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Abstract

The �tting of a thin plate smoothing spline to noisy data using the
method of minimizing the Generalized Cross Validation �GCV� function
is computationally intensive involving the repeated solution of sets of lin�
ear systems of equations as part of a minimization routine� In the case
of a data set of more than a few hundred points� implementation on a
workstation can become unrealistic and it is then desirable to exploit
high performance computing� The usual implementation of the GCV al�
gorithm performs Householder reductions to tridiagonalize the in�uence
matrix and then solves a sequence of tridiagonal linear systems which are
updated only by a scalar value �the minimization parameter� on the diag�
onal� However� this approach is not readily parallelizable� In this paper
the de�ation techniques described in Burrage et al� ��		
�� which are
used to accelerate the convergence of iterative schemes applied to linear
systems� will be adapted to the problem of minimizing the GCV function�
This approach will allow vector and parallel architectures to be exploited
in an e�cient manner�
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� Introduction

As a consequence of the recent El Nino which has resulted in severe drought over
much of Eastern Australia for ���������� with a concomitant loss of at least one
billion dollars in agricultural production� a collaborative arrangement between
the Queensland Department of Primary Industries and CIAMP �Centre for In�
dustrial and Applied Mathematics and Parallel Computing� at the University
of Queensland has been formed� As a result of this collaboration� an interactive
visualization environment� ADVISE �Lau et al� �������� has been developed to
enable the monitoring and modelling of drought conditions over Australia� This
is an enormously complicated and computationally intensive problem� and so
ADVISE is designed to run in a heterogeneous computing environment� Within
ADVISE a number of applications are run including a simulation application
and a surface �tting program� and these are now brie�y described�

In the simulation application� a number of environmental variables �such as
edible green matter in pastures�� are calculated at every point on a grid over the
state of Queensland� These variables are then used to produce a colour�coded
map of the state� so that the overall e�ects of drought� and the condition of
farming and grazing land� can be visualized� These pasture model calculations
need to make use of weather data� such as rainfall and temperature readings� at
each point on the grid� The sizes used for the grid spacings range from ��� km to
�� km� depending on the resolution of the image being produced� Since weather
data is not available at a resolution this �ne� an estimate must be obtained
by �tting a spline surface to the data from irregularly spaced weather stations�
of which there are approximately ���� in the state of Queensland and �
���
throughout Australia�

Since the data is known to contain noise� a smoothing spline is constructed
within a Generalized Cross Validation approach� of which there are a number
of implementations including those by Gu et al� ���
�� and Hutchinson �������
The method seeks to �t a smooth surface to n data points modelled by

yj � Ljf � �j�

where f � H �a Hilbert space�� Lj are bounded linear functionals and �j are
errors or noise in the data� Thus it is desired to �nd f� that minimizes the
variational problem

�

n

nX
j��

�yj � Ljf��
� � �Jm�f��� ���

where Jm�f� is a measure of the �roughness� of the surface in terms of the mth
derivatives of f and where � is the smoothing parameter�

The problem of minimizing ��� is equivalent to minimizing the Generalized
Cross Validation function GCV ���� see Wahba ������� where

GCV ��� �
���n� k �I �A����y k�

����n�tr�I � A������
� ���

�



Here tr�A� represents the trace of a matrix A and A��� is the n � n in�uence
matrix satisfying

�L�f� � � �Lnf��
� � A���y�

Let the observed data values �in this case rainfall� have the independent
variables latitude� longitude and elevation which are stored in the matrix X
�n � ��� and let the observed rainfall readings �or surface values� be stored in
the vector y �an n�vector�� Then a matrix S �n � �� is formed which contains
unity in the �rst column� and X in the last � columns� A symmetric matrix �Q
�n� n� is also formed� with elements given by

�Q �

�
�ln�dij�d

�m���
ij � m an even integer

�
p
dijd

��m������
ij � m an odd integer�

���

where

dij �
�X

k��

�Xik �Xjk�
�� �i� j � �� � � � � n

and where � is calculated from the derivative order and the number of indepen�
dent variables� Since

m � ��derivativeorder� � num�Indep�V ars�

a derivative order of � and three independent variables imply m � �� Thus the
elements of �Q are� from ���� proportional to the Euclidean distance between
data points i and j�

Let the QR factorization of S be

S � �F�F��

�
R
�

�
�

Here F� and F� are� respectively� n � � and n � �n � ��� while R is an upper
triangular matrix of dimension �� Then writing Q � F�

�
�QF� and z � F�

� y� �Q
is now an �n � ��� �n� �� matrix� the GCV function can be written as

GCV ��� �
���n�z��Q � �I���z

����n�tr�Q� �I�����
� ���

Here Q is a full symmetric matrix� but at each evaluation only the diagonal
elements are updated by the addition of a scalar value �� For this reason it is
possible to �rst transform Q to tridiagonal form using Householder reductions
and then minimize the GCV function much more economically by calculating
Q � UTU� �where U is orthogonal and T is tridiagonal� and w � U�z� so that

GCV ��� �
���n�w��T � �I���w

����n�tr�T � �I�����
� ���

�



This function can now be evaluated quite economically using the LU fac�
torization of a tridiagonal matrix� so that the time required to evaluate ���
increases only linearly with problem size� The Householder reduction needed
to produce T � however� is an O�n�� algorithm and for large data sets this is
where approximately ��� of execution time is spent� This is also the section
of the program that does not readily vectorize or parallelize� Thus in order
to exploit vectorization or parallelization protocols� the algorithm needs to be
restructured or recast to avoid the Householder reduction� This will be done
using iterative techniques which will be rapidly accelerated using the de�ation
techniques discussed in Burrage et al� �������

The outline of this paper is as follows� In section � a brief description of the
de�ation process as applied to iterative methods for linear systems will be given�
In section � we will discuss how the GCV application can be restructured in order
to exploit these techniques� Numerical results on a Cray YMP��D sited at the
University of Queensland will be presented in section � to illustrate the e�cacy
of this approach� This paper will conclude in section � with some comments on
the suitability of this de�ation process for many applications where linear and
nonlinear systems need to be solved in either sequential or parallel computing
environments� In particular� it will be brie�y discussed how this technique can
be used to solve systems of ordinary di�erential equations in an e�cient manner

� De�ation techniques for linear systems

Computational techniques for solving linear systems of the form

Ay � b� y � IRn �
�

can be divided into two broad categories� direct and iterative methods� In
the direct case� elementary row operations are performed on the augmented
matrix �A� b� in order to reduce the system to a simpler form which can be
more easily solved by exploiting the architecture �sequential or parallel� of the
target machine� If pivoting techniques are used then this process is usually a
stable and reliable one� although in the case of sparse systems the underlying
algorithms and data structures can be complicated �see Du� et al� ���

��� For
problems which have certain structures� pivoting may not be necessary� as is the
case for symmetric positive de�nite matrices�

There have been many attempts to adapt direct schemes to parallel archi�
tectures �see� for example� Saad ���

�� Ortega ���

� and Bisseling and van
der Vorst ���
���� but these approaches are very much architecture dependent�
Thus Saad ���

� has considered LU algorithms for bus and ring topologies
with distributed memory� while the approach of Ortega ���

� is very much
a �ne�grained one suitable for SIMD machines� Furthermore� e�cient parallel
direct algorithms are heavily dependent on the structure of A with algorithms
for banded systems �see Dongarra and Johnsson ���
��� for example�� being
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entirely di�erent to those for sparse systems �Du� et al� ���

��� which in turn
are entirely di�erent to the full dense case� Most iterative schemes� on the other
hand� have a very simple and conceptually appealing algorithmic structure in
that they can often be written very simply in terms of level � and level � BLAS�
as is the case for the Jacobi and Conjugate Gradient methods� for example� Such
iterative schemes are readily parallelizable and the structure of the algorithm
does not change if A is full� banded or sparse�

On the other hand a di�erent type of structure often has to be imposed
on A �such as diagonal dominance or symmetric positive de�niteness or an
M �matrix� in order to guarantee the convergence of some iterative algorithms�
Furthermore� even if convergence is guaranteed it may be slow and may have
to be accelerated by a preconditioning process which itself may not be readily
parallelizable�

In order to overcome some of these di�culties associated with iterative
schemes� Burrage et al� ������ presented a completely general technique for
de�ating the eigenvalues of the iteration matrix which either slow or cause di�
vergence� This process has also been extended by Erhel et al� ������ to a
preconditioning approach based on an invariant subspace approximation for the
restarted GMRES algorithm� This approach will be applied to the problem of
minimizing the GCV in section �� after �rst giving a brief description�

The technique is based on an idea due to Shro� and Keller ������ for solving
nonlinear parameter�dependent problems� which in turn represents an exten�
sion of an adaptive condensation technique proposed by Jarausch and Mackens
���
�� for symmetric nonlinear problems� Shro� and Keller ������ call this tech�
nique the Recursive Projection method� It is based on the fact that divergence
or slow convergence of the �xed�point iteration scheme

y�k��� � F �y�k�� �� ���

is due to the eigenvalues of Fy� �the Jacobian of F evaluated at the �xed�point
y�� approaching or leaving the unit disk� The Recursive Projection method
recursively approximates the eigenspace �IP� corresponding to the unstable or
slowly converging modes using the iterates of the �xed�point iteration� A cou�
pled iteration process takes place by performing Newton iteration on IP and
�xed�point iteration onQ �the orthogonal complement of IP� where fast conver�
gence is assured� The scheme will be particularly e�ective if the dimension of
IP is small�

In addition to these techniques� Jarausch ������ has considered a di�erent
approach which e�ectively decouples the problem by the construction of right
singular subsystems associated with the Jacobian of the problem� The use of
invariant subspaces is avoided by transforming the nonlinear system by a so�
called orthogonal rotator matrix� This approach is called by Jarausch ������ the
ideal normal equation approach and it avoids the squaring of the singular
values by the usual technique of normalizing the equations� In this case the
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singular values of the transformed problem and the original problem are the
same�

In spite of considerable recent work on the application of these subspace
approaches to nonlinear problems little appears to have been done in applying
these techniques computationally to linear system of equations until the work
of Burrage et al� ������ and Erhel et al� ������� This is described brie�y below�

For the linear system given by �
�� a splitting of A � M � N gives an
iteration scheme of the form

My�k��� � Ny�k� � b� �
�

so that the �xed�point formulation of ��� is given by

y � F �y�� F �y� � M��Ny �M��b� ���

Let IP be the invariant subspace of dimension r for the iteration matrix

H � M��N�

Ir be the identity matrix of order r and let Z be the orthogonal basis of IP�
Thus with

Q � I � ZZ�� P � ZZ�� Ir � Z�Z� QP � � ����

and writing
y � �P � Q�y � Py � q � Zu � q� u � Z�y� ����

then ���� ��� and ���� imply

�Ir � Z�HZ�u � Z�M��b� Z�Hq
q � Q�M��b�Hq �HZu�
y � Zu� q�

����

Burrage et al� ������ have proposed a number of iteration schemes based on
���� including Jacobi� Gauss�Seidel and Reverse Gauss�Seidel schemes� These
can be written in the general iterative form

u�k��� � �Ir � Z�HZ���Z��M��b�Hq�i��

q�k��� � �I � ZZ���M��b�Hq�k� �HZu�j���
����

where the relationships between i� j and the method is given by

i j method
k k Jacobi
k k � � Gauss�Seidel

k � � k Reverse Gauss�Seidel�

�



In the case of Reverse Gauss�Seidel it is understood that the q iteration is
performed �rst� Note that here q represents the �xed�point iteration and u the
Newton iteration�

It can also be seen from ���� that Gauss�Seidel and Reverse Gauss�Seidel
have very similar properties in that they both compute the same sequence but
with di�erent starting and �nishing values� This similarity is con�rmed by a
study of the spectra of the iteration matrices� These are �from Burrage et al�
������� given by

��JG� � f�� ��g�q � g�ph
�
q�g

��JR� � f�� ��g�q � g�ph
�
q�g�

����

while for the Jacobi scheme the eigenvalues of J satisfy

Det���I � �g�q � g�ph
�

q� � �� ����

where

g�q � �I � ZZ��H�I � ZZ��

g�p � �I � ZZ��HZ

h�q � Z�Ir � Z�HZ���Z�H�I � ZZ���

In the case that IP is invariant then HZu � IP and so from ���� it can be
seen that �I � ZZ��HZu � �� Hence the spectral norm of all three iteration
schemes is given by

���I � ZZ��H��

Recall here that H is the iteration matrix of the underlying iteration scheme�
and this underlying scheme can be chosen depending on both the problem and
the architecture� In the case of a parallel environment a Jacobi or block Jacobi
iteration may be appropriate in which caseM will be diagonal or block diagonal�
while in a sequential environment Gauss�Seidel or block Gauss�Seidel or SOR
schemes may be more appropriate as this will lead to faster convergence but less
parallelism�

Eigenvectors can be appended to Z in essentially two di�erent ways which
depend on what sort of convergence properties are desired� This involves the de�
velopment of a cost function which relates implementation costs to convergence
rates and which can be automatically interrogated every so often to see if it is
worthwhile to increase the dimension of Z �see Burrage et al� �������� In the
case that at most two eigenvectors are going to be de�ated at any given time�
then Burrage et al� ������ propose using the modi�ed Gram Schmidt process
in which only

w� � �q�k�� k �q�k� k

w� � �q�k��� �w�w
�

� �q
�k���






need be computed� In this case

Z� � �w��� k w� k		k w� k

� �w��
w�

k w� k
�� otherwise

and so Z � �Z Z��� with the vectors of Z� being appended to Z�
As more eigenvalues are removed the basis Z will become increasingly in�

accurate due to the loss of orthogonality in the Gram Schmidt process and so
added eigenvectors in Z� can be orthogonalized against the previous basis�

� Minimizing the GCV function

In the evaluation of the GCV function the matrix inverses are not explicitly
calculated and stored� Instead the evaluations are performed by solving the
general matrix problem given by �
� where A has the form A � Q � �I and
b � z in ���� In order to do this a way is needed to calculate the denominator of
��� which involves calculating the trace of A�� without reducing to a tridiagonal
form� As a result Hutchinson ���
�� has suggested the use of a stochastic trace
estimator�

Thus if u is a vector with elements being samples from a random variable
which takes the values � and ��� each with probability of ���� then an unbiased
estimate for the trace of a matrix B is given by tr�B� � u�Bu� By �rst
solving the system Av � u for v� then the trace of the inverse of A is given by
tr�A��� � u�v� In this form with Ay � b� Av � u then the GCV function can
be written as

GCV ��� �
���n��y� � y�

����n��u� � v���
�

Hence the main task in the evaluation of the GCV function now involves the
repeated solution of the two linear systems of equations of the form

Ay � b� Av � u� A � �Q� �I�� ��
�

at each iteration step� It should be added that since the stochastic trace estima�
tor is essentially a Monte Carlo simulation� n should be at least several hundred
in order for this process to be su�ciently accurate�

Since the matrix A is dense� any bene�t arising from using an iterative
method requires convergence in signi�cantly less than n iterations to be com�
petitive with the Householder approach� Numerical testing has shown that as
convergence takes place within the GCV process� Q � �I becomes more and
more ill�conditioned as � approaches its minimum value �which is usually small
and positive�� For the problems of interest here� n can vary from a value of sev�
eral hundred up to �
��� and the condition numbers of the matrices involved
can become huge due to the presence of some very small positive eigenvalues�
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In order to enhance the performance of this iterative approach� a number
of modi�cations have been made to the original direct code due to Hutchinson
������� These have been documented fully in Williams and Burrage ������� but
a brief overview is given below�

The search algorithm used by Hutchinson ������ to minimize the GCV func�
tion is a Golden Section search� and depending on the desired accuracy and n up
to �� GCV evaluations may be needed� If Householder transformations are used
to tridiagonalize the in�uence matrix �rst� then the evaluation of the GCV func�
tion is done very quickly since only a sequence of tridiagonal solves are needed�
Consequently� little attention need be given to how the search is carried out for
minimizing �� However� this becomes an important issue if full matrix systems
are solved at each evaluation as is the case for the iterative approach� Thus the
Golden Section search has been replaced by Brent�s algorithm� This method
starts with a bracketing triplet of points as before� and �ts a parabola to these
three points� The abscissa of the minimum of this parabola is then the point
at which the function is evaluated next� This is then done repeatedly until
the minimum is contained in a small subinterval �length about � � tol where
tol is the fractional accuracy speci�ed�� Using this algorithm� � can be found
in around �� evaluations �for n of moderate size between ���� and ������ It
should be noted that the success of this search depends on the �smoothness� of
the function� The GCV function can have more than one local minimum if the
accuracy tolerance for the iterative matrix solver is not set small enough�

The time taken for the iterative solution of a matrix system can also be
signi�cantly reduced if a reasonably good initial guess for the solution vector
can be supplied� Since the system being solved changes by a relatively small
amount from iteration to iteration during the minimization of the GCV� each
solution vector can be kept and used as the initial guess for the next one� But
this can be improved on by taking� as an initial guess� a linear combination
of more than one of the previous solution vectors� Two�term� three�term and
four�term approximations have been obtained in Williams and Burrage �������
Good results have been obtained by calculating a two�term approximation at the
third iteration� a three�term at the fourth� and then four�term approximations
for the remaining steps in the minimization process�

There are two ways to use the de�ation process described in section �� At
each minimization step� two linear systems of equations of the form given in
��
� need to be solved with di�erent right hand sides�

In the �rst technique the de�ation process can be used to �rst solve� for a
given �� Ay � b� At the end of the iteration process an orthogonal basis Z will
have been computed� Since the coe�cient matrix remains the same for solving
Av � u� Z will also be an orthogonal basis of IP for the iteration matrix �as
long as the same iteration technique is used in both cases�� Thus de�ation can
continue using ���� as the starting point but with b replaced by u� For the
next value of �� the de�ation process has to start anew with� if appropriate� a
di�erent iterative method�






In the second approach� the same de�ation process can continue across all
the sets of equations� But in order to do this the complete set of eigenvectors of

H� � M��
� N� � I �M��

� A ����

corresponding to �
� must be exactly the same as the complete set of eigenvectors
of

Hl � M��
l Nl � I �M��

l �A � �I� ��
�

corresponding to
�A � �I�y � b� ����

Now from ���� and ��
�

Hl � I �M��
l �M��I �H�� � �I�

so that if �� and x are an eigenvalue and associated eigenvector of H� then

Hlx � x� ��� ���M
��
l M�x� �M��

l x�

Thus x will be an eigenvector of Hl if x is an eigenvector of both Ml and M��
which in turn implies that x is an eigenvector of A as well� This can be achieved�
for example� if

H� � p�A�

Hl � q�A� �I�

where p and q are arbitrary polynomials of degree � or more satisfying p��� �
�� q��� � �� The simplest such polynomials occur if

M� � 
�I� Ml � 
lI ����

where 
�� 
l � IR in which case

H� � I �
�


�
A� Hl � I �

�


l
�A� �I�� ����

These iteration schemes are of course just examples of Richardson iteration�
and the remaining question concerns the choice of 
� and 
l� Since the sys�
tems that are being solved are symmetric positive de�nite �but not diagonally
dominant� all the eigenvalues of the systems are real and positive�

Thus let �m and �s denote� respectively� the maximum and minimum eigen�
values of A and let

c �
�m
�s

� �

represent the conditioning of A� In this case it is easily seen from ���� that
��H�� 	 � if and only if


� � ��m � � �
�

�
� ����

�



in which case

��H�� � maxf��
�

�c
� ��

�

�
g�

The value of � which minimizes ��H�� is

� �
�

�
�� �

�

c
�

and in this case

��H�� �
c� �

c� �
�

As the iterations proceed� information is obtained about the magnitude of
the larger eigenvalues of H� but unfortunately these corrrespond to the smaller
eigenvalues of A and so there is no information readily available about �m from
this iteration process� However� there are a number of simple and cheap ways
in which a 
� satisfying ���� can be chosen and this will be discussed in more
detail in section ��

Thus given that a suitable 
� has been found� a value for 
l for the updated
system given by ���� can be chosen as


l � 
� �
�

�
�

�m � �

�
� ����

This satsi�es ���� for the system ���� since �m � � is the maximum eigenvalue
of A� �I� Thus ����� ���� and ���� imply

Hl �

�

l
H� �

�

�
l
I� ����

On the other hand it is not necessary for 
l to satisfy the equality condition
in ����� all that is necessary is that 
l � ��m � ����� In fact even this last
constraint need not hold as the GCV minimization progresses� If it does not hold
then ��H� may be greater than one� but on the other hand the clustering may
be less severe and the de�ation process will ultimately turn any divergence into
convergence� Thus as the de�ation process continues from one set of equations
to another� ���� is used from system to system� This requires only an updating
of M and H as given by ���� and ���� and of the basis Z� Clearly� as more and
more eigenvalues are extracted and as � converges to its minimum value� there
comes a point at which it is not e�cacious to perform any more de�ation as
convergence takes place in a very small number of iterations�

� Timings

In this section the results of some timing runs performed with di�erent size data
sets in Fortran��� on a Cray Y�MP �D sited at the University of Queensland�
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are presented� The size of these problems is respectively ���� ���� and �����
The only reason for a restriction on the dimension of ���� is due to limitation
on the memory of the Cray Y�MP �D� In order to see �rst how e�cient the
de�ation process can be� some comparisons are made between the solution of
�
� by a Cray library routine based on LU factorization and backward and
forward substitution and the Reverse Gauss�Seidel de�ation technique with an
underlying Jacobi iteration� The timings are presented in Table � in seconds and
were obtained by extracting three eigenvalues every � iterations� The systems
here are only mildly conditioned�

Table �� Comparison timings

data points ��� ���� ����
LU solve ����� ����� �����
de�ation ����� ���

 ��
��
speed�up ��

 
�� ���

It can be seen that the performance of the de�ation approach compares very
favourably with a highly optimized Cray library routine for doing a linear solve
based on LU factorization especially in view of the fact that the problem is
dense�

In order to explore the e�ectiveness of the de�ation approach in more detail�
a number of systems are solved in which the conditioning is controlled by the
addition of a scalar value to the diagonal� �This represents the type of systems
of equations that have to be solved in the Generalized Cross Validation process��
The timings for both the de�ation process �in which � eigenvalues are extracted
every � iterations� and the LU solve are plotted in Figure � as a function of the
condition number of the matrix for problems of of dimension ��� and �����

As can be seen from these two �gures� the de�ation process slows down as
the condition number increases� However� these graphs were produced using an
extraction of � eigenvalues every � iterations and the timings can be improved
by using di�erent extraction protocols� However� clearly the algorithm should
attempt to work e�ciently for di�erently conditioned matrices and in future
research an adaptive algorithm will be developed which adapts the frequency
with which di�ering numbers of eigenvalues are extracted to the convergence
rates of the de�ation process�

As discussed in section � in order to be able to solve a sequence of equations
of the form ��� by de�ating over the complete sequence of linear systems� the
Jacobi iteration has to be replaced by� for example� the Richardson iteration�
The e�ect of this on the performance of the de�ation code will now be analysed�

The Householder version of the spline routine was run on the Cray Y�MP �D
�using Cray library routines wherever appropriate� and the timings �in seconds�
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given in Table � were obtained�

Table �� Original GCV timings

data points ��� ���� ����
Householder ��
� ����� �
���

The de�ation routine using Reverse Gauss�Seidel and Richardson iteration
was then run for a variety of parameters including the frequency ��freq�� with
which the eigenvalues are extracted and the number of eigenvalues ��eig�� ex�
tracted at each de�ation step as well as the initial relaxation parameter 
�� It
was seen in ���� that the convergence of Richardson iteration was guaranteed if


� � �m���

where �m is the maximum eigenvalue of A� In addition to this convergence
relationship there is the e�ect that 
� has on the clustering of the eigenvalues of
H�� It is easily seen from ���� that as 
� �� the eigenvalues ofH� become more
and more clustered around unity� This can seriously degrade the performance
of the de�ation process� depending on the original clustering of the eigenvalues
of A� This was described in Burrage et al� ������� In Table � a selection of
timings and iteration numbers are given for various values of eig� freq and 
���

Table �� RGS and Richardson iteration

eig freq w� n its time
� � 
��� ��� ��� ����
� � 
��� ��� �� ����
� � �
��� ��� 
� ����
� �� ���� ���� ��� ����

� �� ���� ���� ��� �����
�� 
 ���� ���� �
� �����
�� �� ���� ���� ��� �����

In the case of the results labelled by � � in table �� 
l was chosen to satisfy
����� However� we also found that it was advantageous to choose 
l adaptively in
the program and the other results in table � were produced using this approach�
It should be noted that as � converges to its minimizing value the linear systems
become more and more ill�conditioned� This suggests that the performance of
the de�ation code can be substantially improved by allowing the various free
parameters to vary as the conditioning worsens� Even now there is a speed�up
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of up to ��� over the original code which uses the Cray library Householder
routines and some execution times are graphed in Figure ��

With further �ne tuning it is expected that these times will be reduced sub�
stantially� It is also planned to automate this approach so that the algorithmwill
de�ate an arbitrary number of eigenvalues with variable frequencies depending
on an estimated convergence rate and an interrogation of a cost function� The
initial relaxation parameter 
� can be chosen automatically by either estimat�
ing �m by a few iterations of the power method on the matrix A or by setting

� � Trace�A��� and both of these approaches produce a cheap and e�ective
estimation of 
�� It should also be noted that the de�ation code currently runs
at ��� of the peak performance of the Cray while the Householder code runs
only at ��� of the peak performance� Finally� since the de�ation process is rich
in level � and level � BLAS this technique should parallelize well�

� Conclusions and extensions

The aim of this paper has been to show that the general de�ation techniques
described in Shro� and Keller ������ and Jarausch and Mackens ���
�� for non�
linear problems and applied to general systems of linear equations in Burrage et
al� ������ and Erhel et al� ������ can be adapted to important applications such

��



as the GCV approach� These approaches have also a more general applicability
in the area of di�erential equations �see� for example� Jarausch ��������

Large di�erential equations are often sti� and can be characterized by rapidly
changing and slowly changing modes� The techniques of Shro� and Keller
������� Jarausch ������ and Burrage et al� ������ can thus be applied directly
to the di�erential equation system to produce an automatic partitioning tech�
nique into sti� and nonsti� methods which can then be solved as appropriate
for implicit and explicit numerical methods� Some attempts at partitioning in
this way have been done previously but never in a truly adaptive manner which
these new techniques may now allow�

For example� consider the applicaton of the implicit Euler method to the
system of ordinary di�erential equations given by

y� � f�y�� y�x�� � y�� f � IRm � IRm�

If this method is applied at a sequence of points x�� x�� x�� � � � where xn�� �
xn � hn� then this method can be written as a nonlinear di�erence equation

F �yn��� � �� F �y� � y � yn � hnf�y�� ����

The technique of Shro� and Keller ������ can be applied directly to ����� but
alternatively if some linearization� based on the modi�ed Newton method is
used� then at each step point xn�� a sequence of linear systems of the form

�n � y
�k�
n�� � yn � hnf�y

�k�
n���

y
�k���
n�� � y

�k�
n�� ��� k � �� �� � � � � l � �

An � I � hnJn

��
�

have to be solved� where Jn � f ��yn��
At a given step it is customary to perform an LU factorization of An at

the �rst iteration� so that for the remaining l � � iterations only backwards
and forward substitutions are needed in ��
�� However� if at the next step hn
is changed but the Jacobian is not changed �as is often the case in many sti�
codes� these LU factors cannot be reused�

On the other hand� if the de�ation process based on Richardson iteration
described in section � is used then not only can the de�ation process continue
across the iterations in one time step but also across many time steps �as long
as the Jacobian is kept constant throughout this region of integration�� This is
because Jn�� � Jn implies

Hn�� � rnHn � ��� rn�I� rn �
hn��
hn

�

and this is the same relationship as described in ���� in section �� Hence con�
tinuous de�ation has an advantage over LU factorization in this respect�

��



The de�ation techniques described in this paper and the more general tech�
niques described in both Burrage et al� ������ and Erhel et al� ������ are
currently being parallelized for the Intel Paragon and the results of this work
will be presented in later papers�
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