �� �
X

qi�Sp�k�����
qi spi c

�
i

�I�i

b�p�k� �� �
X

qi�Sp�k�����
qi cpi s

�
i

�I�i

eb�p�k� �� �
X

qi�Sp�k�����
qi spi s

�
i

�I�i �

The energy contributions are then as in �������

������ E�
B�k� p� � �

LX
���

fa�p�k� ��A�
p�k� �� � � � � � eb�p�k� �� � eB�

p �k� ��g �

The total contribution 
nally is

������ EB � E�
B
	

KX
k��

PkX
p��

�m�k�X
���

E�
B
�k� p� �

��



��
� Procedure for EL

It is convenient for the subsequent analysis to introduce two more sets �see Fig� ��

������
Y �

n
�y� z�

��� jyj � �

�
� jzj � �

�

o
R � f�y� z�

��� �y� z� � lR� � C� distf�y� z�� Cg � �g �
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According to ���	� the energy contribution denoted as EL may be written as

������ EL � ��

�

X
qi�C

X
qj�C
Y

qiqj L�yi � yj� zi � zj �

We now have to take into account that some terms of EL have already been included in
EB� the terms that were needed in ������� These are all the pairs qi� qj where qi � C�
qj � G 
 C with ��i� j� � �� This implies that all pairs with qi � C� qj � R� ��i� j� � �

have been included also� hence we have a correction term

������
E �

�

�

X
qi�C

X
qj�R�

qiqj L�yi � yj� zi � zj �

��i�j�

It remains therefore to calculate the remaining terms of EL in ������� that is

������
�EL � ��

�

X
qi�C

X
qj�C
Y

L�yi � yj� zi � zj �

��i�j��

��



The calculation of �EL� i�e� the approximation with given accuracy� is split up into two
parts� for all pairs �qi� qj� � C such that

� � jzi � zjj � �� �

we will apply the product decomposition as given in ������� For all pairs in C with
jzi � zjj � � or jzi � zjj 	 �� � the energy contributions will be calculated pairwise� The
choice of � will be discussed later on�

a� Product decomposition of EL���i� j� � ��

We split up the basic cell C into M stripes

������

��������
�������

Zm �
n

�y� z�
��� jyj � �

�
�
m� �

M
� z �

m

M

o
� m � �� � � � �M � �

and

ZM �
n

�y� z�
��� jyj � �

�
�
M � �

M
� z � �

o
�

We now make use of ������ and consider 
rst the terms denoted ei�� exp��	� � zi���
Choose qi � Zm and qj � Zm��� � 	 	� Then the associated energy contribution can be
written as

������
M��X
m��

M�mX
���

P ���X
p��

�p
X

qi�Zm
qi �cpi e

�p
i

X
qi�Zm��

qi �cpj e
p
j � E

���
L �

Here �p � �
p���exp����p�� and the number P ��� is determined by the accuracy� this was

derived in ���	�� � ���	���

������ P ��� 	 � �M
	���� ��

where � is the solution of

����	� f��� �� � � log� � a � log 	 �

where a � accuracy parameter�

We can rewrite ������ in di�erent form� Set

������

�����
����

Dp
m �

X
qi�Zm

qi �cpi e
�p
i

d
p
m� �

X
qj�Zm��

qj �cpj e
p
j �

	�



Then we have

������ E
���
L �

M��X
m��

M�mX
���

P ���X
p��

�pD
p
m d

p
m� �

There is then a similar expression involving the sinus terms �spi�

������ E
���
L �

M��X
m��

M�mX
���

P ���X
p��

�p
fDp
m
edpm� �

with

������

�����
����

fDp
m �

X
qi�Zm

qi �spi e
�p
i

edpm� �
X

qj�Zm��

qj �spj e
p
j �

In the expressions E
���
L � E

���
L the charges are chosen in di�erent stripes such that

jzi � zjj 	 � � �
M

� Next we choose the positions such that � � jzi � zjj 	 � in order
to apply the product decomposition formula involving the terms ei� We de
ne now P ���
as the smallest integer such that

������ P ��� 	 � �M
	��M � �� ��

and introduce in analogy to ������� ������ the quantities

������

�����
����

F p
m �

X
qi�Zm

qi �cpi�ei�
p� eF p

m �
X

qi�Zm
qi �spi�ei�

p

f
p
m� �

X
qj�Zm��

qj �cpj�ej�
p� ef pm� �

X
qj�Zm��

qj �spj e
p
j �

With these quantities two more energy contributions are formed� namely

������ E
���
L �

MX
m��

M�mX
���

P ���X
p��

�p F
p
m � f pm� �

and

������ E
���
L �

MX
m��

M�mX
���

P ���X
p��

�p
eF p
m � ef pm� �

The total energy contribution stemming from the product decomposition of EL from
charges qi� qj in C with ��i� j� � � is thus E

���
L � E

���
L � E

���
L � E

���
L �

	�



b� Pairwise calculation

The remaining pairs that have not been calculated so far are pairs qi� qj with ��i� j� � �

but jzi � zjj � � or �� jzi � zjj � � � �
M

� Thus the last contribution to EL is

������ E
L � ��

�

X
qi�qj�C	Z���

qiqj

SX
s��S

L�yi � yi� zi � zj � s

where

����	� Z�� � fpairs �qi� qj� j ��i� j� � �� jzi � zjj � �  �� jzi � zjj � �g �

The number S in ������ depends again on the accuracy� For most practical purposes
S � 	 or � will su�ce�

���� Modi�cations for the two�dimensional case

There is very little that has to be changed if the basic system is only periodic in x and y

direction and z ranges in a 
nite height �see Remark a� following Eq� ���	��� In this case
the charges qn are located in the rectangle

������ G �
n

�y� z�
��� jyj � �

�
� Rc� � � z � �

o

where the cut�o� distance Rc is still given by ������

All formulae for the calculation of EB remain valid under the restriction that qn � G�
G now being de
ned by �������

For the calculation of EL we need the counterpart of the product decomposition for�
mula ������� We can now make use of another identity given in �� �������� there��

������ �L�yj � yi� zj � zi � 	
�X
p��

�

p
exp��	�pjzj � zij cos�	�p�yi � yj� �

One readily checks that the counterpart of ������ now reads �in the notation introduced
in �������

������ �L�yj � yi� zj � zi � 	
�X
p��

�

p

�ej
ei

�p
�cpi � cpj � spi � spj� �

One now has only the corresponding energy contributions E
���
L and E

���
L as de
ned in

�������������� with now �p � �
p
�

In the pairwise calculation the analog of formula ������ now is

������ E
L � ��

�

X
qi�qj�C
��i�j��

qi qj L�yi � yj� zi � zj �

		



Finally� the correction term E given in ������ is the same except that the set R there
has to be replaced by

������ R �
n

�y� z�
��� �
�
� jyj � �

�
� �

o
�

�� Estimate for the number of terms

The main issue of this section is to derive a bound for number of terms involved as function
of the number N of the charges located in the basic cell C� with N being rather large�
We will use a number of simpli
cations in the following which should have only a minor
e�ect on the 
nal result�

It is clear that only numerical tests will give a precise answer� but such tests depend
very much on the way this method is programmed� Nevertheless one can get a good idea
about how the number of terms to be calculated will increase as N increases�

We concentrate fully on N keeping the accuracy a 
xed in a range which seems of
practical importance� say � � a � ���

a� Pairwise calculation

We assume that in ������ r� � rk � rk�� � � for all k and estimate 
rst the number of
terms occurring in ������� Formula ������ has the following geometrical interpretation
�see Figure ���
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For 
xed r one has to calculate the interaction of all charge pairs qi� qn in the annulus
A��r�� Since there are N charges in C �volume of C � �� the number of pairs contained
in A��r� can be approximated by �

�
�	�� � r��� � � small number�

The number T���� N� of terms necessary for EBP can thus be estimated as follows

����� T���� N� �� n��a� � 	�� � ��N�
Z p

�

�

�
r� dr � c��a� � �� �N�

	�



where n��a� is a number which depends only on the accuracy a� The correction term
given in ������ can be incorporated in ����� as well�

b� Product decomposition for EB

We 
rst rewrite the basic product decomposition formula ���	�� in the way it is applied
in our procedure�

���	�

EB
�� 	

NX
i��

qi �
X

rn�ri��

qn �
P �i�n�X
p��

n
T
���
pi � T ���

pn �
���p�i�n�X
���

T
���
p�i T

���
p�n

�
�m�i�n�X
������

�T
���
�i

�T ���
�n

o
�

Here the T �i��terms stand for the types of terms contained in ���	���

In the following we shall approximate the sums by integrals and the summation limits
P �i� n�� ���p� i� n� by continuous functions� Let r be the distance to the origin in the
�y� z��plane of a charge qi and � the same for qn�

Then the number of terms involved in ���	� can be approximated as

�����
T���� N� �� N

Z p
�

�

�
r dr

n
n�

Z r�Rc

r��
P �r� ��dp � n�

Z P �r���

p��
���p� r� ��dp

� n�

Z Rc

r��
��m�r� ��� ����� r� ��dp

o
�

Here n�� n�� n� count the number of trigonometric and Bessel functions involved�

We now need an upper bound for P �r� �� and this is determined in ����� with � replaced
by �� r there� One 
nds �see Appendix�

����� P �r� �� �
�

	���� r�

n
a � log

� �

�� r

�o
�

Therefore one has

�����
n�

Z p
�

�

�
r �

Z r�Rc

r��
P �r� ��d� dr �

n�

	�

Z p
�

�

�
r dr

Z Rc

�

h
a

t
�

�

t
log

�
�

t

�i
dt

� c��a�
h

log
�
�

�

�
� log�

�
�

�

�i
�

Next we need an estimate for the expression

����� a� �
Z p

�

�

�

Z r�Rc

r��

Z P �r���

p��
���p� r� ��dp d� dr �

	�



We use the crude upper bound �see Appendix�

����� ���p� r� �� � �ea��p����	�

which implies

�����

Z P �r���

p��
���p� r� ��dp �

�

�
ea	� �����	� � P �r� ���	�

�
�

�
ea	� � ��P �r� �� � ���	� � P �r� �� �

�

�
ea	�

�
�
�p

�

�
� Rc

���	� � P �r� �� �

The combination of ����� and ����� shows that

����� a� � c��a�
h

log
�
�

�

�
� log�

�
�

�

�i
�

As a last step we bound the term

������ a� �
Z p

�

�

�

Z r�Rc

r��
��m�r� ��� ����� r� ���d� dr �

Z p
�

�

�

Z r�Rc

r��
�m�r� ��d� dr �

By ���	�� one has

������ �m�r� �� � �

log��
r
�

� � �

where � is the solution of ���	���

We estimate as follows�Z r�Rc

r��

d�

log��
r
�

�
Z Rc

�

d�

log�� � t
r
�
�

Z Rc

�

r � t

t
dt � r log

�Rc

�

�
� Rc � �

so that one has the crude estimate �for small � �

����	� a� � const � log
�
�

�

�
�

Combining ������ ������ ������ ����� and ����	� we see that the total number of terms
needed for the calculation of EB can be estimated in the form

������ T ��� N� � c� � �� �N� � N
�
c� log

�
�

�

�
� c� � log�

�
�

�

��
�

Here � is the width of the annulus shown in Figure ��

	�



c� Product decomposition of EL

The procedure explained in ������ and the sequel can be summarized as follows �see
Fig� ��
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For any charge pair qi in the ��strip Zm� qj in Zm� one has to calculate the sums denoted

by Dp
m� dpm��

fDp
m� edpm�� F

p
m� f pm��

eF p
m� ef pm� in ������� The summation over p runs from � to

a value P for which one has the estimate �see ���	���

������ P � �

	� � S �

where � is the solution of ���	���

Hence the number of terms needed for the calculation of EL allows the estimate

������ T ������ N� � c�

Z ���

�

�

	� � s ds � c� � �
	�

log
�
�

�

�
�N �

Hence for the total number of terms needed for the calculation of the Coulomb energy
the estimate ������ holds with the meaning of � described in Figures � and ��

We can now make an optimal choice of � which will depend on the constants c�� c�
and c� in ������� They have not been determined yet since this should be based on the
CPU time required� If we choose � � c �N��	� we see that

������ T ��� N� � N�C� � C� � logN � C��logN��� �

If one optimizes the value of � in ������ there is no signi
cant improvement of the estimate
�������

	�



Appendix

A�� Estimate for the solution of �����

We 
rst derive an upper bound for the solution of

�A��
�����

	��

�p
	�� � P exp��	��P � � e�a �

Setting c � �����
��

and 	��P � s we rewrite the equation in the form

�A	� s �
�

�
log s � a � log

�
c

�

�
�

Since a �� � in applications we certainly have

�A�� s � a � log
�
c

�

�
�

i�e�

�A�� P �
�

	��

�
a � log

�
c

�

��
�

One can give a very sharp estimate in the following way� We set s� � a � log� c
�
� and

s � s���� t�� Then insertion into �A	� and reduction yields

�A�� s� � t �
�

�
log��� t� �

�

�
log s� �

Since t is close to zero we may expand the logarithm� First order approximation then
gives

�A�� t �
�

�

log s�
s� � �

�

�

which leads to the estimate

�A�� P �� �

	��
s�
h
��

�
�

log s�
s� � �

�

i
� s� � a � log

������

	��

�
�

Numerical tests show that this approximation is surprisingly sharp� There is however no
signi
cant improvement of the estimate given in ����� resulting from this sharper estimate
for P �

A��� Derivation of condition �����

A series expansion of the term

�A�� h�r� R� � � �� exp
h
� �

�
w�

�
R

�

�
� w�

�
r

�

��i
U�

�
r

�

�
U�

�
R

�

�

	�



in powers of �
�

yields

�A��
h�r� R� � �

�

��

�
R� � r� �

�

�
�R� � r��� �

��
�R� � r��

�

�
� O

�
�

��

��

�
�

��
�R� � r�� �

�

�
�R� � r�� � O

�
�

��

��
�

Hence one has

�A���
���I��r�K��R�� �

��

�
r

R

����� � �

���

�
r

R

�� n
R� � r� �

�

�
�R� � r�� � O

�
�

��

�o

which in turn leads to condition �������

In order to 
nd a crude approximation �� for the value of � for which

�A���
���I��r�K��R�� �

��

�
r

R

����� � e�a

we choose r � R � 	�prn and use �A���� This leads to the estimate

�A�	� � �� �� � �rn �p��	� � ea	� �

as used in ����	��
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