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Abstract

In many fields of science there are multivariate observations which are generated
by a (physical) linear mixing process of contributions from different sources. If it is
assumed that the composition of the sources is constant for different observations,
these observations are, up to measurement error, non-negative linear combinations
of a fixed set of so-called source profiles which characterize the sources. The goal of
linear unmixing is to recover both the source profiles and the source activities (also
called scores) from a multivariate dataset.

We present a new parametric mixing model which assumes a multivariate lognormal
distribution for the scores. This model is proved to be identifiable. To calculate the
MLE we propose the combination of two variants of the MCEM algorithm. The
proposed model is applied to simulated datasets and to air pollution measurements
from Zurich. In addition to the basic model we discuss several extensions.

Key Words. linear mixing model, source apportionment, latent variables, identifiability, MCEM
algorithm
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1 Introduction

The problem of explaining multivariate observations as mixtures of certain sources occurs
in many fields of science. To illustrate this type of problems it is best to look at a specific
example first:

Example 1 Six daily measurements of 13 VOC (volatile organic compounds) were auto-
matically recorded at a monitoring station in Wallisellen, a suburb of Zurich from October
1996 until February 1997. After removal of missing values, the dataset consists of 749
measurements of the 13 compounds. This dataset is a subset of a larger dataset discussed
in detail in Locher (1999).

The measured data are believed to stem from emission sources such as exhaust from
gasoline driven cars, evaporation of gasoline, solvents of chemicals used in production, etc.
The following assumptions about the sources are a reasonable approximation to reality:

• The number of different sources is substantially smaller than the number of recorded
variables.

• An emission source emits the compounds in constant proportions. The vector of
proportions which characterizes a source is called its profile.

• The contributions of one source to an observation can be obtained by a scalar mul-
tiplication of the profile vector with the activity of that source at the time of the
observation. This implies that chemical reactions of the compounds in the air are
slow compared to the transport time between emission and measurement site.

The assumptions imply that the measured concentrations at a certain time are, up to
measurement error, a sum of the different source profiles scaled with the activities of the
corresponding sources at that time. Since little is known a priori about the composition
of the source profiles, one is interested in simultaneously estimating the source profiles as
well as the source activities.

In mathematical formulas, the model described in Example 1 is (up to measurement error)

Xi ≈ CSi (i = 1, . . . , n). (1)

In this notation, the m-vectors Xi model the observations, the m× p−matrix C contains
the profiles of the p sources as its column vectors and the p-vectors Si are the source
activities or scores. In order to get physically meaningful results, it is reasonable to
require that the source profiles matrix C as well as the scores Si are non-negative. If
both C and the scores Si are unknown or only partially known, model (1) together with
the non-negativity constraints is called a linear mixing model. The task of estimating the
unknown quantities C and Si is called linear unmixing. Often, the number p of different
sources is unknown and therefore has to be estimated as well.

Linear mixing models have been applied in many fields including air quality studies (as
in Example 1 above), chromatography and spectroscopy, geology and hydrochemical stud-
ies of natural catchments. A nice interdisciplinary introduction to mixing models which
also provides references to applications is Akerjord & Christophersen (1996). Coverage of
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linear mixing models in statistical journals has been rather sparse. Notable exceptions are
Bandeen-Roche (1994), Renner (1993) and Park, Guttorp & Henry (2001). Most of the
available methodology was published in the more quantitative journals of the application
areas.

A fundamental problem of linear mixing models is that they are usually non-identifiable
unless there are additional constraints imposed: Let T be a regular p×p−matrix. Setting
C∗ := CT and S∗

i := T−1Si leads to an equivalent model, i.e. CSi = C∗S∗
i if C∗ and S∗

i

also satisfy the non-negativity constraints.
One possibility to ensure identifiability is to make distributional assumptions about the

scores, thus leading to a structural model in contrast to functional models which treat the
scores as unknown (incidental) parameters. Bandeen-Roche (1994) gives general condi-
tions on the distribution of the scores to ensure that the model (1) (without measurement
error and with compositional data) is identifiable. We suggest a specific parametric model
for the scores distribution, namely the multivariate lognormal distribution, and a log-
normal multiplicative error. This model, which we call the lognormal structural mixing
model, is introduced in more detail in Section 2. In Section 3 we prove identifiability of the
proposed model (with measurement error) and review asymptotic results for the MLE ob-
tained in the first authors PhD thesis, see Wolbers (2002). To actually calculate the MLE
of the lognormal structural mixing model, two variants of the Monte Carlo EM algorithm
are suggested in Section 4. They treat the scores and the measurement errors, respectively,
as latent variables and are shown to nicely complement each other. A favorable feature of
the lognormal mixing model is that it is easily extended: In Section 5 we show that it is
straightforward to extend the model as well as the proposed EM algorithms to allow for
covariates. We also discuss methods to deal with zero-measurements as well as a variant
of the model for compositional data. The MLE and the proposed algorithm to compute
it are shown to be successful both in a simulation (Section 6) and in an application to the
VOC measurements of Example 1 (Section 7). We conclude by surveying possibilities for
further research.

2 The structural lognormal mixing model

A natural choice for the scores distribution of the linear mixing model is the multivariate
lognormal distribution. It assumes that the logarithm of the scores is multivariate normally
distributed. More details about this distribution are given in Crow & Shimizu (1988).
This distribution is quite flexible and a natural adaptation of the multivariate normal
distribution to the non-negativity constraints.

The observations in linear mixing models are often concentrations. For such data,
Tukey’s idea of “first aid transformations” (Mosteller & Tukey 1977) would suggest taking
logarithms. Since the transformed observations no longer satisfy a linear mixing model,
the idea cannot be directly applied. Instead we assume the error to be multiplicative and
lognormally distributed to obtain a realistic model.

Combining the assumptions for the scores and the error we arrive at the following
model:

Xi = CSi ◦Ei (i = 1, . . . , n), (2)

where ◦ stands for the elementwise product and we assume that both the scores and the
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error are multivariate lognormally distributed: Si ∼ Λ(µ,Ψ) and Ei ∼ Λ(0,Σ) where Σ =
diag(σ2

1, . . . , σ
2
m) is diagonal. The assumption of independence of different components of

the error is common for linear mixing models. Without this constraint, the covariance
structure of the error is confounded with the subspace spanned by the source profiles (on
which the observations without measurement error lie). Finally, we assume that both
scores and error are i.i.d. and independent of each other.

Model (2) resembles the factor analysis model. Indeed, this model is a natural adap-
tation of the factor analysis model to the non-negativity constraints and the fact that in
linear mixing models there exists a meaningful coordinate origin. The structural mixing
model has two special features: First, while there has been a considerable debate in psy-
chology whether the latent factors postulated by factor analysis have any real existence,
the linear mixing model is based on physical laws in most applications. Second, since it
will be shown below that the structural mixing model is identifiable under some regularity
conditions, this model can do without the rather arbitrary rotation step.

Two other structural mixing models have been suggested in the literature. Unlike our
model, both of them model compositional data. Bandeen-Roche & Ruppert (1991) and
Bandeen-Roche (1994) assume a Dirichlet distribution for the scores and the error. The
Dirichlet class has some elegant mathematical properties. However, Dirichlet assumptions
imply strong independence conditions for the scores and are considerably less flexible
than the lognormal assumptions of our model. Aitchison (1987) provides an extensive
comparison of the Dirichlet and the logistic normal distribution (an adaptation of the
lognormal distribution to the compositional case, see Aitchison (1987)) which clearly favors
the logistic normal distribution as a modeling tool. The second model was developed
independently of our work by Billheimer (2001). His model assumes that the scores and
the errors are logistic normally distributed. Therefore it is identical to a variant of our
model adapted to the compositional case, see Section 5.3. However, contrary to our work,
he treats the model in a Bayesian framework.

3 Identifiability and asymptotics

The source profiles are only identifiable up to a scaling factor as is easily seen. Thus we
always assume that the columns of C are standardized, i.e. that they are constrained to
sum to 1, and that they are linearly independent. In addition, we have a problem similar
to what Redner & Walker (1984) named the “label switching problem” for the analysis of
mixtures. Thus we need a slightly specialized definition of identifiabilty:

Definition 1 The structural lognormal mixing model (2) is identifiable, if for each pair
θ1 = (C1,µ1,Ψ1,Σ1) and θ2 = (C2,µ2,Ψ2,Σ2) of parameters determining densities
f1(x|θ1) and f2(x|θ2) one has f1(x|θ1) = f2(x|θ2) for almost all x if and only if there
exists a p× p permutation matrix P such that C2 = C1P, µ2 = Ptµ1, Ψ2 = PtΨ1P, and
Σ2 = Σ1.

It is easy to see that the model (2) without measurement error is identifiable: If we
assume that Ψ is nondegenerate, then the columns of C are identified (up to permutations
and scaling) as the vertices of the support of the distribution of CS (since the support of
the distribution of S is Rp

+, the support of CS is a cone). Moreover, µ and Ψ are identified
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as mean vector and covariance matrix of the distribution of log(S) = log(C+(CS)) where
C+ is any p×m-matrix satisfying C+C = I.

If we allow for measurement error, additional regularity conditions are required:

Theorem 1 Assume the following set of regularity conditions:

1. The columns of C are linearly independent and the entries of each of its columns
sum to 1.

2. No row of C contains only zeros.

3. If any row of C is deleted, there remain two disjoint submatrices of rank p.

4. Ψ is non-singular.

Then the structural lognormal model is identifiable.

The proof is given in the appendix.

Remark. The proof relies on the fact that the columns of C are identified as the ver-
tices of the support of the distribution of CS which is a cone. However, if observations
close to the facets of the cone are improbable under the true model, reconstruction of the
cone becomes hard. In such cases theoretical identifiability still holds but for reasonable
sample sizes one has to expect practical identifiability problems. This happens e.g. if the
components of µ are of different orders of magnitudes or if an eigenvalue of Ψ is small.

The conditions of Theorem 1 imply that m > 2p. In this case the problem is generically
identifiable, i.e. it is identifiable except for a set of Lebesgue measure 0 of the parameter
space. In practice it always seems advisable to try to model with a small p for parsimony
reasons; p < m/2 as well as the conditions of Theorem 1 will usually be satisfied. In
theory, the conditions of Theorem 1 are generally too strong: Indeed, it can easily be
shown that for the case of one source (p = 1), the parameters are identifiable from the
first two moments of the log-data if C contains no zeros and at least two variables are
recorded. (Note that in this simple case, the log-data is multivariate normally distributed.)

For asymptotics as well as for the calculation of the MLE it is easier to work with the
log-observations denoted by Zi := log(Xi) and the log scores Vi := log(Si). This leads to
the following form of the density function:

fZ(z;θ) =
∫

Rp
fZ|V=v(z;θ) · fV(v;θ)dv (3)

where fZ|V=v and fV are the densities ofN (log(C exp(V)),Σ) andN (µ,Ψ), respectively.
Standard methods (see e.g. van der Vaart (1998)) are used to prove consistency and

asymptotic normality of the MLE of the structural lognormal mixing model. However,
the likelihood cannot be written in closed form and thus the conditions are hard to check.
Rigorous proofs of asymptotic properties can be found in Wolbers (2002). Here, we only
summarize these results: Consistency of the MLE is proved under two weak assumptions:
identifiability and the existence of a lower bound for the measurement error variances.
Due to analytical complications, asymptotic normality (if the parameters are inner points
of the parameter space) is only proved for two special cases: either p ≤ 2 or Ψ is assumed
to be diagonal.
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4 Calculation of the MLE

A major problem in determining the MLE of the structural lognormal model (2) is that
the likelihood is not available in closed form since the density (3) is an integral. Instead of
trying to maximize Monte Carlo or other numerical approximations to the likelihood, we
propose to use two variants of the Monte Carlo EM algorithm of Wei & Tanner (1990).

Rather than performing one hard optimization, the EM algorithm approaches the
problem at hand by augmenting the observed data with latent (unobserved) data and
carrying out a series of simpler maximizations, see e.g. Dempster, Laird & Rubin (1977).
We present two variants of the Monte Carlo EM algorithm for the problem at hand which
differ in what they regard as the latent data.

4.1 Monte Carlo EM algorithm – variant 1

In this section, we view the log-scores vi as latent data, leading to the complete data
(zi,vi) (where zi are the log-observations). For the complete data, the likelihood Lc is
available in closed form:

log Lc(θ; z,v) = −m + p

2
log(2π)−

m∑
j=1

log(σj)−
1
2

log(det(Ψ))

−1
2

m∑
j=1

[
z(j) − log

( p∑
k=1

cjk exp(v(k))
)]2

/σ2
j −

1
2
(v − µ)tΨ−1(v − µ)

Each iteration of the EM algorithm consists of an E-step (expectation) and a M-step

(maximization). Let the current parameters be θ̂
(q)

. Then the (q + 1)th iteration has the
following form:

E-step: Compute Q(θ; θ̂
(q)

, (zi)) =
∑n

i=1 Q̃(θ;θ(q), zi) where

Q̃(θ; θ̂
(q)

, zi) = E
[
log Lc(θ; zi,v)

∣∣∣zi; θ̂
(q)

]
=

∫
Rp

log Lc(θ; zi,v)fV|Z=zi
(v; θ̂

(q)
)dv

is the expected complete data log-likelihood and the expectation is with respect to the
conditional distribution of V given Z = zi and the old parameters θ̂

(q)
.

M-step: Determine θ̂
(q+1)

:= arg maxθ Q(θ; θ̂
(q)

, (zi)).
As is shown in Dempster et al. (1977), an EM-iteration always increases the log-

likelihood. However, convergence to the maximum likelihood estimator can be slow.
If the conditional expectation in the E-step cannot be written in closed form, as is

the case here, the expectation can be estimated by Monte Carlo methods leading to the
Monte Carlo EM (MCEM) algorithm, see e.g. Wei & Tanner (1990).

We propose to use a multivariate t importance sampler to approximate the E-step (see

e.g. Evans & Swartz (2000) for details): We note that fV|Z=zi
(v; θ̂

(q)
) ∝ fZ,V(zi,v; θ̂

(q)
)

and expand v 7→ log fZ,V(zi,v; θ̂
(q)

) in a Taylor series around its maximum. This leads
to the expectation (maximizer) ξi and the covariance matrix (minus the inverse of the
Hessian at the maximizer) Φi of an approximating distribution which we choose to be a
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multivariate t-distribution with λ degrees of freedom. (By default we set λ = 10.) Generate

vi` ∼ tp(λ, ξi, (1− 2/λ)Φi) and preliminary weights wi` = fZ,V(zi,vi`; θ̂
(q)

)/g(vi`) where

g is the density of the t−distribution generating the vi`. Since v 7→ fV|Z=zi
(v; θ̂

(q)
) is only

known up to a normalizing constant, the weights are standardized and then the importance
sampling estimator

Q̂i(θ; θ̂
(q)

, zi) =
r∑

`=1

w̃i` log Lc(θ; zi,vi`) (4)

is used, where we have set w̃i` := (
∑r

k=1 wik)−1wi`. Equation (4) avoids the calculation of
the normalizing constant of fV|Z=zi

(v;θ). In addition, this estimate often has a smaller
mean squared error than the unbiased standard importance sampling estimator, see Liu
(2001).

If we use the approximation (4), the M-step has an explicit form for some of the
parameters:

µ̂(q+1) =
1
n

n∑
i=1

r∑
`=1

w̃i`vi`

Ψ̂(q+1) =
1
n

n∑
i=1

r∑
`=1

w̃i`(vi` − µ̂(q+1))t(vi` − µ̂(q+1))

Moreover, the rows Ĉ(q+1)
j. of Ĉ(q+1) can be obtained by minimizing

c 7→ 1
n

n∑
i=1

r∑
`=1

w̃i`

(
z
(j)
i − log

( p∑
k=1

cjk exp(v(k)
i` )

))2

subject to non-negativity constraints: Ĉ(q+1)
j. is the minimizer and σ̂

(q+1)
j is the square root

of the minimal function value. The standardization of Ĉ(q+1) was not taken into account
in this minimization. Otherwise, the rows of Ĉ(q+1) could not be estimated independently.
We prefer instead to switch to an equivalent standardized model after calculation of all
parameters θ̂

(q+1)
, which can easily be done.

4.2 Monte Carlo EM algorithm – variant 2

Dempster et al. (1977) argue that the EM algorithm converges rapidly if the informa-
tion loss due to incompleteness is small. Intuitively, the latent log-scores carry a lot of
information about µ and Ψ, and the information loss about these parameters due to
non-observing the scores will be large resulting in slow convergence of the algorithm. To
complement the MCEM algorithm of Section 4.1, we thus developed another variant of
the EM algorithm. This second variant treats the observations without measurement er-
ror or, equivalently, the measurement errors as latent variables. Since the observations
without measurement error lie exactly on a p-dimensional subspace, this second variant
keeps the subspace spanned by the current source profiles fixed and only aims at finding
an improved estimate of the source profiles within this subspace. This variant can thus be
used to complement variant 1 but not as a stand-alone algorithm.
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More precisely: Let the current parameters be θ̂
(q)

. The m× p matrix B contains as
its columns a basis of the linear subspace spanned by the current source profiles, i.e. we
can set B := Ĉ(q). For this variant we replace the parameter C by a p×p−matrix T (non-
singular with

∑
k tk` = 1 for 1 ≤ ` ≤ p) such that C = BT. Thus, we use the parameter

set θ̃ = (T,µ,Ψ,Σ) and set θ̃
(q)

= (I, µ̂(q), Ψ̂(q), Σ̂(q)). The latent observations ui are
the coordinates of the observations without measurement error x̂i expressed in the basis
B, i.e. x̂i = Csi = Bui. The relation between the scores si and ui is therefore given by
si = T−1ui. Thus, the complete data density is

fZ,F(z,u; θ̃,B) = fZ|S=T−1u(z; θ̃,B) · 1
|det(T)|

fS(T−1u; θ̃,B)

The MC E-step of the MCEM algorithm then takes the following form: Compute

Q̂(θ̃; θ̃
(q)

,B, (zi)) =
n∑

i=1

r∑
`=1

w̃i` log Lc(θ̃; zi,ui`,B)

where we again use importance sampling: The distribution of ui given zi, θ̃
(q)

and B is
the same as that of exp(vi) given zi and θ̂

(q)
. Therefore, the weights w̃i` and the vi` can

be generated as described in Section 4.1, and ui` = exp(vi`).
Explicitly, the complete data log-likelihood is

log Lc(θ̃; z,u,B) = −m + p

2
log(2π)−

m∑
j=1

log(σj)

−1
2
(z− log(Bu))tΣ−1(z− log(Bu))

− log(|det(T)|)−
p∑

k=1

log(T−1u)(k) − 1
2

log(det(Ψ))

−1
2
(log(T−1u)− µ)tΨ−1(log(T−1u)− µ)

as long as T−1u > 0 and −∞ otherwise.
The M-step computes θ̃

(q+1)
= arg maxθ̃ Q̂(θ̃; θ̃

(q)
,B, (zi)). The error standard devia-

tions are easy to update:

σ̂
(q+1)
j =

( 1
n

n∑
i=1

r∑
`=1

w̃i`(z
(j)
i − log(Bui`)(j))2

)1/2
.

Moreover, straightforward calculations show that

T̂(q+1) = arg max
T

(
− n log(|det(T)|)− n

p∑
k=1

[µ̂(q+1)](k)

−1
2
n log(det(Ψ̂(q+1)))

)
(5)
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where

µ̂(q+1) =
1
n

n∑
i=1

r∑
`=1

w̃i` log(T−1ui`)

Ψ̂(q+1) =
1
n

n∑
i=1

r∑
`=1

w̃i`(log(T−1ui`)− µ̂(q+1))(log(T−1ui`)− µ̂(q+1))t

Therefore, the only hard calculation in the M-step is the optimization (5).
If the E-step could be performed exactly, the cone spanned by the columns of Ĉ(q)

would always be a subset of the cone spanned by the columns of Ĉ(q+1). To see this
property, note that the support of the conditional distribution of u given zi and the
old parameters (T̂(q) = I,B = Ĉ(q), . . .) is Rp

+. If Ĉ(q+1) = BT̂(q+1) did not possess the
claimed property, (T̂(q+1))−1u would contain negative entries for some u ∈ Rp

+ thus leading

to Q(θ̃
(q+1)

; θ̃
(q)

,B, (zi)) = −∞. The MCEM-iteration only requires that (T̂(q+1))−1ui` >
0 for all simulated ui`.

4.3 Combining the two variants

Here we discuss how the two variants of the MCEM algorithm may be combined and how
to determine the Monte Carlo sample size. For the choice of reasonable starting values we
refer to Wolbers (2002).

Note that it is relatively cheap to calculate a Monte Carlo approximation of the log-
likelihood, once an approximate E-step has been performed: The expectations ξi and
variances Φi of the approximating t-distributions (and possibly also the samples vi`) can
be reused to get an approximation of the likelihood. Only the importance sampling weights
have to be changed. To decrease the variance of estimated differences of log-likelihood
values at different parameters it proved useful to base all log-likelihood calculations on the
same standard multivariate t-sample of size n× r. However, surprisingly to us, using the
same standard t-sample for all MC E-steps performed disadvantageously in simulations
(see Section 6) and is thus not recommended.

The choice between the two EM-variants is then performed as follows: We start with
an EM-step variant 1 followed by an EM-step variant 2. At each iteration, the increase (or
decrease) in the log-likelihood is recorded. In the following, we adaptively switch between
the two variants depending on which one has lead to a larger increase of the log-likelihood
when it was performed the last time.

Regarding the Monte Carlo sample size, simulations revealed that it is possible to start
with a small r such as r = 10, since already small sizes lead to quite reasonable fits in
examples. The automated rule for increasing the MC sample size of MCEM algorithms in
Booth & Hobert (1999), which is based on constructing confidence bands for the maximizer
of each approximate E-step, could also be implemented here. We use a less sophisticated
rule which was easier to implement: Since we already need to estimate the log-likelihood
to choose between the two EM-variants, we increase r, if the approximation of the log-
likelihood decreases for (say) two consecutive iterations.
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5 Extensions and variants of the structural lognormal mix-
ing model

5.1 Dealing with zero measurements

The structural lognormal mixing model (2) is clearly not adequate for modeling values of
zero in observations. A simple amendment is to include a small non-negative vector τ into
the lognormal mixing model, leading to

Xi + τ = (CSi + τ ) ◦Ei (i = 1, . . . , n),

This model allows for zeros. It has the additional advantage of slightly increasing the
measurement error variance to Var (Xi|Si = si) = (Csi + τ )2 ◦ Var (Ei) which is more
realistic for small observations.

The algorithms of Section 4 can easily be enhanced to allow for an additional parameter
τ . In principle, τ could also be estimated, but our implementation only allows to include
τ as a fixed parameter into the model.

A more sophisticated alternative would be to introduce the idea of a detection limit :
Zero measurements are obtained because the true value is below the detection limit of the
measuring device. If the detection limit of a device is known, zero measurements could be
modeled as censored observations.

5.2 The lognormal structural mixing model with covariates

Sometimes covariates for the scores are available. For example, for air pollution data it
would be more realistic to let the scores depend on meteorological data and time. Model (2)
can be modified to allow for covariates by assuming the log-scores to follow a multivariate
linear regression model with q-dimensional covariates ui:

log(Si) ∼ N
(
µi = βtui,Ψ

)
where β is a q × p-matrix. It is straightforward to genaralize the algorithms of Section 4
to allow for this extension. Moreover, if it is a priori clear that different components of
the scores depend on different covariates identification of C will become easier.

5.3 A mixing model for compositional data

In some applications, the observations xi are naturally in compositional form. In such
cases, the logistic normal distribution described in Aitchison (1987) naturally substitutes
the lognormal distribution as a modeling tool: A random vector Y = (Y (1), . . . , Y (p)) with
values in the strictly positive compositional simplex S(p−1)

+ = {y ∈ Rp
+ :

∑p
j=1 y(j) = 1}

has a logistic normal distribution with parameters ζ and Φ, Y ∼ L(ζp−1,Φ(p−1)×(p−1)), if
Z := (log(y(1)/y(p)), . . . , log(y(p−1)/y(p))) has a multivariate normal distribution with the
same parameters, Z ∼ N (ζ,Φ).

Following Aitchison (1987), we define a compositional constraining operator C : Rm
+ →

S(m−1) by C(x) := x/
∑m

j=1 x(j) and a perturbation operator � : Rm
+ × Rm

+ → S(m−1) by
x� e := C(x ◦ e).
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A variant of the structural lognormal mixing model is then given by the model

X̃i = CS̃i � Ẽi (i = 1, . . . , n), (6)

where the assumptions are the same as for the structural lognormal mixing model (2),
except that we assume that the scores and the errors are logistic normally distributed:
S̃i ∼ L(ζp−1,Φ(p−1)×(p−1)) and Ẽi ∼ L(0,Σ′

(m−1)×(m−1)) where the components of Ẽi are
“independent except for the summation constraint”, i.e. Σ′ is of the form

(Σ′)j` =

{
σ2

j + σ2
m if j = `

σ2
m if j 6= `

(7)

(Equivalently, a lognormal error Ẽi ∼ Λ(0,diag(σ2
1, . . . , σ

2
m)) could be specified.) As has

been mentioned, this model was independently developed and treated in a Bayesian context
by Billheimer (2001).

Model (6) is not only analogous to the structural model (2), but the two models are
connected by the following fact:

Lemma 1 If X follows a structural lognormal model with parameters θ = (C,µ,Ψ,Σ)
then X̃ = C(X) follows a structural logistic normal model with parameters θ̃ = (C, ζ =

Fµ,Φ = FΨFt,Σ′) where F is as giben by F =

Ip−1

−1
...
−1

 and Σ′ is as in (7).

Lemma 1 follows directly by using Aitchison (1987, Property 6.1, p. 117) and by noting
that C(CS ◦E) = (C · C(S))� C(E).

While they have not been implemented, it is clear that similar algorithms to those of
Section 4 for the structural lognormal model could be developed to calculate the MLE of
the logistic normal mixing model.

6 Simulation

We study the performance of the proposed algorithms to compute the MLE for an examples
with p = 3 sources and m = 10 variables. The sample size is n = 250 and the log-scores
have different variances and some strong correlations:

si ∼ Λ(µ,Ψ) with µ =

 0
0
0

 and Ψ =

 1 0.5 1
0.5 2 0
1 0 1.5

 .

The chosen source profiles matrix can be seen as lines in Figure 2 and the log-measurement
error standard deviation was set to 0.1 for the first 5 variables and to 0.2 for the others
corresponding to about 10% and 20% relative error, respectively.
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6.1 Comparison of different combinations of the MCEM algorithms

Ten datasets were generated. Four different combinations of the MCEM algorithm vari-
ants introduced in Sections 4.1 and 4.2 were tried out: Automated switching between
the two variants as described in Section 4.3, alternating between the two variants, using
only variant 1 and finally using only variant 1 and using the same standard t-sample for
all MC E-steps. For all MC E-steps, r = 100 MC samples per observation were used.
All log-likelihood approximations were based on the same standard multivariate t-sample
with r = 1000 MC-samples per observation for higher accuracy. In all 10 cases either
automated switching (6 times) or alternating between the two variants lead to the highest
log-likelihood. Using only MCEM variant 1 and the same t−sample performed worst in 8
cases.

Figure 1 displays 50 MCEM iterations for all four combinations and two datasets. (The
log-likelihoods of the starting values and those after the first iteration are not shown since
they are much lower than the others.) In the first case, all combinations perform compa-
rably while in the second, the combinations involving only variant 1 perform significantly
worse. In two of the 10 simulations, using only MCEM variant 1 and the same t−sample
even lead to log-likelihood curves which started decreased slightly after a couple of suc-
cessful iterations at the beginning, a pattern of overadaptation to the t−sample which was
surprising to us. Based on these results, we choose the automated MCEM algorithm of
Section 4.3 for the following investigations.

5 10 15 20 25 30 35 40 45 50

−2
0

2
4

6
8

10
12

14

Iteration number

ap
pr

ox
im

at
e 

lo
g−

lik
el

ih
oo

d

automated switching
alternating EM 1/EM 2
only EM 1
identical t−sample, only EM 1

5 10 15 20 25 30 35 40 45 50

−1
6

−1
4

−1
2

−1
0

−8
−6

−4

Iteration number

Figure 1: Log-likelihoods after iterations 2-50 of two simulations and different combina-
tions of the MCEM algorithms.

6.2 Results for the automated MCEM algorithm

The automated MCEM algorithm of Section 4.3 was run for 100 simulated datasets. The
number of MC samples per observation was successively increased along the sequence 10-
40-160-640-1000. Finally, 10 alternating MCEM iterations (again with r = 1000) were

12



performed. Altogether, about 100 MCEM iterations were needed for an estimate. Com-
puting time per run was approximately 110 minutes on a Linux computer with a Intel
Xeon chip (1500 Mhz) which is quite long but partly due to the fact that the algorithm
was completely programmed with the statistical software R (publicly available from CRAN
(1997 ff.)) and not with a compilable language such as C.

Figure 2 displays parameter estimates for 100 simulated datasets. Source 2 is very
accurately estimated while estimates of the sources 1 and 3 are less precise. This is also
illustrated by Figure 3 which shows the true standardized scores (i.e. C(Si) in the notation
of Section 5.3) as well as true and (projected) estimated sources for the first 4 datasets.
For one dataset (plot on the lower left), source 1 is not very accurately estimated.

7 Application to the VOC measurements

The dataset explained in Example 1 contains a few zero measurements. Therefore the
variant of the structural model which allows for zeros discussed in Section 5.1 was chosen
and τ was set to 0.07 ppbC for the sum of 2- and 3-methyl pentane and to 0.05 ppbC for
all other compounds. (This corresponds to the magnitude of absolute measurement error
as described in Locher (1999, p. 137).)

The automated MCEM algorithm described in Section 4.3 was run for models with
p = 2 . . . 6 sources. Monte Carlo sample size r was increased along the sequence 10-30-90-
250. Finally, 25 MCEM steps (variant 1) were performed for r = 500 and r = 1000 each.
As a rough guide for choosing p, the maximum log-likelihoods of these models are displayed
in Figure 4. In order to see how much of the variability of the dataset is explained by the
model it is also useful to look at the estimated log-error standard deviations for different
p. They are also displayed in Figure 4. From these plots it is clear that p = 2 is too small.
Three or possibly four sources seem appropriate. Fortunately, the corresponding source
profiles for different p agree quite well. Thus, the choice of p is somewhat less crucial.

We decided to use p = 3 for closer examination. For p = 4, 5, 6, the estimated log-
scores covariance matrices Ψ̂ become closer to singular: For p = 4, the correlation between
log-scores components 1 and 4 is 0.93 and the condition number of Ψ̂ is 100.66. For p = 5
and 6, the condition numbers of the estimated Ψ̂ are 700 and 1122, respectively.

We chose a resampling procedure to assess the uncertainty of the parameter estimates.
Because both the scores and the residuals show significant temporal dependence, the
blockwise bootstrap was chosen, see Künsch (1989). Each bootstrap sample consisted of
62 blocks of length 12 (corresponding to two days each) and one block of length 5, sam-
pled with replacement from the dataset. Figure 5 shows boxplots of parameter estimates
obtained from 100 bootstrap samples. Lines indicate estimates from the original dataset.
It can be seen that the estimates are quite precise.

In addition to the measured VOC, the dataset from Wallisellen contains additional
covariates which have not been included into the analysis above: Temperature, relative
humidity, air pressure, wind speed and direction. A simple regression model for the
estimated scores of the form

log(ŝ(k)) ∼ hour*weekend + temp + rel.hum. + airpress + windspeed

(where hour*weekend is an abbriviation for main effects plus an interaction of the factors
hour of measurement (6 levels) and an indicator of whether the day of measurement was

13
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Figure 2: Results of the automated MCEM algorithm for the simulation of Section 6.
Boxplots are based on 100 simulated datasets. Lines indicate true values.
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Figure 3: True standardized scores as well as true (4) and (projected) estimated sources
(+) for the first 4 simulations of Simulation 6.

a weekday) explains about 55% of the variation of scores components 1 and 2 and 15% of
component 3. (An additional term winddirection*windspeed, where winddirection is
a factor with 8 levels, improved the fit only slightly and was therefore not included.) The
MLE of the structural lognormal mixing models with covariates described in Section 5.2
was determined for the regression model described above and p = 2 . . . 4. In all three cases,
the estimated source profiles were very close to those of the model without covariates and
thus confirmed the profiles obtained in the simpler analysis.

8 Conclusions

The structural lognormal mixing model is a natural adaptation of the factor analysis model
to the non-negativity constraints and the fact that in linear mixing models there exists
a meaningful coordinate origin. Since it models the scores by a parametric distribution,
it is amenable to standard statistical theory and desirable statistical properties such as
identifiability and consistency of the MLE can be proved. The assumed multivariate log-
normal distribution of the scores is a flexible parametric model. Nevertheless, a major
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Figure 4: Maximum log-likelihoods and estimated log-error standard deviations for the
Wallisellen dataset and different dimensions p.

disadvantage of the structural lognormal model is that the assumption of i.i.d. lognormal
scores is an oversimplification in many applications. However, we believe that the struc-
tural lognormal model is a fine starting point for yet more realistic models which go well
beyond the relatively simple assumption of i.i.d. lognormal scores. Here is a list of possible
extensions which provide opportunities for further research:

1. It is conceptually simple to allow the scores to depend on covariates. This extension
has already been discussed in Section 5.2.

2. Observations below the detection limit of the measuring device require special treat-
ment. As has been mentioned in Section 5.1, it would be fruitful to extend the
structural model to allow for left-censored observations.

3. In some applications, both the scores and the errors should be modeled as multivari-
ate time series. A first publication which allows for time dependence in linear mixing
models is Park et al. (2001). However, these authors do not include non-negativity
constraints of the scores and identifiability of the model is assured by pre-specified
zeros in the source profiles matrix. Neither does their model allow for covariates. It
would thus be useful to combine the ideas in Park et al. (2001) with the structural
lognormal model with covariates.

4. Simulations in Wolbers (2002) show that the MLE of the structural lognormal mixing
model may perform badly if the data contains gross errors. It would thus be desirable
to robustify the MLE. A first step in this direction which provides some degree of
robustness to outliers and which should be relatively easy to implement would be
to model the log-errors with a t-distribution and to calculate the MLE in this new
model.

16



●

●

●
●

●●

●

●
●●

● ● ●●

●

source profile  1

0.
0

0.
1

0.
2

0.
3

●●

●●●●●●●●●●●●

●

●

●●
●
●

●

source profile  2

0.
0

0.
1

0.
2

●

●

●
●●
●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●●●●
●
●●●●
●
●
●

●● ●●

●

source profile  3

0.
0

0.
1

0.
2

●

●

●

●●

●

●

●

●

●

σ̂

0.
05

0.
15

0.
25

µ̂

2.
0

3.
0

●

●

●

Ψ̂: diagonal

0.
2

0.
6

1.
0

●

Ψ̂: correlations

−
0.

2
0.

2
0.

6
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indicate estimates from the original dataset.
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5. It is straightforward to include simple constraints on the parameter values into the
structural lognormal model. However, in some applications more complex prior
knowledge is available. This calls for Bayesian or penalized likelihood methods.

Fortunately, it is relatively simple to write down models which extend the structural log-
normal mixing model with the features discussed above. However, a detailed examination
of these models would be both worthwhile and challenging. One particular challenge is to
design reliable and fast algorithms for computing the MLE or the posterior distribution
of these extended models.

A Appendix: Proof of Theorem 1

Our method of proof uses a known result concerning uniqueness of a special matrix de-
composition.

Theorem 2 Let M be a positive definite m×m matrix. Suppose there exists a decompo-
sition of M of the form

M = NNt + D

where N is a m × p matrix of rank p < m and D is a diagonal matrix with positive
diagonal entries. Then the following condition is sufficient for ensuring uniqueness of this
decomposition (up to multiplication of N from the right by an orthogonal matrix): If any
row of N is deleted there remain two disjoint submatrices of rank p.

For a proof, see Anderson & Rubin (1956, Theorem 5.1) who also apply this result to
discuss identifiability of the factor analysis model.

Proof of Theorem 1. We first show that Σ can be identified from the second moments
of X: Note that

E
[
E(j)E(`)

]
=

{
exp(1

2(σ2
j + σ2

` )) : j 6= `

exp(2σ2
j ) : j = `

If we let F = diag(exp(1
2σ2

1), . . . , exp(1
2σ2

m)), then straightforward calculations show that

E
[
(CS ◦E)(CS ◦E)t

]
= CE

[
SSt

]
Ct ◦E

[
EEt

]
= FCE

[
SSt

]
CtFt + D

= L + D (8)

where we have set L = FCE
[
SSt

]
CtFt and D is a diagonal matrix with diagonal entries

Djj = exp(2σ2
j )(CE

[
SSt

]
Ct)jj − Ljj .

We assumed that if any row of C is deleted there remain two disjoint submatrices of
rank p. It is easy to check that the matrix A := FCRt has the same property if R is
a regular p × p-matrix with RtR = E

[
SSt

]
(e.g. its Choleski decomposition). Moreover

AAt = L. Thus Theorem 2 implies uniqueness of the decomposition (8) into the two
matrices L and D. A simple calculation shows that the variances σ2

j can now be identified
as σ2

j = log(Djj+Ljj

Ljj
).
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Since the distribution of the error E is identified and independent of S, we can recover
the distribution CS (for example through the characteristic function of log(CS) which can
be recovered from that of log(X) = log(CS) + log(E)). The model without measurement
error is identified by the reasoning directly before Theorem 1 in the main text. �
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