
ETH Library

Scheduling Hardware/Software
systems using symbolic
techniques

Report

Author(s):
Strehl, Karsten; Thiele, Lothar; Ziegenbein, Dirk; Ernst, Rolf

Publication date:
1999-01

Permanent link:
https://doi.org/10.3929/ethz-a-004288089

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
TIK Report 67

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004288089
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Scheduling Hardware/Software Systems
Using Symbolic Techniques

Karsten Strehl and Lothar Thiele

Computer Engineering and Networks Lab (TIK)
Swiss Federal Institute of Technology (ETH)
Gloriastrasse 35, 8092 Zurich, Switzerland

eMail: fstrehl,thieleg@tik.ee.ethz.ch
WWW: http://www.tik.ee.ethz.ch

Dirk Ziegenbein and Rolf Ernst

Institute of Computer Engineering (IDA)
Technical University of Braunschweig

Hans-Sommer-Straße 66, 38106 Braunschweig, Germany
eMail: fziegenbein,ernstg@ida.ing.tu-bs.de

WWW: http://www.ida.ing.tu-bs.de

TIK Report
No. 67, January 1999

Abstract

In this report, a scheduling method for heterogeneous embedded systems is developed. At
first, an internal representation model calledFunState is presented which enables the ex-
plicit representation of non-determinism and scheduling using a combination of functions
and state machines. The new scheduling method is able to deal with mixed data/control
flow specifications and takes into account different mechanisms of non-determinism as
occurring in the design of embedded systems. Constraints imposed by other already
implemented components are respected. The scheduling approach avoids the explicit
enumeration of execution paths by using symbolic techniques and guarantees to find a
deadlock-free and bounded schedule if one exists. The generated schedule consists of
statically scheduled basic blocks which are dynamically called at run time.

Contents

1 Introduction 1

2 FunState and Scheduling 4
2.1 The Model of Computation 4
2.2 The Problem .. 5
2.3 FunState and Symbolic Methods .. 7

3 Interval Diagram Techniques 8
3.1 Interval Decision Diagrams 8
3.2 Interval Mapping Diagrams 9
3.3 Image Computation .. 9

4 Symbolic Scheduling 11
4.1 Conflict-Dependent Scheduling . .. 11
4.2 Conflicts and Alternatives 12
4.3 Schedule Specification Automaton. 13
4.4 Performing Symbolic Scheduling .. 13

4.4.1 Algorithms .. 14
4.5 Schedule Controller Generation .. 16
4.6 Conflict Queues and Compositions. 17

4.6.1 Preliminaries. 18
4.6.2 Conflict Resolution 18
4.6.3 Strong Firing Conditions .. 20

4.7 Molecular Dynamics Simulation Example 21

5 Summary and Conclusion 23

1

Chapter 1

Introduction

One of the major sources of complexity in the design of embedded systems is related to
their heterogeneity in different ways. On the one hand, the specification of the functional
and timing behavior necessitates a mix of different basic models of computation and com-
munication which come from transformative or reactive domains:synchronous dataflow
(SDF) [LM87], generalized state machines [Har87, BGJ�97], dynamic dataflow [Buc93],
rendez-vous, queue-based, just to name a few. Typical examples for this are MPEG-2
video encoders or network switching circuits.

In addition, we are faced with an increasing heterogeneity in the implementation.
This not only concerns the functional units which may be implemented in form of dedi-
cated hardware, programmable hardware, domain specific processors such as DSPs, VSPs
(video signal processors), and microcontrollers or even general purpose processors. In
addition, these units communicate with each other via different media, e.g., busses, mem-
ories, networks, and by using many different synchronization mechanisms.

This heterogeneity caused a broad range of scheduling policies in hardware and soft-
ware implementations. Two extreme possibilities are static schedules like those developed
for SDF models [LM87], and EDF (earliest deadline first) schedules developed for dy-
namically changing task structures. Many intermediate possibilities have been developed
over the years.

Recently, a methodology has been defined to deal with the modeling problem for
complex embedded systems for the purpose of scheduling [ZER�98a, ZER�98b]. The
model SPI (system property intervals) as defined here is a formal design representation
internal to a design system. It combines the representation of communicating processes
with correlated operation modes, the representation of non-determinate behavior, differ-
ent communication mechanisms such as queues and registers, and scheduling constraints.
It is based on simple basic constructs annotated with information necessary for scheduling
across different input language semantics. In [ZER�98a], a common internal representa-
tion is presented which integrates the aspects of several models of computation and which
is targeted to scheduling and allocation. [ZER�98b] considers classes of applications that
feature communicating processes where the functions depend on a finite set of computa-
tion modes.

The present report is concerned with a scheduling procedure adapted to this kind of
internal representation. Problems which are typical for the design of complex embedded

1

CHAPTER 1. INTRODUCTION 2

systems are

� different kinds of non-determinism such as partially unknown specification (to be
resolved at design time), data-dependent control flow (to be resolved at run time),
and unknown scheduling policy (to be resolved at compile time),

� dependencies between design decisions for different system components,

� correlations between processing modes in different components.

These properties necessitate new scheduling approaches as the number of execution paths
to be considered grows exponentially with increasing degrees of non-determinism. More-
over, the complexity of the models of computation and communication greatly increases
the danger of system deadlocks or queue overflows, see, e.g., [LP95].

Results are available which partly deal with above problems. To overcome draw-
backs of either purelystatic or dynamic scheduling approaches and to combine their ad-
vantages, Lee proposed a technique calledquasi-static scheduling [Lee88]. Similarly to
static scheduling, most of the scheduling decisions are made during the design process,
providing only few run-time overhead and partial predictability. Only data-dependent
choices—depending on the value of the data or resulting from a reactive, control-oriented
behavior—have to be postponed until run time. Techniques related to quasi-static schedul-
ing have been developed using, e.g., constraint graphs [KD92, CTGC95], dynamic
dataflow graphs [Buc93], actors with data-dependent execution times [HL97], and free-
choice Petri nets [SLWSV98].

The approach taken in this report is based on symbolic techniques which use a com-
bination of efficient representations of state spaces and transition models andsymbolic
model checking principles in order to avoid the explicit enumeration of execution paths.
Symbolic approaches often turned out to provide advantages regarding computation time
and memory resources compared to conventional approaches. Hence, besidesbinary deci-
sion diagrams (BDDs) [Bry86] and their derivatives,interval diagram techniques—using
interval decision diagrams (IDDs) andinterval mapping diagrams (IMDs)—have shown
to be convenient for efficient formal verification of, e.g., process networks like the above-
mentioned SPI model [ST98a], Petri nets [ST98b, ST99], or timed automata [Str98].

There exist some approaches to apply symbolic methods to control-dependent
scheduling for high-level synthesis. These exact and efficient symbolic scheduling tech-
niques based on BDDs are used to perform control/data path scheduling by combining the
advantages of both heuristic methods and techniques based oninteger linear programming
(ILP). BDDs are used to describe scheduling constraints and solution sets either directly
[RB94] or encapsulated infinite state machine (FSM) descriptions [CD94, HB98].

In [TTN�98], a common representation calledFunState is presented which unifies
many different well-known models of computation, supports stepwise refinement and hi-
erarchy, and is suited to represent many different synchronization, communication, and
scheduling policies. Based on this model, we present an approach to symbolic scheduling
using interval diagrams techniques. In particular, the following new results are described
in the report:

CHAPTER 1. INTRODUCTION 3

� A refinement of the SPI model of computation [ZER�98a, ZER�98b] calledFun-
State is presented which enables the explicit representation of non-determinism and
scheduling using a mixture of functional programming and state machines.

� Different mechanisms of non-determinism as occurring in the design of embedded
systems are classified.

� A scheduling method for heterogeneous embedded systems is developed which
takes into account these different kinds of non-determinism and constraints imposed
by other already implemented components and which deals with mixed data/control
flow specifications. It avoids the explicit enumeration of execution paths using sym-
bolic techniques and guarantees to find a deadlock-free and bounded schedule if one
exists. The generated schedule consists of statically scheduled basic blocks which
are dynamically called at run time.

� The resulting scheduling automaton is optimized with respect to the length of static
blocks and the number of states.

� The approach is illustrated using a hardware/software implementation of a fast
molecular dynamics simulation engine.

The report is organized as follows. Section 2 briefly introduces the FunState model
and its scheduling concerns. Interval diagram techniques are summarized in Section 3,
while Section 4 explains our approach. Finally, Section 5 gives a short summary.

Chapter 2

FunState and Scheduling

During the last years, mainly in the fields of embedded systems and communication elec-
tronics (for instance, cellular phones, MPEG, ATM) common forms of representation for
mixed control/data-oriented systems have gained in importance. Therefore, the FunState
formalism has been developed which combines dataflow properties with finite state ma-
chine behavior [TTN�98]. It refines the SPI model of computation [ZER�98a, ZER�98b]
by introducing internal states, e.g., for modeling scheduling policies. FunState can be
used to model mixed hardware/software systems for analysis and synthesis purposes. It
serves as an internal representation in the design phase.

2.1 The Model of Computation

In this report, FunState is described only briefly. Only the aspects related to scheduling are
considered. The reader is referred to [TTN�98] for a formal introduction. In Figure 2.1,
a simple example FunState model is shown. It consists of three components; each of
them has two parts: an upper, data-oriented part—depicting dataflow by functional units
(rectangles) and FIFO queues (circles)—and a lower, control-oriented part—described by
a finite state machine.

The queues in the data-oriented part store data items depicted by tokens, while the
functional units perform computations on the data. The functions have consumption and
production rates for each connected edge which are depicted only for values different
from 1. One major novelty of FunState compared to related models of computation is that
the functions are passive. The execution of the functions of each component is controlled
by the corresponding state machine described in a statechart-like manner.

The labels of the state machine transitions indicate combinations of a condition and
an action (e.g., “q� � ��f�”), meaning that the respective transition, and thereby the
action, may be executed only if the condition is satisfied (i.e., if the queue labeled withq�
contains at least three data items). The purpose of such a predicate mostly is to ensure the
presence of the input data tokens needed for an execution of the corresponding function.
If the above transition is taken, functionf� is executed and consumes three tokens from
queueq� and produces one token for queueq�.

In the scope of this report, we use only a simple subset of FunState suitable for

4

CHAPTER 2. FUNSTATE AND SCHEDULING 5

/f1

/f2

f5

2 2

/f5

q2� 2

q1� 3/f3
/f4

A

f1

B f3q1
3

C

f6
2

2
q3

2

f4f2 2 q2

f7
q4

2

q3� 2/f6

q4� 0

q4� 0/f7

�

HW HWSW

��

Figure 2.1: Example FunState model.

scheduling. While the transition predicates in general may be also on values of data items,
we allow only predicates onqueue contents—the numbers of tokens in queues. We ig-
nore explicit timing properties (execution times, timing constraints, etc.). The concurrent
execution of state machines of different components is asynchronous and interleaved.

2.2 The Problem

Besides conventional scheduling constraints such as data dependencies or resource con-
straints, even more complex constraints may be imposed to influence a schedule to be
developed. For instance, interface protocols between several components or various ex-
ternal constraints may have to be taken into account. Furthermore, the desired scheduling
policy may be given partially resulting in an incomplete specification which has to be
obeyed during schedule development.

Consider a constellation of components mapped onto different implementational units
and communicating via queues in a distributed, parallel setting. The components have
both data and control flow properties. Non-determinisms may exist resulting from in-
complete specifications or data dependencies resolved only at run time. In this report, we
deal with the problem of finding afeasible schedule for the components mapped onto one
implementational unit respecting constraints given by other components. In this context,
feasible means that the schedule is deadlock-free and guarantees bounded queue contents.

To precise this, we consider a simple example. Assume that componentB of the
example FunState model of Figure 2.1 represents a processor transforming data streams
between the componentsA andC. LetA andC be components mapped onto hardware
such as an input or output device, respectively, or an interface to a sensor, an actor, or

CHAPTER 2. FUNSTATE AND SCHEDULING 6

another processor.
Let the behaviors ofA andC be specified by the respective state machine. Their

behavior has to be considered with regard to the schedule to be developed. Not con-
sidering these additional constraints may lead to less efficient or even incorrect sched-
ules. The state machine ofA describes that its functions always are executed in the order
f�f�f�f� � � � Hence, it is guaranteed that after each firing off�, f� is executed and vice
versa.

The state machine ofB shown in Figure 2.1 describes a specification of possible
schedules forB. This specification should be used to find a feasible schedule which
respects the additional information concerning other components. All transitions starting
in a dark-shaded state represent designalternatives which may be chosen during schedule
development. In contrast to this, a light-shaded state contains aconflict concerning its
outgoing transitions. The conflict can be resolved only at run time, hence, no design
decision is possible. Conflicts occur, for instance, when decisions depending on the value
of data or environmental circumstances have to be taken. White states in the FunState
model are states which either have only one outgoing transition or of which all transitions
have disjoint predicates. Thus, the transition behavior of these states isdeterminate. Note
that in componentC the state with two outgoing transitions is determinate for this reason.

Suppose thatB andC execute sufficiently often (they are “faster” than the preceding
component) such that there are no unbounded numbers of tokens simultaneously inq�
and q� or in q� and q�, respectively. An important issue of schedule development are
feasibility and correctness of the resulting schedule. A possible schedule ofB described
by the specification is�f�jf���f�jf�� � � � , wheref� andf� are executed alternatively and
iteratively—thus ignoringf�. But this schedule is not feasible as the queue contents of
q� andq� are not bounded. If we had chosenf��f�jf��f��f�jf�� � � �—f� is executed, then
f� or f� is executed, etc.—, this would result in an incorrect behavior ofC asf� could
attempt to read too much tokens fromq� after some time.

In contrast to this, the schedule�f�jf��f��f�jf��f� � � � is valid with respect to specifi-
cation and componentC, and it is feasible. An implementation of this schedule can profit
from the fact thatf� may be executed only iff� has been executed immediately before.
From the behavior ofA follows that for the execution off� no condition is necessary
asq� always contains enough tokens. Thus, the resulting schedule may be implemented
more efficiently by considering only necessary conditions as less queue contents have to
be determined. This simple example schedule may be seen as a self-triggered schedule
or a trivial case of a quasi-static schedule. Data independent operations are scheduled
statically in clusters starting with one data-dependent operation. Only for the beginnings
of these clusters dynamic scheduling is necessary.

Using the symbolic scheduling techniques proposed below, the above issues are taken
into account. Intuitively, the scheduling is performed by replacing dark-shaded states
by white states—taking decisions and thus removing design alternatives. Our approach
resulting in a schedule similar to quasi-static obeys constraints given by external speci-
fications and uses this additional information to obtain more efficient schedules. In this
report, we consider only software scheduling using a uniprocessor. Extensions for hard-
ware scheduling under resource constraints or scheduling for several processors are easily
possible.

CHAPTER 2. FUNSTATE AND SCHEDULING 7

2.3 FunState and Symbolic Methods

Symbolic representations of Boolean functions such as BDDs have formed the basis of the
breakthrough of symbolic formal verification methods such as symbolic model checking,
e.g., [McM93]. In contrast to other verification techniques such as simulation, formal
verification considersall possible execution traces of a state transition model, not only a
part. Hence, formal verification may provide a mathematical proof of the correctness of a
system’s model.

With regard to formal verification, the techniques for symbolic model checking of
process networks based on interval diagram techniques as described in [ST98a] are di-
rectly applicable to FunState as the transition behavior of FunState is very similar to that
of the considered models of computation. Thus, using FunState to model a mixed hard-
ware/software system enables its formal verification comprising the whole well-known
area of symbolic model checking concerning the detection of errors in specification, im-
plementation, or scheduling.

Apart from this, formal verification may assist during the development of scheduling
policies. The system model may be extended to describe one or several dynamic or hybrid
scheduling policies, too, of which the behavior is verified together with the system model.
Thus, common properties as the correctness of a schedule may be affirmed by proving the
boundedness of the required memory and the absence of artificial deadlocks.

In the scope of this report, we mainly deal with symbolic scheduling as another task
in the area of hardware/software codesign using symbolic methods. In addition to formal
verification as described above, symbolic methods based on interval diagram techniques
may be used not only to analyze but even to develop scheduling policies for FunState
models.

Chapter 3

Interval Diagram Techniques

For formal verification of, e.g., process networks [ST98a], Petri nets [ST98b, ST99], or
timed automata [Str98], interval diagram techniques—using interval decision diagrams
(IDDs) and interval mapping diagrams (IMDs)—have shown to be a favorable alternative
to BDD techniques. This results from the fact that for this kind of models of computation,
the transition relation has a very regular structure that IMDs can conveniently represent.
While BDDs have to represent explicitly all possible state variable value pairs before and
after a certain transition, IMDs store only thestate distance—the difference between the
state variable values before and after the transition. Especially for models with large
numbers of tokens, this approach is reasonable and useful. IDDs are used to represent
state sets during computations. In this report, we only give a brief, informal summary of
structure and properties of IDDs and IMDs and the methods required.

Due to the similarities between the transition behaviors of FunState and the above-
mentioned models of computation, the advantages of symbolic techniques based on inter-
val diagram techniques may be transferred to the area of symbolic scheduling of FunState
models—besides their formal verification.

3.1 Interval Decision Diagrams

IDDs are a generalization of BDDs and MDDs—multi-valued decision diagrams
[SKMB90]—allowing diagram variables to be integers and child nodes to be associated
with intervals rather than single values. In Figure 3.1 a), an example IDD is shown. It
represents the Boolean functions�u� v� w� � �u � �� � �v � �� � �u � �� � �w � ��
with u� v� w � �	���.

Equivalent to BDDs, IDDs have a reduced and ordered form, providing a canoni-
cal representation of a class of Boolean functions—which is important with respect to
efficient fixpoint computations often necessary for formal verification—and also for the
symbolic scheduling techniques considered here. Methods as theIf-Then-Else operator
ITE are defined similarly to their BDD equivalents and may be computed as usual for
decision diagram applications using a computed table to improve performance. IDDs are
used to represent state sets during scheduling.

8

CHAPTER 3. INTERVAL DIAGRAM TECHNIQUES 9

u

0

v

w

1

[4,�)[0,3]

[0,5]
[6,�)

S

[0,7]

[8,�)

a)

u

v

1

� [2,2]

� [1,1] � [0,1]

T

ww

v

[2,�)/

� [3,4]

� [1,2] � [1,4]

[4,�)/ [0,�)/

[0,�)/ [2,�)/

[0,6]/

� [0,0]
[0,5]/

b)

Figure 3.1: Interval decision diagram and interval mapping diagram.

3.2 Interval Mapping Diagrams

IMDs represent valid state transitions, for instance, the execution of functions depending
on predicates on queue contents. IMDs are represented by graphs similar to IDDs. Their
edges are labeled with functions mapping intervals onto intervals. The graph contains
only one terminal node. Figure 3.1b) shows an example IMD. With regard to transition
relations, IMDs work as follows. Each edge is labeled with a condition—thepredicate
interval—on its source node variable and the kind and amount of change—theaction op-
erator and theaction interval—the variable is to undergo. Each path represents a possible
state transition which is executable if all edges along the path are enabled. The combina-
tion of predicate and action interval parameterizes the mapping function and completely
defines its behavior.

3.3 Image Computation

Similarly to formal verification like symbolic model checking, an operation namedimage
computation is fundamental for symbolic scheduling techniques. The imageIm�S� T � of
a setS of system states with respect to transition relationT represents the set of all states
that may be reached after exactly one valid transition from a state in setS. The inverse
imagePreIm�S� T � represents all states that in one transitioncan reach a state inS.

In [ST98a], an efficient algorithm is described to perform forward or backward image
computation using an IDDS for the state set and a IMDT for the transition relation,
resulting in an IDDS � representing the image state set. This algorithm has been used to
perform reachability analysis or symbolic model checking by fixpoint computation and is
essential also for symbolic scheduling based on interval diagram techniques. IMDs are
dedicated to image computation especially for models like FunState as the state distance

CHAPTER 3. INTERVAL DIAGRAM TECHNIQUES 10

(action interval) combined with the respective firing condition (predicate interval) may be
stored more efficiently than many state pairs.

Chapter 4

Symbolic Scheduling

Symbolic methods for control-dependent scheduling have shown to be effective tech-
niques to perform control/data path scheduling, e.g., [HB98]. They often outperform
both ILP and heuristic methods while yielding exact results. Furthermore, all possible
solutions to a given scheduling problem are computed simultaneously such that addi-
tional constraints may be applied to find optimal schedules. In this report, we present a
symbolic approach to the scheduling of systems represented as FunState models. The ap-
proach based on interval diagram techniques avoids the explicit enumeration of execution
paths by using these symbolic techniques.

4.1 Conflict-Dependent Scheduling

As mentioned in Section 1, quasi-static and related scheduling approaches, e.g., [Lee88,
CTGC95], try to combine the advantages of static and dynamic scheduling methods. To
achieve this, the resolution of data or environment dependent control is done at run time
whereas the tasks that need to be executed as a consequence of a run-time decision are
scheduled statically. The aim is to make most of the scheduling decisions at compile time,
leaving at run time only choices that, e.g., depend on the value of data. As mentioned in
Section 2.2, we call this latter kind of run time choicesconflicts and the corresponding
scheduling techniquesconflict-dependent. The former design decisions at compile time
are namedalternatives. As we ignore explicit timing properties in the scope of this re-
port, the resulting schedule—similarly to scheduling of, e.g., marked graphs—consists of
sequences of function executions.

Initially, the given FunState model contains aschedule specification automaton which
extends the FSM part such that all possible schedule behaviors are modeled. This Fun-
State model represents a totally dynamic scheduling behavior and is used to perform the
symbolic scheduling procedure as described below. The result of this procedure is the
schedule controller automaton which restricts the scheduling behavior to be only conflict-
dependent. This automaton may replace the specification automaton of the original Fun-
State model, e.g., for analysis purposes such as verification. Finally, the controller au-
tomaton may be transformed into program code to implement the controller.

11

CHAPTER 4. SYMBOLIC SCHEDULING 12

4.2 Conflicts and Alternatives

A conflict in our understanding is a non-determinism in the specification which may not be
resolved as a design decision, but of which all possible execution traces have to be taken
into account during the schedule. Thus, the multi-reader queueq� in Figure 2.1 does not
represent a conflict as both following functions may read all tokens ofq� independent of
their value or possible external circumstances.

In contrast to that, the queueq� in Figure 4.1 a) is a multi-reader queue that may
contain tokens which only one of the queue’s readersf� andf� consumes (depending,
e.g., on the token data) but the other one does not. Besides such data-dependent conflicts,
conflicts depending on environmental circumstances may occur.

T

[0,0]/
� [1,1]

1

c

q1 q1 q1

q2q2

[1,1]/
� [0,0]

/� [1,1]

/� [1,2]

[0,0]/

/
/� [1,1]

[1,)/�

[2, /�)
� [2,2]

b)a)

f1

q1 q2

f2

f3

2

2

f4

/f1
/f2

/f3

q2� 2/f4

q1� 1

c� 0

c� 1

Figure 4.1: FunState model of conflict and transition relation IMD.

The states of the FSM part of FunState models are divided into three types. Accord-
ing to Section 2.2, light-shaded states are calledconflict states, dark-shaded states are
alternative state, anddeterminate states are white. While the property of a state to be
determinate is derived directly from its transition predicates, the non-determinate states
have to be divided explicitly into conflict states and alternative states as both are semanti-
cal properties.

All transitions leaving an alternative state represent design choices which may be
made during the schedule development. In contrast to that, all transitions leaving a con-
flict state represent decisions which may not be taken at compile time, but which keep
their non-determinate character until run time. Hence, besides explicit conflicts incom-
plete constraint specifications resulting in a non-determinate behavior are modeled using
conflict states. Otherwise the non-determinism would be treated as a design alternative
and removed during the scheduling process.

Determinate states with only one outgoing transition are calledstatic as there exists
only one possibility to quit them. Determinate states with more than one transition, al-
ternative states, and conflict states are nameddynamic because they represent a dynamic
execution behavior with several traces depending, e.g., on queue contents or data.

CHAPTER 4. SYMBOLIC SCHEDULING 13

4.3 Schedule Specification Automaton

To model the above-mentioned conflicts, a schedule specification automaton is built which
represents all possible conflict behaviors and thus specifies all valid schedules. The
lower part of Figure 4.1a) shows the specification automaton used to describe the above-
mentioned conflict behavior concerningf� andf� with regard toq�. When one of the
functions is enabled—q� contains at least one token—, the automaton can make a transi-
tion from the initial alternative state to the conflict state. Then, after executing eitherf�
or f� it returns to the alternative state.

Besides the variables for the queue contents, a state variablec for the FSM states
has been introduced. Figure 4.1b) shows the interval mapping diagram representing the
transition relation of the FunState model of Figure 4.1a). This IMD is used for symbolic
state traversal as explained below.

4.4 Performing Symbolic Scheduling

The aim of the described scheduling process is to sequentialize functions specified as
concurrent while preserving all given conflict alternatives. The resulting schedule has to
be deadlock-free and bounded as mentioned in Section 2.2.

Figure 4.2, shows theregular state transition graph of the FunState model in Fig-
ure 4.1. It represents all valid state transitions of the FunState model with regard to the
total state space consisting of the queue contents of the dataflow part and the discrete sys-
tem states of the FSM part. At each coordinate pair of�q�� q��, both possible states of the
FSM part are shown.

q2

q1 c� 0
c� 1

Figure 4.2: Regular state transition graph with schedule.

CHAPTER 4. SYMBOLIC SCHEDULING 14

Using interval diagram techniques, the regular state transition graph is traversed sym-
bolically without constructing it explicitly. This is achieved by iterative image compu-
tations as explained in Section 3. An interval mapping diagram such as shown in Fig-
ure 4.1 b) represents the transition relation, while interval decision diagrams are used
to store intermediary state sets. The efficiency of these techniques has been shown in
[ST98a].

In the following, the scheduling procedure in its simplest form is explained with this
graph. First, a symbolic breadth-first search is performed to find the shortest paths from
the initial state to itself or any state already visited during the search. One of these (pos-
sibly multiple) shortest paths—representing or at least containing a cycle—is selected as
the basis of the following scheduling procedure.

All states of the selected path corresponding to conflict states need further investiga-
tion as no conflict decision may be taken during the schedule design. Hence, beginning
with the successor states of the conflict states again a breadth-first search is performed
until reaching any state visited yet. Additional conflict states visited during this search
are also treated as described above.

The schedule is complete when each successor state of each visited conflict state has
been considered. Thus, it is guaranteed that any conflict alternative during run time may
be treated by providing a static schedule until the next conflict to be resolved. The result-
ing schedule is marked by bold arcs in Figure 4.2.

If no schedule has been found while traversing one of the conflict paths, another short-
est path is selected to repeat the scheduling procedure. If all shortest paths have been
checked without finding a complete schedule, longer paths are selected. By introducing a
bounding box on the state space, the search space may be restricted. Thus, the termina-
tion of the algorithm is guaranteed. Furthermore, if a deadlock-free and bounded schedule
exists, the above procedure will find it.

4.4.1 Algorithms

In Table 4.1, the algorithm ofdetermineShortestPath�A�B� is described whereA and
B are sets of states which do not have to be disjoint. The result is one—out of possi-
bly several—shortest pathx�� x�� � � � � xn with respect to a transition relationT from any
element ofA to any element ofB with n �
.

The image operatorIm�S� T � and its inversePreIm�S� T � are introduced in Sec-
tion 3.3. The choosing of one state out of a set of states in Table 4.1 preferably is done by
selecting non-conflict states. This is a heuristic criterion to reduce the number of conflicts
to be considered and, hence, the size of the search space and the resulting schedule.

The syntax� x�� x�� � � � � xn � represents a listP of elementsxi, starting withx�.
In the following, common functions for list manipulation such asP�size��, P�head��,
P�tail��, orP�elements�� are used.

An outline of the recursive algorithm ofdetermineStateSchedule�a� B� is sketched
in Table 4.2 wherea is a state andB a set of states which may includea. The function
call is by reference, hence, modifying the value of parameterB. The result is a directed
graph of states representing the state transition graph of the schedule as explained below.
The recursion is initiated by callingdetermineStateSchedule

�
x�� fx�g

�
wherex� is the

CHAPTER 4. SYMBOLIC SCHEDULING 15

determineShortestPath�A�B� �
S� � A; n � 	;
do

Sn�� � Im�Sn� T �;
n � n�
;

until Sn �B 	�
;
choose a statexn � Sn � B;
for i � n�
 downto 	

choose a statexi � Si � PreIm
�
fxi��g� T

�
;

return list � x�� x�� � � � � xn �;

Table 4.1: Algorithm for shortest path search.

initial system state.

determineStateSchedule�a� B� �
list P � determineShortestPath

�
fag� B

�
;

B � B � P�elements��;
addP as subgraph to graphG;
while P�size�� �

x � P�head��; P � P�tail��;
if isConflictState�x�

for each y � Im
�
fxg� T

�

add� x� y � as subgraph toG;
if y �� B

add subgraphdetermineStateSchedule�y� B� toG;
return G;

Table 4.2: Algorithm to determine the state transition graph of the schedule.

In Table 4.2, the construction of the resulting graph by adding subgraphs is not de-
scribed in detail for the sake of clearness. The function value ofisConflictState�x� is
true iff x is a conflict state.

The algorithm ofdetermineStateSchedule�a� B� is sketched only very roughly.
Several extensions are necessary not described in Table 4.2. For instance, often no cy-
cle exists which includes the initial statex�. Thus, beginning withx�, the regular state
transition graph has to be traversed until finding a cycle which forms the basis for a valid
schedule. This may be regarded as an initialization phase at the beginning of the resulting
schedule. The algorithm ofdetermineStateSchedule�a� B� has to be modified such that
the first shortest path search is replaced by searching a path from the initial state to any
state visited during this search.

CHAPTER 4. SYMBOLIC SCHEDULING 16

4.5 Schedule Controller Generation

The resulting schedule consists of paths of the regular state transition graph as shown in
Figure 4.2. The corresponding subgraph in Figure 4.3 a) is the basis for the generation
of the controller automaton. As a consequence of the scheduling process, all alternative
states have been been replaced by determinate states—taking decisions and thus removing
design alternatives. The predicatep identifies the run-time decision associated to the
conflict node.

�
/f1

p/f3
p q 02� � /f2

p q 02� � /f2

/f4

b)a)

p/f2

/f4

(0,1,1)

(0,0,1)

/f1

(1,1,1)

p/f2

(0,0,3)

p/f3

/f4

(0,0,0)

(0,1,0)

(1,1,0)

/f1

(0,0,2)

p/f3

Figure 4.3: State transition graph of schedule for�c� q�� q�� and resulting controller au-
tomaton.

In order to reduce the implementation effort, this state transition graph may be sim-
plified. Obviously, this process can be driven by many different objectives, for instance,
minimizing the number of states in the schedule automaton or keeping sequences of static
nodes.

As an example, a procedure is described which minimizes the number of states under
the condition that sequences of static nodes are not partitioned. This way, the number of
dynamic decisions (at run time) is not increased in any execution trace. The optimization
procedure is based on well-known state minimization methods and uses the following
equivalence relation:

� Two static states are equivalent iff for any input they have identical outputs and the
corresponding next states are equivalent.

� Two dynamic states are equivalent iff they are of the same type (conflict, alternative,
or determinate) and they correspond to the same node in the non-scheduled state
machine, i.e., they have the same state name but different queue contents associated.

This definition can be used to perform the usual iterative partitioning of the state set until
only equivalence classes are obtained, see, e.g., [Mic94]. The ambiguity of the next states
in the case of dynamic states is resolved by adding predicates to the outgoing edges.

Figure 4.3b) shows the controller automaton as the result of this process. It may be
transformed into program code as shown in Table 4.3 as pseudo code.

CHAPTER 4. SYMBOLIC SCHEDULING 17

a: f�;
if p then

f�;
if q� � 	 then goto a;

else f�;
f�;
goto a;

Table 4.3: Controller program code.

4.6 Conflict Queues and Compositions

Up to here, a scheduling methodology has been explained which makes use of a schedule
specification automaton given explicitly. In this section, a different methodology is de-
scribed. It is based on an incomplete FunState model which does not contain a schedule
specification automaton. For the component to be scheduled, only the dataflow part is
given in a manner similar to a conventional Petri net. Based on this model, the schedule
specification automaton is generated automatically. This is the advantage of this method-
ology because the explicit construction of the schedule specification automaton is not
always an easy task. This strategy is sufficient for the conflict behaviors of many kinds
of system models with data-dependent conflicts. However, the example model described
in Section 4.7, for instance, requires an explicit schedule specification. Figure 4.4 shows
this modified methodology for our symbolic scheduling approach. New terms used in the
following explanations are defined below.

incomplete FunState model

compositions

schedule specification automaton

conflict queues

symbolic scheduling

schedule controller automaton

controller program code

Figure 4.4: Symbolic scheduling methodology.

CHAPTER 4. SYMBOLIC SCHEDULING 18

4.6.1 Preliminaries

As shown in Figure 4.4, an incomplete FunState model of the system to be scheduled in-
cluding scheduling constraints is the basis of our approach. For this model, the user has to
specify those queues involved in a conflict of functions as explained above. Based on these
conflict queues, compositions of conflicting functions are determined. Then the schedule
specification automaton is generated automatically. This extended FunState model is used
to perform the symbolic scheduling procedure as described above.

Definition 4.1 (Conflict queue) A conflict queueis a multi-reader queue that may con-
tain tokens which only some of the queue’s readers consume (depending, e.g., on the token
data) but the others do not.

Queues have to be specified explicitly by the user as conflict queues because this is a
semantical property.

Definition 4.2 (Composition) A compositionis the set of all functions which are con-
flicting with respect to the same conflict queues.

These conflicting functions are dependent on each other in the sense that they are con-
nected via at least one common conflict queue in their presets.

The dataflow part of the FunState model shown in Figure 4.1a) may be regarded as an
incomplete specification in the above sense. Let the light-shaded queueq� be a conflict
queue. Then the conflicting functionsf� andf� form the corresponding composition.

4.6.2 Conflict Resolution

The conflict of a composition is resolved by binding exactly one of the conflicting func-
tions and storing this binding. This is represented by internal states of the schedule spec-
ification automaton. Basically, there are two possibilities of resolving a conflict: as soon
as possible or just before executing one of the involved functions. The former is called
early and the latterlate conflict resolution. In this section, we describe how to generate a
schedule specification automaton which models one of these resolution behaviors.

First, we concentrate on early conflict resolution. A conflict is to be resolved as soon
as possible, hence, at the very beginning of the schedule or immediately after executing
one of the conflicting functions of the corresponding composition. Figure 4.5 shows
a FunState model including the schedule specification automaton which represents this
resolution behavior. For simplicity, concurrent state machines are used in the FSM part.

The concurrent execution of partial state machines within one component and their
communication via events is totally synchronous as described in [TTN�98]. Some tran-
sition predicates contain the in-state operatorM in s of which the result istrue iff the
partial state machineM is in its states. Note that function calls in transition actions such
as “� � � �f�” serve also as events for communication and thus may be part of a transition
predicate such as “f�” as shown in the right FSM part of Figure 4.5.

The queuesq�, q�, andq� have been specified as conflict queues. This results in the
compositionsC� andC�. The schedule specification automaton has been generated auto-
matically. Each of the conflicts results in a partial automaton that performs the binding

CHAPTER 4. SYMBOLIC SCHEDULING 19

l: C in f1 4� q1� 1/f4

f4

f5

f3 f
3

f
4

f
5

l

q3� 1/f6

C in f1 3� q1� 2/f3

C in f2 7� q4� 1/f7

C in f2 8� q4� 2/f8

/f2

/f1

C in f1 5�
q1� 2 /f5� q 12�

C
1

C
2

f8

f7 f
7

f
8

f3

2

2

f4

f5

q3

q4

f6
f7

f8f2 q2

q1

f1

C
1

C
2

2

2

Figure 4.5: Early conflict resolution.

of the conflicting functions. Here, each function is represented by a state reachable from
a conflict state. An additional partial automaton is used to control the total schedule. It
contains the only alternative state.

A drawback of early conflict resolution is that the corresponding regular state transi-
tion graph and the resulting schedule contain many similar paths that proceed “in parallel”
and of which the visited states differ only slightly. This results from the fact that the ex-
ecution paths are splitted very early. It is likely that this increases the size of the search
space and the resulting schedule.

Late conflict resolution avoids splitting the execution paths too early as this is done
only as late as possible. The conflict is resolved only when at least one of the functions
could be executed. Figure 4.6 shows the schedule specification automaton for late conflict
resolution replacing that of Figure 4.5.

The eventstryC
 andtryC are defined explicitly for communication between the
concurrent automata. The transition predicates for generating these events in the left part
of Figure 4.6 are based on the disjunction of the firing predicates of all conflicting func-
tions of the respective composition. As long as a conflict is unresolved, the corresponding
partial automaton stays in its statefree.

A disadvantage of late conflict resolution is that for certain kinds of models the gen-
erated schedule specification automaton is quite complex, resulting from complex tran-

CHAPTER 4. SYMBOLIC SCHEDULING 20

/f4

tryC1

f5

f3 f
3

free

f
5

C
1

C
2

q3� 1/f6

C in f q1 3 1� � 2/f3

C in f q2 8 4� � 2/f8

/f2

/f1 C in f1 5�
q 2 q 1/f1 2 5� ��

C in free1 �
q 1/tryC11�

C in free2 �
q 1/tryC24�

tryC2
free

f8

/f7

f
8

...

Figure 4.6: Late conflict resolution.

sition predicates and many similar transitions. Investigations comparing the described
drawbacks of early and late conflict resolution still have to be made.

4.6.3 Strong Firing Conditions

The schedule specification automaton can be greatly simplified by introducing modified
firing conditions for conflicting functions within a composition. By abandoning some
freedom during scheduling, the size of the search space may be reduced significantly.
The constraintstrong firing conditions allow for conflict resolution and thus for function
execution only when all conflicting functions within a composition are enabled—thus, all
predicates on the conflict queue contents with respect to the functions’ consumption rates
are satisfied.

The effect of strong firing conditions is that the execution of the function chosen is
performed immediately after the conflict resolution. Hence, the binding does not have to
be stored using an internal state. Figure 4.7 shows the schedule specification automaton
representing the strong firing conditions with respect to Figure 4.5.

The predicates of the transitions reaching a conflict state are the conjunctions of the
conventional firing predicates of the respective conflicting functions. As some design
freedom has been given up, using strong firing conditions may result more often in non-
schedulable models than otherwise. Furthermore, resulting schedules may be less effi-
cient.

A special class of models obeying these strong firing conditions are equivalent to
free-choice Petri nets where the corresponding consumption and production rates of all
conflicting functions within a composition have to be equal. Hence, there is a tight rela-
tionship between our approach and that of [SLWSV98] which still has to be investigated
in detail.

CHAPTER 4. SYMBOLIC SCHEDULING 21

...

q3� 1/f6

q4� 2
/f2

/f1

/f3

/f4

/f5

/f7

/f8

q 2 q 11 2� ��

Figure 4.7: Strong firing conditions.

4.7 Molecular Dynamics Simulation Example

The introduced approach has been applied to perform conflict-dependent scheduling for
a molecular dynamics simulation system. As shown in Figure 4.8, the simplified fun-
damental algorithm has been mapped onto a host workstation (Host) linked to a special
purpose hardware accelerator serving as a coprocessor (CoPro). In the figure, the circles
containing a square represent registers storing data. Therefore, they do not introduce ad-
ditional dependency constraints. The transition labelsl�� � � � � l� are depicted separately
for reasons of space.

The simulation mainly consists of repeated computations in the feedback loop dis-
tributed among both processors where atom forces (AF) are computed (F), added up (S),
and integrated (I) to calculate new atom coordinates (AC, AR). After a variable number
of iterations, the central coordinates of slowly moving sub-molecules called charge groups
(CG) are updated (C). Then, a new list of neighbors called pair list (PL) is computed
(D, V , P , U).

As the moment when to start this pair list computation is unknown until run time,
this fact represents a conflict which is modeled using a conflict state. The major issue of
the schedule specification is that there exists no cycle in the corresponding state transi-
tion graph which does not contain the conflict state. This is ensured by the fact that the
transition executingI cannot be reached without visiting the conflict state. The schedule
specification automaton has been given explicitly. The specification automata of more
complex systems may be given by a concurrent representation for clearness (omitted here
for the sake of simplicity). The result of the symbolic scheduling process—the schedule
controller automaton—is shown in Figure 4.9. It replaces the FSM part of theHost com-
ponent of Figure 4.8. It consists of two static cycles and a conflict state switching between
them. The schedule is respecting the specification ofCoPro. Note that even the schedule
of CoPro is not static as it depends on the content of queuePP .

CHAPTER 4. SYMBOLIC SCHEDULING 22

DF

AC

PP

100

AF S

I

AR

C CG D

SV V FV

SU

P

44

30
306

6

66

20
20

3 3 15

20

PL

U

F

100
100

100

20

15

Host CoPro

AF� 3/I
/C

l
1

l
2

l
3

l
4

l
1

l
2

l
3

l
4

l
2
: CG 6/D�

l
1
: DF 15/S�

l
3
: SV 6/V�

l
4
: SU 4 FV 30/P� �� PP 100/U�

AC 20/F�

PP 0�

PP 0�

Figure 4.8: Molecular dynamics model with specification automaton.

Host ...

/C
/D

/V

/P
/I

/I

DF 0/S�

Figure 4.9: Resulting controller automaton.

Chapter 5

Summary and Conclusion

An approach for symbolic scheduling of mixed hardware/software systems has been pre-
sented. It is based on a FunState model of the system and the scheduling constraints. The
result is a scheduling policy which may be implemented, e.g., as a software controller on
a uni-processor.

Further work concentrates on extending the approach to hardware scheduling under
more complex resource constraints and on considering the timing behavior of the system
to allow for the specification of timing constraints. Furthermore, performance investiga-
tions are necessary. In particular, the performances of early and late conflict resolution
and of the strong firing conditions have to be compared to each other.

23

Bibliography

[BGJ�97] F. Balarin, P. Giusto, A. Jurecska, C. Passerone, E. Sentovich, B. Tab-
bara, M. Chiodo, H. Hsieh, L. Lavagno, A. Sangiovanni-Vincentelli, and
K. Suzuki. Hardware-Software Co-Design of Embedded Systems: The Po-
lis Approach. Kluwer Academic Press, Boston, 1997.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8):667–691, August 1986.

[Buc93] J. T. Buck. Scheduling dynamic dataflow graphs with bounded memory
using the token flow model. PhD thesis, University of California, Berkeley,
1993.

[CD94] C. N. Coelho Jr. and G. De Micheli. Dynamic scheduling and synchroniza-
tion synthesis of concurrent digital systems under system-level constraints.
In Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design (ICCAD-94), pages 175–181, 1994.

[CTGC95] M. Cornero, F. Thoen, G. Goossens, and F. Curatelli. Software synthe-
sis for real-time information processing systems. In P. Marwedel and
G. Goossens, editors,Code Generation for Embedded Processors, pages
260–279. Kluwer Academic Publishers, 1995.

[Har87] D. Harel. Statecharts: a visual formalism for complex systems.Science of
Computer Programming, 8, 1987.

[HB98] S. Haynal and F. Brewer. Efficient encoding for exact symbolic automata-
based scheduling. InProceedings of the IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD-98), 1998.

[HL97] S. Ha and E.A. Lee. Compile-time scheduling of dynamic constructs in
dataflow program graphs.IEEE Transactions on Computers, 46(7):768–
778, July 1997.

[KD92] D. C. Ku and G. De Micheli. Relative scheduling under timing constraints:
algorithms for high-level synthesis of digital circuits.IEEE Transactions on
Computer-Aided Design, 11(6):696–718, June 1992.

24

BIBLIOGRAPHY 25

[Lee88] E. A. Lee. Recurrences, iteration, and conditionals in statically scheduled
block diagram languages. In R. W. Brodersen and H. S. Moscovitz, editors,
VLSI Signal Processing III, pages 330–340. IEEE Press, New York, 1988.

[LM87] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.Proceedings of
the IEEE, 75(9):1235–1245, 1987.

[LP95] E. A. Lee and T. M. Parks. Dataflow process networks.Proceedings of the
IEEE, 83(5):773–799, 1995.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[Mic94] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-
Hill International Editions, New York, 1994.

[RB94] I. Radivojević and F. Brewer. Ensemble representation and techniques for
exact control-dependent scheduling. InProceedings of the 7th International
Symposium on High-Level Synthesis, pages 60–65, 1994.

[SKMB90] A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms for discrete
function manipulation. InProceedings of the IEEE International Confer-
ence on Computer-Aided Design, 1990.

[SLWSV98] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli. Quasi-
static scheduling of embedded software using free-choice Petri nets. In
Proceedings of the Workshop on Hardware Design and Petri Nets (HPWN
’98), 1998.

[ST98a] Karsten Strehl and Lothar Thiele. Symbolic model checking of process net-
works using interval diagram techniques. InProceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD-98), pages
686–692, San Jose, California, November 8–12, 1998.

[ST98b] Karsten Strehl and Lothar Thiele. Symbolic model checking using interval
diagram techniques. Technical Report TIK-40, Computer Engineering and
Networks Lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich,
Gloriastrasse 35, CH-8092 Zurich, February 1998.

[ST99] Karsten Strehl and Lothar Thiele. Interval diagram techniques for symbolic
model checking of Petri nets. InProceedings of the Design, Automation
and Test in Europe Conference (DATE99), Munich, Germany, March 9–12,
1999.

[Str98] Karsten Strehl. Using interval diagram techniques for the symbolic verifi-
cation of timed automata. Technical Report TIK-53, Computer Engineer-
ing and Networks Lab (TIK), Swiss Federal Institute of Technology (ETH)
Zurich, Gloriastrasse 35, CH-8092 Zurich, July 1998.

BIBLIOGRAPHY 26

[TTN�98] Lothar Thiele, J¨urgen Teich, Martin Naedele, Karsten Strehl, and Dirk
Ziegenbein. SCF—state machine controlled flow diagrams. Technical
Report TIK-33, Computer Engineering and Networks Lab (TIK), Swiss
Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092
Zurich, January 1998.

[ZER�98a] D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. Thiele. Combining
multiple models of computation for scheduling and allocation. InProceed-
ings of the 6th International Workshop on Hardware/Software Codesign
(Codes/CASHE ’98), pages 9–13, Seattle, Washington, March 1998.

[ZER�98b] D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. Thiele. Represen-
tation of process mode correlation for scheduling. InProceedings of the
IEEE/ACM International Conference on Computer-Aided Design (ICCAD-
98), San Jose, California, November 8–12, 1998.

