Free subgroups of groups with nontrivial floyd boundary

Report

Author(s):

Karlsson, Anders

Publication date:

2002

Permanent link:

https://doi.org/10.3929/ethz-a-004354005

Rights / license:

In Copyright - Non-Commercial Use Permitted

Originally published in:
FIM's preprints

FREE SUBGROUPS OF GROUPS WITH NONTRIVIAL FLOYD BOUNDARY

ANDERS KARLSSON

Abstract

We prove that when a countable group admits a nontrivial Floyd-type boundary, then every nonelementary and metrically proper subgroup contains a noncommutative free subgroup. This generalizes the corresponding well-known results for hyperbolic groups and groups with infinitely many ends. It also shows that no finitely generated amenable group admits a nontrivial boundary of this type. This improves on a theorem in [Fl 80] as well as giving an elementary proof of a conjecture stated in that same paper. We also show that in case the Floyd boundary of a finitely generated group is nontrivial, then it is a boundary in the sense of Furstenberg.

1. Introduction

For a group Γ generated by a finite set S, one may associate the Cayley graph $C(\Gamma, S)$ where the vertex set is the group itself and two vertices are connected by an edge if they differ by multipliation of an element in S on the left. Freudenthal introduced the end-compactification of this graph as the graph (or the group) union the set of ends of this graph [Fr 31], [Fr 42]. There is a natural topology and the compactification is independent of the finite generating set. Hopf showed in [Ho 44] that a finitely generated group has either $0,1,2$, or uncountably many ends. It has two ends if and only if it is virtually \mathbb{Z}. Stallings proved in a remarkable paper [St 68] that a group has infinitely many ends if and only if it is an amalgamated free product $A *_{C} B$ or HNN-extension $A *_{C}$ with C finite, $|A / C| \geq 3$ and $|B / C| \geq 2$.

There are many groups that have only one end, hence the compactification is trivial. Examples of one-ended groups include fundamental groups of compact hyperbolic manifolds. In [Fl 80] Floyd introduced a more refined notion of boundary. It is obtained by rescaling the edge-path metric on $C(\Gamma, S)$ by a conformal factor of, for example, $d(e, g)^{-2}$ and then taking the metric completion. Floyd used this completion to study limit sets of Kleinian groups. Gromov discussed similar boundary constructions in his essay on hyperbolic groups [Gr 87]. The class of word hyperbolic groups has a very satisfactory theory in the sense that several definitions of boundaries, including the one in [Fl 80], lead in fact to the same boundary. See also [Fl 84], [Tu 88], and [S 92].

Just as the end-compactification often is trivial, the Floyd boundary construction has in a sense a pathology: the boundary of the product of two infinite groups is one point. (This can be avoided if one allows S to be infinite or by considering boundaries of a coset graph Γ / H.) Even if the group is not a product, the Floyd boundary may degenerate in the presence of too many higher rank free abelian subgroups, as is the case for most mapping class groups, braid groups and $S L(n, \mathbb{Z})(n \geq 3)$, see [KN 02].

A Floyd-type boundary is called trivial if it consists of 0,1 , or 2 points. For finitely generated groups, the property of admitting a nontrivial Floyd boundary (with respect to a finite S) is a quasi-isometric invariant. The class of groups with nontrivial Floyd boundary contains nonelementary word hyperbolic groups (see [Gr 87]), groups with infinitely many ends (a simple fact), and nonelementary geometrically finite Kleinian groups (see [Fl 80] and [Tu 88$]$).

Let Γ be a group generated by a countable (or finite) set S. The Floyd boundary $\partial \Gamma$ depends on S and a conformal factor f, see Section 2. A subgroup Λ of Γ is said to be nonelementary with respect to $\partial \Gamma$ if there exists a sequence g_{n} in Λ such that both g_{n} and g_{n}^{-1} converge to points of $\partial \Gamma$ and Λ does not fix this or these limit point(s) setwise. Our main results are:

Theorem 1. Let Γ be a group generated by a finite or countable set S and let Λ be a subgroup. Assume that Λ is nonelementary with respect to $\partial \Gamma$ and that every infinite subset of Λ is unbounded in (Γ, d). Then Λ contains a noncommutative free subgroup.

We refer to the paper of Woess [Wo 93] for a discussion and references to previous results of this type. We also have:

Theorem 2. Assume that Γ is generated by a finite set S and that $\partial \Gamma$ is nontrivial. Then $\partial \Gamma$ is a boundary of Γ in the sense of Furstenberg [Fu 73].

In order to apply Theorem 1 it is important to know criteria for the existence of convergent sequences g_{n} and for a subgroup to be nonelementary. In section 4 we obtain in particular:

Proposition 1. Assume that g is an element of Γ such that $d\left(e, g^{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. Then both g^{n} and g^{-n} converge to points (or the same point) in $\partial \Gamma$.

Proposition 2. Let Γ be a group generated by a finite set S and let Λ be a subgroup. If the limit set of Λ contains at least three points in $\partial \Gamma$, then Λ is nonelementary with respect to $\partial \Gamma$.

Hence we have:
Corollary 1. Assume that Γ is generated by a finite set S. If $\partial \Gamma$ contains at least three points, then Γ contains a noncommutative free subgroup.

In view of the proof of Proposition 5 we have:

Corollary 2. Let Γ be a group generated by a finite or countable set S and let Λ be a subgroup. Assume that every infinite subset of Λ is unbounded in (Γ, d) and that h is an element with two distinct limit points. If the group generated by h and another element g does not contain a noncommutative free subgroup, then $h^{l}=g h^{k} g^{-1}$, for some nonzero integers k and l.

Amenable groups and torsion groups are among finitely generated groups which have no noncommutative free subgroups. Observe also that $\partial \Gamma$, when nontrivial, is a compact Γ-space without a Γ-invariant probability measure.

Corollary 3. If Γ is a finitely generated amenable group or a finitely generated torsion group, then every Floyd-type boundary $\partial \Gamma$ is trivial.

The class of amenable groups contains every virtually solvable group and every finitely generated group of subexponential growth. Therefore our corollary generalizes one of the main theorems in [Fl 80] and shows the truth of a statement significantly stronger than a conjecture formulated in that same paper: Floyd proved that any finitely generated polycyclic group of one end must have trivial boundary and conjectured that every finitely generated group of polynomial growth has trivial boundary. The conjecture was of course settled as a consequence of Gromov's remarkable polynomial growth theorem.

Here follow a few further remarks. Gromov wrote in [Gr 87] that "[t]he compactification of any Γ by [the space of ends] suggests a general notion of (partially) hyperbolic boundaries [...]. In particular one may seek a maximal hyperbolic boundary similar to the Furstenberg boundary (which is $\partial \Gamma$ if Γ is word hyperbolic)." As illustrated in the present paper the Floyd boundary is a hyperbolic-type boundary. Moreover, it was shown in [K 01b] that when the Floyd-boundary of Γ is nontrivial then it is maximal in the sense of Poisson boundaries of Γ (with respect to reasonable measures).

In a recent article [M 01], McMullen stated a conjecture concerning the existence of a continuous surjective map from the Floyd-boundary of a finitely generated fundamental group of a hyperbolic 3-manifold onto its limit set on the boundary in hyperbolic 3 -space. The question whether a similar statement holds more generally occurs in [Gr 93] in line with the quotation in the previous paragraph. In particular, the author asks whether every nonelementary finitely generated subgroup of a word hyperbolic group has nontrivial boundary.

After writing the first version of this paper I became aware of the pages 257-259 and 263-268 of Gromov's substantial essay [Gr 93]. The discussion there appears to overlap with the present paper and some results seem to occur already in this reference. The reader is of course encouraged to read the indicated pages in [Gr 93] although there are several omissions and some errors as written. Moreover, I hope that the arguments in the present paper may be of some additional interest as they avoid using compactness.

I am much grateful to the FIM and the ETH-Zürich for providing excellent working conditions in a very pleasant and stimulating environment.

2. Preliminaries

Let Γ be a group generated by a countable set S. The group Γ can be viewed as a (metric) graph called the Cayley graph $C(\Gamma, S)$. The elements in Γ are the vertices and two vertices g, g^{\prime} are connected by an edge if there is an $s \in S$ such that $g=g^{\prime} s^{ \pm 1}$. Each edge is assigned length 1 (the edges are isometric to a unit interval). This defines lengths of paths in this graph and we can define a corresponding distance d. In this way $(C(\Gamma, S), d)$ is a complete geodesic space. The distance d is the word metric.

For a finitely generated group, this metric space is well-defined up to quasi-isometry, in other words if we change S to another finite generating set the two metric graphs will be quasi-isometric. When S is allowed to be, or has to be infinite, pathologies may occur, for example: Γ is infinite but the graph has finite diameter). Even so, we will suppress the dependence on S and simply denote the metric graph by Γ and its distance d and speak of geodesics (distance minimizing paths) as a subset of Γ in the obvious fashion. A geodesic path between $z, w \in \Gamma$ is denoted by $[z, w]$. The distance from a point y to a subset A is

$$
d(y, A):=\inf _{a \in A} d(y, a)
$$

The action by Γ on itself (or $C(\Gamma, S)$) by left translation is an isometric action. For more details on these standard concepts, see [BH 99].

We now wish to define a boundary of Γ following the construction in [Fl 80] "which is based on an idea of Thurston's and inspired by a construction of Sullivan's", see also [Gr 87]. Let f be a monotonically decreasing function $\mathbb{N} \rightarrow \mathbb{R}_{>0}$ such that $f(0)=1$ and given $k \in \mathbb{N}$ there exists $M, N, L>0$ so that $M f(r) \leq f(k r) \leq N f(r)$ and $L^{-1} f(r) \leq f(s) \leq L f(r)$ for all natural numbers r and $r-k \leq s \leq r+k$. In addition we require f to be summable:

$$
\sum_{j=0}^{\infty} f(r)<\infty
$$

(For example, we may consider $f(r)=1 / r^{2}$ for $r>0$.)
We define a new distance d^{\prime} by modifying the length of the edges. Let e denote the identity in the group, for two adjacent vertices g, h we define

$$
f(d(e,\{g, h\}))
$$

to be the length of an edge connecting them (instead of 1). This defines d^{\prime}-length L_{f} of a path $\alpha=\left\{x_{i}\right\}$ in the graph:

$$
L_{f}(\alpha)=\sum_{i} f\left(d\left(e,\left\{x_{i}, x_{i+1}\right\}\right)\right)
$$

and the new distance is

$$
d^{\prime}(z, w):=\inf _{\alpha} L_{f}(\alpha)
$$

where the infimum is taken over all paths α connecting z and w. It is straightforward to verify that d^{\prime} satisfies the axioms of a metric. In particular, since (Γ, d) is a geodesic space any two points z, w can be joined by a geodesic β, so $d^{\prime}(z, w) \leq L_{f}(\beta)<\infty$. (When we speak about geodesics it will always refer to the distance d.) Note also that Γ has finite d^{\prime}-diameter because f is summable.

We now define $\bar{\Gamma}$ to be the completion of $\left(\Gamma, d^{\prime}\right)$ in the sense of metric spaces and the boundary is $\partial \Gamma=\bar{\Gamma} \backslash \Gamma$. The metric structure d^{\prime} gives rise to a topology on this completion and boundary. Note that we are suppressing the dependence of S and f, and refer to $\partial \Gamma$ obtained as above as a Floyd type boundary of Γ.

As mentioned above Γ acts on its Cayley graph by isometries. This action extends to an action of Γ by homeomorphisms of $\bar{\Gamma}$. To see this, note that for a fixed $g \in \Gamma$ we have

$$
|d(e, g w)-d(e, w)| \leq d(e, g)=: k
$$

for any $w \in \Gamma$. Together with the basic assumptions on f we immediately have that

$$
L^{-1} d^{\prime}(z, w) \leq d^{\prime}(g z, g w) \leq L d^{\prime}(z, w)
$$

This estimate shows that $g^{ \pm 1}$ takes Cauchy sequences to Cauchy sequences, equivalent ones to equivalent ones, in a continuous fashion. Finally, since g is an isometric automorphism, the map $g: \bar{\Gamma} \rightarrow \bar{\Gamma}($ or $\partial \Gamma \rightarrow \partial \Gamma)$ is a bijection.

3. Contractive properties

The following lemma is crucial for the present paper.
Lemma 1. Let z, w be two points in Γ and let $[z, w]$ be a d-geodesic segment connecting z and w. Then

$$
d^{\prime}(z, w) \leq 4 r f(r)+2 \sum_{j=r}^{\infty} f(j)
$$

where $r=d(e,[z, w])$.
Proof. Let a denote the distance to z from a point m on $[z, w]$ closest to e and let $R=d(e, z)$. The triangle inequality implies that $a \leq r+R$. Let $x_{j}, j=0, \ldots, a$ be the points (vertices) of the geodesic segment $[m, z] \subset$ $[w, z]$. Because of the minimality of r and the triangle inequality we have the following estimates:

$$
\begin{aligned}
d\left(e, x_{j}\right) & \geq r \\
d\left(e, x_{j}\right) & \geq R-(a-j) \geq j-r
\end{aligned}
$$

We hence get, using monotonicity and summability of f :

$$
\begin{aligned}
d^{\prime}(m, z) & \leq \sum_{j=0}^{a-1} f\left(d\left(e,\left\{x_{j}, x_{j+1}\right\}\right)\right) \\
& \leq \sum_{j=0}^{2 r-1} f(r)+\sum_{j=2 r}^{a-1} f(j-r) \\
& \leq 2 r f(r)+\sum_{j=r}^{\infty} f(j) .
\end{aligned}
$$

By the same consideration with w instead of z, the lemma is proved.

Let

$$
(z \mid w)=\frac{1}{2}(d(e, z)+d(e, w)-d(z, w))
$$

be the so-called Gromov product. It is a simple fact (see e.g. [KN 00]) that

$$
(z \mid w) \leq d(e,[z, w])
$$

for any geodesic segment $[z, w]$. Essentially following a nice argument of Woess in [Wo 93] dealing with Gromov hyperbolic, proper metric spaces we can now prove the following contraction property:

Proposition 3. Let g_{n} be a sequence in Γ. If $g_{n} \rightarrow \xi \in \partial \Gamma$ and $g_{n}^{-1} \rightarrow$ $\eta \in \partial \Gamma$, then $g_{n} z \rightarrow \xi$ for any $z \in \bar{\Gamma} \backslash\{\eta\}$ and this convergence is uniform outside any neighbourhood of η.

Proof. (Note that for any $z \in \Gamma$, we clearly have that $g_{n} z \rightarrow \xi$, because $d\left(g_{n}, g_{n} z\right)=d(e, z)$.) Let U and V be neighborhoods in $\bar{\Gamma}$ of ξ and η respectively. By definitions, we can find a small $\varepsilon>0$ and large $n_{0}>0$ such that

$$
\left\{g_{n}: n \geq n_{0}\right\} \cup\{\xi\} \subset B_{\varepsilon / 3}\left(g_{n_{0}}\right) \subset B_{\varepsilon}\left(g_{n_{0}}\right) \subset U
$$

and

$$
\left\{g_{n}^{-1}: n \geq n_{0}\right\} \cup\{\eta\} \subset B_{\varepsilon / 3}\left(g_{n_{0}}^{-1}\right) \subset B_{\varepsilon}\left(g_{n_{0}}^{-1}\right) \subset V
$$

Here $B_{a}(x)$ denotes the open metric ball with center x and radius a in distance d^{\prime}. Let $z \in \Gamma$ with $d^{\prime}\left(g_{n_{0}}^{-1}, z\right) \geq 2 \varepsilon / 3$, so $d^{\prime}\left(z, g_{n}^{-1}\right) \geq \varepsilon / 3$ for any $n \geq n_{0}$. Because of the properties of f, there exists for any $\delta>0$ a constant $R(\delta)$ such that the right hand side of the inequality in Lemma 1 is less than δ for every $r \geq R(\delta)$. In view of the lemma, we therefore have for any $n \geq n_{0}$ that

$$
d\left(e,\left[z, g_{n}^{-1}\right]\right)<R(\varepsilon / 3)
$$

But then

$$
\begin{aligned}
d\left(e,\left[g_{n}, g_{n} z\right]\right) & \geq\left(g_{n} \mid g_{n} z\right) \\
& =\frac{1}{2}\left(d\left(e, g_{n}\right)+d\left(e, g_{n} z\right)-d(z, e)\right) \\
& =d\left(e, g_{n}\right)-\frac{1}{2}\left(d\left(e, g_{n}\right)-d\left(g_{n}^{-1}, z\right)+d(z, e)\right) \\
& =d\left(e, g_{n}\right)-\left(g_{n}^{-1} \mid z\right) \\
& \geq d\left(e, g_{n}\right)-d\left(e,\left[g_{n}^{-1}, z\right]\right) \\
& \geq d\left(e, g_{n}\right)-R(\varepsilon / 3)
\end{aligned}
$$

which tends to infinity as $n \rightarrow \infty$. Again by the lemma there is therefore $n_{1} \geq n_{0}$ such that

$$
d^{\prime}\left(g_{n} z, g_{n}\right)<\varepsilon / 3
$$

for every z as above and $n \geq n_{1}$. As every $\zeta \in \partial \Gamma \backslash V$ can be approximated by elements z in Γ outside of $B_{2 \varepsilon / 3}\left(g_{n_{0}}^{-1}\right)$ and by continuity of the action of Γ, the proposition is proved.

Inspired by an argument on p. 264 of [Gr 93] we prove the following lemma, which will be used in combination with Proposition 3 at one point in the next section.

Lemma 2. Let g_{n} be an unbounded sequence in Γ, that is, $d\left(g_{n}, e\right)$ is unbounded. Assume there is a point $\xi \in \partial \Gamma$ such that $g_{n} \xi \rightarrow \xi$. Then there is a subsequence n_{k} such that at least one of $g_{n_{k}}$ or $g_{n_{k}}^{-1}$ converges to ξ.

Proof. Let x_{j} be a d^{\prime}-Cauchy-sequence representing ξ, so $x_{j} \rightarrow \xi$. Assume first that for any $R>0$ there exists an N such that

$$
\left(g_{n} \mid g_{n} x_{j}\right) \geq R
$$

for all $n \geq N$ and $j \geq 1$. Then for any $\varepsilon>0$ it holds for every sufficiently large n and j that

$$
d^{\prime}\left(g_{n}, \xi\right) \leq d^{\prime}\left(g_{n}, g_{n} \xi\right)+\varepsilon \leq d^{\prime}\left(g_{n}, g_{n} x_{j}\right)+2 \varepsilon \leq 3 \varepsilon
$$

in view of Lemma 1. This proves the lemma in this case.
In the complementary case we hence have that there is an $R>0$ and subsequences $n_{k} \rightarrow \infty$ and j_{k} such that

$$
\left(g_{n_{k}} \mid g_{n_{k}} x_{j_{k}}\right)<R
$$

As in the proof of Proposition 3 we have

$$
\left(g_{n_{k}} \mid g_{n_{k}} x_{j_{k}}\right)=d\left(e, g_{n_{k}}\right)-\left(g_{n_{k}}^{-1} \mid x_{j_{k}}\right)
$$

As $g_{n_{k}} \rightarrow \infty$, we have that $\left(g_{n_{k}}^{-1} \mid x_{j_{k}}\right) \rightarrow \infty$ and so in particlar $x_{j_{k}}$ has to go to infinity, hence converging to ξ. Lemma 1 now implies that $g_{n_{k}}^{-1}$ also converges to ξ as desired.

4. Nonelementary subgroups

We now turn to the question of the existence of doubly convergent sequences $\left\{g_{n}\right\}_{0}^{\infty} \subset \Gamma$, that is, $g_{n} \rightarrow \xi^{+}$and $g_{n}^{-1} \rightarrow \xi^{-}$for some boundary points ξ^{+}and ξ^{-}. We call ξ^{+}, ξ^{-}the limit points of the sequence (it is allowed that $\left.\xi^{+}=\xi^{-}\right)$. An element $g \in \Gamma$ is called unbounded if $d\left(e, g^{n}\right)$ is unbounded in n. A subgroup Λ is called nonelementary with respect to $\partial \Gamma$ if it contains a doubly convergent sequence such that Λ does not stabilize its limit point set. The limit set of a subgroup Λ consists of every element $\xi \in \partial \Gamma$ which can be represented by a d^{\prime}-Cauchy sequence with elements only in Λ.

In the case of infinite number of generators the existence of doubly convergent sequences does not seem so clear. Here is one argument which may apply to a nontorsion group:

Proposition 4. Assume that $g \in \Gamma$ is unbounded. Then there exists a subsequence n_{i} such that $h_{i}:=g^{n_{i}}$ is a doubly convergent sequence. The limit point(s) $\xi^{ \pm}$are the unique fixed points of g. In the case $d\left(e, g^{n}\right) \rightarrow \infty$, then both g^{n} and g^{-n} converge to points (or the same point) in $\partial \Gamma$.

Proof. This follows an argument in [K 01a]. Let $a_{n}=d\left(e, g^{n}\right)$. Select $n_{i} \rightarrow$ ∞ such that

$$
a_{n_{i}}>a_{m}
$$

for every $m<n_{i}$. Then for every $k<n_{i}$

$$
\begin{aligned}
\left(g^{n_{i}} \mid g^{k}\right) & =\frac{1}{2}\left(d\left(e, g^{n_{i}}\right)+d\left(e, g^{k}\right)-d\left(g^{n_{i}}, g^{k}\right)\right) \\
& \geq \frac{1}{2} a_{k}
\end{aligned}
$$

In view of Lemma 1 and since $a_{n_{i}} \rightarrow \infty$, the sequence $h_{i}:=g_{n_{i}}$ is a Cauchy sequence and hence converges to a point in $\partial \Gamma$. For the same reason, since $d\left(e, g^{-n}\right)=d\left(e, g^{n}\right)$, also the sequence h_{i}^{-1} converges in $\bar{\Gamma}$ to a point in $\partial \Gamma$. By continuity and contractivity we have

$$
g\left(\xi^{ \pm}\right)=g\left(\lim _{i \rightarrow \infty} g^{ \pm n_{i}}\right)=\lim _{i \rightarrow \infty} g^{ \pm n_{i}} g=\xi^{ \pm}
$$

and that no other point can be fixed.
Note that in the case S is finite, an element g is unbounded if and only if $d\left(e, g^{n}\right) \rightarrow \infty$, because otherwise $g^{N}=1$ for some $N \geq 1$.

Lemma 3. Assume $g \in \Gamma$ such that

$$
g\left(\partial \Gamma \backslash U^{-}\right) \subset U^{+}
$$

for two disjoint nonempty sets U^{+}and U^{-}. Then $g^{k} \neq 1$ for every $k \neq 0$ and g generates a rank 1 free abelian group. If each d-metric ball contains at most finitely many distinct elements of the form g^{k}, then $g^{k} \rightarrow \infty$.

Proof. It is clear that $g^{k}\left(\partial \Gamma \backslash U^{-}\right) \subset U^{+}$for $k>0$, since $U^{+} \subset \partial \Gamma \backslash U^{-}$, and hence h^{k} cannot be the identity. (If $U^{-}=U^{+}$then g could have order 2.) If some subsequence $g^{n_{k}}$ stays inside of a ball which have only finitely many distinct elements of this form, then $g^{n_{k}}=g^{n_{l}}$ for two distinct indices, which implies $g^{k}=1$ for a nontrivial k.

By adapting a nice argument of Gehring and Martin [GM 87], see [KN 02], we get:

Proposition 5. Let g and h be two unbounded elements in Γ. Assume that every infinite subset of the subgroup generated by g and h contains an unbounded sequence. Then the fixed point sets of g and h are either equal or disjoint.

Proof. Both fixed point sets are nonempty by Proposition 4. In the case both g and h have only one fixed point, the statement is trivial. Assume now that $F i x(h)=\left\{\xi^{+}, \xi^{-}\right\},\left(h^{ \pm n_{j}} x \rightarrow \xi^{ \pm}\right)$and $\xi^{-} \in F i x(g)$. We need to show that ξ^{+}is fixed also by g and we may therefore assume that $\partial \Gamma$ contains at least three (hence infinite number of) points. Choose neighborhoods U^{-}, U^{+}in $\bar{\Gamma}$ of ξ^{-}and ξ^{+}respectively so that

$$
\begin{equation*}
h U_{-} \cap U_{+}=\emptyset, \tag{4.1}
\end{equation*}
$$

which is possible because h is continuous and $\xi^{ \pm}$are fixed points of h. Let $E=\bar{\Gamma} \backslash\left(U^{+} \cup U^{-}\right) \neq \emptyset$. Since negative powers of h contracts toward ξ^{-}, g is continuous and fixes ξ^{-}, we have that

$$
g h^{-n_{j}}(E) \subset U_{-} \backslash\left\{\xi^{-}\right\}
$$

for every large j. Because of (4.1) we may pick the smallest $k=k(j)$ such that

$$
\begin{equation*}
h^{k(j)} g h^{-n_{j}} E \cap E \neq \emptyset . \tag{4.2}
\end{equation*}
$$

Now let $g_{j}=h^{k(j)} g h^{-n_{j}}$ and note that

$$
\begin{equation*}
g_{j} \xi^{-}=\xi^{-} \text {and } \lim _{j \rightarrow \infty} g_{j} \xi^{+}=\xi^{+} \tag{4.3}
\end{equation*}
$$

since $k(j) \rightarrow \infty$ as $j \rightarrow \infty$ and $g h^{-n_{j}} \xi^{+}=g \xi^{+}$.
We assert that g_{j} is bounded. Suppose not, then by Lemma 2 (or by compactness if S is finite) there is a subsequence n_{i} such that $g_{n_{i}}^{ \pm 1} x \rightarrow \eta^{ \pm} \in \partial \Gamma$. From (4.3) it is clear that $\left\{\eta^{ \pm}\right\}=\left\{\xi^{ \pm}\right\}$. But from the contraction property we should also have that $g_{n_{i}} E \subset U^{+}$for all large i, which contradicts (4.2). Hence g_{j} is bounded and by the properness assumption on $\Lambda, g_{j}=g_{i}$ for some distinct i and j. Therefore $h^{k}=g h^{l} g^{-1}$ for two nonzero integers k and l.

We claim that it now follows that $g \xi^{+}=\xi^{+}$. Applying the obtained identity to $g \xi^{+}$we have

$$
h^{k}\left(g \xi^{+}\right)=g h^{l} g^{-1} g \xi^{+}=g \xi^{+} .
$$

As $\bar{h}:=h^{k}$ is unbounded it can have at most two fixed points, namely the same as h, that is, $\xi^{ \pm}$. So we have that $g \xi^{+}$is either ξ^{+}or ξ^{-}, but the latter is impossible becuase $g \xi^{-}=\xi^{-}$and g is bijective.

Proposition 6. Assume that Γ is generated by a finite set S and let $\partial \Gamma$ be a (nontrivial) Floyd boundary. If the limit set in $\partial \Gamma$ of a subgroup Λ contains at least three points, then it is nonelementary with respect to $\partial \Gamma$. In particular, if $\partial \Gamma$ is nontrivial, then Γ is nonelementary.

Proof. The existence of doubly convergent sequences is a simple consequence of compactness: given $\xi \in \partial \Gamma$ in the limit set, take any Cauchy sequence g_{n} of points in Λ converging to ξ, and select by sequential compactness a subsequence n_{k} such that also $g_{n_{k}}^{-1}$ converges, say to ξ^{-}. Let h_{n} be another doubly convergent sequence in Λ but with forward limit point η different from ξ and ξ^{-}. If it is the case that h_{n}^{-1} converges to a point different from ξ^{+}or ξ^{+}then we are done by Proposition 3. Therefore we may now assume that $\xi=\xi^{-}$.

As $g_{n} \eta \rightarrow \xi$ by the contraction property, it follows that either the orbit $\left\{g_{n} \eta\right\}_{n>0}$ contains infinite number of points or $g_{n} \eta=\xi$ for all large n. In the former case, the proposition is proved. In the latter case, as all elements are bijections, $g_{n} \xi \neq \xi$ for all large n. Hence, in any case we have found a doubly convergent sequence whose limit points are not invariant as a set under Λ.

5. Noncommutative free subgroups

We now prove Theorem 1. Let g_{n} be a doubly convergent sequence with limit points ξ^{+}and ξ^{-}. Assume that $p \in \Lambda$ is such that $p \xi^{+} \notin\left\{\xi^{+}, \xi^{-}\right\}$. Note that by Proposition 3, g_{n} contracts all of $\partial \Gamma \backslash\left\{\xi^{-}\right\}$towards ξ^{+}, and that $p g_{n} z \rightarrow p \xi^{+}$for z outside ξ^{-}and $\left(p g_{n}\right)^{-1} z=g_{n}^{-1} p^{-1} z \rightarrow \xi^{-}$for z outside $p \xi^{+}$.

In view of Proposition 3, Lemma 3, and $p \xi^{+} \notin\left\{\xi^{+}, \xi^{-}\right\}$, we can find N such that $g^{k} \rightarrow \infty$ for $g:=p g_{N}$ (by the properness assumption) and the two limit points ξ_{+}and ξ_{-}(which exist by Proposition 4) are distinct.

Since the point $p \xi^{+}$is contracted by g_{n} towards ξ^{+}, the set $\left\{g_{n} p \xi^{+}\right.$: $n>0\} \cup\left\{g_{n} \xi^{+}: n>0\right\}$ is infinite: the sequences $g_{n} p \xi^{+}$and $g_{n} \xi^{+}$must get arbitrarily close to each other (and close to ξ^{+}) without ever coincide (because g_{n} is invertible). Thus we can find η of the form $g_{M} p \xi^{+}$or $g_{M} \xi^{+}$, different from $\xi^{+}, \xi^{-}, \xi_{+}, \xi_{-}$and $p \xi^{+}$, and such that for $h_{n}:=g_{M} p g_{n}$ or $h:=g_{M} g_{n}$ we have $h_{n} \rightarrow \eta$ and $h_{n}^{-1} \rightarrow \xi^{-}$.

Therefore we can again (as with $p g_{n}$ and g above) find a number L such that $h:=h_{L}$ is an unbounded element with two distinct fixed points $\eta_{ \pm}$ such that η_{+}is different from ξ_{+}and ξ_{-}. Proposition 5 implies that also $\eta_{-} \notin\left\{\xi_{-}, \xi_{+}\right\}$.

Since all the four limit points $\xi_{ \pm}, \eta_{ \pm}$are different and in view of Proposition 3 , we may now use the standard so-called ping-pong lemma (see e.g.
[Ti 72] or [dlH 00]) on some powers of g and h to conclude the proof of the theorem.

6. Strongly proximal boundaries

In [Fu 73] Furstenberg defined a boundary of a group which records contractive phenomena which is opposite to amenability. A compact metrizable space X on which Γ acts by homeomorphisms is called a boundary in the sense of Furstenberg if it is minimal, meaning that every Γ-orbit is dense, and strongly proximal, meaning that $\overline{\Gamma \mu}$ contains point-measures for every probability measure μ on X.

We now give the proof of Theorem 2. Assume that Γ is generated by a finite set S and $\partial \Gamma$ is nontrivial.

From section 2 we know that $\partial \Gamma$ is a compact, metrizable space on which Γ acts by homeomorphisms.

Assume that a nonempty subset $A \subset \partial \Gamma$ is Γ-invariant. By the contraction property, every doubly convergent sequence must have at least one limit point in A. The only possibility (in view of the existence of doubly convergent sequences) is that $A=\{\xi\}$ or $A=\partial \Gamma$. If A is just one point ξ, then because of the nontriviality of $\partial \Gamma$ we can find two doubly convergent sequences $h_{n} \rightarrow \eta_{1}$ and $f_{n} \rightarrow \eta_{2}$ with η_{1}, η_{2} and ξ distinct. As in section 5 we can now find h and f such that h^{k} converges to η_{11} and f^{k} converges to η_{22}, again distinct and different from ξ. By the invariance of A we have that $h^{-k} \rightarrow \xi$ and $f^{-k} \rightarrow \xi$, but this contradicts Propostion 5.

As in section 5 we know that $\partial \Gamma$ is infinite. Moreover, for any $\xi \in \partial \Gamma$ we can find a sequence of group elements $g_{n} \rightarrow \xi$ and we can assume that this sequence is doubly convergent thanks to sequential compactness. It follows that $\partial \Gamma$ is a perfect set, hence uncountable. Finally, as a probability measure μ cannot have uncountably many atoms we see that we can pick a nonatom $\xi \in \partial \Gamma$ and a doubly convergent sequence g_{n} such that $g_{n}^{-1} \rightarrow \xi$. Proposition 3 now guarantees the required strong proximality property.

References

[BH 99] Bridson, M. R., Haefliger, A., Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenchaften 319. Springer-Verlag, Berlin 1999
[Fl 80] Floyd, W. J., Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980) 205-218
[Fl 84] Floyd, W. J., Group completions and Furstenberg boundaries: rank one, Duke Math. J. 51 (1984) 1017-1020
[Fr 31] Freudenthal, H., Über die Enden topologischer Räume und Gruppen, Math. Z. 33 (1931) 692-713
[Fr 42] Freudenthal, H., Neuaufbau der Endentheorie, Ann. of Math. 43 (1942) 261-279
[Fu 73] Furstenberg, H., Boundary theory and stochastic processes on homogeneous spaces, in: Harmonic analysis on homogeneous spaces. (Symposia on Pure and Applied Math.) Williamstown, Mass. 1972, Proceedings, vol. 26 (1973) 193-229
[GM 87] Gehring, F. W., Martin, G. J. Discrete quasiconformal groups. I. Proc. London Math. Soc. (3) 55 (1987) 331-358
[Gr 87] Gromov, M. Hyperbolic groups, Essays in Group Theory, S. Gersten, Editor, MSRI Publication, pp. 75-265 Springer Verlag, 1987
[Gr 93] Gromov, M. Asymptotic invariants of infinite groups, In: Geometric Group Theory, vol. 2, Ed. G. A. Niblo and M. A. Roller, London Math. Soc. LNS 182, Cambridge University Press, 1993
[dlH 00] de la Harpe, P., Topics in Geometric Group Theory, Chicago Lectures in Math. University of Chicago Press, Chicago, 2000
[Ho 44] Hopf, H., Enden offener Räume und unendliche diskontinuerliche Gruppen, Comment. Math. Helv. 16 (1944) 81-100
[K 01a] Karlsson, A., Non-expanding maps and Busemann functions, Ergod. Th. \& Dynam. Sys. 21 (2001) 1447-1457
[K 01b] Karlsson, A., Boundaries and random walks on finitely generated infinite groups, FIM-Preprint 2001
[KN 00] Karlsson, A., Noskov, G. A. The Hilbert metric and Gromov hyperbolicity, To appear in l'Enseign. Math.
[KN 02] Karlsson, A., Noskov, G. A. Some groups having only elementary actions on metric spaces with hyperbolic boundaries, In preparation 2002.
[M 01] McMullen, C. T. Local connectivity, Kleinian groups and geodesics on the blowup of the torus, Invent. Math. 146 (2001) 35-91
[St 68] Stallings, J. R. On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968) 312-334
[S 92] Stark, C. W., Group completions and orbifolds of variable negative curvature, Proc. Amer. Math. Soc. 114 (1992) 191-194
[Ti 72] Tits, J., Free subgroups in linear groups, J. Algebra 20 (1972) 250-270
[Tu 88] Tukia, P., A remark on a paper by Floyd, in: Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986), 165-172, MSRI Publ. 11, Springer, New York, 1988
[Wo 93] Woess, W., Fixed sets and free subgroups of groups acting on metric spaces, Math. Z. 214 (1993), no. 3, 425-439

Forschungsinstitut für Mathematik, ETH-Zentrum, CH-8092 Zürich, SwitzerLAND

E-mail address: karlsson@math.ethz.ch

