ETH zürich

Geometric potential of MOMS-02/ D2 data for point positioning, DTM and orthoimage generation

Other Conference Item

Author(s): Baltsavias, Emmanuel P.; Stallmann, Dirk

Publication date: 1996

Permanent link: https://doi.org/10.3929/ethz-a-004334790

Rights / license: In Copyright - Non-Commercial Use Permitted

Geometric Potential of MOMS-02/D2 Data for Point Positioning, DTM and Orthoimage Generation

Emmanuel P. Baltsavias

Institute of Geodesy and Photogrammetry, ETH Zurich

Dirk Stallmann

Institute of Photogrammetry, University of Stuttgart

Outline

1. Introduction

- 2. Test Data and Ground Truth
- 3. Sensor Model /Geometric Point Positioning Accuracy
- 4. DTM Generation
- 5. Orthoimage Generation
- 6. Conclusions

Introduction

- Past and current satellite-based optical sensors:
 - linear CCDs in pushbroom mode
 - across-track (SPOT) or along-track stereo (MOMS-02)
 - geometric resolution up to 4.5 m (MOMS-02)
- Future:
 - along-track and across-track stereo
 - geometric resolution up to 1 m
- Improved possibilities for
 - mapping
 - DTM and orthoimage generation, orthoimage maps
 - classification and feature extraction

MOMS-02 Sensor

- High resolution imaging system with along-track stereo
- 4-channel multispectral, visible and near-infrared range
- 3-line along-track stereo (fore, aft and nadir), panchromatic
- GSD nadir:
- GSD multispectral/oblique panchr.:
- Convergence angle, oblique-nadir:
- Base-height-ratio:
- Orbit mean altitude:

4.5 m x 4.5 m 13.5 m x 13.5 m 21.4° fore-aft 0.8, nadir-oblique 0.4 296 km

MOMS-02 Principle

Modular Optoelectronic Multispectral/Stereo Scanner 2

Test Data

- MOMS-02/D2 Space Shuttle Mission April/May 93
- Australia scene 17, fore nadir -aft images
- Covered area: ca. 40 x 110 km²
- Elevation range: 200 300 m, few discontinuities
- Almost no vegetation and cultural features
- Data: Level 1 (radiometric corrected only)
- Image size:

	Pixels per line	Lines	
nadir	8304	24122	
fore/aft	2976	8121	

Ground Truth

- Ground control points
 - ca. 80 points covering the whole image
 - measured with D-GPS
 - GPS accuracy 10 cm, actual accuracy 1 - 5 m (poor identification)
- 3D profile
 - 16 km long
 - 3228 DTM check points in 5-m interval
 - measured with roving D-GPS
 - accuracy 10 20 cm

Ground control point

Profile along the track

Image Quality Problems

- grey level range: 50 grey values
- positive and negative spike noise, pattern noise
- blemished lines in nadir channel
- different brightness of the left and right part of nadir channel

Preprocessing

- for point measurement
 - strong contrast enhancement by Wallis filtering
- for DTM and orthoimage generation
 - noise reduction by median filter
 - contrast enhancement by Wallis filtering
 - special filters for nadir channel

Original (nadir)

After preprocessing

Fore channel

CHANNEL_6(FORE) H—INTERVAL =1 GRAY VALUES NUMBER OF PIXELS =24168096 SCALE FACTOR =5.017

Nadir channel

MOMS_NADIR_5A_ORIGINAL H-INTERVAL =1 GRAY VALUES NUMBER OF PIXELS =67436784 SCALE FACTOR =29.941

MOMS_NADIR_5A_PREPROCESSED H—INTERVAL =1 GRAY VALUES NUMBER OF PIXELS =67436784 SCALE FACTOR =29.941

After preprocessing

Control Points

Well defined

Control point definition in the nadir (left) and fore (right) preprocessed images

Poorly defined

Bundle Adjustment Software

- *Kratky's* geometric sensor model
- Extended bundle adjustment for point determination and reconstruction of the exterior orientation (stereo and single images)
- Strict sensor modelling, elliptic orbit
- Sensor types: pushbroom and oscillating scanners, e.g.
 SPOT, Landsat 5 TM, JERS-1 OPS, MOMS-02
- Unknown parameters per image:
 6 exterior, 2 interior, 3 linear or 6 quadratic attitude rates
- Minimal number of required GCPs: 4 6, suggested 10

Point Positioning Accuracy

- Combination: Fore-aft
- Point measurement manually and by least-squares matching Refinement of pixel coordinates from residuals of bundle
- Linear and quadratic attitude rates

Model	GCP	CHP	σ ₀ [μm]	RMSE of CHPs [m]		
				μ_X	μ_{Y}	μ_{z}
Q	20	45	3.6	6.2	6.4	6.7
Q	10	55	2.9	6.7	5.9	7.4
Q	6	59	2.3	7.4	10.7	7.9

Summary of Point Positioning Accuracy

- Linear attitude rates 40% worse than quadratic
- 10 GCPs suffice
- With 6 GCPs solution sensitive to GCP selection
- Image point measurement with matching vs. manual
 - at least as accurate
 - faster

Fast Polynomial Mapping Functions

- Polynomial of 3° 4° with 11 16 terms
- Height ...independent parameter connecting the three 2D spaces
- Much faster than rigorous transformations
- Almost equally accurate (difference < 0.1 pixel)

Automatic DTM Generation

Constrained Least-Squares Matching

- Matching edge points, not in epipolar line direction
- Reduced errors due to multiple solutions, radiometric differences, noise etc.
- Higher success rate and reliability
- Any scale and rotation difference can be accommodated,
 - e.g. fore and nadir
- Any number of images simultaneously matched (not implemented yet for MOMS)

Matching Parameters

- Fore and aft, 12 x 20 km area
- Two tests: 10,000 and 18,000 match points
- Patch size 17 x 17 pixels ... 230 x 230 m -> smoothing
- Conformal geometric transformation
- 4 pyramid levels

Matching along edges: without (top) and with (bottom) constraints

Matching fore (left) and nadir (right).Top: no constraints, scale approx. = 1. Bottom: with constraints, scale approx. = 3

- Automatic detection and deletion of blunders
 - -> 2.5% and 5.8% of points rejected in the two matchings
- Flat and open terrain, some creeks
- Very little radiometric differences
 - -> huge advantage of along-track stereo

Radiometric differences: Different water reflection

DTM Accuracy

Bilinear interpolation of 2,900 GPS values in 40 m regular DTM derived from matching

Triangular meshes of 10,000 match points.

DTM derived from 18,000 match points and displayed as grey level image

Orthoimage generation

- Using DTM and PMFs to derive orthoimages
- Accuracy (related also to DTM accuracy)
 - from four GCPs: RMSE 5 6 m in planimetry and height
 - from parallaxes between orthoimages of fore and aft channel:
 - ideally should be identical
 - 50 points over whole area and at large radiometric differences
 - max. parallax 0.6 pixel (8 m), mainly at creeks
- 3.5 min. CPU time for fore or aft channel (SUN Sparcstation 20)

3D Parallel View

Top left part of the fore channel (12 km x 20 km). Orthoimage draped over the DTM (height exaggeration factor 8)

Conclusions

- *Kratky's* model:
 - mathematically strict, modelling of calibration errors
 - operationally simple, flexible (various sensors)
 - quadratic rates, 10 GCPs, point measurement by matching
- PMFs:
 - fast and accurate
 - DTM and orthoimage generation
- Results (fore-aft channel):
 - Point positioning accuracy: in X, Y, Z: 6 7 m
 - DTM accuracy: RMSE 4.2 m, max. 13.2 m
 - Orthoimage: ca. 0.5 pixel accuracy, fast generation
 - No systematic errors in sensor model

Future Work

- Problems of this test:
 - poor: image quality, GCP definition, calibration
 - limited data set, flat and open terrain, no reference DTM
- Further tests with MOMS-PRIRODA using
 - good GCPs and reference DTM
 - different terrain types (slope, cover)
- Use of nadir channel in the investigations
 - expectations for improved planimetric accuracy

