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1 Introduction

The purpose of this paper is to explain the equivariant Euler class associated
to an oriented G-equivariant Fredholm section S : B — & of a Hilbert space
bundle over a Hilbert manifold. The key hypotheses are that the Lie group G
is compact, the isotropy subgroups are finite, and the zero set of the section is
compact. The present paper is motivated by our joint work with Gaio [9] about
invariants of Hamiltonian group action. In this work the Fredholm section arises
from a version of the vortex equations, where the target space is a symplectic
manifold with a Hamiltonian G-action [8, 18, 19]. In many interesting cases the
resulting moduli spaces are compact and so the results of the present paper can
be applied. Other examples of Fredholm sections with compact zero sets are
the Seiberg—Witten equations over a four-manifold [24] or the harmonic map
equations when the target space is a negatively curved manifold (see e.g. [14]).
This is in sharp contrast to the Gromov—Witten invariants of general (compact)
symplectic manifolds [11, 16, 17, 21] and to the Donaldson invariants of smooth
four-manifolds [10], where the moduli spaces are noncompact and the compact-
ifications are the source of some major difficulties of the theory. Since the
unperturbed moduli space is compact our framework is considerably simpler
than the one required for the construction of the Gromov—Witten invariants.
Our exposition follows closely the work of Li-Robbin-Ruan [16].

In the case G = {1} stronger results were proved in [6, 12, 20]. In [12]
Fulton proved that, if B is a finite dimensional complex manifold, £ — B is
a holomorphic vector bundle, and S : B — FE is a holomorphic section, then
the zero set M := S71(0) carries a fundamental cycle (in singular homology)
which is Poincaré dual to the Euler class. This was extended to the infinite
dimensional setting by Pidstrigatch—Tyurin [20] and to the nonholomorphic case
by Brussee [6]. The last two references contain applications to the topology
of Kahler surfaces via Donaldson and Seiberg—Witten theory. They use finite



dimensional reduction (in the nonequivariant case) as we do in Section 7, and [20]
contains a version of the localization result (Theorem 11.1) in the case where
all the weights are one.

One can think of the “virtual fundamental class” of the zero set

M :=8710)

as a homomorphism x5 : H &(B;R) — R obtained by “integrating” an equiv-
ariant cohomology class a € HE(B) over M/G:

XB€S(a) ::/ a.
M/G

In the physics literature this is often described as the “integral” of the cup
product of a with the “Euler class” of the bundle £ over the infinite dimensional
orbifold B/G. We shall adopt this terminology and call the homomorphism
xX5€- the Euler class of the triple (B,€£,S). If S is transverse to the zero
section and G acts freely on M = S~1(0) then M/G is an oriented smooth
compact manifold and integration of o over M /G can be understood literally.
Another interesting case, first used by Mrowka in the context of Seiberg—Witten
theory, is where the cokernel of D, has constant rank along M, the zero set M
is a smooth submanifold of B with tangent space T, M = ker D,, and G acts
freely on M. In this case one can integrate an equivariant cohomology class on
B by pulling it back to M /G and taking the cup product with the Euler class of
the obstruction bundle cokerD/G — M /G. In the presence of nontrivial isotropy
subgroups there may not exist a perturbation of S that is both G-equivariant
and transverse to the zero section. We present two constructions to overcome
this difficulty in the finite dimensional case.

The first construction follows the work of Ruan [16, 21] and circumvents the
transversality problem by pulling back a Thom form 7 on E by the section S
and integrating the product of a differential form with S*7 over the base. The
integration will be meaningful because the Thom form can be chosen such that
the pullback S*7 is supported in an arbitrarily small neighbourhood of M.

In the second construction we perturb the section S by a “multivalued sec-
tion” o : B — 2F. This can be done such that S — ¢ is G-equivariant and
transverse to the zero section. Its zero set (S — o)71(0) is then a “weighted
branched submanifold” which represents a rational homology cycle.

Section 2 begins with a formal definition of the category of G-moduli prob-
lems and discusses the axiomatic properties of the Euler class. The remainder of
the paper is devoted to the existence proof. The five subsequent sections are of
preparatory nature. In Section 3 we construct an explicit isomorphism between
the equivariant cohomology groups H¢,(B) and H{, /H(B /H), where H is a nor-
mal subgroup of G. These results are useful for the construction of Thom forms
and follow the work of Guillemin—Sternberg in [13]. The next three sections
deal with integration of compactly supported equivariant differential forms in
the presence of finite isotropy (Section 4), the construction of the Thom class



(Section 5), and integration over the fibre for equivariant vector bundles (Sec-
tion 6). Section 7 explains how to reduce infinite dimensional moduli problems
to finite dimensional ones. In Section 8 we combine the preceding five sections
to define the Euler class. In Sections 9 and 10 we develop the theory of weighted
branched submanifolds. We show that multivalued perturbations give rise to
weighted branched submanifolds, that the Euler class can be represented by
a compact oriented weighted branched submanifold, and that every compact
oriented weighted branched submanifold represents a rational homology class.
Section 11 contains a localization theorem for circle actions.

Acknowledgement. Thanks to Joel Robbin for many enlightening discussions
about his joint work with Ruan on the Gromov-Witten invariants of general
symplectic manifold. We are indebted to Robbin and Ruan for sharing their
work with us while it was being written up.

2 The Euler class for G-moduli problems

We begin with a general definition of G-moduli problems in a Hilbert space
setting.

Definition 2.1. Let G be a compact oriented Lie group. A G-moduli problem
is a triple (B,&,S) with the following properties.

e 3 is a Hilbert manifold equipped with a smooth G-action.

e & is a Hilbert space bundle over B, also equipped with a smooth G-action, such
that G acts by isometries on the fibres of £ and the projection € — B is
G-equivariant.

e §: B — & is a smooth G-equivariant Fredholm section of constant Fredholm
index such that the determinant bundle det(S) — B is oriented, G acts by
orientation preserving isomorphisms on the determinant bundle, and the
zero set

M :={z e B|S(z) =0}

18 compact.

A finite dimensional G-moduli problem (B, E, S) is called oriented if B and E
are oriented and G acts on B and E by orientation preserving diffeomorphisms.
A G-moduli problem (B,&,S) is called regular if the isotropy subgroup G, =
{g € G|g*z = z} is finite for every x € M.

Remark 2.2. If (B, FE,S) is a finite dimensional G-moduli problem then B
need not be an orientable manifold. However, it follows from the definition that
the total space of the vector bundle E is an oriented manifold (or, equivalently,
TB @ E is an oriented vector bundle over B) and G acts on E by orientation
preserving diffeomorphisms (or, equivalently, it acts on the fibres of TB @ E by
orientation preserving isomorphisms). If S is transverse to the zero section then
the orientation of TB @ E determines an orientation of M = S~1(0) and G acts
on M by orientation preserving diffeomorphisms.



Example 2.3. An example of a finite dimensional G-moduli problem is given
by G =2y, B=R, FE=RxR, and S(z) = z € E, = R, where the action
of Zs on E is given by (z,y) — (—x,—y). In this case B and E are oriented
manifolds and G acts on E by orientation preserving diffeomorphisms. But G
does not act on B by orientation preserving diffeomorphisms. So (B, E,S) is
not oriented in the sense of Definition 2.1.

Let (B,&,S) be a G-moduli problem. The fibre of £ over z € B will be
denoted by &,. Thus elements of £ are pairs (z,¢e), where z € B and e € &,.
In this notation a section is a map of the form B — &£ : z — (x,S(z)), where
S(z) € &,. Abusing notation, we also denote the map B — £ by S. The
Fredholm property asserts that, for x € M = S71(0), the vertical differential

D, :=DS(z): T, B— &,

is a Fredholm operator whose Fredholm index is independent of x. This implies
that the differential of S, with respect to any trivialization of £, is Fredholm
in a sufficiently small neighbourhood of M. The orientation hypothesis asserts
that the determinant bundle is oriented over such a neighbourhood. We define
the index of S by

index(S) := index(D,) — dim G.

This is the index of the elliptic complex 0 — g — T8 — &, — 0, where the
map g — 1, B is the infinitesimal action. G-moduli problems form a category
as follows.

Definition 2.4. Let (B,€,S), (B',&',S’) be G-moduli problems. A morphism
from (B,E,S) to (B',E',S") is a pair (v, V) with the following properties. 1 :
By — B’ is a smooth G-equivariant embedding of a neighbourhood By C B of M
into B, O : & :=E|p, — & is a smooth injective bundle homomorphism and a
lift of 1, and the sections S and S’ satisfy

S oyp=UoS, M = p(M).

Moreover, the linear operators dgv : TpB — Ty B' and ¥, : £, — gfm) induce
isomorphisms

dy1) : ker D, — ker Dib(x)’ U, : cokerD, — cokerD;b(z), (1)

for x € M, and the resulting isomorphism from det(D) to det(D’) is orientation
preserving.

Let (B,£,S) and (B',&’,S") be G-moduli problems and suppose that there
exists a morphism from (B,&,S) to (B/,£’,S’). Then the indices of S and &’
agree. Moreover, (B,€&,S) is regular if and ouly if (B',£’,S’) is regular.

Definition 2.5. Two regular G-moduli problems (B,&;,S;), i = 0,1, (over the
same base) are called homotopic if there exists a G-equivariant Hilbert space



bundle £ — [0,1] x B and a G-equivariant smooth section S : [0,1] x B — & such
that & = E|iyxp and S; = Sl|pyxp for i = 0,1, the triple (B,&;,Sy), defined
by & = El{nxn and St = S|y, is a regular G-moduli problem for every
t € [0,1], and the set M :={(t,z) € [0,1] x B|S,(x) = 0} is compact.

The next theorem is the main result of this paper. It states the properties of
the Euler class. We denote by H¢ (B) the equivariant cohomology (see Section 3)
with real coefficients.

Theorem 2.6. There exists a functor, called the Euler class, which assigns to
each compact oriented Lie group G and each regular G-moduli problem (B, E,S)
a homomorphism x5S . H4(B) — R and satisfies the following.

(Functoriality) If w,‘ll) zs a morphism from (B,E,8) to (B',E',S') then
XBES (ra) = XB €5 () for every a € HE(B').

(Thom class) If (B, E,S) is a finite dimensional oriented reqular G-moduli
problem and T € QE(E) is an equivariant Thom form supported in an
open neighbourhood U C E of the zero section such that U N E, is convex
for every x € B, U N7 Y(K) has compact closure for every compact set
K C B, and S~Y(U) has compact closure, then

XB’E’S(a)z/ aNS*T
B/G

for every o € HE(B).

(Transversality) If S is transverse to the zero section then

ES@ = [ a
M/G

for every a € HE(B), where M := S71(0).

(Homotopy) If (B,&y,So) and (B,&1,S1) are homotopic G-moduli problems
then xB:€0:50(a) = xB:E1:51(a) for every a € HE(B).

(Subgroup) If (B,&,S) is a reqular G-moduli problem and H C G is a normal
subgroup acting freely on B then

XB/H,E/H,S/H(Q) B,g,s(

=x )
for every o € HE, iy (B/H), where 7 : HE, 3y (B/H) — HE(B) is the homo-
morphism induced by the projection 7 : B — B/H.

(Rationality) If a € H(B; Q) then xB45(a) € Q.

The Euler class is uniquely determined by the (Functoriality) and (Thom class)
axioms.

Note that, in the (Subgroup) axiom, H¢ y(B/H) = H¢,(B/H). The integrals
in the (Transversality) and (Thom class) axioms will be explained in Section 4
and the Thom class in Section 5.



3 Equivariant cohomology

Equivariant differential forms

Let B be an manifold and G be a compact Lie group acting smoothly on B.
The (covariant) action of g € G on B will be denoted by ¢, € Diff(B). We also
use the notation g*x := ¢,-1(x) for the contravariant action. Let Qg (B) denote
the space of G-equivariant polynomials from g to 2*(B). Thus the elements of
Q% (B) are maps a : g — Q*(B) that satisfy

alg™'ég) = ¢y€)

for ¢ € g and g € G. They are called equivariant differential forms on B.
If e1,...,¢e, is a basis of g and £ = i, £%; then a € Q4 (B) can be written

in the form
a(@)=> &a
I

where I = (i1,...,i,), &/ = (€))7 (€"), and a; € Q21(B). The equiv-
ariant differential dg : Q4% (B) — Q5™ (B) is defined by

(da)(€) = d(a(§)) + u(Xe)a(§) = > _ & (day + 1(Xe)our)

for £ € g, where X¢ € Vect(B) denotes the covariant infinitesimal action, i.e.
Xe(x) := —€*x. The cohomology of this differential will be denoted by HE (B).
It is isomorphic to the singular cohomology of the space B xg EG with real
coefficients, where EG is a contractible space on which G acts freely and covari-
antly, and the action on B x EG is given by g*(x,0) = (9*z,97160) for x € B
and 0 € EG (see [13]).

Standing hypothesis: In the remainder of this section H C G is a normal
subgroup which acts on B with finite isotropy.

We now introduce the notion of an H-basic equivariant differential form on B.
If H acts freely on B then the H-basic forms are in one-to-one correspondence
to the G/H-equivariant differential forms on B/H.

Definition 3.1. A form o € Q& (B) is called H-basic if

al+n) =alf),  uXy)al§) =0, (2)
forall € g and n € b.
We need a simple lemma about Lie groups.

Lemma 3.2. Let G be a Lie group and H C G be a compact normal Lie
subgroup. Then there exists an H-invariant complement of b = Lie(H) in
g = Lie(G). Moreover, H acts trivially on every such complement. In par-
ticular, h=1¢h — ¢ € b for allh € H and £ € g.



Proof. The existence of an H-invariant complement follows by averaging any
projection m : g — bh over H. How suppose that ¢ is such a complement.
Let ¢ € £ and h € H and suppose, by contradiction, that héh™' # &£. Since
héh=t — € € t it follows that héh™! — & ¢ b. Hence there exists an ¢ > 0 such
that exp(théh™1) exp(—t€) ¢ H for 0 < t < e. Hence exp(—t&)hexp(t€) ¢ H for
small positive ¢, a contradiction. O

Corollary 3.3. Let o € Q(B) be H-basic. Then
a(§) = dpa(s) (3)
for all€ € g and h € H.

Proof. By Lemma 3.2, h1¢h — € € b for every h € H and ¢ € g. Hence
draé) =ah™h) = a(E+h 1¢h— &) = a(f) for h € Hand € € g. O

We show below that the cohomology of the subcomplex of H-basic forms
with differential dg is isomorphic to the G-equivariant cohomology of B. This
requires some preparation. Let A € Q'(B,h) be a G-equivariant H-connection.
This means that

Aga(g™) = g7 Au(v)g,  Au(nz) =n. (4)
forallz € BveT,B, g€ G,and n €h.
Remark 3.4. By Lemma 3.2, every G-equivariant H-connection satisfies
h™ieh — & = A ((h™1€h)"x) — Au(€72)
forxe B, €g,and h € H.

Note that the covariant derivative d4 on Q*(B,h) extends to Q*(B,g) by
the usual formula
da® :=d®+ [AN D]

for ® € Q*(B, g). The covariant derivative satisfies
dada® = [FA A (I)],

where Fa € Q%(B,b) is the curvature:
1
Fy:=dA+ E[A/\ Al.

Consider the space Q§(B,g) of G-equivariant polynomials ® : g — Q*(B, g).
The equivariance condition means that

(g~ '¢g) =g (0;2(8))yg (5)

for ¢ € g and ¢ € G. It is interesting to consider the subspace of H-basic
equivariant Lie algebra valued forms.



Definition 3.5. A form ® € Q (B, g) is called H-basic if

forallE € g and n € b.

Remark 3.6. By Lemma 3.2, every H-basic form ® € Q§ (B, g) satisfies
(&) = @(h™1¢h) = h™ 1 (¢ 2()h

for £ € g and h € H.

The subspace of H-basic forms is invariant under the operation (®,¥) —
[® A T]. A G-equivariant H-connection A determines a covariant differential
dac:Q&(B,g) — Q*GH(B,Q) defined by

(da,c®)(§) == da®(§) + 1(Xe)P(E).

The equivariant curvature of A is defined as the 2-form Fu ¢ € Q4(B,g)
given by
Fya(§) = Fa+ &+ A(Xe).
Lemma 3.7. (i) If ® is H-basic then so is da,c®.
(ii) The curvature Fa g is H-basic.
(iif) Every ® € Q& (B, g) satisfies

da,cdac®=[Fac AP
(iv) The curvature satisfies the equivariant Bianchi identity
da,cFac =0.

Proof. The first two assertion are obvious consequences of the definitions. As-
sertion (iii) follows from a computation:

dacdac®() = dada®(§) + 1(Xe)da®(§) + dau(Xe)P(E)
= [Fan®@)]+ Lx (&)
T U(X)[AND(E)] + [A N 1(Xe)D(E)]
= [Fan®(]+ 6 28] + [A(Xe), 2(8)]
= [Fac(§ A2(&)].
In the third equality we have used the identity Lx, ®(£) = [¢, ®(§)] which follows

from the G-equivariance of ®.
We prove the Bianchi-identity:

dacFac(§) = da(Fa+&+A(Xe)) + u(Xe)Fa
= du(Xe)A+[A €+ A(Xe)] + 1(Xe)dA + [A(Xe), A]
= EXg A+ [Aa g]
= 0.
Here the last equation follows from the G-equivariance of A. O



Now consider the operator Q¢ (B) — Q& (B) : a — g given by

aa(§) = (mha)(Fac(§)), (7)
where w4 : TB — T B denotes the projection onto the kernel of A. Thus
Ta5(0) =v— A (v)'x

for v € T,B. More precisely, choose a basis ej,...,e, of g, write a(§) =
S arél, and denote

PO = Fir 64 AI(X), A=Y Al Fy= Y Fe, ()
so that Fia,g(§) = X, F*(€)e;. Then au is given by
aal€) = Fl(©mhar,
1

where Fl(f) e Fl(f)il A--- /\F"(g)in,

Theorem 3.8. Let A € QY (B, h) be a G-equivariant H-connection.
(i) If a € QL(B) then as : g — Q*(B) is G-equivariant and H-basic.

(ii) The operator o — a4 is a dg-chain map, i.e.

doaa = (dga)a

for every o € QE(B).
(iii) If doa = 0 and A’ is another G-equivariant H-connection then there exists
an H-basic form § € Q& (B) such that aar —aa = daf.

(iv) The operator o — a4 is chain homotopic to the identity, i.e. there exists
an operator Q : Q& (B) — Q' (B) such that

a—ay =dgQoa+ Qdga
for every o € QE(B).

Remark 3.9. If H acts freely on B then the H-basic forms are in one-to-one
correspondence with G/H-equivariant differential forms on the quotient B/H.
In this case the map o — a4 induces an isomorphism from the G-equivariant
cohomology of B to the G/H-equivariant cohomology of the quotient B/H:
HE(B;R) = Hé/H(B/H;R).

Remark 3.10. If G = H acts with finite isotropy then the H-basic forms can be
interpreted as differential forms on the quotient B/G which is now an orbifold.
In the present paper we circumvent orbifold theory by always working on the
total space B.



Remark 3.11. If / > dim B —dim H then every H-basic ¢-form on B vanishes.
Hence a4 is dg-closed whenever deg(a) = dim B — dim H.

Example 3.12. Assume G = H = S'. Then the linear function o : iR — R C
Q°(B), given by

_in
a(n) : 5

is an S'-closed equivariant 2-form on B. We claim that under the isomorphism
H% (B) = H*(B xs1 ESY)

the cohomology class of a corresponds to the pullback of the positive integral
generator ¢ € H?(BS'; Z) =2 Z under the projection 7 : B x g1 ES* — BS!:

[a] =7*c.

To see this, note that n*c is the first Chern class of the line bundle L :=
(BXxES'xC)/S* — Bx 1 ESt, where St acts by \*(z,0,() = (\*z, \710,\71()
for x € B, € ES!, and ¢ € C. Now let A € Q'(B,iR) be a connection 1-form.
Then

iFy

27

This form descends to a 2-form on B x ¢1 ES! which represents the first Chern
class of L.

apA =

Proof of Theorem 3.8. Our proof is an adaptation of the argument in Section 5.1
of [13]. Let e1,...,e, be a basis of h and denote by X; € Vect(B) the vector
field X;(x) := —efx. Consider the following operators on Q¢ (B):

Ka(§) = — Z AP A 9;au(6),

Ra(§) = Y dA"Ada(§),
1=1

Boa(§) = = A(Xe)dia(9),
Eia(g) = — ZAi A u(Xi)a (),
E = Eoljf— El.

Note that the space of G-equivariant forms is preserved by all five operators. In
the case of the operators K, R, and Ej the proof relies on the identity

n

$30:0(8) = > (97 eig) 050(97"¢g),

Jj=1

10



where n = dim g, ey,..., e, is an extension of the basis of h to a basis of g, and
&' denotes the ith coordinate of ¢ € g with respect to this basis. Note that with
this notation A7 = 0 for 5 > m. As an example we prove equivariance in the
case of Fy:

Ms

—¢yEo0a(§) = By A" (Xe)g050(€)

i=1

3

n

= 3> e AXe) (g eig) 0j0(g 7 Eg)

i=1 j=1
= > (D #rA(Xe)(g eig)j) djalg~'¢g)
j=1 \i=1

3

= > 6597 A(Xe)g) 950(9 " €g)

j=1

n

= ZAJ g-169)050(9 7" €g)

= —an(g '¢g).
The operators K, R, and E satisfy the following crucial identity
doK + Kde = E — R. 9)

The proof is a straightforward computation. We shall prove that the kernel of
FE is the space of H-basic forms:

Ea=0 — « is H-basic. (10)

To see this we observe that the operators Ey and E; commute and that Q (B)
decomposes as a direct sum

04(B) - D,
p.q

where Ega = pa and Eja = qa for every a € QP4. To describe the space (P9
we choose frames e, 11(z),...,e,(z) in g depending smoothly on x € B such
that

Aqg(ej(z) @) =0

for every j > m. It follows that the vectors ey, ..., em,emi1(x),...,en(z) form
a basis of g for every x. In this basis 77 is generated by monomials of the form

ARvn o n AR A

where |I| = p and « € Q*(B) is H-horizontal. Here we use the notation

E=> ne+ Yy Jesla). (11)

i<m ji>m

11



It follows that the kernel of E is Q%9 and this proves (10). We denote by
m:Q&(B) — 000

the projection onto the kernel of E along the direct sum of the spaces QP4 for
p+q > 0. An explicit formula for = with respect to the above frame is

I
| Y arm'¢t | =D whag ¢
1,7 7

This discussion shows that the operator m + F is invertible and preserves the

(p, q)-degree.
From now on the argument is exactly the same as in [13]. We reproduce it

here since it is short and beautiful. Since R lowers the p-degree it follows that
the operator (m + E) 'R is nilpotent and hence 7+ E — R is invertible. Denote

Uw=(r+E-R)™ Q:=KU.
Then we obtain
lda, U] = [, dg]U. (12)

Here we use the fact that, by (9), the operator F — R commutes with dg, hence
[r + E — R,dg| = [m,dg], and hence [dg,U] = Ulr,dg|U. Now equation (12)
follows from the fact that U acts as the identity on 20 and the image of [r, dg]
is contained in Q. Moreover, it is obvious from the definitions that K vanishes
on %% and so K|r,dg] = 0. Hence

daQ + Qde = dgKU+ KUdg
= dgKU + KUdg +K[7T,d(;]U
— deKU + KUdg + K[dg, U]
= (doK + Kdg)U
= (E-R)U
id —7wU.
To complete the proof of (iv) we must show that
mUa = ay (13)
for every a € Q& (B). It suffices to prove (13) for a monomial
a=arm'¢
Write 7U in the form

7U = n(m + E)~* (id +R(r+ B+ (R + B)) + - ) .

Since R(m + E)~! lowers the p-degree by one and (7 + E)~! = =, it follows
that

mUa =7 (R(m + E)_l)e a,

12



where ¢ = |I|. Now counsider the operator given by

S = ZF’/\@Z

Then ]
b .
S—R= §ZcijA1/\A]/\8k,
ivdok
where cfj are the structure constants of g defined by [e;,e;] = >, cf;ex. Since

S — R raises the g-degree by two, we have

mUa F(S(TF-}-E)_l)eOé

(S(r + E)_l)eﬂza

1 *
= ESeﬂAoq,mIC‘]
= WZQI,J/\FICJ.

To see that this is the required formula we write £ in the form (11) and note
that, since Az (ej(z)*z) = 0 for j > m, we have

£+ A(Xe) = Z Cej(x

j=m+1

Hence .
; ; ; ; F*, fori<m
7 _ ) 7 _ R = 5
Fi (&) =F'+¢ +A(X§){ ¢, fori>m.
This proves (iv). Assertion (ii) is an obvious consequence of (iv). Assertion (i)
follows from the fact that operators w, F, and R preserve the space of G-
equivariant forms.
We prove (iii). Let t — A; be a smooth family of G-equivariant H-connec-
tions. Think of the path ¢ — A; as a connection A on the space B := R x B.
Given a G-closed ¢-form o € Q§(B) denote

a(§) = az(§) = a(§) +dt A Bi(§),
where oy = a4, € Q4(B) and B; € Q5 '(B). By assertion (ii), & is G-closed

and, by assertion (i), it is G-invariant and H-basic. Hence a; and f; are G-
invariant and H-basic, oy is G-closed, and d;a; = dg3; for every t. Hence

1
Ay = dG/ Bt dt.
0

Since (; is H-basic for every ¢, this proves (iii). O
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4 Invariant integration

Throughout this section we assume that B is a finite dimensional oriented man-
ifold, that G is a compact oriented Lie group acting on B by orientation pre-
serving diffeomorphisms, and that the isotropy subgroups are finite. Integration
requires the notion of local slices whose existence the next theorem asserts. A
proof can be found in [3].

Theorem 4.1. Suppose G acts on the finite dimensional manifold B with finite
isotropy and let m := dim B — dim G. Then, for every o € B, there exists a
triple (Uy, ¢o, Go) with the following properties.

(i) Go C G is a finite subgroup.

(ii) Uy C Hp is a Go-invariant open neighbourhood of zero in an oriented m-
dimensional real Hilbert space Hy with an orthogonal linear action of Gg.

(iii) ¢o : Uy — B is a Go-equivariant embedding such that xo = ¢o(0) and the
induced map G xXg, Uy — B : [g,x] — g*do(x) is an orientation preserving dif-
feomorphism onto a G-invariant open neighbourhood of xo. Here the equivalence
relation is [g, 2] = [g5 ' 9, g5x].

A triple (Uo, o, Go) with these properties is called a local slice.

We now explain how to integrate invariant and horizontal m-forms on B
over the quotient B/G. Suppose that oo € QF (B) is an equivariant m-form with
compact support. Choose finitely many local slices (U;, ¢, G;), i = 1,..., N,
such that the open sets G*¢;(U;) cover the support of «, and define

N
1 (.
/B/Ga.zzz_;m/m (bz (pzaA)a (14)

where A € Q!(B, g) is a G-connection, a4 is defined by (7), and the functions
pi : B — [0, 1] are G-invariant and form a partition of unity such that supp p; C
G*¢;(U;). The next proposition asserts that the integral (14) is well defined
and depends only on the (compactly supported) cohomology class of a.

Proposition 4.2. (i) The right-hand side of (14) is independent of the local
slices, the partition of unity, and the connection used to define it.

(ii) If B is a manifold with boundary and B € Qg_l(B) has compact support

then
/ doff = / 8.
B/G 9B/G

Proof. We prove that the integral is independent of the choice of the local slices
and the partition of unity. Let (Up, ¢o, Go) and (Ui, ¢1,G1) be two local slices
and suppose that « is supported in G*¢o(Up) N G*¢1(Uy). Shrinking Uy and
Uy, if necessary, we may assume that G*¢o(Uy) = G*¢1(U;). By definition, the
map Uy X G — B : (x0,9) — g"¢o(xo) is an immersion and is transverse to ¢;.
Hence the set

W = {(xo,z1,9) € Uy x U1 x G| g"¢po(x0) = ¢1(x1)}

14



is a smooth oriented m-manifold and

(o, x1,9) €W = (960,71, 95 °9) (20, g1, 991) € W

for g9 € Gg and g1 € Gy. It follows that the projection mg : W — Uy is an
orientation preserving submersion of degree |G1| and the projection 7 : W —
U, is an orientation preserving submersion of degree |Gg|. Moreover, these
projections satisfy

¢1 o ﬂ-l(IO;xlag) = g*(¢0 o WO(IO,Il,g))-

This means that the maps ¢1om : W — B and ¢gomy : W — B are related by
the gauge transformation W — G : (xo,x1,9) — g. Since the form a4 € Q™(B)
is invariant and horizontal this implies that

(¢O o 770)*04A = (¢1 o 771)*Oé,4 S Qm(W)

Hence

Gl / Gras = / Tl dios = / T dioa = |Gl / i,
U, w w Uo

This proves that the right hand side of (14) is independent of the local slices
(U;, ¢i,G;) and the partition of unity used to define it. Assertion (ii) follows
from Stokes’ theorem and Theorem 3.8 (ii) whenever 3 is supported in the
G-orbit of the image of a local slice. In general it follows by considering the
sum »_, dg(pi) for a partition of unity p;. That the right hand side of (14) is
independent of A follows from Theorem 3.8 (iii). O

Example 4.3. Consider the action of G := Zs on B := R by x — —z. Then
the identity map R — B = R is a local slice (or in fact a global slice). An
equivariant differential form is a Zs-invariant differential form on R. Consider
the equivariant 1-form « = f(x)dx where f : R — R has compact support and

f(z) = f(—x). Then | e
/R/ha = 5[@ flx)dx.

5 Thom forms

In [2] Atiyah and Bott noted that the Thom isomorphism theorem extends to
equivariant cohomology and gives an isomorphism

HL(E,E\ B) — H5 "(B).

Here H{ denotes equivariant cohomology with real coefficients, £ — B is an
oriented G-vector bundle and B is embedded into E as the zero section. In
terms of the de Rham model the (equivariant) cohomology of the pair (E, E \
B) is isomorphic to the (equivariant) de Rham cohomology of E with wvertical
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compact support. In the non-equivariant case the isomorphism is established
in [4, Theorem 6.17]. In [13, Chapter 10] Guillemin and Sternberg construct
an equivariant Thom class and prove the Thom isomorphism theorem in the
equivariant context. Below we give an alternative construction of the equivariant
Thom class.

Definition 5.1. Let (B, E,S) be a finite dimensional oriented G-moduli prob-
lem and set n :=rank E. A Thom structure on (B, E, S) is a pair (U, T) with
the following properties.

(i) U C E is a G-invariant open neighbourhood of the zero section that inter-
sects each fibre in a convex set. Moreover, U N E|k has compact closure
for every compact subset K C B.

(ii) S~Y(U) has compact closure.

(iif) 7 € QL(E) is an equivariant n-form such that
dgT =0, supp(7) C U, / T=1
B,

for every x € B.

Note that an equivariant n-form on E can be expressed as

(&) = > (9,

where 73, : g — Q" 2¥(E) is a homogeneous G-equivariant polynomial of degree
k. The integral in (iii) is to be understood as the integral of the leading term
7o € Q"(FE). We emphasize that in the case of nontrivial finite isotropy this
integral does not agree with (14). It is a special case of integration over the
fibre discussed in Section 6.

Remark 5.2. Suppose that (B, E,S) is a finite dimensional regular G-moduli
problem. Let A € Q'(E, g) be a G-connection and (U, 7) be a Thom structure.
Then 74 € Q"(E) is a G-invariant and horizontal n-form. It is supported in U
and, by Theorem 3.8, 74 is closed. Moreover,

/Ewm1 (15)

for every x € B. To see this, recall that the isotropy subgroup G, is finite.
Thus the connection can be chosen such that the tangent vectors to FE, are
horizontal. Then the curvature of A vanishes on E, and so the restriction of 74
to E, agrees with the leading term 7y. By Theorem 3.8 (iii), the integral of 74
over E, is independent of the connection A and this proves (15).
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Theorem 5.3. Let (B, E,S) be a finite dimensional oriented G-moduli problem.
Then (B, E,S) admits a Thom structure. Moreover, if (Uy,70) and (U1, 71) are
two Thom structures then there exists an equivariant (n—1)-form o € QY (E)
such that suppo C Ug U Uy and dgo =11 — 7g.

The construction of a Thom structure is based on the existence of an SO(n)-
equivariant universal Thom form on R™. For completeness, we present an alter-
native proof to the one given in [13].

Proposition 5.4 ([13]). There exists a dso(n)-closed form p € Qgq ., (R™)

with compact support and integral one (of the leading term). This form is called
the universal Thom form.

Proof. We look for p in the form

p(n) = frll=*/2)pk(n),

k

where py(n) € Q"~2¥(R") are forms with constant coefficients, and fy, : [0, 00) —
R are smooth functions with compact support. Then

dso(mp(m) =Y il /A A pi(n) + fil|ef* /2)e(Xy) o (n),
k

where

Ai=d(|jx?/2) = xidw; € QY (R).
=1

So p will be dgo(n)-closed provided that

U(Xn)pe(n) = AN pry1(n) (16)

and
f1(8) + fu—1(s) = 0.

The existence of forms p(n) satisfying equation (16) is proved in Lemma 5.5
below. The functions fj are constructed inductively. Choose a smooth function
fo : [0,00) — [0, 00) with compact support such that fo(r?/2) = 0 for r < 6 and
r>1, and

/OOO fo(r?/2)Vol(S™~Hyrn—tdr = 1.
Now define fi : [0,00) — R for 1 < k < n/2 inductively by
Fi(s) + frim1(s) =0,  fr(1) =0.
This implies
N /OO s fo(s)ds = % /OO 21 fo(r? 2)dr,
(k—=1!Jo 2k=1(k — 1)! J,
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So for k < n/2 the functions fi(s) will vanish for s < ¢ provided that

/ s fo(s)ds = 0, 1<k<n/2
0

This can be achieved because the polynomials s*~1 are linearly independent.
Note that, if n is odd, then fj vanishes near zero for all k£ but, if n is even, then

fay2(0) =1/27/271(n/2 — 1)IVol(S"~1) > 0. O
It remains to prove the lemma used in the preceding proof.

Lemma 5.5. Forn = —nT € R"" andk € N let X, € Vect(R"), w, € Q*(R"),

and pr(n) € Q"~2F(R™) be given by

1
X, (x) :==nx, Wy = g Mij da; A dxj, pr(n) == 7 * wnk,
i<j ’

where x denotes the Hodge x-operator with respect to the standard metric. Then
the forms py satisfy (16), i.e.

UXn)pr(n) = AN pria(n),
where X ==Y | x; dx; € QM (R™).

Proof. Since there is an obvious inclusion of SO(n) into SO(n+1), the statement
for n + 1 implies the statement for n. Thus it suffices to prove the lemma in
the case where n is even. Since both sides of equation (16) are equivariant
polynomials on so0(n) with values in Q"~2*~1(R") it suffices to prove the lemma
for elements of a maximal torus in so(n). Assume n = 2¢ and consider the
maximal torus T' C SO(2¢) whose Lie algebra t = Lie(T") consists of matrices of
the form
n = diag(—in, ..., —ine).

Here we identify R?* with C’. Write the coordinates on R?** in the form
(x1,y1,---,2¢,ye) and denote w; := dx; A dy;. Then, for n € t,

1
wn:mei, Hwnk: Z Niy =" Migy Wiy N Awiy .
i i1 <<,
Assume 7; # 0 for every ¢ and denote 7); := 1/n;. Then

oM Ne g

Pk(n) - (6 o k)|wﬁ ? L(Xn)wﬁ = )\
Hence, in this case
771 e TM —
771 N TM b

= U—k-1 (U(Xy)wi) Awy" =+

= AAprga(n).
This proves the lemma for every n € t such that 7, # 0 for all 7. For general
elements 7 € t equation (16) follows by continuity. O
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Proof of Theorem 5.3. Let m : P — B be the bundle of oriented orthonormal
frames of E. The fibre of P over x € B is the space

P, :={p:R" — E, |p preserves orientation and norm}.

Then P is a principal SO(n)-bundle and E is isomorphic to P xgo») R™. Since
G acts on the fibres of E by orientation preserving isomorphisms there is an
induced action of G on P. Thus G x SO(n) acts on P x R™ by

(9,a)*(z,p,v) = (g"z, g"pa,a” ).

Note that the actions of G and SO(n) commute, the action of SO(n) is free, and
the projection 7 : P — B is G-equivariant. The universal Thom class p pulls
back under the projection P x R” — R™ to a (G x SO(n))-equivariant Thom
form (still denoted by p) on P x R™. Here the polynomial map p: g x so(n) —
Q*(P x R™) is independent of the g-variables.

Now let A € Q(P x R",s0(n)) be a (G x SO(n))-equivariant SO(n)-con-
nection. Define pa € Qf, g0 (P x R™) by (7). Then, by Theorem 3.8 (i),
pa is SO(n)-basic and so descends to a G-equivariant differential form 7/ on
P xXg0(n) R" =2 E. By Theorem 3.8 (ii), the form 7’ is dg-closed. Moreover, by
construction, it has vertical compact support and integral one over each fibre.
This proves the existence of a Thom form 7/ € Q% (E) with support in a neigh-
bourhood U’ C E of the zero section that satisfies (i) but not necessarily (ii).

Let U C E be an open neighbourhood of the zero section that satisfies (i)
and (ii). We prove the existence of a Thom form 7 with support in U. Choose
a G-invariant function f : B — [0,00) such that e~7U’ C U and consider the
G-equivariant isotopy ¢, : E — E given by

Yi(z,0) = (z, etf(:c),u).

Then v, is the flow of the G-invariant vector field X € Vect(E) defined by
X (z,v) := (0, f(x)v) and
Ti=i7

is a Thom form with support in U. Moreover,

1
7 —7 =dgo’, o = / i X)T dt.
0

Thus o’ is an equivariant (n — 1)-form on E with support in U’.

We prove that the difference of two Thom forms 75 and 7 is exact. To
see this we assume, without loss of of generality, that B is connected and use
the equivariant version of the Thom isomorphism theorem [4, Theorem 6.17] as
in [13, Chapter 10]. It asserts that there is an isomorphism

H¢ . (E) = HY(E,E\ B) = H§(B) = R.

Here the subscript ve stands for vertical compact support. Since integration over
the fibre defines a nontrivial homomorphism

H&L”VC(E)—)RZTI—)/ T
E.

19



and the cohomology class [r1 — 79] lies in the kernel of this homomorphism,
it follows that [ — 1] = 0 € Hg (F). This means that there exists an
equivariant (n — 1)-form o € Q% L(E) with vertical compact support such
that 7 — 79 = dgo. We prove that o can be chosen with support in Uy U U;.
To see this, choose a G-equivariant diffeomorphism ¢ = ; as above. Then
v 1 — 17, = dgo; for i = 0,1, where o; € Qgﬁl(E) is supported in U;. Moreover
the function f : B — [0,00) can be chosen so large that the form ¢*o is
supported in Uy U U;. Hence

TI—T0 = TP+ (1 —70)+YT0—T0
= dg(og+ 9o —o1).

This proves the theorem. O

Let (B, E, S) be a finite dimensional oriented regular G-moduli problem and
(U, 7) be a Thom structure. We define a homomorphism x 2% : H(B;R) — R
by

B S () = / aNS*T (17)
B/G

for every equivariantly closed form o € Q& (B). By Theorem 5.3 the number
xBF5(a) is independent of the Thom structure (U, 7) used to define it.

Example 5.6. Consider the trivial bundle £ := B X R over B := R and the
section
S(x) := arctan(z)

(so S(£o0) = £m/2). Denote by y the variable in the fibre. An example of
a Thom structure is U := R x (—=1,1) and 7 := p(y)dy, where p : R — R is
an even function with integral one whose support is contained in the interval
(—1,1). The map

x2ES  HOR) =R — R

is multiplication by one. If the bundle E is equipped with the Zs-action (x,y) —
(—x, —y) then the invariant is multiplication by 1/2.

Now consider the neighbourhood U’ := R x ((—3,—-2) U (—1,1) U (2,3)) and
the differential form 7 := p/(y)dy where p’ : R — R is an even function with
integral one and support in the union of the intervals (=3, —2) and (2, 3). This
pair (U’,7') violates the convexity hypothesis in Definition 5.1. The pullback
form S*7’ vanishes and so integrating it gives the wrong answer for 25,
namely zero.

6 Integration over the fibre

Throughout this section we assume that m# : E — B is an oriented finite di-
mensional real vector bundle of rank n over a smooth oriented manifold, that
G is a compact oriented Lie group acting on B and E by orientation preserving
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diffeomorphisms, and that 7 is equivariant. We denote by €3¢, [ (E) the space of
equivariant differential forms on F with vertical compact support. This means
that for every compact subset K C B the support of the differential form inter-
sects 7 1(K) in a compact set.

The next theorem introduces integration over the fibre for equivariant dif-
ferential forms. The corresponding map on the cohomology level exists in much
greater generality [2].

Theorem 6.1. There exists a linear map . : Qf [ (E) — Qg "(B) with the
following properties.

(Chain map) dg ome = me 0 dg-
(Thom class) If 7 € Q¢ (E) is a Thom form then m.7 = 1.
(Module structure) For o € Qg (E) and 3 € Qi (B),

T (T BN Q) = B AT

(Connection) If G acts on B with finite isotropy then, for every a € Qg [ (E)
and every connection 1-form A € QY (B, g),

TaQpe g = (Te¥) 4.

(Functoriality) If G acts on B with finite isotropy and o € Q‘éi"i’CB"’”(E) has

compact support then
[ a=] ma
E/G B/G

The map 7, is called integration over the fibre.

Proof. We recall the definition of m.« for an ordinary differential form o €
Ok (E). Given z € B and vy, ...,v; € T, B, choose lifts Vi,..., Vi : E, — TE
of v1,..., vk, respectively, and define

(o) (V1, ... 05) i= /E (Vi) -+ o(Vh)au.

The integrand on the right (as an n-form on E,) is independent of the choice of

the lifts V;. This defines a G-equivariant map m, : Q5.(E) — Q*"(B). Hence

it induces a map from Qg [ (E) to Qg "(B). For { € g let X¢ € Vect(B) and

Y € Vect(E) denote the infinitesimal actions. Then Yz is a lift of X, and hence
mt(Ye) oo = o(Xe)mear

for every a € Qg ,.(E). Moreover, it is shown in [4, Proposition 6.14.1] that

Ty od=dom,.
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This proves the chain map property of w,. The Thom class, module structure,
and connection properties are straightforward exercises. To prove functoriality
we choose a local slice (U, ¢g, Gg) of the G-action on B and assume that «
is supported in 77 1(G - ¢o(Up)). Let ®g : Uy x R® — E be a G-equivariant
trivialization of E along ¢g. Let pr : Uy xR™ — Uy denote the obvious projection
and A € QY(B, g) be a connection 1-form. Then, by the definition of the integral
and Fubini’s theorem,

|G0| a = / (I)Saw*A
E/G Up xR™
= / pr*q)z;aﬂ'*A
Uo
= (bsﬂ-*aﬂ'*A
Uo
= ¢ () 4
Uo
= |Gol Tx QL.
B/G
This proves the theorem. O

Remark 6.2. The equivariant Thom isomorphism theorem asserts that the
map 7. : QG (E) — Qg "(B) induces an isomorphism of cohomology whose
inverse is induced by the map

Q5 (B) = Qi ve(B) : B= AT
(see [2] and [13, Theorem 10.6.1]).

Corollary 6.3. Suppose that G acts on B with finite isotropy and denote by
t: B — E the inclusion of the zero section. Let T € Q% ,.(E) be an equivariant
Thom form on E supported in an open neighbourhood UCE of the zero section
that intersects each fibre in a convex set. Then

BNAT = / B
E/G B/G

for every G-closed form B € Q§(E) whose support intersects the closure of U
i a compact set.

Proof. The proof is an equivariant version of the proof of [4, Proposition 6.24].
We first observe that the form §—7*.*( is G-exact. More precisely, there exists
an equivariant differential form vy € Q¢ (E) such that

B =7""B+day

and the support of 7 intersects the closure of U in a compact set. To see this
define ¢ : E — E by ¢:(x,e) := (x,te) and note that

1
-7 B = /0 %cﬁzﬁdt.
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Now compute

BAT = / T VBAT
E/G E/G
= / T (T BAT)
B/G

/ BN T
B/G

This proves the corollary. O

Corollary 6.4. Suppose that G acts on B with finite isotropy and let S : B — E
be a G-equivariant section which is transverse to the zero section. Then

/ alNS* T = / «
B/G 5-1(0)/C

for every G-closed form a € Q&(B) whose support intersects the closure of
S=HU) in a compact set.

Proof. By Theorem 5.3, we may assume without loss of generality that the
support of the pullback S*7 is contained in a tubular neighbourhood N of
S~1(0). Since the image of a fibre of the normal bundle under S is homotopic
to a fibre of E the integral of S*7 over each fibre of the normal bundle is one.
Hence S*7 is a Thom form on the normal bundle of S7!(0) and so the result
follows from Corollary 6.3. O

Corollary 6.5. Let E — B be a complex vector bundle equipped with the stan-
dard S'-action over a compact manifold B (on which S* acts trivially) and
denote by v : B — E the inclusion of the zero section. Suppose T € Q% (E) is
an equivariant Thom form. Then

rank E “7 rank E—j
rr= Y (32)

§=0
where T; € Q% (B) is a closed form representing the jth Chern class ¢j(E).

Proof. For j = n :=rank E this follows from Corollary 6.4, the fact that 7, is a
(nonequivariant) Thom form on E, and the fact that ¢, (E) is the Euler class.
For the trivial bundle E = B x C" the result follows by considering the Thom

form
n

T(n) =Y (in)" " fu-i(l2*/2)

k=0

wk

k!’

where w € Q?(C") is the standard symplectic form and the functions f; are
as in the proof of Proposition 5.4. The result then follows from the fact that
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fn(0) = 1/2771(n — 1)IVol(§*"~1) = (27)~". If dim M = 2k < rank E then,
for j = k, the result follows by splitting F into a bundle of rank k£ and the trivial
bundle. To prove the result in general, consider the pullbacks of E under all
smooth maps f : X — M, defined on compact manifolds of dimension 2j. O

7 Finite dimensional reduction

In Section 5 we have defined the equivariant Euler class for oriented regular
finite dimensional G-moduli problems. In the following two sections we explain
how to extend the definition to the infinite dimensional (and the nonorientable
finite dimensional) case by means of finite dimensional reduction. The first step
is to show that the Euler class of oriented regular finite dimensional G-moduli
problems satisfies the (Functoriality) axiom.

Proposition 7.1. Let (Bo, Fo, So) and (B1, E1,S1) be oriented regular finite
dimensional G-moduli problems and let (v, ¥) be a morphism from (By, Eg, So)
to (Bl7 El, 51) Then

XBO,Emso (V*aq) = XBl7E1,S1 (1)
for every G-closed equivariant differential form aq € Q& (By).

Proof. Shrinking By, if necessary, we may assume that the embedding ¢ of a
neighbourhood of My = SO_I(O) C By into Bj is defined on all of By. Choose
a G-invariant splitting

Ey = E10 @ En

near ¥ (By) such that Ejo agrees with the image of the inclusion ¥ : Ey — FE;
over ¥(By). Then the section S : By — Ep can be written as

S1 =510 P S11.

Note that ¥ identifies the G-moduli problem (By, Fy, Sg) with the restriction
(¥(Bo), E1r0, S10)-

We prove that Spp is transverse to the zero section near My = ¢ (Mp) and
that the kernel of DS11(v(x)) agrees with the image of di(x) for x near My =
S5 1(0). Surjectivity of DSty (¢(x)) for x € My follows from (1):

Eiy@) = <im DS10(¢(z)) ® \I/xcokerDSO(:c)) @ im DS11 (¢(x)).

To prove the second assertion note that the indices of Sy and S agree and hence
rank F/y; = rank By —rank Ey = dim B; — dim By. Moreover, S1; vanishes over
¥(Bp) and so im di(x) C ker DS11(¢(x)) for every x € By, with equality if and
only if DS11(3(x)) is surjective. Hence, for « € My, we have ker DS (¢(z)) =
imdiy(x). This proves the claim. Shrinking By and Bj, if necessary, we may
assume that ¢(Bg) = S;;*(0) and that Sy, is transverse to the zero section.
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Choose an equivariant Thom form
71 = Ti0 N\ T11

on F7 such that 7 is a Thom form for Fi9 and 711 is a Thom form for Ey;.
Choose a tubular neighbourhood Uy C By of ¥(By) such that S, 711 € Q&(Bh)
is supported in U;. Then, by Corollary 6.4,

/ BASH T = / .
Bl/G BO/G

for every G-closed form ( € Qf (B;1) whose support intersects the closure of Uy
in a compact set. Moreover, 179 := ¥*7y( is a Thom form on Ey. Hence

/ a1 A ST
Bl/Gl

/ a1 /\SikoTlo/\Sileu
Bl/Gl

= / Y™ (a1 A SigTi0)
BU/GU

/ w*al /\58\11*7'10
Bo/Go

/ Y*aq A S§To.
Bo/Go

This proves the proposition. O

An example of a morphism is the inclusion of a G-moduli problem into its
stabilization by a G-representation V.

Definition 7.2. Let V' be a real Hilbert space with an orthogonal action of
G and (B,£,8) be a G-moduli problem. The G-moduli problem (BY,EV,SY)
defined by

BY :=BxYV, EXU =& %XV, SV (z,v) := (S(x),v),

is called the stabilization of (B,£,S) by V. The morphism (¥, V) from
(B,E,S) to (BYV,EV,SV), given by

() = (x,0), Ve := (e,0),
1s called the stabilization morphism.

Definition 7.3. (i) Let (B,&,S) be a G-moduli problem A finite dimensional
reduction of (B,&,S) is a siztuple R = (B, E,S,V,1,¥) such that (B, E,S)
is an oriented finite dimensional G-moduli problem, V is a finite dimensional
real Hilbert space with an orthogonal linear G-action, and (1, V) is a morphism
from (B, E,S) to (BY,EV,S8V).

(ii) Let RO = (307 EO; S(Ja ‘/Oa 1/}0; \IIO) and Rl = (Bla E17 Sl; V17 wla \Ill) be two ﬁ'
nite dimensional reductions of (B,€,S). A morphism (of finite dimensional
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reductions) from Ry to Ry is a triple (v, V,T), where (¢, V) is a morphism
from (By, Eo, So) to (B1, E1,51), T : Vo — Vi is a G-equivariant injective linear
map, and the following diagram commutes.

0,0
(Bo, Eo, So) o) (BYo, Vo SW0) .

wml lT
11\1,1
(Bi, Ex, S1) 222 (8%, g7, sW)

We write Ry < Ry if there exists a morphism (¢, ¥, T) from Ry to Ri. Two
finite dimensional reductions Ry and Ry are called equivalent if Ry < Ry and
R1 < Ry.

The main results of this section assert that finite dimensional reductions
exist and form a directed system.

Theorem 7.4. Every G-moduli problem (B,£,S) admits a finite dimensional
reduction.

Theorem 7.5. If Ry, Ry are finite dimensional reductions of (B,E,S) then
there exists a finite dimensional reduction R such that Ry < R and R1 =< R.

The proofs are based on the existence of families of complements.

Definition 7.6. A family of complements for (B,&,S) is a pair (V,T') such
that V is an oriented finite dimensional real Hilbert space equipped with an
orthogonal linear G-action, I' : BxV — & is a G-equivariant bundle homomor-
phism, and

E:=imD, +imT,

for every x € M = S871(0).

Proposition 7.7. Let (V,T') be a family of complements for (B,E,S). Then
there exists a neighbourhood U C B of M and a § > 0 such that the siztuple
R .= (BY,EY, SV, V.9 ¥, defined by

B = {(z,v) eU x V| S(z) =T, |v| <6}, E(Fl,w) =V,
SF(Ia’U) =, ¢F($av) = (I,’U), \I/EC,U)’LU = (Fl‘wvw)v
is a finite dimensional reduction of (B,&,S).

Proof. T is transverse to S at every point (z,0) € M x V. Hence there exists a
neighbourhood U C B of M and a é > 0 such that I' is transverse to S at every
point (z,v) € U x V such that |v| < §. It follows that B' is a submanifold of
B x V of dimension

dim B" = index(S) + dim G + dim V.
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Hence every section of ET = BT x V has the same index as S. We prove that
SV oyl =0l o ST

SV(wF(Zav)) = Sv(x,v) = (S(2),v) = (Lyv,v) = \P?x,'u)v = qj{x,v)sr(xvv)'

The zero set of ST is MT = {(z,0) |z € M} and so ([ (M) = M x {0} = MV.
Next we observe that the tangent space of B at the point (z,0) is given by

Tiz0)B" = {(2,0) € TuB x V| Dy& =T, 0}.

The image of this space under the differential of inclusion ! : BY — B x V
contains the kernel of the operator ng,o) T.BxV — &, xV. Since

mDY,, = {(D.i,é)|deTB, eV},
im P, o = {(Tow,w)|weV},

we obtain imDéyO) + im W?w,O) = 8(‘;0) for every z € M.

We prove that BT is oriented. Since S — I is transverse to the zero section it
suffices to show that det(S—TI") = det(S). This follows from a standard argument
for determinant line bundles: If X and ) are Hilbert spaces, D : X — Y
is a Fredholm operator, V is a finite dimensional oriented Hilbert space, and
I': V — Y is a linear operator then there is a canonical isomorphism

det(D —T') = det(D).

Here the operator D —T': X &V — ) is given by
(D -T)(x,v) :=Dx — T'v.
To see this consider the exact sequence
0 —kerD@kerI" — ker(D —I') — imD NimT.
It shows that there is a canonical isomorphism
A" ker(D —T') 2 A" ker D @ A" ker I’ @ A™**(imD N imT). (18)

Since imI"'/(imI" N imD) = im(D — T')/imD we have

im(D —-T
AP cokerD = A coker(D —T') @ A (M)
imD

imI’
g AIII&X k D _ 1’\ Amax
coker( )® (imf N imD)
and hence
A™S(mDimD) & APSmD e Ame (0 *
imD N imI
AInaXimI‘\ ® Amaxcoker(D _ F) ® Amax(cokerD)*.

1%
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Inserting this identity into (18) and using A™** ker I' @ A™**imI" & Amax) = R
we find
det(D —T') =2 A" ker D @ A" (cokerD)* = det(D)

as claimed. O

Proof of Theorem 7.4. By Proposition 7.7, it suffices to prove the existence of
a family of complements (V,T'). Let 1o € M = S71(0), denote by Gy C G
be the stabiliser of xo, and let Ey C &;, denote the orthogonal complement of
the image of D,,. By the Fredholm property, Ey is a finite dimensional vector
space. The group Gg acts on T,,B and &;,, and the operator Dy, : Ty, B — &,
is Go-equivariant (because S is G-equivariant). Hence Ej inherits an orthogonal
linear action of Gy. Consider the infinite dimensional vector space

Vo :={v € C®(G, Ey) |v(hgo) = go*v(h) Vg € GV go € Go}.
The group G acts on Vy by

(gv)(h) :=v(g~'h) (19)

for g, h € G.
We prove that there exists a finite dimensional G-invariant subspace Vy C V,
such that
Ey = {’Uo(]l) | Vo € Vo}

To see this, choose any basis ey, ...,e, of Ey and choose sections v; € V,
such that v;(1) = e;. Choose £ > 0 such that the vectors vj(1),...,v,, (1) are
linearly independent whenever v1, ..., v}, € Vo such that |[v] — v;|| ;o <e. Now

the eigenspaces of the Laplace operator
A=d'd:Vy— W,

with respect to a biinvariant metric on G, are G-invariant and finite dimen-
sional. Moreover, every element of V) can be approximated in the L* norm by
finite linear combinations of eigenfunctions. Hence the functions v} € Vy can be
chosen such that each v} is contained in a finite dimensional G-invariant sub-
space V; C Vy. The subspace Vp := Vj + - .- 4+ V,,, has the required properties.
(The subspaces V; can also be obtained as a consequence of the Peter—Weyl
Theorem [5, Theorem 5.7].)
Now let K : B x V) — £ be any bundle homomorphism such that

Ky, zqvo = g+v0(g) € Eg.zo

for g € G and vy € Vp, where g,z := (¢97!)*z. To see that such a homo-
morphism exists note first that, since vo(hgo) = go*vo(h), the homomorphism
K, : Vo — &, is well defined for x € G.zo := {g.x0|g € G}. Secondly, since
G.zo is a submanifold of B, K can be extended by a partition of unity con-
struction (see [15, page 30] for partitions of unity on Hilbert manifolds) to a
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homomorphism from B x Vy to £. The resulting homomorphism is not neces-
sarily G-equivariant. Define I'g : B x Vj — & by

1
I = K, d Ex
0z V0 VOI(G)/Gg g.zglodg € Cg

for x € B and vy € Vp, where gug € Vj is given by (19). Then Iy is G-equivariant
and Tgz,vo = vo(1).

Now cover the compact set M C B by finitely many open sets Ui, ...Uy
such that, for each ¢ € {1,..., N}, there exists a G-equivariant homomorphism
I'; : B x V; — & such that

imD, +iml;, =&,
for x € U;. Define

V=Vig---dVyx
and ', : V — &, by

Tp(v,...,on) :=T1501 + -+ Tygon.
Then (V,T) is a family of complements. O

Proof of Theorem 7.5. The proof has three steps.

Step 1. For every finite dimensional reduction R of (B,E,S) there exists a
finite dimensional reduction R' = (B',E',S", V', ¢/, V') such that R < R’ and
the bundle E' — B’ admits a trivialization.

Let R = (B,E,S,V,¢,V¥). Shrinking B, if necessary, we may assume that
there exists a finite dimensional Hilbert space W equipped with an orthogonal

linear G-action and an injective G-equivariant vector bundle homomorphism
E—BxW:(z,e)— (z,Pze). Define R’ by

B :={(z,w) e BxW]|w Lim®,}, o' (x,w):= (¢(x),w),

E' =B"xW, \Ilzx7w)(<1>xe +wy) = (Ve wy),
V=V xW, S (x,w) := P, 5(x) +w

forx € B, e € E,, and w,w; € (im®,)*. Then R < R'.

Step 2. For every finite dimensional reduction R = (B,E,S,V,1,¥) of a
G-moduli problem (B,E,S) there exists a family of complements (W,T) for
(BYV,EV,8V) such that R < R'.

By Step 1, we may assume without loss of generality that £ = B x W. Choose
any bundle homomorphism I' : BY x W — &V such that

) v
Py =Ta: W= Eyyy
for  near M = S~1(0) € B. Then R < R'. Note, in particular, that

B = {(z,v,w) € BXxV x W Ty w=38"(z,v)}.

29



The inclusion B — BT is given by = — (¢/(z), S(x)) and the bundle homomor-
phism £ = B x W — E' = B x W is the obvious lift of this inclusion.

Step 3. We prove Theorem 7.5.

By Step 2, we may assume that Rg = R'® and Ry = R for two families of
complements (Vp, ') and (V1,T'1). Define a family of complements (V,I") by

Vi=Waowh, Ty (v, v1) :=Togvo + T'igv1.

for x € B, vg € Vp, and v; € V;. Then R' < RT for i =0, 1. O

8 Construction of the Euler class
Let (B,&,S) be a regular G-moduli problem. We define the Euler class
YBES H:{(B;R) — R

as follows. Let a € Q& (B) be equivariantly closed and R = (B, E, S, V, 9, ¥) be
a finite dimensional reduction of (B,£,S). Let (U,7) be a Thom structure on
(B, E,S). We define

XB’E’S(OK) — XB,E,S(w*aV) _ / w*aV A S*T, (20)
B/G
where oV € Qf(BY) is the pullback of a € Q&(B) under the obvious G-
equivariant projection BY = B x V' — B. Since the difference of two Thom
forms is exact, the integral in (20) is independent of the choice of the Thom
structure. Since 7 is G-closed it depends only on the equivariant cohomology
class of a.

Proposition 8.1. The Euler class X% is independent of the finite dimen-

stonal reduction R used to define it. It satisfies, and is uniquely determined by,
the (Functoriality) and (Thom class) axzioms.

Proof. Proposition 7.1 and Theorem 7.5. O
Proposition 8.2. The Euler class satisfies the (Transversality) aziom.

Proof. Suppose S is transverse to the zero section and let (B, E, S) be a finite
dimensional reduction of (B, &, S). Then S is also transverse to the zero section.
Hence the (Transversality) axiom follows from Corollary 6.4. (|

Proposition 8.3. The Euler class satisfies the (Homotopy) aziom.

Proof. The proof of Theorem 7.4 shows that there exists a family of complements
I':[0,1] x BxV — & such that

gt,z = ithm +im ]‘—‘tyﬂ?
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for t € [0,1] and z € M; = S;(0), where D;, := DSi(x) : TuB — &
denotes the vertical differential of S;. The finite dimensional reduction is now
the manifold with boundary

B:={(t,z,v) €[0,]] x Bx V| (t,x) € U, |v] <6, Si(x) =T v},
where U C [0,1] x B is a sufficiently small open neighbourhood of

M=5710) = [ J{t} x My,

and the section S : B — V is given by S(¢,z,v) := v. Let 7 € Q&(V) be a
Thom form on V as constructed in the proof of Theorem 5.3, supported in a
convex open neighbourhood U C V of zero such that S~*(U) has a compact
closure in B. Then, for every G-closed equivariant differential form o € Q& (B)

of degree
deg(a) = dim B —dim V —dim G — 1,

it follows from Proposition 4.2 (ii) that

X31,51,31 (LTOK) _ XBO,go,SU (LSO() _ / a A S*r
doB/G
= / de(a N S*T)
B/G
= 0.
This proves the proposition. O

Proposition 8.4. The Euler class satisfies the (Subgroup) axiom.

Proof. Let B be a (finite dimensional) manifold with a smooth G action with
finite isotropy and suppose that H C G is a normal subgroup that acts freely
on B. Denote h := Lie(H) and let 7 : B — B/H be the obvious projection.
Let A € Q'(B,g) be a connection 1-form and denote by m.A € Q*(B/H, g/h)
the induced connection 1-form on B/H. Then every local slice ¢g : Uy — B
determines a local slice 7o ¢ : Uy — B/H for the G/H action on B/H. Now
let a € QF ;;(B/H) be a G/H-closed equivariant differential form, supported
in (G/H)*m o ¢g(Up). Then the composition of « : g/h — Q*(B/H) with the
projection g — g/b, followed by the pullback Q*(B/H) — Q*(B) by =, is a
G-closed equivariant differential form on B which we denote by 7%« € Qf (B).
It is supported in G*¢o(Up) and satisfies

(m"a)a =7 Qr, 4.

Hence

/ o= %wwu:/um%w%A:/ .
B/G Uo Uy (B/H)/(G/H)

This proves the proposition. O
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We have established all properties of the Euler class except for the rationality
axiom. The proof relies upon an alternative construction of the Euler class
via multivalued perturbations. After some preparations on weighted branched
submanifolds the rationality axiom is proved at the end of Section 10.

9 Weighted branched submanifolds

To prove the rationality axiom it suffices, by Theorem 7.4, to consider the finite
dimensional case. Let (B, F,S) be a finite dimensional G-moduli problem. In
general, there is no G-equivariant perturbation of S which is transverse to the
zero section. However, it is always possible to construct a multivalued perturba-
tion ¥ : B — 2F with rational weights which is both equivariant and transverse
to the zero section. This gives rise to an alternative definition of the function
xBES and shows that it takes rational values on H¢(B; Q). Such multivalued
perturbations were used by Fukaya and Ono [11] in their construction of the
Gromov—Witten invariants on general symplectic manifolds. The following ex-
position grew out of discussions of the third author with Hofer in our attempt
to understand Floer homology for general symplectic manifolds. A preliminary
discussion of multivalued perturbations and branched manifolds can also be
found in [22].

We begin with an exposition of weighted branched submanifolds. They will
appear in the next section as zero sets of multivalued sections.

Definition 9.1. Let B be a finite dimensional manifold and G be a compact
oriented Lie group which acts on B with finite isotropy. Let d be a nonnegative
integer. A weighted branched d-submanifold of B is a function

A:B—QnN[0,00)
with the following properties.
(Equivariance) A(¢g*z) = A(z) for allz € M and g € G.

(Local structure) For each xg € B there exist an open neighbourhood U
of xg, finitely many (d + dim G)-submanifolds My, ..., My, C U (called
branches of \), and finitely many positive rational numbers A1, ..., Am
(called weights) such that each M; is a relatively closed subset of U and

Az)= YA
zeM;
for every x € U.
A weighted branched d-submanifold A of B is called compact if its support
M :={z € B|X(z) > 0}

is compact. A point x € M is called a branch point if the restriction of A
to M is not locally constant near x. The set of branch points will be denoted
by MP.
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Remark 9.2. Note that d denotes the dimension of the quotient by G. An
ordinary submanifold M C B can be viewed as a weighted branched submanifold
by taking for A\ the characteristic function of M.

Remark 9.3. A point x is a branch point if and only if there exist two local
branches M; and M, near z such that z € M; N M, \ inta, (M; N M;). An
intrinisic definition of branched manifold is given in [22, Definition 5.6]. As part
of that definition it is required that

intyy, (M,L' n Mj) = inth (M,L' n Mj)

for any two local branches in U. This condition is automatically satisfied when
M; and M are submanifolds of B of the same dimension. Under this hypothesis
it is proved in in [22, Lemma 5.10] that the set of branch points is nowhere dense
in M.

Example 9.4. Consider the branched 1-submanifold of the plane whose support
is the union M of an embedded circle of length one and the graph of a smooth
nonnegative function on the circle that vanishes on a Cantor set. Then the set
M? of branch points is the Cantor set. Its measure can be chosen arbitrarily
close to one.

Example 9.5. The S-figure in a circle in the plane is not the support of a
weighted branched 1-submanifold.

Example 9.6. This example shows that it is not always possible to choose the
neighbourhood U in the local structure axiom to be G-invariant.
Let S = {e¢ |6 € R} act on 5% = {(z,w) € C*||2|* + |w|* = 1} by

e (z,w) := (02, ),
where k and ¢ are relatively prime. Then the subset
M = {(z,w) | Re(z‘w*) = 0}

of §3 is an S'-invariant immersed 2-torus with transverse self-intersections. It
is the support of a weighted branched 1-submanifold with weights equal to one
away from branch points and branched along the two orbits 0 x S* and S* x 0.

The branched tangent bundle

Consider the bundle of Grassmannians of linear subspaces F' C T, B that contain
the tangent space of the G-orbit of z and have dimension d+dim G. We denote
this Grassmannian bundle by

Grq(TB/g) :={(z,F)|xz € B, F € Gry(T.B/g)} .
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Proposition 9.7. Let A\ : B — Q be a weighted branched d-submanifold of B.
Then there exists a unique weighted branched d-submanifold

TX:Grg(TB/g) — Q

such that

TNz, F)= > X\ (21)

T, M;=F
for any system of local branches (M;, \;) near x. The branched submanifold T A
of Grq(T'B/g) is called the tangent bundle of \.
Proof. The proof has three steps.

Step 1. If (M, \i), i =1,...,m, is a system of local branches of A near x such
that x € M; for every i. Then £*x € T, M; for every i and every £ € g.

By assumption, A(z) = >/, A\;. Suppose, by contradiction that there exists
an index j and an element £ € g such that *x ¢ T, M;. Then exp(t&)*z ¢ M;
for small positive ¢t and hence A(exp(t€)*r) < A(z), in contradiction to the
equivariance axiom for branched submanifolds.

Step 2. There exists a unique function T : Grqg(TB/g) — Q that satisfies (21)
for every system of local branches (M;, A;) near x.

The function T'A is obviously uniquely determined by conditon (21). We must
prove that it is well defined. Let (M;,A;), ¢ = 1,...,m, and (Nj,p;), j =
1,...,n, be two systems of local branches in a common open neighbourhood U

of xg such that
m n
X0 € m M; N ﬂ Nj.
i=1 j=1

We claim that there exist
e a positive integer ¢,

e sequences Ty, € M\ M? for k = 1,...,¢ such that lim,_ . Tk, = xo for
every k,

e and decompositions
{1,...,m}=IlU---UIg, {1,...,n}=J1U"'UJg,

such that Iy, = {i|zk, € M;} and Jy = {j |k, € N;} for every k and
every v.

To see this note that, by Remark 9.3, there exists a sequence z1, € M \
M? converging to xg. Let I, C {1,...,m} be the set of indices i such that
x1,, € M; and, similarly, J;, C {1,...,n} be the set of indices j such that
z1, € N;. Passing to a subsequence, if necessary, we may assume that the
index sets I, =: I and Jy, =: Jy are independent of v. If I = {1,...,m}
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then A(z1,) = A(zg) for every v and so J; = {1,...,n}. Otherwise choose a
sequence a3, € M\ Uie[1 M; converging to xg. Since M \ M? is dense in M
(see Remark 9.3), we may assume without loss of generality that zo, ¢ M?°.
Now continue by induction to obtain the required sequences zy,, k=1,...,¢.

With the existence of the sequences zy,, established we have
Fyp =Ty, ,M; =Ty, ,N;

for every ¢ € I and every j € Ji, because z, is not a branch point of M.
Moreover, by construction, the numbers

k*AfEku Z)\*Zﬂj

i€ly JjE€Jk

are independent of v. It follows that

Fy == lim Fy, = TpyM; = Ty, N;

vV—00

for every i € I and every j € Ji. Hence

> A—ch— > ow

T, M;=F T,N;=F

This proves that the sum in (21) is independent of the choice of the local
branches.

Step 3. The function TX : Grg(TB/g) — Q of Step 2 is a weighted branched
submanifold of Grq(TB/g).

Equivariance follows from the fact that, if the weighted submanifolds (M;, A;)
are local branches of A\ in U, then the weighted submanifolds (¢*M;, \;) are
local branches of A\ in g*U. The function T'\ evidentity satisfies the local struc-
ture axiom with local branches TM; = {(x,T;M;) |z € M;} C Grqg(TB/g) in
7 YU) C Grq(TB/g) and weights \;. O

Definition 9.8. Let A : B — Q be a weighted branched d-submanifold of B with
support M. A point x € M is called singular if

#{F € Gra(T,B/g) | TA(x, F) # 0} > 1.
The set of singular points will be denoted by M?.

Note that
MSc M

for every weighted branched d-submanifold. In general, the set M® can be con-
siderably larger than M?, although both sets are nowhere dense. Example 9.4
shows that the set M \ M’ can have arbitrarily small measure. In contrast, the
next lemma shows that the set M?° always has measure zero.
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Lemma 9.9. Let A be a weighted branched d-submanifold of B with support M
and local branches My, ..., My, near xo. Then, for every j, the set M; N M?®
has measure zero in M;.

Proof. Fix a number j € {1,...,m} and, for j/ # j, consider the set
Cj/ = {l‘ S Mj/ N Mj |TxMj/ 7é TmMj},

where T;; M, and T, M; are understood as nonoriented subspaces of T, B. Then
each set C}/ is a countable union of compact sets, namely of the sets C}: . of all
points x € M NM; such that T;, M}, contains a unit vector whose angle to T, M;
is at least € and whose open e-neighbourhood is contained in U. Moreover,

MM = Cy.
J'#J
Now fix a number j' € {1,...,m} \ {j}. Let & € C;. Then there exists a
neighbourhood V' C B of x such that the intersection M; N M; NV is contained
in a codimension-1 submanifold of M;. Hence the set C;; NV is contained in
a codimension-1 submanifold of M;. Since Cjs is a countable union of compact
sets it follows that the Cj can be covered by countably many codimension-1

submanifolds of M. Since this holds for every j’ # j, it follows that M; N M?®
has measure zero. O

Orientations

Next we shall introduce the notion of an orientation of a branched submanifold.
Consider the bundle of Grassmannians of oriented linear subspaces of T, B that
contain the tangent space of the G-orbit of  and have dimension d + dim G.
We denote this Grassmannian bundle by

Grj(TB/g) = {(z,F)|z € B, F € Grj (I,B/g)} .
We write —F for the subspace F' equipped with the opposite orientation.

Definition 9.10. Let B be a finite dimensional manifold and G be a compact
oriented Lie group which acts on B with finite isotropy. Let A : B — Q be a
weighted branched d-submanifold of B. An orientation of \ is a function

p:Grj(I'B/g) — Q
with the following properties.

(Equivariance) pu(g*z,g*F) = u(x, F) for all z € B, F € Gr}(T,B/g), and
geQqG.

(Local structure) For each xo € B there exists a system of oriented local
branches (M;,\;), i = 1,...,m, in a neighbourhood U such that

T, M;=F T, M;=—F

for every x € U.
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Remark 9.11. If A : B — Q is the characteristic function of an ordinary
submanifold M C B then the oriented Grassmannian Gr}(TM/g) is a 2-1
covering over M, and an orientation corresponds to a continuous function pu :
Gri(TM/g) — {£1}.

Remark 9.12. Every orientation p of A satisfies

Wz, —F) = —p(z, F).

Note that p can vanish on the Grassmannian Gr (7, B/g) for a point x € M
when the oriented weights of the branches cancel each other out at x. This may
even happen on an open subset of M.

Remark 9.13. In the case d = 0 the set Grg (T, B/g) is canonically isomor-
phic to {£g*xz}. In this case an orientation determines a function B — Q :
x — p(x,g*x). We emphasize that the contravariant action determines the
orientation and this is important when the dimension of G is odd.

Example 9.14. Consider a branched 1-submanifold A of the plane whose sup-
port is the union of a circle and the graph of a smooth nonnegative function on
the circle which vanishes on a closed interval and is positive on the complement.
This branched manifold admits four orientations. Two of these orientations
vanish on the zero set of the function. Note that the branched 1-submanifold of
Example 9.4 admits countably many distinct orientations.

Remark 9.15. Definition 9.10 is more general than the definition of an oriented
branched submanifold in [22]. In [22] it is required that the orientations of the
local branches can be chosen such that they agree over the complement of the
set M? of the branch points. The orientation is,o of Ag, in Proposition 10.5
below satisfies this condition. However, it is not necessary to impose this in
order to obtain a well defined notion of an integral over a compact oriented
branched d-submanifold.

Example 9.16 (Product). The product of two weighted branched subman-
ifolds \; : B; — Q is the weighted branched submanifold A : By x B; — Q
defined by

)\(l‘o,l‘l) = )\0(1’0))\1(1‘1).

Orientations p; : Grj{i (T'Bi/gi) — Q of the \; induce an orientation
p: Gry g (T(Bo x B1)/(go x g1)) — Q,
of A via

p((zo, 1), Fo x F1) := po(xo, Fo)pa (w1, F1).

Branched cobordisms

Compact weighted branched d-submanifolds of B form a (small) category. The
morphisms are branched cobordisms. This requires the notion of a branched
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d-submanifolds with boundary. More precisely, let B be a smooth finite dimen-
sional G-manifold with (G-invariant) boundary 0B. A weighted branched d-
submanifold with boundary A : B — Q is defined as in Definition 9.1 except
that the local branches M; are now submanifolds with boundary 0M; = M;N0B
and they are required to be transverse to the boundary 0B. The boundary
of X is defined as the restriction O\ = Agp. If p : Gr}f(TB/g) — Q is
an orientation of A then the boundary orientation of d\ is the function
Op: Gry(TOB/g) — Q defined by

ou(z,0F) = Z w(z, VR @ OF)

for z € OB and OF € Gr) | (T,0B/g), where the sum runs over all outward
pointing unit normal vectors v.

Definition 9.17. Let B be a smooth finite dimensional G-manifold.

(i) Two compact weighted branched d-submanifolds Mo, \1 : B — Q are called
cobordant if there exists a compact weighted branched (d + 1)-submanifold
A:[0,1) x B — Q and a constant € > 0 such that

Ao(z) = Alt, z), A(z) = A(1 —t,2)

for every x € B and every t € [0,e]. In this case X\ is called a compact
weighted branched cobordism from \g to \;.

(ii) Two compact oriented weighted branched d-submanifolds (Mo, o), (A1, 1)
of B are called oriented cobordant if there exists a compact oriented wighted
branched (d+1)-submanifold (A, ) of [0,1] x B such that X is a compact weighted
branched cobordism from Ao to A\ and

,U'O(va) = M((O,Z’),R(*l,()) X F)a Nl(va) = /L((].,QL'),R(].,O) X F)

for every x € B and every F € Grj} (T, B/g). In this case (\,u) is called a
compact oriented weighted branched cobordism from (Ao, 1) to (A1, p1)-

Let A : B — Q be a weighted branched d-submanifold of B and X' : B — Q
be a weighted branched d’-submanifold. Then A and ) are called transverse
if any two subspaces F, F’ C T, B such that TA(z, F) > 0 and TA(x, F') > 0
intersect transversally. In this case the product A\ : B — Q, is again a weighted
branched submanifold, called the intersection of A and ). An orientation
of B and orientations y : Gr} (T'B/g) — Q and ' : Gr},(TB/g) — Q of A and
X, respectively, induce an orientation

pupd” Gr:l_—',-d/—dim B+dimG(TB/g) —Q

of A\ via

MMI(IaH) = Z N(IaF)Ml(va,)' (22)
H=FNF"'
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Proposition 9.18. Let N : B — Q be a weighted branched d’'-submanifold of
B with closed support. Then the following holds.

(i) Every compact (oriented) weighted branched d-submanifold A : B — Q is
(oriented) cobordant to a compact (oriented) weighted branched d-submanifold
of B that is transverse to X'

(i) If Mo, A1 : B — Q are (oriented) weighted branched d-submanifolds of B
that are (oriented) cobordant and transverse to X' then there exists a compact
(oriented) weighted branched cobordism A : [0,1] x B — Q from Ao to A1 such
that A is transverse [0,1] x X'.

Proof. The transversality theory in [1] can be adapated to branched subman-
ifolds as follows. A multivalued vector field on B is a weighted branched
d-submanifold n : TB — Q such that the branches of 1 are local vector fields

on B and
> nzv) =1
veT, B

for every x € B (see Definition 10.1 below). The convolution of two such vector
fields is defined by

o xm(z,0) = > (@, vo)m(x,v1).

vo+v1=v

Using cutoff functions one can show that, for every x € B and every v € T, B,
there exists a multivalued vector field n : TB — @ such that n(xz,v) # 0.
Hence, by using convolutions, one can construct a finite sequence of multivalued
vector fields 71,...,mny : TB — Q along A such that, for every x € B such
that A(x) > 0, there exist a spanning sequence vi,...,vxy € T, B such that
n;(z,v;) > 0. Now choose any G-invariant metric on B and, for ¢ > 0 sufficiently
small, consider the function A : {¢ € RV |[¢| < €} x B — Q defined by

N
LS 35 SETCED SRR
i=1x,€B

v €Tz ,; B

exr)wi(Civi):x

for ¢ = (¢!,...,¢") € RY such that |¢| < € and € B. Then A is a weighted
branched (d+ N)-submanifold of RY x B, A(0,x) = A(z), and A is transverse to
A’ := RN x \. Hence the intersection AA’ is a branched submanifold of RV x B.
Let ¢; € RY be a sufficiently small common regular value of the projections
from the branches of AA’ to RY. Then the compact branched submanifold
B — Q:x+— A((1,z) is cobordant to A and transverse to A’. This proves (i).
The proof of (ii) is similar. O

Integration

Let A : B — Q be a compact weighted branched d-submanifold of B with
support M and let p : Grj(TB/g) — Q be an orientation of A. We now
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explain how to integrate an equivariant differential form o € Q& (B) over (A, ).
Abusing notation, we shall not indicate the dependence on p in the notation.
The integral is defined by

N mg

)\ij o
[e=2y picia (23)

i=1 j=1 Gl St ne00)

where A € Q'(B,g) is a connection 1-form on B, (U;,¢;,G;), i = 1,..., N,
are local slices of the G-action on B such that the sets G*¢;(U;) cover M, the
pairs (M, Aij), j = 1,...,m;, are the oriented weighted branches of M in a
neighbourhood of ¢;(U;), and the functions p; : B — [0,1] form a G-invariant
partition of unity over M such that supp p; C G*¢;(U;).

Proposition 9.19. (i) The integral (23) is independent of the oriented local
branches, the connection, the local slices, and the partition of unity used to define
it.

(i) If B € Q& (B) and X\ : B — Q is a compact oriented weighted branched
d-submanifold with boundary then

/ dop= [ B
A/C ar/a

Proof. Fix a local slice (Up, ¢o, Go). Suppose that (M;,\;), i = 1,...,m, and
(Nj,p5), 3 =1,...,n, are two collections of oriented local branches in a neigh-
bourhood of ¢o(Up), such that the orientations of both collections of local
branches are compatible with u as in Definition 9.10. Suppose that o € Qé(B)
is supported in G*¢o(Up) and let A € Q'(B,g) be a connection 1-form. We
must prove that

Soa an=Yu [ . (24)
i—1 M;N¢o(Uo) =1 N;jNgo(Uo)

To see this recall from Lemma 9.9 that each set M; N M?® and N; N M?° has
measure zero. Moreover, by Definition 9.8, the projection from the support of
T to B is bijective over M \ M*. Hence the tangent spaces of the submanifolds
M; \ M* and N; \ M* agree at each intersection point. Now choose a finite
collection of G-invariant disjoint Borel sets Q1,...,Q¢ C M \ M? such that

Mﬂ(bo(Uo)\Ms:QlU'-'UQg,

M;NQr # 0 = Qr C M,
N;NQr #0 = Qr C N;j
for all i, j, and k. Define the measurable functions fi : M N ¢o(Uy) — [0, 1] by

1, ifxeQ,
Fi(@) { 0, if:c¢Q:.
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Moreover, choose finite sequences i, € {1,...,m} and jx € {1,...,n} such that
Qr C M;, NNy, for all k. Then, by Definition 9.10,

f:)\i/ ayq = ze:i)\i

/ froa
i—1 M;N¢o(Uo) k=1 i=1 M;Ngo(Uo)\M*
14

= / M(x’TxMik)fkaA

M;, Mo (Uo)\M*

_ / w(x, Ty Nj,) fraa

Nj,.Ngo(Uo)\M*

= Ziuj/ Jraa

k=1 j=1 N;Ngo(Uo)\M*

= zn:uj/ 4.

Njﬁd)()(Ug)

This proves (24). It follows that the integral (23) is independent of the choice
of the local branches and the partition of unity used to define it. To prove (ii),
suppose first that 3 is supported in an open set G*¢;(U;) and choose a partition
of unity such that p; is equal to one on the support of 3. Then the the result
follows from Stokes’ theorem and the fact that (dg()a = dB4 (Theorem 3.8 (ii)).
To prove (ii) in general, consider the form ), da(pi3) for a suitable G-invariant
partition of unity p;. The independence of the connection A now follows from (ii)
and Theorem 3.8 (iii). The independence of the local slices follows as in the proof
of Proposition 4.2. O

Intersection numbers

Suppose that B is oriented and (A, 1) and (N, u’) are compact oriented weighted
branched submanifolds of B that intersecting transversally. If their dimensions
satisfy d + d’ = dim B — dim G then the intersection (AN, uu') is a compact
oriented weighted branched 0-submanifold. This is just a collection of finitely
many G-orbits [z] with isotropy subgroups G, and orientations u(x, g*z) € Q.
In this case the intersection number of A and X is defined by

!/ /
wo A Gl

Here the first sum runs over all G-orbits [z] in B and the second sum over all
pairs (F, F') € Gr} (T, B/g) x Gr},(T.B/g).

Proposition 9.20. The intersection number depends only on the oriented co-
bordism classes of A and X .
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Proof. Suppose that \g is oriented cobordant to Ay and that Ay and Ay are trans-
verse to \'. Then, by Proposition 9.18, there exists a compact oriented weighted
branched cobordism A from A¢ to A; that is transverse to [0,1] x X. Hence
the intersection A([0,1] x X’) is a (1-dimensional) compact oriented weighted
branched cobordism from Mg\ to A\ \. Hence it follows from Proposition 9.19
that Ag - N = Ay - N O

Now consider the case G = {1}. Let X be a smooth compact oriented
finite dimensional manifold with boundary 0X and (A, ¢) be a compact oriented
weighted branched d-submanifold of X whose support M does not intersect the
boundary 0X. Let Y be a compact oriented smooth manifold with boundary
such that d + dim ¥ = dim X. A smooth map f : (Y,9Y) — (X,9X) is called
transverse to )\ if the graph of f and Y x A\ are transverse as as weighted
branched manifolds of Y x X, or equivalently, if f is transverse to every branch
of A. If this holds then it follows from the definition of a branched submanifold
that f~1(M) C Y is a finite set. The intersection number of f with (\, ) is
given by

Foa= Y Z)\if(y;f,Mi)7
yef—1(M) j=1

where U, C X is an open neighbourhood of f(y), the pairs (M;, \;) for i =
1,...,my are the local oriented weighted branches of (A, p) in U,, and the
intersection number e(y; f, M;) is defined to be 1 according to whether or not
the orientations agree in the decomposition

Tf(y)X =im df(y) b Tf(y)Mi.

Applying Proposition 9.20 in the case G = {1} to the graph of f and the
branched submanifold Y x A of Y x X we find that the intersection number
depends only on the homotopy class of f and the oriented cobordism class

of (A, p).
Rational cycles

The next theorem asserts that, in the case G = {1}, every compact oriented
weighted branched submanifold determines a rational homology class and that
the intersection corresponds to the intersection product in homology.

Theorem 9.21. Let Z be a smooth finite dimensional manifold and \ : Z — Q
be a compact oriented weighted branched d-submanifold of Z.

(i) There exists a unique rational homology class [N € Hq(Z;Q) in singular

homology such that
() = [
A

for every closed d-form o € Q4(2).

(ii) The homology class [A] depends only on the oriented cobordism class of \.

42



(iii) If Z is oriented and N : Z — Q is a compact oriented weighted branched
submanifold of Z that intersects \ transversally then

AN =[] - [V,
where - denotes the intersection pairing on singular homology.
Proof. The proof has eight steps.

Step 1. We may assume without loss of generality that Z is oriented.

Let 7 : Z — Z be the oriented double cover and denote by A :Z — Q the
composition of A with 7. Assuming assertion (i) in the oriented case we obtain
a homology class [)] € Hd(Z ;Q). The required homology class on Z is then
given by 2[A] := m.[\] € Hy(Z;Q).

Step 2. Let X C Z be a compact neighbourhood of the support M of A with
smooth boundary X . Let o € Q4(X) be a closed differential form whose coho-
mology class [a] € HY(X;R) is dual to a smooth map f : (Y,0Y) — (X,0X).

Then
/a =f-A (25)
A

To see this note that, by a standard general position argument, f can be chosen
transverse to A. Suppose first that f is an embedding. Then there exists a
closed d-form ay € Q4(X) such that o — oy is exact, a; is supported in a small
tubular neighbourhood of f(Y'), and the pullback of af to the normal bundle
of f(Y) is a Thom form. Hence, by Proposition 9.19 (ii),

Ja=[ar

Now the formula (25), with ka replaced by «ay, follows from the fact that the
integral of s over a local branch M; of A is localized near the intersection point
f(y) € M; and is equal to the intersection number e(y; f, M;) at this point.
The nonembedded case can be reduced to the embedded case by replacing
f by the graph of f and a by a closed n-form 74 € Q"(Y x X) such that 7¢ is
supported in a tubular neighbourhood Uy C Y x X of the graph of f. Then
a— [, 1€ Q4(X) is exact, where Jy denotes integration over the fibre. Hence

/a:/ Tr =graph(f) - (Y xX) = f- A
A Y XA

Here Y x A denotes the induced branched n-submanifold of Y x X with support
Y x M and the orientation Y x gt on Y X A is induced by the orientation of Y and
u. In the above equation the first equality follows from Proposition 9.19 (ii),
the second from the embedded case, and the last from the definition of the
intersection number. This proves (25).

Step 3. If a € Q%(Z) represents a rational cohomology class [o] € HY(Z;Q)
then [, a € Q.
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Let X C Z be a compact neighbourhood of the support M of A with smooth
boundary 0X and denote by ¢ : X — Z the obvious inclusion. Then t*«
represents a singular cohomology class [t*a] € H?(X;Q). The Poincaré dual of
[t*a] is a relative rational homology class

PD([t*a]) € Hy—a(X,0X;Q), n = dim X.

Now for every such class there exist an integer k, a compact oriented smooth
(n — d)-manifold Y with boundary, and a smooth map f : (Y,9Y) — (X,0X)
such that the image of [Y] € H,_4(Y,0Y;Q) under f,. is equal to

£IY] = kPD(["a]) € H*(X,0X:Q)

(see [7, Corollary 27.13]). Here we denote by [Y] the image of the fundamen-
tal class (understood as an integral homology class) under the homomorphism
H.(Y,0Y;Z) — H.(Y,0Y;Q). Hence, by Step 2,

k://\a:f-)\e(@.

This proves Step 3.
Step 4. We prove (i) and (ii).

By de Rham’s theorem, every rational singular cohomology class can be rep-
resented by a differential form o € Q4(Z) such that the integral of a over
every smooth integral cycle is a rational number. By Step 3, [ ya € Q for ev-
ery such differential form «. Thus integration over A defines a homomorphism
H4(X;Q) — Q. Now the universal coefficient theorem asserts that

Hq(X;Q) = Hom(H(X;Q),Q).

Hence there exists a rational cycle in X (and hence in Z) such that integra-
tion over A is equal to integration over this rational cycle. This proves (i).
Assertion (ii) follows from Proposition 9.19.

Step 5. Assume d+d = dim Z and let 7\ € QU Z=4(Z) be a closed form with
compact support that is dual to [N\]. Then

/,T,\:)v)\/ (26)

for every oriented weighted branched d'-submanifold N : Z — Q that is trans-
verse to A and has closed support.

Choose a compact neighbourhood X of the support of A with smooth boundary
0X such that each branch of X intersects X in a closed submanifold and is
transverse to the boundary. We may also choose X such that each of these
branches intersects the support of A in precisely one point. By (i) and Poincaré
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duality, there exists a closed form 7, € Q4mZ=4(X) such that supp 7y, C X \9X

and
/a:/ a A\ Ty
A X

for every closed form a € Q¢(X). Denote by M7, ..., M; C X the intersections
of the oriented branches of A" with X and let A{,..., A}, be the corresponding
rational weights. For each j choose a differential form T]’- € Q4(X) with support
near M such that 7} is a Thom form on the normal bundle of M. Then, By

C()I()llaly 63,
J

for every closed form 8 € Q*(X) with supp8 C X \ 0X. Hence

k
/T)\ = Z)\Q/ X
k
= >x [ nar
=1 ’X
k
= (—1)dd2)\3/ i AT
=1 7X
k
dd’
= 0N [
j=1 X

k
= (=DM N M-
j=1

= (~1)™MN.A
= AN
Here the fifth equality follows from (25). Thus we have proved (26).

Step 6. Let N : Z — Q be an oriented weighted branched d'-submanifold of
Z with closed support and Y C Z be a smooth oriented submanifold that is
transverse to X' and closed as a subset of Z. Then

/ aNTy = / a (27)
' YN

for every compactly supported closed form o € Qd/_COdimY(X). Here v €
QeodimY (7 s q Thom form for the normal bundle of Y.

The branched (d’ — codimY’)-submanifold Y N A’ is defined by

o= { G 1y
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The orientation of Y N A is defined by (22) with p given by the orientation
of Y. Suppose first that W C Z is a compact oriented submanifold which is
transverse to Y, X, and Y N\, and that o = 7y is a Thom form for the normal
bundle of W. Then

/Tw/\TyZ(WQY)-)\IZW-(YQ)\I)Z/ TW -
’ YnX

Here the first and last equalities follow from Step 5. This proves Step 6 in the
case & = Ty. The general case can be reduced to the case o = Ty as in the
proof of Step 2.

Step 7. Assume d+d > dim Z and let 7\ € QU Z=4(Z) be a closed form with
compact support that is dual to [N\]. Then

/,aATA://\XQ (28)

for every closed form a € Qd"’d/_dimz(X) and every oriented weighted branched
d'-submanifold N : Z — Q that is transverse to A and has closed support.

We assume first that &« = 7y is dual to a smooth submanifold ¥ C X with
boundary Y = Y N9X and that Y is transverse to A, A, and AX. Then

/ v AT, = (_1)cod1mY~cod1m)\/ ™A Ty
!

’

_ (_1)codimY~codim)\ / TA

YN
_ (71)codimY~codim)\)\ . (Y N )\/)
= Y -(\)

= / Ty .
AN

Here the second equality follows from Step 6 and the the third and last equalities
follow from Step 5. This proves Step 7 in the case « = 7y. The general case
can be reduced to the case & = 7y as in the proof of Step 2.

Step 8. We prove (iii).

Let 75, 7\, Tan be closed forms on Z with compact support that are dual to
[Al, [N], [AN], respectively. Then the homological intersection pairing [A] - [N]
is, by definition, Poincaré dual to the cohomology class of 7\ A 7a,. Now, by

Step 7,
/Oé/\T)\/\T)\/Z/ 0&/\7’)\2/ a:/a/\r,\x
Z N AN z

for every closed form « € Qd"’d/_dimz(Z). Hence, by de Rham’s theorem, the
forms 7y A Ty and Ty represent the same cohomology classes in the compactly
supported real cohomology of Z. Hence, in H,(Z;R),

[A]- W] =PD([rx A 7)) = PD([max]) = [AN].
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By the universal coeflicient theorem, this continues to hold in H.(Z;Q). O

Remark 9.22. Let Z be a smooth finite dimensional manifold and a € Hy(Z;Q)
be a rational homology class. Then there exists a compact oriented weighted
branched d-submanifold A : Z — Q such that a = [A]. Indeed, Thom has shown
in [23] that there exists a positive integer k and a compact oriented submanifold
M C Z such that ka = [M]. Now just take the weighted branched submanifold
with support M and weight 1/k.

Example 9.23. Let . : CP? — S™ be an embedding. Then the characteristic
function A := x,(cpz) : S™ — Q is a compact oriented weighted branched 4-
submanifold of S™ which is homologous to zero but is not compact oriented
weighted branched cobordant to the empty submanifold. The proof requires
a refinement of the notion of an integral over a branched submanifold and a
stronger notion of singular points. Namely one can introduce the set M*°° of
all points z in the support of A such that there are two local branches M; and
M passing through x which do not agree up to infinite order at x. Then one
can deduce from Lemma 9.9 that the set M; N M?*°° has measure zero for every
branch M;. Now the notion of an integral can be extended to differential forms
which are defined only on the support of A and do not necessarily extend to the
ambient space. The differential forms w; and wj on two local branches M; and
M are required to agree on M; N M \ M*°. It then follows as in the proof
of Proposition 9.19 that the integral is well defined and that Stokes’ theorem
continues to hold in this situation. This refined version of the integral can now
be used to prove that the first Pontryagin number is well defined for a compact
oriented weighted branched 4-submanifold and is an invariant of the compact
oriented weighted branched cobordism class. Now the Hirzebruch signature
theorem asserts that the first Pontryagin number of a smooth 4-manifold is
equal to three times the signature, and hence is nonzero in our example. Hence
an embedded projective plane cannot be compact oriented weighted branched
cobordant to the empty submanifold.

We close this section with a conjecture.

Conjecture 9.24. For every compact oriented weighted branched d-submani-
fold X\ : Z — Q there exists a rational cycle in Z which represents the class [A]
and takes values in the support of \.

Note that the conjecture follows from Theorem 9.21 if the support of A is
the retract of an open neighbourhood in Z. But Example 9.4 shows that this
need not be the case.

10 Multivalued perturbations

In this section we show how weighted branched submanifolds arise as zero sets
of multivalued sections. The main theorem asserts that the Euler class of a
finite dimensional G-moduli problem can be defined by integration over such a
zero set. This implies rationality of the Euler class.

47



Multivalued sections

Definition 10.1. Suppose that 7 : E — B is a finite dimensional fibre bundle
and G is a compact Lie group G that acts on E and B with finite isotropy
such that the projection 7 is G-equivariant. A multivalued section of F is a
weighted branched submanifold o : E — QN 0, 00) with the following properties.

(Equivariance) o(g*x,g*e) = o(z,e) for allx € B, e € E,, and g € G.

(Local structure) For each xy € B there exist an open neighbourhood U of

xg, finitely many smooth sections s1,...,8ym : U — E, and finitely many
positive rational numbers o1, ...,0, such that, for every x € U,
ZUi:l’ oz, e) = Z 0;.
si(x)=e

Two multivalued sections oy, 01 are called transverse if they are transverse as
weighted branched submanifolds. They are called homotopic if there exists a
multivalued section o of the pullback bundle [0,1] x E — [0,1] x B such that

olioyxe = 00 and o|{1}xE = 01.

Remark 10.2. If 0 : E — Q is a multivalued section then, for every = € B,
the set
Y(z) :={e€ E; | o(z,e) > 0}

is finite and }_ .y, o(z,€) = 1. Moreover, ¥(z) = {s1(z),..., sm(2)}, where
the s; are the local branches of o.

Example 10.3. Let X and Y be manifolds on which G acts with finite isotropy.
Then a multivalued map from X to Y is a multivalued section ¢ : X XY — Q
of the trivial bundle X xY — X. Suppose that ¢; are multivalued maps from X;
to Y. They give rise to weighted branched submanifolds o; : Xg x X1 XY — Q,
given by

oo(wo,21,Y) = ¢o(20,Y), o1(zo,71,y) = d1(w1,y).

If dim Xg + dim X; = dimY + dim G, X and X; are compact, Xy, X1, Y, and
G are oriented, and G acts on all three manifolds by orientation preserving dif-
feomorphisms then there is an intersection number ¢g-¢; € Q. Proposition 9.20
implies that this number depends only on the homotopy classes of ¢g and ¢
(through multivalued maps).

Proposition 10.4. Let 0 : E — Q be a multivalued section of a G-quivariant
fibre bundle m: E — B. Then the following holds.

(i) o induces a map o* : QL (E) — Q& (B) which is locally given by

ocfa = Z 0;s; Q. (29)
i
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(ii) The map o* commutes with the differential dg:
dgoo* =c*odg : QG(E) — Q5 (B).

(iii) If two multivalued sections oo, 01 are homotopic then there exists a linear
map Q : Q5(E) — Qi 1(B) such that

(iv) For every equivariant differential form o € Q&L(E) and every compact
oriented weighted branched d-submanifold A : B — Q we have

/ @ :/ oc*a,
Ao /G A/G

where Ao : E — Q is the compact oriented branched d-submanifold defined by
Ao(z,e) = ANz)o(x,e).

Proof. Define o* by equation (29). To prove that this is well-defined, let (s;, o;)
and (¢, 7;) be two systems of local sections near zy € B. Since the set of regular
points is open and dense, we only need to prove the equation

Z oi(sia)s = ZTj (ti)a

at points x such that (z,e) is regular for all e € E, with o(z,e) > 0. At such
a point, ds;(z) = dt;(z) for all ¢, j such that s;(z) = t;(x) = e. Given e € E,
with o(x,e) > 0 choose indices 4. and je such that s;, (z) =¢;, () = e. Then

Z oi(s;a)g(vy,...,vk) = Z Ti0, () (dsi(x)v1, ..., dsi(x)vy)
= Z Z 00, (z) (dsi ()01, . . . dsi(2)vg)

e:o(x,e)>01:s;(x)=e
Z O'(l‘, e)a(a:,e) (dsie (l’)’l)l, ) dsie (l’)’l)k)

e:o(xz,e)>0

= Z o(z,e)a(ge (dt;, (x)vr, ... dtj, (x)vy)

e:o(xz,e)>0

- ZTj(t;O‘)w(Ula S Uk):

A similar argument shows that ¢* is G-equivariant, i.e.
c*og*=g"o0c*
for g € G. So ¢* maps G-equivariant forms to G-equivariant forms. This

proves (i).
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We prove (ii). By G-equivariance, we have
o*ouYe)a=1(Xe¢)oo

for o € Q*(E) and £ € g, where X¢ € Vect(B) denotes the infinitesimal action
on B and Yg € Vect(E) the infinitesimal action on E. Since o* also commutes
with d, it commutes with dg.

For the proof of (iii) we only sketch the argument. The local formula

d
Xt(:c,e) = Z O—tigsti(x)

i:ses (x)=e

defines a G-invariant multivalued vector field along o. The operator

1
Q:(E)— Q4B Qo := / oy (Xy)adt
0

is G-equivariant and satisfies ¢(X¢) 0 Q@+ Q o t(X¢) = 0 for £ € g. Thus ) maps
G-equivariant forms to G-equivariant forms and

dgoQ+Qodg=doQ+Qod=o0] —ag.

This proves (iii). Assertion (iv) follows directly from the definitions. O

The zero set of a multivalued section

Now let (B, E,S) be a finite dimensional regular G-moduli problem. A multi-
valued section o is transverse to S if and only if S — s; is transverse to the zero
section for each s; in the local structure axiom.

It is sometimes useful to think of a multivalued section o as a function
which assigns to each # € B the discrete probability measure ), o(z,e)d. on
the fibre E,. Convolution of measures gives rise to a convolution operation
(00,01) — 0¢ * 01 on multivalued sections given by

oo *o1(z,e) = Z oo(x,e0) + o1(z, e1).

eotei1=e

This operation is commutative and associative and has a neutral element given
by o(z,0) =1 for all z € B. There is no inverse and so convolution gives only
a semigroup structure.

Pushforward of measures under dilations (z,e) — (z,te) gives rise to a
multiplication of multivalued sections by G-invariant functions f : B — R,

(fo)(z,e) = Z o(z,e).

f(x)e'=e

Convolution is distributive over multiplication by functions.
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Proposition 10.5. Let (B, E,S) be a finite dimensional reqular G-moduli prob-
lem of index d = index(S) = dim B —rankF —dim G and 0 : E — Q be a
multivalued section that is transverse to S. Then the function Ag, : B — Q
defined by

As.o(z) == o(z,S(z))

is a weighted branched d-submanifold of B. Moreover, there exists a unique
orientation ps,o Grj(TB/g) — Q of As,s such that

uso(x, F) = Z oj — Z o (30)

s (2)=5(x) sj(2)=5(x)
ker D(S—s;)(z)=F ker D(S—s;)(z)=—F

for every collection of local branches (s;,0;) of o in an open set U C B and
every x € U.

Proof. Consider the weighted branched submanifolds Ag, A\; : £ — Q given by

1 ife=0
Mo(z,e) = {0 if o 0: M(z,e) :=o(z,S(z) —e).
They correspond to the zero section and to the multivalued section S —o, respec-
tively. Then Ag . is just the intersection AgA;, viewed as a weighted branched
submanifold of B. So if B is oriented the result follows directly from (22). The
nonoriented case can either be deduced from the oriented case by lifting S and
o to the bundle E' — B’ := E whose fibre over (z,¢) is E, @ E, or be proved
directly as follows.

First note that an isomorphism 7 : Fy — F; between two subspaces Fy, F}
of an oriented vector space V such that V = F + F} induces an orientation on
Fy N Fy: pick any orientations of Fy and F; corresponding to each other under
m and take the orientation induced on Fy N Fj.

Since each branch of \; is a section of E' and is transverse to the zero section,

every subspace
H C T(a:,O)E 2T, B E,

such that T'A;((x,0), H) > 0 satisfies
T.BxE,=(T,Bx0)+H

and is isomorphic to 7, B under the projection drm : TE — TB. Hence the
intersection (T, B x 0) N H carries a natural orientation. With this understood,
the following formula defines an orientation of Ag, which satisfies (30) for any
collection of local branches:

,U'S,a(xaF) = Z T)\l((ﬂf,O),|H|)* Z T)\l((Z',O),|H|)

HCTyB®Eg HCTy BOEy
(Te BXO)NH=F X0 (Te BXO)NH=—F X0

Here Gr} (T,B @ E,/g) — Gra(TuB ® E,/g) : F — |F| is the map that forgets
the orientation. O

o1



Existence of transverse multivalued sections

The next proposition asserts the existence of a multivalued perturbation which
is transverse to .S and is supported in an arbitrarily small neighbourhood of the
zero set of S. The proof shows that the perturbation can be chosen arbitrarily
small in the C*-topology (on the branches).

Proposition 10.6. Let (B, E,S) be a finite dimensional reqular G-moduli prob-
lem and Z C B be a G-invariant neighbourhood of M = S=1(0). Then there
exists a multivalued section o : E — Q N[0, 00) with the following properties.

(1) o is transverse to S.

(il) o is supported in Z, i.e. o(x,0) =1 for every x € B\ Z.

Proof. The proof has two steps.

Step 1. There exists a positive integer N and a function
o:ExRY - Q: (z,e,y) — oy(z,e)

with the following properties.

(i) o is a multivalued section of the bundle E x RN — B x RN with respect to
the diagonal action of G, where G acts trivially on RN .

(ii) o is linear in y, i.e. Oy 4y, = Oy, * 0y, and oy, = toy for y1,y2,y € RY
and t € R.

(iii) The multivalued section o, : E — Q is supported in Z for every y € RV,
i.e. oy(x,0) =1 for every x € B\ Z and every y € RY.

(iv) For every local branch s : V. x W — E|y of o, defined on the product of
two open sets V. .C B and W C RN with 0 € W, and every x € VM the
derivatives 0y,s(x,0), i=1,..., N, span the vector space E,.

Given xg € M choose a local slice (Uy, ¢o, Go) of B/G such that zo = ¢o(0) and
G*¢o(Uy) C Z. Let Ey := E,, and suppose that Uy is a contractible neighbour-
hood of zero in (the finite dimensional G-Hilbert space) Hy. Then there exists
a Gg-equivariant trivialization

Uy x Ey — (Z%E H(m,v) = Py € E¢0(l‘)'

Choose finitely many smooth functions s1,...,s, : Uy — Ep with compact
support such that the vectors s1(0),...,s,(0) form a basis of Ey and define
oo: EXR" — Q by

* * 1 - *
ooy(g do(x),g%€) == 1Gol Hgo € Go ‘ Zyzq)a,sl(x) = QO@H

i=1

92



for x € Uy, e € Epy0), 9 € G, and y € R" and by ogy(x,0) = 1 for
x € B\ G*¢o(Uy) and y € R™. Then oy satisfies (i-iii) and satisfies (iv) in
a neighbourhood of zg.

Now cover M by finitely many open sets Vi,...,Vy such that, for each 1,
there exists a multivalued section o; : E x R™ — Q which satisfies (i-iii) and
satisfies (iv) in V;. Then the multivalued section o : E x R™Y — Q, defined by

Oy = Oly, ¥+ * ONyy
for y = (y1,...,yn) € R satisfies the requirements of Step 1.
Step 2. We prove the proposition.
Let 0 : E x RN — Q be as in Step 1. Then there exists a 6 > 0 such that set
Mg = {(z,y) € Bx R |o,(z,5(x)) >0, |y| <&}

is (the support of) an oriented weighted branched (d+ N )-submanifold of BxRY.
Let y € RY be a sufficiently small regular value of the obvious projection M, —
RY. Then oy : &' — Q satisfies the requirements of the proposition. O

Multivalued classifying maps

If G acts freely on B then there is an equivariant classifying map 6 : B — EG,
unique up to homotopy. In the presence of finite isotropy subgroups there is no
such map. However, it is possible to construct an equivariant multivalued map
O : B — 2FC which assigns a finite subset ©(z) C EG to every point = € B.
Such a map gives rise to a branched submanifold of B xg EG which in turn
determines a rational cycle. Here is how this works.

Definition 10.7. Suppose G acts on the finite dimensional manifold B with
finite isotropy. A multivalued classifying map on B is a multivalued section
of the trivial bundle B x EG — B. Explicitly, it is a function

v:BxEG—QnNI0,00)
with the following properties.
(Equivariance) v(g*z, g 10) = v(x,0) for allz € B, § € EG, and g € G.

(Local structure) For every g € B there exist an open neighbourhood U,

smooth functions 61,...,0,, : U — EG, and positive rational numbers
Vl,...,VUm Such that

m

Zl/i:]., v(z,d) = Z v;

i=1 0;(x)=0

for every x € U and every e € EG.
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Remark 10.8. Let v : Bx EG — QN[0
map. Then, for every x € B, the set O(z) :=
> oco( V(@,0) = 1. Moreover, O(z) = {61 (z
local branches of v.

,00) be a multivalued classifying
{ EG |v(x,0) > 0} is finite and
)y vy Om(x)}, where the 0; are the

Remark 10.9. A multivalued classifying map v : B x EG — Q descends to a
weighted branched submanifold of B xg EG.

Proposition 10.10. (i) Every finite dimensional smooth G-manifold B with
finite isotropy subgroups admits a multivalued classifying map.

(il) Any two multivalued classifying maps are equivariantly homotopic.

Proof. The proof of (i) has three steps. The proof of (ii) is similar and is left to
the reader.

Step 1. For every point xg € B there exists a G-invariant open neighbourhood
Uy C B of xg, a finite subgroup Go C G and a set-valued function ¢ : Uy — 2°
such that

(1) O¢(z) has |Go| elements for every x € Uy.

(ii) Oo(g*x) = Og(x)g and O¢(gizr) = gy 'Oo(z) for all x € Uy, g € G, and
go € Go.

(iii) For every x € Uy there exist an open neighbourhood U C Uy of x and
smooth functions g; : U — G for i =1,...,mqg := |Gg| such that Og(x) =
{g1(x), ..., gmo(x)} for every x € U.

Step 1 follows directly from the local slice theorem 4.1. Given a local slice
oo : Wy — B define Uy := G* ¢ (W) and O¢(z) :={g € G|z € g*po(Wy)}.

Step 2. Assertion (i) holds when B can be covered by finitely many local slices.

We may assume without loss of generality that G C U(k). Then a finite dimen-
sional approximation of the space EG is given by

EG" := {0 e C"| 99" = 1}.
The group G acts on EG™ by e — ge for g € G C U(k).

Now cover B by finitely many G-invariant open sets Uy, ..., Uy such that,
for every i € {1,..., N}, there exists a finite subgroup G; C G and a set-valued
function ©; : U; — 2C satisfying the requirements of Step 1. Pick G-invariant
smooth cutoff functions py,...,pn : B — [0, 1] such that

N
suppp; C Ui, Y _p; = L.

Write a matrix 0 € EGV* as a row of (k x k)-blocks 0y, ...,0n € C*** such
that Y2 | ;07 = 1. With this understood define v : B x EGM* — Q by

[{h € Bi(z) | pi(x)h” = bi}|
H |G '
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Then, for every € B, the set ©(z) := {# € EGN* |v(x,0) > 0} consists of at
most [], |G;| elements. The formula v(g*z, g~6) = v(z,6) follows from the fact
that ©;(¢g*z) = ©;(x)g. The formula ), v(x,0) = 1 follows from the fact that
the subset ©;(z) C G consists of |G;| elements. The (Local structure) axiom
follows from (iii) in Step 1.

Step 3. Assertion (i) holds in general.

Since B is paracompact it admits a locally finite countable cover {U;}; such
that for each i there exists a finite subgroup G; C G and a setvalued function
0; : U; — 2% as in Step 1. Now choose a G-invariant partition of unity p? :
B — [0,1] and repeat the construction of Step 2 with EGY* replaced by the
infinite dimensional space EG = | EGNF, (|

Corollary 10.11. Let B be a smooth oriented finite dimensional manifold and
G be a compact oriented Lie group which acts on B by orientation preserving
diffeomorphisms and with finite isotropy. Suppose that A : B — Q is a (G-
invariant) compact oriented weighted branched d-submanifold of B. Then there
exists a rational homology class [N € Hy(B xg EG;Q) in singular homology

such that
(lo], [\) = A o

for every G-closed equivariant differential form o € QdG (B). Here we denote by
[a] € H*(B xg EG;R) the equivariant cohomology class of c.

Proof. Shrinking B, if necessary, we may assume that there exists a multivalued
equivariant classifying map v : Bx EG"™ — Q to a finite dimensional approxima-
tion of EG. Consider the compact oriented weighted branched d-submanifold
A" : B xg EG"™ — Q defined by

A ([, 0]) == Ma)v(z, 0).

Geometrically, \™ corresponds to the image of the support of A under the multi-
valued classifying map v, divided by the free G-action on EG. By Theorem 9.21,
there exists a rational homology class [\"] € Hy(B x¢ EG™; Q) such that

(8L, = [ B
A"

for every closed form 8 € Q4(B xg EG™). Now let a € Q% (B) be G-closed
and A € QY(B,g) be a connection 1-form. Then, by Theorem 3.8, a4 is a
closed G-invariant horizontal d-form on B. The induced cohomology class in
HY(B xg EG™;R) is given by

[@"] == [rpaa] € HYB xc EG™;R),

where mp : B x EG™ — B denotes the obvious projection. Note that nha4 is
closed, G-invariant, and horizontal, and hence descends to a closed d-form on
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B x¢ EG", still denoted by mas. We have

(0l ) = (peah W) = [ whou= [ aa= [ o

Here the penultimate identity follows from Proposition 10.4. Note also that
this formula shows that the cohomology class [A"] is independent of the choice
of v. The pushforward [A\] € Hy4(B xg EG;Q) of [A\"] under the inclusion
B xg EG"™ — B x g EG satisfies the requirements of the corollary. O

Poincaré duality

The next theorem is a version of Poincaré duality. It asserts that the zero set of
a transverse multivalued section is Poincaré dual to the pullback of the Thom
class.

Theorem 10.12. Let (B, E,S) be a finite dimensional regular G-moduli prob-
lem and (U,7) be a Thom structure on (B,E,S). Let d := index(S) and
n:=rankFE. If o : E — Q is a multivalued section that is transverse to S
and has compact support then

/ aNS*'T = / . (31)
B/G As,o /G

for every a € Q&(B) such that dga = 0.

Proof. The proof has three steps.
Step 1. The theorem holds in the case G = {1}.

In this case (31) can be restated in the form

/ a/\S*T:/ a. (32)
B As,o

This equation asserts that the closed compactly supported differential form
S*r € Q*(B) is Poincaré dual to the homology class [As]. We claim that
the class [As,o] is equal to the rational homology class of My := S;*(0), where
So : B — FE is a smooth section which is transverse to the zero section and
agrees with S outside of a compact set. To see this choose a regular homotopy
from Sy to S — 0. The zero set of such a homotopy is a branched submani-
fold with boundary {0} x My U {1} x Ag, in [0,1] x B. It now follows from

Proposition 9.19 (ii) that
[ a=] a
Mo As,o

for every closed form « € Q4(B) and so [Mo] = [\s,s] € Ha(B;Q) as claimed.
With this understood equation (32) follows from [4, Proposition 12.8] (and also
from Corollary 6.4 above).
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Step 2. Assume G = {1}. Then

/ oz/\S*Tz/ a (33)
’ )\S,GA/

for every oriented weighted branched d'-submanifold X' : B — Q that is trans-
verse to \s,, and has closed support and every closed form o € Qdtd ~dimB(p),

Equation (32) asserts that the form S*r is Poincaré dual to the homology class
[As,o]. Hence (33) follows from Step 7 in the proof of Theorem 9.21.

Step 3. The theorem holds in general.

Let EG™ be a finite dimensional approximation of EG and v : B x EG™ — Q be
a multivalued classifying map. Note that EG™ is a smooth compact manifold.
Consider the vector bundle

F:= E xc EG" = B:= B x¢ EG™.

The section S : B — E induces a section S : B — E, given by

S([l‘, 9]) = [QL', S(IL’), 9]

and the multivalued perturbation o : £ — Q determines a compactly supported
multivalued perturbation ¢ : £ — Q given by

([z,e,0]) :=o(z,e).

It follows from the hypotheses hat ¢ is transverse to S and that the zero sets
of both S and S — & are compact. The latter is the compact oriented weighted
branched submanifold R B

Ai=Xz;:B—-Q
given by

[z, 0]) == o(z, S(z)).
We shall also abbreviate A := Ag ,. The multivalued classifying map v descends
to a weighted branched manifold 7 : B — Q, given by

17([1‘, 9]) = V(:L'a 9);

which is transverse to .

Now let 7 € Q*(F) be a G-invariant and horizontal Thom form and « €
Q4(B) be a closed G-invariant horizontal form. Denote by 75 : B x EG" — B
and 7g : E x EG" — E the obvious projections. Then 757 and 75« are closed,
G-invariant, and horizontal, and hence descend to closed forms on E xg EG"
and B xg EG", which will be denoted by 7 and &, respectively. Note that 7 is
a Thom form for the bundle E — B and lifts to the G-invariant and horizontal
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form 75S*r € *(B x EG) under the obvious projection B x EG — B x¢g EG.
Since v*mpa = a and v*pS*T = S*7. it follows from Proposition 10.4 that

/ aNS'T = / mp(aAS*T)
B/G v/G
= /dAS*%
. /@
Ao
:/ THQ
Av/G
:/ a.
A/C

Here the first and fifth equalities follow from Proposition 10.4 (iv), the second
and fourth equalities follow directly from the definitions, and the third equality
follows from Step 2. This proves the result for every G-invariant and horizontal
closed d-form a € Q4(B). That the result continues to hold for every G-closed
equivariant differential form o € QF (B) follows from Theorem 3.8. (|

Rationality of the Euler class

Theorem 10.13. Let (B,&,S) be a reqular G-moduli problem of index d. Then
there exists a rational homology class [\] € Hq(B xg EG; Q) such that the ho-
momorphism x5€S : HY(B xg EG) — R is given by x5¢°(a) = (a, [\]).

Corollary 10.14. The Euler class satisfies the (Rationality) aziom.

Proof of Theorem 10.13. By Theorem 7.4, it suffices to consider the finite di-
mensional case. Let (B, E,S) be a finite dimensional G-moduli problem and
o0 : E — Q be a multivalued section transverse to S as in Proposition 10.6. Let
As,o be the oriented weighted branched d-submanifold of B defined in Proposi-
tion 10.5, where

d = index(S) = dim B —rank £ — dim G.
By Corollary 10.11, there exists a rational homology class
[)\570] S Hd(B Xa EG,@)

such that

(ol Ps]) = [

az/ aAS* T =xBES5(a)
As.0/G B/G

for every G-closed equivariant differential form o € Q& (B). Here the third
equality follows from Theorem 10.12 and the last one from the definition of the
Euler class. u
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11 Localization for circle actions
Let X be a compact connected oriented smooth manifold and
& — X, F, — X, v=1,...,n,
be complex Hilbert space bundles. For each v let
Dyy : Eve — Fua

be a smooth family of complex linear Fredholm operators of complex (numerical)
index index(D,). Let us denote by

ind(D,) := U {z} x ker D, © cokerD,, € K(X)
zeX

the topological index of D, (as a K-theory class). Fix a sequence of nonzero
integers ¢ = ({1,...,4,) and consider the following S'-moduli problem. The
Hilbert manifold B is given by

n
B:= {(ag,el,...,en) I€X7 €y egl/l‘) z:HeVH2 = 1}

v=1
and the circle acts on B by
N(z,e1,...,en) = (2, X" er, ..., A "tey)
for (z,e) € B and A € S*. The Hilbert space bundle H — B has fibre
Hye:=Fia @ - ® Frna
over (z,e) € B, and the section S : B — H is given by
S(z,e1,...,en) = (D1z€1,. .., Dnzen).
The zero set of this section is the kernel manifold
M := {(z,e1,...,en) € B|Dyze, =0 for all v}.

Consider the action of St on B x ES! by \*(x,e,0) = (t, \*e, \"10), denote by
7p : B x g1 EST — BS! the projection, and let ¢ € H?(BS';Z) be the positive
generator. Recall that the Chern series of the K-theory class ind(D) € K(X)
is defined by
(ind(D), ) i= 3 1 4exP) i, (ind (D)),
Jj=0

where index(D) := dim ker D — dim coker D is the Fredholm index. This series
is multiplicative with respect to the Whitney sums. The following theorem can
be interpreted as a localization formula: an invariant integral over the sphere
bundle is expressed as an integral over the fixed point set X of the S!-action.
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Theorem 11.1. Let k be a nonnegative integer and o € HUMX=2F( X)), Sup-

pose
n

m+k—1>0, m::Zindex(Du).

v=1

Then
o

—71a) = /X [1_, c(ind(D,), £,)’

where ™ : B x g1 ES' — X denotes the projection.

B,H,S (Trﬁ%cm-i-k—l

X (34)

Proof. The proof has three steps. The first is the case X = {pt}, & = C,
F, ={0}, and o = 1.

Step 1. Suppose S' acts on S*"~' C C™ by
N (21, zm) = (A2, )

and let w: S?"~1 x g1 ES' — BS! denote the projection. Then

1
* n—1
= . 35
/Sznl/sl7T ¢ 00, (35)

Consider the S'-moduli problem

B:= 81 B =81 crl, S(2) = (215 -+ 2Zn1),
where S! acts on E by
M (2,0) = (Al ATz ARG TR, ).
Let 7 € Q?"2(E) be an S'-invariant horizontal Thom form. Then
[S*7] = cp1(FE xg1 BSY) =4y -+ £ _ym*c" L.

Hence
1

el . 'ﬂn—l/ 7_[_>~<cnfl _ XB’E’S(l) _ g_
§2n—1/81

n

To prove the last equality note that .S is transverse to the zero section. Its zero
set is a single orbit with isotropy subgroup Z/¢,7Z C S'. Hence the equality
follows from the (Transversality) axiom for the Euler class.

Step 2. We may assume without loss of generality that £, and F, are finite
dimensional and that each bundle £, admits a trivialization.

By Theorem 7.4 (in the nonequivariant case of complex Hilbert space bundles),
there exists, for every v, a finite dimensional subbundle F;,, C F, such that

F,, +imD,, = F,
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for every x € X. Here we use the fact that, by a general psoition argument, we
can choose the family of complements to be an embedding. Then the set

E, :={(z,e)|ze X, ec&,,D,e€F,}.
is a subbundle of £, and
rank £, — rank F,, = index(D,).

Let D, : E,, — F, denote the restriction of D, to E,. Then the S'-moduli prob-
lem associated to the operators D, admits an obvious morphism to (B, H,S).
Moreover, the right hand side of (34) remains unchanged if we replace D, by
D,. Hence, by the (Functoriality) axiom for the Euler class, we may assume
that &, = E, and F,, = F,, are finite dimensional. In this case B is a compact
smooth manifold and the identity (34) has the form

a HZ:I C(FVa &,)
X HZ:I C(EIH el/) ’

where 7 € Q*(H) is an S'-invariant horizontal Thom form. For each v there
exists a complex vector bundle E!, — X such that E, ® E/, admits a trivializa-
tion. By the (Functoriality) axiom for the Euler class, the left hand side of (36)
remains unchanged if we replace E, by FE, ® E!, and F, by F, ® E|,. The right
hand side also remains unchanged under this operation and so we may assume
without loss of generality that each bundle F, admits a trivialization.

/ ™R O e o ST = (36)
B/S1

Step 3. We prove the theorem.

By Step 2, we may assume that £, = E, and F, = F,, are finite dimensional
and
E =X x (CrankE,,
—

for every v. Then equation (36) has the form

n
/ wﬁcm"'k_l - mfa - S*r = H E,jmnkE" /
B/S1

v=1 X

o — H c(Fy,t,). (37)

Now we may assume that D, = 0 for all » and hence S is the zero section. Let
T, € anlnkF ¥(X) be the the pullback under the zero section of an S'-equivariant
Thom form on F,,. Thus 7, : iR — Q*(X) is a polynomial map whose coefficients

are closed forms on X. Indeed, by Corollary 6.5,

rankF,, iv " rankF, —j
=3 ( ) i gl = (B,

2T
=0

Since S : B — H is the composition of the projection 7 : B — X with the
inclusion of the zero section into F' = F} & --- ® F},, we have

n

n rankF, Zg " rankF, —j
N
v=1

v=1 j=0
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Since in/2m represents the equivariant cohomology class mc € H*(B x g1 ES?)
(see Example 3.12), the cohomology class of S*7 is

n rankF,,
=TI | X (moy™id — wey()
v=1 7=0

Hence equation (37) reads

n rankF,,
fie (‘“ I X amiem)

v=1 7=0
n
_ H e—rankE / a — H c F'V,fy)7 (38)
X v=1
where .
N = ZrankE,,.
v=1

Here we have used the fact that E, is the trivial bundle and so any power of
mc that is higher than IV — 1 vanishes. Again, since E, is a trival bundle, it
follows from Step 1 that

n
* N—1 * —rankFE,
/ TRC — T p= H l, / s.
B/St v—1 X

for every 3 € HY™X(X). This implies (38) and completes the proof of the
theorem. O
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