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The goal of this paper is to introduce and illustrate a new approach to the
stability analysis of sample-paths of nonlinear stochastic economic models with non-
stationary components. We place our study within the mathematical theory of
random dynamical systems and apply the concept of a random fixed point which
is tailor-made for the study of the long-term behavior of sample-paths in stochastic
systems. The main tool for the application of this approach is a Banach-type fixed
point theorem for non-stationary random dynamical systems which is proved here.
The concept and the theorem are thoroughly explained and illustrated by examples
from stochastic growth theory.

Keywords: Sample-Path Stability, Random Fixed Points, Non-Stationary Random
Dynamical Systems
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1. Introduction

In search of an appropriate concept to describe the long-term behavior and
the stability properties of sample-paths of dynamic economic models with ran-
domness, several notions such as “noisy steady states” have been coined in the
economic literature in recent years. Most of these approaches, however, are not
satisfactory from a mathematical point of view because they lack a concise rela-
tion to the dynamics of the stochastic systems considered.

This paper aims at the development of an approach which permits an anal-
ysis of the (global) stability properties of sample-paths of stochastic dynamic
economic models in a coherent mathematical framework. In particular we want
to allow for non-stationary exogenous perturbations of stochastic systems. Our
approach is pursued in the theory of random dynamical systems (Arnold [2]) with
discrete time. We restrict ourselves to the class of models which are described by
a noise-dependent time-one map. This so-called “stochastic law of motion” deter-
mines the state of an economy in any period in time given the realization of the
state of an exogenous system (a stochastic process) and the state of the economy
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in the preceding period. To give an idea, many macroeconomic models – in par-
ticular models from economic growth theory – possess such a representation, see
e.g. the intertemporal models in Azariadis [3], the study of AK and Solow growth
models by Binder and Pesaran [4], and Mirman’s [12,13] pioneering analysis of
neoclassical stochastic growth models. Deterministic models which can possibly
be extended to the stochastic case include dynamic models of international trade
with externalities in production by Datta and Mirman [6,7] and earlier work by
Fischer and Mirman [8]. Models in which non-stationarity enters through the
beliefs of economic agents are introduced in Kurz [11].

The framework presented in this paper can for instance be used to study
the impact of time-dependent economic policy and the effect of non-stationary
exogenous technological change in dynamic economic models. In the examples
we consider non-stationary changes of regimes and recurrent poverty due to in-
sufficient productivity. Since our approach deals with general (in particular not
necessarily stationary) stochastic perturbations, our analysis also applies to mod-
els in which the realization of time-dependent exogenous parameters is given by
unfiltered (e.g. not seasonally adjusted) empirical data1. However, we have to
stress that our approach is formulated for systems with an explicit law of motion.
The results in this paper are, for instance, not directly applicable to stochastic
optimal control models without closed-form solution, cf. Arkin and Evstigneev [1].

Our approach contributes to a positive theory of long-term dynamics in the
sense that it provides a method to ensure that (non-)stationary impacts on an
economy (for instance due to economic policy) do not cause unstable or chaotic
dynamics. To achieve this goal we work within the theory of random dynamical
systems, describing the stochastic law of motion and the exogenous stochastic
perturbation by two coupled dynamical systems. The important concept for
the study of the dynamics employed here is that of a random fixed point of
a random dynamical system which is a stochastic analogue of a deterministic
steady state. It is tailor-made for the study of the stability analysis of sample-
paths in stochastic dynamic systems. A random fixed point is invariant under
the stochastic law of motion where invariance is understood with respect to the
exogenous perturbation. For each realization of the exogenous stochastic process,
a random fixed point determines an entire sample-path with respect to which a
definition of sample-path stability is given. Note that the well-known concept of
Markov equilibria is not applicable to the class of models considered here. Beside
the fact that we go beyond the Markov framework, a Markov equilibrium only
captures the statistical properties of the long-run behavior and thus is not useful
for the analysis of sample-path stability, see Schenk–Hoppé and Schmalfuss [15].

The applicability of our approach (which we believe to be mandatory for

1 The approach presented in this paper therefore should provide a valuable tool in real business
cycle theory where the “correctness” of filters is still an unsettled question, see e.g. Cogley and
Nason [5].
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any theory in economics) hinges on the availability of a constructive method to
show existence and uniqueness of (globally) stable random fixed points. This
method is provided by a Banach-type fixed point theorem for the class of models
considered here, extending earlier work due to Schmalfuss [16,17]. The theorem
gives sufficient conditions ensuring that the long-run behavior of all sample-paths
is uniquely determined by the sample-path of a random fixed point. This, in
particular, excludes sensitive dependence on initial conditions. Due to the fact
that the result establishes the convergence property on a known subset of the state
space it might become a valuable tool for studies based on numerical simulations.
To show applicability of our approach, the concept of a random fixed point and
the Banach theorem presented here are thoroughly explained and illustrated by
two examples from stochastic growth theory.

The remainder of the paper is organized as follows. The next Section 2
introduces non-stationary random dynamical systems and explains how dynamic
economic models can be (re)formulated to fit this framework. Then, in Section 3,
random fixed points are defined and a Banach fixed point theorem is proved.
Section 4 contains the examples.

2. Random Dynamical Systems with Non-Stationary Noise

This section provides an introduction to the mathematical framework used.
It builds upon the theory of random dynamical systems which is comprehensively
presented in the monograph by Arnold [2]. This theory offers a description of
stochastic systems from a dynamical systems point of view and goes beyond the
mere description of models with randomness by stochastic processes. Since sta-
tionarity of the underlying stochastic processes is usually assumed in the theory
of random dynamical systems, we generalize this approach by including non-
stationary stochastic processes here2. In particular the approach covers non-
autonomous difference equations. In a related paper Kloeden et al. [10] consider
non-autonomous random dynamical systems in connection with the numerical
approximation of attractors.

After stating the general definition of a non-stationary random dynamical
system, we thoroughly explain how to transform an economic model, which is
described by a stochastic law of motion, to meet this definition.

Two technical remarks have to be made. First, in this paper we restrict
ourselves to discrete-time systems with Euclidean state space Rd. Most results,
however, have a continuous-time analogue, and hold for more general state spaces.
Second, we assume equalities and convergence properties to hold for all elements

2 It is important to point out that in our framework, for instance, there is no equivalent concept
of an invariant measure and the Multiplicative Ergodic Theorem is not available in general.
One therefore has to resort to new techniques and more generally applicable tools which mostly
are not developed at the date this paper is written. However, we partially close this gap here.
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of a probability space and do not work with the more familiar “for almost all”
assumption3.

Definition 2.1. A (non-stationary, discrete-time) Random Dynamical System
(RDS) with time T = Z+ (one-sided time) or T = Z (two-sided time) and state
space Rd consists of two ingredients:
(i) a measurable dynamical system (Ω,F , (θt)t∈Z), i.e. for all t ∈ Z, θt : Ω → Ω
is a F ,F-measurable map which satisfies the flow property

θt+s = θt ◦ θs for all t, s ∈ Z
θ0 = idΩ,

and
(ii) a B(T)⊗F ⊗ B(Rd),B(Rd)-measurable map

ϕ : T× Ω×Rd → Rd

such that ϕ(t, ω) := ϕ(t, ω, ·) satisfies the cocycle property

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for all t, s ∈ T and all ω ∈ Ω
ϕ(0, ω) = idRd for all ω ∈ Ω.

An RDS is called continuous, if ϕ(t, ω) : Rd → Rd is a continuous function for
all t ∈ T and all ω ∈ Ω.

The measurable dynamical system (i) is a model of the exogenous stochas-
tic perturbation (or stochastic component of the model), and the cocycle (ii)
describes the dynamics of the stochastic system which is coupled to the pertur-
bation.

The time-one map h(ω) := ϕ(1, ω) is called the generator of the RDS be-
cause, by the cocycle property, each map ϕ(t, ω) can be represented as a com-
position of the maps h(ω) and h(ω)−1. ϕ(t, ω) inherits the regularities (such as
continuity or smoothness) of h(ω) for t ≥ 0 and of h(ω)−1 for t ≤ 0.

If time T = Z+, the map ϕ(t, ω) is not necessarily invertible and thus we
can study the dynamics of non-invertible random maps. Note that for T = Z the
cocycle property implies invertibility of ϕ(t, ω).

3 In the applications we are interested in the noise consists of two components: one is a (deter-
ministic) time-dependent function and the other is a stationary (or even ergodic) stochastic
process. If the noise is stationary, it is possible to restrict the treatment to an invariant subset
of the probability space of full measure. For instance the ergodic theorem holds in this sense,
Arnold [2, Appendix A.1]. If the noise is a deterministic function, then a condition either holds
at any point in time or the set of sample-paths (there is only one in this case) on which this
condition holds is void. The main reason for not dealing with “for almost all” statements here
is that in a non-stationary framework null-sets depend on time in general. Thus, invariant sets
of full measure cannot be constructed which causes technical problems.
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We next give an illustration of the applicability of the concept of an RDS
in economic dynamics. We show that the above definition of an RDS covers in
particular the following class of economic systems for which the evolution of the
state is governed by a law of motion of the form

xt+1 = H(p(t), ξt(ω), xt) (2.1)

with H : Rm ×Rn ×Rd → Rd a measurable map, p : Z → Rm a (deterministic)
function, and ξt : Ω → Rn, t ∈ Z, a stochastic process (i.e. a sequence of random
variables). xt ∈ Rd is the state of the system at time t.

We assume that both the function p and the stochastic process ξt are ex-
ogenous to the economic system in the sense that they do not depend on the
state of the system. From this point of view the law of motion is coupled to the
noise process. The time-dependent function p causes the non-stationarity of the
driving process even if ξt is stationary.

The interpretation we have in mind is as follows. For a constant determinis-
tic function p(t) ≡ c, (2.1) describes the stochastic evolution of an economy over
time. The law of motion is then given by Hc(·) := H(c, ·), Hc : Rn ×Rd → Rd

where the stochastic perturbation is exogenous. The function p(t) models eco-
nomic policy as a time-dependent intervention in the evolution of the economy.
It is a time-variant change of the stochastic law of motion Hc.

For instance in the one-sector growth model with production shocks ξt ∈ R+

the law of motion is xt+1 = Hc(ξt(ω), xt) := (1 − δ)xt + ξt(ω) f(xt + c). c ≥ 0
is a constant supply of foreign capital. Such models have been investigated in
the case when ξt is a Markov processes, see Mirman [12,13]. If the supply of
foreign capital is only temporary or time-variant (such as development aid), one
has to resort to a model in which c is replaced by a time-dependent function p(t).
Analogously one can model export of capital or the temporary access to superior
technologies.

We next show how an RDS is derived from (2.1). First, the two types of
perturbations, time-dependent functions and stochastic processes, are modeled
as measurable dynamical systems (we treat each case separately first and then
put both models together into one dynamical system). Second, the generator h
of the RDS ϕ is defined.

Modeling time-dependent functions as measurable dynamical systems. Given
any function p : Z → G with (G,G) being a measurable space. Define Ω = Z,
and let F = B(Z) be the Borel σ-algebra on Z. The maps θt : Ω → Ω defined by
θt(ω) = t+ ω form a flow on Ω. θt denotes the t-th iterate of θ := θ1. The tuple
(Ω,F , (θt)t∈Z) is a measurable dynamical system, and p(t+ ω) = p(θtω).

Modeling stochastic processes as measurable dynamical systems. Let (E, E)
and (G,G) be measurable spaces. Given any family ξ = (ξt)t∈Z of random vari-
ables ξt : E → G, we can define the sample-path space (Ω,F) = (GZ,GZ) (a
measurable space) and the map θt : Ω → Ω, θt(ω)(s) = ω(t+s), for all s ∈ Z, the
left-shift on the space Ω. The family (θt)t∈Z forms a flow on Ω and θt denotes
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the t-th iterate of θ. The sample paths of the process ξ are reobtained by the
evaluation map t 7→ θt(ω)(0) = ω(t). The tuple (Ω,F , (θt)t∈Z) is a measurable
dynamical system.

Generation of ϕ by (2.1). Let (Ω1,F1, (θt
1)t∈Z) and (Ω2,F2, (θt

2)t∈Z) be
measurable dynamical systems modeling the function p(t) and the stochastic
process ξt respectively. We define a new measurable dynamical system by
Ω := Ω1 × Ω2, F := F1 ⊗ F2, and θt := (θt

1, θ
t
2). Further, let h(θtω, x) :=

H(p((θtω)1), (θtω)2(0), x). With these definitions (2.1) is equivalent to

xt+1 = h(θtω, xt). (2.2)

The law of motion of the original system is thus represented as a function which
is coupled to a dynamical system θ.

The solution ϕ(t, ω, x) of (2.2) satisfies for all ω ∈ Ω and all x ∈ Rd

ϕ(t, ω, x) = h(θt−1ω) ◦ . . . ◦ h(ω)x for all t ≥ 1,
ϕ(0, ω, x) = x

and, if h(ω) is invertible,

ϕ(t, ω, x) = h(θtω)−1 ◦ . . . ◦ h(θ−1ω)−1 x for all t ≤ −1.

It is straightforward to check that (2.2) generates a random dynamical system
with time T = Z+. h is measurable because H, ξ, and p are measurable. If
h(ω) is invertible and the inverse is measurable, then an RDS with time T = Z
is generated. Recall that the RDS with time T = Z+ (T = Z) is continuous, if
h(ω) is continuous (and, in addition, h(ω)−1 is continuous).

Thus far we have discussed the evolution of non-stationary stochastic sys-
tems on the level of sample-paths. Some remarks are in order on the distribution
of the system at some fixed period in time.

Suppose that the deterministic part p(t) is known for all times (for instance
if p(t) represents a given economic policy). No additional uncertainty is gener-
ated through its fluctuation under this assumption. Further denote by Q the
probability measure on (E, E) associated with the stochastic process ξt. Then
P := ξQ is a probability measure on the sample-path space (Ω,F). Note that
the process ξ is stationary if and only if P is invariant under the left-shift. In
particular, if the process is i.i.d. with distribution ν, then P = νZ is the product
measure.4

We are now in a position to derive the distribution of the stochastic system at
time t. Given any initial state x and any initial time ω1 (since for the deterministic

4 Time-dependent functions can also be modeled in this fashion. For a function p : Z → G
we could have defined the sample-path space (Ω,F) = (GZ,GZ) and the map θt : Ω → Ω,
θt(ω)(s) = ω(t + s), s ∈ Z. The measure on Ω is then given by P = ⊗t∈Z1p(t) which has the
property that P{t 7→ p(t)} = 1. However, due to the technical difficulties pointed out in the
previous footnote we do not employ this probabilistic model in this paper.
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part p((θtω)1) = p(θt
1ω1) = p(t + ω1)), the distribution of the random variable

ω2 7→ ϕ(t, (ω1, ω2), x) is given by the image measure ϕ(t, (ω1, ·), x)P, where P is
the distribution of the sample-path space of the stochastic part.

Suppose the component p(t) is also unknown. Then the distribution of the
random variable ω 7→ ϕ(t, ω, x) is given by the image measure ϕ(t, ·, x)ν ⊗ P
where ν is any measure on Z. For instance, let us interpret p(t) as a time-
dependent economic policy which becomes effective at a certain period in time.
Then ν = paδa +pbδb represents the belief that the policy becomes (resp. became,
if a or b is negative) effective a resp. b time periods away from the current time
t where probability pa resp. pb = 1− pa is assigned to each single event.

3. Random Fixed Points and A Banach Fixed Point Theorem

This section contains the main tools for the stability analysis of sample-
paths. We first introduce the concept of a fixed point for non-stationary random
dynamical systems and then give a definition of sample-path stability. For the
applicability of this concept it is mandatory to have a tool to ensure uniqueness
and stability of random fixed points at our disposal. We therefore present a
version of the Banach fixed point theorem for non-stationary random dynamical
systems which was first proved by Schmalfuss [16,17] in the ergodic case. We
apply this result in the next section, studying stochastic economic growth models.
The results extend previous work which is mainly done in the ergodic case, see
Arnold [2] and the references therein.

Here is the definition of the key concept used in all further considerations.
Let (Ω,F , (θt)t∈Z) be a measurable dynamical system and let ϕ be a random
dynamical system with generator h(ω).

Definition 3.1. A random fixed point of a random dynamical system ϕ is a
random variable x? : Ω → Rd such that

x?(θω) = h(ω, x?(ω)) ≡ ϕ(1, ω, x?(ω)) for all ω ∈ Ω. (3.1)

A random fixed point x? is called globally attracting in a family of sets
(U(ω))ω∈Ω, if for all ω ∈ Ω and all x ∈ U(ω)

lim
t→∞

‖ϕ(t, ω, x)− x?(θtω)‖ = 0. (3.2)

Equation (3.1) implies x?(θtω) = ϕ(t, ω, x?(ω)) for all t ∈ Z. Hence a ran-
dom fixed point is a stochastic process which satisfies the random difference equa-
tion (2.1) and whose state is determined only by the dynamical system modeling
the noise.

Stability of a random fixed point requires that for all ω ∈ Ω the sample-path
of all initial values in some set U(ω) converges to (and therefore eventually moves
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as) the sample-path t 7→ x?(θtω) of the random fixed point. x?(ω) is the initial
state corresponding to this sample-path.

An alternative way to characterize random fixed points is as follows. Define
the skew-product flow Θt : Ω ×Rd → Ω ×Rd, (ω, x) 7→ (θtω, ϕ(t, ω, x)) for all
t ∈ T. Then x?(ω) is a random fixed point if and only if the graph of x? is
invariant under Θt.

We define two asymptotic properties of random variables which will be used
to formulate the main result in this section.

Definition 3.2. (i) A random variable g : Ω → Rd is called tempered, if for
all ω ∈ Ω the sample path t 7→ g(θtω) satisfies limt→±∞

1
|t| log+ ‖g(θtω)‖ =

0. Equivalently, if for all ω ∈ Ω the sample path t 7→ g(θtω) grows sub-
exponentially fast forward and backward in time, i.e. for all δ > 0

lim
t→±∞

e−δ|t| ‖g(θtω)‖ = 0. (3.3)

(ii) A random variable g fulfills the law of large numbers, if for all ω ∈ Ω one has
existence of the limits

lim
t→∞

1
t

t∑
i=0

g(θiω) and lim
t→∞

1
t

t∑
i=0

g(θ−iω). (3.4)

In the main result of this paper on the existence of globally attracting ran-
dom fixed points, stochastic processes that fulfill the law of large numbers play
a central role. It is therefore important to point out that there are many non-
stationary processes which have this property. For instance non-stationary pro-
cesses with asymptotically mean stationary distribution, cf. Gray and Kiefer [9],
fulfill the law of large numbers. Gray and Kiefer [9] give a detailed treatment of
these processes as well as numerous examples. See also Kurz [11] who considers
closely related non-stationary processes.

The following Lemma is a direct consequence of the above definition.

Lemma 3.3. For any j ∈ Z,
(i) g is tempered if and only if g ◦ θj is tempered; and
(ii) g fulfills the law of large numbers if and only if g ◦ θj fulfills the law of

large numbers. The limit (3.4) is the same for g and g ◦ θj .

The following example of one-dimensional affine difference equations with
non-stationary noise illustrates the concept of a random fixed point. The results
obtained will also be used in the section on economic growth.

Consider the law of motion

xt+1 = a(θtω)xt + b(θtω), (3.5)

with xt ∈ R. Let a, b : Ω → R be measurable maps.



Klaus Reiner Schenk–Hoppé / Non-Stationary Dynamic Economic Systems 9

For instance the cobweb model pt+1 = p
α(θtω)
t ξ(θtω) with stochastic pro-

cesses α(ω) > 0, ξ(ω) > 0 and state space R++ can be written in the form (3.5)
by applying the transformation xt = log pt.

The generator is given by the affine map h(ω, x) := a(ω)x + b(ω) and the
corresponding RDS is continuous. If a(ω) 6= 0 for all ω, then h(ω, x) is invertible
(and the inverse is continuous) and generates a continuous RDS with two-sided
time T = Z.

We have the following result

Lemma 3.4. Suppose log |a(ω)| fulfills the law of large numbers and the limits
satisfy

lim
t→∞

1
t

t∑
s=0

log |a(θsω)| < 0 and lim
t→∞

1
t

t∑
s=0

log |a(θ−sω)| < 0 (3.6)

and b(ω) is tempered. Then

x?(ω) = b(θ−1ω) +
∞∑

t=1

t∏
s=1

a(θ−sω) · b(θ−(t+1)ω) (3.7)

is the unique random fixed point of (3.5). x?(ω) is globally attracting on R and
tempered. Moreover, it attracts any tempered random variable in the sense that
limt→∞ ‖ϕ(t, θ−tω, g(θ−tω))− x?(ω)‖ = 0.

Proof. Let us first check that x? fulfills the requirements of Definition 3.1. Mea-
surability of x? is obvious. The invariance property (3.1) is satisfied because

a(ω)x?(ω) + b(ω) = b(ω) +
∞∑

t=0

t∏
s=0

a(θsω) · b(θ−(t+1)ω) = x?(θω)

for all ω ∈ Ω.
Existence of x?(ω) can be seen as follows.

|x?(ω)| ≤ |b(θ−1ω)|+
∞∑

t=1

t∏
s=1

|a(θ−sω)| · |b(θ−(t+1)ω)|.

(3.6) ensures that for some ε > 0,
∏t

s=0 |a(θ−sω)| < exp(−ε t) for all sufficiently
large t. Temperedness of b yields that for any 0 < δ < ε, |b(θ−tω)| < exp(δ t) for
all sufficiently large t. Putting these two observations together it is straightfor-
ward to see that |x?(ω)| <∞ for all ω ∈ Ω.

Analogous considerations show that x?(ω) is tempered.
To prove the attraction property, we use that

ϕ(t, ω, x) =
t−1∏
s=0

a(θsω) · x+ b(θt−1ω) +
t−1∑
i=1

t−1∏
j=i

a(θjω) · b(θi−1ω) (3.8)
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for all t > 1 and therefore

|ϕ(t, ω, x)− x?(θtω)| =
t−1∏
s=0

a(θsω) · |x− x?(ω)|.

The claim follows from assumption (3.6) which implies for a sufficiently small
ε > 0 the estimate

∏t−1
s=0 |a(θsω)| < exp(−ε t) for all large t.

Let us finally show that limt→∞ ‖ϕ(t, θ−tω, g(θ−tω)) − x?(ω)‖ = 0 for any
tempered random variable g. (3.8) implies

ϕ(t, θ−tω, g(θ−tω)) =
t∏

s=1

a(θ−sω) · g(θ−tω) + b(θ−1ω) +
t−1∑
i=1

i∏
j=1

a(θ−jω) · b(θi−1ω)

Since
∏t

s=1 a(θ
−sω) · g(θ−tω) → 0 exponentially fast by assumption (3.6) and

temperedness of g, we proved the assertion.

For any family (G(ω))ω∈Ω of subsets of Rd we define

G := {all tempered random variables g with g(ω) ∈ G(ω) for all ω ∈ Ω}

Now we are in a position to state the version of the Banach fixed point
theorem which is applicable to non-linear stochastic dynamic systems with non-
stationary noise. The theorem generalizes previous results for the ergodic case
which are due to Schmalfuss [16,17].

Theorem 3.5. Let ϕ be a continuous random dynamical system on Rd with
time T = Z+ over a measurable dynamical system (Ω,F , (θt)t∈Z).

Suppose there exists a family (G(ω))ω∈Ω of subsets of Rd such that G is
non-empty and

(i) (h(θ−1ω, g(θ−1ω)))ω∈Ω ∈ G for all g ∈ G;
(ii) if, for some g ∈ G, (ϕ(t, θ−tω, g(θ−tω)))t≥0 is a Cauchy sequence for all
ω ∈ Ω, then its limit is in G; and

(iii) there exists a random variable c(ω) which fulfills the law of large numbers
such that for all ω ∈ Ω

sup
x,y∈G(ω),x 6=y

log
‖h(ω, x)− h(ω, y)‖

‖x− y‖
≤ c(ω) (3.9)

and the limits fulfill

lim
t→∞

1
t

t∑
i=0

c(θiω) < 0 (3.10)

lim
t→∞

1
t

t∑
i=0

c(θ−iω) < 0. (3.11)
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Then there exists a random fixed point g? ∈ G which is unique in G and globally
attracting in (G(ω))ω∈Ω, i.e.

(a) g?(θω) = h(ω, g?(ω)) for all ω ∈ Ω;
(b) any random variable in G which satisfies (a) is equal to g?; and
(c) for all g ∈ G and all ω ∈ Ω

lim
t→∞

‖ϕ(t, ω, g(ω))− g?(θtω)‖ = 0

and

lim
t→∞

‖ϕ(t, θ−tω, g(θ−tω))− g?(ω)‖ = 0

where in both cases the convergence is exponentially fast with rate given by
(3.10) resp. (3.11).

If ϕ is continuously differentiable, then (3.9) becomes

sup
x∈G(ω)

log
∥∥∥∥∂ϕ(1, ω, x)

∂x

∥∥∥∥ ≤ c(ω). (3.12)

Conditions (i)–(iii) are invariance, completeness, and uniform average con-
traction assumptions, respectively. The above statement becomes a Banach fixed
point theorem for continuous maps, if the noise process is trivial, i.e. if ω (and θ)
can be suppressed in all expressions.

The invariance condition (i) requires that h(ω,G(ω)) ⊂ G(θω) for all ω. In
the example section 4 we will present growth models in which G(ω) is a deter-
ministic set as well as a natural framework in which G(ω) cannot be chosen as a
deterministic set.

Proof. The proof is a modified version of Schmalfuss [17, Proof of Theorem 2.2].
We first show that ϕ(t, θ−tω, g(θ−tω)), t ≥ 0, is a Cauchy sequence. We will

use that (3.9) implies ‖h(ω, x)− h(ω, y)‖ ≤ exp(c(ω)) ‖x− y‖ for all x, y ∈ G(ω)
and ω ∈ Ω. Define κ(t, ω) =

∑t
i=1 c(θ

−iω) for t ≥ 1 and κ(0, ω) = 1.
Let n > m ≥ 1. By the cocycle property and condition (iii), we obtain∥∥ϕ(n, θ−nω, g(θ−nω))− ϕ(m, θ−mω, g(θ−mω))

∥∥
=
∥∥∥h(θ−1ω) ◦ ϕ(n−1, θ−nω, g(θ−nω))− h(θ−1ω) ◦ ϕ(m−1, θ−mω, g(θ−mω))

∥∥∥
≤ exp(c(θ−1ω))

∥∥ϕ(n−1, θ−nω, g(θ−nω))− ϕ(m−1, θ−mω, g(θ−mω))
∥∥

≤ exp(κ(m,ω))
∥∥ϕ(n−m, θ−nω, g(θ−nω))− g(θ−mω)

∥∥
An upper bound on the last term can be derived by adding the telescope
sum ±

∑n−m−1
i=1 ϕ(i, θ−i−mω, g(θ−i−mω)) = 0 and applying the same estimate

as above. We find∥∥ϕ(n−m, θ−nω, g(θ−nω))− g(θ−mω)
∥∥
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≤
n−m−1∑

i=0

‖ϕ(i+ 1, θ−(i+m+1)ω, g(θ−(i+m+1)ω))− ϕ(i, θ−(i+m)ω, g(θ−(i+m)ω))‖

≤
n−m−1∑

i=0

exp(κ(i, θ−mω)) ‖h(θ−(i+m+1)ω, g(θ−(i+m+1)ω))− g(θ−(i+m)ω)‖

Defining η(ω) = ‖h(θ−1ω, g(θ−1ω))− g(ω)‖, we get

‖ϕ(n, θ−nω, g(θ−nω))− ϕ(m, θ−mω, g(θ−mω))‖

≤ exp(κ(m,ω))
n−m−1∑

i=0

exp(κ(i, θ−mω)) η(θ−(i+m)ω)

≤
∞∑
i=0

exp(κ(i, θ−mω) + κ(m,ω)) η(θ−(i+m)ω)

Note that κ(i, θ−mω)) + κ(m,ω) = κ(i + m,ω). By condition (iii) one has that
for any c̃ with limt→∞

1
t

∑t
i=0 c(θ

−iω) < c̃ < 0 there exists an N0(c̃, ω) such that
κ(m,ω) < c̃m for all m > N0(c̃, ω). Further, by condition (i) and the definition
of G, η(ω) is tempered, i.e. for any δ > 0 there exists an N1(δ, ω) such that
η(θ−mω) < exp(δ m) for all m > N1(δ, ω).

For any fixed c̃ from above we can chose a δ such that c̃+δ < 0. We therefore
obtain for all sufficiently large m that

‖ϕ(n, θ−nω, g(θ−nω))− ϕ(m, θ−mω, g(θ−mω))‖ ≤
∞∑
i=0

exp
(
(c̃+ δ) (i+m)

)
which implies that ϕ(t, θ−tω, g(θ−tω)), t ≥ 0, is a Cauchy sequence. By condition
(ii), the limit g?(ω) := limt→∞ ϕ(t, θ−tω, g(θ−tω)) is in G(ω). The last equation
also ensures that g? is tempered and hence g? ∈ G.

Further g?(ω) is a random fixed point, because continuity of h yields that
for all ω ∈ Ω

h(ω, g?(ω)) = h
(
ω, lim

t→∞
ϕ(t, θ−tω, g(θ−tω))

)
= lim

t→∞
h
(
ω, ϕ(t, θ−tω, g(θ−tω))

)
= lim

t→∞
ϕ
(
t+ 1, θ−(t+1)(θω), g(θ−(t+1)(θω))

)
= g?(θω)

where the last equality is derived as above expect that one has to use Lemma 3.3
in addition.

Suppose there exist two random fixed points g?
1 and g?

2 in G. Then, by the
above,

‖g?
1(ω)− g?

2(ω)‖= ‖ϕ(t, θ−tω, g?
1(θ

−tω))− ϕ(t, θ−tω, g?
2(θ

−tω))‖
≤ exp(κ(t, ω)) ‖g?

1(θ
−tω)− g?

2(θ
−tω)‖

Since g?
1 and g?

2 are tempered, the last term tends to zero as t tends to infinity.
This ensures assertion (b), i.e. uniqueness of the random fixed point in G.
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The exponentially fast convergence, (c), is immediate from the above pro-
cedure because

‖ϕ(t, θ−tω, g(θ−tω))− g?(ω))‖= ‖ϕ(t, θ−tω, g(θ−tω))− ϕ(t, θ−tω, g?(θ−tω))‖

≤ exp
( t∑

i=1

c(θ−iω)
)
‖g(θ−tω)− g?(θ−tω)‖

and

‖ϕ(t, ω, g(ω))− g?(θtω))‖ = ‖ϕ(t, ω, g(ω))− ϕ(t, ω, g?(ω))‖
= ‖h(θt−1ω) ◦ ϕ(t− 1, ω, g(ω))− h(θt−1ω) ◦ ϕ(t− 1, ω, g?(ω))‖

≤ exp
(
c(θt−1ω)

)
‖g(ω)− g?(ω)‖ ≤ exp

( t−1∑
i=0

c(θiω)
)
‖g(ω)− g?(ω)‖

4. Application to Stochastic Economic Growth

We present instructive examples to illustrate the applicability of the random
fixed point concept and the Banach fixed point theorem. We intended to highlight
that the class of tractable problems in stochastic economic growth is considerably
extended by the method presented here. For instance, previous results due to Mir-
man [12,13] are generalized by allowing for regimes with unbounded growth and a
non-stationary change of regimes. In the example the non-stationary component
of the exogenous stochastic perturbation exhibits ongoing non-stationarity that
does not vanish asymptotically. Examples of such processes are also provided
by Gray and Kiefer [9] who study stochastic processes with asymptotically mean
stationary distributions. While for the first class of examples the underlying
family of sets (G(ω))ω∈Ω consists of deterministic sets, the section closes with an
illustration that one has, in general, to allow for stochastic sets.

4.1. Changing Regimes

We study a stochastic one-sector growth model with structural changes be-
tween a neoclassical and an AK regime. The regime-switching is modeled by a
non-stationary process for which he non-stationarity does not vanish asymptot-
ically. Moreover, the law of motion is stochastic in both neoclassical and AK
regime, i.e. the law of capital accumulation is given by kt+1 = f(ξt, kt) in the
neoclassical regime and by kt+1 = At kt in the AK regime. We assume for sim-
plicity of presentation that the production shocks in either regime, ξt and At, are
i.i.d. processes.

Denote by R(t) the function which determines the current regime at time
t. We assume that R(t) is a periodic function with values in {1, 2}. Let the
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production shock (ξt, At)t∈Z be an integrable i.i.d. process with values in a Borel-
measurable set Z1 × Z2 ⊂ R++ × [1,∞[.

One has the equivalent representation of the processes over a common dy-
namical system r(ω) := R(ω1), (ξ(ω), A(ω)) = ω2(0) where the corresponding
dynamical system lives on the space Ω = Z × (Z1 × Z2)Z with the flow being
defined as θt : Ω → Ω, θtω = (t+ ω1, ω2(t+ ·)).

We can and do restrict the probability space of the random variable (ξ,A)
to an invariant subset of full measure on which the law of large numbers holds, cf.
Definition 3.2 (ii), and on which A is tempered. The first restriction is possible by
the ergodic theorem, Arnold [2, Appendix A.1]; and second restriction is allowed
by integrability of A, see Arnold [2, Prop. 4.1.3 (ii)].

The stochastic law of motion is thus given by,

kt+1 = h(θtω, kt) (4.1)

where

kt+1 =

{
f(ξ(θtω), kt) if r(θtω) = 1;

A(θtω) kt if r(θtω) = 2.

We assume that for all ξ ∈ Z1, f(ξ, ·) : R+ → R+ is continuously differ-
entiable, concave, and ∂kf(ξ, 0) > 1. Further we suppose that ξ 7→ f(ξ, k) is
increasing and there exists a k > 0 such that for ξ := inf Z1, f(ξ, k) > k for all
k ∈ ]0, k[ and f(ξ, k) < k for all k > k.

Denote by P the length of the period of the process r, and let Pi be the set
of points in time during one period t ∈ {1, ..., P} at which r(θtω) = i. Define
πi := |Pi|/P the fraction of time the regime i is observed.

We have the following result.

Corollary 4.1. If

π1 E log f ′(ξ(ω), k) + π2 E logA(ω) < 0 (4.2)

then the conditions of Theorem 3.5 are satisfied and thus there exists a unique
globally attracting (on R++) random fixed point for the stochastic growth model
with regime-switching (4.1).

Proof. First note that G = [k,∞[ is invariant (in the sense that h(ω,G) ⊂ G
for all ω) because f(ω,G) ⊂ G and A(ω) ≥ 1 for all ω. Moreover, any initial
state of capital k is mapped into G after a finite time, if the production shock
enters into f in a non-trivial way, because assumption (4.2) implies π1 > 0. This
result is also straightforward in the other stochastic cases. If the law of motion
does not depend on the production shock and A(ω) ≡ 1, then k is the unique
asymptotically stable fixed point of the growth model on R++ and we are done.

The set G of all tempered random variables with values in G is non-empty
because it contains all constant functions with values larger than k. Let g ∈ G
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be any tempered random variable. h(θ−1ω, g(θ−1ω)) ≤ A(θ−1ω)g(θ−1ω) and
temperedness of A implies condition (i) of Theorem 3.5.

Let us turn to the contraction condition (iii) of Theorem 3.5 before dealing
with (ii).

Since f(ξ, ·) is continuously differentiable, increasing, and concave, f ′(ξ, k)
is a decreasing function which takes its maximum value on G at k. Equation
(3.9) in condition (iii) of Theorem 3.5 thus becomes log f ′(ξ(ω), k) ≤ c(ω) for
r(ω) = 1 and logA(ω) ≤ c(ω) for r(ω) = 2.

Using the periodicity of the process r, we find that

lim
T→±∞

1
|T |

T∑
t=0

log h′(θtω, k)

= lim
T→±∞

1
|T |P

T∑
t=0

( ∑
s∈P1

log f ′(ξ(θtω), k) +
∑
s∈P2

logA(θtω)
)

=
|P1|
P

E log f ′(ξ(ω), k) +
|P2|
P

E logA(ω)

by the assumption that (ξ(θtω), A(θtω)) is an i.i.d. process. This observation
implies that condition (iii) of Theorem 3.5 is satisfied under the assumption (4.2)
of the Corollary.

It remains to consider condition (ii) of Theorem 3.5. The following analysis
shows that for any random dynamical system which is generated by concave
functions k 7→ h(ω, k) and which possess a family of invariant sets G(ω) ≡ G =
[k,∞[ condition (iii) implies (ii).

Suppose (ϕ(t, θ−tω, g(θ−tω)))t≥0 is a Cauchy sequence for all ω ∈ Ω and
g ∈ G. The limit is in G(ω) because G(ω) ≡ G = [k,∞[ is complete. It remains
to show that the limit is tempered.

Since k 7→ h(ω, k) is concave we have that

h(ω, k) ≤ h(ω, k) + h′(ω, k) k (4.3)

for all k ≥ 0. The affine random dynamical system ψ generated by the law of
motion yt+1 = h(θtω, k) + h′(θtω, k) yt dominates the random dynamical system
ϕ in the sense that ψ(t, ω, x) ≥ ϕ(t, ω, x) for all t ≥ 0 and all ω. Therefore
limt→∞ ϕ(t, θ−tω, g(θ−tω)) ≤ limt→∞ ψ(t, θ−tω, g(θ−tω)).

Lemma 3.4 ensures that under condition (iii) the random variable y?(ω) :=
limt→∞ ψ(t, θ−tω, g(θ−tω)) is the unique random fixed point of the random dy-
namical system ψ. Moreover y?(ω) is globally attracting on R, tempered, and at-
tracts any tempered random variable, i.e. limt→∞ ‖ψ(t, θ−tω, g(θ−tω))−y?(ω)‖ =
0. We thus obtain that limt→∞ ϕ(t, θ−tω, g(θ−tω)) is tempered. This finishes the
proof.
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To elaborate on condition (4.2), we give an example with small production
shocks. Assume the production shocks enter the neoclassical production function
such that f ′(z, k) depends continuously on z for any fixed k > 0. Fix any z.
Then f ′(ξ, k) < 1 and thus E log f ′(ξ(ω), k) < 0 if ξ(ω) ∈ Z1 is in some small
neighborhood of z. Hence any sufficiently small perturbation of a neoclassical
regime in which the long-run behavior is described by a deterministic fixed point
preserves the contraction condition (4.2) (with π1 = 1) and thus Theorem 3.5 is
applicable.

We can further permit occasional regime-switching. Given any process A
such that E logA(ω) <∞, we find that for all sufficiently small π2 > 0 condition
(4.2) holds.

In particular, if ξ(ω) ≡ ξ and A(ω) ≡ A are constants, i.e. each regime is
determined by a deterministic law of capital accumulation, then condition (4.2)
follows from

π1 log f ′(ξ, k) + π2 logA < 0. (4.4)

The nonempty set of admissible A is given by A < f ′(ξ, k)−π1/π2 .
For instance, in the Cobb–Douglas case with f(ξ, k) = (1 − δ)k + ξkα one

has k = (δ/ξ)1/(α−1) and f ′(ξ, k) = 1−(1−α)δ < 1, if δ > 0. Therefore condition
(4.2) is satisfied for all A < (1− (1− α)δ)−π1/π2 .

The above growth model can be generalized in several ways. For instance,
the regime-switching process can be replaced by a typical sample path of a process
that is independent of the production shock. Moreover, any transient behavior is
permitted, i.e. no restrictions have to be made on the regime-switching function
in the short and medium run. Only in the long run the function has to show a
statistically regular pattern that induces that time-averages take the form used
in condition (4.2). One such example is e.g. the occurrence of the AK regime
for Tα-times, 0 ≤ α < 1, during the time-span {0, ...,±T} of length T . This
regime-switching process also exhibits persistent non-stationarity. However, when
calculating the time-averages, the contribution of the expansive AK regime to the
contraction rate vanishes as time goes to infinity, because Tα/T → 0.

4.2. Recurrent Poverty

In the previous example the underlying family of sets (G(ω))ω∈Ω could be
defined by constructing one deterministic set. This feature is due to sufficiently
high marginal returns in production close to the state of no capital.

In this section we study a stochastic neoclassical growth model in which
marginal productivity can fall short of the rate of depreciation. Whenever this
event occurs, the aggregate capital stock decreases and can get arbitrarily close
to the state of no capital. This section thus illustrates that, in general, stochastic
sets (G(ω))ω∈Ω have to be allowed for.
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We consider the stochastic law of motion

kt+1 = h(θtω, kt) := (1− δ(θtω)) kt + f(kt) (4.5)

where f is a twice continuously differentiable neoclassical production function
and δ(ω) ∈ [0, 1] is a stochastic rate of depreciation.

If no production is possible without capital, i.e. f(0) = 0, then any capital
stock – no matter how small – decreases if f ′(0) < δ(θtω). Suppose runs of this
event of arbitrary (finite) length occur along any sample-path of the stochastic
rate of depreciation. Then any sample-path of the capital stock kt gets arbitrarily
close to zero. Therefore, the argument used in the preceding example does not
apply here.

We next show how an invariant family of sets (G(ω))ω∈Ω, i.e. h(ω,G(ω)) ⊂
G(θω) for all ω, can be constructed in such a case.

Since the open interval ]0,∞[ is invariant under the random dynamical sys-
tem generated by (4.5), we find that

1
kt+1

=
1

[1− δ(θtω) + f ′(0)] kt + f(kt)− f ′(0) kt

=
1

[1− δ(θtω) + f ′(0)] kt
+

f ′(0) kt − f(kt)
[1− δ(θtω) + f ′(0)] kt [1− δ(θtω) + f(kt)]

≤ 1
[1− δ(θtω) + f ′(0)] kt

+ d

Finiteness of d is implied by our assumptions on the production function f .
The associated random difference equation, letting yt := 1/kt,

yt+1 = [1− δ(θtω) + f ′(0)]−1 yt + d (4.6)

is affine.
Suppose 1/[1 − δ(ω) + f ′(0)] fulfills the law of large numbers and the cor-

responding limits are strictly negative. Then Lemma 3.4 applies and we obtain
that the random dynamical system generated by (4.6), say ψ, has the unique
globally attracting random fixed point

y?(ω) = d

(
1 +

∞∑
t=1

t∏
s=1

[1− δ(θ−sω) + f ′(0)]−1

)

Thus the set [y?(ω),∞[ is invariant for ψ.
Finally, using that ψ dominates ϕ in the sense that ψ(t, ω, 1/k) ≥ ϕ(t, ω, k),

we find that

G(ω) :=
[

1
y?(ω)

,∞
[

(4.7)

is invariant for the random dynamical system ϕ.
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The contraction condition (iii) of Theorem 3.5 is now obtained by inserting
the left-hand side of (4.7) into (3.12).
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