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Abstract

The growing gap between processor speed and memory access time becomes more and more
a performance limiting factor in modern computing systems. Therefore, DRAM manu-
factures try to improve memory throughput by developing new memory interfaces around
basically unchanged memory cores. This report focuses on embedded systems, i.e., sys-
tems which utilize less cache space and fewer memory hierarchy levels than ordinary PC
or workstation systems due to costs, area, and power dissipation restrictions. Therefore,
embedded systems particularly depend on the performance of the underlying main memory
system. Hence, two recent DRAM architectures, widely-used SDRAMs and the next gen-
eration memory Direct RDRAM, are investigated in this report. Performance gains are
revealed that can be achieved by exploiting features of recent memory interfaces with simple
enhancements of current embedded memory controllers. Different approaches for memory
access schemes are investigated by simulation of the DRAM architectures and the memo-
ry controller together with an out-of-order issue, superscalar CPU model running various
applications. The simulations lead to the following results: using RDRAMs instead of
SDRAMs improves the performance of the system by up to 21%. However, in many cases
this difference in speed can be compensated by an optimized memory controller design that
exploits the pipeline and bank structure of recent DRAMs. An analysis of address traces
shows that the described improvements better consider the locality characteristics of the
applications because expensive (in terms of latency) row misses in the current memory
bank can be shifted to cheaper accesses to other memory banks.
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1 Introduction

Since memory chips have always been optimized for capacity and not for access speed, they
have become the main performance bottle-neck of computing systems [3, 28, 5]. Memory
chip manufacturers have tried to bypass the weak performance of the memory core by
designing complex memory interfaces which isolate the behavior of the slow memory core
from the fast interconnections between the memory chip, a memory controller, and a
central processing unit. This has led to a variety of memory interface implementations
which essentially are based on the same memory core technology and functionality.

Recently, most manufactures of personal computer technology have decided to switch
from synchronous DRAM (SDRAM) to Direct Rambus DRAM (RDRAM). The RDRAM
interface is not simply another step of SDRAM interface improvement, but needs a com-
plete redesign of the main memory system. The Rambus approach for improving memory
utilization is to use narrow buses, so-called channels, at very high clock rates. In tradition-
al SDRAM based main memory systems, several chips are needed to fit the width of the
memory bus. Thus, these chips cannot be controlled concurrently. A single RDRAM chip,
however, spans already the whole Rambus channel. Hence, RDRAM chips can be con-
trolled concurrently. Moreover, more internal memory banks can be found in an RDRAM
than in an SDRAM.

The question now arises whether computing systems will be able to exploit the new
features introduced by RDRAMs. In this report, we concentrate our investigations on
embedded systems where cache sizes and the number of main memory DRAM chips are
kept small. For this class of systems we compare SDRAMs and RDRAMs for a number of
applications, ranging from rather small CPU benchmarks to large real-world programs. We
also investigate different memory access schemes which can be implemented by designing
appropriate memory controllers.

Related work

Detailed cycle-true simulators of CPUs have been used for a variety of investigations in
order to explore future processor systems together with their memory subsystem. These s-
tudies either focus on the influence of different CPU architecture features and cache designs
on the memory behavior of the whole computing system using standardized SPEC [26]
CPU benchmarks [5, 8, 27] and particular applications [24, 27] or concentrate more on
the workload generated for the memory subsystem by certain applications [1]. All these
studies have in common that due to large second level caches the impact of the main
memory is supposed to be low. Thus, the main memory is simulated by a simple model
which only consists of two to three access delay parameters. Embedded systems however
often do not use second level caches and even the size of the first level cache is limited
because of cost, power, and area constraints. Therefore, these systems are in particular
dependent on the main memory design. Hence, we model the main memory system more
precisely. Especially, the functionality of the memory controller is emphasized since the
memory controller is a component which can be redesigned, patched by external circuitry,
or at least configured for an embedded application. This procedure however is not feasible
by the user for the embedded CPU. Accordingly, the CPU architecture is fixed for our
simulations.

Enhancements of memory controllers such as stream buffers [17, 9] and configurable
complex address remapping functions [6] are too complex to be introduced in embedded
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memory controllers in the near future. The concepts need adjustments at the compiler,
may generate additional run-time overhead for reconfigurations, and may introduce addi-
tional delay for applications which do not show a regular memory access pattern due to
further scheduling and control stages within the memory controller. We thus restrict our
study to simple memory controller architectures and enhancements which can be found
in current personal computing systems and workstations. These enhancements will be
available for embedded processors in the near future.

Recent RAM surveys [21, 18, 15] focus on the functionality, the architecture, and
typical applications of dynamic RAMs. However, they do not provide performance mea-
surements under realistic workloads. An analysis of different DRAM architectures and
efficient access schemes has been combined with performance investigations by simulation
of a complex CPU model together with main memory by Cuppu et al. in [7]. However,
their objective differs from ours in that they simulate a workstation class computer with
larger caches, longer cachelines, more superscalar units, and a higher clock frequency than
embedded systems usually have. Cuppu et al. concentrate on an analysis and comparison
of different DRAM types in order to clarify where time is spent during a main memory
access. In contrast to that, we are interested in the impact of the memory controller on
the performance of the whole computing system. We restrict our studies to the two most
recent DRAM types, but simulate more precise DRAM and memory controller models.

This report is organized as follows: in the next section, the functionality of a mem-
ory controller is briefly described and the characteristics of SDRAMs and RDRAMs are
pointed out. Section 3 then outlines the chosen CPU simulator and the extensions imple-
mented in order to simulate a CPU model together with detailed main memory models.
Section 4 finally presents the different simulation settings and the results obtained. The
report concludes in section 5.

2 Functionality of a memory subsystem

2.1 Functionality of a memory controller

A minimal computing system is displayed in Fig. 1 consisting of a central processing unit
(CPU), a memory controller, and memory chips forming the main memory. The memory
controller is responsible for the translation of read and write requests of the CPU into
control signals for the DRAM. Linear addresses must be translated into two-dimensional
addresses for rows and columns which are used inside the memory chip. In addition, the
controller must satisfy the timing requirements of the memory chip because the timing of
control signals is not checked by the DRAM itself. In the worst-case, the memory controller
has to stall the issue of new requests until the DRAM is again capable of accepting read
or write accesses.

The memory bus may be subdivided into three buses, namely for data, control signals,
and addresses. In some systems, combinations of these signals are multiplexed. The
control signals at a certain point of time can be seen as a memory instruction by which
the memory chip is programmed. Embedded CPUs often use a memory controller which
has been integrated into the CPU core. Personal computing systems rather use an external
controller through a front-side bus for more flexibility in the system design.

Memory controllers without additional operation queues are not able to reschedule read
and write operation requests from the CPU. Most of the memory controllers currently
found in PC and embedded systems belong to this class. Thus, the order of operation
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Figure 1: A minimal computing system.

requests issued by the CPU is unchanged. However, the latency of a memory operation
can be reduced by using heuristics which for instance leave memory rows opened as long as
possible in order to save some precharge and activate operations if further memory accesses
appear to the already opened memory row. This strategy is called an open-page policy. In
contrast to that, a closed-page policy precharges an active memory row as soon as possible.
This method is employed if page or bank changes appear frequently due to data accesses
with weak locality. Moreover, the controller may buffer at least an additional memory
request of the CPU. Such a controller is able to exploit the pipelined memory interface
of modern DRAMs by overlapped processing of the current and the next pending access.
Requests cannot be rescheduled, but the sequence of control signals can be shortened.

The format of the memory accesses issued by the CPU depends on the CPU architec-
ture and is usually set at start-up time. The size of an access equals the size of a cache
line so that a single burst transfer is sufficient to exchange the contents of a cache line.

Looking at current main memory implementations which use SDRAMs as memory
technology it can be seen that the front-side bus and the memory bus usually run at
the same clock speed. Moreover, the bus widths of both buses are equal in most cases.
Consequently, the memory controller just buffers incoming signals until corresponding
control signals can be set. In the RDRAM case however, the front-side and the memory
bus differ in the clock frequency and the bus width. Thus, the controller must perform a
kind of serial to parallel conversion and vice-versa in order to cope with the different clock
rates.

Finally, the memory controller may implement simple schemes to map physical address
ranges to other regions by taking the memory organization into account. Hence, short-
er access latencies may be achieved by less exchanges of memory pages due to address
permutations.

2.1.1 Features of current memory controllers

In embedded CPUs the memory controller is often an integrated module and provides much
fewer features than stand-alone controllers. Under the condition to support synchronous
as well as asynchronous RAMs, most 32 bit embedded CPUs only support a reduced
feature set of SDRAMs. For instance, the MPC8xx controller series by Motorola only use
closed-page mode. The Coldfire controller by Motorola and the V832 by NEC provide
logic for the recognition of page hits in open-page mode. However, only a single open page
is supported per memory chip (Coldfire) and for the whole main memory system (V832)
respectively. Moreover, successive memory accesses cannot be processed concurrently and
only a limited set of timing parameters can be adjusted. In comparison to that, the
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80960RN by Intel and the MPC8240 by Motorola recognize page hits on up to four open
pages per chip (80960RN) and for the whole memory system (MPC8240) respectively.
Again, overlapped processing is not offered. Beyond that, the SH-4 by Hitachi is able
to overlap accesses from the CPU core and the DMA controller. Accesses from the same
device (CPU or DMA controller) cannot be overlapped since the memory controller only
looks at the current access in process and the next pending request of the other device.

Stand-alone controllers are not only used in embedded systems but also in personal
computing systems. Stand-alone memory controllers need an additional front-side bus
which adds more flexibility in system design but also generates additional delay, usually
one to two bus clock cycles per access. The MPC106 by Motorola uses two open-page
counters for the whole memory system in order to recognise page hits and to perform
overlapped processing for consecutive accesses. The VRC5074 by NEC and the 440BX
by Intel can control up to eight open pages for short page hit latencies and overlapping
memory control sequences. The 21174 by Digital supports up to 24 open pages and uses a
four bit history predictor for each open page in order to determine whether the row should
be kept open or closed. Recently introduced memory controllers such as the ApolloPro133
by Via Technologies and the 751 by AMD are able to not only look at the next pending
request but also reschedule several read and write requests for overlapping memory control
sequences. The AMD 751 buffers up to 16 pending read and six pending write requests
and schedules them according to data dependencies and page hit or miss behavior.

Tab. 1 summarizes the features of current memory controllers which use SDRAMs.
The support for a closed-page (c-p) activation policy, for an open-page policy together
with the maximal number of open pages (o-p/#pages), and for overlapped processing is
shown.

chip name c-p o-p / #pages overl.

embedded CPUs with integrated memory controller

Hitachi SH-4 yes yes / 4 yes
Intel 80960RN no yes / 8 no
Motorola Coldfire yes yes / 1 no
Motorola MPC8xx yes no no
Motorola MPC8240 yes yes / 4 no
NEC V832 yes yes / 1 no

stand-alone memory controllers

Intel 440BX yes yes / 32 yes
Motorola MPC106 yes yes / 2 yes
NEC VRC5074 yes yes / 8 yes

workstation class stand-alone memory controllers

AMD 751 yes yes / 24 yes
Digital 21174 yes yes / 24 yes
Via Tech. ApolloPro133 yes yes / 8 yes

Table 1: Features of current memory controllers.

2.2 Functionality of recent DRAMs

SDRAMs and RDRAMs have several features in common. They both have synchronous
interfaces for the memory bus. These interfaces isolate the main memory cell arrays from
the signals of the memory controller. The control interface has a command pipeline for
the memory banks in the DRAM. Nevertheless, it is normally not possible to transfer a
memory instruction on each clock cycle for interleaved processing of the parallel memory
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banks because the banks have to share the memory bus and an input/output buffer pair.
Moreover, the RAM chip itself does not check for data collisions on its internal data path.

Read and write accesses are usually performed in burst operation mode, that is, da-
ta words on successive addresses are transferred without the need of additional address
transfers by the memory controller. An arbitrary access is a two-step process. The corre-
sponding row of a memory array must be addressed before a particular column is accessed.
The contents of the chosen row are then held by the sense-amplifiers. Thus, the sense-
amplifiers can be seen as a single row cache of the corresponding memory bank. Accesses
to that particular row are fast and just need the column access time. Accessing anoth-
er row however requires exchanging the contents of the amplifiers and is slow, since the
current row in the sense-amplifiers must always be precharged before another row can be
addressed. Modern DRAMs consist of several internal memory banks, each with its own
row of sense-amplifiers. In the context of DRAM organization, an internal memory array
row is often called a memory page.

2.2.1 SDRAM

SDRAM is currently the most often used synchronous DRAM type. Especially, the RAM
modules according to the PC 66/ PC 100 SDRAM specifications [12, 13, 11] by Intel and
the imminent PC 133 standard are popular.

SDRAM chips are currently most common in 64 Mbit, 128 Mbit, and 256 Mbit ca-
pacities distributed over up to four memory banks. Up to 4 KByte of information can be
offered concurrently in the sense amplifiers of all banks. The memory bus is subdivided
into there separate buses for data, address, and control signals, which all use the rising
edge of the clock as reference.

The burst length can be set for read and write accesses up to a full page burst. The
refresh overhead can be kept small since the maximal refresh interval is 64 ms and several
banks can be activated and precharged concurrently with a single control instruction.

For the implementation of large memory spaces SDRAMs are available on standardized
modules on which several memory chips are mounted. The modules provide a fixed data
bus width. The most popular modules called DIMM (Dual In-line Memory Module [14])
offer a 64 bit wide memory bus. Different configurations are possible, e.g. a 64 bit wide
module for SDRAMs may consist of eight RAM chips with an eight bit organisation or of
four chips with an 16 bit organisation, see Fig. 2 for the 16 bit variant. In this example,
the shaded memory banks of the distinct chips are controlled by the same signals and
therefore cannot be accessed individually. Besides, there are limitations which consider
the maximal count of memory modules that can be supplied by a single memory controller
due to load and timing constraints since several modules are usually connected in parallel
to the memory bus.

2.2.2 RDRAM

RDRAM is a recent memory specification developed by Rambus Inc. RDRAMs will be
initially available in 64 Mbit, 128 Mbit, and 256 Mbit sizes. The 64 Mbit variant uses
16 memory banks, the bigger ones 32 banks. The rows of an internal memory bank have
a size of 2 KByte looking at 256 Mbit devices. However, a sense amplifier row covers just
half of the row entries. Therefore, sense amplifier rows must be shared between adjacent
memory banks in order to cache the information of a complete memory array row in two
sense amplifier rows. This is why just half of the available memory arrays can be kept
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Figure 2: SDRAMs connected in parallel to the bus on a DIMM.

activated concurrently in the best case. The sense amplifiers are however still able to cache
32 KByte of information in a 256 Mbit chip.

An RDRAM uses a single bus for addresses and control instructions as well as a
separate bus for data transfers. Both edges of the clock are used on both buses. The
transmission of all kinds of information is started at the falling edge of the clock and needs
four clock cycles (eight clock edges) for completion. Thus, the burst length is fixed to eight
data words of 16 bit. Since even control signals need several clock cycles for transmission,
RDRAMs are often referred to as DRAMs which use packets for communication. The
maximal clock frequency of the buses is 400 MHz.

RDRAMs use write buffers. The memory controller must take care of the data con-
sistency of the write buffer and the sense amplifier contents. That is, the contents of the
buffer must be transferred to the corresponding sense amplifiers with the help of a so-
called retire instruction packet before the appearance of any subsequent read or precharge
instructions for the same memory location. However, a retire instruction can be skipped
if a read or a write instruction to another RDRAM chip is issued. In this case, the write
buffers of all other devices are retired automatically. Moreover, a write instruction after
another write to the same device also retires the write buffers automatically. Nevertheless,
the additional retire commands may delay subsequent operations. Consider a situation
where a read operation follows a write operation to the same memory address. In this
case, the read operation must be delayed until the write buffers are in a retired state.

A RDRAM device must be refreshed twice as often as an SDRAM. The minimal row
active time of 50 ns (20 clock cycles) as well as a column address strobe delay of 30 ns
(12 clock cycles) are typical for a DRAM core. Therefore, the minimal row active time
is a limiting factor for fast arbitrary accesses through the “overclocked” RDRAM input-
/output interface. Furthermore, there are no instructions for the concurrent activation
or precharge of parallel memory banks within an RDRAM. Thus, the overhead for the
refresh of the whole chip is greater than for an SDRAM.

RDRAMs are also available on memory modules, so-called RIMMs specified by Rambus
Inc. Up to 16 RDRAMs can be combined on a single RIMM which provides a 16 bit wide
memory bus. A single RDRAM device already spans the 16 bit memory bus. Thus, all
memory banks on a RIMM can be controlled individually since the chips on a RIMM are
connected in parallel to the buses (as DIMM are in the SDRAM case). Several RIMMs
are interconnected in a serial fashion. Up to 32 RDRAMs distributed over up to three
RIMMs form a Rambus channel. The different interconnection schemes are displayed in
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3 Simulation environment

3.1 Simplescalar tool set

3.1.1 Alternatives

SimICS SimICS [16] is an instruction-set simulator of the Sparc V8 instruction set
architecture. It thus only simulates the functional behavior of the system and not the cycle-
true timed behavior. Instructions are interpreted in program order, each with a duration
of one simulated clock cycle. That is, neither pipelines nor any other architecture specific
items are considered. The simulator can execute programs in the Sun Solaris binary format
directly. Thus, an operating system is not required but may be also simulated in addition.
SimICS can be used in the fashion of a debugger; programs can be halted, disassembled,
statistics can be generated, and profiling is enabled on different granularity levels. The
slowdown by a factor of 30 to 40 due to simulation versus execution on real hardware is
at a moderate level. The simulator comes in binary format. Source code is only available
for some extensions.

SimOS SimOS [23] provides models of the MIPS R4000, R10000, and Digital Alpha
processor families. In addition to the CPU, caches, multiprocessor memory buses, disk
drives, ethernet, consoles, and other devices are simulated. There are functional and
timed cycle-true processor models available for simulation. The source code (written in
C) is freely available. An operating system running on the simulated CPU is required. If
applications run under the chosen OS on a real CPU, no further porting steps are required
in order to run the simulation. The slowdown due to simulation depends on the granularity
of the chosen CPU model and and is up to a factor of several thousand which is in the
normal range for a timed cycle-true simulation.

RSIM RSIM [19] is a timed cycle-true simulator for custom, shared-memory multipro-
cessor systems and uniprocessors. In particular, multiple issue, out-of-order issue and
completion, branch and address speculation, and non-blocking loads and stores are mod-
eled. The simulated CPU architecture is similar to the Mips R10000. The instruction
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encoding however is similar to the Sparc V9 ISA [25]. Programs have to be ported to run
under RSIM for multiprocessor and shared memory investigations. Only user-level code
can be simulated, system calls are mapped onto the simulation host system via calls to a
custom application library. The source code (written in C/C++) is freely available.

3.1.2 SimpleScalar characteristics

We use SimpleScalar [4], version 3.0a, for cycle-true, execution-driven simulations. The
architecture of the instruction set of the simulated CPU called Portable ISA (PISA) has
been inspired by the MIPS IV instruction set [20]. It uses a 64 bit encoded instruction
format while the CPU’s internal data path is still 32 bit wide. There are separate reorder
buffers for compute and load/store instructions and register renaming facilities to make
out-of-order instruction execution possible. A configurable number of execution units can
make use of 32 floating point and another set of 32 integer registers. The registers are
32 bit wide. Six different configurable predictors are offered. All stages of the pipeline can
be reconfigured. The instruction flow through the pipeline stages is sketched in Fig. 4.
The pipeline consists of six stages and thus fits between the five stage pipeline of some
Mips R4000 variants and the seven stage pipeline of the Mips R10000. Compared with the
pipeline of e.g. an R4300i a distinct issue stage is introduced for dynamic scheduling of
instructions. Compared with the R10000 there is only one execution stage. However, the
writeback phase is split into two stages in SimpleScalar (writeback and commit stages).
The functionality of the different stages can be summarized as follows:

fetch dispatch issue exec writeback commit

instructions from
cache / memory

data from
cache / memory

data to
cache / memory

predictor feedback

Figure 4: Instruction flow through the SimpleScalar Pipeline.

• fetch: instructions are fetched from the cache and put into the dispatch queue.

• dispatch: instructions from the dispatch queue are decoded and put into the corre-
sponding reorder buffer. Register renaming is applied.

• issue: the issue stage determines when operands and functional units are available
for the instructions in the reorder buffers and releases instructions accordingly out-
of-order to the functional units.

• exec: instruction execution stage.

• writeback: miss predictions are handled. The results of the execution stage are writ-
ten back to registers. Moreover, the result is checked whether there are instructions
which may be ready for execution now due to resolved dependencies.

• commit: store data is commited to the data cache. Instructions are completed in-
order.
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The cache levels use writeback mode and non-blocking loads and stores. More details can
be found in [4].

SimpleScalar has been chosen for the simulations and the implementation of a more
detailed main memory system because of the following reasons. The complete source code
is freely available (written in C). The simulator implements a cycle-true architecture model
of a modern CPU. Each pipeline stage as well as the cache levels can be easily configured
by command line options. Since the tool-set already comes with its own cross-compiler,
applications can be easily ported to the simulated environment. In comparison to that,
SimOS simulates a more complete computing system considering other computer compo-
nents. However, this complexity was not required in our investigations. Finally, RSIM
focuses on shared-memory multiprocessors. It is possible to restrict the simulations to in-
vestigations of the architecture of a uniprocessor system. However, in order to familiarize
with the source code one has to cope with a lot of mechanisms which are only required for
a multiprocessor system but still affect the uniprocessor simulation. For the same reasons,
the cross-compilation process is not as straightforward as in SimpleScalar.

SimpleScalar has some restrictions which have not affected our investigations, e.g. the
lack of multiprocessor support. Moreover, SimpleScalar only simulates the execution of
user-level programs, i.e. some of the needed system calls are handled by the simulation
host. Most of them are required for file I/O. However, we have restricted our study to
embedded systems without real-time constraints. A lot of processes which are usually
performed by the operating system in a PC are executed by specialized modules in an
embedded system and thus do not affect the CPU speed. Hence, the kernel of the embed-
ded processor, the CPU, is responsible for the remaining computations and control tasks.
There may not even be the need for an operating system.

3.2 Simulator enhancements

The following DRAM and memory controller models have been integrated into Sim-
pleScalar.

3.2.1 DRAM models

SDRAM Using recent 256 Mbit SDRAM chips and a common 64 bit wide memory bus
at least 128 MByte of main memory are available. An SDRAM by IBM [10] has been
modeled in the 16 bit configuration. Hence, four devices have to be controlled in parallel
to form the 64 bit wide bus. This setting is equivalent to a 64 bit DIMM with four mounted
devices. The controller sees memory banks four times the size of a single chip’s bank. The
memory bus is clocked at 100 MHz as in current personal computer systems. The IBM
chip consists of four banks with 8192 rows each. The following timing parameters have
been modeled, see Fig. 5:

• tAA column address strobe delay: time between issuing a read instruction on the
control pins and the appearance of the first data item on the output pins.

• tRP precharge time: time needed to precharge an active row.

• tRCD row address strobe to column address strobe delay: time needed to activate a
row of an idle memory bank.

• tDPL data input to precharge delay: time needed between the transfer of the last
data item of a burst write and a following precharge operation within the same bank.
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• tWAR write after read delay: this parameter considers the bus turn around time to
avoid data contention if the data flow direction changes from read to write.
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Figure 5: SDRAM: row hit followed by a row miss in the same memory bank.

Note that the minimal row active period tRAS cannot be violated with our simulator
settings. The CPU uses a cache line size of 32 Byte which corresponds to burst transfers of
length four over the memory bus. This burst mode is used by common memory controllers.

Refresh operations have been neglected. The refresh of a single row (an auto refresh
cycle) would need seven clock cycles (70ns). 8192 auto refresh cycles are needed every
64ms. Thus, refresh operations take 8192·70ns

64ms ·100% = 0.9% of the run-time of the SDRAM.
A refresh of the whole DIMM needs 575µs and may considerably delay the execution of a
CPU instruction in the worst-case. However, the refresh may be split into smaller intervals
refreshing only some of the rows at a time.

RDRAM The RDRAM memory bus is 16 bit wide as is an RDRAM chip. Again,
256 Mbit devices are modeled. Thus, the Rambus channel consists of four RDRAMs. The
channel configuration allows to control the internal banks of each memory chip individually.
The chosen RDRAM [22] consists of 32 banks with 512 rows each. Adjacent banks have
to share sense amplifiers since a sense amplifier row only carries 1 KByte of information.
A memory row however stores 2 KByte. This is why adjacent banks cannot be in an
activated state at the same time. The Rambus channel runs at a 400 MHz clock using
both edges of the clock signal and a bus width of 16 bit. The following timing parameters
have been modeled, see Fig. 6:

• tRCD row address strobe to column address strobe delay

• tCAC column address strobe access delay

• tCWD column address strobe write delay: time needed from the end of the control
packet which initiated the write access to the beginning of the corresponding data
packet

• tRP row precharge time

• tRTR retire delay: time needed for data to be transferred from the write buffer of
the device to the corresponding sense amplifiers. This task is performed in the
background but must be taken into consideration to maintain data consistency if
read accesses appear immediately after write accesses.
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• tRDP read to precharge delay: time needed from the end of a control packet initiating
a read access to the end of a precharge control packet

• tPP precharge to precharge delay for precharge control packets in the same device
(not displayed)

• tpacket time to transmit a packet
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Figure 6: RDRAM: row hit followed by a row miss in the same memory bank.

Note that the minimal row active period tRAS of 20 clock cycles can be violated with our
simulator settings although the CPU uses a cache line size of 32 Byte which corresponds
to two data packets transferred over the Rambus channel. A violation occurs if a row
is activated, a read is initiated by a read control packet, and the row is immediately
precharged. With our settings, the row active time turns out to be only (using two data
and control packets respectively for the transfer) tRCD + tRDP + tpacket = 15cycles. The
minimal row active period is likewise violated in Fig. 6 looking at the read command.
The same control sequence using two write control packets instead of the read control
ones however does not violate tRAS because the retire timing must be considered. The
descibed violation of tRAS is only possible if the memory controller uses an open-page
policy. The closed-page policy timing however does not violate tRAS .

Again, refresh operations have been neglected. Refresh commands can be broadcast
through the channel so that the same row of the same bank can be refreshed in all devices
at the same time. The refresh of a single row has a latency of 70ns. However, row refreshes
can be performed in an interleaved way using non-adjacent bank numbers. Thus, a single
row refresh only occupies 20ns on the control signal lines of the memory bus. A RDRAM
must be refreshed every 32ms and consists of 32 banks with 512 rows each. Therefore,
refresh operations take 512·32·20ns

32ms · 100% = 1.02% of the run-time of the Rambus channel.
Again, the delay of 328µs introduced by a refresh of a whole device may be reduced by
splitting the operation into refreshes of only some of the rows in smaller periods.

Comparing the settings for the DRAMs RDRAMs have been given preference over
SDRAMs. The SDRAM system only uses a single DIMM. Several DIMMs however may
be accessed with an interleaved scheme.

3.2.2 Memory controller model

The memory controller is responsible for the mapping of physical addresses output by a
memory management unit to chip, row, and column addresses in a main memory system.
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The virtual memory space of SimpleScalar is shown in Fig. 7. Addresses of the size 32 bit
allow a memory space of four GByte. Only the lower two GByte are actually used. The
first four MBytes are unused. The code segment of the simulated application may cover
up to 252 MByte. The heap segment grows from the 256 MByte boundary (heap base) to
higher addresses. The last 16 KByte of the virtual memory space are also unused. Finally,
the stack grows from address 0x7fffc000 corresponding to 2GByte − 16KByte (stack
base) to lower addresses.

address area address area

unused

0x00400000

0x10000000

0x7fffc000

0x00000000

physical memoryvirtual memory

0x7fffffff

4 MByte

(code)
252 MByte

64 MByte

64 MByte 

heap 
heap 

stack

text 
unused

text

stack

segment

Figure 7: Virtual to physical memory address mapping.

The virtual memory space of 2 GByte is now translated to a physical memory space
of 128 MByte which is usually done by a memory management unit. This has been
implemented as shown in Fig. 7. The code segment is mapped into the first 64 MByte of
the physical memory. The upper 64 MByte may be occupied by the heap and stack. The
memory controller now has the option to map the physical addresses to chip, row, and
column addresses of the main memory. Two variants have been implemented.

Linear translation The memory controller maps physical addresses in a linear manner
to the chips and banks of the main memory. That is, passing the boundaries of a DRAM
row results in an access of the next row in the same internal DRAM bank (see Fig. 8).
The code segment is mapped to the first two banks of the SDRAM DIMM and to the first
64 banks (corresponding to the first two devices) of the RDRAM channel respectively.
The base of the heap is mapped to the third bank of the SDRAM DIMM and to the first
bank of the third device of the RDRAM channel respectively. Similarly, the base of the
stack is mapped to the end of the fourth bank of the SDRAM DIMM and to the end of
the 32nd bank of the fourth device of the RDRAM channel.

Interleaved translation In this mode, addresses are mapped in an interleaved manner
to the internal banks of the DRAMs in order to take advantage of the bankwise organiza-
tion. This is a special case of address permutation which is often realized by exchanging
some address lines. Whenever the address passes the boundaries of a DRAM row, the
next address accesses another bank and not the next row of the same bank. We can make
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Figure 8: Linear memory mapping.

full use of this mode if an application accesses streamed data since changing to another
memory bank is usually faster than accessing another memory row in the same memory
bank.

The resulting memory mapping can be seen in Fig. 9. The row size for the SDRAM
DIMM is 4 KByte with a total of 215 rows spread over four banks of the DIMM. This
setting may keep up to 16 KByte of continuous memory opened at the same time.
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Figure 9: Interleaved memory mapping.

Since the modeled RDRAM uses shared sense amplifiers, the next bank is skipped if
a row change appears and thus every second bank is allocated consecutively for streamed
data. Starting with bank 0 even bank numbers are accessed in steps of two. Then, the
odd bank numbers are used. The row size of the RDRAM is 2 KByte with a total of 216
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rows spread over 128 banks in four devices. This scheme may keep up to 128 KByte of
continuous memory opened at the same time.

Page activation policies Usually, an open-page policy and a closed-page policy are
distinguished. Using an open-page scheme a memory row is kept activated as long as
possible. This way, accesses bounded to the current row do not need to precharge and
activate the row again. However, row changes may take longer since the activated row
must be precharged first. If row changes are likely to happen frequently, applying the
closed-page policy may result in better performance. In closed-page mode the memory
controller precharges an active row as soon as possible.

Overlapped processing Since the controller is connected to two independent buses, it
is able to process an access on the memory bus while receiving further requests through the
front-side bus (or an internal bus if the controller is integrated in the embedded CPU).
Note that the CPU must support this mode of operation by non-blocking load/store
execution. Thus, the controller may buffer requests and reschedule them in order to hide
some of the latency introduced by activation and precharge tasks taking advantage of the
pipelined interface of recent DRAMs. An example is given in Fig. 10 using only a single
buffer and open-page mode. The first operation is a write to the current memory bank.
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Figure 10: Overlapped processing, SDRAM case.

However, due to a row miss another row must be opened. This is why a precharge and an
activation are needed. The same is true for the second operation which is a read access to
another bank of the memory. Again, a row miss occurs leading to additional precharge and
activation commands. Now assume that the second operation, the read access, is known
during the processing of the first access, since the corresponding request has already been
transferred through the front-side bus. The latency for precharging and activation can be
completely hidden. The amount of clock cycles which can be overlapped depends on the
current as well as the buffered (next) access and the inter-arrival time of requests at the
controller. In this example, overlapped processing saves four clock cycles.

The implemented memory controller has the following operation modes. Linear or
interleaved address translation can be chosen. In addition, overlapped processing is sup-
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ported in open-page mode. However, in order to keep the controller simple the controller
only buffers one further request. Finally, the closed-page policy can be set. Overlapped
processing is not supported in closed-page mode. Therefore, linear and interleaved address
translation are not distinguished in closed-page mode since both translation schemes result
in the same latencies. In closed-page mode, only two different cases must be distinguished
for SDRAMs and RDRAMs respectively because only the request type (read or write) is
important. Using open-page mode without overlapped processing and SDRAMs 18 differ-
ent cases are determined depending on the request type of the current and the buffered
operation, the bank addresses, and the row state (row hit/miss) of both operations. For
RDRAMs, 36 cases have been identified. The higher number of cases compared to the S-
DRAM controller is mainly caused by the shared sense amplifiers of the modeled RDRAM,
the write buffer, and the use of several concurrent devices. Up to two adjacent memory
banks must be precharged if a random memory bank is accessed. If the overlapped pro-
cessing mode is enabled in addition, the overlapping period may be of variable size. The
implementation of the memory controller is described in detail in appendix A.

4 Experimental results

4.1 Applications

Most of the programs used for simulation can be found in [2], except tmn and gzip. We do
not only look at typical CPU benchmarks but also investigate real-world programs. The
programs can be classified into three areas:

CPU benchmarks

• Dhrystone 2.1: this benchmark looks at the integer performance of a processor and
provides a MIPS rating based on a typical instruction mix.

• Linpack: measures the floating-point performance of a system based on linear algebra
routines.

• Whetstones: another floating-point benchmark based on a typical instruction mix.

Computer Science benchmarks

• Matrix multiply (mm) 1.0: nine different algorithms for computing matrix multipli-
cations can be performed. We have restricted the matrix dimensions to 300 × 300
elements and used an unoptimized algorithm.

• Fhourstones (c4) 1.0: integer-only program implementing a connect-4 game solver.
It performs an exhaustive search with the help of large hash table structures. More
than one million 32 bit hash entries are required.

• Sieve of Eratosthenes (nsieve) 1.2b: an integer program which computes prime num-
bers based on the algorithm of Eratosthenes. Arrays of several MBytes are used.

• Shuffle: the program shuffles four decks of cards using a random number generator
for 26000 times.

• Heapsort 1.0: sorts a random array with up to 219 integer elements.
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Applications

• fft (tfft): this program computes a fast Fourier transform for input signal sizes from
16 to 216 points.

• h.263 video decoder (tmn) 3.1.2: implementation by the University of British Columbi-
a and Telenor Research of the ITU-T recommendation H.263 Video coding for low
bit rate communication. 100 frames of the test sequence Miss Amerika in the qcif
picture format are decoded. The sequence has been encoded with an average data
rate of 1 kbit per frame.

• DNA segment compare (sim): finds the seven best non-intersecting alignments be-
tween two DNA segments of 2500 elements using dynamic programming techniques.

• gzip 1.2.4a: compression program using Lempel-Ziv coding. Gzip compresses its
own distribution archive (approx. 2.5 Mbyte in size).

4.2 Simulations

4.2.1 Influence of the memory controller

In order to compare SDRAMs with RDRAMs under different memory controller config-
urations in an embedded system scenario, the following settings for SimpleScalar have
been chosen. All simulations have been performed on Sun Ultra workstations (big-endian
architecture). The CPU runs at a clock speed of 200 MHz and is two-way superscalar
with out-of-order issue. Bimodal prediction with 512 entries is used. The reorder buffers
have eight entries for compute and four entries for load/store instructions. The direct
mapped first level cache is split into an 8 KByte instruction cache and an 8 KByte data
cache. The cache line size is 32 Byte. There is no second level cache. Loads and stores
are non-blocking. However, the memory controller limits the number of outstanding main
memory accesses. The following functional units are available: an integer ALU, an integer
multiplier/divider, a floating-point ALU, and a floating-point multiplier/divider.

As described in section 3.2.2, the memory controller can apply linear (lin) as well as
interleaved (int) address translation. Moreover, a closed-page (c-p), an open-page (o-p),
and an open-page activation policy with overlapped processing can be chosen. Finally,
SDRAMs and RDRAMs can be controlled. The controller is supposed to be integrated in
the embedded CPU. At most two main memory accesses can be in a pending state.

The simulated execution times of the different programs are displayed in Fig. 11 and
Tab. 2 respectively. The values have been scaled to the execution time under the SDRAM
in closed-page policy configuration. Tab. 3 provides information about program execution
statistics: cache miss rates, the amount of main memory accesses scaled to the number
of all executed instructions (total), the ratio between the number of memory instructions
that can make use of overlapped processing to the number of all main memory accesses,
the amount of loads and stores scaled to the number of executed instructions (rel.), and the
absolute count of executed load and store instructions. Since the amount of memory re-
quests which can make use of overlapped processing does not vary remarkably by changing
the address translation mode or the DRAM type, only the maximum of the corresponding
simulation runs is considered in the table. Finally, Tab. 4 shows hit and miss statistics
for the main memory system using open-page mode. Looking at two consecutive memory
requests, the next pending request may access the same row as the current access. This
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SDRAM, linear address translation

SDRAM, interleaved address translation

RDRAM, linear address translation

RDRAM, interleaved address translation
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Figure 11: Comparison of the simulated execution times of various programs using different
memory controller implementations: closed-page policy (left bar), open-page policy (middle
bar), and open-page policy with overlapped processing (right bar). The execution times have
been scaled to the execution time using SDRAMs combined with the closed-page policy
(leftmost bar).

situation is called a hit in the current row (cr hit). If the pending request wants to access
a different row in the same bank, a miss in the current row happens (cr miss). Finally,
the situations where the pending request will hit or miss a row in another bank than the
current one are summarized as accesses to another bank (ob). The negligible amount of
accesses to idle banks is not quoted in the table.

For two programs the execution time is almost independent on the memory and con-
troller used: matrix multiply (mm) and heapsort. Both programs show almost no misses
in the instruction cache and moderate miss rates in the data cache: 6.6% for mm, 2.7% for
heapsort. Although load and store instructions take around 20% of the executed instruc-
tions, only slightly more than 1% of the executed instructions result in a main memory
access. This rate is too low to produce any run-time effects. For instance, looking at
SDRAMs and the mm program, the rate of expensive row misses in the current bank
can be reduced from 76% for linear address translation to 21% using interleaved address
translation. However, there is no noticeable difference in the execution time.

Another group of programs, whetstone, shuffle, dhrystone, and c4, runs faster by con-
trolling RDRAMs instead of SDRAMs. Moreover, using interleaved address translation
also always shortens the execution time. In most configurations however the differences
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program addr. SDRAM RDRAM
transl. c-p o-p overl. c-p o-p overl.

mm
lin

1.0
1.01 1.0

0.99
1.00 0.99

int 1.00 0.99 0.99 0.99

heapsort
lin

1.0
1.02 1.02

0.99
1.01 1.01

int 1.01 1.01 0.96 0.96

whetstone
lin

1.0
0.95 0.95

0.96
0.92 0.92

int 0.93 0.93 0.89 0.89

shuffle
lin

1.0
0.96 0.96

0.97
0.94 0.94

int 0.93 0.93 0.92 0.91

dhrystone
lin

1.0
0.94 0.93

0.95
0.92 0.91

int 0.91 0.90 0.88 0.88

c4
lin

1.0
0.86 0.84

0.92
0.81 0.79

int 0.86 0.84 0.78 0.76

nsieve
lin

1.0
1.10 1.03

0.96
1.05 0.93

int 0.96 0.91 0.82 0.74

sim
lin

1.0
1.09 1.05

0.98
1.00 0.94

int 0.98 0.93 0.77 0.73

tmn
lin

1.0
1.06 1.02

0.95
1.00 0.94

int 0.89 0.87 0.81 0.76

tfft
lin

1.0
1.03 1.01

0.96
0.98 0.95

int 1.00 0.98 0.91 0.89

gzip
lin

1.0
1.09 1.05

0.96
1.04 0.99

int 1.01 0.96 0.86 0.82

linpack
lin

1.0
1.06 1.06

0.96
1.02 1.01

int 0.92 0.91 0.84 0.84

Table 2: Simulated program execution times for different memory controller schemes.

program L1 cache miss [%] main mem. accesses exec. load/store
instr. data total [%] overl. [%] rel. [%] abs. [106]

mm 0.0 6.6 1.2 17.0 19.2 409
heapsort 0.0 2.7 1.1 0.3 22.1 310

whetstone 3.5 0.0 3.7 0.3 32.5 12
shuffle 2.0 0.6 2.2 4.5 21.1 196

dhrystone 3.3 0.0 3.5 2.6 40.9 443
c4 10.9 3.4 13.8 8.4 32.6 1229

nsieve 0.0 25.9 5.9 45.0 11.7 113
sim 2.3 17.9 11.4 18.2 36.3 1595
tmn 1.2 8.5 7.1 27.3 55.5 250
tfft 1.0 7.7 5.5 15.7 38.9 80

gzip 0.0 17.0 5.3 28.6 28.0 138
linpack 6.1 8.9 4.5 3.7 26.9 21

Table 3: Program execution statistics.

are negligible. Applying overlapped processing does not improve the performance no-
ticeablely. Using open-page mode instead of closed-page mode improves the execution
time by at least 3% (shuffle, RDRAM, linear translation), and up to at most 15% (c4,
RDRAM, interleaved translation). The programs have in common that they generate
moderate miss rates in the instruction cache and almost no misses in the data cache, see
Tab. 3. Since the share of loads and stores of all executed instructions is high (up to 40.9%
for dhrystone), a noticeable amount of the simulated instructions result in main memory
accesses. Moreover, the accesses to main memory are very localized. At least 68.5% of
the memory accesses hit in the same memory row as the preceding memory access. Thus,
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program addr. SDRAM [%] RDRAM [%]
transl. cr hit cr miss ob cr hit cr miss ob

mm
lin

16.2
76.0 7.8

1.5
39.4 59.1

int 21.1 62.7 1.0 97.5

heapsort
lin

4.4
91.7 3.9

3.1
59.5 37.4

int 32.2 63.4 0.8 96.1

whetstone
lin

77.9
21.9 0.2

77.9
21.9 0.2

int 8.9 13.2 0.0 22.1

shuffle
lin

68.5
18.8 12.7

68.5
18.8 12.7

int 0.0 31.5 0.0 31.5

dhrystone
lin

84.2
15.8 0.0

78.9
21.1 0.0

int 0.0 15.8 0.0 21.1

c4
lin

79.5
8.9 11.6

77.3
9.5 13.2

int 7.5 13.0 1.3 21.4

nsieve
lin

1.6
98.3 0.0

1.4
88.4 10.2

int 24.9 73.5 0.3 98.3

sim
lin

30.1
59.1 10.8

30.1
59.1 10.8

int 9.7 60.2 0.1 69.8

tmn
lin

16.1
74.0 9.9

15.8
70.9 13.3

int 9.8 74.1 0.2 84.0

tfft
lin

29.3
62.5 8.2

28.3
63.1 8.6

int 42.0 28.7 21.7 49.9

gzip
lin

7.6
92.3 0.1

6.5
93.4 0.1

int 25.5 66.9 0.1 93.4

linpack
lin

9.6
88.0 2.4

8.8
88.9 2.3

int 15.2 75.2 0.1 91.1

cr hit/miss: hit/miss in the current row ob: access to another bank

Table 4: Main memory access statistics in percent of all memory accesses.

the memory controller benefits well from the open-page policy. The remaining amount of
accesses however, which miss in the current bank or access other banks than the one of
the preceding access, is too small to influence system performance by changing from linear
to interleaved memory translation. Moreover, only 8.4% of all memory accesses can make
use of overlapped processing in the best case.

The next group of programs, consisting of nsieve, sim, tmn, and tfft, shows a noticable
performance improvement by using overlapped proccessing. From 15.7% (tfft, RDRAM,
interleaved translation) up to 45.0% (nsieve, SDRAM, linear translation) of all main mem-
ory accesses can make use of this mode. Thus, the execution time can be shortened up to
11% using overlapped processing (nsieve, RDRAM, linear translation). Using interleaved
address translation, the applications always perform better than using linear translation.
Interleaved translation shortens the execution time by up to 23% (sim, RDRAM, without
overlapped processing). Interestingly, in open-page mode the programs nsieve and tmn
run faster using SDRAMs and interleaved translation compared with RDRAMs and linear
translation. All these effects are noticeable since the programs generate high miss rates
in the data cache, see Tab. 3. Combined with a high count of executed load and store in-
structions, at least 5.5% of all executed instructions result in a main memory access. The
significant performance improvements by using interleaved address translation instead of
linear translation can be achieved because at least 59.1% of all memory accesses cause a
row miss in the same memory bank which has been accessed by the preceding access. Using
interleaved translation, these relatively expensive accesses can be exchanged for cheaper
accesses in other memory banks. For instance, the high miss rate in the current bank
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by the nsieve program using SDRAMs can be reduced from 98.3% to 24.9%. The high
miss rate in the current bank also explains why the DRAM configurations using open-page
mode and linear translation perform poorer than the corresponding configurations using
closed-page mode. A closed-page policy is able to hide some of the precharge overhead
which may be caused by frequent memory row changes.

The remaining programs, gzip and linpack, behave similar to the preceding group.
Since both programs generate very high miss rates in the current memory bank, neither
SDRAMs nor RDRAMs can benefit from open-page mode if linear address translation is
applied. Thus, interleaved address translation is able to produce much better results since
both programs generate high miss rates in the current bank using linear mode. Finally, the
difference in execution time applying overlapped processing is only visible looking at gzip.
Around 28% of all main memory accesses generated by gzip can be processed partially
concurrently, resulting in around 5% shorter execution times. In the case of linpack,
however, the amount of overlapping requests is too small to show any improvements in
the execution time.

mm heap whet shuffle dhry c4 nsieve sim tmn tfft gzip linpack
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1
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SDRAM, c − p         
SDRAM, o − p, linear 
SDRAM, o − p, interl.
RDRAM, c − p         
RDRAM, o − p, linear 
RDRAM, o − p, interl.

Figure 12: Normalized simulated execution times for closed-page and open-page modes with
overlapped processing. SDRAM with closed-page mode is used as reference.

The results are summarized in Fig. 12. On the one hand, the RDRAM configuration
using open-page mode and interleaved address translation always outperforms all other
configurations. The performance gain compared with all other configurations ranges from
some percent to up to 21% for the sim application. On the other hand, the RDRAM more
heavily depends on the chosen memory controller access scheme. In the worst case, the
sim program looses more than 34% of its best-case performance by using RDRAMs and
closed-page mode. SDRAMs using open-page mode and interleaved address translation
can well compete with RDRAMs using linear translation. The performance of the SDRAM
is not that dependent on the memory controller access scheme as RDRAM’s performance
is. Thus, RDRAMs should be controlled with an open-page access strategy. Finally, using
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interleaved address translation mode always seems to be a good choice for both DRAM
types.
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Figure 13: Access histograms for linpack and tmn.

Analysis of traces The conclusions from our simulations can be explained by an anal-
ysis of access histograms which point out the locality properties of the applications. In
Fig. 13, the results for two applications, linpack and tmn, are displayed. The left graphs
show the frequencies of accesses in the heap segments. Since 95.9% (linpack) and 79.4%
(tmn), respectively, of all main memory requests access the heap, only this memory area
is displayed. The middle graphs show the frequency of address distances of consecutive
memory accesses. The right graphs illustrate the inter-arrival times of consecutive mem-
ory requests seen by the memory controller in CPU clock cycles. All diagrams use a
resolution of a virtual SDRAM DIMM page (4 KByte) and the corresponding traces have
been recorded in SimpleScalar for a memory controller using linear address translation,
overlapped processing, and SDRAMs.

Both programs have shown weak hit rates in the current bank. On the one hand, linpack
was not able to make use of overlapped processing. On the other hand, tmn showed a
noticeable increase in performance by using overlapped processing. The reason for this
behavior is displayed in the right graphs of Fig. 13. The inter-arrival time histogram for
linpack shows two peaks at 18 and 51 clock cycles which already cover more than 68% of
all accesses. However, SDRAM accesses hardly ever need more than 20 CPU clock cycles
to finish in our configuration. Therefore, the amount of overlap between consecutive main
memory requests is too small to be able to take advantage of it. The situation however
is different for tmn. Its inter-arrival diagram shows peaks at seven and around 15 clock
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cycles. Memory requests appear at higher densities so that the memory controller can
make use of overlapped processing.

The remaining diagrams in Fig. 13 point out that the size of an SDRAM row is too
small to exploit the inherent locality of the applications. More than 90% of all main
memory requests of linpack access two data regions of the size 160 KByte each. Address
changes plus/minus two pages appear often. Therefore, using linear address translation,
memory row exchanges must often be performed due to high miss rates in the current
active row. This statement is also true for tmn. Two memory regions of the size 32 KByte
each are accessed most often. Moreover, accesses seem to alternate between these two
regions since address changes of plus/minus 13 pages appear frequently which is also the
mean distance between the two regions.

SDRAM, linear address translation

SDRAM, interleaved address translation

RDRAM, linear address translation

RDRAM, interleaved address translation
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Figure 14: Comparison of the simulated execution times of various programs using different
cache configurations: original 8 Kbyte + 8 Kbyte first level cache (left bar), doubled first
level cache (middle bar), and an additional second level cache of 128 Kbyte (right bar).
The execution times have been scaled to the execution time using SDRAMs combined with
the original 8 Kbyte + 8 Kbyte cache configuration (leftmost bar).

4.2.2 Influence of the cache size

In order to complete our experiences with the benchmarks and the CPU settings we have
varied the cache size of the CPU. The following simulations have been performed using an
open-page strategy with linear as well as interleaved address translation, overlapped mode

24



enabled. In the first experiment, we have doubled the size of the first level cache. Thus,
the first level cache is split in a 16 Kbyte two-way set associative instruction cache as well
as a data cache of the same size and organization. In the second experiment, an unified
second level cache of 128 Kbyte, four-way set associative, has been added to the doubled
first level cache running at CPU clock speed (200 MHz). The second level cache also uses
a line size of 32 Byte. The resulting execution times of the programs are displayed in
Fig. 14 and Tab. 5 respectively.

program addr. SDRAM RDRAM
transl. L1 8 + 8 L1 16 + 16 L1 + L2 L1 8 + 8 L1 16 + 16 L1 + L2

mm
lin 1.0 0.97 0.96 0.99 0.97 0.96
int 0.99 0.96 0.96 0.99 0.97 0.96

heapsort
lin 1.0 0.98 0.95 0.98 0.97 0.94
int 0.99 0.97 0.95 0.94 0.93 0.93

whetstone
lin 1.0 0.79 0.75 0.97 0.79 0.75
int 0.98 0.79 0.75 0.93 0.78 0.75

shuffle
lin 1.0 0.82 0.82 0.98 0.82 0.82
int 0.97 0.82 0.82 0.95 0.82 0.82

dhrystone
lin 1.0 0.72 0.72 0.98 0.72 0.72
int 0.97 0.72 0.72 0.94 0.72 0.72

c4
lin 1.0 0.62 0.52 0.94 0.60 0.52
int 1.01 0.61 0.52 0.91 0.58 0.52

nsieve
lin 1.0 0.96 0.81 0.90 0.86 0.73
int 0.88 0.90 0.80 0.72 0.71 0.66

sim
lin 1.0 0.84 0.50 0.90 0.78 0.50
int 0.89 0.74 0.50 0.70 0.59 0.50

tmn
lin 1.0 0.94 0.59 0.92 0.87 0.59
int 0.86 0.79 0.59 0.75 0.69 0.58

tfft
lin 1.0 0.86 0.86 0.94 0.83 0.84
int 0.97 0.82 0.86 0.87 0.79 0.80

gzip
lin 1.0 0.90 0.70 0.94 0.86 0.70
int 0.91 0.84 0.70 0.78 0.74 0.68

linpack
lin 1.0 0.96 0.68 0.96 0.92 0.68
int 0.86 0.90 0.68 0.79 0.77 0.68

Table 5: Simulated program execution times for different cache configurations.

As stated in the preceding section, the programs mm and heapsort already fit well in
the original cache size. Thus, the additional cache does not accelerate these programs any
further. The programs whetstone, dhrystone, shuffle, and tfft generate considerable miss
rates in the original configuration. However, with a doubled first level cache, the miss rates
decrease already to a level where the underlying main memory system no longer influences
the execution time noticeably. Most of the remaining programs show this independence of
the main memory if the second level cache is added. In fact, looking at tfft the management
of the additional second level cache may even slow down the system. Only nsieve still
shows different execution times dependent on the memory type and the used memory
controller address translation caused by a miss rate of over 30% in the second level cache.

4.2.3 Influence of functional units and the clock frequency

We have performed additional simulations to investigate the transition from embedded
systems to more general-purpose systems by raising the clock frequency of the CPU and
by adding more superscalar pipelines, functional units, and reorder buffer entries. The
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CPU is now four-way superscalar with out-of-order issue. Bimodal prediction with 2048
entries (four times the original size) is used. The reorder buffers have 32 entries for compute
and 16 entries for load/store instructions (four times the original number). The first level
cache size has been kept with an 8 KByte instruction and an 8 KByte data cache, There
is no second level cache. The number of functional units has been doubled: two integer
ALUs, two integer multipliers/dividers, two floating-point ALUs, and two floating-point
multipliers/dividers. The simulated execution times of the applications are visualized in
Fig. 15 and Tab. 6 respectively.

program addr. SDRAM 2×clk RDRAM 2×clk
transl. orig. 4×way 2×clk 4×way orig. 4×way 2×clk 4×way

mm
lin 1.0 0.56 0.56 0.34 0.99 0.55 0.53 0.31
int 0.99 0.55 0.55 0.33 0.99 0.55 0.53 0.31

heapsort
lin 1.0 0.61 0.58 0.38 0.98 0.59 0.56 0.37
int 0.99 0.59 0.57 0.37 0.94 0.54 0.51 0.31

whetstone
lin 1.0 0.70 0.66 0.51 0.97 0.67 0.63 0.47
int 0.98 0.68 0.64 0.49 0.93 0.63 0.59 0.44

shuffle
lin 1.0 0.57 0.61 0.40 0.98 0.55 0.59 0.37
int 0.97 0.55 0.59 0.37 0.95 0.53 0.56 0.34

dhrystone
lin 1.0 0.68 0.66 0.50 0.98 0.67 0.63 0.47
int 0.97 0.65 0.63 0.47 0.94 0.63 0.59 0.43

c4
lin 1.0 0.83 0.84 0.75 0.94 0.77 0.76 0.67
int 1.01 0.84 0.85 0.76 0.91 0.74 0.72 0.63

nsieve
lin 1.0 0.82 0.80 0.73 0.90 0.72 0.69 0.61
int 0.88 0.69 0.67 0.59 0.72 0.52 0.48 0.39

sim
lin 1.0 0.88 0.88 0.84 0.90 0.78 0.77 0.72
int 0.89 0.79 0.77 0.74 0.70 0.57 0.56 0.49

tmn
lin 1.0 0.68 0.79 0.60 0.92 0.59 0.70 0.50
int 0.86 0.54 0.65 0.46 0.75 0.45 0.52 0.35

tfft
lin 1.0 0.74 0.76 0.64 0.94 0.67 0.69 0.56
int 0.97 0.71 0.73 0.61 0.87 0.61 0.62 0.49

gzip
lin 1.0 0.75 0.75 0.62 0.94 0.69 0.68 0.55
int 0.91 0.66 0.66 0.52 0.78 0.53 0.49 0.36

linpack
lin 1.0 0.62 0.73 0.54 0.96 0.58 0.69 0.49
int 0.86 0.49 0.60 0.41 0.79 0.41 0.52 0.32

Table 6: Simulated program execution times for different CPU configurations.

The applications which do not heavily depend on the main memory system such as
mm, heapsort, and shuffle can almost completely exploit faster CPUs. All applications
can take a noticeable advantage of a doubled clock frequency (2× clk) or more computing
resources (4 × way). For Applications, however, which often have to access the main
memory there is no further remarkable gain by using a higher clock frequency together
with more computing resources. Thus, the speedup varies from 3.2 (mm) down to 1.2
(sim). Nevertheless, the relative differences between the DRAM configurations are more
severe than in the original configuration without changing the qualitative results stated in
section 4.2.1.

5 Conclusion

This report has investigated the influence of recent DRAM technologies, SDRAMs and
Direct Rambus RAMs, on embedded systems performance. Especially, the impact of the
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Figure 15: Comparison of the simulated execution times of various programs using different
CPU configurations (from left to right): original CPU (left bar), four-way superscalar
(second bar), doubled clock frequency (third bar), and doubled clock frequency and four-
way superscalar (right bar). The execution times have been scaled to the execution time
using the original CPU with SDRAMs combined with the open-page policy and overlapped
processing (leftmost bar).

memory controller on the resulting performance has been explored by simulating a modern
32 bit out-of-order superscalar CPU architecture together with different main memory
access schemes which can be easily implemented in the controller. Since embedded systems
use fewer cache levels and smaller cache sizes due to power, area, and cost constraints,
their performance particularly depends on the main memory system. The simulation of
12 different applications showed the following results:

• In general, applying an open-page access heuristic results in better system perfor-
mance than a closed-page access scheme.

• Exploiting the internal multi-bank structure of modern DRAMs by an interleaved
address translation scheme accelerates the program execution by up to 23%. This
scheme always seems to be a reasonable choice since expensive row misses can be
exchanged against cheaper accesses to other banks complying more the locality char-
acteristics of the applications.

• Using an additional request buffer in order to overlap the processing of two successive
memory accesses may decrease the execution time by up to 11%.
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• RDRAMs outperform SDRAMs by up to 21% using the same settings. However,
RDRAMs depend more on the chosen access scheme than SDRAMs.

For example, an SDRAM with overlapped processing of consecutive memory requests
and interleaved bank accesses can well compete with an RDRAM which does not use
interleaved addressing. Thus, from a performance point of view, the transition from the
mature SDRAM to the new RDRAM technology is beneficial only if the memory controller
is optimized.
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A Implementation

A.1 Memory accesses in SimpleScalar

Memory accesses are generated by the fetch, issue, and commit stages of the instruction
pipeline. In the fetch phase instructions are loaded from the code segment of the memory.
During the issue phase, load instructions are issued to the memory hierarchy. Finally,
store instructions are processed in the commit phase. The sequence of instructions in
SimpleScalar for the simulation of a memory access is visualized as a flow graph combined
with pseudo-code in Fig. 16. The cache works with a write-back mechanism. A write-back
is initiated in the cache_access() function which again calls one of the access functions.
Whenever a load is initiated in the fetch or issue stage, the function cache_access() is
called that returns the latency of this cache access. In case of a cache miss (first lev-
el or second level cache miss), the cache_access() function calls one of the functions
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Figure 16: Memory accesses in SimpleScalar.

il1_access_fn(), dl1_access_fn(), il2_access_fn(), and dl2_access_fn() depend-
ing on the access type (read or write), the type of information to be accessed (program or
data) and the cache level where the cache miss occurred. When there has been a second
level cache miss or no second level cache exists at all, the function mem_access_latency()
is called to compute the main memory access latency.

When a write access is initiated in the commit stage, the data will be written in the
first level cache if the corresponding page is available there. The corresponding page tag
is then set to dirty ,i.e., this page needs to be written back later. If a write miss occurs,
the corresponding page is requested from the lower cache level and the main memory
respectively. The page is fetched in the same way as in the read miss case.

Note that the memory access explained above only calculates the access latency. In
the simulator, the actual data transfer is performed independently.

A.2 Implementation of the memory controller

The memory controller is implemented in the memory_access_latency() function. Before
the memory controller is able to calculate the row and bank addresses, the virtual address
must be translated to a physical address. Therefore, parts of the memory management
unit are also implemented here. In order to calculate the memory region (text, heap, or

30



stack) the following variables and constants of the simulator are needed.

ld_brk_point top address of the heap
MD_TEXT_BAS base address of the text (code) segment
MD_DATA_BAS base address of the heap
MD_STACK_BASE base address of the stack

Whenever the virtual address is smaller than the base address of the heap, it must
be an address of the text segment. If an address is larger than the address of the top of
the heap, the access addresses the stack. After the calculation of the physical address the
device, row, and bank addresses depending on the memory type and memory controller
can be computed.

A.2.1 Address translation

SDRAM control In the SDRAM case the linear mapping memory controller computes
the addresses as follows:

current_bank=physic_address/SD_BANK_SIZE;
current_row=(physic_address/SD_ROW_SIZE)%SD_NUM_ROWS;

The physic_address is the address calculated by the memory management unit. The
interleaved mapping memory controller is implemented in the following way:

num_blocks = physic_address/SD_ROW_SIZE; /* row number */
current_bank=num_blocks%SD_NUM_BANKS;
current_row=num_blocks/SD_NUM_BANKS;

The variable num_blocks is the number of the addressed row. The modeled memory
chip [10] contains 215 rows in four banks. The constants SD_BANK_SIZE, SD_ROW_SIZE,
SD_NUM_ROWS, and SD_NUM_BANKS define the size of a memory bank, the size of a memory
row, the number of rows per bank, and the number of banks within a chip respectively.
Since the modeled SDRAM system contains only a single DIMM, devices need not to be
distinguished.

RDRAM control The linear mapping memory controller can be derived from the S-
DRAM controller.

current_bank=physic_address/DR_BANK_SIZE;
current_row=(physic_address/DR_ROW_SIZE)%DR_NUM_ROWS;
current_device = current_bank/(DR_NUM_BANKS/DR_NUM_DEVS);

The interleaved mapping memory controller is implemented as follows:

num_blocks = physic_address/DR_ROW_SIZE; /* row number */
/* every ’second’ bank will be used */
current_bank=(num_blocks%DR_NUM_BANKS)*2;
/* banks above DR_NUM_BANKS - 1 are the uneven banks */
if (current_bank >= DR_NUM_BANKS)

current_bank = current_bank - DR_NUM_BANKS+1;
current_row=num_blocks/DR_NUM_BANKS;
current_device = current_bank/(DR_NUM_BANKS/DR_NUM_DEVS);
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Again, the num_blocks is the number of the accessed page, between 0 and 216 − 1 for
the modeled RDRAM [22] system. Since the RDRAM uses shared sense amplifiers, every
second bank is accessed consecutively. The banks above bank 127 are simply mapped to
the odd banks (1, 3, . . . , 127). This is done with the if statement on the fifth line. The
constants DR_BANK_SIZE, DR_ROW_SIZE, DR_NUM_ROWS, DR_NUM_DEVS, and DR_NUM_BANKS
define the size of a memory bank, the size of a memory row, the number of rows per bank,
the number of devices on the channel, and the number of banks of all devices respectively.

A.2.2 Determination of access latencies

A main memory access calls the mem_access_latency() function with four arguments:
the access command, the virtual address, the size of the access, and the simulator CPU
cycle time at the start of the access. The function returns the number of CPU cycles
measured from the current simulator CPU cycle time after which the memory bus will
have been released.

static unsigned int /* total latency of access */
mem_access_latency(enum mem_cmd cmd, /* access cmd, Read or Write */

md_addr_t baddr, /* block address accessed */
int bsize, /* block size accessed */
tick_t now) /* time of access */

Since the function mem_access_latency does not consider the main memory as a
shared resource, main memory accesses are non-blocking in SimpleScalar. Therefore, a
semaphore called busy_until has been defined which states the first CPU clock cycle at
which the main memory is no longer occupied by an access. Hence, only a single access
may be performed at a time through the data bus. However, overlapping of control signal
sequences is enabled for two consecutive accesses.

SDRAM The following timing parameters have been considered according to [10].

parameter description clock cycles at 100 MHz
tAA CAS latency 2
tRP precharge time 2
tRCD RAS to CAS delay 2
tDPL write data to precharge delay 2
tWAR write after read bus turn around delay 2

Closed page policy The closed page policy has been implemented without looking
at a possible overlap of consecutive memory requests. Therefore, the sequence of control
signals for a main memory access is always as follows: activation of the corresponding
memory row, initiation of the read and write access respectively, and precharge of the
row. Thus, a read always occupies the memory for eight clock cycles at memory bus clock
speed using a read with automatic precharge and a burst transfer of length four. A write
takes nine cycles. The transmission of the data through the memory bus however is already
finished after six cycles in the write case and eight cycles in the read case respectively (see
Fig. 17).
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Figure 17: SDRAM closed-page timing.

Open page policy The open page policy can be used with or without trying to
overlap parts of the control signal sequences of consecutive memory accesses. The memory
controller might overlap two control sequences (we only buffer one further request) if the
next memory request has been already transferred to the controller through the front-side
bus while the controller is handling another request. This is possible since the modeled
CPU in SimpleScalar uses a reorder buffer (the so-called load-store queue) for load and
store instructions and therefore does not block during the execution of a load or store.
Thus, the controller may initiate precharge, activation, and read accesses for the next
access during the processing of the current one, see Fig. 10 for an example. However,
some restrictions must be considered. Data from different accesses may not colide on the
memory bus. Bus turn arounds, e.g., if a read access follows a write access, cause additional
delay. Note that the controller does not change the order of accesses but only the order
of some control signals to exploit the pipeline of the SDRAM. Successive accesses differ in
that an access may generate a memory row hit or miss considering the preceding access.
Moreover, different memory banks may be requested. Since every memory bank has its
own row of sense-amplifiers, even in this situation row hits and misses may occur. Finally,
the type of access, read or write, is important. Hence, 16 different cases may occur looking
at two consecutive accesses plus four cases which consider the idle state of the SDRAM.
However, row hits behave the same way independent on the memory bank. Thus, eight
cases considering row hits have been summarized in four cases. The resulting latencies
are displayed in Tab. 7. The latency is measured from the end of the current access
(all burst data has been transferred through the memory bus, the corresponding memory
row remains opened) to the beginning of the data transfer of the next access, i.e., for
determining the end of the next transfer, the length of the burst must still be added. The
best-case latency is achieved if the following request is transferred through the front-side
bus at least (worst-case minus best-case) cycles before the end of the current access. Thus,
the worst-case occurs if the next request is transferred after the end of the current one.
If an open-page policy without overlapped processing is applied, the worst-case latencies
must always be taken.
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RAR: Read after Read, RAW: Read after Write
WAR: Write after Read, WAW: Write after Write

row hit
type of access worst case access delay best case access delay

RAR tAA 0
RAW tAA tAA

WAR tWAR − 1 (tWAR − 1)a)

WAW 0 0

row miss in the current bank
type of access worst case access delay best case access delay

RAR tRP + tRCD + tAA tRCD + tAA

RAW (tDPL − 1) + tRP + tRCD + tAA (tDPL − 1)a) + tRP + tRCD + tAA

WAR tRP + tRCD tRCD

WAW (tDPL − 1) + tRP + tRCD (tDPL − 1)a) + tRP + tRCD

row miss in another bank than the current
type of access worst case access delay best case access delay

RAR tRP + tRCD + tAA 0
RAW tRP + tRCD + tAA tAA

WAR tRP + tRCD tWAR − 1
WAW tRP + tRCD 0

access to an idle bank / SDRAM
type of access worst case access delay best case access delay

RAR tRCD + tAA 0
RAW tRCD + tAA tAA

WAR tRCD tWAR − 1
WAW tRCD 0

a) When the previous command has already delivered its data some cycles before the next
command is started, this term is zero. However, this case has not been implemented.

Table 7: Access latencies for the SDRAM controller given in clock cycles at 100 MHz.

RDRAM The following timing parameters have been considered according to [22].

parameter description clock cycles at 400 MHz
tRCD RAS to CAS delay 7
tCAC CAS access delay 8
tCWD CAS write delay 6
tRP row precharge time 8
tRTR retire delay 8
tRDP read to precharge delay 4
tPP precharge to precharge delay 8
tpacket time to transmit a packet 4

Moreover, a helper variable tOWR (overlap after write retire) is used which is defined
by tOWR = tpacket + tCWD − tRTR.
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Closed page policy The closed page policy has been implemented without looking
at a possible overlap of memory instructions. Therefore, the sequence of control signals
for a main memory access is always as follows: activation of the corresponding memory
row, initiation of the read and write access respectively, and precharge of the row. Thus,
a read always occupies the memory for 28 clock cycles and a write 31 cycles at memory
bus clock speed (400 MHz) using two data packets per transfer. The transmission of the
data through the memory bus however is already finished after 25 cycles in the write case
and 27 cycles in the read case respectively (counted from the beginning of the activation
packet). The minimal row active time tRAS is kept in both cases (see Fig. 18).
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Figure 18: RDRAM closed-page timing.

Open page policy Successive accesses differ in that an access may generate a mem-
ory row hit or miss considering the preceding access. Moreover, different memory banks
may be requested. Since sense amplifiers are shared between adjacent banks some further
cases must be distinguished. For instance, assume that the next bank to be accessed is an
adjacent bank to the current one. Thus, the current bank must be precharged. Therefore,
changing the bank in an RDRAM may result in precharging two other banks first. Finally,
the type of access, read or write, is important. Hence, 32 different cases may occur looking
at two consecutive accesses to the same device plus four cases which consider accesses to
different devices of the Rambus channel. The retire mechanism as well as the sharing of
sense amplifiers are responsible for the higher case count than in the SDRAM variant.
The resulting latencies are displayed in Tab. 8. The latency is measured from the end
of the current access (all burst data has been transferred through the memory bus, the
corresponding memory row remains opened) to the beginning of the data transfer of the
next access, i.e., for determining the end of the next transfer, the length of two packets
must still be added. The best-case latency is achieved if the following request is transferred
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through the front-side bus at least (worst-case minus best-case) cycles before the end of
the current access. Thus, the worst-case occurs if the next request is transferred after the
end of the current one. If a open-page policy without overlapped processing is applied,
the worst-case latencies must always be taken.
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RAR: Read after Read, RAW: Read after Write, WAR: Write after Read, WAW: Write after Write
sd: same device, od: other device

row hit

type of access worst case access delay best case access delay

RAR tPACKET + tCAC 0

RAW sd tPACKET + tCAC tPACKET + tCAC − tOWR

RAW od tPACKET + tCAC tCAC − tCWD

WAR tPACKET + tCWD 0

WAW tPACKET + tCWD 0

row miss in the current bank

type of access worst case access delay best case access delay

RAR tRP + tRCD + tPACKET + tCAC tRCD + tCAC

RAW tRP + tRCD + tPACKET + tCAC tRP + tRCD + tPACKET + tCAC − tOWR

WAR tRP + tRCD + tPACKET + tCWD tRCD + tCWD

WAW tRP + tRCD + tPACKET + tCWD (tRP − tOWR) + tRCD + tPACKET + tCWD

row miss in another bank than the current, bank already active

type of access worst case access delay best case access delay

RAR tRP + tRCD + tPACKET + tCAC 0

RAW sd tRP + tRCD + tPACKET + tCAC tPACKET + tCAC − tOWR

RAW od tRP + tRCD + tPACKET + tCAC tCAC − tCWD

WAR tRP + tRCD + tPACKET + tCWD 0

WAW tRP + tRCD + tPACKET + tCWD 0

access to an idle bank, adjacent banks idle

type of access worst case access delay best case access delay

RAR tRCD + tPACKET + tCAC 0

RAW sd tRCD + tPACKET + tCAC tPACKET + tCAC − tOWR

RAW od tRCD + tPACKET + tCAC tCAC − tCWD

WAR tRCD + tPACKET + tCWD 0

WAW tRCD + tPACKET + tCWD 0

Access to an idle bank, adjacent banks active
p: necessary precharges for access, a: bank to access is adjacent bank of the current bank, !a: not a

type of access worst case access delay best case access delay

R p=1, !a equivalent to RAR, row miss in another active bank
A p=1, a equivalent to RAR, row miss in the same bank
R p=2, !a tPP + tRP + tRCD + tPACKET + tCAC 0

p=2, a tPP + tRP + tRCD + tPACKET + tCAC tRDP + tRP + tRCD − tPACKET

R p=1, !a equivalent to RAW, row miss in another active bank
A p=1, a equivalent to RAR, row miss in the same bank
W p=2, !a, sd tPP + tRP + tRCD + tPACKET + tCAC tPACKET + tCAC − tOWR

p=2, !a, od tPP + tRP + tRCD + tPACKET + tCAC tCAC − tCWD

p=2, a tPP + tRP + tRCD + tPACKET + tCAC tRP + tRCD + tPACKET + tCAC − tOWR

W p=1, !a equivalent to WAR, row miss in another active bank
A p=1, a equivalent to RAR, row miss in the same bank
R p=2, !a tPP + tRP + tRCD + tPACKET + tCWD 0

p=2, a tPP + tRP + tRCD + tPACKET + tCWD tRDP + tRP + tRCD + tCWD − tPACKET − tCAC

W p=1, !a equivalent to WAW, row miss in another active bank
A p=1, a equivalent to RAR, row miss in the same bank
W p=2, !a tPP + tRP + tRCD + tPACKET + tCWD 0

p=2, a tPP + tRP + tRCD + tPACKET + tCWD tRP + tRCD + tPACKET + tCWD − tOWR

Table 8: Access latencies in clock cycles at 400 MHz for the RDRAM controller.
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