
ETH Library

Large scale processing of
microarray data
a diploma thesis

Master Thesis

Author(s):
Schaeppi, Reto

Publication date:
2002

Permanent link:
https://doi.org/10.3929/ethz-a-004353816

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004353816
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Information and Communication Systems Research Group
Institute of Information Systems

Swiss Federal Institute of Technology
Zurich

Large Scale Processing of
Microarray Data

Advisors:

Prof. Dr. Gustavo Alonso
Win Bausch

A diploma thesis by:

Reto Schaeppi
Lindenstrasse 33
8008 Zurich
Switzerland
sreto@student.ethz.ch
+41 (0)43 499 06 26

June 03, 2002

mailto:sreto@student.ethz.ch

Acknowledgements

First, I want to thank Prof. Gustavo Alonso for providing me the opportunity to write
my diploma thesis in his research group though my roots originates at the Department of
Biology. The time in your institute has been full of intellectually stimulating experience
and challenges.

The next big ”Thank you” goes to my supervisor Win Bausch. He has invested a
lot of time while teaching me the necessary computer skills to achieve this thesis as
well as to learn me the language of a computer scientist. Many of the ideas discussed
in our numberless conversations have resulted in this work.

I am also grateful to Cesare Pautasso, who has always kept patience while answering
my questions.

Working in an inspiring atmosphere, I enjoyed my time at the Information and
Communication Systems Research Group during the past year.

Zurich, June 2002

i

ii

Contents

Acknowledgements i

1. Introduction 1

2. Gene Expression Profiling 3

2.1. Expression Profiling Based on Microarrays 3

2.1.1. Microarray Technology . 3

2.1.2. From Raw Data to a Clustered Expression Matrix 8

2.2. Microarray Data Analysis Pipeline . 11

2.3. Experimental Data . 15

3. BioOpera 17

3.1. The Concept of Process . 17

3.1.1. Resource Descriptors . 17

3.1.2. Program Descriptors . 18

3.1.3. Process Components . 18

3.1.4. Inter-Task Dependencies . 19

4. Process Design 21

4.1. Setting Up the Environment . 21

4.2. Data Preparation Process (DPP) . 22

4.2.1. Transforming the Raw Data File Format (TRANSFORM) 26

4.2.2. Extracting Gene Information (EXTRACT) 27

4.3. Expression Profiling Process (EPP) . 30

4.3.1. EPP Design Issues . 30

4.3.2. Components and Control Flow 31

4.3.3. Data Partitioning (PART) . 32

4.3.4. Preprocessing (EXP FILE) . 35

4.3.5. Statistical Analysis (STA) . 38

iii

Contents

4.3.6. Type Casting (CAST) . 44
4.3.7. Expression Matrix Generation (MC) 45
4.3.8. Clustering (CLUST) . 46
4.3.9. Process Output . 49
4.3.10. Exploiting Parallelism . 50

5. Measurements 55

5.1. Scalability . 55
5.2. Overhead Incurred by Short-Lived Tasks 56

6. Conclusions 59

A. Technicalities 61

A.1. Example Dapple File Format . 61
A.2. Example ScanAlyze File Format . 64
A.3. Transforming ScanAlyze File Format Into Dapple File Format 70
A.4. Generating Genekey File . 72
A.5. Scripts for the Data Preparation Process 73

A.5.1. Start.pl . 73
A.5.2. Transform.pl . 73
A.5.3. Extract.pl . 74

A.6. Scripts for the Expression Profiling Process 75
A.6.1. Partition.pl . 75
A.6.2. Preproc lookup mergereps.pl . 75
A.6.3. Prepare vera sam.pl . 77
A.6.4. Start vera.pl . 79
A.6.5. Start sam.pl . 79
A.6.6. Mergeconds.pl . 80
A.6.7. Start cluster.pl . 81

Bibliography 83

Glossary 86

iv

List of Tables

4.1. Cluster Setup . 21
4.2. Example Input File List for the Data Preparation Process 25

A.1. Example of a Dapple Output File . 61
A.2. Example of a ScanAlyze Output File - Part 1 64
A.3. Example of a ScanAlyze Output File - Part 2 64
A.4. Example of a ScanAlyze Output File - Part 3 64
A.5. Example of a ScanAlyze Output File - Part 4 65
A.6. Example Dapple Output File Produced by the Transformation Script . . 71
A.7. Example Genekey File Generated by the Extraction Script 72
A.8. Example of a Output File Produced by MERGEREPS.pl 77
A.9. Example of a Output File Produced by PREPARE VERA SAM.pl . . . 78
A.10.Example of a Global Expression Matrix 80

v

List of Tables

vi

List of Figures

2.1. Spotted cDNA Microarray . 5

2.2. Oligonucleotide Microarray . 7

2.3. Three-dimensional Representation of the Intensity of One Single Spot . 8

2.4. Background Substraction . 8

2.5. Data Normalization . 9

2.6. Hybridization of cDNA to the Microarray Slide 12

2.7. Scanning the Hybridized Microarray Slide 13

2.8. Image Processing After Scanning the Microarray Slide 14

2.9. Preprocessing the Raw Data . 15

2.10. Cluster Analysis of the Merged Experimental Conditions 16

4.1. Control Flow of the Data Preparation Process (DPP) 22

4.2. Data Flow of the Data Preparation Process (DPP) 22

4.3. Spot Arrangement on a Microarray Slide 25

4.4. Data Flow of the TRF Subprocess . 26

4.5. Data Flow of the EXT Subprocess . 28

4.6. Timing Information for the Microarray Analysis Pipeline 30

4.7. Control Flow of the Expression Profiling Process (EPP) 31

4.8. Data Flow of the Expression Profiling Process (EPP) - PART Task . . . 34

4.9. Partitioning Scheme of the PART Task 35

4.10. Merging Scheme of the PLM Task . 36

4.11. Data Flow of the Expression Profiling Process (EPP) - EXP FILE Sub-
process . 38

4.12. Data Flow of the EXP FILE subprocess 39

4.13. Data Flow of the STA subprocess . 40

4.14. Merging Scheme of the MC Task . 45

4.15. Data Flow of the Expression Profiling Process (EPP) - MC Task 47

4.16. Data Flow of the Expression Profiling Process (EPP) - CLUST Task . . 50

vii

List of Figures

4.17. Example Output of the Expression Profiling Process 51
4.18. Example Data Flow of the Expression Profiling Process (EPP) 53
4.19. Main Data Flow in the Expression Profiling Process (EPP) 54

5.1. Scalability Measurements . 55
5.2. Overhead Measurements . 56

6.1. Output by Comparison . 60

A.1. Dapple’s Grid and Spot Coordinates . 62
A.2. ScanAlyze’s Row and Column Coordinates 66

viii

1. Introduction

In the last decade various projects, such as the Human Genome Project, have been
launched to clone, map and sequence the genome of different organisms. The genome
of several organisms, like Homo Sapiens or mouse, has already been determined and
is publicly available. The ultimate goal of these efforts is the understanding of how an
organisms genome acts as blueprint for defining its vital functions. Within the Human
Genome Project, the researchers have catalogued over 4 million expressed sequence
tags (ESTs) [1]. These ESTs correspond to a not yet determined number of unique
human genes. Recent estimations range between 25’000 and 40’000 [2, 3]. The obtained
sequence information, will eventually give rise to a better understanding of a genes
function, the molecular events responsible for the ability of a cell to form an organism.
It will be also crucial to discover the cause of diseases as well as to understand the phe-
nomenon of aging. Finally, all this will lead to a increased efficiency in the development
of new drug candidates. Just recently, functional genomics became a major tool to ad-
dress the issues mentioned above, combining experimental and computational methods
to analyze sequence information. Typically, these methods only yield reliable results, if
performed on huge amounts of data.

For instance, the ability to identify genes by proceeding from a known protein to
its chromosomal counterparts constitutes a highly complex research issue due to the
complicated three-dimensional structures of proteins. The analysis of gene expression,
at the mRNA level, may also result in functional information, because mRNA is coding
for the proteins in an organism. For this purpose, two methods are currently popular: (1)
Aligning unknown sequences against well known ones and (2) exploring the function of a
gene by determining its pattern of expression. The first approach has led to the discovery
of a wide variety of sequence motifs encoding structural domains, such as DNA-binding
and nucleotide-binding domains, thus providing clues to gene function. The second
approach considers changes in gene expression, evoked by a gene, to determine its
function.

Traditional methods in this field work on a one gene in one experiment basis, imply-
ing that the throughput is very limited and getting the whole picture of a gene’s function

1

1. INTRODUCTION

requires dozens of experiments. Thanks to the microarray technology, a paradigm shifts
to one genome in one experiment is within reach. This technology allows researchers to
monitor the whole genome on a single chip in a single experiment, so that they can take
a snap-shot of the interactions among thousands of genes simultaneously - a dramatic
increase in throughput.

This opportunity to carry out thousands of traditional experiments in one microar-
ray experiment, represents a challenge for the biological researcher, mostly considering
his computer skills: (1) One microarray initially creates approximately 50 megabytes of
data. Since a typical experiment is carried out with ten to sixty microarrays in average,
efficient data analysis requires more than the commonly used single desktop PC, (2)
until now, biological research did not require sophisticated computer science skills in
terms of programming. This results in the need of a closer interdisciplinary work be-
tween biological and computer scientists, which has not yet been fully established and
therefore remains as a critical factor to allow efficient usage on DNA microarrays.

The microarray data analysis is based on various algorithms like data normaliza-
tion, background substraction as well as testing for differentially-expressed genes. These
algorithms are often combined into a software suite (Affymetrix Microarray SuiteTM[4],
GeneData ExpressionistTM) [5]. These suites typically support explorative analysis of
a microarray experiment and they only provide limited automatization capabilities of
analysis process. In addition, data management tools are required for the increasing
amounts of data (Stanford Microarray Database [6], ArrayExpress [7], GeneExpress
[8]). Since different microarray technologies are currently available, standardization of
the data is also a requirement of importance. There are various standardization projects
being pursued by the Microarray Gene Expression Data Group (MGED) [9].

As a result of these efforts the focus in the microarray area is becoming to shift
from data generation to data analysis [10]. Many tools are not suitable for large scale
analysis. This thesis will give insight into some of the possibilities a process support
system such as BioOpera provides to solve some issues involved. We focus on the data
analysis part as a main goal. Once the analysis protocol has been developed, it can be
fully automated and parallelized using BioOpera. The ability to automatically produce
a clustered expression matrix represents a valuable and time saving addition compared
to other tools.

2

2. Gene Expression Profiling

2.1. Expression Profiling Based on Microarrays

There are various methods available for detecting gene expression levels: northern blots
[11], S1 nuclease protection [12], differential display [13], sequencing of cDNA libraries
[14, 15] and serial analysis of gene expression [16] (SAGE). However, to take full ad-
vantage of the large and rapidly increasing body of genome sequence information, new
technologies have been developed. Among the most powerful and versatile tools for
functional genomics are high-density arrays of oligonucleotide (short DNA fragments)
or complementary DNAs, which will be described in the following subsection. While
the present study is focused on spotted DNA microarrays [17, 18], the techniques men-
tioned are generally applicable to expression data generated by oligonucleotide arrays
[19], Affymetrix GeneChipsTM [20] or SAGE [16].

2.1.1. Microarray Technology

The underlying principle of DNA microarray technology is the spontaneous biochem-
ical base-pairing process of complementary base pairs, called hybridization. An array
is an orderly arrangement of known cDNA sequences or oligonucleotides. It provides
a medium for matching known DNA (probe sequences) and unknown, fluorescently1

labeled DNA or RNA samples (target sequences). The labeled target sequences allow
a quantitative measurement of their abundance in the sample, i.e. tissue, cells, blood
etc., being investigated. An array experiment can be created by hand or make use of
robotics to fully automate the process of hybridization or deposition of the target se-
quences. In general, arrays are described as macroarrays or microarrays, the difference
being the size of the sample spots which contain the probe sequences. On the chip,
target sequences are organized in so-called spots. Each of these representing a gene.
Macroarrays contain sample spot sizes of about 300 microns or larger. The sample spot
sizes in microarrays are typically less than 200 microns in diameter and these arrays

1The labeling strategy depends on the used microarray technology

3

2. GENE EXPRESSION PROFILING

usually contains millions of spots. Microarrays require specialized high-speed robotics
for manufacturing and imaging equipment (scanner) for measuring the raw intensity
data for each spot. Generally, the chips are manufactured on glass but sometimes on
nylon substrates, for which probes with known identity are used to determine comple-
mentary binding, thus allowing massively parallel gene expression and gene discovery
studies. Details on spotted DNA microarrays and oligonucleotide arrays can be found
in [21] and [22], respectively. Mainly, there are two variants of the DNA microarray
technology, in terms of the properties of arrayed DNA probe sequence with known
identity:

1. Spotted cDNA microarrays

Probe cDNA (500∼5,000 bases long) is immobilized to a solid surface such
as a microscope glass using robot spotting and exposed to a set of labeled
targets. Usually Cye3-dUTP and Cye5-dUTP are used to label the target
samples. Expression Arrays containing up to 8000 genes are printed onto
a 2 x 4 cm glass slide with a probe diameter of 75 - 100µm and a 150µm

distance between probes. Today, technological advances in printing and scan-
ning technology allows to the manufacturing of microarrays that contain the
entire human genome, i.e. over 40’000 complete cDNA sequences. The probe
sequences to be printed on the array are usually selected from databases
such as UniGene [23] and GeneBank [24] and then physically produced by
extracting the plasmid DNA from the cDNA clones found in a cDNA library
and then amplifying them through Polymerase Chain Reaction (PCR). Fig-
ure 2.1a shows a spotted cDNA array after hybridization of labeled samples
and fluorescence detection. The image has been colored to indicate the rel-
ative number of yeast transcripts present in two different growth condition
(red: high in condition 1, low in condition 2; green: high in condition 2, low in
condition 1; yellow: high in both conditions; black: low in both conditions).
Approximately one nanogram of material is deposited on the array and con-
sists of double-stranded DNA probes used for each gene or EST. After hy-
bridization and scanning, the quantitative fluorescence image, along with the
known identity of the probes, is used to asses the ’presence’ or ’absence’ of a
particular molecule (such as a transcript), and its relative abundance in one
or more samples. Because the cDNA at each physical location (or address) is
well described, and the recognition rules that govern hybridization are well
characterized, the signal intensity at each position of the microarray gives
a quantitative measurement of one single target sequence with known iden-

4

2.1. EXPRESSION PROFILING BASED ON MICROARRAYS

tity. The signal intensities obtained by spotted cDNA arrays give the relative
concentration (ratio) of a given transcript in two different samples (derived
from competitive, two-color hybridizations). Messenger RNAs present at a
few copies (relative abundance of ∼1:100’000 or less) to thousands of copies
per mammalian cell, can be detected, and changes as subtle as a factor of 1.3
to 2 can be reliably detected, if replicate experiments are performed. Figure
2.1b describes the two-color hybridization strategy often used with cDNA
microarrays. cDNA from two different conditions or one single condition and
its control are labeled with two different fluorescent dyes, as mentioned above
allowing a direct and quantitative comparison after scanning simultaneously
at two different wavelengths.

Cye3 cDNA
Cye5 cDNATTTTT

TTTTT

TTTTT

TTTTT

TTTTT

TTTT

Figure 2.1.: a: A spotted cDNA array after hybridization of labeled samples and fluores-
cence detection. b: Two-color hybridization strategy often used with cDNA
microarrys. (Modified from Lockhart, D.J. and Winzeler, E.A., Nature 405,
2000)

5

2. GENE EXPRESSION PROFILING

2. Oligonucleotide microarrays

Oligonucleotides (20∼80-mer oligos) are exposed to labeled sample cDNA
(targets), hybridized, and the identity/abundance of complementary se-
quences are determined. Often, the target sample DNA is labeled by using
a biotin derivative. The probes are synthesized either in situ (on-chip) or by
conventional synthesis followed by on-chip immobilization. Affymetrix, Inc.,
the most popular vendor of this kind of array, uses photolithography and
solid-phase chemistry to produce their GeneChipsTM. Their Human Genome
U133 Set [25] contains for example more than 45’000 probe sets with a fea-
ture size of 18µm corresponding to 33’000 human genes. Many companies are
manufacturing oligonucleotide based chips using alternative in-situ synthesis,
such as piezoelectric (ink-jet). Figure 2.2a shows an oligonucleotide microar-
ray. Similar to the spotted DNA microarray, the image has been colored
to indicate the relative number of yeast transcripts present in two different
growth conditions (red: high in condition 1, low in condition 2; green: high in
condition 2, low in condition 1; yellow: high in both conditions; black: low in
both conditions). Approximately 107 copies of each selected oligonucleotide
are synthesized base by base in hundreds of thousands of different 24µm

x 24µm areas on a 1.28cm x 1.28cm glass surface. After hybridization and
scanning, the quantitative fluorescence image along with the known iden-
tity of the probes is used to asses the ’presence’ or ’absence’ of a particular
molecule (such as a transcript), and its relative abundance in one or more
samples. Because the oligonucleotides at each physical location (or address)
is well described, and the recognition rules that govern hybridization are well
characterized, the signal intensity at each position of the microarray gives a
quantitative measurement of one single target sequence with known identity.
Although oligonucleotide probes vary systematically in their hybridization
efficiency, quantitative estimates of the number of transcripts per cell can
be obtained directly by averaging the signal from multiple probes. There-
fore, a gene is visually represented by multiple oligonucleotides. Figure 2.2b
shows different methods for preparing the labeled material for measurements
required for gene expression profiling.

6

2.1. EXPRESSION PROFILING BASED ON MICROARRAYS

Labelled cDNA

AAAAA

AAAAA

AAAAA

TTTTT
TTTTT

AAAAA
T7promotorTTTTT

UUUUU
UUUUU

Labelled cRNA

Labelled RNA

0.8 cm

Figure 2.2.: a: An oligonucleotide array. b: Different methods for preparing labeled
materials. Modified from Lockhart, D.J. and Winzeler, E.A., Nature 405,
2000)

7

2. GENE EXPRESSION PROFILING

2.1.2. From Raw Data to a Clustered Expression Matrix

Figure 2.3.: Three-dimensional representation of the intensity of one single spot

After processing the required microarrays, the resulting images have to be analyzed
to identify the arrayed spots and to measure the fluorescence intensities for each element
(Figure 2.3). During hybridization some of the probe mRNA will attach to the array,
even when there is no cDNA available. This is known as ”background intensity”. Within
the foreground region the mRNA can hybridize to the target cDNA or to the glass itself.
These two effects are assumed to be additive (Figure 2.4). Therefore, the extracted raw
spot intensities have to be background corrected [26].

background
intensity

microarray

spot
intensity

These two signals
are assumed to be
additive

Figure 2.4.: The idea of background substraction

Differences in labelling and detection efficiencies for the fluorescent labels, as well as
differences in the quantity of initial mRNA from the two samples examined in the assays
can cause a shift in the average ratio of Cye5 to Cye3. Data normalization adjusts for
these differences. The intensities must be rescaled before an experiment can be properly
analyzed (Figure 2.5). Currently, there are different normalization algorithms used for
preprocessing microarray data, which are described in [27, 28, 29, 30, 31].

8

2.1. EXPRESSION PROFILING BASED ON MICROARRAYS

Figure 2.5.: The measured Cye5 intensity is generally less than the measured Cye3
intensity and therefore, in the histogram before data normalization (red),
the average intensity is biased to the left of zero. Data normalization adjusts
this shift in the average ratio and is shown in the blue histogram. (Figure
Quackenbush, J., Nature Reviews Genetics 2, 2001)

After normalization, the data for each gene is reported as an expression ratio or as
the logarithm of the expression ratio. The expression ratio is the background corrected,
normalized value of the expression level for a particular gene in the query sample
divided by the corresponding background corrected, normalized value of the control.
The advantage of taking the logarithm of the expression ratio is that a gene upregulated
by a factor of 2 has a log2(ratio) of 1, whereas a gene downregulated by the same factor
has a log2(ratio) of -1, and a gene expressed at a constant level (with a ratio of 1) has
a log2(ratio) of 0.

The next step in the microarray data analysis is identifying differentially-expressed
genes within each microarray slide. The test for differentially-expressed genes directly
compares a series of repeated measurements of the two dye intensities for each gene. This
test uses a statistical model to describe multiplicative and additive errors influencing
an array experiment, where model parameters are estimated from observed intensities
for genes using the maximum-likelihood method. A generalized likelihood ratio test
is performed for each gene to determine whether, under the model, these intensities
are significantly different [32]. Those genes which are not differentially-expressed are
excluded from the cluster analysis.

A powerful application of transcriptional profiling is the study of patterns of gene
expression in order to survey cellular responses and conditions. To this end, the cells of
interest are sampled at regular time intervals or after different treatments, each sample
being analyzed using a separate microarray. The simplest way to identify genes of
potential interest is to search for those that are consistently either up- or downregulated.
This is a strong indication that these genes are part of the same pathway. To that end,
a simple statistical analysis of gene-expression levels will suffice. Identifying patterns

9

2. GENE EXPRESSION PROFILING

of gene expression and grouping genes into expression classes provides greater insight
into their biological function and relevance. There exists a large group of statistical
methods, generally referred to as cluster analysis. Various clustering techniques have
been applied to the identification of patterns in gene expression data:

1. Unsupervised methods

• Hierarchical clustering [33]

Hierarchical clustering has the advantage that it is simple and the re-
sult can be easily visualized. It has become one of the most widely used
techniques for the analysis of gene expression data. Hierarchical clus-
tering is an agglomerative approach in which single expression profiles
are joined to form groups, which are further joined until the process has
been carried to completion, forming a single hierarchical tree.

• k-means clustering [34]

If there is advanced knowledge about the number of clusters that should
be represented in the data, k-means clustering is an alternative to hier-
archical methods. In k-means clustering, objects are partitioned into a
fixed number (k) of clusters, such that the clusters are internally similar
but externally dissimilar; no dendrograms are produced but one could
use hierarchical techniques on each of the data partitions after they are
constructed.

• Self-organizing maps (SOM) [35]

A SOM is a neural network based divisive clustering approach. A SOM
assigns genes to a series of partitions on the basis of the similarity of their
expression vectors to reference vectors that are defined for each partition.
It is the process of defining these reference vectors that distinguishes
SOMs from k-means clustering.

2. Supervised methods

• Support vector machine (SVM) [36]

SVMs use a training set in which genes known to be related by, for
example, functions are provided as positive examples and genes known
not to be members of that class are negative examples. These are com-
bined into a set of training examples that is used by the SVM to learn
to distinguish between members and non-members of the class on the

10

2.2. MICROARRAY DATA ANALYSIS PIPELINE

basis of expression data.

• Artificial neural network (ANN) [37, 38]

An ANN is an artificial intelligence tool that identifies arbitrary non-
linear multiparametric discriminant functions directly from the experi-
mental data. This machine learning technique can be roughly described
as a universal algebraic function that will distinguish signal from noise
directly from experimental data.

In supervised learning, pairs of inputs and outputs are given, and transfer functions
are modified (by updating weights) to minimize the classification error. In unsuper-
vised learning, in contrast, inputs and optimization criteria are given, and weights are
modified, on the basis of outputs weights.

2.2. Microarray Data Analysis Pipeline

The Institute for Systems Biology, a non-profit research institute located in Seattle
(WA, USA), is using different tools for their DNA microarray data processing. These
tools are arranged in a pipeline2:

dapple Performs the image processing. Locates and quantifies DNA spots in a microar-
ray image and outputs the raw intensity data.

preprocess Performs background substraction, normalization, and lookup on raw in-
tensity data. Also provides rudimentary gene expression ratio for each gene.

mergeReps Combines the data from multiple preprocessed files and computes the av-
erage expression ratio of each gene over the replicate measurements.

VERA Variability and ERror Assessment. Estimates the error model parameters from
replicated, preprocessed experiments.

SAM Significance of Array Measurement. Uses the error model to improve the accuracy
of the expression ratio and to assign a value to each gene, indicating the likelihood
that the gene is differentially-expressed between two conditions.

mergeConds Creates a gene expression matrix from multiple conditions.

2For a detailed description of this pipeline, please refer to [39]

11

2. GENE EXPRESSION PROFILING

For our purpose, we have adapted this analysis pipeline. Before the proper data
analysis begins, the material, hybridized later on the DNA chips, must be prepared.
For this purpose, the researcher treats cell populations under different conditions and
retains untreated cells as controls. As the treatments are finished, the mRNA has to be
extracted from the cell populations and transformed to cDNA by reverse transcription.
For each condition, the researcher extracts the mRNA to be analyzed. Each treatment
condition and its control are different fluorescently labeled and mixed together. Figure
2.6 shows the hybridization step, where the mixture of mRNA is applied onto the DNA
chips. To improve the significance of the following data analysis, the microarray chip
for one condition is often replicated (usually up to 4 times). After washing, the arrays
are scanned at two different wavelengths to detect the relative transcript abundance
for each condition. Figure 2.7 shows the resulting monochrome images (for Cye3 and
Cye5) produced by the scanner.

Condition 1a

Control sample
(mRNA)Test sample

(mRNA)

Reverse
transcription

Control sample
labeled with
Cye3 dye
(cDNA)

Test sample
labeled with
Cye5 dye
(cDNA)

Microarray slide

Condition 1b

Control sample
(mRNA)Test sample

(mRNA)

Reverse
transcription

Control sample
labeled with
Cye3 dye
(cDNA)

Test sample
labeled with
Cye5 dye
(cDNA)

Microarray slide

Condition 2a

Control sample
(mRNA)Test sample

(mRNA)

Reverse
transcription

Control sample
labeled with
Cye3 dye
(cDNA)

Test sample
labeled with
Cye5 dye
(cDNA)

Microarray slide

Condition 2b

Control sample
(mRNA)Test sample

(mRNA)

Reverse
transcription

Control sample
labeled with
Cye3 dye
(cDNA)

Test sample
labeled with
Cye5 dye
(cDNA)

Microarray slide

Figure 2.6.: Hybridization of the cDNA to the microarray slide. Each of the two con-
ditions is replicated twice (C1a, C1b, C2a, C2b)

After those preparations in the wet lab, the proper data analysis can be
started. First, the generated images have to be computationally post processed. The
monochrome images are pseudo-colored based on their labels and merged into a single

12

2.2. MICROARRAY DATA ANALYSIS PIPELINE

Condition 1a

Laser 1Laser 2

Hybridized
microarray

slide

Monochrome
image of

the test sample

Monochrome
image of

the control sample

Condition 1b

Laser 1Laser 2

Hybridized
microarray

slide

Monochrome
image of

the test sample

Monochrome
image of

the control sample

Condition 2a

Laser 1Laser 2

Hybridized
microarray

slide

Monochrome
image of

the test sample

Monochrome
image of

the control sample

Condition 2b

Laser 1Laser 2

Hybridized
microarray

slide

Monochrome
image of

the test sample

Monochrome
image of

the control sample

Figure 2.7.: Scanning the hybridized microarray slide

13

2. GENE EXPRESSION PROFILING

Condition 1a

Pseudo-colored image
of the control sample

Pseudo-colored image
of the test sample

Merged image

gene 1
gene 2

test sample control sample

235 754
456 984

Raw intensities data

Condition 1b

Pseudo-colored image
of the control sample

Pseudo-colored image
of the test sample

Merged image

gene 1
gene 2

test sample control sample

234 657
567 912

Raw intensities data

Condition 2a

Pseudo-colored image
of the control sample

Pseudo-colored image
of the test sample

Merged image

gene 1
gene 2

test sample control sample

123 876
345 765

Raw intensities data

Condition 2b

Pseudo-colored image
of the control sample

Pseudo-colored image
of the test sample

Merged image

gene 1
gene 2

test sample control sample

127 854
345 831

Raw intensities data

Figure 2.8.: Image processing after scanning the microarray slide

image for each replicated condition, and the raw intensities are extracted, as shown in
Figure 2.8. The result of the image processing step is a simple spot matrix for each
replicated condition listing the measured relative intensities for each arrayed spot and
channel. The columns represents the two channels (Cye3 and Cye5), the rows the differ-
ent arrayed spots (genes). All remaining steps consist in transformations of this data,
which have been automated by the implemented process. Generally, the aim of all these
transformations is to ensure the quality and standardization of the data set. For each
replicated condition, the raw data needs to be normalized. The background has to be
subtracted from each arrayed spot. In addition to its coordinates, each spot needs to be
annotated with gene specific information. The replicated conditions are then combined
together by taking the average intensities. The result is a simple merged spot matrix
representing one experimental condition (Figure 2.9). Based on this matrix, the next
step estimates an error model for each condition and uses it to identify differentially-
expressed genes between the control and treated sample. Finally, the multiple conditions
are merged into a global gene expression matrix in which the columns represent the
different conditions, whereas the rows represent the different genes. The last step in the
data analysis is the cluster analysis. Finally, the clustered data can be visualized with
an appropriate software tool (Figure 2.10).

14

2.3. EXPERIMENTAL DATA

Condition 1a

gene 1
gene 2

test sample control sample

235 754
456 984

Raw intensities data

Condition 1b

gene 1
gene 2

test sample control sample

234 657
567 912

Raw intensities data

Normalization
Background substraction

Gene Annotation
Merge replications

Condition 1

gene 1
gene 2

test sample control sample

234.5 705.5
511.5 948

Merged spot matrix

Condition 2a

gene 1
gene 2

test sample control sample

123 876
345 765

Raw intensities data

Condition 2b

gene 1
gene 2

test sample control sample

127 854
345 831

Raw intensities data

Normalization
Background substraction

Gene Annotation
Merge replications

Condition 2

gene 1
gene 2

test sample control sample

125 865
345 798

Merged spot matrix

Figure 2.9.: Preprocessing the raw data

2.3. Experimental Data

The experimental dataset, we used for our tests, has been downloaded form the Stanford
Microarray Database (SMD) [6]. SMD stores raw and normalized data from microarray
experiments, and provides web interfaces to retrieve, analyze and visualize the data.
The two immediate goals for SMD are to serve as a storage site for microarray data
from ongoing research at Stanford University, and to facilitate the dissemination of
that data once published, or released by the researcher [40].

The data originates from an experiment, where distinct types of diffuse large B-cell
lymphoma (subtype of non-Hodgkin’s lymphoma, cancer) have been identified by gene
expression profiling [41]. The dataset comprises 133 microarrays whereof 30 conditions
were performed in duplicate, one condition in triplicate and the remainder was per-
formed once. For their data analysis, they have excluded three single conditions and
two duplicated ones, due to quality reasons. Therefore their final dataset comprises 126
microarrays for the 96 conditions analyzed.

For our purpose, we used less than 126 microarrays, because our analysis tests for
differentially-expressed genes. This test presumes that the experiments are replicated
(at least 4 times). Our data does not fully comply to this requirement, therefore we
only used 96 microarrays representing 66 different conditions in our analysis.

15

2. GENE EXPRESSION PROFILING

Condition 1

gene 1
gene 2

test sample control sample

234.5 705.5
511.5 948

Raw intensities data

Condition 2

gene 1
gene 2

test sample control sample

125 865
345 796

Raw intensities data

Identifying defferentially-exxpressed genes
Merge conditions

Gobal Gene Expression Matrix

gene 1
gene 2

Condition 1 Condition 2

0.33 0.14
0.54 0.43

Expression ratios

Cluster Analysis

Figure 2.10.: Cluster analysis of the merged experimental conditions

16

3. BioOpera

3.1. The Concept of Process

BioOpera uses the concept of process to describe computations. A process is a set of
computational tasks that are to be executed as well as a description of the dependen-
cies between these tasks. Processes can be specified using both a graphical notation
or a textual language. The programming language used by BioOpera is called Opera
Canonical Representation (OCR) and it is a textual, rule-based language for high-level
description of computations involving several interdependent steps. The result of the
specification is a process template. Process templates can be executed by BioOpera.
When BioOpera runs a specific process template, it generates a process instance from
this template. It uses the information contained in the template to decide when to
execute the tasks. This procedure is called navigation. This way, the instance always
reflects the current state of the process: which tasks are running, which ones already
terminated, which ones still need to be executed. Whenever a task is eligible to be exe-
cuted, BioOpera determines the external software to call for this task and tries to find
a computing resource to execute it on. To do this, it must be aware of the hardware and
software at its disposal for executing a process. The user has to provide information
about the available programs and computing resources by registering program descrip-
tors and and resource descriptors with the system. For more details about BioOpera,
refer to [42].

3.1.1. Resource Descriptors

We have to define the resource descriptors in order to specify the properties of the com-
puting resources we want to use for the execution of the process. Resource descriptors
consists of:

Host

• Registering a host simply requires the corresponding host name or IP ad-
dress. BioOpera automatically identifies the hardware and software settings

17

3. BIOOPERA

of the node (number of CPUs, available memory and swap space, operating
system).

Group

• The system supports the definition of sub-clusters and arbitrary groups of
nodes, including nested and overlapping ones. They are used for scheduling,
access control, resource distribution (e.g. user A runs on one sub-cluster,
user B on a different sub-cluster) and for describing the machines suitable
for running a given activity.

3.1.2. Program Descriptors

Each activity in a process corresponds to an external application that needs to be
invoked. Before an activity can be mapped to an application, the application must be
registered with BioOpera:

Interface

• Specifies the interface (input and output parameters) of the program as well
as how to run it.

Command

• Specifies the mechanism to be used by BioOpera to start the program on a
host.

Resource

• Specifies the group (range of nodes) where the program can be invoked.

3.1.3. Process Components

A process is a set of computational tasks that are to be executed. A task can be a call
to software residing outside of BioOpera (e.g. shell scripts, binary executables) or a call
to another process. Tasks can be:

Activity

• An Activity involves the execution of an external program on one of the
cluster nodes.

18

3.1. THE CONCEPT OF PROCESS

Subprocess

• A subprocess calls another BioOpera process. Subprocesses are used to sup-
port modularity and code encapsulation.

Tasks and processes have input and output parameters. Each one of these parameters
can be assigned a default value that is used if the user or the tasks do not provide an
alternative value.

3.1.4. Inter-Task Dependencies

A process also describes the dependencies between the above mentioned tasks. There
are two types of dependencies between computational tasks:

Control Flow

• The partial order between the different steps of the computation is specified
as a control flow. The current version of BioOpera supports only directed
acyclic control flows. Each task has a boolean predicate (a condition) that
can be arbitrarily defined over any data parameters within the scope of the
process. This predicate is used to implement complex control flow depen-
dencies such as conditional branches. A task will not start until all control
flow dependencies are satisfied, and the starting condition evaluates to true.

Data Flow

• The mapping between the output and input parameters of different tasks is
specified as a data flow. Data flow dependencies are created by connecting
the output parameters of the task producing data to the input parameters of
the task consuming data. The programmer has the possibility for specifying
parallel tasks through specialized data flow connections. These connectors
unfolds dynamically the tasks into multiple concurrent tasks as specified by
the input parameters. Equivalent to saying: if an array parameter p is bound
to a scalar input parameter q of the task t, at runtime BioOpera will start
in parallel on instance ti of the task t for each element i of the array p. Such
tasks are called explosive tasks.

19

3. BIOOPERA

20

4. Process Design

To process our experimental data, we use two different processes:

1. Data Preparation Process (DPP)

2. Expression Profiling Process (EPP)

First, the original data was not in the file format required by the programs used by
EPP. This is why DPP transforms the data into the required format. EPP performs the
data analysis. The data preparation and the analysis have been implemented separately
for the sake of modularity and flexibility. Before implementing the processes, the cluster
nodes as well as the programs involved need to be set up. The following sections describe
the hardware and software setup as well as the design of DPP and EPP.

4.1. Setting Up the Environment

As we have seen, the computing environment needs to be set up. The cluster needs
to be defined and the programs have to be registered within BioOpera. The table 4.1
summarizes the main hardware and software characteristics of the used cluster of PCs.

Nodes CPU(Mhz) RAM(MB) OS
L. 60 P-III (1000) 1024 LINUX v2.4.17

Table 4.1.: Cluster setup

Both the programs and the data set have been put into a common directory subtree,
made available to each cluster node using NFS. This configuration fits our purpose as
long as the appropriate data is moved to the cluster node’s local disks. This needs to
be done because NFS does not scale for a cluster of the above size.

The programs used are either (1) overtaken unmodified from the Institute for Sys-
tems Biology (Section 2.2) or (2) they have been wrapped. In both cases, minor adap-
tations of the scripts were necessary in order to use them through BioOpera.

21

4. PROCESS DESIGN

4.2. Data Preparation Process (DPP)

START

DPP

TRF

TRANSFORM

EXT

EXTRACT

Figure 4.1.: Control flow of the data preparation process (DPP)

script_root data_root file_list

DSP Input

genekey_files []dapple_files []

DSP Output

script_root data_root scanalyze dapple slidecol sliderow gridcol gridrow

dapple_file

TRF

script_root data_root smd genekey slidecol sliderow gridcol gridrow

genekey_file

EXT

script_root data_root file_list

smd [] genekey [] slidecol [] sliderow [] gridcol [] gridrow []scanalyze [] dapple []

START

DPP - DataFlow

Figure 4.2.: Data flow of the data preparation process (DPP)

The Institute for Systems Biology uses dapple [43] for the image processing. The
downloaded experimental data set however was evaluated with a different software
tool, called ScanAlyze [44]. The only difference is the file format. The ScanAlyze data

22

4.2. DATA PREPARATION PROCESS (DPP)

files need to be transformed into to correct format for dapple [43]. Furthermore, the
SMD (see section 2.3) does not provide a genekey file for the microarray chips used
in the experiment. Therefore, such a genekey1 file needs to be generated by extract-
ing the gene-specific information from the raw data, provided by the SMD. The data
preparation process performs these tasks on the raw data. Figure 4.1 shows its control
flow, Figure 4.2 the corresponding data flow. The process consists of a partitioning task
(START) and two explosive tasks (TRF, EXT), the latter being started on termination
of the former. The data flow consists of three classes of input/output parameters:

1. Deployment parameters

2. Input/output file locations

3. Slide geometry describing the spot arrangement in the underlying microarray
slide.

The data processed by DPP and EPP is stored in flat files. The process parameters
themselves do not hold the content of these files but merely their names. For the sake
of readability, we use the term, ”file” and ”file name” interchangeably when talking
about process parameter values.

The first task, START, partitions each row of the input file list and puts the content
of each column into a separate array. The following list summarizes its input/output
parameters as well as the involved programs:

INPUT

Deployment parameters:

data root

Absolute path to the data.

script root

Absolute path to the script invoked by START.

Input file locations:

file list

List containing the files to be transformed, the files to be extracted
as well as the corresponding spot arrangement (Table 4.2). A single
row represents one microarray slide. The first two columns list the

1A genekey file contains the information about the genes (spots) arranged on a microarray slide

23

4. PROCESS DESIGN

input and the output file for the transformational step, the next two
columns list the input and output file for the generation of the gene
information, and the remaining columns indicate the underlying mi-
croarray geometry described with four separate parameters. Figure
4.3 shows a 4x4x24x24 geometry.

OUTPUT

Output file locations:

scanalyze[]

Array holding a list of file names, each of them designating a Scan-
Alyze file to be transformed.

dapple[]

Array holding a list of file names, each of them designating a trans-
formed dapple file

smd[]

Array holding a list of file names, each of them designating a SMD
file from which the gene information will be extracted.

genekey[]

Array holding a list of file names, each of them designating the file
containing gene information extracted from the corresponding SMD
file.

Slide geometry:

slidecol[]

Array holding a list of numbers, each of them describing the maxi-
mum number of slide columns.

sliderow[]

Array holding a list of numbers, each of them describing the maxi-
mum number of slide rows.

gridcol[]

Array holding a list of numbers, each of them describing the maxi-
mum number of grid columns.

24

4.2. DATA PREPARATION PROCESS (DPP)

sliderow[]

Array holding a list of numbers, each of them describing the maxi-
mum number of grid rows.

INVOKED PROGRAMS

START.pl

see Appendix A.5.1

Access method

perl %script root%START.pl %file list% -dataroot %data root%

START enables to invoke the two explosive tasks in the next step, which will be exe-
cuted in parallel. At the end of the process, the produced output files are collected into
a separate array for each subprocess (dapple files[] and genekey files[]).

ScanAlyze dapple SMD genekey slidecol sliderow gridcol gridrow
lc4b039rex2.DAT lc4b039.dat 5789.xls genekey lc4b039.dat 4 4 24 24
lc8n077rex2.DAT lc8n077.dat 5821.xls genekey lc8n077.dat 4 8 24 24

Table 4.2.: Example Input File List for the data preparation process

4x4 grids

24x24 spots

Figure 4.3.: Spot arrangement on a microarray slide. The outer square contains 4x4
grids, the inner one 24x24 spots.

25

4. PROCESS DESIGN

4.2.1. Transforming the Raw Data File Format (TRANSFORM)

script_rootdata_root scanalyze dapple slidecol sliderow gridcol gridrow

TRF Input

dapple_file

TRF Output

script_rootdata_root scanalyze dapple slidecol sliderow gridcol gridrow

dapple_file

TRANSFORM

TRF - DataFlow

Figure 4.4.: Data flow of the TRF subprocess

The ScanAlyze file consists in a matrix describing the raw spot intensities of one
microarray slide. TRF transforms this matrix into another by reordering the matrix
elements. The output is written to a file, of which location and name is passed as input
parameters. The output adheres to the dapple file format2. The explosive task involves
the following parameters (Figure 4.4) as well as the following program:

INPUT

Deployment parameters:

data root

Absolute path to the data.

script root

Absolute path to the script invoked by TRF.

Input file locations:

scanalyze

ScanAlyze file containing the raw spot intensities for one microarray
slide.

2Refer to Appendix A.1 and A.2 for a detailed description of the various file formats

26

4.2. DATA PREPARATION PROCESS (DPP)

dapple

Output file name of the transformed data.

Slide geometry:

slidecol

Number of slide columns of the underlying microarray slide.

sliderow

Number of slide rows of the underlying microarray slide.

gridcol

Number of grid columns of the underlying microarray slide.

gridrow

Number of grid rows of the underlying microarray slide.

OUTPUT

Output file locations:

dapple file

Transformed output file.

INVOKED PROGRAMS

TRANSFORM.pl

see Appendix A.5.2

Access method

perl %script root%TRANSFORM.pl %scanalyze% %dapple%

-arrayconfig %slidecol% %sliderow% %gridcol% %gridrow%

-dataroot %data root%

4.2.2. Extracting Gene Information (EXTRACT)

Microarray image processing tools produce, for each spot, the position of the spot,
the raw intensities for the two channels, and some statistical values concerning the
latter. Biologically, this data is not extensively meaningful because there is no informa-
tion about the name and the description of the gene represented by a particular spot.
Therefore, each spot has to be annotated after the image processing. Usually, annota-
tion information is provided by the chip manufacturer in a so-called genekey file. Our

27

4. PROCESS DESIGN

script_root data_root smd genekey slidecol sliderow gridcol gridrow

EXT Input

genekey_file

EXT Output

script_root data_root smd genekey slidecol sliderow gridcol gridrow

unique_id

SYS.ID
genekey_file

EXTRACT

EXT - DataFlow

Figure 4.5.: Data flow of the EXT subprocess

experimental data, however, does not come with such a file. Therefore, the EXT sub-
process generates all required genekey files3 by extracting the appropriate information
from the SMD file and coalescing it into a single file. The output is written to a file,
of which location and name is passed as input parameters. The following list shows its
involved parameters (Figure 4.5) and program:

INPUT

Deployment parameters:

data root

Absolute path to the data.

script root

Absolute path to the script invoked by EXT.

Input file locations:

smd

SMD file containing gene information.

3Refer to Appendix A.4 for a detailed description of the extracted data fields

28

4.2. DATA PREPARATION PROCESS (DPP)

genekey

Output file name of the extracted gene information.

Slide geometry:

slidecol

Number of slide columns of the underlying microarray slide.

sliderow

Number of slide rows of the underlying microarray slide.

gridcol

Number of grid columns of the underlying microarray slide.

gridrow

Number of grid rows of the underlying microarray slide.

Various input parameters:

unique id

The involved scripts writes temporary information to a file. When
several EXTRACT tasks are executed on the same machine in par-
allel, each of them needs to write to its own file. Therefore, the EX-
TRACT task needs a unique identification to name its temporary
file.

OUTPUT

Output file locations:

genekey file

Gene information file.

INVOKED PROGRAMS

EXTRACT.pl

see Appendix A.5.3

Access method

perl %script root%EXTRACT.pl %smd% %genekey% -arrayconfig

%slidecol% %sliderow% %gridcol% %gridrow% -dataroot

%data root% -uid %unique id%

29

4. PROCESS DESIGN

4.3. Expression Profiling Process (EPP)

In this section, the design of the expression profiling process (EPP), its control and
data flow as well as each task’s functional part within the analysis will be described.

4.3.1. EPP Design Issues

PREPROCESS

LOOKUP

MERGEREPS

STA

Overall CPU time: 2.72%
(0.61 min per replicated condition)

PLM

STA

MERGE-
CONDS

CLUST

MERGE-
CONDS

CLUST

Measurements: Parallelization scheme:

PLM

Overall CPU time: 96.20%
(21.42 min per condition)

Overall CPU time: 0.14%
(2.07 min per experiment)

Overall CPU time: 0.94%
(13.80 min per experiment)

Figure 4.6.: Timing information for the microarray analysis pipeline

Before designing EPP, timing information for the microarray analysis pipeline has
been collected by performing test runs for 96 different microarray slides. The averages
shown above were derived from that timing information. As can be seen in Figure 4.6,
STA consumes the major part of the overall CPU time (∼96%). STA consists of the
programs VERA and SAM and performs some statistical analysis. VERA and SAM
have to be executed sequentially. However, before STA can be invoked, the data has to
be preprocessed. This is undertaken by the three programs PREPROCESS, LOOKUP
as well as MERGEREPS. Together, these three scripts together consume ∼3% of the
overall CPU time. MERGECONDS and CLUST can not be executed in parallel be-
cause they need to wait for the statistical analysis to be completed. This means that
independently of the process design, there needs to be a synchronization point at the
end of the statistical analysis (STA). As the first three steps, PREPROCESS, LOOKUP
and MERGEREPS, are short-lived, they have been wrapped into one single program,
PLM, to minimize the overhead incurred by BioOpera. Additionally, the degree of par-
allelism for PLM may be specified by the user. The main part of the overall CPU

30

4.3. EXPRESSION PROFILING PROCESS (EPP)

time is used by STA. Therefore, the process design should provide the highest possible
degree of parallelism for this step. For each single experimental condition, a single STA
is performed.

These considerations led to the process design described in the following section.

4.3.2. Components and Control Flow

PART

EXP_FILE

PLM

CLUST

EPP

STA

PVS

VERA

SAM

MC

CLUST

Figure 4.7.: Control flow of the expression profiling process (EPP)

As one can see in Figure 4.7, the expression profiling process (EPP) is based on the
following tasks and subprocesses:

PART (Task)

Partitions the input data set into smaller subsets.

EXP FILE (Subprocess)

Built from the following components: (1) PLM, (2) STA and (3) CAST.

31

4. PROCESS DESIGN

PLM (Task)

Performs data normalization and background substraction for each sin-
gle spot and computes average intensity data for replicated experiments.
Also, it annotates each single spot with the corresponding gene infor-
mation.

STA (Subprocess)

Built from the following components: (1) PVS, (2) VERA and (3) SAM.

PVS (Task)

Transforms the data in order for VERA and SAM to be invoked.

VERA (Task)

Computes a statistical error model based on the standardized data.

SAM (Task)

Determines, based on the previously computed error model, how
likely each gene is differentially-expressed.

CAST (Task)

Casts its input parameter (array) to a string. This task is needed to
overcome a limitation of the current BioOpera system.

MC (Task)

Merges different experimental conditions into one expression matrix.

CLUST (Task)

Clusters genes and experiments based on the different gene expression pat-
terns represented in the expression matrix.

4.3.3. Data Partitioning (PART)

PART partitions the process’ input data set into smaller subsets as defined by the
user. The following enumeration lists its parameters (Figure 4.8) as well as the involved
program:

32

4.3. EXPRESSION PROFILING PROCESS (EPP)

INPUT

Deployment parameters:

data root

Absolute path to the data.

script root

Absolute path to the script invoked by PART.

Input file locations:

dapple list

List containing all dapple files to be analyzed.

genekey list

List containing the corresponding genekey files.

mergereps list

List containing the output file names used to save the data of the
merged replicated experiments.

Various input parameters:

partition size

Parameter defining the size of a single partition.

OUTPUT

Output file locations:

part dapple list[]

Array containing all partitioned subsets of dapple files produced by
PART.

part genekey list[]

Array containing all partitioned subsets of genekey files produced
by PART.

part mergereps list[]

Array containing all partitioned subsets of mergereps output file
names produced by PART.

33

4. PROCESS DESIGN

INVOKED PROGRAM

PARTITION.pl

see Appendix A.6.1

Access method

perl %script root%PARTITION.pl %dapple list% %genekey list%

%mergereps list% -partitionsize %partition size% -dataroot

%data root%

script_root data_root dapple_list genekey_list mergereps_list partition_size

EPP Input

EPP Output

script_root data_root dapple_list genekey_list mergereps_list partition_size

part_dapple_list [] part_genekey_list [] part_mergereps_list []

PART

part_dapple_list part_genekey_list part_mergereps_list

EXP_FILE

EPP – task PART

Figure 4.8.: Data flow of the expression profiling process (EPP) - PART Task

For a better understanding of the partitioning scheme, consider a biological ex-
periment performed on four different conditions (C1 - C4). Conditions 1, 3 and 4 are
replicated. Figure 4.9 shows the resulting partitions when setting the partition size to

34

4.3. EXPRESSION PROFILING PROCESS (EPP)

two. With this parameter, the user may specify the degree of parallelism of the next
involved subprocess EXP FILE. The mapped arrangement of the conditions is in ac-
cordance to the arrangement in the input files, taken by the task PART. The input
passed as dapple list and genekey list is both a file containing a list of file names, one
per condition and replica. The input passed by the third parameter (mergereps list) is
a file containing also a list of file names, but only one file name per condition.

replicas

experim
ental

conditions

partition
size

PART

C1a C1b

C2a C2b

C3a

C4a C4b

C1a

C2a

C1b

C2b

C3a

C4a C4b

partition p1

partition p2

Total number of
conditions

Figure 4.9.: Partitioning scheme of the PART task. The parameters hold only the re-
spective file name. The files contains the data diagrammed as conditions.

4.3.4. Preprocessing (EXP FILE)

Figure 4.11 as well as 4.12 shows the data flow of the EXP FILE subprocess. The first
task, PLM, converts the raw intensity for each single replicated experimental condition
into a sorted list of background-substracted and normalized intensities for each spot
on the cDNA microarray. After these mathematical transformations, each spot is being
annotated with the corresponding gene information taken from the genekey file. At the
end, replicated measurements are merged (Figure 4.10) by taking the average intensities
as well as filtered to reject outliers [39]. The output is written to the file location
indicated in part mergereps list. The following list summarizes the parameters as well
as the program being involved in PLM :

35

4. PROCESS DESIGN

PLM

C1

C2

C1a

C2a

C1b

C2b

Figure 4.10.: Merging scheme of the PLM task. The replicas of Conditions 1 and 2
(C1a, C1b, C2a and C2b) are merged into a separate expression matrix
(C1 and C2).

INPUT

Deployment parameters:

data root

Absolute path to the data.

script root

Absolute path to the script invoked by PLM.

Input file locations:

part dapple list

List containing all dapple files to be analyzed.

part genekey list

List containing the corresponding genekey files.

part mergereps list

List containing the output file names used to save the data of the
merged replicated experiments.

36

4.3. EXPRESSION PROFILING PROCESS (EPP)

Various input parameters:

scanner saturation

Specify the saturating intensity for the microarray scanner. Spot
intensities above this number are flagged, i.e. the specific spot is
excluded from the analysis.

min replications

Only those genes that are represented by at least the given number
of replicate measurements in the merged data set are returned.

const label dir

Channel 1 usually represents the control condition and channel two
the treated one. With this parameter one can define this order. In
the former case, the parameter should hold the value ’r’. If channel
1 represents the treated condition and channel 2 the control one,
then one should set the value ’f’. The correct channel assignment is
very important, as the ratio of treated condition/control condition
is taken.

unique id

Some of the involved scripts exchange information through a file.
When several PLM tasks are executed on the same machine in par-
allel, each of them needs to write to its own file. Therefore, the PLM
task needs a unique identification to name its log file.

OUTPUT

Output file locations:

merged files[]

Array containing the preprocessed and merged experimental condi-
tions.

Various output parameters:

max replications[]

This array holds the maximum numbers of replicated measurements
for each condition.

37

4. PROCESS DESIGN

INVOKED PROGRAM

Preproc lookup mergereps.pl

see Appendix A.6.2

Access method

perl %script root%PREPROC LOOKUP MERGEREPS.pl

%part dapple list% %part genekey list% %part mergereps list%

-dataroot %data root% -scriptroot %script root% -minreps

%min replications% -labeldir %const label dir% -sat

%scanner saturation% -uid %unique id%

As one can see from Figure 4.12, the subprocess EXP FILE is built from a second
task, CAST. However, before this task will be executed, the subprocess STA will be
invoked first. Therefore the design description is continuing with this subprocess. The
task CAST is described in subsection 4.3.6.

script_root data_root scanner_saturation min_replication const_label_dir

EPP Input

EPP Output

part_dapple_list [] part_genekey_list [] part_mergereps_list []

PART

script_root data_root part_dapple_list part_genekey_list part_mergereps_listscanner_saturation min_replications const_label_dir

sam_files

EXP_FILE

sam_files_all []

MC

EPP – subprocess EXP_FILE

Figure 4.11.: Data flow of the expression profiling process (EPP) - EXP FILE Subpro-
cess

4.3.5. Statistical Analysis (STA)

Figure 4.13 shows the data flow of the subprocess STA. This subprocess determines,
for each condition, wether any given gene is expressed at a different level in one cell
population than in another, according to the microarray data (Subsection 2.1.2). It is
built from three different tasks: (1) PVS, (2) VERA as well as (3) SAM.

38

4.3. EXPRESSION PROFILING PROCESS (EPP)

script_root data_root part_dapple_list part_genekey_list part_mergereps_list scanner_saturationmin_replications const_label_dir

EXP_FILE Input

sam_files

EXP_FILE Output

script_root

data_root

part_dapple_list part_genekey_list part_mergereps_list const_label_dirmin_replications scanner_saturation

merged_files [] max_replications_list []

unique_id

SYS.ID

PLM

data_rootscript_root merged_file max_replications

sam_file

STA

sam_files

array []

CAST

EXP_FILE

Figure 4.12.: Data flow of the EXP FILE subprocess

39

4. PROCESS DESIGN

data_rootscript_root merged_file max_replications

STA Input

sam_file

STA Output

script_root data_root merged_file max_replications

prep_file error_model_filename

PVS

script_root data_root prep_file error_model_filename

error_model sam_output_filename

VERA

script_root data_root prep_fileerror_model sam_output_filename

sam_file

SAM

STA

Figure 4.13.: Data flow of the STA subprocess.

40

4.3. EXPRESSION PROFILING PROCESS (EPP)

Transforming File Format (PVS)

PVS transforms the output data produced by the preliminary steps into the right
format. The following list shows the parameters as well as the program involved by
PVS :

INPUT

Deployment parameters:

data root

Absolute path to the data.

script root

Absolute path to the script invoked by PVS.

Input file locations:

merged file

Expression matrix of merged replicated experiments (i.e. one single
condition) produced by PLM.

Various input parameters:

max replications

Indicates the maximum number of replicated spots on the microar-
ray. This value is used in the data standardization.

OUTPUT

Output file locations:

prep file

Standardized expression matrix of a single condition.

error model filename

File name for the error model produced in the next subsequent step
(VERA).

INVOKED PROGRAM

PREPARE VERA SAM.pl

see Appendix A.6.3

41

4. PROCESS DESIGN

Access method

perl %script root%PREPARE VERA SAM.pl %merged file%

-dataroot %data root% -replications %max replications%

Variability and Error Assessment (VERA)

VERA takes the merged experimental data produced by PLM, and describes for each
condition the overall variability of the data in terms of five parameters, called error
model parameters. Error model parameters are fitted to the data by starting from an
initial guess, optimizing them in iterated steps until they converge [32]. VERA involves
the following parameters and program:

INPUT

Deployment parameters:

data root

Absolute path to the data.

script root

Absolute path to the script invoked by VERA.

Input file locations:

prep file

Transformed expression matrix of a single condition.

error model filename

File name used to write out the computed error model.

OUTPUT

Output file locations:

error model

Computed error model.

sam output filename

File name for the output produced in the subsequent step (SAM).

42

4.3. EXPRESSION PROFILING PROCESS (EPP)

INVOKED PROGRAM

START VERA.pl

see Appendix A.6.4

Access method

perl %script root%START VERA.pl %prep file%

%error model filename% -dataroot %data root% -scriptroot

%script root%

Significance of Array Measurement (SAM)

SAM returns a value, lambda, for each gene present in a condition, which describes
how likely it is that the gene is expressed-differentially in the two cell populations
existing in a condition. A high lambda value indicates that the gene is differentially-
expressed, while a low lambda value indicates that there is no evidence for differential
expression [32]. The next step, MERGECONDS, allows the user to set a threshold for
the lambda value. According to its lambda value, a particular gene will be considered for
clustering. The appropriate threshold should be determined from control experiments.
The following enumeration lists the parameters and the program involved by SAM :

INPUT

Deployment parameters:

data root

Absolute path to the data.

script root

Absolute path to the script invoked by SAM.

Input file locations:

error model

Computed error model from the preliminary step (VERA). Used to
compute a value, lambda, for each gene present in the expression
matrix (prep file).

prep file

Transformed expression matrix of a single condition.

43

4. PROCESS DESIGN

sam output filename

File name used to write out the modified expression matrix of one
condition.

OUTPUT

Output file locations:

sam file

Modified expression matrix of one condition complemented with a
value, lambda, for each gene.

INVOKED PROGRAM

START SAM.pl

see Appendix A.6.5

Access method

perl %script root%START SAM.pl %prep file% %error model%

%sam output filename% -dataroot %data root% -scriptroot

%script root%

4.3.6. Type Casting (CAST)

Figure 4.12 shows the data flow of CAST. The objective of this task is to overcome
a limitation in the current system. It is not possible to copy an array into another.
Therefore, CAST transforms its input array to a string containing the array elements
separated by white space, thus allowing to copy the content of an array into another
array. It involves the following parameters and the following program:

INPUT

Input file locations:

array[]

Array holding the output files produced by one explosive task STA.

OUTPUT

Output file locations:

44

4.3. EXPRESSION PROFILING PROCESS (EPP)

sam files

The same content as above, merged into a single string.

INVOKED PROGRAM

echo

Access method

echo "<sam_files>%array%</sam_files>"

4.3.7. Expression Matrix Generation (MC)

The task MC merges the separate experimental conditions into one ’global’ expression
matrix representing the whole biological experiment (Figure 4.14). Only those genes
passing at least the defined lambda threshold, are listed in the expression matrix. Figure
4.15 describes the data flow of MC. It involves the following parameters and program:

MC

C1
C2

C3
C4

C1, C2, C3, C4

Figure 4.14.: Merging scheme of the MC task. The various conditions of a biological
experiment (C1 - C4) are merged into a global expression matrix.

INPUT

Deployment parameters:

data root

Absolute path to the data.

script root

Absolute path to the script invoked by MC.

45

4. PROCESS DESIGN

Input file locations:

sam files all

List containing the expression matrices for each single experimental
condition of the overall experiment.

expression matrix name

File name used to write out the global expression matrix.

Various input parameters:

lambda threshold

Threshold value, which have to be fulfill by each gene being listed
in the mentioned above expression matrix.

OUTPUT

Output file locations:

merged file

Global expression matrix representing the whole biological experi-
ment.

INVOKED PROGRAM

MERGECONDS.pl

see Appendix A.6.6

Access method

perl %script root%MERGECONDS.pl -out

%expression matrix name% -conds %sam files all% -dataroot

%data root% -lam %lambda threshold%

4.3.8. Clustering (CLUST)

CLUST represents the last step in the expression profiling process. Figure 4.16 shows
its data flow. The task performs a hierarchical clustering of the various gene expression
levels included in the expression matrix. CLUST involves the following input/output
parameters and program:

INPUT

46

4.3. EXPRESSION PROFILING PROCESS (EPP)

script_root data_root expression_matrix_name lambda_threshold

EPP Input

EPP Output

sam_files

EXP_FILE

script_root data_root

sam_files_all []

expression_matrix_name lambda_threshold

merged_file

MC

expression_matrix

CLUST

EPP – task mc

Figure 4.15.: Data flow of the expression profiling process (EPP) - MC Task

47

4. PROCESS DESIGN

Deployment parameters:

data root

Absolute path to the data.

script root

Absolute path to the script invoked by CLUST.

Input file locations:

expression matrix

Expression matrix representing the whole biological experiment.

Various input parameters:

gene clustering

Indicates whether to cluster genes or not. 0 means no gene clustering,
1 means non-centered metric when clustering genes and 2 means
centered metric when clustering genes.

experiment clustering

Indicates whether to cluster experiments or not. See above for the
possible values. One has to perform at least a kind of clustering,
otherwise CLUST produces no output.

distance metrics

Indicates whether to use pearson correlation (1) or Euclidean dis-
tance (0).

log transform

Indicates whether to log transform (1) or not (0).

OUTPUT

Output file locations:

48

4.3. EXPRESSION PROFILING PROCESS (EPP)

clustered data table file

Output of CLUST containing the original data reordered based on
the clustering result.

gene tree file

Output of CLUST that reports on the history of node joining during
the gene clustering.

array tree file

Output of CLUST that reports on the history of node joining during
the array clustering.

INVOKED PROGRAM

START CLUSTER.pl

see Appendix A.6.7

Access method

perl %script root%START CLUSTER.pl %expression matrix%

-dataroot %data root% -scriptroot %script root% -geneclust

%gene clustering% -expclust %experiment clustering%

-distmetrics %distance metrics% -log %log transform%

4.3.9. Process Output

The expression profiling process produces three different output files (Figure 4.16):

1. clustered data table

Based on the clustering, the reordered expression matrix.

2. gene tree file

Report on the history of node joining during the gene clustering. Gene clus-
tering corresponds to cluster the rows (representing the genes).

3. array tree file

Report on the history of node joining during the experiment clustering.
Experiment clustering corresponds to cluster the columns (representing the
different experimental conditions).

49

4. PROCESS DESIGN

script_root data_root gene_clustering experiment_clustering distance_metrics log_transform

EPP Input

clustered_data_table gene_tree_file array_tree_file

EPP Output

script_root data_root

expression_matrix

gene_clustering experiment_clustering distance_metrics log_transform

clustered_data_table_file gene_tree_file array_tree_file

CLUST

merged_file

MC

EPP – task CLUST

Figure 4.16.: Data flow of the expression profiling process (EPP) - CLUST Task

These three files describe a single hierarchical tree containing various clusters of sim-
ilar expression profiles across experimental conditions. The hierarchical tree can be
visualized by TreeView [45]. Figure 4.17 shows an example output of the expression
profiling process visualized by TreeView. The dendrogram at the top lists the samples
studied in the used experimental data set and provides a measure of the relatedness
of gene expression in each sample. The dendrogram is color coded according the cate-
gory of mRNA sample studied (see left key). The results presented represent the ratio
of hybridization of fluorescent cDNA probes prepared from each experimental mRNA
samples to a reference mRNA sample (control sample). These ratios are a measure of
relative gene expression in each experimental sample and were depicted according to
the color scale shown at the bottom.

4.3.10. Exploiting Parallelism

The main data flow of the expression profiling process (EPP) is best explained on the
basis of an example microarray experiment.

Assume an experiment consists of four different experimental conditions (C1 - C4),
of which conditions 1, 2 and 4 have been replicated. Figure 4.18 shows the data flow
during the execution of EPP for this experiment. Through the input parameter parti-

50

4.3. EXPRESSION PROFILING PROCESS (EPP)

EXPERIMENT CLUSTERING

G
E

N
E

 C
L

U
S

TE
R

IN
G

Figure 4.17.: Example Output of the expression profiling process visualized by Tree-
View. The data has been cluster by experiment clustering. (Modified from
Alizadeh, A.A. et al., Nature 403, 2000)

51

4. PROCESS DESIGN

tion size, the user may define the degree of parallelism of the subprocess EXP FILE.
With a partition size of two, the input is split into two separate partitions, p1 and p2,
each of them containing two conditions. Within each instance of EXP FILE (1 and 2),
for each condition, generated by the task PLM, a separate copy of the subprocess STA
is started. The task CAST joins the conditions, output by the two instance of STA.
All experimental conditions are then merged into one expression matrix by the task
MC. Starting the correct number of copies of EXP FILE as well as STA at each case,
is mastered by BioOpera’s explosive task module.

Figure 4.19 shows the main data flow for the general case, from which the correct
data flow for a particular experiment can be deduced.

52

4.3. EXPRESSION PROFILING PROCESS (EPP)

replicas

exp
erim

ental
conditions

partition_size

PART

PLM

C1

C1a C1b

C2a C2b

C3a

C4a C4b

C2

C1 C2

STA 1.1 STA 1.2

C1 C2

C1

C2

CAST

C1
C2

EXP_FILE 1

C1
C2

C3
C4

MC

CLUST

C1
C2

C3
C4

C1, C2, C3, C4

C1a

C2a

C1b

C2b

C3a

C4a C4b

PLM

C3

C4

C3 C4

STA 2.1 STA 2.2

C3 C4

C3

C4

CAST

C3
C4

EXP_FILE 2

Task

Explosive Task

Legend:

partition p1

partition p2

Total number of
conditions (Ctot)

PC =
C1a C1b
C2a C2b

C3a
C4a C4b,

= p1, p2

|PC| = 2

Ctot = C1a C1b C2a C2b, C3a C4a C4b,,

|Ctot| = 4

Notation:

Figure 4.18.: Example data flow of the expression profiling process (EPP)

53

4. PROCESS DESIGN

EPP

EPP

script_root

data_root

mergereps_list

genekey_list

dapple_list partition_size other process
input parameters

PART

PLM

i

part_mergereps_list [i]

part_genekey_list [i]

part_dapple_list [i]

merged_file[1..ni] max_replications [1..ni]

ij

part_mergereps_list [1..|PC|]

part_dapple_list [1..|PC|]

part_genekey_list [1..|PC|]

PVS

merged_file[j] max_replications [j]

prep_file[j] error_model_filename [j]

VERA

error_model [j] sam_out_filename [j]

SAM

sam_file [j]

sam_files_list [1..|Ctot|]

MC

expression_matrix

CLUST

clust_data_table_file gene_tree_file array_tree_file

CPi ..1:∀

inj ..1:∀

1

i1

|PC|

...

...

ini

STA i

EXP_FILE j

{ } { }iPj C \..1∈∀

EPP

array [1..nj]

CAST

sam_files [1..nj]

EXP_FILE

Figure 4.19.: Main data flow in the expression profiling process (EPP)

54

5. Measurements

5.1. Scalability

We have been testing the scalability of BioOpera using the EPP process. The most
time consuming step in the analysis (∼96% of the overall CPU time) is the compu-
tation of the likelihood that a specific gene is differentially-expressed. This likelihood
needs to be calculated for each experimental condition, each of which may be analyzed
independently of the other. Our data set consisted of 66 different conditions (Section
2.3). The degree of parallelism between tasks is left to BioOpera to decide.

00:00:00

02:24:00

04:48:00

07:12:00

09:36:00

12:00:00

14:24:00

1 5 10 15202530354045 505560

of nodes

w
al

lt
im

e
[h

h
:m

m
:s

s]

23.2
23.4
23.6
23.8
24
24.2
24.4
24.6
24.8
25
25.2

re
al

-
an

d
 c

p
u

ti
m

e
[h

o
u

rs
]

walltime

realtime

cputime

13
:4

2:
10

3:
08

:3
7

1:
52

:2
5

1:
25

:1
7

1:
11

:1
6

1:
01

:1
2

0:
59

:0
8

0:
53

:0
2

0:
53

:3
5

0:
52

:4
3

0:
53

:1
0

0:
53

:4
0

0:
52

:5
2

Figure 5.1.: Scalability measurements

Figure 5.1 shows the result of the test run. During the run, the cluster L (Section
4.1) was exclusively used by BioOpera. The left vertical axis shows the WALL time
(time from beginning to end of the computation), the right vertical axis the CPU

time (time spent computing) and REAL time (time spent in each node including
computing and I/O waits). The horizontal axis indicates the number of nodes, each of
them with 2 CPUs. The result prove that the process scales well up to 35 available

55

5. MEASUREMENTS

nodes. Beyond 35 nodes, however, there is no improvement to be observed. This is due
to the fact that BioOpera always schedules two concurrent tasks on a single cluster node
so that, for EPP, beyond 35 nodes there is no more parallelism to be exploited. Overall,
the experiment demonstrates that BioOpera can be used to parallelize computations
and obtain performance gains without having to become familiar with sophisticated
programming techniques.

5.2. Overhead Incurred by Short-Lived Tasks

Preprocessing the microarray data (normalization, background substraction, gene an-
notation and merge replicas) is a short-lived task (consuming altogether 0.61 minutes
per replicated condition). On the one hand, we have therefore wrapped these single
steps into one task, PLM. On the other hand, we provide the user the possibility to
define the partition size in order to minimize the overhead incurred by BioOpera. To
get a feeling for this overhead, we have performed test runs on a single host, varying the
partition size. We used data originating from 96 different microarray slides representing
66 different conditions (after merging the replicated conditions).

70
72
74
76
78
80
82
84
86
88
90

1 24 48

partition size

re
al

-
an

d
 c

p
u

 t
im

e
[m

in
]

43.5

44

44.5

45

45.5

46

46.5

w
al

l
ti

m
e

[m
in

]

CPU time

REAL time

WALL time

Figure 5.2.: Overhead measurements

Figure 5.2 shows the result of the test runs. Each test run was performed on a
single dual processor machine, since we were interested in measuring the BioOpera
overhead for starting an activity. The left vertical axis shows the CPU time (time
spent computing) and REAL time (time spent in the node including computing in
I/O waits), the right vertical axis the WALL time (time from beginning to the end of
computation). The horizontal axis indicates the partition size. The times were taken
for the two tasks PART and PLM. The result show that the WALL time decreases by

56

5.2. OVERHEAD INCURRED BY SHORT-LIVED TASKS

increasing the partition size, as expected. This is due to the fact that a larger partition
size results in a smaller number of parallel PLM tasks, that need to be scheduled and
dispatched by BioOpera. For our data, a partition size of one results in 96 PLM tasks
being started in parallel, a partition size of 24 results in 4 PLM tasks and a partition size
of 48 results in only 2 tasks. One can say that in general, for explosive tasks consisting
out of short-lived execution units, it makes sense to tune the partitioning scheme to
generate as many jobs as there are available hosts, in order to minimize overhead.
However, the WALL time gain obtained by this adjustment is relatively small.

57

5. MEASUREMENTS

58

6. Conclusions

Especially in the area of microarray technology, the focus has shifted from data genera-
tion to data analysis. Biologists are therefore more and more confronted with limitations
in terms of computer skills and computing infrastructure. The concept of process as
used within BioOpera is one possible starting point to bridge the gap between biology
and computer science. Biologists and bioinformaticans implement programs, each of
them solving a partial task in the overall analysis. BioOpera helps integrating these
programs and takes care of efficiently parallelizing their execution. The implemented
processes can be seen as a proof of concept.

Figure 6.1 compares the clustered experimental conditions produced by EPP (a) to
the original clustered experimental conditions (b). A rudimentary similarity between
the two hierarchical trees can be observed. However, our results are not directly compa-
rable to the original ones. This is due to the fact that EPP uses a maximum-likelihood
approach (MLA). MLA requires that a single experimental condition has been repli-
cated at least four times. This constraint is not fulfilled by our data set. In addition,
we used a hypothetical lambda value as threshold to determine the genes that are
differentially-expressed, though this value should be determined by a control experi-
ment. Such a threshold value was not provided because the original analysis was not
performed using the MLA. That implies that we are ”loosing” a high number of data
points (expression ratios) during the analysis.

59

6. CONCLUSIONS

CLL-71
Blood_B_cells_naive_CD27-
FL-5_CD19+
Blood_B_cells_anti-IgM_6h
OCI_Ly12
OCI_Ly1
SUDHL6
CLL-52
CLL-39
WSU1
Tonsil_GC_Centroblasts
FL-6_CD19+
Blood_B_cells_anti-IgM+CD40L+IL-4_6h
Blood_B_cells_anti-IgM+IL-4_6h
DLCL-0017
Blood_B_cells_anti-IgM+CD40L_low_48h
Blood_B_cells_anti-IgM+CD40L_high_48h
U937
DLCL-0021
DLCL-0013
DLCL-0016
DLCL-0048
DLCL-0049
DLCL-0004
DLCL-0006
FL-9
FL-9_CD19+
FL11_CD19+
FL11
FL10
FL10_CD19+
FL12_CD19+
Blood_B_cells
Blood_B_cells_anti-IgM_24h
Blood_B_cells_anti-IgM+IL-4_24h
OCI_Ly10
CLL-65
Blood_B_cells_memory_CD27+
DLCL-0029
DLCL-0051
DLCL-0034
DLCL-0032
DLCL-0025
DLCL-0031
DLCL-0030
DLCL-0007
DLCL-0009
DLCL-0033
DLCL-0024
DLCL-0027
DLCL-0002
DLCL-0005
DLCL-0011
DLCL-0026
DLCL-0023
DLCL-0052
Tonsil_GC_B
OCI-Ly3
DLCL-0010
DLCL-0028
DLCL-0036_OCT
DLCL-0015
DLCL-003

DLCL-0014
DLCL-0012
DLCL-0001
DLCL-0018
DLCL-0008
CLL-14
CLL-51
CLL-9
Blood_T_cells_Adult_Naive_CD4+_Unstimulated
Blood_T_cells_Adult_Naive_CD4+_I+P_Stimulated
Cord_Blood_T_cells_Neonatal_Naive_I+P_Stimulated
Blood_T_cells_Neonatal_Naive_CD4+_Unstimulated
Thymic_T_cells_Fetal_CD4+_Unstimulated
Thymic_T_cells_Fetal_CD4+_I+P_Stimulated
Blood_B_cells_anti-IgM+CD40L_24h
Cord_Blood_B_cells
DLCL-0042
Blood_B_cells_anti-IgM+CD40L_6h
DLCL-0041
DLCL-0040
DLCL-0037
DLCL-0039
Lymph Node
Tonsil
CLL-68
SUDHL5
CLL-60

DLCL-0020

Blood_B_cells_anti-IgM+CD40L+IL-4_24h
CLL-71_Richters
CLL-13
OCI Ly13
Jurkat

a b

Figure 6.1.: Output by comparison: (a) clustered experimental conditions produced by
EPP, (b) original clustered experimental conditions

60

A. Technicalities

A.1. Example Dapple File Format

3 2
0 0 0 0 A 235 126 13 A 782 590 7.9 156 1152 0.5677
0 0 0 1 A 749 123 26.3 A 2041 546 28.9 156 973 0.4187
0 0 0 2 A 959 122 20.7 R 8091 558 36.2 156 976 0.1121

Table A.1.: Example of a dapple output file for a microarray chip which consists of 3
spots and which is based on the two channel technology

The first line of the example output file, as shown in table A.1, states the number of
spots (3) and the number of channels quantified per spot (3). Each subsequent line
represents a single spot. It has the following values, separated by a single space:

1. column

- X grid coordinate of the spot.

2. column

- Y grid coordinate of the spot.

3. column

- X spot coordinate of the spot.

4. column

- Y spot coordinate of the spot.

Figure A.1 explains the difference between the spot and grid coordinates.

5. column

- Rated quality of the first channel1. The following values may be assigned:

1In practice the first channel usually represents the green channel

61

A. TECHNICALITIES

x SPOT

y S
P

O
T

x GRID

y
G

R
ID

Figure A.1.: Dapple’s grid and spot coordinates - The example microarray image shown
consists of 4 grids. Each grid contains 24x24 spots. The quantitation of
the spots will be performed grid wise. Dapple starts with the grid which is
placed in the upper-left-hand corner and follows first the y-axis towards the
bottom of the image. This procedure will be repeated for each grid column.
Inside a grid the image analysis starts in the upper-left-hand corner as well
and follows the same pattern as described for the grids.

62

A.1. EXAMPLE DAPPLE FILE FORMAT

(1) ”A” stands for “Accept”

(2) ”S” stands for “Suspicious”

(3) ”R” stands for “Reject”.

6. column

- Foreground intensity (mean or median)2 of the first channel.

7. column

- Local background intensity (median) of the first channel.

8. column

- Standard deviation of the background pixel population of the first channel3.

9. column

- Rated quality of the second channel4. The following values may be assigned:

(1) ”A” stands for “Accept”

(2) ”S” stands for “Suspicious”

(3) ”R” stands for “Reject”.

10. column

- Foreground intensity (mean or median)5 of the second channel.

11. column

- Local background intensity (median) of the second channel.

12. column

- Standard deviation of the background pixel population of the first channel.

13. column

- The ratio of first to second channel intensity6 according to the following
equation:

foreground intensity CH1 − background intensity CH1
foreground intensity CH2 − background intensity CH2

(A.1)

2The foreground intensity may be set to the mean or median intensity inside the spot area
3The standard deviation of the background pixel population will not be used in further analysis
4In practice the second channel usually represents the red channel
5The foreground intensity may be set to the mean or median intensity inside the spot area
6The ratio will only be calculated if the underlying microarray chip is based on two channels

63

A. TECHNICALITIES

A.2. Example ScanAlyze File Format

HEADER SPOT GRID TOP LEFT BOT RIGHT ROW COL CH1I
REMARK SOFTWARE ScanAlyze
REMARK SOFTVERS 2.3
REMARK CH1 IMAGE lc7b059 532 nm
REMARK CH2 IMAGE lc7b059 635 nm
REMARK GRID FILE /home/sreto/lc7b059 finalflagged.SAG
REMARK DATE 8/27/99
REMARK TIME 11:51:15 PM
SPOT 1 1 83 58 97 72 1 1 235
SPOT 2 1 82 75 96 89 1 2 749
SPOT 3 1 82 92 96 106 1 3 959

Table A.2.: Example of a ScanAlyze output file - part 1. The underlying microarray
chip consists of 3 spots and is based on the two channel technology.

CH1B CH1AB CH2I CH2B CH2AB SPIX BGPIX EDGE RAT2 MRAT

126 130 782 590 629 156 1152 0 1.761 2.301
123 126 2041 546 573 156 973 0 2.388 2.445
122 127 8019 558 583 156 976 0 8.914 8.829

Table A.3.: Example of a ScanAlyze output file - part 2

REGR CORR LFRAT CH1GTB1 CH2GTB1 CH1GTB2 CH2GTB2

1.344 0.6182 3.04 0.7756 0.7051 0.4808 0.3269
2.102 0.94 2.331 0.7179 0.7949 0.5769 0.5897

0 0 0.1632 0.8269 0.8205 0.609 0.641

Table A.4.: Example of a ScanAlyze output file - part 3

The first line of the example output file, as shown in tables A.2 - A.5, annotates the
columns. The next 7 lines contain remarks about the version of the program used,
the wavelengths for gathering the raw intensities and others. Each subsequent line
represents the data of a single spot. It has the following values, separated by a single
tab:

64

A.2. EXAMPLE SCANALYZE FILE FORMAT

CH1EDGEA CH2EDGEA FLAG CH1KSD CH1KSP CH2KSD CH2KSP

-0.0102 0.007381 0 0.4077 1.05E-20 0.223 1.71E-06
-0.008429 0.004306 0 0.5228 4.64E-33 0.492 2.49E-29
0.008815 0.01661 1 0.526 1.81E-33 0.5636 2.28E-38

Table A.5.: Example of a ScanAlyze output file - part 4

1. column - HEADER

- Defines the type of the data in a row. Possible values are:

(1) HEADER

(2) REMARK

(3) SPOT

2. column - SPOT

- Unique index of the spot in the file. Counting starts with the gird which
is placed in the upper-left-hand corner, moves along the first row from the
first column until the last column, then advances to the second row; after all
rows in the first grid are assigned an index, counting proceeds to the second
grid, etc.

3. column - GRID

- Represents the number of the grid in which the spot is contained. The grid
in the upper-left-hand corner is assigned the value 1. Counting continues
along the first row to the last column, then advances to the second row, etc.

4. column - TOP

- Top coordinate of the box containing the spot ellipse, in image coordinates.

5. column - LEFT

- Left coordinate of the box containing the spot ellipse, in image coordinates.

6. column - BOT

- Bottom coordinate of the box containing the spot ellipse, in image coordi-
nates.

65

A. TECHNICALITIES

7. column - RIGHT

- Right coordinate of the box containing the spot ellipse, in image coordinates.

8. column - ROW

- Tells you in which row the spot is located within the grid.

9. column - COL

- Tells you in which column the spot is located within the grid.

Figure A.2 explains the sequence how ScanAlyze quantifies the spots.

COL

R
O

W

1 2

3 4

Figure A.2.: ScanAlyze’s row and column coordinates - The example microarray image
shown consists of 4 grids. Each grid contains 24x24 spots. The quantitation
of the spots will be performed grid-wise. ScanAlyze starts with the grid
which is placed in the upper-left-hand corner (number 1) and advances
then to the number 2, etc. Within each grid the sequence for the spot
quantization is the following: the program starts with that spot which is
located in the upper-left-hand corner, moves along the same row to the
last column (column by column) and advances then to the second row,
etc.

10. column - CH1I

- The uncorrected mean pixel intensity for the first channel.

11. column - CH1B

- The estimated median intensity of the background pixels for the first channel.

66

A.2. EXAMPLE SCANALYZE FILE FORMAT

12. column - CH1AB

- The estimated mean intensity of the background pixels for the first channel.

13. column - CH2I

- The uncorrected mean pixel intensity for the second channel.

14. column - CH2B

- The estimated median intensity of the background pixels for the second
channel.

15. column - CH2AB

- The estimated mean intensity of the background pixels for the second chan-
nel.

16. column - SPIX

- Count of the number of pixels contained in the spot.

17. column - BGPIX

- The number of background pixels used for estimating the local background.

18. column - EDGE

- Not used.

19. column - RAT2

- The ratio of second to first channel intensity according to the following
equation:

foreground intensity CH1I − background intensity CH1B

foreground intensity CH2I − background intensity CH2B
(A.2)

While the amount of DNA often varies considerably across a spot, the background
corrected ratio is fairly constant. ScanAlyze utilizes this property in alternate estimates
of the ratio and spot quality. One alternate estimate of the ratio for a spot is the median
of the set of background corrected single pixel ratio for all pixels within the spot. Unlike
pixel intensities, the background corrected pixel ratios are expected to be uniform, and
thus the median is a useful value.

20. column - MRAT

- The exported column MRAT contains the median of

67

A. TECHNICALITIES

Ch2PI − CH2B

Ch1PI − CH1B
(A.3)

where Ch1PI and Ch2PI represent single pixel intensities. The primary uti-
lization of this value is that it is less susceptible to artifacts which can corrupt
mean intensity based ratios, such as bright fluorescent specks.

Two additional estimates of the ratio are based upon the assumption that, when single
pixel intensities in channel 1 are plotted against intensities in channel 2, they will fall
on a straight line with slope equal to the ratio. This assumption is based on a model for
single pixel intensities that assumes a constant background in each channel and varying
DNA content in each pixel. Thus, for a spot representing a gene with cognate probe
in the hybridization solution having a red/green ratio of R, the channel 1 (green) and
channel 2 (red) intensities at each pixel will be

Ch1BG + k ∗D (A.4)

and

Ch2BG + R ∗ k ∗D (A.5)

respectively, where Ch1BG and Ch2BG are the uniform backgrounds in the two chan-
nels, k is a constant and D is the amount of DNA in the region covered by the pixel.
Thus, when channel 1 pixel intensities are plotted against channel 2 pixel intensities,
they will fall along a line with slope k passing through the point (Ch1BG, Ch2BG).

21. column - REGR

- Estimates the slope of the above mentioned line by simple linear regression
of channel 2 on channel 1.

22. column - CORR

- Contains the correlation between channel 1 and channel 2 pixels within the
spot, and is a useful quality control parameter (in general, high values imply
better fit and good spot quality).

23. column - LFRAT

- Estimates the slope of the above mentioned line by a least-squares fit of a
line to the points, minimizing the sum of the squares shortest distance from
each point to the line.

68

A.2. EXAMPLE SCANALYZE FILE FORMAT

24. column - CH1GTB1

- Additional quality parameter. Fraction of pixels in the spot greater than the
background of channel 1 (CH1B).

25. column - CH2GTB1

- Additional quality parameter. Fraction of pixels in the spot greater than the
background of channel 2 (CH2B).

26. column - CH1GTB2

- Additional quality parameter. Fraction of pixels in the spot greater than 1.5
times than the background of channel 1 (CH1B).

27. column - CH2GTB2

- Additional quality parameter. Fraction of pixels in the spot greater than 1.5
times than the background of channel 2 (CH2B).

On a perfectly clean image with no spotted DNA, roughly half of the pixels in a
randomly placed spot should have intensities greater than the local background and few
pixels much greater than this background. Thus, an empty spot will have CH1GTB1
and CH2GTB1 values of close to 0.50 and CH1GTB2 and CH2GTB2 values close to
0, while for uniformly bright spots these values should all be close to 1. This can be
used to filter out weak spots and spots where the intensity comes from a few bright
pixels (these will have high mean intensities but low values of these parameters). Cutoff
values of between 0.55 and 0.65 are recommended.

28. column - CH1EDGEA

- Mean magnitude of the horizontal and vertical Sobel edge vectors contained
within each spot for channel 1.

29. column - CH2EDGEA

- Mean magnitude of the horizontal and vertical Sobel edge vectors contained
within each spot for channel 2.

These two values are used during refinement. It is expected that a good spot should
have relatively high mean edge scores.

30. column - FLAG

- User defined spot flag. The default value is 0.

An alternative method for capturing the same information like CH1GTB1, CH2GTB1,

69

A. TECHNICALITIES

CH1GTB2 and CH2GTB2 is output in the following four columns. These values com-
pare the distribution of pixel intensities within the spot circle and in the background.

31. column - CH1KSD

- This is the value of the Komogorov-Smirnov statistic for the channel 1 that
assesses the likelihood that the spot pixel intensity distribution is drawn
from the background distribution.

32. column - CH1KSP

- The actual probability for CH1KSD.

33. column - CH2KSD

- This is the value of the Komogorov-Smirnov statistic for the channel 2 that
assesses the likelihood that the spot pixel intensity distribution is drawn
from the background distribution.

34. column - CH2KSP

- The actual probability for CH2KSD.

A.3. Transforming ScanAlyze File Format Into Dapple File

Format

This section describes the transformation of the two file formats in more detail. The
perl script TRANSFORM.pl takes as input a ScanAlyze file and produces as output a
dapple file. The following columns from the input file are considered:

• CH1I

• CH1B

• CH2I

• CH2B

• SPIX

• BGPIX

• FLAG

As ScanAlyze does not export the standard deviation of the background pixel popula-
tion of the first and second channel, the script populates the respective values with a
zero for each spot and channel (8. and 12. column). This procedure is for the further
analysis irrelevant, because these values are not used. The last column in the dapple

70

A.3. TRANSFORMING SCANALYZE FILE FORMAT INTO DAPPLE FILE
FORMAT

output files contains the background subtracted ratio of first to second channel. Scan-
Alyze does not provide this ratio. Therefore, the ratio is calculated according equation
A.1. If the numerator is equal to zero the ratio gets the string ”Undefined”. In the soft-
ware tool ScanAlyze, the user does have the possibility to flag manually a single spot7,
whereas the user defines the flag value8. In dapple, a spot can be flagged in channel 1
or channel 2, ScanAlyze does not support this functionality, a spot can only be flagged
as a whole. If the transformation script encounters a flagged spot in the input file then
each of the two channels will be flagged in the output file. In the experimental dataset
used we are interested in the ratio of the second to the first channel (in order to state if
a particular gene has been up- or downregulated or if the expression level has not been
changed), therefore it is legitimate to flag both of the two channels in the output file.
With only one channel flagged, one is not able to build the above mentioned ratio. The
flag value differs from the original file format. An accepted spot gets the value zero,
a rejected spot in contrast gets one. As we have learned from the detailed description
about the two different file formats, the quantitation sequence in ScanAlyze and dap-
ple is different. In order to obtain the right dapple sequence based on the ScanAlyze
sequence, we must pass the array geometry to the script as a command line argument:

- arrayconfig

< number of grid columns >

< number of grid rows >

< number of spot columns within a single grid >

< number of spot rows within a single grid >

Table A.6 shows you an example dapple output file produced by the transformation
script. As input, the same ScanAlyze file as shown in tables A.2 - A.5.

3 2
0 0 0 0 0 235 126 0 0 782 590 0 156 1152 0.5677
0 0 1 0 0 749 123 0 0 2041 546 0 156 973 0.4187
0 0 2 0 1 959 122 0 1 8091 558 0 156 976 0.1121

Table A.6.: Example dapple output file produced by the script TRANSFORM.pl. The
highlighted values are different to the original file format.

7Usually, a flagged spot will be unaccounted for the further analysis
8For the experiment dataset used in this diploma thesis, the user defined flag value is equal to 1

71

A. TECHNICALITIES

A.4. Generating Genekey File

The perl script EXTRACT.pl generates a genekey file, as shown in table A.7, as the
experiment dataset does not provide such files, by extracting the gene information for
each microarray from the respective SMD raw data file.

num rows per slide 1
0 0 160882 AA768786 KIAA0130
0 1 160886 AA805528 PPP3CC
0 2 160890 AA806043 IGHM

Table A.7.: Example genekey file generated by the script EXTRACT.pl. This file pro-
vides the required gene information to annotate the raw data shown in table
A.6.

The first line specifies the number of rows of spots on the microarray slide with the
keyword ”num rows per slide”. Each of the following rows lists the mapping between a
particular spot position and a the corresponding gene information using four columns:

1. column

- Microarray row.

2. column

- Microarray column.

Row and column numbering starts with the coordinates (0,0) in the upper-left-hand
corner of the microarray slide and moves towards the lower right.

3. column

- SUID - Stanford University identification number which is a unique number.

4. column

- GeneBank9 accession number. With this accession number you will get im-
mediately additional information about the underlying gene inclusive the
whole sequence string.

5. column

- Gene symbol.

9The Entrez Nucleotides database is a collection of sequences from several sources, including
GeneBank, RefSeq, and PDB

72

A.5. SCRIPTS FOR THE DATA PREPARATION PROCESS

The genekey file thus generated will be merged with the raw data in the proper expres-
sion profiling process during the lookup gene information step.

A.5. Scripts for the Data Preparation Process

A.5.1. Start.pl

The script START.pl takes the following arguments:

<FileList>

List holding the filenames of the ScanAlyze files, the SMD files and the
names of the corresponding output files. Additionally, the list contains for
each microarray slide its array geometry.

-dataroot

Absolute path to the data.

The script splits each line of the input list and puts the content into separate arrays.
Each element of an array is separated by a single space. These tagged arrays are written
to standard out:

1. <scanalyze> ... </scanalyze>

2. <dapple> ... </dapple>

3. <smd> ... </smd>

4. <genekey> ... </genekey>

5. <slidecol> ... </slidecol>

6. <sliderow> ... </sliderow>

7. <gridcol> ... </gridcol>

8. <gridrow> ... </gridrow>

A.5.2. Transform.pl

The script TRANSFORM.pl transforms the ScanAlyze file format as above described.
It takes the following arguments:

<ScanAlyzeFile>

ScanAlyze file to be transformed.

<TransformedOutput>

73

A. TECHNICALITIES

Transformed file in dapple format.

-arrayconfig <numslidecols> <numsliderows> <numgridcols>

<numgridrows>

Describes the array geometry.

-dataroot

Absolute path to the data.

The name of the transformed file is written as a tagged string to standard out:

1. <dapple file> ... </dapple file>

A.5.3. Extract.pl

The script TRANSFORM.pl extracts the gene information of a SMD file. It takes the
following arguments:

<SMDFile>

SMD file from which the gene information being extracted.

<TransformedOutput>

Gene information file.

-arrayconfig <numslidecols> <numsliderows> <numgridcols>

<numgridrows>

Describes the array geometry.

-uid <unique id from bioopera>

The involved scripts writes temporary information to a file. When several
EXTRACT.pl scripts are executed on the same machine in parallel, each
of them needs to write to its own file. Therefore, the script needs a unique
identification to name its temporary file.

-dataroot

Absolute path to the data.

The name of the gene information file is written as a tagged string to standard out:

1. <genekey file> ... </genekey file>

74

A.6. SCRIPTS FOR THE EXPRESSION PROFILING PROCESS

A.6. Scripts for the Expression Profiling Process

A.6.1. Partition.pl

The PARTITION.pl script partitions the process’ input data set into smaller subsets
as defined by the user. The details about the partition scheme are shown in Figure 4.9.
The script takes the following arguments:

<DappleFileList>

List holding the filenames of the dapple files.

<GeneKeyFileList>

List holding the file names of the genekey files.

<MergeRepsOutputNames>

List holding the output names of the merged replicated conditions.

-partitionsize

Size of a single partition.

-dataroot

Absolute path to the data.

As output, the script produces for each input category the partitioned lists. The total
number of the output files depends on the used partition size and the number of mi-
croarray slides. For each category, the names of the produced partitions are collected
into a tagged array, separated by a single space. These arrays are written to standard
out:

1. <part dapple list> ... </part dapple list>

2. <part genekey list> ... </part genekey list>

3. <part mergereps list> ... </part mergereps list>

A.6.2. Preproc lookup mergereps.pl

The PREPROC LOOKUP MERGEREPS.pl script is a wrapper for PREPRO-
CESS.PL, LOOKUP.pl and MERGEREPS.pl. The script takes the following argu-
ments:

<DappleFileList>

List holding the filenames of the dapple files.

75

A. TECHNICALITIES

<GeneKeyFileList>

List holding the file names of the genekey files.

<MergeRepsOutputNamesList>

List holding the output names of the merged replications.

-dataroot

Absolute path to the data.

-scriptroot

Absolute path to the three invoked scripts.

-uid

The last script invoked by the wrapper, MERGEREPS.pl writes the max-
imum number of replicated spots to standard out. This number is re-
quired as input argument in the next step. Therefore, the wrapper redi-
rects the output of MERGEREPS.pl to a log file. When several PRE-
PROC LOOKUP MERGEREPS.pl scripts are executed on the same ma-
chine in parallel, each of them needs to write to its own file. Therefore, each
script needs a unique identification to name its log file.

-sat

Specify the saturating intensity for the microarray scanner. Spot intensities
above this number are flagged, i.e. the specific spot is excluded from the
analysis.

-minreps

Only those genes that are represented by at least the given number of repli-
cate measurements in the merged data set are returned.

-labeldir

Channel 1 usually represents the control condition and channel two the
treated one. With this parameter one can define this order. In the former
case, the parameter should hold the value ’r’. If channel 1 represents the
treated condition and channel 2 the control one, then one should set the
value ’f’. The correct channel assignment is very important, as the ratio of
treated condition/control condition is taken.

76

A.6. SCRIPTS FOR THE EXPRESSION PROFILING PROCESS

The names of the merged replicated conditions and their corresponding maximum num-
ber of replicated spots are collected into separate arrays. These tagged arrays are written
to standard out:

1. <merged files> ... </merged files>

2. <max replications list> ... </max replications list>

A.6.3. Prepare vera sam.pl

The PREPARE VERA SAM.pl scripts transforms the output file format of MERG-
EREPS.pl in order to invoke VERA and SAM. An example output file produced by
MERGEREPS.pl is shown in table A.8.

#suid accession number preferred name N RATIO STD X0 Y0 F0 X1 Y1 F1
105083 AA406115 SCYB13 2 -1.1539 0.0000 172 2454 - 845 4534 -
179038 AA836440 Unknown 2 -1.0276 0.0000 55 588 - 132 908 -

Table A.8.: Example of a output file produced by MERGEREPS.pl. Both spots (105083
and 179038) are replicated.

1. suid

- Unique identification number of a single spot.

2. accession number

- Unique identification number of the corresponding gene.

3. preferred name

- Name of the corresponding gene.

4. N

- Number of spot replicas.

5. RATIO

- Gene expression ratio.

6. STD

- Standard deviation (not used).

7. X0

- Intensity of the first spot of channel 1.

77

A. TECHNICALITIES

8. Y0

- Intensity of the first spot of channel 2.

9. F0

- Flag value of the first spot.

10. X1

- Intensity of the second (replicated) spot of channel 1.

11. Y1

- Intensity of the second spot of channel 2.

12. F1

- Flag value of the second spot.

Table A.9 shows the transformed file produced by PREPARE VERA SAM.pl. The first
and the third column are renamed to unique and other. Accession number, RATIO and
STD are omitted. The remaining columns are only reordered.

unique other X0 Y0 X1 Y1 N F0 F1
105083 SCYB13 172 2454 845 4534 2 - -
179038 Unknown 55 588 132 908 2 - -

Table A.9.: Example of a output file produced by PREPARE VERA SAM.pl

The PREPARE VERA SAM.pl script takes the following arguments:

<MergeRepFile>

File produced by MERGEREPS.pl.

-dataroot

Absolute path to the data.

-replications

Maximum number of replicated spots.

The name of the transformed file is written as a tagged string to standard out. Addi-
tionally, the script produces the output name for the output file in the next step based
on the script’s input file name:

1. <prep file> ... </prep file>

2. <error model filename> ... </error model filename>

78

A.6. SCRIPTS FOR THE EXPRESSION PROFILING PROCESS

A.6.4. Start vera.pl

The START VERA.pl script is a wrapper in order to start VERA. It takes the following
arguments:

<prepFile>

Transformed file produced by PREPARE VERA SAM.pl.

<errorModelFileName>

Output file name.

-dataroot

Absolute path to the data.

-scriptroot

Absolute path to the VERA script.

The name of the computed error model is written as a tagged string to the standard
out. Additionally, the script produces the output file name for the next step based on
the script’s input file name:

1. <error model> ... </error model>

2. <sam output filename> ... </sam output filename>

A.6.5. Start sam.pl

The START SAM.pl script is a wrapper in order to start SAM. It takes the following
arguments:

<prepFile>

Transformed file produced by PREPARE VERA SAM.pl.

<errorModelFile>

Error model for the corresponding prepFile.

<samOutputFileName>

Name of the output file.

-dataroot

Absolute path to the data.

-scriptroot

79

A. TECHNICALITIES

Absolute path to the SAM script.

The name of the output file is written as a tagged string to the standard out:

1. <sam file> ... </sam file>

A.6.6. Mergeconds.pl

The MERGECONDS.pl merges the experimental conditions and produces a global
expression matrix. Table A.10 shows the file format of the produced matrix. The script
takes the following arguments:

UID Name GWEIGHT Condition A Condition B
EWEIGHT 1 1

105083 SCYB13 1 0.103 0.462
179038 Unknown 1 -0.683 -0.527

Table A.10.: Example of a global expression matrix

The first line contains the column headers. GWEIGHT indicates the weight of the
corresponding gene during the cluster analysis. The second line (EWEIGHT) indicates
the weight of each particular condition during the cluster analysis. The subsequent lines
list the unique identification number and the name of a particular gene, the value of
the gene weight and the expression ratios of each condition.
The script takes the following arguments:

<GeneExpressionMatrix>

Output file name.

-conds <MergeFile 1> [<MergeFile 2> ...]

The names of the files to be merged into the global expression matrix.

-dataroot

Absolute path to the data.

-lam

Threshold lambda value, which have to be fulfill by each gene being listed
in the expression matrix.

-rat

Threshold ratio value, which have to be fulfill by each gene being listed in
the expression matrix.

80

A.6. SCRIPTS FOR THE EXPRESSION PROFILING PROCESS

-std

Threshold standard deviation value, which have to be fulfill by each gene
being listed in the expression matrix.

-n

Include only those genes, which are represented by at least n samples per
condition.

The name of the output file is written as a tagged string to the standard out:

1. <merged file> ... </merged file>

A.6.7. Start cluster.pl

The script START CLUSTER.pl performs the cluster analysis on the global expression
matrix. It takes the following arguments:

<GeneMatrixFile>

Global expression matrix.

-dataroot

Absolute path to the data.

-scriptroot

Absolute path to XCluster.

-geneclust <0|1|2>

Indicates whether to cluster genes or not. 0 means no gene clustering, 1
means non-centered metric when clustering genes and 2 means centered met-
ric when clustering genes.

-expclust <0|1|2>

Indicates whether to cluster experiments or not. See above for the pos-
sible values. One has to perform at least a kind of clustering, otherwise
START CLUSTER.pl produces no output.

-distmetrics <0|1>

Indicates whether to use pearson correlation (1) or Euclidean distance (0).

-som <0|1>

Whether to make a self-organizing map (SOM) (1) or not (0).

81

A. TECHNICALITIES

-xdim <x dimension of som>

Specify x dimension of SOM.

-ydim <y dimension of som>

Specify y dimension of SOM

-random <0|1>

Whether to seed the random number generator with the time when making
a SOM (1) or not (0).

-knum <number of k-means clusters>

How many k-means clusters to make.

-log <0|1>

Indicates whether to log transform (1) or not (0).

-out <name of outfile>

Unique identifier by which to name the output files.

The script produces three output files. Each name of them is written as a tagged string
to standard out:

1. <clustered data table file> ... </clustered data table file>

2. <gene tree file> ... </gene tree file>

3. <array tree file> ... </array tree file>

82

Bibliography

[1] National Center for Biotechnology Information (NCBI). dbEST: summary by organism.
http://www.ncbi.nlm.nih.gov/dbEST/dbEST summary.html.

[2] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, and et al. The sequence of the human
genome. Science, 291(5507):1304–51., 2001.

[3] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, and et al. Initial sequencing and
analysis of the human genome. Nature, 409(6822):860–921., 2001.

[4] Affymetrix, Inc. Microarray Suite Software. http://www.affymetrix.com/products/software
/specific/mas.affx.

[5] GeneData AG. GeneData Expressionist. http://www.genedata.com/products/expressionist/.

[6] Stanford University. Stanford Microarray Database. http://genome-
www5.stanford.edu/MicroArray/SMD/.

[7] EMBL-EBI European Bioinformatics Institute. ArrayExpress at the EBI.
http://www.ebi.ac.uk/microarray/ArrayExpress/arrayexpress.html.

[8] V.M. Markowitz, I.A. Chen, and A. Kosky. Gene expression data management: A case
study. In EDBT 2002, pages 722–731, 2002.

[9] Microarray Gene Expression Data Group - MGED Group. MGED Home.
http://www.mged.org/.

[10] G. Sherlock. Analysis of large-scale gene expression data. Briefings in Bioinformatics,
2(4):350–62., 2001.

[11] J. C. Alwine, D. J. Kemp, and G. R. Stark. Method for detection of specific rnas in agarose
gels by transfer to diazobenzyloxymethyl-paper and hybridization with dna probes. Pro-
ceedings of the National Academy of Sciences of the United States of America, 74(12):5350–
4., 1977.

[12] A. J. Berk and P. A. Sharp. Sizing and mapping of early adenovirus mrnas by gel elec-
trophoresis of s1 endonuclease-digested hybrids. Cell, 12(3):721–32., 1977.

[13] P. Liang and A. B. Pardee. Differential display of eukaryotic messenger rna by means of
the polymerase chain reaction. Science, 257(5072):967–71., 1992.

[14] M. D. Adams, J. M. Kelley, J. D. Gocayne, M. Dubnick, M. H. Polymeropoulos, H. Xiao,
C. R. Merril, A. Wu, B. Olde, R. F. Moreno, and et al. Complementary dna sequencing:
expressed sequence tags and human genome project. Science, 252(5013):1651–6., 1991.

[15] K. Okubo, N. Hori, R. Matoba, T. Niiyama, A. Fukushima, Y. Kojima, and K. Matsubara.
Large scale cdna sequencing for analysis of quantitative and qualitative aspects of gene
expression. Nature Genetics, 2(3):173–9., 1992.

[16] V. E. Velculescu, L. Zhang, B. Vogelstein, and K. W. Kinzler. Serial analysis of gene
expression. Science, 270(5235):484–7, 1995.

83

Bibliography

[17] M. Schena, D. Shalon, R.W. Davis, and P.O. Brown. Quantitative monitoring of gene
expression patterns with a complementary dna microarray. Science, 270(5235):467–70,
1995.

[18] M. Schena, D. Shalon, R. Heller, A. Chai, P.O. Brown, and R.W. Davis. Parallel human
genome analysis: microarray-based expression monitoring of 1000 genes. Proceedings of the
National Academy of Sciences of the United States of America, 93(20):10614–9, 1996.

[19] D.J. Lockhart, H. Dong, M.C. Byrne, M.T. Follettie, M.V. Gallo, M.S. Chee, M. Mittmann,
C. Wang, M. Kobayashi, H. Horton, and E.L. Brown. Expression monitoring by hybridiza-
tion to high-density oligonucleotide arrays. Nature Biotechnology, 14(13):1675–80, 1996.

[20] Affymetrix, Inc. http://www.affymetrix.com.

[21] The Brown Lab. The Brown Lab’s complete guide to microarraying for the molecular
biologist. http://cmgm.stanford.edu/pbrown/mguide/index.html.

[22] Affymetrix, Inc. Technology. http://www.affymetrix.com/technology/index.affx.

[23] National Center for Biotechnology Information (NCBI). UniGene database.
http://www.ncbi.nlm.nih.gov/UniGene/.

[24] National Center for Biotechnology Information (NCBI). GeneBank database.
http://www.ncbi.nlm.nih.gov/Genbank/index.html.

[25] Affymetrix, Inc. Human Genom U133 Set product specification.
http://www.affymetrix.com/products/arrays/specific/hgu133.affx.

[26] C. Kooperberg, T. G. Fazzio, J. J. Delrow, and T. Tsukiyama. Improved background
correction for spotted dna microarrays. Journal of Computational Biology, 9(1):55–66.,
2002.

[27] J. Quackenbush. Computational analysis of microarray data. Nature Reviews Genetics,
2(6):418–27., 2001.

[28] A. Zien, T. Aigner, R. Zimmer, and T. Lengauer. Centralization: a new method for the
normalization of gene expression data. Bioinformatics, 17(Suppl 1):S323–31., 2001.

[29] Y. Wang, J. Lu, R. Lee, Z. Gu, and R. Clarke. Iterative normalization of cdna microarray
data. IEEE Trans Inf Technol Biomed, 6(1), 2002.

[30] J. Schuchhardt, D. Beule, A. Malik, E. Wolski, H. Eickhoff, H. Lehrach, and H. Herzel.
Normalization strategies for cdna microarrays. Nucleic Acids Research, 28(10):E47., 2000.

[31] Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed. Normalization
for cdna microarray data: a robust composite method addressing single and multiple slide
systematic variation. Nucleic Acids Research, 30(4):e15., 2002.

[32] T. Ideker, V. Thorsson, A. F. Siegel, and L. E. Hood. Testing for differentially-expressed
genes by maximum-likelihood analysis of microarray data. Journal of Computational Bi-
ology, 7(6):805–17., 2000.

[33] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and display of
genome-wide expression patterns. Proceedings of the National Academy of Sciences of the
United States of America, 95(25):14863–8, 1998.

[34] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. Systematic
determination of genetic network architecture. Nature Genetics, 22(3):281–5., 1999.

[35] T. Kohonen. Self organizing maps. Springer, Berlin, 1995.

84

[36] M. P. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, Jr. Ares,
M., and D. Haussler. Knowledge-based analysis of microarray gene expression data by
using support vector machines. Proceedings of the National Academy of Sciences of the
United States of America, 97(1):262–7., 2000.

[37] J. S. Almeida. Predictive non-linear modeling of complex data by artificial neural networks.
Current Opinion in Biotechnology, 13(1):72–6., 2002.

[38] J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold,
M. Schwab, C. R. Antonescu, C. Peterson, and P. S. Meltzer. Classification and diagnostic
prediction of cancers using gene expression profiling and artificial neural networks. Nature
Medicine, 7(6):673–9., 2001.

[39] Institute for Systems Biology. DNA Microarray Data Processing.
http://www.systemsbiology.org/ArrayProcess/.

[40] G. Sherlock, T. Hernandez Boussard, A. Kasarskis, G. Binkley, J.C. Matese, S.S. Dwight,
M. Kaloper, S. Weng, H. Jin, C.A. Ball, M.B. Eisen, P.T. Spellman, P.O. Brown, D. Bot-
stein, and J.M. Cherry. The stanford microarray database. Nucleic Acids Research,
29(1):152–5, 2001.

[41] A.A. Alizadeh, M.B. Eisen, R.E. Davis, C. Ma, I.S. Lossos, A. Rosenwald, J.C. Boldrick,
H. Sabet, T. Tran, X. Yu, J.I. Powell, L. Yang, G.E. Marti, T. Moore, J. Hudson, L. Lu,
D.B. Lewis, R. Tibshirani, G. Sherlock, W.C. Chan, T.C. Greiner, D.D. Weisenburger, J.O.
Armitage, R. Warnke, and L.M. Staudt. Distinct types of diffuse large b-cell lymphoma
identified by gene expression profiling. Nature, 403(6769):503–11, 2000.

[42] G. Alonso, W. Bausch, C. Pautasso, M. Hallett, and A. Kahn. Dependable Computing in
Virtual Laboratories. In Proc. of the 17th International Conference on Data Engineering
(ICDE2001), Heidelberg, Germany, 2001.

[43] Washington University in St. Louis. Dapple: Image Analysis Software for DNA Microar-
rays. http://www.cs.wustl.edu/ jbuhler/research/dapple/.

[44] Eisen Lab. ScanAlyze. http://rana.lbl.gov/EisenSoftware.htm.

[45] Eisen Lab. TreeView. http://rana.lbl.gov/EisenSoftware.htm.

85

Glossary

86

Glossary

Adenine short A; a nitrogenous base, one member of the base pair A-T (adenine-
thymine).

Base pairing rules for DNA: A-T, G-C; for RNA: A-U, G-C

Base Any basic (alkaline) compound containing nitrogen, but generally referring to
one of four complex molecules (nucleotides) that form the building blocks of
the nucleic acids, DNA and RNA.

cDNA Library A collection of all of the mRNA molecules present in a cell or or-
ganism, all turned into cDNA molecules with the enzyme reverse transcriptase,
then inserted into vectors (other DNA molecules which can continue to replicate
after addition of foreign DNA). The library can then be probed for the specific
cDNA (and thus mRNA) of interest.

cDNA complementary DNA. DNA synthesized from an RNA template using reverse
transcriptase. Because cDNA is synthesized of mRNA, it only contains the in-
formation needed for protein production. Compare exon.

Chromosome The self-replicating genetic structures of cells containing the cellular
DNA that bears in its nucleotide sequence the linear array of genes. In prokary-
otes, chromosomal DNA is circular, and the entire genome is carried on one
chromosome. Eukaryotic genomes consist of a number of chromosomes whose
DNA is associated with different kinds of proteins.

Cloning The process of asexually producing a group of cells (clones), all genetically
identical, from a single ancestor. In recombinant DNA technology, the use of
DNA manipulation procedures to produce multiple copies of a single gene or
segment of DNA is referred to as cloning DNA.

Complementary Base Pairing The pairing of complementary nucleotide bases
(adenine and thymine, guanine and cytosine) to each other via hydrogen bonds
from opposite strands of a double stranded nucleic acid (such as DNA or RNA),
thereby holding the double-stranded nucleic acid together.

Cye3-dUTP Fluorescently labeled desoxy uridine triphosphate, which the mRNA rep-
resenting the experimental samples is prepared for hybridization with DNA mi-
croarrays by reverse transcription. Cye3 is the fluorescent dye, which emits green
light by excitation with light of wavelength 550nm. Usually used for the control
samples.

87

Glossary

Cye5-dUTP Fluorescently labeled desoxy uridine triphosphate, which the mRNA rep-
resenting the experimental samples is prepared for hybridization with DNA mi-
croarrays by reverse transcription. Cye5 is the fluorescent dye, which emits red
light by excitation with light of wavelength 650nm. Usually used for the control
samples.

Cytosine short C; a nitrogenous base, one member of the base pair G-C (guanine and
cytosine).

Domain A discrete portion of a protein with its own function. The combination of
domains in a single protein determines its overall function.

EST A short (200 to 500 base pairs) DNA sequence derived from cDNA that has a
single occurrence in the human genome and whose location and base sequence
are known. EST are putative genes which still have to be described.

Exon The protein-coding DNA sequences of a gene. Compare intron.

Gene Expression The process by which a gene’s coded information is converted into
the structures present and operating in the cell. Expressed genes include those
that are transcribed into mRNA and then translated into protein and those
that are transcribed into RNA but not translated into protein (e.g., transfer
and ribosomal RNAs).

Gene Mapping Determination of the relative positions of genes on a DNA molecule
(chromosome or plasmid) and of the distance, in linkage units or physical units,
between them.

Gene The fundamental physical and functional unit of heredity. A gene is an or-
dered sequence of nucleotides located in a particular position on a particular
chromosome that encodes a specific functional product (i.e., a protein or RNA
molecule).

Genome All the genetic material in the chromosomes of a particular organism; its size
is generally given as its total number of base pairs.

Genomics The study of genomes, which includes genome mapping, gene sequencing
and gene function.

Genotype The genetic constitution of an organism. Compare phenotype.

Guanine short G; a nitrogenous base, one member of the base pair G-C (guanine and
cytosine).

Hybridization The process of joining two complementary strands of DNA or one each
of DNA and RNA to form a double- stranded molecule.

Intron The DNA base sequences interrupting the protein- coding sequences of a gene;
these sequences are transcribed into RNA but are cut out of the message before
it is translated into protein. Compare exons.

88

GLOSSARY

mRNA RNA that serves as a template for protein synthesis.

Nucleotide A subunit of DNA or RNA consisting of a nitrogenous base (adenine,
guanine, thymine, or cytosine in DNA; adenine, guanine, uracil, or cytosine in
RNA), a phosphate molecule, and a sugar molecule (deoxyribose in DNA and
ribose in RNA). Thousands of nucleotides are linked to form a DNA or RNA
molecule.

Oligonucleotide A compound comprising a nucleotide linked to phosphoric acid.
When polymerized, it gives rise to a nucleic acid.

Phenotype The physical appearance/observable characteristics of an organism. Com-
pare genotype.

Plasmid Autonomously replicating, extrachromosomal circular DNA molecules, dis-
tinct from the normal bacterial genome and nonessential for cell survival under
nonselective conditions. Some plasmids are capable of integrating into the host
genome. A number of artificially constructed plasmids are used as cloning vec-
tors.

Reverse Transcriptase An enzyme found in retroviruses that enable the virus to
make DNA from viral RNA.

Ribosomes Small cellular components composed of specialized ribosomal RNA and
protein; site of protein synthesis.

RNA A chemical found in the nucleus and cytoplasm of cells; it plays an important
role in protein synthesis and other chemical activities of the cell. The structure of
RNA is similar to that of DNA. There are several classes of RNA molecules, in-
cluding messenger RNA, transfer RNA, ribosomal RNA, and other small RNAs,
each serving a different purpose.

rRNA A class of RNA found in the ribosomes of cells providing them with structural
and functional properties.

Sequencing Any lab technique used to find out the sequence of nucleotide bases in a
DNA molecule or fragment.

Thymine short T; a nitrogenous base, one member of the base pair A-T (adenine-
thymine).

Transcription The synthesis of an RNA copy from a sequence of DNA (a gene); the
first step in gene expression. Compare translation.

Translation The process in which the genetic code carried by messenger RNA directs
the synthesis of proteins from amino acids. Compare transcription.

tRNA transfer RNA. A class of RNA having structures with triplet nucleotide se-
quences that are complementary to the triplet nucleotide coding sequences of

89

Glossary

mRNA. The role of tRNAs in protein synthesis is to bond with amino acids and
transfer them to the ribosomes, where proteins are assembled according to the
genetic code carried by mRNA.

Uracil short U; a nitrogenous base normally found in RNA but not DNA; uracil is
capable of forming a base pair with adenine.

90

