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Abstract

The paper addresses the question on how the benefits of active networking, su
customized packet processing inside the network and flexible service manage
can be realized in a telecom environment. More precisely, we ask: How can a net
provider, whose infrastructure is based on active networking technology, supp
large number of customers, all of which independently install and run their own
tomized active services in the provider’s domain? Our approach is based on ne
virtualization, and the goal of this paper is to demonstrate that virtualization of ac
networks can be achieved with considerable benefits for customers and provider
with limited costs. Our work uses the concept of the Virtual Active Network (VAN)
generic service that is offered by an active network provider to customers. We
realized the VAN concept and implemented a VAN provisioning and managem
architecture on ANET, an active networking platform we have developed. ANET is
all-software, functional prototype of an active network, which allows for experimen
tion with great flexibility. Further, we have worked out a design for a VAN-enab
node operating system for a high-performance active network node which is curr
being built by our laboratory at ETH Zurich in collaboration with a group at Washin
ton University in St. Louis.
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1 Introduction

Recent research in the area of active networking has demonstrated the potential
new technology. From the service point of view, active networking allows custom
packet processing inside the network, on a per-packet, per-flow, or per-service
Customized packet processing can be applied, e.g, to application-aware routing,
mation caching, multi-party communications, and packet filtering [1]. From the m
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agement perspective, active networking technology enables rapid service deploy
and flexible service management [2].

While suggesting attractive benefits, active networking also poses serious challe
that must be overcome for this technology to gain wide-spread acceptance. This
focuses on one of these challenges, namely, on the problem of engineering a
user multi-services active network environment. We formulate the problem in the
lowing way:How can a network provider, whose infrastructure is based on active n
working technology, support a large number of customers, all of which independe
install and run their own customized active services in the provider’s domain?(Note
that the term customer has different meanings here. It can refer to a business un
resenting a multitude of employees, or it can refer to a user community, or ev
value-added service provider.) To solve this problem, we need the capabilities t
enable each customer to create, run and manage his/her own customized activ
vice, and (2) isolate the customers to avoid interference among each other.

Current approaches to active networking address this problem by introducing atrust
relationship between the party which installs the software in the network and
owner of the network ([3], [4], and [5]). The software is trusted by the network ow
in the sense that its execution is assumed to consume no more than a certain amo
resources, and that its functions inside the network do not interfere with other net
services. The difficulties with this approach are that (1) only few parties implemen
services might be able to build up such a trust relationship with network own
(which might lead to monopolies and thus prevent a wider market for active netw
services from being created) and (2) even trusted parties will (unintentionally) pro
faulty service code with potentially serious consequences for network operation, r
ing from overconsumption of network resources to breaking down the whole netw

We take a different approach. We propose to isolate customers from one an
throughnetwork virtualization. The concept we have developed to provide this cap
bility is theVirtual Active Network (VAN). In the same way as an active network can
understood as a generalization of a traditional network, a VAN can be seen as a g
alization of a traditional Virtual Private Network (VPN). Similar to a traditional VPN
a VAN can be used by a customer to run network services, using a provider's phy
infrastructure. In contrast to a traditional VPN, however, a VAN gives a custom
much higher degree of flexibility and controllability.

Network virtualization does have its costs. Realizing the VAN concept includes bu
ing a system for the network provider to create, operate and maintain such VANs.
ther, mechanisms must be introduced on the provider’s active network node
partition resources and police their consumption.The goal of this paper is to demon
strate that virtualization of active networks can be achieved with considerable ben
for customers and provider and that its costs are limited.

For this reason, we have realized the VAN concept and implemented a VAN provis
ing and management architecture on ANET, an active networking platform develo
in our laboratory at the TIK, ETH Zurich. The ANET platform is an all-softwar
functional prototype of an active network, which allows us to evaluate and dem
2
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strate active networking concepts. Further, we have worked out a design for a V
enabled node operating system for ANN, a high-performance active network n
which is currently being built in our laboratory, in collaboration with Washington U
versity in St. Louis [5]. This design will be further refined, and the VAN concept w
be realized on ANN, as part of the FAIN project in the Fifth (EC) Framework Progr
[6]. (Progress in this work will be reported in the final version of the paper.)

The paper is organized as follows. Section 2 introduces a framework for active
works in a telecom environment. The VAN concept is discussed in Section 3. Sect
describes the realization of the VAN on the ANET prototype and describes scen
of VAN provisioning and service management on this platform. Section 5 outlines
design space and our design decisions for realizing VANs on ANN. Section 6 sur
related work. Section 7 summarizes the contributions of this paper and gives an
look on further work.

2 A Framework for Active Networks in Telecom Environments

2.1 The Interaction

Figure 1 shows the interaction taking place between a customer domain and a pro
domain for the purpose of service provisioning, service delivery, and service man
ment. Depending on the type of service, customers and providers interact in two
damentally different ways. The first way is characterized by a provider offer
functionality in its domain through a service interface. The second way of interac
shown in Figure 1 relates to the case where a customer out-sources control and
agement of a specific service to a provider, which installs and runs the service i
customer domain. The customer is not involved in service installation, upgrade,
management, but can concentrate on its core business instead. The provider cu
izes the service according to the customer’s requirements.

Figure 1: Customer-Provider Interaction in an Active Telecom Environment
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In an active networking environment, the above described two ways of interact
between a customer and a provider can be realized in a flexible way with respe
service abstractions and control capabilities for the customer in the provider’s do
and vice versa. In the following, we outline our framework for interaction in an ac
networking environment, which we have first proposed in [2].

Figure 1 shows the interaction between a customer domain and a provider doma
service provisioning, service delivery and service management in our framework
propose that the provisioning of a specific (active) network service X is split into
different operations:

• the provisioning of a generic service, which we call the VAN service, is perform
via the cooperative VAN provisioning interface, in cooperation with the provid
and

• the installation of service X is performed via the generic service interface, with
further interaction with the provider. The same interface is used managing se
X during its lifetime.

2.2 The Interfaces

The introduction of active networking technology in telecom environments, charac
ized by the use of active networking nodes as network elements, will change the
of the interfaces the following ways.

First, using active networking nodes enables the definition of ageneric service inter-
facefor network services, based on the concept of active packets. In addition, this
vice interface can be used by the customer for service management interaction
for operations related to the installation, supervision, upgrading and removal of a
cific service. Therefore, service management operations can be performed by a
tomer in a flexible way without interaction with the provider’s management system

Second, the management interface, i.e.,the cooperative VAN provisioning interface,
can be restricted to the task of service provisioning. Similar to the service interf
the management interface can be kept generic; it relates to a generic service ab
tion that allows for installing and running a large class of network services.

Third, theactive network management interfacerelates to the tasks of single-domai
service provisioning and network element management. Further, the active net
management interface becomes generic through the introduction of active pa
replacing the standardized management protocols implementing the intera
between the network management system and the network elements to be ma
This allows each domain to implement its own management system. Additionally
process of configuring the network element on behalf of service provisioning and
process of monitoring of the network elements can profit from the active network t
nology in terms of information aggregation, customized filtering, and the delegatio
network control.
4
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2.3 Relation to Traditional Telecom Environments

In a traditional telecom environment, the process of service provisioning and
resulting service abstractions are service-specific, whereas in an active netwo
environment, both the provisioning process and the service abstraction can be re
to be truly generic. Provisioning, say, a virtual network service in a traditional telec
environment, includes setting up Virtual Links between customer premises netw
and allocating resources to these Virtual Links. For the customer, the service ab
tion consists of a set of links, associated with bandwidth and QoS guarantees.

In contrast, the provisioning of a (generic) service in our framework for an active t
com environment gives the customer a more complex, but also more powerful se
abstraction. We call this service abstraction aVirtual Active Network (VAN). The VAN
concept and its benefits are the subject of Section 3.

3 The Virtual Active Network (VAN)

A Virtual Active Network (VAN)can be described as a graph of virtual active nod
interconnected by Virtual Links. Virtual active nodes are in this paper calledExecution
Environments (EEs),following the terminology of the AN working group [7]. An Exe-
cution Environment has resources attached to it in form of processing and me
resources, provided by the underlying active networking platform. Similarly, a Virt
Link has bandwidth allocated to it. We envision that a single (physical) active node
run several virtual active nodes belonging to different VANs, and a single (physi
network link can support several Virtual Links for different VANs. (The term Virtu
Active Network, as defined in this paper, is also used by other authors in a diffe
way [8].)

A VAN can further be seen as aserviceoffered by a provider to a customer. Via th
cooperative VAN provisioning interface shown in Figure 1, a customer and a prov
negotiate the initial configuration of this service according to the customer’s requ
ments, and they can re-negotiate the VAN resources during the life time of the ser

The abstraction that a VAN provides is that of an active network. This means tha
user of a VAN (or: the customer in our terminology) has the same capabilities as
user of a “real” active network. For instance, users of VANs can install and run ac
network services on VANs and thus can take full advantage of the features of a
networking technology.

Figure 2 shows an active network with five nodes in a provider domain. On this
work, two VANs have been installed, one for customer 1 and one for customer 2.
figure also shows themanagement VAN, which interconnects the management EEs.
is used by the provider for VAN provisioning and supervision (see Section 4).

What are the key implications of the VAN concept for customer and provider? F
the VAN provides ageneric service abstractionfor an active telecom environment
From a provider’s point of view, the VAN is the entity according to which active n
work resources are partitioned and according to which the customers, using the
vider’s infrastructure, are isolated from one another. The VAN is further the (on
5
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object that is shared between provider and customer, and it is the object of negot
between the two parties. Specifically, the provider is not concerned about which
cific service(s) a customer is running on its VAN. The task of the provider is solel
monitor and police the use of resources on the VAN level and to ensure that the
as agreed upon between customer and provider, can be guaranteed.

Second, from a customer’s perspective, the VAN concept allows for installation
management of active network services, without interaction with the provider. (As
mentioned above, all interactions between customer and provider relate strictly t
VAN.) The customer can run a large variety of active network services on the V
These services are only restricted by the specific Execution Environment(s) the
supports. (Developing and defining Execution Environments for active network
currently subject of intensive research. In our work, we base on the current state o
AN working group [7]).

Third, --as a general benefit of active networking-- the VAN concept enablesrapid
deployment of new network services. Deploying and upgrading network services is di
ficult and time consuming in today’s networks, due to the closed, integrated arch
ture of network nodes. With the concept of a VAN, which divides the active netw
resources into partitions for different customers, the installation of any customer-
cific service becomes feasible, and, as explained before, it can be accomplished
customer alone, without interaction with the VAN provider.

Figure 2: An active network with nodes A, ..., E, on which VANs
for Customers 1 and 2 have been installed.
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Lastly, customers can run a mix of different network services on a single VAN. T
allows customers to performdynamic re-allocation of VAN resourcesto the various
services, according to their own control objectives and traffic characteristics--a
without interaction with the VAN provider.

As mentioned before, the VAN concept can be compared to that of a Virtual P
(VP)-based Virtual Private Network (VPN). Similar to a VAN, a VP-based VPN p
vides customers with a service abstraction, on which they can run their own serv
such an IP-based data service or a real-time service. Since a VP is a simple abstr
a customer’s ability to control traffic inside the provider’s domain is very limited. (S
[2] for a discussion of this point.) A VAN, on the other hand, is a much more comp
abstraction than a VP, and, consequently, gives customers extensive control cap
ties inside the provider’s domain. In a similar way as dynamic bandwidth provision
can be performed in a VP-based VPN [2], we envision that VAN resources can b
negotiated during the life-time of a particular VAN via the VAN management interfa
shown in Figure 1.

Figure 3 gives an operating system point of view of an active network node in a
com environment. A node operating system layer configures and provides acce
the node’s resources, such as links, processing and memory resources. This laye
the Execution Environments, separates them from each other, and polices the
the resources consumed by each Execution Environment.

Figure 3 specifically shows the case where a provider offers Virtual Active Netwo
to several customers (Customer 1,..., Customer N). The figure shows one node o
a VAN. Each customer runs its service in a separate Execution Environment. A sp
Execution Environment called the Management Execution Environment runs the
vider’s VAN provisioning and configuration system, which creates Execution Envir
ments for customers and is able to modify and terminate them. The interface the
operating system has to provide is discussed in Section 5. The VAN provisioning
configuration system is controlled by the provider’s management system via

Figure 3: Architecture of an Active Network Node in a Telecom Environment

Hardware

Node Operating System

Service
VAN Provisioning &

ConfigurationService

Management Exec Env

Mgt.

Customer 1 Customer N.....

Execution Environment

Provider
7



ure 1,
g.

ctive
ig-

ular
er-

ate
ore of
rnet
fra-

age-

ava
, and
ept of
seri-
of the
ted

nt
a net-
aliz-
ment

fol-
tion
ink
viron-
cution
ulti-

hbor-

ion
n our
hich
xecu-

der
and

e con-
on of
exchange of active packets. The provider’s management system, as shown in Fig
maintains a global view of the provider’s domain for the purpose of VAN provisionin

Our approach, as illustrated in Figure 3, is compliant with the architecture of an a
network node developed by the AN Working Group [7]. The difference between F
ure 3 and [7] is that we explicitly assign each Execution Environment to a partic
VAN, i.e., to a particular customer, whereas AN Working Group argues only for diff
ent types of Execution Environments, which is also supported in our design.

4 Realizing VAN Provisioning and Management on the ANET Plat-
form

We have built an active networking platform, called ANET, in order to test, evalu
and demonstrate active networking services and management concepts. The c
this platform consists of a cluster of Ultra-SPARCs, interconnected via an Ethe
LAN. Each active network node runs on a separate workstation. On top of this in
structure, we have implemented traffic generators, traffic monitors, a VAN man
ment system, and a service management system.

All software components of the ANET platform are written in Java. We chose J
because of its strengths as a prototyping language for networking environments
because Java directly supports the realization of active packets through the conc
mobile code. Additional Java features which we take advantage of include object
alization, thread support, and safe memory access achieved by the type-safety
language. In our ANET implementation, an active network node is implemen
entirely in software, which gives us the flexibility of experimenting with differe
designs. Performance issues, such as realizing a high throughput of packets on
work node, are beyond the scope of the ANET work. However, we are currently re
ing, as described in Section 5, the key capabilities of our active network manage
framework on ANN [5], a high-performance active networking platforms.

The active network node architecture given in Figure 3 is realized on ANET as
lows. The in-bound links deliver the incoming packets to the appropriate Execu
Environments according to a multiplexing identifier in the packet or in underlying/l
layer protocol headers. The node operating system schedules the Execution En
ments, taking into account the processing resources allocated to each of the Exe
Environments. The out-bound links run the packet schedulers on the outgoing m
plexers and transmit the packets produced by the Execution Environments to neig
ing nodes.

The VAN management system, which allows for VAN provisioning and configurat
of the node operating systems of a single domain, has a centralized structure i
ANET implementation. One part of the system is the VAN management station, w
uses active packets, sent to the Management Execution Environments, to create E
tion Environments, to install Virtual Ports, and to configure cut-through links, in or
to set up a new VAN. Management operations are executed via the configuration
management interface of the node operating system, described in Section 5. Th
figuration and management interface further gives access to statistical informati
8
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the node operation system, the installed Execution Environments and Virtual L
which is used for VAN monitoring.

Also the (customer-operated) service management system is implemented in a ce
ized way, and its main component is the service management station. The service
agement system uses active installation packets for the creation of a service and
monitoring packets to enable supervision of the service.

The complexity of the software we have built to date (active network node, Execu
Environments, VAN management system, and service management system) is
order of 400 Java classes with 30’000 lines of code.

In the following, we illustrate some of the design principles and capabilities of
ANET platform by describing a series of demonstrations we can perform.

4.1 Demonstrating VAN Provisioning and Supervision

Figure 4 shows the situation at the start of the demonstration. The provider net
consists of three active network nodes. The provider management system is conn
to one of these nodes. Three customers are involved in this demonstration. Custo
and B have two (active) customer premises networks each, and customer C has
The Virtual Active Networks for customer A and customer B have been setup by
VAN management system. The view of the VAN management station at this poin
the demonstration is displayed in Figure 5a. It shows the VANs for customer A an
and the management VAN. Further, customer premises networks are represente
star labeled customer A, B, and C.

The VAN provisioning capability is demonstrated by setting up a new VAN for c
tomer C. The process of provisioning a VAN includes the installation of Execut
Environments on all three nodes, connecting the Execution Environments by se
up Virtual Links between them and configure a Virtual Port in the direction of
active customer networks. The view of the VAN management station after the VAN
customer C has been provisioned is shown in Figure 5b.

The service management system in the domain of customer C has now the view
VAN spanning over the provider domain and all domains of customer C. Figur
shows the view of seven nodes connected over links. Three of them are in the pro

Figure 4: Situation at the Start of the Demonstration
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ion:
domain and four in the domain of customer C. Note that, on this level of abstrac
nodes in the customer domain do not differ from nodes in the provider domain.
service management system has the view of one active network, on which service
now be installed and supervised.

Figure 6 shows a window from the service management station of a custom
includes a snapshot of a Execution Environment of a VAN. In our current AN
implementation, the service management system displays the configuration an
state of Execution Environments in VAN nodes. The figure shows the buffers of
CPU scheduler, the memory, the in-bound, and the out-bound links. Three buffer
associated with the CPU scheduler: the default buffer for (active) packets, a se
buffer for packets that belong to service management functions (e.g., filters for de
ing specific events), and a third buffer for packets of a mechanism that routes the
ets of the service management system. This is the basic configuration of an a
network node, after the VAN has been set up by the provider and the service ma
ment system has been initialized by the customer. At this point, the service man
ment system is ready to install specific network services and service manage
functions on the VAN.

4.2 Customer-controlled Service Installation, Upgrade, and Supervision

On the ANET platform, we can demonstrate the installation, upgrade, and superv
of an IP-service. (We have chosen the IP-service because a well-known service i
ter understandable, than an sophisticated active service.) Installing an IP service
active network node is achieved by configuring a virtual router inside the node’s E
cution Environment. The service management system sends a sequence of active
ets to the Execution Environment. Processing these packets results in installing
routing table, creating output buffers for the virtual out-bound links, setting up pa

Figure 5: VAN provisioning as displayed on the provider’s VAN management stat
before (a) andafter (b) provisioning a new VAN.

(a) (b)
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schedulers that operate on these buffers, installing function code for routing and
agement operations, configuring service-specific control parameters and manag
parameters, etc. After that, the IP service is initialized, which includes starting
routing protocol.

Upgrading the IP-service to an IP-service supporting several traffic classes with d
ent QoS requirements is accomplished in our ANET system by reconfiguring the
tual routers inside the Execution Environments. The service management sy
sends an active packet to each Execution Environment of the VAN. The processi
this packet results in upgrading the packet classifier (to detect the class of a pa
setting up buffers for each traffic class, and substituting the packet scheduler w
scheduler for multi-class traffic.

Figure 7 shows the structure of the Execution Environment after installing an IP
vice and upgrading it to a multi-class IP-service. Compared to Figure 6, the stru
of the output-buffers has changed to contain two buffer partitions, and the CPU sc
uler part has grown by two additional components, one for the IP routing protocol
one for the management of the multi-class IP-service.

In our ANET implementation, the service management system can change the
tioning of the output buffers, by sending active packets to the virtual routers insta
on the ANET platform. Further, it can monitor the buffer usage, by configuring
active management component to send packets back to the service management
in regular time intervals. This way, we can perform service management operation
same way as a customer would do while managing its IP service on a Custome
mises Network (CPN).

Figure 6: View of the Service Management Station after Provisioning a VAN
for a Particular Customer

Structure of this node

Three Virtual Out-Ports

The EE CPU scheduler
with three buffers

Memory
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with one buffer each
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5 Realizing the VAN Concept on a High-Performance Active Net-
working Platform

In the previous section, we have shown how VAN management is implemented o
ANET platform, a functional active networking testbed. Our current work is focu
on the realization of the VAN concept on ANN (Active Network Node), a high-perfo
mance active networking platform, which is being built in our laboratory (TIK, ET
Zurich) in collaboration with Washington University in St. Louis [5]. The heart
ANN is one of the fastest active network nodes today. It is based on a Gigabit A
switching hardware and uses a node operating system that efficiently process
packets in the kernel.

As part of the ANN project, a first version of a node OS has been developed. Its de
aims at efficient packet processing and at providing QoS per flow, realized by per
scheduling at the output ports. In addition, dynamic code loading from trusted se
is supported.

In order to support VANs on ANN--while maintaining the high throughput of t
ANN nodes--the current design of the node OS needs some modifications
enhancements. Instead of resource allocation per flow, resource allocation per
required. Second, mechanisms for partitioning and isolating CPU and memory ne
be added to the kernel. Lastly, the node OS must support an interface for creatin
modifying virtual active nodes and Virtual Links on that particular node. We call
new node OS that supports the above features theVAN-enabled node OS for ANN.

Figure 7: Node Structure after Installing an IP-Service and Upgrading
to a Multi-Class-IP-Service

Output Buffers for
Packets of Different
 Traffic Classes

Additional Service Management
Component for IP-Service and
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In the remainder of this section, we present the current hardware and software a
tecture of ANN, and we discuss the design space our design decisions for engine
a VAN-enabled node OS.

5.1 The ANN Node Architecture

The hardware of an active network node is shown in Figure 8. The node consists
set of Active Network Processing Elements (ANPE, four in Figure 8) connected to
ATM switching fabric. The switch supports eight ports with rates up to 2.4 Gb/s
each port. The ANPE comprises a general-purpose processor (Intel PentiumTM), a large
FPGA (100,000 gates), and memory (64 MB). The ANEPS are connected to the switch
backplane via the ATM Port Interconnect Controller (APIC) chip [5]. Each ANE
independently runs the ANN node OS.

The ANN node OS is based on the NetBSD kernel. Modules implementing serv
specific packet processing functions, calledactive plug-insin the ANN context, are
downloaded from code servers and installed on ANN nodes via the NetBSD me
nism for loading kernel modules. A download is triggered by an active packet wi
reference to a module not currently resident in the kernel. The active plug-in is
initialized on a per-flow basis. A selector is chosen to label the flow and is propag
to the upstream node. The upstream node puts the selector into every subse
packet of the flow, which allows the downstream node to efficiently lookup the plug
instance to process the packet. Since the plug-in is executed in the kernel, it has a
to all kernel data.

Figure 8: Hardware Architecture of an Active Network Node (ANN)
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5.2 The VAN-enabled Node Operating System

This section describes the functionality needed in the node OS in order to realiz
VAN concept on a high-performance active networking platform. On a concep
level, the functional requirements can be summarized in the following four points

• Resource Partitioning: Resources, such as CPU-cycles, memory, and transm
bandwidth of the outgoing physical links have to be partitioned among differ
EEs, i.e., customers.

• Resource Policing and Isolation: An EE must be prevented from consuming m
resources than granted by the VAN provider. Further, its allocated memory ha
be protected from unauthorized read and write.

• Demultiplexing and Multiplexing: Active packets on an incoming physical lin
must be demultiplexed, identified and forwarded to their corresponding EEs.
thermore, active packets leaving the EEs need to be multiplexed onto the outg
physical links.

• Cut-through Links: The node operating system needs to support cut-through l
allowing packets to pass through the node on a fast path, without being proce

What are the resource control and multiplexing mechanisms offered by the cu
ANN OS, and what are the design choices for the new mechanisms necessary to
ize a VAN-enabled node OS?

Bandwidth Partitioning

In the current ANN OS, partitioning and isolation of transmission bandwidth is s
ported by two packet schedulers on the physical output ports--a modified De
Round Robin and a Hierarchical Fair Service Curve scheduler [9][10]. In order to
port VANs, we will use this functionality, but the bandwidth on the output port will
allocated per EE, not per flow as in the current version of the ANN OS.

Partitioning CPU Resources

Efficient partitioning of the CPU resources is hard. In the current ANN node OS, C
resources are not explicitly allocated to flows, and active packets are processed
first-come-first-serve basis. On the other hand, the ANN node OS loads the cod
packet processing from a trusted server whose code has known resource consum
In the VAN context, the code that is executed in an EE is provided by the custo
and, therefore, may not be trusted by the provider. Therefore, a VAN-enabled nod
must support hard guarantees to EEs as far as CPU allocation is concerned.

In order to design an efficient CPU allocation mechanism for a node OS, we must
sider the following. First, for a typical active service, most active packets are expe
to need only a small number of CPU-cycles to be processed. The rest of the pa
which mostly relate to service control and management tasks, are expected to
much more processing time per packet. Second, an active packet is processed
context of an EE. Third, the CPU resource is allocated per EE, i.e., the CPU is p
tioned among the EEs.

To achieve high CPU utilization, the time for context switches between EEs as we
the number of context switches (per time interval) must be minimized. A way to k
14
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the time for a context switch short is to switch between EEs only after an active pa
has been completely processed and, therefore, the execution context for this p
must not be stored. For this reason, the VAN-enabled node OS must be non-pre
tive for “most” packets. To keep the number of context switches small, as many p
ets as possible from the same Execution Environment should be processed w
interruption. However, there must be a time limit after which a context switch m
occur, in order to guarantee the maximum waiting time for an EE to get access t
CPU. We introduce theMaximum Processing Unit (MPU)as the maximum time inter-
val the node OS gives to an EE without interrupting its execution. (The MPU con
is similar to that of the Maximum Transmission Unit (MTU) as the maximum leng
of an IP packet on a path without fragmentation [11]).

Note that the MPU, together with the CPU scheduling policy, influence the delay
active packets to traverse an active node. This is important with respect to end-to
QoS requirements for an active service on a VAN. For this reason, we believe tha
VAN-enabled node OS must support the MPU concept. Practical values for MPUs
have be determined by experiments.

Partitioning Memory

Memory partitioning is not supported in the current ANN OS. It is needed in the VA
enabled OS and can be realized in a straightforward way by assigning a block of m
ory to each EE.

Memory isolation is not supported in the current ANN OS. Since the ANN OS is s
posed to execute only trusted code, this is not a big problem. However, memory i
tion is required for the VAN-enabled node OS, since the service code is not assum
be trusted.

The following memory isolation mechanisms have been developed in the oper
system research.

• The type-safe programming languages in combination with static typing ens
the integrity of the running system. It has a low run-time penalty, because only
checks have to be executed at run time. On the other hand, the mechanism
more compile time.

• The hardware address space protection, which is typically implemented as me
page protection in virtual memory systems or with memory segment regis
relies on hardware support.

• Sandboxing introduces for many operations, such as jump and store, addit
code for address checking, which leads to a decrease in run-time performance

For the VAN-enabled OS, we will use the hardware address space protection m
nism, which is supported by the Pentium processor on the ANEP card.

Multiplexing/Demultiplexing

Since the multiplexing id has only local, per-link significance, the id and the tabl
lookup the associated EE can be quite small--equal to the number of EEs support
an active node. In the ANN OS, multiplexing is performed by setting up ATM Virtu
Channels (VC) between Execution Environments and by dispatching an incom
15
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4].
active packet to a specific EE according to its Virtual Channel Identifier (VCI). T
VAN-enabled OS will make use of the same mechanisms.

Cut-through Links

Cut-through links are needed, since a VAN generally does not map one-to-one on
underlying hardware topology. Using cut-through links, a Virtual Link of a VAN c
run through one or more physical active nodes, without active packets being exe
on those nodes. In the VAN-enabled OS, cut-through links will be realized by se
up VCs between EEs.

5.3 Techniques for VAN Management

VAN management includes the creation, modification, monitoring, and deletion
VANs on an active network infrastructure. The network management system (N
shown in Figure 1 maps the (global) VAN management operations onto (local) op
tions to be executed on the active network nodes. A VAN-enable node OS nee
support these operations on the local level.

The active network management interface--the interface between the NMS an
active network nodes (Figure 1)--can be realized in two ways. The traditional wa
based on the MIB concept. In this case, a manager process in the NMS interacts
agents on the active network nodes via SNMP or CMIP. These agents access
node OS via the local VAN management interface. The second way makes u
active networking technology. Here, the VAN management operations are ma
onto active packets that operate on the management VAN (Figure 2). These a
packets execute commands in the Management EEs, which, as above, provide
to the node OS via the local VAN management interface.

We favor the active networking based solution. It allows for efficiently monitoring
VANs through information aggregation and customized event filtering [13]. Additio
ally, the provider can profit from active networking technology in terms of simplifi
updating of the VAN management functions. Therefore, we have applied the a
networking approach for realizing VANs on the ANET platform and will do so
ANN.

5.4 The Local VAN Management Interface

The local VAN management interface provides methods for setting up Execution E
ronments, configuring Virtual Links, creating cut-through links, and monitoring
resource consumption of the Execution Environments and Virtual Links. Table 1
functions in the local VAN management interface. The functions have Java-lang
like notation with input parameters in brackets and return values written in front.

The local VAN management interface contains additional functions, not show
Table 1, to receive information about the state of the node OS and the current res
consumption of the EEs, Virtual Ports, and cut-through links. All monitoring functio
address the managed object via an id, e.g. eeid, in_portid. A detailed description
syntax and semantics of the local VAN management interface can be found in [1
16
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Initializing a new Execution Environment on an active network node can be perfor
in two different ways. First, the node OS knows a set of predefined and pre-inst
types of EEs. In this case, only the requested type has to be specified in theinstall_EE
function. The second way, which we have implemented in the ANET prototype
which we will also implement in the VAN-enabled node OS, explicitly loads the
code. This scheme allows the local VAN management system to initialize new, p
ously unknown types of EEs on an active node.

5.5 Mapping Execution Environments onto Multi-Processor Nodes

In a multi-processor distributed memory model, such as the ANN hardware arch
ture (Figure 8), it has to be decided on which processor a EE is installed and run
Strict partitioning of memory and CPU resources allows the ANN node to install a
to one processor, because no interaction between EEs of different customers is
seen in our architecture.

A VAN-enabled OS for ANN can be designed in two ways. First, the physical AN
node can be seen as a single active node (Figure 9). Here, we need to introduce
ter VAN management module, which communicates with the local VAN managem
interfaces on each ANPE. The interface to the master VAN management module
same as described in Section 5.4. The module provides transparent access to th
copies of the VAN-enabled node OS running on the ANPEs.

In the second design, each ANPE appears as one active network node (for the pu
of VAN management), and these nodes communicate with each other via the s
fabric. Each ANPE independently runs a VAN-enabled node OS. With this design
decision to choose a particular ANPE for VAN creation is delegated to the netw
management system (Figure 1). We favor this approach for realizing the VAN con
on ANN, because the intermediate level of control, the master VAN manager, is
needed.

6 Related Work

The Switchware project [4] takes a language based approach. The memory acc
controlled via a type-safe Programming Language for Active Networks (PLAN). M
tiplexing is implicitly build into the active packet carrying the code to evaluate
intermediate active nodes. The executing code calls in a controlled way previo

vin_portid install_Virtual_InPort (in_portid, eeid, inmid);

vout_portid install_Virtual_OutPort (out_portid, eeid, outmid, bandwidth);

void remove_VirtualPort (vportid);

eeid install_EE (ee, cpu_resource, memory);

void remove_EE (eeid);

ctId install_ThroughLink (in_portid,inmid,out_portid,outmid,qlen,bandwidth)

void remove_ThroughLink(cut_through_id);

...

Table 1: Local VAN Management Interface
17



parti-
t-

an
pro-
-safe
iron-
First
dif-
void
e the

ture
Bus
Linux
ning
with

ject
ge

script
net-

ons

m to
ystem
k. In
rvers

e

installed routines on the network node. Switchware does not support resource
tioning, nor the notion of a Virtual Active Network for the programming of the ne
work, as our work does.

The Resource Controlled Active Network Environment (RCANE) [15] supports
active network programming model over the Nemesis Operating System [16]. It
vides control and accounting of system resources. RCANE uses PLAN as a type
and verifiable programming language to protect memory between Execution Env
ments. CPU scheduling is accomplished using a modified Earliest Deadline
(EDF) algorithm [17] to schedule Virtual Processors. A Virtual Processor may run
ferent threads of an Execution Environment. In contrast, our approach tries to a
preemption to minimize the overhead of saving thread contexts and we can us
same type of schedulers for CPU and for packet scheduling.

The Lancaster Active Router Architecture (LARA) [18] has a hardware architec
similar to ANN. Network ports have a CPU each and are interconnected by a
backplane instead of an ATM backplane. The node operating system, based on a
kernel, holds some data structures on behalf of the Execution Environments run
on top of them. This node OS may be enhanced towards a VAN-enable node OS
the mechanisms described in the previous section.

The Netscript project [8] has the abstraction of a Virtual Active Network as the ob
to program. Additionally, they deal with automated generation of MIB to mana
active services via standardized management protocols. Contrary to the Net
project, our work leaves open the question of service instrumentation in an active
work environment, but it focuses on a flexible framework for supporting interacti
between customers and providers with the VAN abstraction as a key concept.

The adaptable network control and reporting system (ANCORS) [19] is a syste
assess, control, and design active networks. It supports the deployment and s
management of legacy software and new active network applications in a networ
contrast to our work, code for the services are loaded only from trusted code se

Figure 9: Design where an ANN node is seen as a single Active Network Nod
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and deployment and control commands are only accepted if they arrive from a kn
set of IP addresses. Further, ANCORS uses the UNIX process abstraction runni
PCs to isolate customers from each other, where we run a node OS on an activ
working hardware platform.

The Genesis project [20] brings up the notion ofvirtual programmable networksas the
entity to bind resources to it, and they describe the life-cycle to install such a vir
programmable network. First, the Genesis approach is derived from the programm
networking (build on top of switchlets [21]), which concentrate the virtualization
the control plane. Our paper also includes the data path, which makes the ne
active on the data, control, and management plane. Second, the described life
virtual networks, does not include any customer-provider interaction, as our p
does.

Virtual Networks for the Internet are proposed in [22]. They use the concept of Vir
Networks to partition the physical network resources, where the resulting partit
may implement their own, independent control and processing mechanisms. End
traffic is classified and assigned to one of the Virtual IP Networks by edge rou
according to a programmable policy. In contrast, our work does build on active
working technology, where not only the classification policy is programmable, but
service itself is programmable and the customized service can be installed by a
tomer into the Virtual Active Network.

7 Conclusion and Further Work

One of the key problems in the field of active networking is the prospect of users l
ing and executing untrusted code in the network. In this work, we took the approa
network virtualization to address this problem. We introduced the Virtual Active N
work (VAN) concept and focused on VAN setup and management in an active tele
environment. Further, we showed the potential that active networking opens up i
VAN concept is realized.

We illustrated the properties of a VAN by describing a series of scenarios condu
on the ANET active networking platform. Further, we have given the design for
VAN concept to be realized on ANN, a high-performance active network platfo
This design will be further refined will be realized on ANN, as part of the FA
project in the Fifth (EC) Framework Program. Any progress in this work will
reported in the final version of the paper.
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