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Abstract

We analyze the hp Streamline Di�usion Finite Element Method �SDFEM� and the standard
Galerkin FEM for one dimensional stationary convection�di�usion problems� Under the assumption
of analyticity of the input data� a mesh is exhibited on which approximation with continuous piecewise
polynomials of degree p allows for resolution of the boundary layer� On such meshes� both the SDFEM
and the Galerkin FEM lead to robust exponential convergence in the �energy norm� and in the L�

norm�
Next� we show that even in the case that the boundary layers are not resolved� robust exponential

convergence on compact subsets �upstream� of the layer can be achieved with the hp�SDFEM� This
is possible on sequences of meshes that would typically be generated by an hp�adaptive scheme�

Detailed numerical experiments con	rm our convergence estimates�



� Introduction

The Streamline Di	usion Finite Element Method 
SDFEM� was introduced by T� Hughes� C� Johnson
and their coworkers to improve the stability of Galerkin Finite Element discretizations of advection
dominated di	usion problems since standard Galerkin FEM were known to produce oscillatory solutions
for these non�selfadjoint problems� In the pioneering papers 

�� �� �� ���� the SDFEM was introduced
and its convergence rate as the meshwidth h of the FE triangulation T tends to zero was analyzed�
In the meantime� numerous papers have appeared showing how the SDFEM can be combined with the
related SUPG techniques 
�� to obtain stable discretizations of convection dominated� incompressible �ow
problems and of problems with analogous mathematical structure in solid mechanics 
��� ����

All these works considered the h�version FEM where convergence is achieved by re�ning the mesh T at
�xed� low polynomial degree p� The convergence rates were consequently at best algebraic� In the ����ies�
the p� and hp�FEM were introduced by I� Babu�ska and B�A� Szab�o and their coworkers� and it was shown
that the hp�FEM achieves exponential convergence for elliptic problems with piecewise analytic solutions

cf� the survey paper 
�� and the references therein��

For singularly perturbed reaction�di	usion problems� it was shown recently in 
��� ��� �� �� that the hp�
FEM can achieve robust exponential convergence� Analogous to the standard h�version� the main problem
in the convection dominated case is stability�

A rigorous proof of robust exponential convergence for the hp�streamline di	usion and Galerkin FEM
for convection dominated problems in one dimension is the purpose of the present paper� We con�ne
our analysis to the one�dimensional case since there the asymptotic structure of the exact solution is
known in detail 
��� We prove robust exponential convergence of the hp�SDFEM and hp�Galerkin FEM in
global norms provided that the boundary layers and fronts of the solution are resolved� Whereas in the
h�version FEM this amounts to the use of so�called Shishkin meshes 
cf� 
��� ����� in the hp context this
can be achieved very e�ciently by inserting just one element of the proper size into the layer 
see� e�g��

��� ��� �� ���� Furthermore� we investigate the behavior of the hp�SDFEM under the assumption that
layers are not resolved which may happen� for example� when the precise location of the layer is unknown�
In this case� we show that the hp�SDFEM leads to robust exponential convergence on compact subsets
upstream of the layer�shock for certain types of mesh sequences� These mesh sequences are those that
would typically be generated by an adaptive scheme that locates the layers and tries to resolve them�
Finally� for a model problem we study numerically the optimal p�dependence of the SDFEM parameter
and �nd the choice O
hi�

p
p� to give the best performance�

Our theoretical results are in agreement with our numerical experiments which also show that hp�SDFEM
and standard hp�FEM are comparable if all small scale features are resolved� In itself� this is already
known to CFD practitioners� The main impetus for the development of SDFEM and related subgrid
scale models has in fact come from the need for stabilization because of the inability of standard FEM
to resolve all small scales of the �ow� The main conclusions of the present work are twofold�

�� hp�FEMs are able to resolve localized small scale features of the solution such as viscous boundary
layers and shock pro�les highly accurately at very reasonable cost 
��� �� �� ����

�� In the preasymptotic range when small scale features are not resolved� the hp�SDFEM can lead
to robust exponential convergence on compact subsets if the increase of the polynomial degree is
coupled with an appropriate mesh re�nement in low order elements towards the layers�

The present work has natural extensions to two and three dimensions as well as to systems�these issues
shall be dealt with elsewhere�

The outline of the paper is as follows� In Sections ���� ��� we present our model problem and introduce two
types of Streamline Di	usion Methods� the �L��stabilized� and �bubble�stablized� method� In Section �
we show that piecewise polynomials on appropriate meshes can resolve small scale features such as layers
and fronts at a robust exponential rate� Section � is devoted to a detailed analysis of both the �L���
and the �bubble�stabilized� SDFEM� their performance is measured in the global �energy norm�� Our
theoretical results are corroborated by numerical examples in Section �� Section � also contains the
statement that the hp�SDFEM can lead to robust exponential convergence of compact subsets if the
increase of the polynomial degree is coupled with an appropriate mesh re�nement towards the layer�

�



Section � concludes with a numerical investigation of the optimal choice of the SDFEM parameter�

��� Model Problem

We consider the one�dimensional convection�di	usion equation

L�u � ��u��  a
x�u�  b
x�u ! f on " �! 
��� ��� u
��� ! �� 
����

Here the parameter � � 
�� �� may approach zero� f � L�
"�� and the coe�cients a � W ���
"� and
b � L�
"� are assumed to satisfy

a
x� � a � � on "� 
����

b
x� � b � lR on "� a�  ��b � � �� � 
�� ��� 
����

Conditions 
����� 
���� guarantee that 
���� does have a unique solution for all � � 
�� ��� The prototypical
analysis of this paper is performed in Section � under the following additional assumption�

b
x�� �
�
a�
x� � � � � on "� 
����

Remark ��� Condition 
���� can always be achieved for problems of the form 
���� by the substitution
u
x� ! e�x#u
x� for some bounded� appropriately chosen � and � su�ciently small�

A weak formulation of 
���� reads� Find u� � H�
� 
"� such that

B�
u�� v� �! �

Z
�

u��v
� dx 

Z
�


au��  bu��v dx ! F 
v� �!

Z
�

fv dx �v � H�
� 
"�� 
����

It is natural to introduce the following �energy norm� on the space H�
� 
"�

kjujk� �! �ku�k�L����  �kuk�L����� 
����

Proposition ��� Under the assumptions 
����� 
���� there holds

kjujk� � B�
u� u� �u � H�
� 
"��

jB�
u� v�j � �
�max 
�� kakL�����

p
��� kbkL�������

� kjujk kjvjk �u� v � H�
� 
"��

In particular� therefore� for every f � L�
"�� there exists a unique solution u� of 
�����

Proof � For the �rst estimate� we note that an integration by parts yieldsZ
�

au�u dx 
Z
�

bu� dx !

Z
�

�
b� �

�
a�
�
u� dx � �kuk�L�����

The second estimate follows from the Cauchy�Schwarz inequality�

�

��� hp FEM

In the classical Galerkin FEM� the in�nite dimensional space H�
� 
"� is replaced by �nite dimensional

spaces of piecewise polynomials of degree p � �� In order to make this more precise� we introduce for a
collection of nodes �� ! x� � x� � � � � � xN ! � the notation Ii �! 
xi��� xi� and hi ! jIij ! xi � xi��
for i ! �� � � � � N � The elements Ii form a mesh T ! fIi j i ! �� � � � � Ng on "� The classical spaces of
piecewise polynomials of degree p are then given by

Sp��
T � ! fu � H�
"� jujIi � $p
Ii�� i ! �� � � � � Ng� 
����

Sp��� 
T � ! H�
� 
"� 	 Sp��
T �� 
����

�



where $p
J� denotes the space of all polynomials of degree p on the interval J � We restrict ourselves
here to a uniform polynomial degree distribution for simplicity of exposition�mutatis mutandis the
polynomial degree may vary from element to element�

The standard Galerkin FEM for 
���� reads�

Find uG � Sp��� 
T � such that B�
uG� v� ! F 
v� �v � Sp��� 
T �� 
����

With a given mesh T � let us associate a collection of non�negative numbers 
	i�Ni�� to be selected and
weight functions di which can be either di � � or di
x� ! bi
x� where bi is the �quadratic bubble�

bi
x� �!
�

h�i

x� xi�
xi�� � x�� 
�����

For these weights 
	i� di�
N
i��� the SDFEM reads�

Find uSD � Sp��� 
T � such that BSD
uSD� v� ! FSD
v� �v � Sp��� 
T �� 
�����

where

BSD
u� v� �! B�
u� v�  

NX
i��

	i

Z
Ii

di 
��u��  au�  bu�av� dx� 
�����

FSD
v� �! F 
v�  

NX
i��

	i

Z
Ii

difav
� dx� 
�����

If di ! � for all i� 
����� will be referred to as the �L
��stabilized� SDFEM whereas 
����� with the di

given by 
����� will be called the �bubble�stabilized� SDFEM 
cf� De�nition ��� ahead for the precise
de�nition�� Note that the choice 	i ! � for all i reduces the SDFEM to the usual Galerkin FEM�

Proposition ��� implies that the Galerkin FEM satis�es the inf�sup condition and hence 
���� is uniquely
solvable� Existence and uniqueness of the SDFEM solution of problem 
����� is guaranteed� if the bilinear
form BSD is coercive on S

p��
� 
T �� this will be proved in Theorem ����

� Polynomial Approximability of the Solution

We prove now that the solution u� of 
���� can be approximated from the spaces S
p��
� 
T � at an exponential

rate� uniformly in �� To this end� we �rst recapitulate some regularity results from 
���

��� Regularity of the solution u�

Let us consider 
���� on " ! 
��� �� with analytic input data a
x�� b
x�� f
x� satisfying

ka�n�kL���� � Ca�
n
a �n � lN�� 
����

kb�n�kL���� � Cb�
n
b �n � lN�� 
����

kf �n�kL���� � Cf�
n
f �n � lN�� 
����

for some constants Ca� Cb� Cf � �a� �b� �f � �� The purpose of this subsection is to illuminate the
regularity properties of u� in dependence on the parameter �� These regularity results are necessary for
the proof of robust exponential convergence of the hp�FEM obtained in the present paper� The proof of
the assertions of this section can be found in 
���

The solution u� of 
���� is analytic on "� however� for small values of �� it exhibits a boundary layer at the
out�ow boundary� This boundary behavior can be characterized with the aid of asymptotic expansions�
For any expansion orderM � lN�� we decompose in the standard way into a smooth part wM � a boundary
layer part uBLM � and a 
small� remainder rM �

u� ! wM  uBLM  rM � 
����

Concerning these three parts� it was shown in 
�� that the following holds true�

�



Theorem ��� Let u� be the solution of 
���� and assume that 
����� 
���� hold� Then there are constants
C� K depending only on the constants in ����������� and on the constants a� b� such that

ku�n�� kL���� � CKnmax 
n� ����n �n � lN�� 
����

Furthermore� under the assumption � � �MK � �� the terms in the decomposition ���	� satisfy

kw�n�
M kL���� � CKnn% �n � lN�� 
����

j �uBLM ��n�

x�j � CKnmax 
n� ����ne�a���x������ �n � lN�� x � I� 
����

kr�n�M kL���� � C���n
�MK�M n ! �� �� �� 
����

rM 
��� ! �� 
����

��� hp�Approximation of boundary layers

As the regularity of the solution u� is now available� we are in position to formulate results for the
approxmation of u� by piecewise polynomials of degree p� We will be interested in robust exponential
approximation of u� by elements of S

p��
� 
T �� Clearly� as u� exhibits in general a boundary layer at the

out�ow boundary x ! �� the mesh T has to be chosen in dependence on �� The simplest scheme that
leads to robust exponential approximability is the �two�element� approach introduced in 
���� There�
piecewise polynomials of degree p on a mesh with two elements are used where one elements of size O
p��
is located in the layer therefore able to resolve the boundary layer�

De�nition ��� For � � �� 
 � �� and p � lN de
ne the �two�element mesh
 T ! T����p as

T ! f
��� �� 
p��� 
�� 
p�� ��g if 
p� � ��
T ! f"g if 
p� � ��

In 
�� 
cf� also 
��� ��� the following theorem was proved�

Theorem ��� Let u� be the solution of 
���� and assume that 
����� 
����� 
�����
���� hold� Then there
are C� �� 
� � � independent of � such that for � � 
 � 
�

inf
�p

�ku� � �pkL����  
p�k 
u� � �p�
� kL����

� � C
�  ln p�p�e���p

where the in
mum is taken over all �p � Sp��� 
T��p����

Theorem ��� follows from the ensuing Lemma ���� The key ingredient is the ability to decompose u�
into a �regular� part ureg and a �singular� part uBL which can be approximated separately by piecewise
polynomials ureg�p� uBL�p � Sp��
T � at a robust exponential rate�

Lemma ��� There are C� �� 
� � � depending only on a� b� and f �in particular independent of �� such
that the following holds� Assume that for every p � lN a mesh T is given such that for some 
 � 
�� 
��
we have Sp��� 
T��p��� 
 Sp��� 
T �� Then� for each p � lN the solution u� of 
���� admits a splitting

u� ! ureg  uBL

and there is up � Sp��� 
T � with a corresponding splitting

up ! ureg�p  uBL�p with ureg�p� uBL�p � Sp��
T �

such that the errors


reg �! ureg � ureg�p� 
BL �! uBL � uBL�p� 
 �! 
reg  
BL

�



satisfy 
reg
��� ! 
BL
��� ! � and

k
�regkL��Ii�  k
regkL��Ii� � Chie
��p� i ! �� � � � � N� 
�����

k
�l�BLkL���� � C

p���le���p� l ! �� �� 
�����



p�����k
�BLkL����  k
BLkL���� � C����e���p� l ! �� �� 
�����

NX
i��

min

	
��
hi
�


h


p���k
�k�L��Ii�

 k
k�L��Ii�

i
� Ce���p� 
�����

Proof � We will only sketch the proof as it is very similar to that in 
�� ��� In particular� 
� � � is chosen
su�ciently small 
but independent of p� �� as in 
�� ��� We will restrict ourselves to the case 
p� � � as
in the complementary case� one can take the speci�c splitting ureg ! �� uBL ! u� and conclude as in 
��
that we obtain the desired results�

Let therefore 
p� � �� The key idea is to use the asymptotic expansion 
���� and to choose the expansion
order M proportional to the polynomial degree p� Let � � q � � and � �! q�K with K of Theorem ���
and chooose � � M ! �
p 
strictly speaking� M should be chosen as the integer part of �
p�for
notational convenience� however� we will not pursue this point further�� We note that with this choice
of �� and the assumption 
p� � �� 
���� gives bounds on the derivatives of wM which are independent of
�� M � We therefore set ureg �! wM � uBL �! uBLM  rM and approximate each term separately� First� for
the approximation of ureg we note that standard piecewise polynomial approximation theory 
e�g�� the
piecewise Gauss�Lobatto interpolant� gives the existence of the piecewise polynomials ureg�p such that

reg ! ureg � ureg�p has the properties 
������

Let us now turn to the construction of uBL�p� an approximation of uBL �! uBL�  rM � Equation 
����
gives that

kr�l�M kL���� � C���l
�MK�M � C���l
�MK�
�MK�M�� � C���l
p q�p��

� C���le���p� l ! �� �� � 
�����

for some appropriate � � � independent of �� p� Next� let xn� � � n � N be the mesh point xn ! ��
p��
As 
� can be chosen su�ciently small� we may assume that � � xn� Checking the proof of Theorem ��
of 
�� shows that for � � � su�ciently small� the Gauss�Lobatto interpolant �p of u

BL
M on 
xn� �� satis�es

k
uBLM � �p�
�l�kL��	xn��
� � C

p���le��p� l ! �� �� 
�����

Following an idea of 
���� we now de�ne

uBL�p �!

�
uBLM 
���

�
�� ��x

��xn



on 
��� xn�

�p � uBLM 
xn�
��x
��xn on 
xn� ���


�����

Note that uBL�p � Sp��
T � and that� by 
���� uBL�p
��� ! uBL
���� Furthermore� we observe that by

����

juBLM 
xn�j � Ce�a�p��� juBLM 
���j � Ce�a�� � C ��e�a����� 
�����

for some C� C � � � independent of �� Introducing the shorthand

z �! uBLM � uBL�p

and using 
����� 
������ 
����� we have for some � � � independent of �� p�


p�kz�kL��Ii�  kzkL��Ii� � C
�  
p�e����xi�a������ i ! �� � � � � n 
�����


p�kz�kL��Ii�  kzkL��Ii� � Ce���p� i ! n �� � � � � N� 
�����

As k

B��l�kL���� � k
uBLM � uBL�p�
�l�kL����  kr�l�M kL����� it is now easy to see that 
����� is satis�ed

by combining 
������ 
������ and 
������ One proceeds similarly to obtain 
������ Combining 
����� and

�




����� yields bounds on 
xn� �� and 
������ 
������ 
���� together give bounds on 
��� xn�� so that we
obtain� for appropriate C� � � ��


�
p��k
�BLk�L��xn���
 k
BLk�L��xn���

� C
p� e���p�

��k
�BLk�L�����xn�  k
BLk�L�����xn� � C�e���p�

The desired estimate 
����� can be obtained easily from these two bounds�

We �nally turn to the proof of 
������ We observe that the expression

S

� �!

�
NX
i��

min f�� hi��g
h


p���k
�k�L��Ii�

 k
k�L��Ii�

i����

de�nes a norm on W ���
"�� The triangle inequality therefore gives S

� � S

reg�  S
z�  S
rM ��

Together with the fact that
PN

i�� hi ! �� it follows easily from 
������ 
����� that S

reg�  S
rM �
satis�es the desired estimate� For the remaining term� S
z�� we proceed as follows� First� we recall that
n is chosen such that xn ! �� 
p�� This implies that

card fi j i � n �� hi � �g � 
p��� ! 
p

and� together with
PN

i�n�� hi ! 
p�� this implies that
PN

i�n��min f�� hi��g � �
p� Hence� upon using
the shorthand

zi �! 

p��
�kz�k�L��Ii�

 kzk�L��Ii�

we get using 
�����

NX
i�n��

min f�� hi��gzi � Ce���p
NX

i�n��

min f�� hi��g � C
pe���p�

Finally� from 
����� we get

nX
i��

min f�� hi��gzi � C
�  
p��
nX
i��

min f�� hi��ge�a���xi����

A simple calculation shows that there is C � � 
independent of �� i� with

e�a���xi���min f�� hi��g
�Z xi

xi��

e�a���t��� dt

���
� C����

Whence
nX
i��

min f�� hi��gzi � C���
nX
i��

Z xi

xi��

e�a���t��� dt � C���
Z xn

��
e�a���t��� dt � Ce�a�p�

Combining these estimates allows us to conclude the proof�

�

� Analysis of the SDFEM

��� Preliminaries and Notation

For the analysis of the SDFEM� it is convenient to introduce the following mesh�dependent semi norm
and full norm�

kjujk�� �!

NX
i��

	ik
p
diau

�k�L��Ii�
� 
����

kjujk�SD �! kjujk�  kjujk��� 
����

�



Here� the functions di are either di � � or given by 
������ For the purpose of our analysis� we will assume
that the weights 
	i� di�

N
i�� are of the following form�

	i ! �ihi

�����
�

�p
if di ! bi 
given by 
������

�

�
p
�p�

if di ! �

����

where the numbers �i satisfy

� � �i � �� � ��� �! min
	

�

kakL� �
�p

�kakL�kbkL�



� 
����

As we will restrict ourselves in the remainder of the paper mostly to the special cases di ! � or di ! bi
for all i� we introduce the following terminology�

De�nition ��� Let the pairs 
	i� di�
N
i�� satisfy 
�����

�� If di ! bi for i ! �� � � � � N � then the SDFEM 
����� is called �bubble�stabilized
 SDFEM�

�� if di ! � for i ! �� � � � � N � then the SDFEM 
����� is called �L��stabilized
 SDFEM�

The SDFEM 
����� is said to be �non�degenerate
� if the following �non�degeneracy
 condition is satis
ed�

	i is of the form 
���� and � c� � � � such that hi � c�p !� �i � �� 
����

The Galerkin and the SDFEM errors share the fundamental orthogonality property�

B�
u� � uG� v� ! � �v � Sp��� 
T �� 
����

BSD
u� � uSD� v� ! � �v � Sp��� 
T �� 
����

Remark ��� It should be noted that the orthogonality relation 
���� for the SDFEM holds because of
the assumptions on the data 
f � L�
"���

For the analysis of the Galerkin FEM and the SDFEM� it will be more convenient to analyze the error
u� � uSD indirectly by analyzing the di	erence between the SDFEM solution and a nearby interpolant�
In order to formalize this idea� we introduce

De�nition ��� A decomposition up ! ureg�p  uBL�p � Sp��� 
T � is said to be an admissible splitting�
if ureg�p� uBL�p � Sp��
T � and there exists a corresponding decomposition u� ! ureg  uBL such that
ureg
��� ! ureg�p
���� uBL
��� ! uBL�p
���� Denoting uSD the solution of the SDFEM� we introduce
the functions e� 
� 
reg� 
BL as�

e �! uSD � 
ureg�p  uBL�p� � Sp��� 
T �� 
����


 �! 
reg  
BL �! 
ureg � ureg�p�  
uBL � uBL�p� 
����

! u� � 
ureg�p  uBL�p�� 
�����

For weights 
	i� di� of the form ����� and admissible splitting we de
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Let us �nally note the following standard inverse estimates 
cf�� e�g�� 
�����

Lemma ��� Let Ii � T be an interval of length hi and bi be given by ������� Then for all polynomials
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For brevity of notation in some of the proofs� it will be convenient to use the following shorthand� For
functions u and elements Ii 
 " we write

kukIi �! kukL��Ii�� kukL� �! kukL����� kuk �! kukL����� 
�����

��� Error estimates in the Energy norm and in the mesh�dependent norm

����� Stability of the SDFEM

We start by showing that the bilinear form BSD of 
����� is coercive if the weights 
	i� di�
N
i�� are of the

form 
�����

Theorem ��� Assume that the weights 
	i� di�
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i�� are of the form ������ Then there holds
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T � we obtain with the Cauchy�Schwarz inequality� the inverse
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and the claim of the theorem follows by the de�nition of ��� in 
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����� Consistency of the SDFEM

Theorem ��� guarantees that the SDFEM formulation 
����� does have a unique solution uSD� For the
error u� � uSD the following estimates hold true 
Note that the case 	i ! �� i�e�� the case of a pure
Galerkin FEM is not excluded��

Lemma ��� let T be any mesh� Then there is a constant C � � such that the following holds� For the
�bubble�stabilized
 SDFEM �cf� De
nition ���� and any admissible splitting in the sense of De
nition ���
there holds�
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where the constant K � � depends only a and b and is given in ������� For the �L��stabilized
 SDFEM
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nition ���� and any admissible splitting there holds for some C � � � depending only on a and b�
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Proof � Let us begin with the �rst estimate� the �bubble�stabilized� SDFEM� Let up ! ureg�p  uBL�p be
any admissible splitting in the sense of De�nition ���� The orthogonality 
���� gives

BSD
e� e� ! BSD
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By Theorem ���� we obtain therefore
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Let us estimate each of these three terms� We immediately have
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where we setK� �! max f�� ka�kL���� kakL�g� We note that the term in curly braces gives the �rst entry
of the minimum in the de�nition of EG�d

reg � 
BL�� In order to get the second entry of that minimum�
we estimate S� slightly di	erently� We write 
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BL and integrate by parts to arrive at
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where K� �! 
kakL�  ka�kL���p�  kakL� � This last estimate on S� gives the second entry in the
minimum de�ning EG�d

reg � 
BL�� We also note that up to now all the estimates are valid for the
�L��stabilized� SDFEM as well�

Finally� in order to estimate S�� elementwise integration by parts� Lemma ��� and the observation that
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���� and setting K� �! max fka�kL� � kak�L��a� kakL��ag� we
conclude with the Cauchy�Schwarz inequality for sums
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we can conclude the proof of the �rst estimate�

Let us now turn to the second estimate� the case of the �L��stabilized� SDFEM� The terms S�� S�
are estimated as above leading immediately to the �rst two terms in 
������ The SDFEM term� S��
however� is estimated di	erently now as elementwise integration by parts yield additional terms that can
be controlled by the term ESD��
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where we appealed to Lemma ��� in the �rst estimate� As 	i ! �ihi�p
� for the �L��stabilized� SDFEM�

the expression in curly braces can easily be bounded by CESD��
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Lemma ��� is formulated such that a variety of results may be obtained from it� Let us �rst show that
in the case of smooth solutions� the SDFEM 
on a quasi uniform mesh� is half a power of h�p away
from being quasi�optimal� For the h version SDFEM� this is a well�known fact� the following corollary
therefore extends this fact to the p version with quasi�uniform meshes�

Theorem ��	 Let T be a quasi�uniform mesh with mesh width h and let 
	i� di�
N
i�� be the weights of a

non�degenerate �bubble�stabilized
 SDFEM �cf� De
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for some C � � depending only on k� Such an interpolant exists� cf� 
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In the presence of boundary layers� Lemma ��� allows us to take advantage of the freedom to choose among
all admissible splittings� In particular� for meshes that �contain� the two�element mesh of De�nition ����
we may use the splitting of Lemma ��� to obtain robust exponential convergence of the hp�SDFEM as
well as the hp Galerkin FEM�

Theorem ��
 There is 
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and therefore the claim of the theorem follows from Lemma ��� and Lemma ��� and the fact 
p � c�� For
cases 
ii� and 
iii�� we �rst note that the non�degeneracy condition 
���� implies the existence of C � �
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Using now the fact that 
p � c� � �� we obtain the desired result by appealing to Lemma ����
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��� L� bounds

Let us �nally show that in this one�dimensional setting� robust estimate in the L� norm easily be
obtained� We begin with the following

Lemma ��� Let T be any mesh� Assume that the weights 
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In the case of �bubble�stabilization�� the assumptions and Lemma ��� allow us to conclude that
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and the result follows from these estimates� We may proceed similarly in the case of �L��stabilization��
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Remark ���� It should be noted that no term involving kukL��Ii� appears on the right hand side of the
estimates in Lemma ���� One can make use of this observation to get L� bounds in the special case
a ! �� b ! ��

Lemma ��� allows us immediately to obtain robust convergence in the L� norm for the SDFEM if the
mesh �contains� a small element of size O
�p� in the boundary layer�

��



Proposition ���� Let the assumptions of Theorem ���� �ii� or �iii� be satis
ed� Then there are constants
C� � � � such that
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kjejkSD � Cp�e���p and thus the desired result follows�
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Let us conclude this section with a proof that also the Galerkin FEM leads to robust exponential
convergence in the L� norm� if a true �two�element mesh� is used�

Lemma ���� Let 
� be given as in the statement of Lemma ��	� Then for each 
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� � � such that for the meshes T����p of De
nition ��� there holds for the Galerkin solution uG
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��� Remarks on the choice of the weights

In our analysis of the �bubble�stabilized� and the �L��stabilized� SDFEM we assumed that the factors
	i were of size O
hi�p� or O
hi�p

�� as suggested by the inverse estimates of Lemma ���� For the �bubble�
stabilized� SDFEM� this choice maximized the power of h�p for smooth solutions 
cf� Theorem �����
However� if small scale features like boundary layers are not resolved� then stabilization of the scheme
can be more important than maximizing the exponent of h�p for smooth solutions� In the case that
the layer cannot be solved� Section � provides numerical evidence that the proper amount of �extra
stability� can dramatically improve the convergence on compact subsets upstream of the layer� In this
subsection we therefore want to show brie�y that other choices of the weights 
	i� di�

N
i�� than those of


���� are possible� These other choices lead to more stable methods in the sense that the bilinear form
BSD is coercive in a stronger mesh dependent norm than the one used so far� We illustrate this for the
�bubble�stabilized� SDFEM�similar results can easily be obtained for the �L��stabilized� SDFEM�
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Theorem ���� For the factors 
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es the following� There is C � � depending only on a� b� and q� ��� 	� such that

Ckjujk�SD � BSD
u� u� �u � Sp��� 
T ��

Proof � For u � Sp��� 
T � we obtain with the Cauchy�Schwarz inequality

NX
i��

	i

Z
Ii

di
L�u�
au
�� dx !

NX
i��

	i

Z
Ii

��diu��au� dx 	i

Z
Ii

di
au
��� dx 	i

Z
Ii

diabu
�u dx

�
NX
i��

��	i�
p
�
p

hi
ku�kIi

���pdiau
�
���
Ii
 	i

�
�� 	i

kbk�L����

��

����pdiau
�
����
Ii
� �

�kbk�L����

kbuk�Ii

�
NX
i��

��	i�
p
�
p

hi
ku�kIi

���pdiau
�
���
Ii
 	i

�
�� 	�kbk�L����
���

��

���pdiau

�
����
Ii
� �

�
kuk�Ii

We estimate

�	i�
p
� p
hi
ku�kIik

p
diau

�kIi � 	iqk
p
diau

�k�Ii if
�
�p��hi

�
�
p
�Cda

�� � q

�	i�
p
� p
hi
ku�kIik

p
diau

�kIi � ��ikak�ku�k�Ii else�

Recalling from the proof of Proposition ��� that B�
u� u� �
PN

i�� �ku�k�Ii  �kuk�Ii � we obtain a lower
bound for BSD
u� u��
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Theorem ���� shows that� in order to obtain a coercive bilinear form BSD� a restriction on the factors
	i to be O
hi�p� has to be placed only for those elements where hi�p

� ! O
��� if hi�p
� �� �� then the

factors 	i merely have to be bounded� Essentially this means that for very small values of � 
relative to
hi�p

��� any choice of the factors 	i leads to a coercive bilinear form BSD� The choice 	i ! O
hip
�	� for

various � � 
�� �� will be studied numerically in Section � ahead�

Remark ���� Let us �nally point out that the bilinear form of a �bubble�stabilized� SDFEM in the
sense of De�nition ��� has a coercivity constant that is robust with respect to the size of the function b�
For example� if an implicit Euler scheme for the problem

ut  L�u ! f� u
��� ! � 
�����

is considered� one has to solve in each time step an elliptic boundary value problem of the form
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We notice that the di	erential operator on the left hand side is of the form considered in this paper with
a modi�ed coe�cient for the reaction term� b�t �! b �

�t � We observe that for &t
 �

kb�tkL� ! O
&t���� ��t ! O
&t����
kb�tkL�
��t

! O
���

and hence that ��� of 
���� and K of 
����� can be controlled uniformly in &t� For the choice of weights

������ estimate 
����� shows that one needs to control 	�kb�tk�L����t which entails a strong coupling
of the step width &t and the size of the weights 	i�

��



��� The case a � �� b � �

So far� we assumed we assumed � � �� As our numerical examples include the case a ! �� b ! �� we state
here the approximation results corresponding to Theorem ���� Theorem ���� can be proved in the same
way as Theorem ���� for the proof of Theorem ���� we refer to 
���� We assume that the factors �i now
satisfy

� � �i � �� � � 
�����

Theorem ���� Let a ! �� b ! � and let the assumptions of Theorem ���� �ii� or �iii� be given but that
the factors �i satisfy 
����� instead of 
����� Then there are constants C� � � � such that

kju� � uSDjk � Cp�e���p� ku� � uSDkL���� � C
p
Np
��e���p�

For the pure Galerkin method� we have

Theorem ���� Let a ! �� b ! � and let the assumptions of Theorem ���� �i� be given� Assume addi�
tionally the mesh restricted to 
��� �� 
p�� is quasi�uniform and that p � �� Then there are C� � � �
such that the pure Galerkin solution uG satis
es

kju� � uGjk � Ce���p�

� Computational Experiments

In this section� we illustrate our theoretical �ndings with numerical examples� Our aims are

�� to illustrate the theoretical results obtained above� in particular the ability of the hp�FEM to resolve
very narrow fronts and layers� leading to the asymptotic exponential convergence with few degrees
of freedom�

�� to compare hp�SDFEM and hp�Galerkin FEM in the preasymptotic phase� i�e�� if the small scales of
the solution are not resoled� In particular� we will see that the appropriate choice of mesh sequences
lead to robust exponential convergence on compact subsets for the hp�SDFEM� Furthermore� we
will study numerically the optimal choice of the weights 	i in the pre�asymptotic regime�

We consider two types of problems� the boundary layer case 
a � �� and the case of a turning point
problem which satis�es the crucial assumption 
�����

��� The boundary layer case

We consider for a� b � lR the problem

��u��  au�  bu ! e�x� u
��� ! �� 
����

The exact solution has a boundary layer at the out�ow boundary x ! � and is given by

u
x� ! u�
x�  �e�����x�  �e������x�� 
����

where

u�
x� !
�

����  a�  b
e�x�

�� !
��b

a 
p
a�  �b�

! O
��� �� !
a 

p
a�  �b�

��
! O
�����

c !
�
�� e��������


��
! O
���

� ! c
�
u�
��e

���� � u�
���
�
! O
��� � ! c

�
u�
���e��� � u�
��

�
! O
���

Note that both ku�kL���� and
p
�ku��kL���� are O
�� independently of �� In our numerical experiments�

we will always choose � ! �� a ! �� We use b ! � in Sections ������ ����� and b ! � in Section ������

��



����� Global SDFEM performance

We consider the model problem 
���� for a ! �� b ! �� � ! �� We present numerical results for a
�L��stabilized� SDFEM� where the weights are of the form 
	i� ��

N
i�� with

	i !

	
�
�hi if �p��hi � �

�
� otherwise�

We remark at this point that this choice of the factors 	i was made to illustrate our claim on robustness
in Section ���� We report� however� that the numerical results are very similar for the choice 
	i� bi�

N
i��

as well as for the �L��stabilized� and the �bubble�stabilized� SDFEM in the sense of De�nition ����

In our �rst series of numerical experiments� we resolve the boundary layer with the two�element mesh of
De�nition ��� with 
 ! �� i�e�� T����p� Fig� � compares the behavior of the Galerkin and the SDFEM in the
L� norm and the energy norm kj�jk 
which is p�j � jH����� for � ! ��

�� where p ranges from � to ��� The
theory of Section ��� yields robust exponential convergence in the energy norm for the SDFEM as well as
the Galerkin FEM on this two element mesh� This exponential convergence is visible in the right �gure
of Fig� �� Furthermore� for the SDFEM� we have robust exponential convergence in L� 
Theorem �����
and thus in L� 
cf� the left �gure of Fig� ��� we also observe robust exponential convergence in L� for
the standard Galerkin FEM� Fig� �� We note that the qualitative behavior of the schemes is comparable
although the error of the hp�SDFEM is slightly smaller than that of the Galerkin FEM for this problem�

We conclude that the two�element mesh scheme is able to resolve the boundary layer at the out�ow
boundary and that no stabilization is required in this case�

Our next experiment is geared towards getting insight in the behavior of the Galerkin method and the
�L��stabilized� SDFEM� if the boundary layer has not been resolved� To that end� we consider the
performance of the p version on a uniform mesh with h ! ��� 
i�e�� � elements�� Here� p ranges from � to
�� and � ! ����� The weights are given by 
	i� ��Ni�� with

	i !
�

�

hi
p�
�

Fig� � shows the behavior in the L� and the energy norm kj�jk� The error in the hp�SDFEM is considerably
smaller than that of the Galerkin method� but the rate of convergence of the SDFEM is very poor also�in
the energy norm� no convergence can be observed%

Finally� Fig� � shows the performance of a uniform mesh 
h ! ���� augmented by one small element of
size � in the out�ow boundary layer 
i�e�� the mesh given by the nodes f�������� �� ���� �� �� �g�� As to
be expected� inserting one small element of size � greatly alleviates the problems of the standard Galerkin
method 
cf� Corollary A�� of 
��� for a detailed analysis�� Comparing Fig� � with Fig� �� the error of
the Galerkin FEM is reduced by two orders of magnitude� Nevertheless� both the Galerkin method and
the SDFEM yield poor rates of convergence as the p version on a mesh with one small element of size
� in the layer cannot resolve the boundary layer properly� Hence� comparing the results with those in
Fig� �� we see that the proper element length �p in the boundary layer is essential for the boundary layer
resolutions as well as for exponential convergence�

��� Local p�SDFEM performance 	 pollution control

The conclusion of the preceding section is that both Galerkin FEM and SDFEM perform similarly if the
small scale boundary layer is resolved� if the layer is not resolved� then one cannot expect convergence of
either method in the global L� norm and energy norm� In the context of the h version� it is known that
the SDFEM performs much better on compact subsets upstream of the layers 
cf� 
���� One can therefore
view the stabilization of the SDFEM as a means to controll pollution� Similar results can be observed in
a p�version context as well as we will show now�

����� Local SDFEM performance on geometric mesh sequences

We want to show here that the hp�SDFEM leads to robust exponential convergence on compact supsets if
an increase of the polynomial degree is combined with a mesh re�nement towards the layer� We therefore

��
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Figure �� sequence of meshes generated by successively halving rightmost element

consider the following scheme� For q � 
�� �� let

p� � lN be the smallest integer s�t� qp� � p��

and let for each polynomial degree p a geometrically re�ned mesh with p layers be given by the points

f��� �� �� qi j i ! �� � � � �min 
p� p��g� 
����

On such meshes� we will consider as trial spaces the space Sp��� 
T � 
cf� Fig� ��� We note that such mesh
sequences would typically be generated by adaptive schemes that locate and try to resolve the layers� It
can be shown using ideas of 
�� ��� ��� 
cf� 
��� for the details� that the �bubble�stabilized� hp�SDFEM
converges robustly and exponentially on compact subset of " for such mesh sequences�

Theorem ��� Let a ! �� b ! �� q � 
�� ��� � � 
��� �� be 
xed� For p � lN consider the meshes T de
ned
by the nodes 
����� For a non�degenerate �bubble�stabilized
 SDFEM in the sense of De
nition ��� there
are constants C� � � � independent of �� p such that

ku� � uSDkH������� � Ce��p� p ! �� �� � � �

The following numerical experiments are performed for both the �L��stabilized� and the �bubble�stabilized�
SDFEM� The re�nement factor q is chosen as q ! ��� and the weights 
	i�

N
i�� are given in both cases by

	i !

	
�
�
hi
p if � � �

�
hi
p

� otherwise�

����

Again� we point out that choosing the factors 
	�Ni�� as O
hi� or O
hi�p
�� leads to qualitatively similar

numerical results� For � ! ���� and p going from � to �� Figs� ��� show the performance of the �L��
stablized� and the �bubble�stablized� SDFEM in comparison with the Galerkin FEM� Figs� �� � depict
their behavior in global norms 
L� and energy norm� whereas Figs� �� � show the relative error 
measured
in the L� andH� norm� in the �rst element I� ! 
��� ��� Figs� �� � illustrate once more that both Galerkin
FEM and hp�SDFEM do not lead to convergence in the energy norm until the layer is resolved� that is�
qp � �p 
for q ! ��� and � ! ���� this happens for p � ���� The behavior of the Galerkin FEM is�
however� completely di	erent from that of the hp�SDFEM if the error on the �rst element I� ! 
��� �� is
of interest 
cf� Figs� �� ��� The Galerkin FEM is highly prone to pollution� The local error in I� cannot
be controlled until p is so large that the smallest element in the layer has width qp � p�� In contrast to
this� the SDFEM is pollution�free as robust exponential convergence on the compact subset 
��� �� can
be achieved according to Theorem ��� and in fact is visible in Figs� �� �� It is noteworthy� however� that
the local behavior of the �L��stabilized� SDFEM is strikingly superior to that of the �bubble�stablized�
SDFEM 
cf� also Section ����� ahead for a comparison of the local performance of the two stabilization
schemes��

����� Impact of weights 	i on local performance of SDFEM

We have seen in Section ��� that especially for very small values of � 
relative to hi�p
�� other choices for

the weights 	i are possible than those given by inverse estimates� In the present section� we will explore
these possibilities numerically by studying the performance of the p�version of the SDFEM on compact

��



subsets in dependence of the choice of the factors 
	i�
N
i��� To that end� we consider the model problem


���� for a ! �� b ! �� � ! ��

For exponents � given by

� ! �� � ! ����� � ! ���� � ! �� � ! ���� � ! ��

we de�ne the factors 
	i�
N
i�� as

	i !
�

�
hip

�	� 
����

We consider both the �L��stabilized� SDFEM with weights 
	i� ��
N
i�� and the �bubble�stablized� SDFEM

with weights 
	i� bi�
N
i��� Our experiments were performed on a �xed uniform mesh with � elements 
i�e��

hi ! ���� for � ! � � ���� and � ! ����� In Figs� ���� we report the relative error in the H� semi norm
on the �rst element 
�������� as a function of the polynomial degree p for these various cases� For
comparison purposes� the corresponding performance of the pure Galerkin method is also included� We
mention here that the results using the L� norm instead of the H� semi norm on the �rst element are
qualitatively similar�

Let us consider the case of �L��stabilization� �rst 
cf� Figs� �� ���� We notice a great variation in the
performance as the exponent � varies� The choice of � ! � 
i�e�� 	i is independent of p�� although yielding
fairly accurate solutions� does not seem to lead to a convergent method� If � � � � ���� then the SDFEM
seems to converge exponentially on 
�������� with � ! ��� being the optimal choice for both �large�
values of � 
� ! � � ����� and small values of � 
� ! �������
In the case of �bubble�stabilization� 
cf� Figs� ��� ���� the di	erence in performance between the di	erent
choices of � is less pronounced as in the �L��stabilized� scheme� i�e�� the method seems to be more robust
with respect to the choice of the weight� However� the �bubble�stablized� SDFEM is far less accurate
than the �L��stabilized� SDFEM�

��� Turning point problems

Let us now consider a problem with a turning point at x ! �� We consider

��u���  axu��  u� ! � on 
��� ��� a ! ��� 
����

u�
��� ! �� 
����

In the case a ! �� the exact solution has boundary layers at both endpoints ��� for a ! ��� the exact
solution exhibits an internal layer at the turning points x ! �� The exact solutions are given by

u�
x� ! �� exp f
x� � ���
���g for a ! �� 
����

u�
x� ! �� c x erf
�
x�
p
��


�
p
��� c

p
� exp f�x��
���g for a ! ��� 
����

c �!
�
erf 
��

p
���  

p
���� exp 
���
����


��
� � for small ��

erf 
x� �!
�p
�

Z x

�

exp 
�t�� dt� erf 
x�
 � for x 
��

Equation 
���� satis�es the crucial assumption 
���� and upon checking the proof of Theorem ���� we see
that the fact that the coe�cient a is a polynomial allows us to modify the arguments as to accomodate
the case of 
���� as well� We consider the �L��stabilized� SDFEM with weights 
	i� ��

N
i�� where

	i !
�

�

hi
p�
�

The solution given by 
���� 
i�e�� the case a ! �� has two boundary layers at both endpoints with length
scale O
��� The structure of the boundary layers is essentially of the form analyzed in Section � so that the
approximation results with the �two�element� meshes introduced there apply� In fact� a �three�element�
mesh consisting of two small elements of size p� at the boundary points and one large element in the

��



middle 
that is� the mesh is given by the points f����� p�� ��p�� �g� is well�suited to resolve the layers
in both the Galerkin as well as the SDFEM 
cf� Figs� �� where � ! ������
In the case a ! ��� the solution is given by 
���� and has an internal layer of width O


p
��� Again�

the �two�element� ideas of Section � can be applied successfully for the approximation of the internal
layer if at least one element of size O
p

p
�� is introduced at the turning point x ! �� Figs� �� show

the performance of the Galerkin FEM and the SDFEM for a �four�element� mesh based on the points
f����pp�� �� pp�� �g and � ! ����� Although the error graphs do not behave monotonically� the overall
convergence of the �four�element� hp�SDFEM shows exponential convergence rates�
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A The case b � �� a � �� Global Error Analysis

Appendix A is devoted to the analysis of the special case b � �� a
x� � � for � � �� The norm kj�jk and
the semi norm kj�jk� are de�ned as

kjujk� �! �ku�k�L����� kjujk�� �!
NX
i��

	ik
p
diu

�k�L��Ii�
� kjujk�SD �! kjujk�  kjujk��� 
A���

Proceeding as in the proof of Theorem ���� we obtain the following stability result�

Theorem A�� Assume that the weights 
	i� di�
N
i�� are of the form 
���� with the condition 
����� replac�

ing 
����� Then there holds


�� ���kjujk�SD � BSD
u� u� �u � Sp��� 
T ��

Due to the fact that energy norm kj�jk completely degenerates as �
 �� the analysis of the Galerkin FEM
is more delicate than that of the SDFEM� and di	erent analyses for these two methods are necessary�
The di	erent behavior of the two methods can be seen already in the following a priori bounds�

Lemma A�� Let b � �� a ! �� T be any mesh� Assume the hypotheses of Lemma ���� Then there is
C � � such that the SDFEM solution uSD satis
es

kjuSDjkSD � C
p
Np���kfkL����� kuSDkL���� � CNp�kfkL�����

In the case of the pure Galerkin method� we have

kjuGjk � C�����kfkL�����

Proof � The estimate for the Galerkin method is standard� For the SDFEM� we have by Theorem A��
and the orthogonality relation 
����


�� ���kjuSDjk�SD � BSD
uG� uG� ! FSD
uSD� � kfkL����

p
Np���kjuSDjkSD

by Lemma ���� Applying again Lemma ��� yields the estimate for uSD�

�

Remark A�� The factors
p
N � p���� p� in the estimates may not be optimal� however� the main point

of the estimate on uSD is that it is independent of � in contrast to the estimate for uG� The factor �
����

in the Galerkin estimate seems to be optimal from computational experiments 
cf� Figs� �� ���

A�� The SDFEM

Using the same techniques as in the proof of Theorem ���� we obtain

Theorem A�� Let a ! �� b ! �� Assume the weights 
	i� di�
N
i�� are of the form 
���� with 
�����

replacing 
����� Then there is C � � such that for any mesh T and any admissible splitting in the sense
of De
nition ��� there holds�

�� In the case of the �bubble�stabilized
 SDFEM �cf� De
nition ���� there holds


�� ���kjejkSD � C
n
kj
jk eEG�d

reg�  �����k
BLkL�  ESD

�

o
�

�� For the �L��stabilized
 SDFEM �cf� De
nition ���� there holds


�� ���kjejkSD � C
n
kj
jk eEG�d

reg�  �����k
BLkL�  ESD

�  ESD��

��

o

��



Here

eEG�d

� !

�
NX
i��


	i  ����k
p
di
k�L��Ii�

����

�

The �rst estimate of Theorem A�� allows us to conclude that Theorem ��� holds for the case a � �� b � �
as well� We can also obtain from Theorem A�� robust exponential convergence if we consider meshes that
�contain� the �two�element� mesh of De�nition ��� under the assumption that the weights 	i satisfy the
non�degeneracy condition 
�����

Corollary A�� Let the hypotheses of Theorem A�	 be satis
ed and assume additionally that the �non�
degeneracy
 condition 
���� holds� Let 
� be given by Lemma ��	� Assume that for some 
 � 
�� 
�� the
mesh T satis
es Sp��� 
T����p� 
 Sp��� 
T �� Denote by uSD the SDFEM solution of 
������ Then there are
C� � � � depending on 
� �� ��� and f � such that

kju� � uSDjk � Ce��p� ku� � uSDkL���� � C
p
Ne��p�

Proof � Use the splitting of Lemma ��� to obtain the energy norm bound and invoke Lemma ��� for the
L� bound�

�

A�� The Galerkin FEM

We consider now the case of the Galerkin FEM� i�e�� all 	i vanish� Corollary A�� does not cover this case
as the non�degeneracy assumption 
���� was instrumental in controlling the term EG�d

reg� robustly
in �� For the pure Galerkin FEM� this term will introduce an additional factor of ����� in the �nal
estimate� The aim of the present section is to show that a more re�ned analysis allows us to obtain
robust exponential convergence in the 'energy norm( kj�jk for the Galerkin FEM as well�

The analogue of Corollary A�� reads

Corollary A�� Assume the same hypotheses as in Corollary A��� Let uG be the Galerkin solution of

����� with b � �� a ! �� Then for each 
 � 
�� 
�� there are C� � � �

kju� � uGjk � Ce��p
�
�  

�
NX
i��

�h��i

����

�

Remark A�	 Corollary A�� gives robust exponential convergence in the energy norm kj�jk for the
Galerkin method for the �two�element� mesh� 
h� ! O
��� h� ! O
p���� This robust exponential
convergence is indeed observed in the numerical experiments of Section ��

In order to prove this theorem� we need two lemmata� the �rst of which is standard�

Lemma A�
 Let u be analytic on " ! 
��� ��� Denote Pp�Ii the L� projection of u onto $p
Ii�� the space
of polynomials of degree p � lN� on Ii� Then there are constants C� � � � such that for each element Ii

k 
u� Pp�Ii u�
�l� kL��Ii� � Ce��ph����li � l ! �� ��

ku� Pp�IikL��Ii� � Ce��phi� 
A���

Lemma A�� Let u be analytic on " ! 
��� ��� Then there are C� � � � depending only on u such that
the following holds� There is up � Sp��
T � with u
��� ! up
��� and����Z

�


u� up�v
� dx

���� � Ce��ph���N kv�kL��IN � �v � Sp��
T ��

k
u� up�
�l�kL��Ii� � Ce��ph����li � l ! �� ��

Here IN denotes the last element abutting on x ! ��

��



Proof � Denote Lj the jth Legendre polynomial normalized to Lj
�� ! �� Writing mi ! 
xi��  xi����

we set eLij
x� �! 
���jLj
�
x �mi��hi�� i ! �� � � � � N � First� choose a discontinuous approximation of u
by polynomials of degree p� � on all elements

eup���i �! Pp���Iiu� i ! �� � � � � N�

Note that
R
Ii

u � eup���i�eLij dx ! � for j ! �� � � � � p � �� Correct the inter�element discontinuities

inductively by setting

�� �! u
���� eup����
���� upjI� �! eup����  ��eL�p�

�i �! upjIi��
xi���� eup���i
xi���� upjIi �! eup���i  �ieLip� i ! �� � � � � N � ��
�N �! upjIN��
xN���� eup���N
xN���� upjIN �! eup���N  �N eLNp  l
x��

l
x� �!
�
u
��� eup���N 
��� �N eLNp
��



�x�xN��hN

We observe that up � Sp��
T � and that up
��� ! up
���� Furthermore� by the orthogonality of the
Legendre polynomials� we still have for all elements but the last oneZ
Ii


u� up�eLij dx ! Z
Ii


u� eup���i�eLij dx� �i

Z
Ii

eLipeLij dx ! �� j ! �� � � � � p� �� i ! �� � � � � N � ��

Hence� we conclude Z
�nIN


u� up�v
� dx ! � �v � Sp��
T ��

This yields����Z
�


u� up�v
� dx

���� ! ����Z
IN


u� up�v
� dx

���� � ku� upkL��IN �kv�kL��IN � �v � Sp��
T ��

Let us now analyze the di	erence u� up� As jeLipj � � and
�i !

�
upjIi��
xi���� u
xi���



 
�
u
xi���� eup���i
xi���
� i ! �� � � � � N�

we obtain with Lemma A��

j��j � Ce��ph�
j�ij � ku� upkL��Ii���  Ce��phi

� Ce��phi  Ce��phi��  j�i��j� i ! �� � � � � N�

Inductively� we conclude therefore

j�ij � �Ce��p
iX

j��

hj � �Ce��p� i ! �� � � � � N� 
A���

This allows us to obtain for 
u� up�jIi ! 
u� eup���i�� �ieLip on all elements but the last one�
k
u� up�

�l�kL��Ii� � Ce��ph����li  j�ijCp�lh����li

� Ce��ph����li � l ! �� �� i ! �� � � � � N � � 
A���

For the last element IN � we estimate the linear function l
x� by

kl�l�kL��IN � �
�
Ce��phN  j�N j

�
h
����l
N � l ! �� ��

and therefore we arrive at

k
u� up�
�l�kL��IN � � Ce��ph����lN � l ! �� ��

This concludes the proof of the lemma�

�

��



Remark A��� The element IN in the statement of Lemma A�� can be replaced by any non�trivial
contiguous submesh abutting on x ! ��

Proof of Corollary A��� We restrict ourselves here to the case of interest 
p� � �� For any admissible
splitting in the sense of De�nition ��� we may use the coercivity 
Theorem A��� and the orthogonality

���� to write

C kjejk� � B�
e� e� ! B�

� e� ! �

Z
�


�e� dx 
Z
�


�e dx ! �

Z
�


�e� dx�
Z
�


e� dx

by an integration by parts� We split u� ! ureg  uBL as in Lemma ���� uBL is approximated by uBL�p
as in Lemma ���� ureg�p will be chosen below� On writing 
 ! 
reg  
BL we conclude by exploiting
kj
BLjk � Ce��p� k
BLkL���� � C����e��p

jB�

BL� e�j � Ce��p kjejk �
Let us now turn to B�

reg � e�� To that end� let us construct ureg�p as an approximation of ureg 
which
is analytic� as given by Lemma A��� and we obtain

jB�

reg � e�j � kj
reg jk kjejk Ch
���
N e��peke�kL��IN ��

As hN � 
p� we therefore arrive at

jB�

reg � e�j � kj
reg jk kjejk C

p����e��p kjejk �
Finally� also by Lemma A��

kj
reg jk� !
NX
i��

�k
�regk�L��Ii�
� Ce���p

NX
i��

�

hi

which allows us to conclude the proof of Corollary A�� by means of the triangle inequality�

�

Under extra assumptions on the regularity of the mesh in the region outside the boundary layer� the
term

PN
i�� ��hi in Corollary A�� can be removed�

Corollary A��� Let 
� be given by Theorem ��	� Assume that for each p � lN� p � �� there is a mesh
T satisfying the following two conditions� �i� For each p� there is 
 � 
�� 
�� such that �� 
p� is a mesh
point� and �ii� T restricted to 
��� �� 
p�� is a quasiuniform mesh� �T restricted to 
�� 
p�� �� may be
any mesh�� Then there are C� � � � depending only on the domain of analyticity of f and the constant
a such that

kju� � uGjk � C
�
� 

p�����



e���p� p � ��

Proof � Let h be the mesh width of the quasiuniform mesh on 
��� � � 
p��� First� we observe that for
p � �� we may replace the factor hi in 
A��� by h�i � From Remark A���� we may assume without loss of
generality that the last element IN ! 
� � 
p�� ��� Then� upon inspection of the proof of Lemma A���

we see that we may replace the
Pi

j�� hj by
Pi

j�� h
�
j in 
A���� By the quasi�uniformity of the mesh

restricted to " n IN � we may estimate
Pi

j�� h
�
j � Ch and hence all the estimates for the coe�cients �i�

i ! �� � � � � N � � are improved by a factor h� Thus� the estimate 
A��� is improved by a factor h � hi� In

the proof of Corollary A��� the term
PN

i�� ��hi is due to kj
jkreg � Inserting these improved bounds� we
obtain

kj
jk�reg !
N��X
i��

�k
�regk�L��Ii�
 �k
�regk�L��IN � � Ce���p

N��X
i��

�hi  Ce���p�h��N �

As hN ! 
p�� the claim of the corollary follows�

�

��



B The case b � �� a � �� Local Error Analysis

The crucial feature of the SDFEM is� of course� that even if layers�fronts are not resolved the SDFEM
still yields good results in certain parts of the computational domain away from the layers�fronts� In
other words� the SDFEM can be viewed as a technique to control pollution�

Our main focus will be on the analysis of the following meshes which results from an hp adaptive scheme
that locates and tries to resolve layers� As the solutions of our model equation 
���� have a layer at the
out�ow boundary x ! �� an adaptive scheme would create a sequence of meshes that are obtained by
successively halving the rightmost element until the element abutting on the boundary has size O
p���
i�e�� the mesh can resolve the boundary layer� Thereafter the mesh is �xed and merely the polynomial
degree p is increased� We formalize this procedure as follows� Fix q � 
�� ��� Let

p� � lN be the smallest integer such that qp� � p��� 
B���

We consider meshes T with geometric re�nement towards the layer determined by the nodes
f��� �� �� qi j i ! �� � � � �min 
p� p��g� 
B���

and we will consider as trial spaces the space Sp��� 
T � 
cf� Fig� �� On such meshes� the hp�SDFEM
converges robustly and exponentially on compact subsets of "�

Theorem B�� Let a ! �� b ! �� � � 
��� �� 
xed� Consider the meshes T de
ned by 
B���� Assume that
the weights are of the form 
	i� bi�

N
i�� where the factors 
	i�

N
i�� are of the form 
���� with ���	� replaced

by 
������ Furthermore� assume that the non�degeneracy condition 
���� holds� Then there are constants
C� � � � independent of �� p such that

ku� � uSDkH������� � Ce��p� p ! �� �� � � �

The proof of Theorem B�� is the object of the remainder of this section�

Remark B�� We consider here a �bubble�stabilized� SDFEM� This is not essential here� A similar
result can be obtain for the �L��stabilized� SDFEM and numerically observed 
cf� the numerical results
in Section ���

B�� Preliminaries

Our analysis proceeds along the lines of 
��� The idea is to obtain estimates in weighted spaces� To that
end� one proves stability in these weighted spaces 
Proposition B��� and then estimates various error
terms 
Lemmata B���B�����

Let T be a mesh whose elements have lengths hi� Let � be a �xed mesh point and let � � � be a �xed
number to be chosen su�ciently small below� The weights 
	i� bi�

N
i�� are assumed to of the form 
����

with 
����� in place of 
����� In order to introduce the piecewise linear weight function ��� we need to
introduce the functions �� e� by

�jIi �! �i �!
�i
hi
� 
B���

e�
x� �!

�
� if x � �

exp
h
�� R x

�
�
t� dt

i
if x � �� 
B���

Remark B�� A few remarks concerning the properties of � are in order� We have �ihi ! �i � ���
Furthermore� 
�ihi�hi�p ! 	i� a relation of which we will make use later on� If �i � � � � for all i� thenR x
�
�
t� dt measures 
up to a constant� the number of elements between � and x�

The weight function �� is then �nally given as the piecewise linear interpolant of e���

We note that for all meshes and � � � the function e� is Lipschitz continuous on I and satis�es e�� � ��
Furthermore� on each element Ii ! 
xi��� xi� we have in fact thate�
xi����e�
xi� � e�
i � je��e�j � �� e���

��



These properties are shared by the piecewise linear interpolant ���

�� � � on I� �
xi�����
xi� � e�
� � j���j � ��e�
� ��� 
B���

We introduce the following mesh dependent weighted norm

kjujk�SD�� �! �k�u�k�L����  k j���j���uk�L����  

NX
i��

	ik
p
di�u

�k�L����� 
B����

We need the following �superapproximation� result�

Lemma B�� Let 
	i� bi�
N
i�� be of the form ����� with ������ in place of ���	�� There is C � � depending

only on �� such that for all � � 
�� ��� e � Sp��� 
T � there is W � Sp��� 
T � satisfying

kb����i ���
��e�W �kL��Ii� � C�	ik
p
bi�e

�kL��Ii�� k���
��e�W ��kL��Ii� � C��ik
p
bi�e

�kL��Ii��

Furthermore� W can be chosen such that ��e !W at the nodes of T �

Proof � On the reference element 
��� ��� expansion in Legendre series and the orthogonality of the Jacobi
polynomials allow us to estimate for all polynomials )e of degree p�Z �

��

�� x��pj)e�p�
x�j� dx � 
�p�%

p
p ��

Z �

��

�� x��j)e�
x�j� dx 
B����


see� e�g�� 
����� Consider now a �xed element Ii� Denote )�
�� )e the functions corresponding to ��� e on

the reference element 
��� �� via the linear mapping� The standard p�version argument 
see� e�g�� 
����
allows us to construct a polynomial )W of degree p such that )W 
��� ! 
)��)e�
��� and

k
�� x������
)��)e� )W �k�L������� � �


�p�%p
p ��

Z �

��

�� x��p

���
)��)e��p���
���� dx�

k
)��)e� )W ��k�L������� � �


�p�%

Z �

��

�� x��p

���
)��)e��p���
���� dx�

As )�� is a linear function and )e a polynomial of degree p we observe that 
)��)e��p��� ! 
p  ��
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and thus by invoking 
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B��� implies that j
)����j � �e�
��i
hi
� )�

�� Exploiting the fact that � is of bounded variation on Ii 
cf�

B���� we obtain the desired result by a scaling argument�
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B�� Error Analysis

Proposition B�� Let c � � be 
xed and T be any mesh with the property that hi � c� for i !
�� � � � � N �Assume the weights 
	i� bi�

N
i�� are of the form ����� with satisfy 
����� replacing ���	�� Then

there are ��� � � � depending only on c and �� such that for all � � � � ��
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u� �
�u� � �kjujk�SD�� �u � Sp��� 
T ��
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Proof � We have
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Z
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u�
��u�� dx 
Z
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Z
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di
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We estimate each of these terms separately� An integration by parts yields for the second termZ
�

u���u dx !
�

�

Z
�

�
u�
��
�� dx ! �

Z
�

u���� dx ! k j���j���uk�L�����

Cauchy(s inequality together with the assumption that hi � c� for all i 
implying �� � ���c� allows us
to estimate the �rst term by

�

Z
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u�
��u�� dx ! �

Z
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Z
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����uu� dx

� �k�u�k�L���� �
�
�

�
k j���j���uk�L����  ����e�
�k�����u�k�L����

�
� �k�u�k�L���� �

�
�

�
k j���j���uk�L����  ���e�
�

��
c
k�u�k�L����

�
for any � � � which we will choose su�ciently large below� For the SDFEM terms� we estimate� using
the bounds 
B���

NX
i��

	i

Z
Ii

diu
�
��u�� dx �

MX
i��

	ik
p
di�u

�k�L��Ii�
�

NX
i��

�
�

�
k j���j���uk�L��Ii�

 	�i ��e
�
��ik

p
di�u

�k�L��Ii�

�
for any � � � to be chosen su�ciently large below� We note that 	i�i � ��� � Using Lemma ��� and again

B��� we bound furthermore�����
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Z
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for any � � �� We obtain the desired result by �rst choosing � � � and then choosing �� su�ently small�

�

Remark B�� Checking the proof of Proposition B�� shows that the result also holds true for � ! �
and that in fact in that case the additional assumption hi � c� can be removed� Hence the result of
Theorem A�� is contained as a special case�

The stability estimate allows us to formulate the following error estimate for the solution in terms of the
weighted norms kj�jkSD���

Proposition B�	 Under the assumptions of Proposition B�� there are �� � �� C � � such that for all
� � 
�� ��� and for any admissible splitting in the sense of De
nition ��� there holds

kjejk�SD�� � C
���BSD
e� �

�e�W �
�� ��BSD

� �

�e�
�� ��BSD

� �

�e�W �
��� �W � Sp��� 
T ��

Proof � This is just an application of the Galerkin orthogonality 
����

�kjejk�SD�� � BSD
e� �
�e� ! BSD
e� �

�e�W �  BSD

�W �

! BSD
e� �
�e�W �  BSD

�W � ��e�  BSD

� �

�e��

�

��



Lemma B�
 Let T be any mesh and assume that the weights 
	i� bi�
N
i�� are of the form ����� with 
�����

replacing ���	�� Then there is C � � depending only on �� such that for all � � 
�� ����BSD
e� �
�e�W �

�� � C� kjejk�SD�� �e � Sp��� 
T ��

where� for each e � Sp��� 
T � the function W � Sp��� 
T � is given by Lemma B�	�

Proof � We write
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The �rst term can be estimated in the desired fashion immediately by invoking Lemma B��� For the
second term� we also use Lemma B�� to arrive at����Z

�
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��e�W � dx

���� � NX
i��

k
p
di�e

�kIiC�	ik
p
di�e

�kIi � C�kjejk�SD���

Finally� for the SDFEM terms we use Lemmata ���� B��� and the bounds 
B��� to get
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As 	i
�p�hi� � �� we obtain the desired result�

�

In order to formulate the next two lemmata� we need to introduce some weighted mesh�dependent norms
on H�
"� which are analogous to kj�jk� 
������
������
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Lemma B�� Under the same hypotheses as in Lemma B�� there exists C � � depending only on �� such
that for all � � 
�� ����BSD

� �

�e�
�� � CkjejkSD�� 
E�

�  EG��

�  ESD��

�� �e � Sp��� 
T �� 
 � H�

� 
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Proof � We start again by recalling that
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The Cauchy�Schwarz inequality allows us to estimate the �rst term by

�k�
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�kL����k j���j���ekL����

which yields the term E�

�kjejkSD��� For the second term� we integrate by parts and obtain by splitting
the integral into sums over elements and using the Cauchy�Schwarz inequality for sums�
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which yields the term 
E�

�  EG��

��kjejkSD�� after an application of Lemma ��� and an invocation
of 
B���� Let us now turn to the third term� An integration by parts on the element level gives����Z

Ii

di
��
��  
��
��e�� dx
���� � k � �
�  
kL��Ii�

�
�

hi
k��e�kL��Ii�  kdi
��e���kL��Ii�
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Observing that ��e� is a polynomial of degree p� we may invoke Lemma ��� to estimate

k��e�kL��Ii� � Cdpk
p
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��e���kL��Ii� � �p�hik
p
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and furthermore make use of 
B��� to arrive at����Z
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��  
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��e�� dx
���� � Ck�
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�  
�kL��Ii�

p

hi
k
p
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Hence� we obtain the term ESD��

�kjejkSD�� by using the Cauchy inequality for sums�

�

Finally� we have the following lemma�

Lemma B��� Under the assumptions of Lemma B�� there is C � � depending only on �� such that for
all � � 
�� ����BSD

� �

�e�W �
�� � C�kjejkSD�� 
E�

�  EG��

�  ESD��

�� �e � Sp��� 
T �� 
 � H�

� 
"��

Here� for each e � Sp��� 
T � the function W � Sp��� 
T � is given by Lemma B�	�

Proof � The proof is essentially a repetition of the preceding proof and an application of Lemma B���

�

Lemma ��� made crucial use of the assumption that a �two�element� mesh is a submesh in order to resolve
the boundary layer� In the present context� we cannot make this assumption� For our approximation
result on compact subsets upstream of the layer we therefore need the following result�

Proposition B��� Let c� #c � � be 
xed� Let N � � and let T ! fIigNi�� be a mesh such that the length of
the rightmost element IN satis
es hN � cp� and such that there is a meshpoint xM with �� � xM � ��#c�
Then there are constants C� � � � depending only on the coe�cients of 
���� and c� #c � � such that the
splitting u� ! ureg  uBL of Lemma ��	 satis
es the following�

�� ureg can be approximated by piecewise polynomials of degree p such that the assertions of Lemma ��	
about 
reg hold true verbatim�

�� Denoting by uBL�p the piecewise linear function uBL�p given by the conditions uBL
��� ! uBL�p
����
uBL�p
xN��� ! �� we have for 
BL �! uBL � uBL�p

k
�l�BLkL�����xN��� � C�����le��p� l ! �� ��

k
�l�BLkL�����xN��� � C��le��p� l ! �� ��

k
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�
��l  h�lN

�
� l ! �� ��

k
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n
�����l  h

����l
N

o
� l ! �� ��

k
�l�BLkL�����xM � � Ce��p� l ! �� ��

Proof � The assertions about 
BL follow by estimating uBL and uBL�p separately� Note that both uBL
and uBL�p are exponentially small 
in ���� on 
��� xM � 
 
��� �� #c��

�

��



Proof of Theorem B��� By possibly making � slightly larger� we may assume that � is a mesh point
� ! �� �p� for some �xed p�� We may restrict ourselves to the case p � p��

Let us �rst consider the pre�asymptotic case� i�e�� p � p�� Choosing � su�ciently small� we obtain from
Propositions B��� B��� and Lemmata B��� B��� that there is C � � such that for any admissible splitting
in the sense of De�nition ���

kjejkSD�� � C 
E�

�  EG��

�  ESD��

�� � 
B����

Let us now see that we may choose the admissible splitting such that

E�

�  EG��

�  ESD��

� � Ce��p 
B����

some C� � � � independent of �� p� To that end� let the admissible splitting up ! ureg�p  uBL�p
be given by Proposition B���� Estimating � � �� 	i  � � Chi�p for some C � � 
which follows
from 
������ and ��hi � C 
which follows from the assumption p � p��� we get by Proposition B���
E�

reg� ESD��

reg� EG��

reg� � Ce��p for some � � �� Let us now obtain corresponding estimates
for 
BL� As noted in Remark B�� we have

�jIN � e���c�p�p�� 
B����

for some #c � � 
#c depends only on c of 
���� and ��� Using this bound� estimating � � � on " n IN � and
recalling that 	i � ��hi we get E�

BL�  ESD��

BL� EG��

BL� � Ce��p for some suitable � � � by
Proposition B���� Hence kjejkSD�� � Ce��p� As � � � on the p� � elements that comprise 
��� ��� this
implies with Lemma ���

kekL������� � Cp���
p�  ��kjejkSD�� � Ce��p�

after suitably adjusting �� Together with the triangle inequality� we �nally obtain

ku� � uSDkL������� � Ce��p

In the asymptotic case� i�e�� p � p�� we obtain directly from Corollary A�� 
noting that the number of
elements can be bounded by p ��

ku� � uSDkL������� � Ce��p

for some � � �� This gives the desired estimate for k ! �� For k ! �� we proceed in the standard fashion�
The splitting up ! ureg�p  uBL�p of Proposition B��� satis�es on 
��� ��

ku� � upkH������� � Ce��p

for some C� � � �� Hence� using the fact that the mesh restricted to 
��� �� is �xed the inverse estimates
of Lemma ��� yield

ku� � uSDkH������� � ku� � upkH�������  Cp�ku� � uSDkL�������

and the result follows�

�

Remark B��� The proof of Theorem B�� relies on Lemma ��� which exploits heavily the fact that we
restrict our attention to ��d� This was done for notational convenience only� Choosing the weight function
� so that ��� �! � on 
��� �� would allow us to estimate ku� � uSDkL������� directly from kjejkSD�� and
hence there is no need to appeal to Lemma ���� For example� one could choose the weight function e� ase�
x� ! R x

� �
t� dt where the function � is given by 
B��� for x � � and by ��i for x � Ii with x � ��

Remark B��� We note that in the proof of Theorem B�� we only made use of the fact that � � � on
the whole element and that � is exponentially small 
in p� on the last element� Exploiting the decay
properties of � on the elements between � and � would allow us to let the polynomial degree go down
linearly from p to � on the O
p� elements between � and IN and the assertions 
B���� still hold true�

��



Theorem B�� concentrates on a compact subset 
��� ��� However� the techniques developed for the proof
of Theorem B�� also yield estimates on variable sets 
��� �p� where �p 
 � as p
�� Prototypical may
be the following

Corollary B��� Let the mesh T satisfy the assumptions as in Theorem B��� Fix � � 
�� ��� For each
p � lN choose j � lN as the integer part of �p and set �p �! � � qj � Then for � su�ciently small� there
are C� � � � independent of �� p such that

ku� � uSDkL������p� � C exp
��p�

Proof � For p � p� the statement follows from the proof of Theorem B��� Let us consider the pre�
asymptotic range p � p�� We choose the weight function � as in 
B��� with � replaced with �p and
check that the estimates of 
B���� hold true with the constants C� #c depending additionally on �� Hence
we obtain with the same arguments as in the proof 
B���� that E�

�� EG��

�� ESD��

� can now be
bounded by C exp
��p�� We may then conclude the proof by repeating the arguments of the proof of
Theorem B���

�
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