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Abstract

We consider two different types of random motions in random media

(RMRM), which are Markov processes when the random medium is

fixed. We study their asymptotic properties, esp. the strong law of

large numbers and a functional central limit theorem.

The first type of RMRM is the discrete random walks in random bond

environment on 7Ld\ i.e. the random environment is realized through
i.i.d. random variables on the nearest neighbor bonds of Zd, and the

random walks are Markov chains on 7Ld under fixed environment. We

show that for any anisotropy strength the strong law of large numbers

and functional central limit theorem hold.

The second type of RMRM is the continuous diffusion in random en¬

vironment on M.d, which is the distribution of the solution for some

stochastic differential equations. In this case, the random environment

is incorporated into the drift term and the diffusion matrix. We provide

a sufficient condition, under which the strong law of large numbers and

a functional central limit theorem hold. We also apply these results to

an explicit class of gradient-type anisotropic diffusion in random envi¬

ronment, and show that the sufficient condition is fulfilled for this class

of examples.

For both models, we apply a strategy of introducing certain regeneration

times, which was developed by Sznitman and Zerner in their investiga¬
tion of random walks in i.i.d. random environment. These regeneration
times provide us a Markovian structure in the first model, and a renewal

structure in the continuous diffusion model, which are the key tools for

the investigation in this thesis.
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Zusammenfassung

Wir betrachten zwei verschiedene Modelle für zufällige Bewegungen in

zufälligen Umgebungen. Für eine feste Umgebung ist die Bewegung
ein Markov Prozess. Wir studieren die asymptotischen Eigenschaften
von diesen Prozessen, insbesondere beweisen wir das starke Gesetz der

grossen Zahlen und ein funktionalen zentraler Grenzwertsatz.

Das erste Modell ist die diskrete Irrfahrt in zufälliger Kanten-Umgebung
auf Zd, d.h. die zufällige Umgebung wird beschrieben durch unabhängige
identisch verteilte Zufallsvariablen auf den Kanten in 7Ld. Wir zeigen
das starke Gesetz der grossen Zahlen und einen funtionalen zentraler

Grenzwertsatz für dieses Modell.

Das zweite Modell ist die stetige Diffusion in zufälliger Umgebung auf

Ed, welche Lösung von gewissen stochastischen Differentialgleichungen
ist. In diesem Fall, ist die zufällige Umgebung durch den Driftterm und

die Diffusionsmatrix repräsentiert. Wir geben eine hinreichende Bedin¬

gung, so dass das starkes Gesetz der grossen Zahlen und ein funktionaler

zentraler Grenzwertsatz gelten. Wir wenden diese Resultate auf eine ex¬

plizite Klasse von anisotropischen Diffusionen in zufälliger Umgebung
an. Wir zeigen, dass die hinreichende Bedingung erfüllt ist.

Für beide Modelle führen wir Erneuerungszeiten ein. Diese Strategie
wurde durch Sznitman und Zerner in ihrer Untersuchung von Irrfahrten

in einer zufällign i.i.d. Umgebung eingeführt. Diese Erneuerungszeiten
liefern eine Markov Struktur in dem ersten Modell und eine Erneuerungs¬
struktur in dem stetigen Modell.



Introduction

It has always been very difficult for me to explain to my family what I

am working on and why this should be interesting for other people. I still

owe them an answer. Here is it. Although it is only an attempt, I still

hope they would find in the past four years I have done something useful

and interesting; this might justify the waiting for me to pursue this

degree. I also hope that my fiancee may have now more understanding
for my decision of staying in Zurich to finish this thesis, instead of

joining her.

Motivation

In the nature, many phenomena can be described through random mo¬

tions, like diffusion of gas particles and conduction of heat or electrons

in homogenous material. Classical models of random motions, e.g. ran¬

dom walks and Brownian motion, are used successfully describing these

transportation phenomena in homogenous media.

As we know, there can never be absolutely pure material in the nature.

So, random walks or Brownian motion can only be considered as the first

level approximation. To provide more precise description of naturally
occurred events, people come to the idea of simulating the impurity
of the material by random media. This is where random motions in

random media comes from.

To take account of the random media in our investigation, we must av¬

erage over both the random motion and the random media. Thus, we

confront with the interaction between these two randomness. The in¬

terplay between these two makes the investigation much more complex.

vii



viii Introduction

In the models of this thesis the random media do not depend on time,
and the random motion under a fixed random medium is a Markov

process, i.e. given the present location the rest of the past is irrelevant

for predicting the next move. For example, consider a random walker,
his next move only depends on his current location, not on where he

has been before. In our models, the influence of the random media

is expressed through the jump probability in each move or transition

density.

As the title says, in this thesis we study the influence of random me¬

dia on the random motion, esp. we are interested in the asymptotic

properties of the random motion.

The first models for random motions in random media can be dated back

to Fatt [12], studying random conductivity in disordered media physics;
Chernov [5] and Temkin [47], in their investigation of DNA replica¬
tion. Further applications gain more and more importance in biology,

chemistry and physics. Esp., in the past thirty years, random motions

in random media have been an active research field within probabil¬

ity and statistical physics, see the review books Bolthausen-Sznitman

[3], Havlin-Bunde [16] and Hughes [17]. Many interesting effects have

been discovered and new questions been posed, we are getting more and

more insight in this fields. But there are still many important questions
unanswered. I hope this thesis might contribute to the understanding
of the RMRM. This might be the second motivation for me.

Let me also point out, despite of the fact that the title of this thesis

contains the word "ballistic", this thesis does not have any relation to

weapons or guns, although we have been asked repeatedly if we were

working for the Swiss army. It is just a nickname of certain asymptotic

property that we will explain shortly.

Models and Results

In this thesis, we are studying two different types of random motions

in random media. The first one is called the "random walks in ran¬

dom bond environment". The other model is the "diffusions in random

environment".

First, let us describe the general frame of our work in words, before

going into more details. In both types, the random medium is realized
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on some abstract probability space (O, «ß/,P). As we mentioned above,
the random motion under a given random environment u G Q, is then

a Markov process, (Xt)t>o- The law of this Markov process starting
in x is sometimes called the "quenched law", we denote it by P%. Our

goal is to study the asymptotic behavior of the random motion averaged
over the randomness of the motion and the environment, i.e. w.r.t. the

product measure Po := P x Pq (it is called the annealed measure).

Let us now explain what the word ballistic means. If Xt/t converges

Po-almost surely to a deterministic non-vanishing velocity u £ lrf, as

t —> oo, we say that the random motion in random media is ballistic.

The key technique we use in this thesis is embedding certain regener¬

ation times into the random motion, which we will describe in more

detail later when we describe the models separately. It was introduced

by Sznitman and Zerner in [46] in their investigation of random walks

in i.i.d. random environment on 7Ld.

Previous to this technique, most of the progress made in the investi¬

gation of the random motions in random media is related to a method

called "process of the environment viewed from the particle". Basically,

one looks at the process of the random environment carried by the ran¬

dom walker, and observes that this process is also a Markov process,

then one tries to apply ergodic theories to this process, see Kipnis-

Varadhan [21], Kozlov [22], Molchanov [28], Olla [31], Papanicolaou-
Varadhan [33]. One shortcoming of this method is that in order to

apply it successfully, one need to find an invariant measure for this

environment process, which is absolutely continuous w.r.t. the static

distribution P. And this is not always very easy and obvious.

Random Walks in Random Bond Environment

In this model, the random environment is given through i.i.d. random

variables (u(b))b ßd,
where Md denotes the set of the nearest neighbor

bonds on Zd, see also Figure 0.1. We also assume that uj(b), b G Md,
take values in some compact subset 1 C (0, oo) and have common dis¬

tribution /i. More formally, a random environment u = (u;(6)), Rd
is

an element of the product space Q, = EB endowed with the canonical

product measure P = /iM and the canonical product Borel-cr-algebra
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x + e2

bond u({x,x — 4l})

x + ei

Figure 0.1: Bond Model

Given a realization uj of the environment, the random motion in a; is a

Markov chain with transition kernel p(V(x, x + e), that means

f P^lXn+i =Xn + e\X0, ,Xn] P'=B- pw(Xn,Xn + e),

\p<£[X0 = x] = 1.

with Yl\e\=iPu(xix + e) = 1' (e denotes unit vectors in Zd), see also

Figure 0.1.

The typical example we have in mind is the following

v({x, x + e}) eXLe
(0.2) pu(x,x + e) =

X]|e'|=iw({^^ + e/})eXL

where À > 0 is some given constant (it is an anisotropy strength). We

will provide more general setting than (0.2).

Let us mention that for the type of models we consider here, the ques¬

tions of the existence of an effective, non-vanishing velocity was asked

by Lebowitz and Rost, see [27], in their investigation of the Einstein

relation.

We address this question in one of our main results for this model:

(0.3) Po-a.s. —- —>• v, as n —> oo,
n

where v is a deterministic non-vanishing velocity, see Theorem 1.5.1.

That means the random walk is ballistic. Moreover, we show in Theorem
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1.5.3 that the process Bn,

X{.n] - [-n]v
U. •=

7= >

([t] denotes the integer part of t > 0) converges in law under the

annealed measure Po to a d-dimensional Brownian motion with non-

degenerate covariance matrix given in (1.5.16), as n —> oo.

One special aspect of our work is that our results hold for arbitrarily
small anisotropy strength A (for instance, in (0.2) as soon as À > 0,
the walk is ballistic). We do not need any Kalikow-like condition as

for the i.i.d. random walks in random environment, see Kalikow [20],
Sznitman-Zerner [46].

A degenerated case of this example is discussed in the physics literature.

It corresponds to the anisotropic random walk on the infinite percolation

cluster, cf. page 136 - 146 in Bunde-Havlin, [16]. In this case the

random variable cu(b) only takes the values 0 or 1.

The strategy employed to derive these two theorems is to construct

an embedded Markov chain structure under the annealed measure Pq,
which has a "small state space", cf. Corollary 1.3.6. The times r^, k > 1,
defined in (1.3.12) and (1.3.26), play a central role here. In essence r^

is the k-th time, when the random walker comes to a new maximum in

the direction £ and then never comes back below this level. The true

definition is in fact more sophisticated, cf. Remark 1.3.2. The random

variables consisting of Tk+i —t^ , XTk+1 —XTk and the value of some bonds

connected to XTk, k > 1, build a Markov chain, as shown in Corollary
1.3.6. In Theorem 1.3.8 the ergodicity of this Markov chain is shown.

In Section 1.5 we show the strong law of large numbers and central

limit theorem for the model under consideration. The limit velocity
and covariance matrix are expressed through t\ and XTl, see Theorem

1.5.1, 1.5.3. Let us mention that the above strategy is in the same spirit
as the renewal structure attached to certain regeneration times T& for

i.i.d. random walks in random environment model in Sznitman-Zerner

[46]. But unlike what happens for the i.i.d. random walks in random

environment model, the times r^ in our model do not yield a renewal

structure, but rather lead to a Markov structure with a small state

space, see Theorem 1.3.3 and Corollary 1.3.6. This comes from the fact

that the transition kernel p^ (x, x + e) depends on all bonds connected to

x, therefore the jump probabilities pw (x, x + e) and pu (x + e, x + e + e')



Xll Introduction

are not independent under P (they depend both on the value of the

bond co({x,x + e}).

Diffusions in Random Environment

This is a continuous time model of random motions in random media.

To describe the random environment, we consider some probability

space (Çt,£/,F) with a group of measure preserving transformations,

{tx)xeRdi acting ergodically on f2, we refer the beginning of Section

2.2 for more precise description of the space ft. Let &(•) : O —> Wd

and (j(-) : O —> M.dxd now be two bounded measurable functions,
and we write b(x,u) = b{tx{uj)) and a(x,tu) = a(tx(uj)). We assume

that b(-,uj) and cr(-,<x>) are Lipschitz continuous for all uo G Q,. We

also assume that aat(x,uj) is uniformly elliptic, i.e. for some v > 0,

j;\y\2 < \crt(x,Lü)y\2 < v\y\2 holds for all lu G f2, x,y G Rd.

Further, we assume an independence condition, which we call iü-separa-
tion. To explain this, let us denote with JÏ?f the cr-algebra generated

by b(x,uj), a(x,u), for x G F. We assume that there exists a constant

R > 0 such that for all Borel subsets F, F' in Rd such that if the

Euclidean distance between F and F' is bigger than i?, Jtffp and 3%f'

are P-independent.

Figure 0.2: R-separation

Let us mention two examples of such random vectors b(x, lo) and random
matrices a(x, to) respectively. The convolution of a Poissonian point pro¬

cess with a Lipschitz continuous vector-valued, or matrix-valued, func¬

tion supported in a ball of radius R/2 yields after truncation a possible

example, cf. Sznitman [42], page 185. Another possible example is to

use the Gaussian field, described in [1], section 1.6 and 2.3. After con¬

volution and truncation, we get another example. (The formula (2.3.4)
on page 28 in Adler [1] need be changed to X{x) = jg(x — A) dZ(X),
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where g(X) is some vector- or matrix-valued Lipschitz continuous func¬

tion, compactly supported in a ball of radius R/2.)

The diffusion in the random environment to is the law P% (it is called

the quenched law) of the solution of the stochastic differential equation

dXt(uj) = b(Xt,uj) dt + a(Xt,Lü) dBt
(0.4) ;

X0 = x, x £Rd, lu ett,

with d-dimensional Brownian motion (Bt)t>o and b(x,u), ct(x,lü) de¬

scribed above.

Again, we are interested in the asymptotic behavior of the diffusion

def
under the annealed measure P^ = P x P£.

The aim of Chapter 2 is to provide a sufficient condition, see (2.3.1-i),
under which the strong law of large numbers holds, that is:

(0.5) Po-a.s. > v, as t —> oo,

where v is a deterministic and non-vanishing velocity, cf. Theorem 2.3.2.

Further, we show in Theorem 2.3.3 that the slightly stronger condition

(2.3.1-ii) guarantees a functional central limit theorem, namely as s

tends to infinity, the C(M-)-,Ed)-valued process

Bs
xs- ~ sv-

converges under the annealed measure Po in law to a non-degenerate d-

dimensional Brownian motion with covariance matrix given in (2.3.12).

The derivation of this sufficient condition (2.3.1) is based on the strategy
of constructing some regeneration times r^, k > 1, similar to those

defined in Sznitman-Zerner [46], and providing a renewal structure, cf.

Theorem 2.2.5. The sufficient condition is then expressed in terms of the

transience of the diffusion X. in some direction £ and the finiteness of

the first (or the second) moment of t\ conditioned on no-backtracking,
cf. (2.3.1). There are several ways to construct these regeneration times

Tfc. In the spirit of [6], [48], we introduce additional Bernoulli variables.

In essence, the first regeneration time t\ is the first integer time, at

which the diffusion process reaches a local maximum in a given direction

£ G Sd~1, the auxiliary Bernoulli variable takes value 1, and from then
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on the process never backtracks. The regeneration times rfc, k > 2, are

then obtained by iteration of this procedure. For the true definition, we

refer to (2.2.12) - (2.2.17), (2.2.22). In our construction we take special

advantage of the diffusion structure to couple the Bernoulli variables

with the diffusion process, cf. Theorem 2.2.5, the resulting renewal

structure gives us a good control over the trajectory of the diffusion,
see Remark 2.2.6, and we also have a convenient Markov structure,

cf. Corollary 2.2.2. This provides a key tool for studying asymptotic
behavior of the diffusion in a random environment.

As an illustration of our results, we study a class of gradient-type diffu¬

sion processes, for which a = 1 and b(x,u) = W(x,uj), where V(-,lo)
has uniformly bounded and Lipschitz continuous derivatives, further we

assume there exist a unit vector £ G Md, A, B > 0 and À > 0 such that

(0.6) Ae2Xe'x < e2y(x'w) < Be2Ux, for all x G Md and w G O.

In the case where A = 0, the diffusive behavior of the process has been

extensively investigated, cf. [7], [31], [32], however we do not know of

any result when À > 0. We show in Section 2.4 that when À > 0,

(no matter how small A is) the sufficient condition (2.3.1) is fulfilled

(in fact, we prove the much stronger exponential estimates under P£,
cf. Theorem 2.4.9 and Corollary 2.4.10, which can also be used to de¬

duce certain large deviation controls, cf. [43], [44]). As a result, the

above mentioned law of large numbers and functional central limit the¬

orem hold, see Theorem 2.4.11. The class under consideration includes

especially the case where b(x,co) = VV(uo,x) + \£, for some bounded

V G C1(Rd, R), with bounded and Lipschitz continuous derivatives. Let

us mention that this situation is a generalization of the discrete bond

model studied in Chapter 1.

Organization of the Thesis

The main part of this thesis consists two separate articles. Chapter
1 corresponds to the first article, which is to appear in the Annals of

Applied Probability. It deals with the discrete bond model. In a setting
more general than (0.2) we show the ballistic behavior and the central

limit theorem.

Chapter 2 is an article submitted for publication. In this chapter, we

investigate the continuous time diffusions in random environment. We
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provide a sufficient condition for the ballistic behavior and central limit

theorem. We also apply our results to the gradient-type models de¬

scribed around (0.6).



Chapter 1

Asymptotic Properties of

Certain Anisotropic
Walks in Random Media

ABSTRACT

We discuss a class of anisotropic random walks in a random media on

Zd, d > 1, which have reversible transition kernels when the environ¬

ment is fixed. The aim is to derive a strong law of large numbers and

a functional central limit theorem for this class of models. The tech¬

nique of the environment viewed from the particle does not seem to

apply well in this setting. Our approach is based on the technique of

introducing certain times similar to the regeneration times in the work

concerning random walks in i.i.d. random environment by Sznitman-

Zerner [46]. With the help of these times we are able to construct an

ergodic Markov structure.

1.1 Introduction

There are many works investigating random motions in random me¬

dia. The point of view of the "environment viewed from the particle"
has played an important role in the progresses made so far, cf. De

1
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Masi-Ferrari-Goldstein-Wick [7], Kozlov [22], 011a [31] and Papanico¬
laou-Varadhan [33], and also the lectures [3] of Sznitman. Lawler showed

in [26] the central limit theorem for driftless random walks in random

environments by using this technique. This technique has mostly been

successful when one can find an explicit invariant measure of the Markov

chain of the environment viewed from the particle, which is absolutely
continuous with respect to the static distribution of the environment,

especially when this invariant measure is reversible.

In this article we want to study a class of anisotropic random walks in

random media, which are reversible Markov chains when the environ¬

ment is fixed, but for which the chain of the environment viewed from

the particle has no obvious invariant measure absolutely continuous to

the static measure. Paradoxically, we are able to apply a strategy, which

has been used in the investigation of a genuinely non-reversible model:

the i.i.d. random walks in random environment, cf. Sznitman [43] and

Sznitman-Zerner [46]. The principal aim of the present work is to derive

a strong law of large numbers with non-vanishing limiting velocity and

a functional central limit theorem for the anisotropic random motion in

random environment under consideration. Incidentally, let us mention

that for the type of models we consider here, the question of the exis¬

tence of an effective, non-vanishing velocity was asked by Lebowitz and

Rost, see [27], in their investigation of the Einstein relation.

Let us describe our model in details. First we denote with Md the set

of nearest neighbor bonds on iß. The random environment is given

through i.i.d. non-negative random variables uo{b) G I C (0, oo), b G Bd,
with common distribution /i. Here I denotes a compact interval of

(0,oo). A random environment uo = (cj(6)), nd
is an element of the

product space Ü := I1 endowed with the canonical product measure

IP = /i®1 and the canonical product cr-algebra srf — (^(I))B ,
where

3§{1) denotes the cr-algebra of Borel subsets of I.

In our model we have a nearest neighbor jump transition kernel^ (x, x+

e), i.e. J2\e'\=iPu(xi x + e>) = 1j where e' denotes unit vectors in Zd

and | • | the L1-norm in M.d. Further we assume that the kernel fulfills

the ellipticity condition:

(1.1.1) pLÜ(x,x + e) > k > 0, for unit vectors e G Z
,
x G Z

,
uj G O

,

and it is reversible, i.e. there exists a positive measure (ww(x))xeZd
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such that

(1.1.2) mu}(x)pUJ(x,x + e) = mu)(x + è)pu(x + e,x),

for all lu G H, x G Zd
, |e| = 1. We also assume that Pu(x, x + e) has

the form:

(1.1.3) pw(x,x + e) =/((w({z,x + e'}))|e/|=1,ej ,

for all x G Zd and unit vectors e. This means that the transition kernel

pu(x, x + e) depends only on the value of u for bonds connected to x, in

the same way for all x G 1>d. This is a translation invariance assumption
on the jump mechanism.

In addition, we assume there exists a nearest neighbor random walk on

Zd with jumps distributed according to the law {q(e))\e\=i,ee%di #(e) ^
0, for all lei = 1, such that with

(1.1.4)
2

A:=^|lE(el°g^e))ll>0

£:=^E e\ogq(e)eSc

(|| • || denoting the L2-norm in Wd) there exist constants 0 < A < B,
such that

(1.1.5) Ae2XLx < mu{x) < Be2XLx
,
for all to G ü,x G Zd

,

where x.y always denotes the standard scalar product of x, y G M.d

throughout this article.

For instance, if we choose for given A > 0 and £ G Sd~1

r-i i r\ / x

tü({x,x + e})eXLe

(1.1.6) pu{x,x + e)
-

VL iJ

XLe'
T,\e>\ =lU({X>X + e'}) e

then the conditions (1.1.1), (1.1.2), (1.1.3) and (1.1.5) hold for suit-
À£. e

able choices of k, A and B, provided q(e) = „e
xe e,

and mUJ(x) =

Z^e' e

e2\£.x Y^e uo({x, x + e}) eXi-e/ Y2e> eA^'e
5 (the last denominator is simply

a matter of normalization).

Actually, (1.1.6) is a special case of a transition probability with the

form:

/, -. «x / x

uj({x.x + ej) q(e)

(1.1.7) pw(s,s + e) =
u /;yw

Eie'l=iw({x^ + e/})^(e/)
'
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and (1.1.7) fulfills all the conditions (1.1.1) - (1.1.5) for suitable choices

of k,A,B, the reversible measure for (1.1.7) being now:

mu(x) = e2XLx ^2 ^({^ X + el) tf(e)

with A and £ from (1.1.4).

With these assumptions over pw, the random walk in the random envi¬

ronment uo is the Markov chain (Xn)n>0 on (Zd)N, with state space iß

and "quenched law" P£, for x G iß:

IPx[Xn+i
— Xn + e\Xo, • • ,Xn]

P*=S>.(Xn,Xn+e),
P%[X0 = x] = l1

where e denotes unit vectors in Id. The "annealed law" Px is then

defined as the semi-direct product on 0 x (Zd)N:

(1.1.9) P,:=PxP^ with x G iß
.

A degenerate case of the above model is discussed in the physics lit¬

erature. It corresponds to the anisotropic random walk on the infinite

percolation cluster, cf. page 136 - 146, in Bunde-Havlin, [16]. In this

case the random variable uj(b) only takes the values 0 or 1. Although
random walks an the infinite cluster have been discussed in the isotropic

case, cf. [7], we know of no mathematical reference in the anisotropic
situation.

The main goal of this article is to show in Theorem 1.5.1 that

V

—

converges Po-a.s. to a deterministic non-degenerate velocity v,
n

Further we prove in Theorem 1.5.3 that the process Bn,

(1.1.10) B% =

[tn]
~

,*>0
5
" C- " 5

n

with [t] denoting the integer part of t > 0, converges in law under the

annealed measure Po to a d-dimensional Brownian motion with non-

degenerate covariance matrix, as n —» oo.
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One special aspect of our work is that our results hold for arbitrarily
small anisotropy strength A. We do not need any Kalikow-like condition

as for the i.i.d. random walks in random environment, see Kalikow [20],
Sznitman-Zerner [46] and Sznitman [43].

The strategy employed to derive these two theorems is to construct

an embedded Markov chain structure under the annealed measure Po,
which has a "small state space", cf. Corollary 1.3.6. The times r^,

k > 1, defined in (1.3.12) and (1.3.26), play a central role here. In

essence r^ is the A;-th time, when the random walker comes to a new

maximum in the direction £ and then never comes back below this level.

The true definition is in fact more sophisticated, cf. Remark 1.3.2. The

random variables consisting of Tk+\
—

r^, XTk+1 — XTk and the value of

some bonds connected to XTk, k > 1, build a Markov chain, as shown in

Corollary 1.3.6. In Theorem 1.3.8 the ergodicity of this Markov chain

is shown. Let us mention that the above strategy is in the same spirit

as the renewal structure attached to certain regeneration times r^ for

i.i.d. random walks in random environment model in Sznitman-Zerner

[46] and Sznitman [43]. But unlike what happens for the i.i.d. random

walks in random environment model, the times r/. in our model do not

yield a renewal structure, but rather lead to a Markov structure with a

small state space, see Theorem 1.3.3 and Corollary 1.3.6. This comes

from the fact that the transition kernel pu(x,x + e) depends on all

bonds connected to x, therefore the jump probabilities Pcj(x, x + e) and

PuÇx + e, x + e + e') are not independent under IP.

Let us explain the organization of this article.

In Section 1.2 we make full use of the ellipticity condition (1.1.1) and the

reversibility assumption (1.1.2) - (1.1.5) on (Xn)n>o under the quenched
law P£ to derive a key estimate in Theorem 1.2.2. In particular with

the help of this estimate we prove that the random walk has a strict

positive probability of never coming below its initial level, cf. Corollary

1.2.3, and at the end of Section 1.2 we show that P^-a.s. (Xn)n>o tends

to +CO in the direction £.

In Section 1.3 the times r^, k > 1, are introduced, cf. (1.3.12) and

(1.3.26), and the embedded Markov chain (Yn)n>o under the annealed

measure Po is constructed in Corollary 1.3.6. Its ergodicity is then

discussed in Theorem 1.3.8.

In Section 1.4 we use the key estimate of Theorem 1.2.2 to derive the

integrability properties of XTl and t\. Our main result is presented in
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Corollary 1.4.4.

In Section 1.5, with the help of the embedded Markov chain (Yn)n>o
constructed in Section 1.3 and the integrability property of t\ proved
in Corollary 1.4.4, a strong law of large numbers for (Xn)n>o under the

annealed measure Po is proved in Theorem 1.5.1. Further we are able to

prove a functional central limit theorem for the process Bn in Theorem

1.5.3.

Let me finally thank my advisor Prof. A.-S. Sznitman for guiding me

to this area and his advices during the completion of this work. I would

also like to thank my former colleague Martin Zerner for his friendly

help and discussion.

1.2 Notations, Reversible Structure and a

Key Estimate

In this section we use the ellipticity condition (1.1.1) and the specific

reversibility assumption (1.1.2) - (1.1.5) on the quenched Markov chain

(1.1.8) to show that the random walk has a positive probability of no-

backtracking, cf. Corollary 1.2.3, and derive transience in direction £,
cf. Corollary 1.2.4. We first provide a uniform lower bound for the

generalized principal Dirichlet eigenvalue in Theorem 1.2.1, which will

be useful to prove our key estimate in Theorem 1.2.2.

Before doing so we introduce some further notations needed throughout
this article.

In this article, c and Cj, j G N always stand for positive constants, which

depend only on the quantities («;, d, A, B, q(-)), which are introduced in

(1.1.1)-(1.1.5).

We denote by (#n)n>o the canonical shift on (Zd)N, and by ß~n, n > 0,
the canonical filtration of (Xn)n>o, i.e. &n — cr{Xo, • • • ,Xn}, for n >

0.

The exit time Tu for U C Id is given by:

(1.2.1) Tu = inf{n >0:Xn£U},
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and for uEMwe introduce

2
f Tu = inf{n > 0 : £.(Xn - X0) > u} ,

[ ' ' ]
\fu= inf{n > 0 : £.(Xn - X0) < u] .

Further we shall also need the first backtracking time defined through

(1.2.3) D = inf{n > 0 : £.Xn < £.X0} .

1.2.1 Principal Dirichlet Eigenvalue

Keeping in mind the reversible structure stated in (1.1.2) - (1.1.5), we

introduce for each to E 0 the scalar product on the space of functions

/ : Id —> K and its associated norm:

(1.2.4) (fl9)mu := £ mUJ{x)f{x)g{x), ||/||mw := vU f)m„ ,

x£Zd

for /, g : Id —> R. For ou E Ü, U C ld non-empty, we introduce AW(C7):

(1.2.5) Aw(tf)

with the Dirichlet form

£m„(f,g)

=

2
E^W^^^f/W " /M) W1) "sM) ' f>9 eL2^),
x,y

where for x,y G iß we use the following convention:

J Puj(x,x + e), for y = rr + e
,
with |e| = 1,

[0, otherwise;

and by /|j/c we mean the restriction of / to the complement Uc of

U cld.

With a slight abuse of language, we refer to AU(U) as the principal
Dirichlet eigenvalue attached to U, it is in fact the bottom of the spec¬

trum of the bounded self-adjoint operator 1 — P^ on Z/2(ma;), where
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Pu,u! is defined through

(12 6)
fPv>»:=Pu,ui provided

\^u,J)(x) := E-[/(Xn), Tu > n], n G N, / : Id -* R
.

The next theorem provides a uniform lower bound for AU(U):

Theorem 1.2.1

(1.2.7) inf AUf(U)=e>0,
U,ui(E.il

where U varies over the collection of non-empty subsets of Id.

Consequently

(1-2-8) Pu,. Ti(m ,<e~n\
with

7 =
log

l

L*{mw)

-

~
' """"' ' ö

1 -£

for all U dir and all lo G tt.

Proof: We begin with the proof of (1.2.7). The ellipticity condition

(1.1.1) and assumption (1.1.5) imply that for x,y G Id

m0J{x)pUJ{x,y) > AKm(x)q(x,y),

with

~ / x ixp t i / x
I Q(e) j

for y = x + e,
m(x) = e2XLx and q(x, y) = <

I 0
,

otherwise.

Therefore AU(U) > ^ R(U), with

(12 9) MU) - inf ( E^ "W g(^ y) {f{x) " /(y))
2

•(1.2.9)
A«/)

.-mi

| 2£xm(*)/2(*)

/^0,/|^c=0,/GL2(m)

So we only need to provide a positive lower bound in the context of the

deterministic random walk with jump probability (#(e)), ,_-.. Further,
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because Aw(Zd) = infj/^0 AW(C7) and for / G -L2(mw) we have

£mw (/, /)
_

,. £mu(flu,flu)

(/,/) ~W (/WM

we see that AW(Z ) = inf A^iU), hence we can assume without
£/^0, finite

loss of generality that sup{|£.z| : z G U} < oo .

Let us denote the canonical law of this random walk starting in x by

Qx and its expectation value by E^. Because

d

2A*.( Y, e^(e)) = E («fe) - </(-e;)) (logçfe) - logçtf-e,-)) > 0,

|e|=l j= l

(recall A and £ are given in (1.1.4)) we can find 0 < c < 1 and 5 > 0

small enough such that

(1.2.10) EQ[e-«.(X!-Xo)] <c<1.

Defining 77 = —loge > 0, we observe that exp{—8£.Xn + rjn} is a Q^-

supermartingale. The stopping theorem implies that

(1.2.11) E£ [exp{-ôi.(XTu -x) + rjTu] < 1, for all x G U .

Let L := sup{|£.(2: — x)\ : z G [/} < 00, and since —5£.{Xtu — x) >

-S(L + 1) we find:

8upE*[exp{-6(L + l) + TiTu}] <1,

which implies

(1.2.12) sup E^[er>Tu] < esp
,
with p = sup{Lx} - inf {£.x} + 1.

xet/ xeu x^u

Notice also

~A(U) = 1 - sup J {fyUf*l* f Î 0, /l^c = 0, / G L2(m)| ,

with the sub-Markov kernel Qu defined through

\Qu:=Qu, provided
(1.2.13) {

(Quf) (x) = E*[f(Xn)tTu >n],nGN,/:Zd^R.
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We observe also Qv = {Qu)n and Qu is a bounded self-adjoint operator

on L2(fh) with respect to the canonical scalar product (•, -)m attached

to m.

It now suffices to show that ||Qt/||i2(rfi) < e_r?^2 to prove (1.2.7). To

show this we observe:

105/11^) = 2>M(Q&/)2M
xeu

Jensen
„, , ox

< (i.Q&/2L = (Q&i>/2),

(1.2.14) (1=13) J2 MV) Qy[Tu > n] f(v) < e^e'l/IIE^),

(1.2.12)
where the Chebychev inequality Qy [Tu > n] < E®[exp{r)Tu —rjn}] <

e~vneôp is used in the last step. Taking the n-th root, it follows from

Theorem VI.6 on page 192 in Reed-Simon, cf. [34], that ||Q[/11 L2(m) <

e-r?/2, and hence (1.2.7) follows. (1.2.8) is an immediate consequence

of the fact that AW(J7) = 1 - \\Pu,jL>(m„) and Pft>u> = (Pu^)n.

1.2.2 Key Estimate

Thanks to Theorem 1.2.1 we can prove the key estimate of this section:

Theorem 1.2.2

There exist constants c\ > 0 and c<i > 0 such that for mGN

(1.2.15) sup P%
xezd,uen

T-2m < To < C! e~C22r

Proof: Let U C Id be finite, then (1.2.6) and (1.2.8) imply that for all

uj G ft, x G U,

mu(x)P^[Tu>n] = (l{x}iPUtUlu) L2(mw)

L{x}||L2(mw)

• ||l[/||L2(mw) "

e

(1-2.16) = \/mu(x) IIWlU»(mu) • e-7n

< 111/^11 r^r ï
• lllr"-"' x ° 7n
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Using the assumption (1.1.5), Px[Tu > n] can be estimated from above

by

K\Tu >n}< \\lu\\mmu) e_7n/v^W
(1-2.17) 1

w „ „
s' „

— Xl.x \\i „—in

- ~7j
'

H1[/llL2(m-) "e •

V Ji.

Let U now be a box centered at x with width L in the £ direction and

size L2 in the directions normal to £, that is with a rotation R of space

Rd suchthat R(e1) = £:

(1.2.18) U := \z G Id : \(z - x)l\ < ^,
L2}

sup\R(ej).(z-x)\ < — \.
j>2 * J

With rmax := swp{£.z : z G U} < oo, we see from (1.1.5) that for L > 1

l|lt/||L2(m.) <c3LdeArmax.

Thereafter for

(1.2.19) n > —
, (recall that 7 is defined in (1.2.8))

7

it follows from (1.2.17) that

P"[Tu >n}< -^Le-^-^V^e-771 < -%Lde~^L

(1.2.20) <c4e-*L.

The boundary of U is defined through

(1.2.21) dU = {z g U : 3y G U, \z - y\ = 1} ,

with I I denoting the L1-norm on M.d. Now we divide it into dU =

d+UUd-UUd0U,with

(1.2.22)

'd+U := {zedU : £.(z - x) > \} ,

<9_*7 := {zedU : £.{z - x) < -\} ,

d0U := dU\(d+U U d-U),
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and set L = 2m+1 in the above definition of U, we observe that

)w

(1.2.23)

T-Om < To

< PU)

Tu>
XL

7
+ P" Tu<^XTu^d+U

7

Using (1.2.20) the first term on the right hand side of (1.2.23) can be

estimated by

(1.2.24)
\LJ

Tu>
XL

7

x T
< cAe~^L

To estimate the second term, we use Carne's inequality
1 for reversible

Markov chains, cf. Theorem 1 in Carne [4]:

(1.2.25) P^x[Xk=y]

< 2W -— -exp
mu[x)

\x-y\

2k
,
for all x,y G Id,u G O,

with | • | denoting the L1-norm on Rd.

Because \x — y\2 > \\x — y\\2, the second term can now be estimated

through

p<x> Tu < f,XTu i d+U] < E E P^X* = rt

— 7 d0UUd_U

(1.2.26)

<
2AL

7
E

yedoU

m<JJ{y)
<{x)

_

1\\x-V\

e 2XL + E mLJ{y)
mw{x)

_

~r\\x-y\

e 2XL

yed-U

By using (1.1.5) again the first sum on the right hand side of (1.2.26)
can be estimated by

E
(1.2.27) yed0u

m (v) —

t a~y
^ r 2d-3./Be\Le-fä

< c6 e~C7L3
,

1 There is a small typo in the paper: x and y are interchanged on the right hand

side of the inequality.
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and the second sum by

yGd-U yGd-U

(1.2.28) <cne-Cl2L.

Putting the above inequalities together:

(1.2.29) P£ T_2- < T2m < ci e~C22m, for x G Zd, a; G ft, m > 0
.

D

1.2.3 Transience

The next corollary of Theorem 1.2.2 will be useful in Section 1.3 and

Section 1.4.

Corollary 1.2.3

There exists C13 > 0 such that for all x G Id and uj G ft

(1.2.30) Px'[D = oo] >ci3>0,

where D is the first backtracking time defined in (1.2.3).

Proof: With the notation U := {z G Zd : \£.(z - x)\ < 2m}, the

ellipticity condition (1.1.1) and the strong Markov property imply that

P%[Turn = 00] = 0 for all y G U, lü G ft. Therefore (1.2.15) implies

(1.2.31) inf P£ [f_2m > T2m] > 1 - cie-C22m .

oft;

Let ra := inf{A: > 1 : 1 > cie~C2 }, we claim for any n > m+ 1, x G Z1

u; G ft:

n-l

(1.2.32) P£[f_2m >T2n_2m] > J](l-Cle-C22fe).
fc=m

d
5
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We show this by induction. The case n = m + 1 is immediate from

(1.2.31). The step n —>• n + 1 follows easily by the strong Markov

property and (1.2.31):

X

> Et

> Pw
—

'
X

_Z —2m ^* -/2« +l_2m

T-2m > T2n_2m ,
Py-_ K-2n > T2n I

T,2n-2m

±—Om ^> ±On_
2n— 2T (1-Cle-C22 ).

From (1.2.32) it is clear that for all x G Zd, u; G ft:

T—Om > _£•;2n_2r > nt1-^-"22 )>o'
fc>m

and hence

P£ [f_2m > T2k_2m: for all A; > ra] > JJ (1 - cie-022*) > 0

k>m

Therefore by using ellipticity condition (1.1.1) and the strong Markov

property again we find that P^-a.s.

P£[D = oo]

> Kc2m E£ [PxT2m [T-2^ > T2k_2m, for all k > ra]

> Kc2m JJ(l-cie~C22fc) >0, for allx GZd,w G ft

k>i

This finishes the proof. D

As an application of the above corollary we prove the transience of X

in the direction £ under the quenched law P£:

Corollary 1.2.4

The random walk is transient and P£[limn£.Xn = oo] = 1, for all x G

Id, uj G ft.

Proof: At first we show

(1.2.33) P%[mî£.Xn = -oo] =0, for all x G Id,co G ft
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Indeed with

Di := D and Dm+1 := D o 6Dm +Dm,m>l,

we find

sup P%[mflXn = -oo] < sup Px[Dm < oo,Vra]
xezd

n
xezd

< sup E^
xezd

^i<oo,PJz,i[Dm<oo,Vm]

< sup P£[£>i < oo] x sup Py[Dm < oo,Vra]
x£ld y£Zd

< (1 - ci3) • sup Py [Dm < oo,Vra]
y&d

where we used (1.2.30) in the last step. Because 1 — C13 < 1, it follows

that sup^ Px[Dm < 00,Vm] = 0, and hence (1.2.33).

Now we claim that for h > 0 and u G R:

(1.2.34) P£-a.s., {£.(Xn - x) < u i.o. } C {£.(Xn - x) < u - h i.o. } .

To verify this, we observe that from the ellipticity condition (1.1.1) there

exist a large enough integer N > 0 and c > 0, such that

(1.2.35) P"[T-h < N] > c, for all u G ft,x G Id
.

Then we define a sequence of auxiliary stopping-times (Vfc)fc>o:

• Vq := 0, Vi := inf{n > 0 : £.(Xn - x) < u} ,

• Vfc+i := Vi o 9y+N + Vk + N < 00
,
for Ä > 1,

and let Gk = {Vfc < 00}, lnfc = l/f_ <n\
° @v We observe that

Gk G ^"y and Hk G J^> . Using the strong Markov property and

(1.2.35) we find

(1.2.36) P%[Hk\<?vk] > clGk ,
for all x G Id,uj G ft, k > 1.

Therefore it follows from Borel-Cantelli's second lemma, cf. page 240

in Durrett, [9], that

(1.2.37) P--a.s., £fc>i lHk = 00 on { ^k>1 ^ = 00} ,
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which implies (1.2.34).

An immediate consequence of (1.2.34) is: for u' G R, P^-a.s.

{£.Xn < v! f.o. } C P| {£.Xn <u' + h f.o. }
(1.2.38) hGN

= {lim£.Xn = oo} .

Due to (1.2.33) we have P£[inf £.Xn > -oo] = 1, and since {inf £.Xn >

-oo} C \Ju,eZ{£.Xn < u' f.o. }, it follows from (1.2.38) that

P£[lim^.Xn = oo] = 1.
n

D

1.3 Embedded Markov Chain and Ergod¬

icity

In this section we will define the regeneration times rk, k > 1, introduce

the resulting Markov chain under the annealed measure Po, and then

show that this Markov chain has an invariant probability measure, with

which the chain is ergodic.

1.3.1 The first no-backtracking time T\

At first let us introduce some further notations.

With tx : ft —y ft, x G Id, we denote the spatial shift operator:

(1.3.1) (txoj)({y, z}) := u({y + x, z + x}), with {y, z) G Md
.

Let us also denote by S the set of unit vectors in Zd, which maximize

{£.e} and fix one such vector from é?, call it ë:

>:= {e£ld : |e| = 1,

(1.3.2) { Le = maxjle' : e' G Zd, \e'\ = 1}} ,

ëG# fixed.
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With the help of this ë we are able to introduce the set of maximizing
bonds containing the point x — ë:

Bx :={beMd :b = {x-ë,x-ë + e},e££}(1.3.3)

and separate Bd into two subsets, 1ZX and Cx (1Z and C respectively
stand for "right" and "left" of the point x G Id):

(1.3.4)

so that

Ux := {{y,z} G Md : max(£.zj.y) > £.x} ,

Cx :=(Md\nx)\JBx ,

(1.3.5) izxncx = BX.

We depict Cx and ^ for d = 2 in Figure 1.3.1, where solid lines are

bonds in Cx, dashed lines are bonds in 1Zx and the two thick lines are

bonds in Bx.

Figure 1.3.1: Cx andVj
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Further we introduce two sequences of (J^n)n>o stopping times Sk, k > 0

and Rk, k > 1, and a sequence of successive maxima in the direction

£ G Rd, Mk, k > 0 (we recall the definition of D in (1.2.3)):

So := 0, M0 := £.X0 ,

Si := inf {n > 2 : Xn - Xn-i = ë; Xn_i - Xn_2 = ë;

(1.3.6) { £.Xm <£.Xn_2,Vra<n-2.},
Ä1 := £> o 05l + Si ,

Mi := sup {lXm : 0 < ra < R±} ,

and inductively for A; > 1:

(1.3.7) <

Sfc+i := inf {n > Rk : Xn — Xn^i — ë; Xn-i — Xn_2 — ë;

£.Xm <^.Xn_2,Vra<n-2.},
Äfc+i := Do 0Sk+1 + Sfc+i ,

KMk+i := sup {^.Xm : 0 < ra < Rk+i}.

Clearly we have 0 = So < Si < R\ < S2 <

are strict if the left member is finite.

Now let us introduce

< oo, and the inequalities

(1.3.8) K := inf{fc > 1 : Sk < oo, Rk = oo} .

Before defining tï as S^, we first prove the finiteness of K:

Lemma 1.3.1

(1.3.9) P%[K < oo] = 1, for allxeld ,u G ft
.

Proof: At first we show P£[Si < oo] = 1, for all x G Id,uJ G ft. To

this end we introduce a sequence of auxiliary (J?n)n>o stopping times

Sk, k>0:

• So = 0,

• Sfc+i = inf{n > Sk + 2 : £.Xm < £.Xn, Vra < n},
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in words, S/-+1 is the first time, at least 2 steps later than Sk, when the

walk reaches a new maximum.

Because from Corollary 1.2.4 we have P^-a.s. £.Xn y oo, it follows

that P^-a.s. Sfc < oo and Sk ^> oo, for all x G Id,uj G ft.

We prove now by induction that there exists a constant c G (0,1) such

that

(1.3.10) P£[Si >Sfc] <cfc, for al\k,x GZd,wGft,

which implies by Borel-Cantelli-Lemma immediately that

(1.3.11) P£[Si = oo] = 0, for all x G Id,uj G ft.

For k — 0, (1.3.10) is immediate. Assume then (1.3.10) up to k. Because

of ellipticity (1.1.1) there exists a c > 0 such that supyuJPy[(Xi —

Xo, X2 — Xi) t^ (ë, ë)}] < c < 1. Using the strong Markov property we

get:

Px[Si > Sk+i]

< E-[Si > Sk](X§k+1-Xsk,X§k+2-X§k+1) ï (ë,ë)]

= E% [Si > Skl P"x§k [{Xi -X0lX2- Xi) ? (ë, ë)]]

<cP£[Si>Sfc]<cfc+1.

The claim (1.3.10) follows.

Now we return to the proof of finiteness of K: by (1.2.30), we know

that supy w Py [D < oo] < 1 — Ci3 < 1, therefore for k > 1

P%[Rk < oo] = E% [Sk < oo, P"XSk [D < oo]]

<(l-c13)P£[Sfc<oo]

<(l-Ci3)PJ[Äfc-l<00],

with the convention R0 = 0. By induction it is P% [Rk < oo] <

(1 — ci3)fc, for all x G Zd,u; G ft, from which we deduce that P^-a.s.

^k>i l{-Rfe<oo} < °°5 for all x G Id,uj G ft. It is only possible when

P^[K < oo] = 1, for all x G Zd,uj G ft.

D
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Now we are ready to define

(1-3.12) n:=SK,

and certainly we have

(1.3.13) P%[t1 < oo] = 1, for all x G Id,co G ft.

Let us give the meaning of rim. The random variable ri, when finite, is

on the one hand the first time n, at which £.Xn-2 reaches a maximum

and the next two steps have increment ë G S: i.e. £.XTl-2 > £.Xm for

all ra < ti
— 2, and XTl — XTl_i = ë, XTl-i — XTl_2 = ë; on the other

hand it is a time such that after Ti, £.Xn never becomes smaller than

£.XT1.

Remark 1.3.2

In the definition of Sk, k > 1, we chose quite artificially that the random

walk (Xn)n>o has increments ë in the previous two steps before Sk.

Indeed, we can also choose any number of steps larger than two, and

this will not affect our later discussion, as the proof of Theorem 1.4-3
shows.

Loosely speaking, we want to reduce the common dependency of the

bonds involved before and after time ti to only finitely many bonds,

namely to {b G BXti} (recall (1.3.3) for the definition of Bx). To

achieve this we need that the walker performs at least two steps in the

direction ë G $ just before time ti. This reduction of dependency is

essential to the proof of Theorem 1.3.3.

Before going to the key result of this section, let us introduce some

further notations used in the remainder of this article.

Recall the definition of $, ë in (1.3.2) and that I C M+ is the compact

interval given above (1.1.1). We introduce for each x G Id

(1.3.14) ax := (u({x -ë,x-ë + e}))^ = (w(6))6eßx G 1*,

and for a G Is

(1.3.15) IP;:=5a((u;({x-ê,a:-ê + e}))eG(?)0 j ®dß(uj(b))

be(Ed\Bx)
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as well as for the annealed measure

(1.3.16) Pax=FaxxP^.

We also need the cr-algebra ^i on ft x (Zd)N, describing the history of

path and environment involved before tï:

(1.3.17) ^i := a {n, (XTlAm)m>0; {oj(b) : b G Cx^ }} ,

i.e. ^i is generated by the sets

(1.3.18) {n = ra} n {xT1 = x} n A,

with ra > 0, x G Zd, A G cr{w(6) : & G £*} <g> ^m, and

(1.3.19) {n = oo}n A, with A G ^ ® ^c
CX)

(Recall «2/ is defined above (1.1.1).)

The key step in the study of the embedded Markov chain structure

mentioned in Section 1.1 is now

Theorem 1.3.3

Let f, g, h be bounded and respectively cr{Xn : n > 0}-, o-{u)(b) : b G

71°}- and ^1 -measurable functions, then for a £ F:

(1.3.20) Eg [f(XTl+. -XTl)go tXri h] = Eg [h E°Xti [fg\D = 00]

where tx is the spatial shift operator introduced in (1.3.1).

Proof: The left hand side of (1.3.20) is

Ea0[f(XTl+.-XTl)gotxTi h]

= Yl EaQ[f(XTl+.-XTl)gotxTih,

(1-3.21) Sk < oo,Rk = oo,XSk = x]
= Y^Ea0[E«[f(XSk+.-x)h,

Sfc < 00, Rk = 00, XSk =x\go tx]
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Observe that on the event {ti = Sk} fl {XTl = x}, there exists a

bounded a {u(b) : b G Cx} <g> ^sk-measurable variable hkjX, which co¬

incides with h. Indeed, from the definition of £fi in (1.3.18), by ap¬

plying the monotone class theorem, cf. page 280 in Durrett, [9], on

any set {ti = ra} fl {XTl = x] there exists hmjX which is bounded

a {uj(b) : b G Cx} ® J^m-measurable and coincides with h. Now we can

define

i^k,x '•—
/ J ""m,x*-{Sk=m} ?

m>0

so that hk,x is o~ {uj(b) : b G Cx} <8> ^sfc-measurable, and coincides with

h on {ti = Sjt} fl {XTl = a:}.

As a result, the rightmost hand side of (1.3.21) equals

= J2K [E£[/(Xsfc+. - x)hktX,Sk < oo,

Do6Sk = oo, X5fe =x]gotx],

applying the strong Markov property at the stopping time Sk yields

= £K [EolSk < oo,X5fe = xMA E%[f(X.-x),D = oo]gotx] .

rZ )X

Because by definition of Sk in (1.3.7), XSk-i -Xsk-2 = XSk -XSk-i =

ë and £.Xm < £.Xsk-2 for all ra < Sk — 2, and also because £.e < £.ë

for all unit vectors e G Id, it follows that {Xm,Xm + e} G CXs*, for

all ra < Sfc — 1. Therefore Eft[Sfc < oo,Xsk = x,hkjX] is cr{o;(6) : 6 G

/^-measurable. On the other hand, due to the restriction D = oo,

E£[/(X — x),D = oo] • g o tx is cr{c<;(6) : b G fö^-measurable. Be¬

cause Cx fl 7^ t^ 0, these two random variables are not P-independent.

Fortunately, by our definition of Sk: we observe the dependence of

Eft [Sfc < oo, XSk = x, hkjX] and E%[f(X. - x), D = oo] • g o tx is concen¬

trated on {oj(b) : b G Bx}. (Here we see that it is necessary in the defini¬

tion of Sk to have the random walk (Xn)n>Q going at least two steps in

the direction ë G § before time Sk, otherwise Eft [Sk < oo, Xsk = x, hkjX]
is not a{uj(b) : b G £x}-measurable.) Using this fact and Fubini's theo-
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rem, the last expression equals:

Y, K [Eo [Sk < oo, XSk = x, hKx] x

E^[E^[f(X.-x):D = oc]gotx]

= Y,K [Eo [Sk < oo,XSfe = xMA E%' [f(X.-x)gotx,D = oo]] ,

using then the translation invariance of P measure we have E%x [f(X. —

x) g o tx, D = oo] = Eqx [f(X. - 0) g o t0:D = oo] ,
therefore the

rightmost side of last expression equals now:

= Y, K [Eo [Sk < oo, XSk = x, hktX] Eg* [fg, D = oo]

= J2Eo [Eo [Sk <,XSk=x: hktX] Pg*[D = oo] Eg*[fg\D = oo]" .

Ea0[f(XTl+.-XTl)gotXTih]

Y,K [toiSk < oo,XSfc = x,hktX]x
K )X

Pa0*[D = oo]E%'[fg\D = oo]' .

By taking specially / = g — 1, we get from the above equation

(1.3.23) Eg [h] = J>g [Eft[Sfc < oo,XSfe - ar,/iM] Pa0x[D = oo]" .

Define now y?(a) := Eq[/^|jD = oo], and note that tp{ax) is a{to(b) : b G

^x}-measurable, hence cr{o;(6) : b G £*} <S> ^sfe-measurable, and there¬

after hkjX (p(ax) is ct{ü;(6) : b G £*} 0 J^5fc-measurable and coincides

with the £fi-measurable function hcp(axT ) on \ji = Sk} fl {ITl = x}.

This means

(1.3.22)
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Substitute h through h(p{axr ) in (1.3.23), we find

Eo1MaxT1)]

= J]Eg [Eft[Sfc < oo,XSfe = x,hk,x <p(ax)] Pa0*[D = oo]
K fX

= Y2Eo [Eo[Sk < oo,XSfe = x,hkfX] Pa0*[D = oo] Ea0*[fg\D = oo]" .

/v )X

Comparing this with (1.3.22) yields our claim (1.3.20). D

Remark 1.3.4

Define

(1.3.24) ^(X,w) := (XT1+. - XTl;txT1uj) G (Zd)N x ft,

(1.3.20) can also be expressed as

(1.3.25) Ea0[(fg) o $ h] = Eg [hE^ [fg\D = oo]

1.3.2 The A;-th no-backtracking time Tk and the Mar¬

kov Structure

Because {D — oo} = {D > ri} G Sfi, we can define on {tï < oo}
a non-decreasing sequence of random variables inductively, by viewing

Tk, k > 1, as a function of X. :

(1.3.26) rk+i(X.) := n(X) + rfc (XTl+. - XTl) ,
for fc > 1,

and set by convention Tk+i = oo on {rk = oo} .
Because of (1.3.13)

and Theorem 1.3.3 we observe that Po-a.s. rk < oo, for all k > 1. One

could ask why we do not use the equivalent formula rk+i = Tk(X.) +

Ti(XTk+. — XTk) as definition for rk+i, the reason will be clear in the

proof of Theorem 1.3.5 below.

With Tfc+i, k > 1, introduced, we are now ready to introduce cr-algebra

&k+i for k > 1:

(1.3.27) &k+i :=

crjri,--- ,rfc,rfc+i; (XTfe+lAm)m>0; w(&), 6 G £Xt*+i j ,
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describing the history of the path and environment involved before time

Tk+ l -

With^fc :=<7{n,--- ,7*; (XTfeAm)m>0; w(6), 6 G ft0 fl£x^ } ,
which is

clearly included in ^k, we also have

(1.3.28) ^^a^iUf1^)} ,

with -0 introduced in (1.3.24).

The main result showing the embedded Markov chain structure comes

in the next theorem, displaying the conditional distribution of the joint
random variables ({XTk+n-XTk)n>0; (Tk+n-Tk)n>0;txTku(b),b G HXTh)
given &k, k > 1:

Theorem 1.3.5

Let f, g, hk be bounded and respectively o~{Xn : n > 0}-, a{co(b) : b G

TZ0}- and &k-measurable functions with k > 1. Then for a Els':

(1.3.29) Ea0[f(XTk+.-XTk)gotxTkhk] = Eg [hk E^ [fg\D = oo]] .

Proof: We prove (1.3.29) by induction. The case k = 1 is just Theorem

1.3.3. For the step k to k + 1, we observe that in view of (1.3.28) it is

sufficient to show (1.3.29) for hk+i = hi hk o ?/;, while hi and hk are

bounded and respectively ^i and ^k C &k measurable. For such an h,
the right hand side of (1.3.29) equals

ESl/(^rfc+1+. - XTk+1) g o tXrk+l hihk o V]

= Eg[/(XTfe+. -XTk)o^(go tXrk o t/0 (hk o V;) hi],

applying now (1.3.25), the right hand side of last expression equals

= Eg [hi EqX- [f(XTk+. -XTk)go tXrk hk\D = oo]]
= Eg [hi EqX- [f(XTk+. -XTk)go tXrk hk,D = ool/P^1 [D = oo]] ,

and because hk 1{d=oo} is ^-measurable, we can use the induction
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— Fa

assumption, and find

'hiEa0x^ [Ea0XTk [fg\D = oc}hk,D

~/iiEoXti [Ea0XTk [fg\D = oo]hk\D

.ax,

pa

pa

oo]/PÖAT'[ß

oo]

oo]

hiE0Xrk [fg\D = oo]hk o^

— Fa

— Fa

.ox

h!hkoil>E0 Tk+1[fg\D = 00}
_axT

hk+iEQ Tk+'[fg\D = 00}

where we applied (1.3.25) backwards in the third line, and this finishes

the proof. D

As an immediate consequence we get

Corollary 1.3.6

Let

(1.3.30) T := N x Zd x Is

with its canonical product a-algebra and let yk — (jk, zk,ak) G T, k > 0.

For a G Is and G CT measurable let also

(1.3.31) R(a;G) := Pg[(n, XTl, aXri ) G G\D = oo]

Then under Pq the T-valued random variables (with convention tq = 0)

(1.3.32) Yfc := (Jk,Zk,Ak) := (rk+1 -Tk,XTk+1 - XTk, aXrk+1 ), k > 0,

define a Markov chain on the state space T, which has transition kernel

(1.3.33) P[Yk+1 G G\Y0 = t/o, • • •

,
Yk = yk] = R(ak;G),

and initial distribution

(1.3.34) ~A(G):=P0[(ri:XTl,axT1)eG}

Similarly, on the state space Is the random variables

(1.3.35) M =

aXrk+i ,
k > 0,
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also define a Markov chain under Po- With a £ Is" and B C Is" mea¬

surable, its transition kernel is

(1.3.36) R(a; B) := Pg [aXri G B\D = oo] = ^ %; (j, z, 5)) ,

zezd

anrf ifoe initial distribution is

(1.3.37) A(J3) := P0 [aXri E B] = £ Ä((j, z, 5)) .

zezd

1.3.3 Doeblin Condition, Invariant Measure and Er¬

godicity

In this part we will show that the transition kernel R(a; •) has an in¬

variant distribution and it is ergodic. At first we need

Lemma 1.3.7

There exists a unique probability measure v on Is and two constants

c > 0, eis > 0 such that for m > 0:

(1.3.38) sup \\Rm{a- ) - i/(-)||Var < ce"Cl5ra
,

where \\ • ||var denotes the variational norm on the space of measure on

Is.

Further, this probability measure v is invariant with respect to the tran¬

sition kernel R, i.e. vR = v, and the Markov chain (Ak)k>o, defined in

(1.3.35), with transition kernel R and initial distribution v on the state

space Is is ergodic.

Moreover, the initial distribution A(-) given in (1.3.37) is absolutely
continuous with respect to u(-) .

Proof: At first we show that the kernel R(a; •) satisfies the Doeblin

condition, cf. page 178 in Revuz, [35]:

(1.3.39) R(a; B) > k2c±3 ( ®s /i) (B), for all measurable B C Is
,
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where we recall that \i is the distribution of u)(b) on I. Indeed the

ellipticity condition (1.1.1) implies:

R(a;B) = Pg [aXri G B\D = oo]
= Ea0[P^[aXri,D = oo]]/Pa0[D = oc]

> Eg[Pg'[Xi=ë,X2 = 2ê,JDoo2 = oo],ax2 e B]
= Eg [P-[X! = è, X2 = 2c] P&[Z> = oo], a2ë G 5]
> «2Eg[P-e-[L>-oo],a2e~G5]

(1.2.30)
> k2 Ci3Pg [a2ë G 5] = K2ci3 ( <£><? ß) (B).

Applying Theorem 6.15 in Nummelin, [29], the Doeblin condition im¬

mediately implies that there exists an invariant measure v and (1.3.38)
holds. (Doeblin condition implies that the kernel is small and aperi¬

odic in the terminology of [29], cf. page 15, 20 and 21 of [29].) The

uniqueness is a trivial consequence of (1.3.38).

In view of (1.3.38) the ergodicity of (An)n>o follows from Proposition
2.4 in Chapter 6 of Revuz [35].

To prove that the initial distribution A(-) is absolutely continuous with

respect to the invariant measure z/(-), we observe that Doeblin condition

(1.3.39) also implies

v(B) = / u(da)R(a;B) > k2ci3 / v(da) ( ®s //) {B)

= K2Cl3(®c?/i)(£).

Therefore v(B) = 0 implies ( ®g MH^) = 0, and hence

A(B)< ^P0[a,Gß]= Y, (®*^)(£) = 0,

z£Zd z£Zd

i.e. A is absolutely continuous with respect to v, and this finishes the

proof. D

With this lemma we can now prove

Theorem 1.3.8 (Ergodicity)
v :— vR is the unique invariant distribution for the transition kernel R,
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for which the relation,

(1.3.40) suppm(a;-)-^-)||var<ci4e-Cl5m, m>0,
aÇjs

holds for some C14 > 0. With initial distribution equal v, the Markov

chain (Yk)k>Q defined in (1.3.32) is ergodic. Moreover, the law of the

Markov chain (Yk+i)k>o under Po is absolutely continuous with respect

to the law of the chain with initial distribution v.

Proof: We observe that for any bounded and measurable function /
on Is we have Rf = Rf and thereafter vR = vRR = vRR = vR = v.

This means that v is an invariant probability measure with respect to

R on T. From RR = R2 and (1.3.38) it follows that \\Rm+1(a;-) -

^(•)llvar < ce~Cl5m for m > 0, and hence (1.3.40) with some constant

C14 > 0. Applying again Proposition 2.4 in Chapter 6 of Revuz [35], the

ergodicity of (Yk)k>o with initial distribution v follows.

From Corollary 1.3.6 we know that, the initial distribution of (Yk+i)k>o
under Po is AR. From Lemma 1.3.7, A is absolutely continuous with

respect to v, therefore the absolute continuity of the law (Yfe+i)fc>o
under Po with respect to the law with initial distribution v follows

immediately from the obvious relations AR — AR and DR = vR. D

1.4 Integrability Properties of £.XTl and t\

As a last step of preparation towards the strong law of large numbers and

the functional central limit theorem mentioned in Section 1.1, we will

show in this section that for c > 0 small enough, sup^ u E£ [eCTl] < 00.

The proof will be divided in several auxiliary lemmas.

Lemma 1.4.1

There exists ciq > 0 such that for all u G ft, x G 2>d

(1.4.1) E£ [exp{ci6£.(XSl - X0)}] < 1 + °-f ,

with C13 given in (1.2.30).

Proof: At first we define a sequence of auxiliary (J^"n)n>o stopping
times: (recall the definition of ë in (1.3.2))
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• No := 0; Ni := inf{m > 0 : £.{Xm - X0) > 2£.ë} ;

• Nk+i := Nk + iVi o eNk, for k > 1.

Observe that for all k > 1:

2£.ë < £.{XNk - XNk_1) < U.ë and Nk - Nk_i > 2.

Therefore we have £.(XSl - X0) < 3k(te) on {Nk-i < Si < Nk}, and

hence

Eu,[ect.(xSl-Xo)] =Y,^cL{Xsi~X°\Nk-i <Si< Nk]
k>l

(1.4.2) < ^e3cfclêP^[iVfc_i <S±< Nk].
fc>i

7dBecause for all y G Z
,
a; G O:

P£[iVfc+i<Si]

<P£[iVfc < Si,(XNk+i-XNk,XNk+2-XNk+1) ± (ë,è)]

<(l-«2)PJ[iVfc<5i],

where we used the ellipticity condition (1.1.1) in the last step, the right¬
most hand side of (1.4.2) can be estimated further by

^e3cH.êp.[iVfc_i < Si < ^ < Y^e^^P^Nk-i < Si]
fc>l fc>l

(1.4.3) < J2 e3ckLë{l - K2)^1 < oo
5

fc>l

provided c is small enough.

Take now c0 > 0 and m0 G N such that J2k>m0 e3c°kLë(l-K2)k-1 < ^f.
(1.4.2) and (1.4.3) imply that for all c < c0:

Cl3

E^ec£.(XSl-X0)] < ^ e3cmo/.ëp«[jVm_i < 5i < iVm] +
m<mo

<e3cmo/.êp«[5i<JVmj + Ç13
8

Thereafter there exists c\§ G (0, cq) small enough such that e3ci6m°£e <

1 + ^ and that finishes our proof. D
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Let us introduce the random variable

(1.4.4) M := sup{£.(Xn - Xq) : 0 < n < D}

which is the maximal displacement in the direction £ before backtrack¬

ing. It will turn out that M is a key variable later in studying integra¬

bility properties of £.XTl. Because for all a G 1*% Pq[D — oo] > 0, we

cannot expect M < oo Pg-a.s.. Nevertheless we claim:

Lemma 1.4.2

There exists some Cyj > 0 small enough such that

(1.4.5) (! + *?)•{ SUP E* [eCl7M: D< oo] ) < 1 -
Cl3

Proof: At first we show that

(1.4.6) P 2m <M <2m+\D <oo

< eis e"Cl92m
,
for all xeZd,co eft

Recall the definition (1.2.18) for the box U centered in x with width L

in the direction £ and size I? in the direction normal to £, also recall

(1.2.22) for its boundary dU = d+U U d-U U dQU and set L = 2m+1,
we observe that

'
X

< P"
—

'
X

2m < M < 2m+1,D < oo]

+ Pt

XL

7
+ P Tu<^,XTutd+U

7

Tu < —,XTu G d+U, PXtu [T-2m < T2m]

By (1.2.24) - (1.2.29) the first two terms together are < cx e'022. By

(1.2.15), third term is less or equal to cie_C22 . Putting them together
the claim (1.4.6) follows.

With (1.4.6) in mind we show in the second step that sup^ w E£[ecM,
D < oo] < 1 — ^p-, provided c > 0 small enough. This can be seen by
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the obvious estimate

E"x[ecM,D<oo]
< e2cP£[0 < M < 1,D <oo]

+ J2 PxPm <M < 2m+\D < oo] e
c2
m+ l

m>0

< P^[D < oo]ecr° + J2 P^[2m <M<2m+1,L><oo]ec2
m+ l

<P^[D<oo]e

m>mo

+ J]] Cl8e'

m>mo

c2m0 +
l

| ^ „
^(c-C19)2m+

1

Now, let Co = ^y and mo G N be chosen such that ^2m>rno ci% exp{(co —

cig)2m+1} < ^-, the rightmost hand side above is

< (1 - cl3)e*m°+1 + <f < 1 - 2p ,

with 0 < c < Co small enough. Our claim follows immediately. D

With the help of these two lemmas we can now provide the integrability
of E%[ecLx^\:

Theorem 1.4.3

There exists c2q > 0 small enough such that

(1.4.7)

Proof: Since

sup E^[exp{c20£.(XTl - Xq)}} < oo.

xe%d
ujen

(1.4.8)

p; [ec£.(XT1-X0)

= Y,E" [ecL{Xsk~Xo\Sk<oo,Do$Sk =oo

fc>l

<Y,£xUct{Xsk-Xo\Sk<oo
k>l

in view of (1.4.1) it suffices to show that sup^^ Ylk>2 ^-x [exP{c^-(^sfc —

X0)},Sk < oo] < oo.

To this end we define another sequence of auxiliary (#n)n>o stopping
times (recall the definition of Mk in (1.3.7)):

(1.4.9) Vk := inf{n > Rk : £.Xn > Mk} ,
for k > 1
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i.e. Vk is the first time after Rk such that the random walker (Xn)n>o
reaches a maximum in the direction £ again.

It is clear that Rk < Vk < Sk+i, and the inequalities are strict if

Sk+i < oo.

We observe that for k > 2:

£.(XSk - X0) = £.XSk - LXVk_x + L{XVk_x - X0)

< £.(XSl - Xq) o 0Vk_x + L(XVk_x - X0),

whence

'-x

< Ew
— X

< E"

eci.(Xsk-X0)^k<oo

ecL(Xsk-X0)^yk_i <00

ecL{Xv^~Xo\Vk-i <oo,E^
Xv,

k-1

0c£.(XSl-X0)

(1.4.1)

(1.4.10) < E£ e^-iXv^-Xo) (1 + £i3)jyfc_1 < oo

Further we observe that

t.(XVk_1-Xo) = £.(XVk_1-Xsk_1)+L(XSk_1-Xo)
< Mk-i + 1 - LXSh_x + UXs^ - Xo)

= Mo8sk_1 + l + £.(XSk_1-X0).

Therefore with the strong Markov property the rightmost hand side of

(1.4.10) can be further estimated by

<ecE£

e°E%

exp{c(M o Os^+LiXs^ ~ X0))} (l + c-f),Rk-i < oo

ec£.(xSfc_1-x0)^fc_i <0O)(1+ c-f)EXSk_r [ecM,D< oo]'

and this is by (1.4.5) and induction

< ec(l - 213) E£ Lc/.(Xsfc_1-Xo)jjS.fe_i < qq

<(e^(l-^))fc,

provided 0 < c < C17.
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Therefore we can find C20 G (0,017) small enough such that eC20(l —

^f) < 1. Therefore

Y^ E£ [ec"L(Xs>-Xo\ Sk < 00] < Y^ (e02^1 - ^f))k < °° •

k>2 k>2

And with (1.4.8) this finishes our proof. D

As a corollary we obtain an estimate on the tail of t\ and its integrability

properties:

Corollary 1.4.4

There exists c2i > 0 and c22 > 0 such that for u G N

C22U

1(1.4.11) sup P£[n >u] <c2i e

xeid

and consequently

(1.4.12) sup E£ [eC23Tl] < c24 < 00
,

x£Za

wen

for some C23 > 0 and C24 > 0
.

Proof: Recall 7 = log y^-
from Theorem 1.2.1 and choose u G N,

u > —. We denote with U the box defined in (1.2.18), with center x,

width -^u in the direction £ and size {-^u)2 in the direction normal to

£.

By Chebychev inequality and with C20 from (1.4.7) we observe

Px[ri>u]

< P"x [n > u,£.(XTl - X0) < ^u] + PJ [£.{XT1 - X0) > £u]

< P^[n > uJ.(XTl -X0) < £u] +e-C20Äu E^[eC2o£-(^i-Xo)]
< P£ [n > u, £.(XT1 - X0) < &u] + C25 e-C26W

,

further we have

p- [n > u,£.(xT1 - Xo) < £u] < p- [rÄ„ > «]
< P£[TÄU > Tt/] + P-[T^ = T^u > u]
< PÏ [2b > f ] + Px [Tu < %XTv $ d+U]

+ Px'[Tu = T^u>u}.
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Using the same argument as in (1.2.23) — (1.2.29) the first two terms on

the right hand side together can be estimated uniformly: for all x G Zd,
lü E tt and for all u G N,

(1.4.13) Pux[Tu > f] +Pux[Tu < f.Xzv td+U] <c27e C2S.U

and by (1.2.20) the last term can also be estimated uniformly: for all

x £Zd,cj eu and u G N, u >
—,

(1.4.14) Px'[Tu>u] <c4e-8\

because in our construction of U, u > ~^u = ^, the condition (1.2.19)
is fulfilled.

Altogether we get that for all u G N, x G Zd and u G ft:

(1.4.15) Pux[ti >u] <c2ie-C22U,

our claim (1.4.11) follows immediately.

And finally, (1.4.12) is an easy consequence of (1.4.11).

1.5 Law of Large Numbers and Central Lim¬

it Theorem

In this section we will provide the main results of this article: at first a

strong law of large numbers, moreover we are able to prove a functional

central limit theorem. Some parts of the proofs presented in this section

are similar to the proofs of Theorem 2.3 on page 1864 of Sznitman-

Zerner, [46] and Theorem 4.1 on pages 130 - 131 of Sznitman, [43].

Theorem 1.5.1 (Strong Law of Large Numbers)
Under the assumption (1.1.1) - (1.1.5) we have

(1.5.1) Po-a.s.,
^ ^^ v = E^Xti}

,
and £.v > 0

,

n En[riJ

where

(1.5.2)

IT[-] := / v(da) Pa0[\D = oo] and

En[-] := j v{da) E%[-\D = oo],
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(We recall that v is the unique invariant distribution on Is given in

Lemma 1.3.7.).

Proof: Let Yk = (Jk,Zk,Ak) = (rk+1 - rk,XTk+1 - XTfe,axTfc+1), k >

0, be the random variables on T defined in (1.3.32). We know from

Theorem 1.3.8 that the Markov chain (Yk)k>o with initial distribution

v is stationary and ergodic, further the law of (Yk+i)k>o under Pq is

absolutely continuous with respect to the law with initial distribution v.

Therefore from the Birkhoff's ergodic theorem, cf. page 341 in Durrett,

9], it follows that for any / G L1(T, î>), P0-a.s.:

l-i:m)^ h»!
n

,

fc=i

Applying this formula to f(y) = j and f(y) = z for y = (j, z, a) G T,

we find that Po-a.s.:

n

(L5-3)
XT_-X.

-+ / dvJi = / v{da) E%[ti\D = oo] = En[ri] < oo

"n
~

^Tl ->• jdvZx = j v(da) E%[XT1\D = oo] = En[XTl]

as n —> oo, where the finiteness follows from (1.4.12). We also observe

that £.v > 0, because Po-a.s. £.XTl > 0 by definition (1.3.6), (1.3.7) and

(1.3.12), and En[|XTl|] < En[ri] < oo.

From (1.3.13) we observe that Po-a.s. ^j —> 0, as n -> oo. Therefore

(1.5.3) implies that

-rn ^^ IdvJi = I v{da) Ea0[n\D = oo] = En[n] ,

(1-5-3*)
U J J

-XTn ^^> / dvZi = j v(da) Ea0[XTl 1,0 = 00] = En[XTl].

Now let us define a non-decreasing sequence kn, n > 0, which tends to

+oo Po-a.s., such that

(1.5.4) Tkn < n < Tkn+i, (with the convention r0 = 0).

Dividing the above inequality by kn and using (1.5.3*), we find that

Po-a.s.:

/-. r r\
kn n—>00 1

(1.5.5) >

n En[ri]



1.5. Law of Large Numbers and Central Limit Theorem 37

Further we observe that:

Xn XTk Xn XTk
(1.5.6) 11IL

=
_!*«_ +

n n n

then in view of (1.5.3*) and (1.5.5), we obtain that Po-a.s.:

(I 5 7) Tfc"
—

Tfc"
.

^n n-»oo E [XTl]

n kn n En[ri]

and by (1.5.5) again, that Po-a.s.:

\Xn - XTkn |
^

Tkn + l
-

Tkn
_

Tkn + i
_

kn + 1 _n2L K
n->oo^

n n kn + 1 n kn n

Combining this with (1.5.6) and (1.5.7), we have proved that Po-a.s.

^ ———> v, with v given in (1.5.1). Ü

We are now able to derive a functional central limit theorem for the

process

(1.5.8) B? = ^=(X[tn]-{tn}v), *>0,

where [t] denotes the integer part of t G M+.

We denote by £^40, oo) the set of Rd-valued functions on [0, oo), which

are right-continuous and possess left limits (also called càdlàg func¬

tions). We endow this set with the Skorohod topology, cf. page 117

in Ethier-Kurtz, [11], and its Borel-u-algebra, so that Bn defines a

DRd[0, oo)-valued random variable.

To simplify notations let us temporarily denote the law of the Markov

chain (l^m)m>o with invariant distribution v by Pp[-] and its expectation
value by Ej>[-]. Further we use xT to denote the transposed vector of

x G Rd.

At first

Lemma 1.5.2

Let f{y) := z — jv for y = (j, z, a) G T and v from Theorem 1.5.1. Then

(1.5.9) sup(Ä|/|)(a)<oo,
aeïs
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where we recall that | • | denotes the L1-norm on Md. Further the Md-

valued random variables

oo n

n
_

im
F(a) := ^(Äm/)(a), Gn := £ /(Fm),

(l-ô-10j m=1 m=1

^n := Gn + F(An), n > 1,

(wrf/i notations from (1.3.32) and (1.3.35)) are well defined, and under

Po, (W„)„>i zs a (Jtfn)n>i-martingale w.r.t. Jï?n :=a{Yi,--- ,Yn}. We

use the convention Wo := 0 and J#o equals to the trivial a-algebra.

Finally, on the space D^dfO, oo) the partial sum -7=G[n.] converges under

Po in law to a d-dimensional Brownian motion with covariance matrix

K.

(1.5.11)
K = Ep [(W2 - Wi)(W2 - Wi)T]
= En[(ATl - riv)(XTl - nvf]

oo

+ ]T En[(XTl - nv) (XTm+1 - XTm - (rm+1 - rm)v)T]
m=l

oo

+ Y, ^[(Xrm+ i

- Xrm ~ (rm+i - Tm)v) (XT1 - Tivf] ,

771= 1

where the last two terms converge in all matrix norms. (We recall the

definition of En in (1.5.2).)

Proof: (1.5.9) follows immediately from (1.2.30) and (1.4.12), because:

sup(Ä|/|)(a) < supEg[|XTl| + \v\ti\D = oo]
a<Els a

< (1 + |^|)supEo[ri|D = oo] < oo.

With this, we can now show that

(1.5.12) sup \F(a)\ <c29 < oo

aeis
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Indeed, Theorem 1.5.1 implies that DRf = vf = 0 and hence for a G 1^,
m > 1,

\(Rmf)(a)\ < {{R-1 o (Rf))(a) - DRf\ + \ûRf\

var

' II •> \\L°°

Kcue-^^-^WRfl

(1.5.13) < A^HflîO-^OlL-p

IL°° '

where (1.3.40) is used in the last step, and this with (1.5.9) proves

(1.5.12).

To show that (Wn)n>i is a (c^1)n>i-martingale, we observe from Corol¬

lary 1.3.6 that for n > 1:

E0[^n+i - Wn\J?n) = E0[/(rn+i) + F{An+i) - F(An)\J?n]

= (Rf)(An) + (RF)(An) - F(An) = 0.

Now we show that under Po:

(1.5.14) —=W\n.] n~*°°) B(-) in law on DRd[0, oo),

where B(-) is a Revalued Brownian motion with covariance matrix K

given by the first line of (1.5.11). With (1.5.14) proved, we can replace

W[n.] by G[n.] in (1.5.14), because of (1.5.12).

To show (1.5.14), we observe at first that

(^ »up |^fc-^-i|)4]<-^ £ Eo[\Wk-Wk^]

<\e0[{\XTi - vn\ + c29)4]

+ [nT]2 1

SUP Eo[(l*n - vn\ + 2c29f\D = oo]

n—>-oo

»0, by (1.4.12) and (1.2.30),

where we used (1.5.10), (1.5.12) and Corollary 1.3.6 in the second line.

At second, by the Birkhoff's ergodic theorem, cf. page 341 in Durrett,

[9], we get from Theorem 1.3.8 that Pp-a.s., and hence Po-a.s.:

[nt]

V -(Wk+i - Wk)(Wk+i - Wk)T ^^ tE9[(W2 - Wi)(W2 - Wi)T].
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and the same limit holds true for a sum from k = 0 to [ni\.

Thereafter, (1.5.14) follows immediately from the martingale central

limit theorem, cf. Theorem 1.4 (a), Remark 1.5 on page 339 - 340 in

Ethier-Kurtz, [11].

It remains to show the second equality in (1.5.11). We show at first that

the last two terms in (1.5.11) are well defined, i.e. the series converges

in any matrix norm. Let || || be an arbitrary matrix norm, then with

the notations of (1.3.32) we have for m > 1:

|En[(XTl - riv)(XTm+1 - XTm - (rm+i - tv»t]||

(1.5.15) = ||E*[(Zo - Jov)(Zm - Jmv)T}\\ = ||E,[/(y0) (Rmf)(A0)T}\
< c'sup(Rm\f\)(a) -Eti\Zo - J0v\]

a

where c' > 0 is a dimension dependent constant. Thereafter it follows

now from (1.5.13) that the rightmost hand side above is

< cW015*"1-15 ||Ä/||Loo • E*[|^o - Jov\]

< C30 e"Cl5m
•

Consequently, the right hand side of (1.5.11) converges in any matrix

norm.

To verify the second equality, we put in the definition of Wm, m = 1, 2:

K = ED[(W2 - Wi)(W2 - Wif)
= E* [{f(Y2) + F(A2) - F(Ai)}{f(Y2) + F(A2) - F(Ai)}T]
= E* [f(Y2)f(Y2)T] +E, [f(Y2)F(A2)T] + E, [F(A2)f(Y2f]

+ E, [F(A2)F(A2)T] - E* [F(Ai)(f(Y2) + F(A2)f]
+ E, [F(Ai)F(Ai)T] -E,[(f(Y2) + F(A2))F(Ai)T] .

Using the fact that v is the invariant distribution of the kernel R, and

applying the Markov property, we see that the second and third line on

the right hand side of the above equation vanish.

Now put in the definition of F from (1.5.10), the second equality of

(1.5.11) follows from (1.5.15) and Corollary 1.3.6. This finishes our

proof. D

Thanks to this lemma, we can now prove
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Theorem 1.5.3 (Functional Central Limit Theorem)
Under assumption (1.1.1) - (1.1.5), the DRd[0: oo)-valued random vari¬

able Bn defined in (1.5.8) converges under Pq in law to a d-dimensional

Brownian motion with a non-degenerate covariance matrix

(1.5.16)
K

En[n]

with K given in (1.5.11) and En[-] defined in (1.5.2).

Proof: Let kn, n > 0 be the sequence introduced in (1.5.4). Then

(1.5.5) and Dini's theorem, cf. page 129 in Dieudonné, [8], imply that

Po-a.s.:

(1.5.17) for all T > 0, sup
0<t<T

k[tn]

n En[n]

n—>-oo

>0.

Further, for the random variables B and Gn respectively defined in

(1.5.8) and (1.5.10), we observe that Po-a.s. for any T > 0:

sup
0<t<T

on k[tn]

n

< (1 + \v\) sup

0<k<k[nT]

Tfc+1
- Tk

n

and

(1.5.18)
T~k+1 1~k n—»eo

n
• n i i -î-j.

sup — > 0
,
in Po-probabihty.

o<fc<fc[nT] Vn

To see (1.5.18), we observe that thanks to Corollary 1.3.6, and since

kn < n, for u > 0:

Po sup Tfc+)TTfe

0<k<k[nT]
Vn

> U

n—>oo

>o,< Po[n > Vnu] + nT sup Pq[ti > y/nu\D = oo]
aEls

where we used (1.4.11) and (1.2.30) in the last step.

Therefore, the Skorohod-distance of Bn and —4=p-, cf. page 117 in

Ethier-Kurtz, [11], tends to 0 in Po-probability, as n —>• oo.

From this fact, (1.5.17) and Lemma 1.5.2 we obtain that, under Po, Bn

converges in law to a d-dimensional Brownian motion with covariance

matrix
K

En Ti
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What remains to prove is the non-degeneracy of K.

If wTK.w = 0 for some w G M?, it follows from the first line of (1.5.11)
that

Pù[w.f(Y2) = w.F(Ai) - w.F(A2)} = 1,

and since from (1.5.12) we know that F is bounded, we can find some

constant C31 > 0 such that

(1.5.19) P*k/(^)e(-C3l,C3l)] = l.

Because v is the invariant distribution of R we obtain (recall the defi¬

nition of n in (1.5.2))

(1520)
l = Pf>[^/(H)e(-C3i,C3i)]

= U[(v.w)ti G (XTl.w -c3i,XTl.iü + c3i)].

Let now r > 2y/d and H = {z G ld : £.z < r+2£.e}. Then for all x G dH

we can construct a path in H such that Xq = 0, Xs1 — x. To see this,

we first notice that with the argument on page 102 in Sznitman, [43],
the set {z G ld : 0 < £.z < r} is connected. Therefore there is a path

connecting 0 and x — 2ë, which remains in {z G ld : 0 < £.z < r} except

for the last point. By inserting a loop at each step of this path, which

goes back to the previous point and then returns to the current position,

we can make sure that Xsx does not occur within {z G ld : 0 < £.z < r}.
Now let the modified path go two steps in the direction ë after it reaches

x — 2ë, we get a path (Xn)n>o with Xq = 0 and Xs1 = x.

This and (1.2.30) together imply that for each x G dH there exists

n G N such that for all aGlf

Pg[XTl = x, n = Si = n, D = 00] > 0
.

Using a nearest neighbor loop of length 2k, k G N, inserted at the first

jump step, we get from the ellipticity condition (1.1.1) that for all k G N

and a G Is:

(1.5.21) Pg[XTl =x,n = Si = n + 2k,D = oo] >0.

On the other hand it follows from (1.5.20) and (1.5.21) that for x G dH,
there exists n G N such that:

(2k + n)(v.w) G (x.w — czi,x.w + C31), for all k G N .
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This is only possible when

(1.5.22) v.w = 0.

Taking now limits points in dH, we observe from (1.5.20) that

(1.5.23) w.y = 0, for ally L£,

hence w is co-linear to £. But since v.£ > 0, (1.5.22) implies that w = 0,
which completes our proof. D
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Chapter 2

On Ballistic Diffusions in

Random Environment

ABSTRACT

In this article we investigate diffusions in random environment. We

provide a sufficient condition for a strong law of large numbers with

non-vanishing limiting velocity and a functional central limit theorem.

In the course of this work we introduce certain regeneration times and

obtain a renewal structure. As an illustration, we apply our results to

a class of anisotropic gradient-type diffusions in random environment,

where the technique of the environment viewed from the particle does

not apply well.

2.1 Introduction

Random motions in random media has been a very active research area

over the last twenty years, both in the discrete and continuous settings.
The method of the "environment viewed from the particle" has played
an important role, see for instance [21], [22], [28], [31], [33]. In the con¬

tinuous setting, there has been a special emphasis on the gradient-type
or the incompressible drift situations, and most of the progress has oc¬

curred when there is an explicit invariant measure for the process of

the environment viewed from the particle, which is absolutely continu-

45
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ous with respect to the static distribution of the random medium, see

[7], [23], [24], [25], [30], [31], [33] . However, the general setting is still

poorly understood. On the other hand, progress has been made recently
in the discrete setting, see [3], [6], [44], [45], [46], [48]. One appeal of

the continuous theory is that, unlike in the discrete setting (cf. [3]),
imposing independence assumptions on the environment at the level of

bonds or sites, is not relevant anymore. Related to this feature, some

arguments of the discrete theory are not applicable to the continuous

setting.

The present article investigates diffusions in random environment in the

continuous setting, in situations where a priori no invariant measure of

the the process of the environment viewed from the particle is known to

exist. We provide a sufficient condition, under which the process sat¬

isfies a strong law of large numbers with non-vanishing velocity, which

can further be refined by a central limit theorem. In particular, under

this condition, the diffusion in random environment exhibits a ballistic

behavior. We use a strategy which has been successful in the discrete

setting. We construct certain regeneration times which provide a re¬

newal structure, see [46]. As an application of our results, we show the

ballistic behavior of a concrete class of diffusion processes in random

environment, which is a natural generalization of some discrete models

mentioned in [27], which were studied in [38].

We now describe the setting in more details. We denote with (ft, &/, P)
a probability space and with G = \tx : x G Ed} a group of measure

preserving transformations, acting ergodically on ft, for details see the

beginning of Section 2.2. We consider bounded measurable functions

b(-) : ft ->• Rd and a(-) : ft -¥ Rdxd, as well as two constants b, a > 0

such that

(2.1.1) \b(co)\ <b< oo, \a(u)\ <ä< oo
,

where | • | denotes Euclidean norm both for vectors and d x «i-matrices.

We write

(2.1.2) b(x,u) = b(tx(u)), a(x,co) = a(tx(u)).

We assume that b(-,co) and cr(-,u) are Lipschitz continuous, i.e. there

exists a constant K > 0 such that for all lü 6 ft, x, y E M.d,

(2.1.3)
\b(x,cj) — b(y,io)\ < K\x — y\ and \a(x,u) — a(y,co)\ < K\x — y\ .
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Further, we assume that Gat(x,u) is uniformly elliptic, that means,

there is a constant v > 0 such that for all x, y G Md and lu G ft,

(2.1.4) -H2 < \a\x,u}) y\2 <v\y\2,

where a* stands for the transposed matrix of a. For a Borel subset

Fcl^we define the <r-algebra generated by b(x, lo), a(x, lo), for x G F:

(2.1.5) 3tfF d= a{b(x,Lo),a(x,Lo) : x G F} ,

and assume an independence condition, which we call Ä-separation.

Namely, there exists an R > 0, such that for all Borel subsets F, F' in

Rd with d(F, F') d= inf{|a: -x'\:xeF,x'eF'}>R,

(2.1.6) J#f and J%f> are P-independent.

Let us mention two examples of such random vectors b(x, lü) and random
matrices a(x,u) respectively. The convolution of a Poissonian point

process with a Lipschitz continuous vector-valued, or matrix-valued,
function supported in a ball of radius R/2 yields after truncation a pos¬

sible example, cf. [42], page 185. Another possible example is to use the

Gaussian field, described in [1], section 1.6 and 2.3. After convolution

and truncation, we get another example. (The formula (2.3.4) on page

28 in [1] need be changed to X(x) = jg(x — A) dZ(X), where g(X) is

some vector- or matrix-valued Lipschitz continuous function, compactly

supported in a ball of radius R/2.)

We denote by (C(R+, M.d), &, W) the canonical Wiener space, and with

(Bt)t>Q the cZ-dimensional canonical Brownian motion, (which is inde¬

pendent from (ft,&?,¥)). The diffusion process in the random environ¬

ment lo is the law P£ (which is sometimes called the quenched law) on

(C(R+,~Rd),^) of the solution of the stochastic differential equation:

(dXt(u) = b(Xt,L0) dt + o-(Xulo) dBt,
(2.1.7) <^

\XQ = x, x ERd, lo eft.

The aim of this article is to study the asymptotic properties of X. under

the "annealed law":

(2.1.8) p/=PxP
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We provide a sufficient condition, see (2.3.1-i), under which the strong
law of large numbers holds, that is:

Xt
Po-a.s. > v, as t —> oo,

L

where v is a deterministic and non-vanishing velocity, (cf. Theorem

2.3.2). Further, we show that the stronger condition (2.3.1-ii) guaran¬

tees a functional central limit theorem, namely as s tends to infinity,
the (7(11+,Md)-valued process

Bs^-L{Xs.-sv),
Vs

converges in law, under the annealed measure Po, to a non-degenerate d-

dimensional Brownian motion with covariance matrix K, (cf. Theorem

2.3.3).

The derivation of this sufficient condition (2.3.1) is based on the strat¬

egy of constructing some regeneration times rk, k > 1, similar to those

defined in [46], and providing a renewal structure, cf. Theorem 2.2.5.

The sufficient condition is then expressed in terms of the transience of

the diffusion X. in some direction £ and the finiteness of the first (or
the second) moment of ti conditioned on no-backtracking, cf. (2.3.1).
There are several ways to construct these regeneration times rk. In the

spirit of [6], [48], we introduce additional Bernoulli variables. In essence,

the first regeneration time ti is the first integer time, at which the dif¬

fusion process reaches a local maximum in a given direction £ G Sd~1,
the auxiliary Bernoulli variable takes value 1, and from then on the

process never backtracks. The regeneration times Tk, k > 2, are then

obtained by iteration of this procedure. For the true definition, we refer

to (2.2.12) - (2.2.17), (2.2.22). In our construction we take special ad¬

vantage of the diffusion structure to couple the Bernoulli variables with

the diffusion process, the resulting renewal structure, cf. Theorem 2.2.5,

gives us a good control over the trajectory of the diffusion, see Remark

2.2.6, and we also have a convenient Markov structure, cf. Corollary
2.2.2. This provides a key tool for studying asymptotic behavior of the

diffusion in a random environment. Further applications of this renewal

structure and Theorems 2.3.2, 2.3.3 will follow.

As an illustration of our results, we study a class of reversible diffusion

processes, for which a = 1 and b(x,u) = W(x,lo), where V(-,lo) has

uniformly bounded and Lipschitz continuous derivatives, and there exist
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a unit vector £ e Rd, A, B > 0 and A > 0 such that

(2.1.9) Ae2U'x < e2V{x^ < Be2Mx, for all xGl^andwG ft.

In the case where A = 0, the diffusive behavior of the process has been

extensively investigated, cf. [7], [31], [32], however we do not know of

any result when A > 0. We show in this article that when A > 0, (no
matter how small A is) the sufficient condition (2.3.1) is fulfilled (in

fact, we prove the much stronger exponential estimates under P£, cf.

Theorem 2.4.9 and Corollary 2.4.10, which can also be used to deduce

certain large deviation controls, cf. [43], [44]). As a result, the above

mentioned law of large numbers and functional central limit theorem

hold, see Theorem 2.4.11. The class under consideration includes the

case where b(x,uo) = VV(lo,x) + \£, for some bounded V G C1(Md,IR),
with bounded and Lipschitz continuous derivatives. Let us mention

that this situation is closely related to some of the models studied by
Lebowitz and Rost in [27], where the existence of an effective limiting

velocity is mentioned as an open question.

Let us finally describe how this article is organized.

In Section 2.2, we enlarge the probability space with coupled Bernoulli

random variables, cf. Theorem 2.2.1. We then define the regeneration
times (rk)k>i, cf. (2.2.12) - (2.2.17), and we provide the crucial renewal

structure in Theorem 2.2.5.

In Section 2.3, the sufficient condition is expressed in terms of the tran¬

sience of the diffusion in the direction £ and the (square) integrability
of ti conditioned on no-backtracking, cf. (2.3.1). With the help of the

renewal structure constructed in Section 2.2, we are able to show the

ballistic behavior of (Xt)t>o in Theorem 2.3.2, and a functional central

limit theorem in Theorem 2.3.3.

In Section 2.4, we will apply the results from the previous sections to

the specific class of models described in (2.1.9). An important role is

played by estimates on the exit distribution and exit time of the diffusion

processes from a large cylinder with axis parallel to £, cf. Proposition
2.4.2 and 2.4.3. The main integrability properties of XTl and ti are

derived in Theorem 2.4.9 and Corollary 2.4.10, and our main result is

stated in Theorem 2.4.11.

Finally, in the appendix, we collect some results about continuous local

martingales and linear parabolic partial differential equations of second

order, which are used throughout this article.
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2.2 The Renewal Structure

In this section we will enlarge the probability space (C(K+, Rd), 3P, Px)
to (C(R+,Rd) x {0, l}n,^®y, P%), by adding some suitable auxiliary
i.i.d. Bernoulli random variables, see (2.2.6) and Theorem 2.2.1.

On the enlarged space (ft x C(R+, Rd) x {0,1}N, sf <g> ß" <g> y, Px), see

(2.2.11), we will define the regeneration times rk, k > 1, and discover

the resulting renewal structure under the new annealed measure Po, see

Theorem 2.2.4 and Theorem 2.2.5.

For the random environment (ft, srf', P), we assume that for all x, y G M.d,
tx is a mapping on ft with to = 1 and tx+y = tx o ty; the mapping

(x,lo) i-)- tx(u) is (Se <g) stf,^-measurable, with & denoting the the

Borel cr-algebra on M.d; tx preserves the P-measure; and for A G se such

that tx(A) = A for all x, then ¥[A] G {0,1}. We recall that under these

assumptions [tx : x G M.d} is a group of strongly continuous unitary

operators on L2{ft,srf,P), cf. page 223 in [19].

2.2.1 The Coupling Construction

We first need to introduce further notations. Let £ G M.d be a given unit

vector, and let

(2.2.1) Ux d= B6R(x + hRI), Bx d= BR(x + 9R£),

be the two subsets shown in Figure 2.2.1.

We also introduce for open set G in Rd and u G M. the (j^)t>o-stopping
times: ((^t)t>o denotes the canonical right continuous filtration on

(C(R+,Rd),J?))

fTG = mî{t>0:Xt(£G},

(2-2.2) I Tu =f inf{t > 0 : £ (Xt - X0) > u} ,

fu = mf{t>0:£-(Xt-X0)<u},
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Figure 2.2.1: Sets Ux and B

and the maximal relative displacement to Xq the process (£-Xs)s>o has

reached within time t,

(2.2.3) M(t) d=
sup {£ (Xs - X0) : 0 < s < t} .

We denote by p0J(s,x,y) the transition density under P£, which is a

continuous function of 5 > 0, x,y G Rd such that P£[Xs G G] =

JGdy pUJ(s,x,y), for all open set G C Rd, cf. [13], page 139 - 141.

We also introduce the sub-transition density Pu>,ux(s,x,y), which is a

continuous function in s > 0, x G Rd and y G Ux, fulfilling:

(2.2.4) P£ [Xs G G, Tux > s] = f dy PuJ,u* (s, x, y),
JG

for all open set G C Ux
.

Under our assumptions on the drift term b(-,co) and the diffusion matrix

crcrt(-, lo), there exists a constant e(v, d, b, a, R, K) G (0,1) such that for

all lo G ft,

2e
(2.2.5) pu,u*(h x, y) > —— > 0

,
for all x G Rd and y G Bx

,

\Br\

where |.Br| denotes the volume of Br. We refer to Corollary 2.5.5 in

the Appendix for the proof of (2.2.5).

With the help of (2.2.5), we are going to use a coupling construction

enlarging our probability space (C(R+, Rd), ß~, Px) to include some aux¬

iliary i.i.d. Bernoulli random variables (Xm)meN-
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Before providing this coupling construction, let us give some other no¬

tations. We denote by Xj the canonical coordinates on {0,1}N (the
variables Xj will turn out to be i.i.d. Bernoulli random variables with

success probability e). Further, let 5^m = cr{Ao,--' 5^m}> m £ N,
denote the canonical filtration on {0,1}N generated by (Xm)me^ and

y = cr{ {Jm S^rn] be the canonical cr-algebra. To simplify notation let

us write for t > 0:

(2.2.6) %t = &t®y^, & = &®y = o-[ (J &m},

with \t] = {n G N : t < n}. We also introduce the shift operators

{9m : m G N}, with

0m : (C7(M+,Ed) x {0,l}N,iT) -> (C(E+,Ed) x {0,1}N, 2?) ,

such that

(2.2.7) 6m(X.,X.) = (Xm+.,Xm+.),

for X. G C(R+,Md) and A. G {0,1}N.

Now we can state the coupling construction.

Theorem 2.2.1 (Coupling Construction)
For every lo G ft and x G Rd there exists a probability measure P% on

(C(R+,Rß) x {0,1}N, iF) depending measurably on lo and x, such that

1. Under P£? (Xt)t>o is P£-distributed, and the Xm, m > 0, are i.i.d.

Bernoulli variables with success probability e (recall (2.2.5)).

2. Under P£, Am (m > 1) is independent of J^"m ® ^m-i, and con¬

ditioned on 3?m, X. o 9m has the same law as X. under P% A ,

where for X — 0,1, PxX denotes the law P£[ • |Ao = A].

3. P£)]L almost surely, Xs G Ux for s G [0,1] (recall (2.2.1)).

4- Under Pxl> Xi is uniformly distributed on Bx (recall (2.2.1)).

Proof: Given a probability kernel P£A[X G O], for O G J^i, x G Rd,

X G {0,1} and lo G ft, there will be a unique probability kernel Px on

3f, for x G Rd, lo G ft, such that under PL
X

"
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• Am is a Bernoulli random variable with success probability e, in¬

dependent of J^"m <S> ^m-i, when ra > 1;

• For O G ^i, the conditional expectation ?%[9^-{X. G 0)\Xn]

equals ?% x [O] P^-a.s..

Here is how we define P£A[X G O] for O G ^i, a; G Rd, lo G ft and

A G {0,1}, namely we set

(2.2.8) P-
Ao=1 [X. eO]^( dy P^[0\Tu. > 1]

and

\BR\ JB*

(2.2.9) p;Ao=0[igo]
1

* ^p"[o]-^yß/!'p-[o|T->iii'
where P%^ is the bridge measure from x to y in time 1 under P%; i.e.

P^'y is the unique probability measure on (C([0, l],Md),^i) such that

for all Os G &s,s < 1:

The proof of the existence of this bridge measure can be found in [42],
page 137 - 139. Although the proof in [42] is for the Brownian bridge, it

can still be used for the proof of P%'y with little modification. The only

change one need to do is in the proof of (A.8) on page 138, namely one

need to use the inequality l/pv(t — s,Xs, y) > Lp(t — s)ï exp {^^(t-s) 1'
fi > 0, cp > 0, which can be found in [13], page 141.

Observe that pUtUx(l,x,y) = pu(l,x,y) P%^[TUx > 1] and PX[X. G

0,7b« > l,Xi G B'] = fB,Pu,u*(hx,y) PililX. G 0\Tu* > 1] dy, so

in view of (2.2.5), P£A is well defined. It is then straightforward to see

that the resulting P£ fulfills 1, 2, 3, 4. D

As a consequence, we have

Corollary 2.2.2 (Markov Property)
Under P%, the joint process (Xm, Xm)me^ is a time homogeneous Markov

chain, with respect to the filtration (3?m — ^m ® ym)meN, and in fact
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P%-a.s.

(2.2.10) P"x[(X.,X.)oOm G*|iFm] = P£m>AJ(X,A.) G*].

Finally, let us introduce the new annealed measure on (ft x C(IR+, Rd) x

{0,1}N, sf ® &), see also (2.1.8):

(2.2.11) P/=PxP; and Êx=fExÊ£,

and observe that by property 1 in Theorem 2.2.1, (Xt)t>o has same

distribution under P^ and P^.

2.2.2 The Regeneration Times r^

In this part, we will define the regeneration times rk, k G N, and discover

the resulting renewal structure.

To define the first regeneration time ti ,
we need to introduce a sequence

of integer-valued (^)t>o-stopping times Nk, for which the condition

Ajvfe = 1 holds, and at these times the process (£ Xs)s>o reaches es¬

sentially a local maxima (within a small variation). Then ti is the

first Nk + 1, k > 1, such that the process (£ • Xt)t>o never goes below

£ XNk+i - R after Nk + 1.

To define Nk, we introduce the integer-valued (J^)t>o-stopping times

(Nk)k>i, which are essentially the times when (£ • Xs)s>o reaches local

maxima (also within a small variation). Then, we choose Ni to be the

first Nk with X^k = 1.

Here is how we precisely define them: First, we introduce for a > 0

the (j£t)t>o-stopping times Vk(a), k > 0: Vq is the first time (£ • (Xs —

Xq))s>0 reaches a, and Vk+i is the first time (£-Xs)s>o reaches R above

the local maximum it reached till \Vk], that is (recall M(a) in (2.2.3)
and Tu in (2.2.2)),

(2 2 12s
vo(a) = Ta ; Vi(a) = TM(rVo(a)1)+jR;

Vk+i(a) = TM(rVfe(a)-|)+jR.

Then, we define Ni(a) to be the first \Vk~\, k > 0, such that \£ • (Xs —

XVk)\ < f for all s G [14, \Vk]}; and iVfc+i(a) to be NX(3R) shifted after
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Nk(a) (it is not Ni(a) after Nk(a), the reason for this comes from our

definition of Nk+i later in (2.2.15)):

(2.2.13) <

'tfi(a) =finf{rVJb(a)l : k > 0,

supse[yfe;ryfcl] \£ (Xa - XVk)\ < f } ,

Nk+i(a) = Ni(3R) o 6Ma) + Nk(a), k > 1,

Ni(a) d=f inf [Nk(a) : k > l,X^{a) = l} ;

(by convention we set A^+i = oo if Nk = oo). We illustrate in Figure
2.2.2 the situation, where N2(a) is \V0(3R)] after Nx(a).

Xy,
M(\Vk^)+l-X0

XT3R ° 9^

Figure 2.2.2: Vk(a) and Nm(a)

Observe that Nk, k > 1, are integer-valued, bigger or equal to 1, and

P^-a.s. sup <<r £• (Xs — X<j ) < R, i.e. within a variation of R, £ X^Nk
reaches a local maximum. Now we can define the (^)t>o-stopping
times (recall (2.2.2)):

(2.2.14)
Si d= Ni(3R) + 1 ; Ji d=f Si + f-R o 9Sl

Rid^\Ji]=Si + Do9Sl;

with D d= [f_Ä].
Now we shall define the integer-valued (^)t>o-stopping time Nk+i,
k > 1, which is bigger than Rk such that AArfe+1 = 1, and the process
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(£ Xs)s>o does not go above £ Xwk+1 + R until time Nk+i. More

precisely:

def

(2.2.15)
Nk+i = Rk+ Ni(ak) o 9Rk with

def

ak = M(Rk) - £ • (XRk -X0) + R,

(the shift 9Rk is not applied to ak in the above definition, cf. Figure

2.2.3).

M{Rk)+l-XQ

£

Figure 2.2.3:

The quantity ak in (2.2.15) is used to make sure that A^+i is an integer

bigger than Rk, such that sups<Arfe 1
£• Xs <£• X^k+1 + R (here is why

we defined the stopping times (^4(a))fc>0 for a general a).

As in (2.2.14), we define the (J^)t>o-stopping times:

(2.2.16)
Sk+i = Nk+i + 1 ; Jk+i = Sk+i + T_R o 9sk+1 ;

def

Rk+i = r^fc+il = Sk+i + D o 9sk+1

Observe that for all k G N, the (J^)t>o-stopping times Nk, Sk and

Rk are integer-valued, possibly equal to infinity. Of course we have

1 < Ni < Si < Ji < Ri < N2 < S2 < J2 < R2 < oo.

With the help of these stopping times, the first regeneration time is

defined, as in [46], by

(2.2.17)
def

Ti = inf{5fc : Sk < oo,Rk = oo} < oo
.
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Again, tï is integer-valued, and ti > 2, because Ni > 1.

With this definition, we see that on the event {ti < oo}, P^-a.s., £-Xs <

£ XTl-x +R<£- XTl - 7R, for s < n
- 1, see also Theorem 2.2.1 and

Figure 2.2.1, i.e. (Xs)s<Tl_i remains in the half space C(£ XTl — 7R),

with C(a) d= {z G Rd : z £ < a} for a G R. On the other hand,
because the process (£ • Xt)t>o never goes below £ XTl — R after ti,

i.e. (Xt)t>Tl belongs to the half space 7Z(£ XTl — R), where for a G R,

11(a) — {z £ Rd : z £ > a}. This will turn out to be an important
issue in the proof of Theorem 2.2.4.

We will see in Proposition 2.2.7 below that the Po almost sure finiteness

of Ti is equivalent to P0-a.s., lim^oo £ Xt = oo. For the time being we

begin with

Lemma 2.2.3

Suppose that Po-a.s. Ti < oo, then P0[D = oo] > 0.

Proof: We prove this by contradiction. If Po[-D = oo] = 0, it follows

from the stationarity of P-measure that JdxPx[D = oo] = 0. There¬

after, by Fubini's theorem, there exists a P-null-set T C ft, such that

for all lo g T, outside a Lebesgue-null-set M(uo) C Rd, P%[D = oo] =

P£[f_Ä = oo] =0 holds.

Because by our assumptions (2.1.1), (2.1.3) and (2.1.4), the transition

density ^(£,£,2/) exists for all lo G ft and t > 0, it follows from the

Markov property of (Xt)t>o under P% that for lo 0 T and for all x G Rd,

P£[n9eQ T_Ro9q <oo] = 1.
<3>0

Therefore, for lo outside the P-null-set T and all x G Rd, Px[T_r <

oo] = 1, which implies by the strong Markov property that P^-a.s.
Urn mit Xt -^ = —00. This contradicts the assumption Po[t"i < oo] = 1.

D

Let us define on the space (ft x C(E+,Md) x {0, 1}n,j^ <g> 2?) the a-

algebra ^, which is generated by the sets of the form:

(2.2.18) {n = m}n om_! n{xm_! £> a}n{xm eG}nFa,

(ra > 2, a G R) with Om_i G Xn-i, G C Rd open, and Fa G Jffc(a+R)
(recall Jtf? in (2.1.5) and C below (2.2.17)). The situation is shown in

Figure 2.2.4.
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Figure 2.2.4:

Essentially, the cr-algebra Sf describes the history of the Bernoulli vari¬

ables A., the path of the process (Xt)t>o, and the random environment

lo possibly contributing before time Ti — 1.

The key step in the study of the renewal structure mentioned in the

introduction is now:

Theorem 2.2.4

Assume that Po-a.s. ri < oo. Let x G Rd, and f, g, h be bounded

functions, which are respectively 3?- (recall (2.2.6)), j%k(-r)- (recall
J$? in (2.1.5) andIZ below (2.2.17)), and W-measurable. Then

, .

Ê3 [f(XTl+. - XT1, AT1+.) g o tXri h]

=Ê0[f(X.,X.)g\D = oo}-Êx[h],

where ty, y G Rd, is the shift operator from the beginning of Section 2.2.

Proof: By Lemma 2.2.3, we know that Po[D = oo] = Po[-D = oo] > 0,
and the right hand side of (2.2.19) is well-defined.

Since the cr-algebra W is generated by sets of the form in (2.2.18), which

form a 7r-system, it is sufficient to prove (2.2.19) for h — l|Tl_mj. • lFa •

^om-x lxmeG l{xm_i-*>a}, with Om-i G Xn-u G C Rd open, and
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For this special h, the left hand side of (2.2.19) is now:

=Ea

f(XT!+- - XTl,XTl+.) g o tXri h

f(Xm+. - Xm,Xrn+.) g otXm;

ri = m,Om-i,Xm-i • £ > a,Fa,Xm G G

Observe that {ti = ra} fl Om_i = Om_i fl {D o 9m = oo} fl {Am_i = 1},
for some Öm-i G ^m-i l~l{Xm_i • £ + R > Xt £, V£ < ra — 1}, therefore

the last expression is now:

(2.2.20) = Ej Êï [ÊÏ [/(Xm+. - Xm, Am+.) 5°^m;

xm eG,Do9m = oo\Xn-i] ;

^o; Om_i,Xm_i • £ > a, Xm-i = 1

By the Markov property, cf. (2.2.10), we observe that P^-a.s. on the

event {Am_i = 1},

Ew
X

-Ë?
Xm— i ,1

f(Xm+. - Xm,Xm+.) gotXm;Xm G G,Do9m = oo %

f(Xi+. - Xi,Xi+.) g otXl;Xi e G,D o 9i = oo

EXuXl[f(X. - X0,X.) g otXo;D = oo], X1 G G

ra —1

Xm— i ,1

Note that, by Theorem 2.2.1, Ai is independent of Xi under the measure

Py i,
for all y G Rd; and using property 4 of Theorem 2.2.1, the last

expression is:

1

Br Bx-inG
dyE%[f(X.-y,X.)goty,D = oo]

Plugging this formula into (2.2.20) and using Fubini's theorem, the left

hand side of (2.2.19) now equals

1

\Br\
dy E| Êï [Ê- [f(X. -y,X.)goty,D = oo];

Fa, Öm-i,Xm_i -£>a, Am_i = 1, {y G ß1"1"1 n G}
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def
Set V = {Fa, Om-u Xm-i -i>a, Am_i = 1, y G Bx~ * n G}, the last

expression equals

1

\Br\
(2.2.21) — /^E<^[F]-Ê"[/(X-y,A.),D = oo]-c;o^

Observe that 1/ efîxTn_1|
is zero for y-£ — 8R < Xm_i •£, see also Figure

2.2.4. Therefore, in the above integral we only need to consider y such

that a < y-£ — 8R, and thus Fa G J%c(y£-7R)- Also observe that for the

Om-i introduced above (2.2.20), we have 0m_i C {Xm_i £ + R> Xt

£,Vt < ra — l}. Therefore, we see that PX[V] is ^£(y.^_7#)-measurable.

On the other hand, since g is J^jz(-r)-measurable and due to the re¬

striction D = oo, we observe that Eiy[f(X. — y,X.),D = oo] • g o ty is

J%n{y .^-iî)-measurable.

As a result of i?-separation, cf. (2.1.6), we see that PX[V] and Ey[f(X. —

y,X.),D = oo] • g oty are independent under the P-measure. Using this

observation, (2.2.21) equals

dy Ex[fêj] Ey[f(X.-y,X.)goty,D = oo]

dy Ê4^]) • Ê0[/(X, A.) g,D = oo],

where we used the stationarity of the P-measure in the last step. By

taking / = g = 1, we get from the above calculation that Ex[h] =

P0[.D = oo] • Jdy Êx[r^-r], therefore the left hand side of (2.2.19) is

now

EQ[f(X,X.)g,D = oo]
Ex[h]

P0[D = oo]

=Ê0[f(X.,X.)g\D = oo] -Êx[h].

This finishes the proof. D

We now define inductively on the event {ri < oo} a non-decreasing

sequence of random variables, by viewing rk, k > 1, as a function of

(X,A.):

(2-2-22)
rfe+1((X,A.))

ri((X.,X.)) +rfc((Xri+. -XT1,AT1+.)), k > 1,
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and set by convention Tk+i = oo on {rk = 00}. We observe that for

each k, Tk is either infinite or a positive integer. Of course, Tk+i =

Tfc((X.,A.)) + Ti((XTfc+. — XTfe,ATfe+.)), but we prefer the definition

(2.2.22) in view of the proof of the renewal structure promised in the

introduction: (in the next theorem, we set To = 0)

Theorem 2.2.5 (Renewal Structure)
Assume that Po-a.s., ti < 00. Then under the measure Po, the ran-

dorn variables Zk = (X{Tk+.)A(Tk+1_1) - XTk; XTk+1 - XTk; Tk+i
- rk),

k > 0, are independent. Furthermore, Zk, k > 1, under Po, have the dis¬

tribution of Zq = (X.A(Tl_!) — Xo; XTl — Xq\ ti) under Pq[ • \D = 00].

Proof: Let us define on the space (ft x C(M+,Rd) x {0,1}N,^®J^) the

cr-algebra &n+i, which is generated by (Zk)o<k<n. It suffices to show

that for h bounded and £fn+i-measurable, n > 0,

(2.2.23) Ê0[h, Zn+i G *] = È0[h] P0[Z0 G *|£> = 00].

We prove this by induction. The case n — 0 follows from Theorem 2.2.4,
because ^1 C Sf, with Sf defined in (2.2.18). For the step n —> n + 1,

we observe that because £fn+i is generated by ^ and 9T~i1(&n), without

loss of generality we can assume that h = hi hn o 6Tl, with hn G ^n

and hi G ^1. It follows from Theorem 2.2.4 that the left hand side of

(2.2.23) equals

Êo[(^nl{zne*}) °0T! • hi]

ù [u 1 n l Ê0[/ii]
=E0[Ä„l{zfl*};ö

=

oo].po[z} = oo].

Observe that {D = 00} = {f_fi = 00} = {f_R > n} = {D > n} (the

equalities hold Po-a.s). Indeed, we only need to show the last equality:
from the definition of D, it is obvious that {T-R > t\] C {D > ri};
to the opposite direction, we see that D > Ti implies T-R > ri — 1,

and in addition because (Xn. — Xq) • £ > 3R for all j > 1, cf. (2.2.14),
and T_# o 0Tl = 00, T_R — 00 follows. Then, we observe that up-to

a Po-null-set, {D > r\] lies in ^1, (indeed, Po-a.s. {D > ri = ra} =

{.D > ra — 1} fl {ti = ra}, thus by (2.2.18), the claim follows), therefore

hn 1(15=00} G ^n. Hence, it follows by the induction assumption that
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the right hand side of the previous expression equals

=Po[Z0G*|-D

=P0[Z0£*\D

This finishes the proof. D

Remark 2.2.6

In the above theorem, the renewal structure is proved for trajectory be¬

tween times Tk and Tk+i
— 1, unlike in [46]. Nevertheless, we have very

good control over the trajectory between times Tk and rk+\, because by
our construction ATfe+1_i = 1, hence, Po-a.s. Xs G B Tk+i-1} for a\\

s G [Tk+i — 1, Tfc+i]. I.e. the path between Tk+i
— 1 and Tk+i remains in

a ball of radius QR, see also Figure 2.2.4-

Proposition 2.2.7

Po-a.s. Ti < oo if and only if Po-a.s. lim^oo Xt £ = oo.

Proof: If Po-a.s. t\ < oo, then it follows from Theorem 2.2.5 that

Po-a.s. Tm < oo, for all ra > 1, and by definition of Tm that Po-a.s.

limm^00 XTm £ = oo. Therefore, lim^oo Xt • £ = oo.

To show the opposite direction, we first claim that Po-a.s. N± < oo,

and hence Si < oo. Let us define

(2.2.24) Zd=sup|Xs-X0| and Ad= {Z > f} ,

S<1

and observe that because of the assumption (2.1.1) and (2.1.4) it follows

from the Support Theorem of Stroock-Varadhan, cf. [2], page 25, that

there exists a constant co(K,b,ä,is,R,d) > 0 such that for all x G Rd

and lo £ ft:

(2.2.25) P^[AC] >c0 >0.

Since lim^oo Xt £ — oo, Po-a.s., we see that there exists a P-null-set

r Cft such that for all lo <£ T, Pft-a.s. Vk(3R) < oo for all k G N, cf.

(2.2.12) for the definition of Vk. Let us define

(2.2.26) Ak = { sup \t-(Xa-XVk)\>%}, k>0,
lse[vk,[vk]] J

= oo] • E0[hn;D = oo]

= oo] E0[hihn o0Tl] .

Eofci]

Po[^ = oo]
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then it follows from induction and the strong Markov property that for

n G N and lo g T, ?o [f)o<k<n Ak] < i1 ~ co)n- As a result, for all

u £ T, P^[Ni(3R) = oo] < Po [f|fc>o^fc] = °- By the stationarity

of P-measure, we see that P^-a.s. Ni < oo, for all x G Rd. Therefore,

J dx Pz [Xi = oo] = 0, so it follows from Fubini's theorem that there is

a P-null-set ^cO, such that for all lo ^ ^, outside a Lebesgue-null-set

M(lo) C Rd, ?%[Ni = oo] = 0. Using the positivity of pu(n,y,z), with

a somewhat similar argument as in the last two paragraphs of the proof
of Lemma 2.2.3, we see by induction that Po[Xm = oo] = 0, for ra > 1.

Clearly, for arbitrary n > 1, Po[Xl(3-R) = oo] < Po [A^- ,3R^
= 0, Vra <

n] < (1 — e)n holds. As a result, Po-a.s. Ni < oo.

We now can prove that Po-a.s. Ti < oo. To show this we note that

by similar computations as in the proof of Theorem 2.2.4, (see (2.2.20),
(2.2.21)):

P0[Rk < oo] = E [P%[Nk <oo,Do 9Nk+i < oo]

= J2 E [?oWk = m - 1, D o 9m < oo]
ra>2

= Y, E [Po k = m - 1, PXm_ul [PXuXl [D < oo]]
ra>2

E
m>2

\br\
dyE P£ [r, Am_! = 1, y G B*—1] • P^[D < oo

for some T G ^m-i®^m-2 suchthat {Nk = ra — 1} = m{Am_i = 1}.
We observe that T C {Xm_i -£ + R > Xt -£,Vt < ra — 1}, hence as in the

proof of Theorem 2.2.4, Pft [T,y G Bx~*, Am_i = 1

are P-independent, therefore the last expression equa

and P%[D < oo]

= Y, r^7 fdV Po [r,Am_i = 1, y G Bx—*] • P0[D < oo]
ra>2

= P0[Sk < oo] • P0[D < oo] < P0[Äjb-i < oo] • P0[D < oo],

(it is not hard to see that the last inequality above is indeed an equality)
so by induction we obtain that

(2.2.27) P0[Rk < oo] < P0[£> < oo]'
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On the other hand, as in the proof of Lemma 2.2.3, Po-a.s. lim< Xt
£ = oo implies P0[D = oo] > 0. Therefore, from (2.2.27) and P0-a.s.

Si < oo, Sk+i < oo on {Rk < oo} we see that Po-a.s. inf{fc > 1 : Sk <

oo,Rk = oo} < oo, which proves Po-a.s. Ti < oo. D

2.3 Law of Large Numbers and Central Lim¬

it Theorem

In this section we will provide a sufficient condition to derive a strong
law of large numbers and a functional central limit theorem. Some

parts of the proofs presented in this section are similar to the proofs of

Theorem 2.3 on page 1864 in [46], and of Theorem 4.1 on page 130 - 131

in [43]. We will also use some classical results about local martingales,
which are presented in the Appendix on page 90.

We begin with

Lemma 2.3.1

Under (2.3.1-i), (2.3.2-i) holds:

(2.3.1-i) Po-a.s. lim £ • Xt = oo and Ëo[ti|D = oo] < oo

t—>oo

(2.3.2-i) Ê0[|XT1| |D = oo] < oo.

Analogously, under (2.3.1-ii), (2.3.2-ii) holds:

(2.3.1-ii) Po-a.s. lim £ Xt — oo and Eo [t-2 D = oo] < oo

t—>-oo

(2.3.2-ii) Ê0[ |Xri|2|£> = oo] < oo .

Proof: First, we prove the implication (2.3.1-ii) => (2.3.2-ii). From

Lemma 2.2.3 we see that Po[D = oo] > 0, and hence Ex[ti|D = oo]
is well-defined. Further, because ti only takes integer value bigger or

equal to 2, we can write

oo

(2.3.3) Ê0[ \XT1\2\D = oo] = V Ê0[ |Xn|2,T! = n\D = oo] .

n=2
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Observe that Pg-a.s. (and therefore Pg-a.s.)

IX.
n

pn nn

/ b(Xs,Lo)ds+ / a(Xs,Lo)dWt
Jo Jo

<2b2n2 + 2\Yn(üü)\z ,

where Ws is some suitable &t Brownian motion, b appears in (2.1.1),
and

(2.3.4) Yt(Lo):= f a(Xs,Lo)
Jo

dW*

is an (^t)t>o local martingale under Pq. Thus, the right hand side of

(2.3.3) is

oo

< 262 E0[t2|L> = oo] + 2 ^ Ê0 [|yn|2, n = n\D = oo]
n=2

By Holder's inequality with p, q > 1 such that - + - = 1, each term in

the summation of the last display can be estimated by

Ê0[|yn|2,Ti = n|L> = oo]

<Ê0[|Fn|2p|£> = oo] p P0[ri = n\D = oo]*

<- r^o[\Yn\2p]* P0[n = n\D = oo]* ,

P0[£> = oo]p

From the assumption (2.1.4), we see that (Yl(uj))t < vt for all lo G ft,
i — 1, • • ,d, so we can apply (2.5.1) in the appendix and obtain that

the rightmost side of the above expression is smaller than

(2.3.5)
c(p, d, v)

P0[£> = oo]p
n P0[ti =n\D = oo]g

Coming back to (2.3.3), we see that in order to show Eo[|XTl|2|.D

oo] < oo, it suffices to prove ^^=2 n^o [tl
some q > 1.

n D = 00] Q < 00, for

To this end, observe that by assumption (2.3.1-ii), Eq[t2|.D = 00] =
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^^=2 n2Po[ri = n\D = oo] < oo, and hence with Holder's inequality:

y^ nP0 [n = n|L> = oo]?
n

(2.3.6) =Enl"a/'n2/,Poh=nlB = °°]i
n

<(^n(1-f)^-(^n2P0[ri = n|JD = oo])"<oo,
n n

provided q close to 1, i.e. p close to 00.

For the implication (2.3.1-i) => (2.3.2-i), we proceed similarly as above.

Instead of (2.3.6), we use

5^\/nPo[ri = n\D = 00] q

n

n n

for g close to 1. This completes the proof. D

Now we are ready to prove the strong law of large numbers:

Theorem 2.3.2 (Strong Law of Large Numbers)
Assume (2.3.1-i), then

(2.3.7) Po-«.,.
^ -!±=-> v

* ^o[XT1\D = co]
t E0[r1|D = oo]

and £ v > 0.

Proof: Because X. has same distribution under Po and Po, it is sufficient

to show that Po-a.s. ^ —^> v.

Further, from our construction of Sk and Ti, see (2.2.14), (2.2.16) and

(2.2.17), it is clear that Po-a.s. XTl £ > 0, thus £ • v > 0 is immediate.

By Theorem 2.2.5, the strong law of large numbers applied on the i.i.d.

random variables (rn+i — Tn,XTn+1 — XTn), n > 1, shows that Po-a.s.

(2.3.8) ^ ^^ E0[XT1\D = 00], ^ ^^ E0[ti\D = 00].
n n
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For each t > 0, we define a non-decreasing integer-valued function k(t),
which tends to infinity Po-a.s., such that

(2.3.9) Tk(t) <t< Tk(t)+i, (with the convention To = 0).

Dividing the above inequality by k(t) and using (2.3.8), we find that

Po-a.s.

(2.3.10)
*® -*=^->

1

* E0[t1|D = oo]

Further, we observe that, because of

Xt
_

^Tfc(t) xt — xTk(t)
t
~

t
+

t

and in view of (2.3.8) and (2.3.10), P0-a.s.

Xrk{t) t^oo E0[XT1\D = OO]
* Ê0[ri|D = oo]

we can show (2.3.7) by proving

p0_a.s.
Xt~X^ ^2^o.

t

To prove this, we observe that since X. is the solution of the stochastic

differential equation (2.1.7), we have Po-a.s.

1
i i

- \t ~ Tk(t)\ 2
- \Xt - XTh(f, < b -^- + -

sup \Ya\,
t

' fe(t)l - t t s<t

with the (^t)t>o local martingale Yt(Lo) defined in (2.3.4). In view of

(2.3.9) and (2.3.10), the first term in the last expression tends to zero

Po-a.s.. Applying (2.5.2), the second term Pg-a.s. tends to zero, as t

tends to infinity. D

We are now able to state and prove the promised functional central limit

theorem:

Theorem 2.3.3 (Functional Central Limit Theorem)
Let us assume (2.3.1-ii). Define for each s > 0 the process Bs : (ft x

C(R+,Rd),£/®^) - (C(R+,Rd),^), with

(2.3.11) Bst =
Xst~StV

,t>0.
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Then, under the Po-measure, the C(R+,Rd)-valued random variable Bs

converges in law, as s —>• oo; to a d-dimensional Brownian motion B.,
which has the non-degenerated covariance matrix

(2 3 12) K =y ^Xti
~ VTi^Xti ~ vnYlD = oo]

Ê0[r1|D = oo]

Before proving this theorem, let us recall some classical facts about

weak convergence on C(K+,Rd), which will be used throughout the

proof. (For a detailed treatment, we refer to Chapter 3 in [11], and

Section 3.1 in [39])

On the space C(E+,IRd) we define the metric

(2.3.13) p(Y;Z.)
oo

1

=fE^ sup (|rs-Zs|Al)<l, Y,Z.eC(R+,Rd),

which induces the topology of uniform convergence on compact intervals

of R+. If on some probability space, say (E,A,P), Yn and Zn are

sequences of continuous Revalued stochastic processes, and the laws of

the processes Yn converges weakly to some probability measure Q on

C(E+,]Rd), further if p(Yn,Zn) converges in probability P to 0, then

the sequence of laws of the processes Zn converges weakly to Q.

oo

Proof of Theorem 2.3.3: It suffices to prove that Bs > B. in law

under P0, because X. has the same distribution under Po and Po- The

proof is divided in 5 steps. In Step 1 - 3, we prove that for integer-
valued s, Bs -—^> B. in law under Po- in Step 4, we generalize this to

non-integer s. And in the last step, Step 5, the non-degeneracy of the

covariance matrix K is proved.

Step 1: Define

Zj d^f (XTj+1 -XTj)- v(tj+i - t3) , j > 1
•3-

n

Sn = E Z3 = XTn+i - XT! ~ v(Tn+i - Ti) ,

and let St be the linear interpolation of Sn, with the convention Sq = 0.
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In view of Theorem 2.2.5 and the definition of v in (2.3.7), the random

variables Z3,j > 1, are i.i.d., centered under Po, and, thanks to our

assumption (2.3.1-ii) and Lemma 2.3.1, square integrable.

The Wiener & Donsker's Invariance Principle, cf. page 172 in [39],

implies that under the Po-measure

n—>oo

(2.3.14) 4=^- ^^ B. in law
,

'n

where B. is a d-dimensional Brownian motion with covariance matrix

A — Eo[ti|D = oo] • K. (The theorem stated in [39] is for the case

with covariance matrix equals 1. To get our result, we observe that, as

we will show below in Step 5, the matrix A is positive definite, hence

A~î(A=Sn.) converges under Pq in law to a Brownian motion with

covariance matrix Ê0[(Â_2Z{](Ä~2Z{f\ = 1. Thereafter, (2.3.14) fol¬

lows.)

Step 2: For each n G N, define a non-decreasing sequence j(n) G N

(with the convention j(0) = 0), which tends to infinity Po-a.s., such

that

(2.3.15) Tj(n) < n < Tj(n)+i,

and let j(t) be its linear interpolation.

The goal of this step is to show that under Pq

(2.3.16) —£(j(n-)-i)+ W^°°> B. inlaw,

where B. is a a7-dimensional Brownian motion with the covariance ma¬

trix K.

As a result of (2.3.14), we have -4= .S* » y B. in law under
V ' Vn Ê0[t1|D = oo]

Pq, so in view of the comments after Theorem 2.3.3, it suffices to show

n—»-oo
n

> 0(2.3.17) È„[^Sw„.)_1)+;iSI__f__)

To prove this, we pick Ö > 0 arbitrarily small, and choose T E N large
such that Ylm>T 2^ —

^' Because -y^Sn. > B. in law under Po,

the laws of -j^Sn. on C(R+,Md) are tight, so there is a compact set
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Ks C C(M+,Md), for the topology of uniform convergence on compact
^

1

intervals, such that supn Po ~7^Sn. $ K$ < Ô, and by the Arzela-

Ascoli Theorem, cf. page 369 in [37], there exists some rj(ö) > 0 such

that

(2.3.18) supP0
n

1

sup

.

\t-t'\<ri, A/n
t,t'<T

\Snt — Snt'\ > S <ö.

On the other hand, we observe that \j(t) — j([t})\ < 1, t G R+, ([t]
denotes the integer part of t), and

(2.3.19) j (m) < m
,
for all m G N.

From (2.3.9), we also see that j(n) — k(n) for all n G N, hence (2.3.10)

implies Po-a.s.

we obtain that

j(n) n^oo

>
Eo[ri|D=oo]

Applying Dini's second lemma,

Po-a.s., for all U > 0, sup
0<t<E7

U(tn) - 1)+
n E0[ti\D = oo]

n—>oo

>0

Hence, for n large enough we get

UM - l)+
sup

0<t<T n EofTil.0 = oo]
>n(6) <S

Coming back to (2.3.18), we obtain

1

'»(j(trO-l)-sup —=

0<t<T Vn

S.
E0[r1|D= oo]

Al <3S

for sufficiently large n. The claim (2.3.17), and hence (2.3.16) follow.

Step 3: We show in this step that under Pq

1

(2.3.20) Bn ^^ïB. inlaw.

As stated in the comments after Theorem 2.3.3, it suffices to show that

(2.3.21) P{Bn'-hSU(n-)-i)-
n—>oo

>0
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To this end, choose T > 0. Then we have

1

sup
t<T

B? S,
n

0(tn)-l)+

(2.3.22) <SUp^ <S'(j(tn)-l)+ - »S'o([tn])-i) +
t<T Vn

+ sup
t<T

B? s,(J([tn])-1).

Observe that the first term on the right hand side of (2.3.22) is bounded

from above by

(2
\V\ 1

3.23) —= sup (Tm+i-Tm)+ sup —=\XTm+1-XT.
Vn 0<m<j(\Tn]) 0<m<j([Tn]) Vn

which, as we will see, converges to 0 in Po-probability. Indeed, in view

of Theorem 2.2.5 and (2.3.19), for any u > 0:

1
P0 —p= SUp (Tju+I - Tm) > U

LVn 0<m<j([Tn])

<P0 [ti > Vnu] + [nT] P0 [n > y/nu\D = oo]

<P0 [n > Vnu] H
g
^o [t2, n > v^D = oo]

n~*°°

> 0
,

lb Lb

by assumption (2.3.1-ii). Similar result holds for the second term in

(2.3.23), by (2.3.2-ii) we have:

1 -i

sup |XTm+1 - XTm | > u

n 0<m<j([Tn])

nT
-»0<P0[|XTl| > v^w] + —^ E0[|XT1|2, |XT1| > y^l^ = oo] —

Let us now consider the second term on the right hand side of (2.3.22).
We claim that it also converges in Po-probability to 0. To show this,

we start with the easy fact that Po-a.s., the second term on r.h.s. of

(2.3.22) is smaller than

sup4={ / (\v\ + \b(Xs,Lo)\)ds+ r (\v\ + \b(Xs,Lo)\)ds\
t<T Vn i jT,.tn Jo J

rj([nt])

(2.3.24)
/KV

-l-sup —={ \Ynt — YT ., ,n

t<T V7^'

+ Y
Tl }>
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with Yt defined in (2.3.4). The first term in (2.3.24) is bounded from

above by

b+ \v\

n
sup(ni
t<T

Tj{[nt\) + Tl)

2(6+|v|)
<

n

( sup (Tm+i
K0<m<j([nT])

T,ml\i

which converges to 0 in FVprobability, as shown above.

The last term in (2.3.24) is smaller than

—= YTl -f- —=: sup Ynt — YT ,,
.. ,

which, we claim, converges also to 0 in Po-probability. Indeed, for all

u>0:

sup \Ynt-YT | > Vn'nu

t<T

<Po

(2.3.25)

sup \Ynt - yT([nt]) | > Vnu; sup (rm+i - rm) < y/n
' '"

0<m<j([nT])t<T

+ Pf sup |rm+i -Tm| > Vn
0<m<j([nT])

We know already from above that the second term on the r.h.s. of

(2.3.25) converges to 0, as n —> oo. For the first term on the r.h.s. in

(2.3.25), we observe that it can be further estimated from above by

(2.3.26)

Po

[nT]

sup sup \Ym+s - Ym\ > Vnu
m<[nT] 0<8<y/n

< ^2 Po I sup |ym+s - Ym\ > Vnu
m=0 0<s<v^

Applying the Bernstein's inequality, cf. page 153 - 154 in [36], we obtain

that for any m G N:

ro sup \Ym+s -Ym\> Vnu < 2de—^
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thus the right hand side of (2.3.26) tends to 0. This completes the proof
of (2.3.20).

Step 4: In this step we study Bs for s G R+ tending to infinity, and

extends (2.3.20).

The proof is very similar the one given in Step 2. We consider sn —> oo.

For ö > 0 arbitrarily small, we define T G N such that ^2m>T ^r < à~-

From (2.3.21) we know that under Pq, with B. as in (2.3.16),

X\,
l.
— v\sn]' Xrs

l.
—

v\sn]-

(2.3.27) [ni

„ -, and hence [Snl L J

V\ßn\ V°«

converges in law to B., as n —> oo.

Therefore, the laws of -y=(X[Sny — v[sn]-) are tight, and for any T > 0

and Ô > 0, one can find n(ö) > 0 such that:

sup P0 sup
\t-t'\<r,,
t,t'<T

(X[sn]t ~ v[sn}t) - (X[8n]t> - V[sn]t')
>S <s

Since supt<T

Po

t
n—too

¥ 0, we obtain that for large n

sup iX[sn]t ~ V[sn]t) ~ (XSnt ~ VSnt)
_0<t<T Vs

and from (2.3.27) we deduce our claim

>£ <S

Step 5: In this final step we will prove the non-degeneracy of the co-

variance matrix K. First, we let H = {z G Rd : 14Ä < z • £ < IbR} be

a strip in Rd. We claim that for any n > 3 and x G H,

(2.3.28)
P0[XTl G BR(x); n = Si=ti;D = oo]

=P0[Xn G 5R(aO; n = 5i < D] P0[D = oo] > 0
.

To show this, we prove in the first step that for any x G H

(2.3.29) Pop^n G BR(x); n = Si < D] > 0.

def
To see this, we observe that for all lo G ft, x G H, with ß =" {z G Md :

|£* nBR(x)\ > \BR\/2} (recall (2.2.1)), we have (see (2.2.13), (2.2.14)



74 Chapter 2. Diffusions in Random Environment

and Theorem 2.2.1):

P^[XneBR(x); n = Si<D]

Xn_! B;N1=n-l;f-R>n-l

Xn_! G B; Ni(3R) = |Vi(3Ä)l = n - 1;

f_Ä > n - 1

(2.3.30)

1 ~

>- Pw

>- Pw

Because the path in the next figure belongs to the event on the right
hand side of (2.3.30), with the Support Theorem of Stroock-Varadhan,
cf. page 25 in [2], the right hand side in (2.3.30) is positive, for all

lo eft. This proves (2.3.29).

M(n-2)

Xn_i G B

Figure 2.3.1:

To finish the proof of (2.3.28), we only need to prove the first equality
in (2.3.28). To do this, we proceed as in the proof of Theorem 2.2.4:

P0[XT1 G BR(x); n = Si=Ti; D = oo]

=P0[^n G BR(x); n = Si < D; D o 6n = oo]

=E{ P£ [Xn_! G B; An_! = 1; T; Xx o 0n_i G BR(x); D o Bn = oo] } ,

with È d= {z G Rd : BzHBR(x) ^ 0} and some T G ^"„_i ®^n-2. By
the Markov property, cf. Corollary 2.2.2, and similar calculations as in

the proof of Theorem 2.2.4, see page 60, the last expression equals

1

\Br\
1

\Br\

dyE{p0J[V]-P"y[D = oo}}

dyP0[V])-P0[D = oo],
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with V d= {Xn_i G È; T; An_i = 1; y G B*"-1 D BR(x)\ , where, as

in the proof of Theorem 2.2.4, we have used that Pq [V] and Py[D =

oo] are P-independent, and the P-measure is translation invariant. On

the other hand, we observe that by the identical calculation Po[Xn G

BR(x); n = Si < D] = f dy r^—rEo[V] holds, the first equality in

(2.3.28) follows immediately.

With the help of (2.3.28) we can now prove the non-degeneracy of the

covariance matrix K. Clearly, for any w G Rd, wtJ^.w > 0, i.e. K is

positive semi-definite. We prove the non-degeneracy by contradiction.

If wt'Kw = 0 for some unit vector w G Rd, then Pç,[w (XT1 — tiv) =

0|L> = oo] = 1.

Combine this with (2.3.28), we obtain that for any given x G H, and

for all n > 3: Pq[w • x — R < n(w • v) < w • x -\- R; ti = n\D — oo] > 0
,

which implies w v = 0. Coming back to the above inequality, we see

that \w • x\ < R for x G H, by taking limits of points in H, we obtain

that w z
— 0, for all z such that z • £ = 0. Since v • £ > 0, it follows

that w = 0. This, combined with Eo[ti|D = oo] < oo, proves the non-

degeneracy of the matrix K, and hence finish the proof of Theorem

2.3.3. D

2.4 Application to an Anisotropic gradient-

type Diffusion

In this section we will apply the results from the previous sections to a

class of anisotropic diffusion processes in a random medium, which is re¬

versible when the environment is fixed. The class under consideration is

a specialization of (2.1.7) with a = 1 and b(x,Lo) = W(x,lo), where for

each lo £ ft, V(-,lo) G C1(Rd,M) has bounded and Lipschitz-continuous

derivatives; in addition we assume that for some £ G Sd~1, A, B > 0

and A > 0,

(2.4.1) Ae2xe'x < e2V{x^ < Be2Ux, for x G Rd,üo G ft.

We will prove the existence of an effective, non-vanishing velocity, and

a functional central limit theorem in Theorem 2.4.11.

Let us mention that in this section c, c, c and C always denote some
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positive constants, which do not depend on a; G I*1 and lo G ft. They
need not to be the same in each occurrence.

2.4.1 Key Estimates

We will now derive estimates on the exit distribution and exit time of

the diffusion process from a large cylinder with axis parallel to £, cf.

Proposition 2.4.1 and 2.4.2. We will then derive the transience of the

process in direction £, cf. Corollary 2.4.6.

Let us introduce

(2.4.2) mUJ(dx) = exp {2V(x, lo)} dx
, m(dx) = exp{2A£-a:} dx

,

and the corresponding scalar product ( • ; • )mui on ^(m^), respectively

( •

; • )m on L2(m). Observe that due to (2.4.1), the norms || ||L2(mw)
and || • ||L2(m) are equivalent, hence ^(m^) = L2(m) for all a; G il.

Further, let us denote by (P^)t>o the semi-group corresponding to the

solution of this stochastic differential equation, that is, (P^f)(x) =

E%[f(Xt)] for / bounded and Borel-measurable. Observe that for each

lo G ft the differential operator

Lw = -A + VV(x,lo)-V

is the generator of the semi-group (P^)t>o, cf. page 251 in [10]. One

can easily check that (f;Lug)miil = (g\Luf)mu for f,g G Cc°°(Rd,R).
From (2.3) in [15] we observe that mCJ(dx) is the reversible measure to

Pi, i.e. (f\Pig)mu = (g;PU)mu,i for f>9 L1^) and bounded (the

operator Lu has the form of (3.4) in [15], therefore the assumption for

(2.3) in [15] is fulfilled).

Let us now introduce the Dirichlet form Sm^ corresponding to the op¬

erator Lw, or the semi-group P^,

(2.4.3) é?mu(f,9) =^1^ - Pt)f,9)m„ >

with its definition domain

®m„ d= {/G L2(mw) : Urn i((l-Pi)/;/)mw< 00}.
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It follows from Remark (2.12) and the proof of Theorem (2.3) in [15]
that C£°(Rd,R) is a core of <fmw. Further, from (2.4.1), we have

'^mw = ^ = {/ E L2(m) : £-J G L2(m),i = 1, • • • ,d],

A£m(f,f) < LMJ) < Bgm(f,f), fe®,

(2.4.4) <

th £m(f,g) = ±ZLi(£j;â;9)m
For each lo G ft and open subset U of Rd, we introduce the bottom of

the Dirichlet spectrum of operator —Lw in U:

(2.4.5) Aw(L0 = inf j^f^ - f e C?(U)J? o| > 0.

Proposition 2.4.1

(2.4.6) inf AU(U) >0,
U,uj£Q

where U varies over the collection of non-empty open subsets of R .

The bounded self-adjoint operator P^ v
on L2(raw); which is defined by

fâ,uf)(x) d=^[f(Xt),Tu >t], fort > 0 and / G L2(mJ; satisfies

(2.4.7) sup||P^|| <exp(-^l , t>0,

for some 7 > 0; with || • ||mw denoting the operator norm in L2(raw).

Proof: Observe that because of (2.4.1) the inequality j$(f',f)mw <

(/; f)m holds for all / G L2(m) = L2^); and similarly f<fmü,(/, f) >

êm(f, f) holds for all / G C(U). Therefore, for U open subset of Rd,

Aoj(U) > jjA(U), for all lo e ft, where A(U) is defined, analogously to

AW(L7") in (2.4.5), with é>m instead of <^mw.

It thus suffices to find a lower bound for mîu K(U). Further, because

K{Rd) = inf[/^0 A([/) and (2.4.5) also holds for A(U), we can assume

that U is open and bounded.
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Observe that the measure m(dx) = e2Xi'x dx is (up to a multiplication

factor) the reversible measure for Brownian motion with constant drift

X£, and Sm is just the corresponding Dirichlet form. Let us denote

the canonical law of this diffusion process starting in x by Qx and its

expectation value by E^. Then exp{—8£ • Xt + at} is a Qx-martingale,

provided a = ÔX — ^-. Choosing Ô > 0 small enough, we can make

a > 0. The stopping theorem implies that for any bounded open set

U C Rd containing x, E$[exp{-S£ • (XTu - x) + aTv}] = 1. With

p — sup{\£- (z — z')\ : z,z' G U}, we have —S£-(Xtu — x) > —Op, hence

sup^EQlexpfaTc,}]^.

Now, let us introduce the bounded self-adjoint operator Q^ on L2(m),

which is defined by (Qtuf)(x) d= E$[f(Xt),Tu > t], with t > 0 and

/ G L2(m). We claim that for all t >

sup \\Q\j
U open

0:

< e-at'2
m

with || • ||m denoting the operator norm in L2(m). To show this, we

observe that for / G L2(m):

\\$uf\\l*{m) = I m(dx) (Q\jf)2(x) "T" (lt/;Qt[//2)m
Ju

= (QÊ/W2)m = jm(dy) Qy[Tu > t]f2(y) < e-afe^||/||22(m) ,

where Chebychev's inequality Qy^ > t] < E^e"^-*5] < e-at+6p

is used in the last step. Hence, ||Qjy H2 < e~antJr5p, n G N. Taking
the n-th root, it follows from Theorem VI.6 on page 192 in [34], that

HQSyllm < e~at/2, and our claim follows. This implies that A(U) > f >

0, and (2.4.6) follows. Finally, (2.4.7) is just an easy consequence of

(2.4.6), cf. Theorem 4.4.2 in [14]. D

Let U(L) now be a cylinder centered at x with height 4L in the direction

£ and radius 4L2 > 0 in the directions normal to £, that is,

(2.4.8) U(L) d= iz G Rd : \(z - x) £\ < 2L;

\(z-x)-e\ <AL2ye±£, \e\ = l} .



2.4. Application to an Anisotropic gradient-type Diffusion 79

Proposition 2.4.2

There exist two constants ci > 0 and c.\ > 0 such that for all L > 0

(2.4.9) sup P£ [TU(L) > iL] < cie~^L .

X,LJ

Proof: Observe that for t > 1,

PÏ [2b(D > *]

<P£ [X! G ßL(a;),rü(L) o öi > t - 1] + P- [Xi g PL(x)] .

By (2.5.5), there exist constants c > 0 and c > 0 such that the second

term on the right-hand side above is smaller than ce~cL for all x G

Rd and lo G ft, hence it suffices to study the first term in the above

expression.

By the Markov property, the first term above is

P(t[Xi^BL(x),Tu{L)o9i>t-l]
=E"x[X1eBL{x),P"Xx[Tu>t-l]}

= (lBi(x)(-)pw(l, x, ) e-2yM; (P^lu)(-))
\ / m,„

< lBL(*)(-)PM,xr)e-2VM

Because there exists a constant c > 0 such that pu(l,x,y) < c for all

lo G ft, x G Rd and y G Bl(x), cf. (2.5.9), we obtain for the first term

on the rightmost side in the above expression that

||lBL(x)pw(l,a:r)e-2V||^<c2y,dylflL(x)(!/)e-2^w)
<cLde-2Mxe2XL,

for some c > 0, where we used (2.4.1) in the last step. Similarly, we can

estimate ||1[/|LW by:

lit/ I2
Im,

: J dy lu(y) e2V^ < B J dy lu(y) e2X^

<cL2d-xe2Xlxe^L
.

Putting them with (2.4.7) together, we obtain for t > ^ V 1 that

P£ [Tu >t]< cL<d) e3ALe-7(*-i) < ce"

7

-cL
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for all x G Rd and lo G ft. Therefore, we can find ci > 0 and ci > 0

such that P% [TU{L) > -L] < cie~^L. D

Let us divide the boundary of U(L), cf. (2.4.8), into dU(L) = d+U(L) U

d-U(L)Ud0U(L), with

(2.4.10)

def

d+U(L) = {^ G ÖC/(L) : £ • (z - x) > 2L} ,

def

d-U(L) = {z G dU(L) :£-(z-x)< -2L}

def

^doU(L) = dU(L)\(d+U(L) U d_*7(L))

The following estimate will play an important role:

Proposition 2.4.3

There exist two constants c2 > 0 and c2 > 0 such that for all L > 0:

(2.4.11) sup P

x,uj

Tu{L)<f;XTu(L)ïd+U
Z„v~c2L

< c2e

Proof: Without loss of generality let us assume L > j.
Observe that,

def
with In = [n, n + 1), n > 0, we have

4L

Tu<^;XTu^d+U

m-i

<P^[T^G/0]+ £ P£ TuEln,XTu ?d+U
n=l

Also observe that in the above expression, because of (2.5.5), we have

for the the first term on the right hand side

P£ [Tu G /o] < P sup|Xs -Xo| > 2L

S<1

-cL
< ce~clj

,
x eRa,co G ft.

For the terms in the sum, we notice that for n > 1:

X

Ul

<p*

TueIn,XTu £d+U

Xi eBL(x),Tueln,XTu £d+U + pUl

Xi ^Bl(x)
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~„-cL

and P£[Xi £ ßi(i)] < P^sup^jX, - X0| > f] < ce-cL'

Hence, we only need to prove that

Y, px [Xi 6 Bl (x),Tu G In,XTu $d+U}< ce

l<n<(4L/7)

To this end, we notice that

Xi eB^(x),TueIn,XTu £d+U

Xi eBL(x),Tueln,xneU0[JU-

pui
X

<pw
—

'
X

+ P£ Tu G In, sup \XS - X0| o 0n > I
S<1

def
with f/0(L) d= {2 G Rd : 3y G ö0C/(L), |y - z\ < §} and U-(L) =

{z G Ed : 3y G d-U(L), \y - z\ < §} .
We see with (2.5.5) that the

expression above is

<PU!

Xi G Bl(x),Tu G In,Xn eUoUU- + ce"
-cL'

Thus, it suffices to show that Ylii<n<(ALh) Px [xi ^ Bl(x),Xu E UqU

U-] < ce~cL
.
To prove this, we observe that with for U3 = Uq or

Uj = U-, it follows from the Markov property and pw(l,x,y) < c, cf.

(2.5.9), that

P^[xieB^(x),xneU3

(2.4.12) =/ dzpu(l,x,z) (P^-1lUj)(z)
2"

<< _ _

— 2\£-x„\L I r>n— 11 .-1 A
<ce e (Pw ic/jjlSiCx) ) •

V 2 / m

By Theorem 1.8 of [41] on page 290, there exists a constant C > 0 such

that for all lo E ft, and any open sets U,B cRd:

(2.4.13) (Pr'lu; lB(x))m < ^m~(B)VMÜ) exp { - ^^y} ,

where p(-, •) is a pseudo metric on Rd, which is defined for open subsets

F and F' in Rd through

p(F,F') = sup{^(P,P/) : ^ E C(Rd,R), dT(^,^) < dm},
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with ip(F,F') d= inf{|^(ar)-V(2/)| : x E F,y E F'}, cf. page 290 in [41],
and see page 277 in [41] for the definition of T(-,-). For our <§m, one

can easily compute that dT(ip,<ip) = e2Xi'x\Vip\2 dx for <ip E C(Rd,R).
Thereafter, we obtain that p(F,F') > mf{\x - y\ : x E F,y E F'}. (See
also the second example on page 278 in [41]). Actually, the Dirichlet

form S'm plays the role of S, and $muj the role of é>t in [41]. They are

symmetric and strongly local, hence with (2.4.4) the condition (UP) on

page 279, and the assumption for S on page 277 in [41] is fulfilled.

Through simple computation, we get that for all x E Rd and lo E ft

m (Bl(x)) <ce2Xi-xeXLL

m(U0(L))<ce2X£-xe5XLL2d-2,

m(U-(L)) <~ce2Xl-xe-ZXLL2d~1

Hence, for all xetf and lo E ft we obtain from (2.4.13) that

Xi G Bl (x),Xn E U-] < cLk{^ exp{ - ^L} < ce
-cL

because p(Bl/2(x),U-(L)) > L and n < 4L/7. Similarly, because

p(BL/2(x), Uq(L)) > 4L2 - L, we obtain for all x E Rd and lü E ft that

pu>
X
Xi E BL(x),Xn E U0] < cLÄ(d)e4AL exp { - cL3} < ce

-cL

Collecting the above results, we see that (2.4.11) is proved.

With the help of the previous two propositions, we obtain:

Corollary 2.4.4

There exist two constants c% > 0 and C3 > 0 such that for m G N,

(2.4.14) sup P

X,U!

T_ 2mR < T2mR <c3exp{-c32mP},

where R > 0 is the constant from R-separation above (2.1.6).

D

Proof: Let 4L = 2m+1P in the definition of U(L) in (2.4.8), and observe

that

P£ [f.2mR < T2mR] < P- [Tu > f} + P£ [Tu < f,XTu i d+U] .
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Our claim follows immediately from the previous two propositions. D

The next two corollaries will be useful when checking the assumptions
of Theorem 2.3.2 and 2.3.3.

Corollary 2.4.5

There exists a constant C4 > 0 such that

(2.4.15) inf P%[D = 00] > c4 > 0,
X,Ul

where D is the first backtracking time defined below (2.2.14)-

Corollary 2.4.6

The process (Xt)t>o is transient and P£ [ lim £ • Xt = 00] =1 for all
— lt—»oo

x E Rd and lo E ft. Hence by Proposition 2.2.7, Px-a.s. t\ < 00.

The proof of these two corollaries is just a slight variation on the proof
of Corollary 2.3 and 2.4 in [38], where we apply the Support Theorem

of Stroock-Varadhan, cf. page 25 in [2], instead of ellipticity directly.

2.4.2 Integrability Properties

In this part we use the results from the previous part to prove that

supx w E£[eCTl] < 00 for some c > 0, and derive the main result of this

section. The proof is divided into several propositions.

First, let us introduce the random variable

(2.4.16) M d=
sup [£ (Xt - X0) : 0 < t < f_*} ,

i.e. M is the maximal relative displacement of X. in the direction £

before it goes R below its origin. It will turn out that M is an important
variable in studying the integrability properties of £ • XTl. Because

inf^ P£[T_h = 00] > c4 > 0, cf. (2.4.15), we cannot expect M < 00

P^-a.s.. Nevertheless, we have the next proposition.

Proposition 2.4.7

There exists a constant cj > 0 small enough such that

(2.4.17) supE-[ec?M,f_Ä<oo] <1-^,
X,U)

^

where C4 is the constant defined in (2.4-15).
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Proof: With the help of (2.4.14),the proof of this proposition is a slight
variation of the proof of Lemma 4.2 in [38], (T-R plays the role of the

variable D in (4.5) of [38]). D

Now we shall prove the integrability of exp{c£ • XTl} under the ex¬

tended quenched measure P£. We recall the (J^)t>o-stopping times

(Vk(a))k>o' (^(a))fc>o and ^iW defined in (2-2-12)' (2-2.13), and

the events (Ak)k>o introduced in (2.2.26).

As we will see in the proof of Theorem 2.4.9, exp{c£ • (X^ (a)
— Xo) — ca}

will play a key role in studying the integrability of exp{c£ • (XTl — Xo)}
under P£. Let us start with:

Proposition 2.4.8

For each C5 > 0 there is a c& > 0, such that:

(2.4.18) sup E exp{c5(£- (XNl{a) -X0) -a)} < I + C5

a>0

Proof: First, we claim that for each cq > 0, there exists a c > 0, which

tends to 0 as Cq tends to 0, such that

(2.4.19) sup E[
a>0

exp {c(£ (X^i(a) - X0) - a)} < l + c6

To see this, we observe that because for any x and lo, P^-a.s. limt £-Xt =

+00, cf. Corollary 2.4.6, hence Vk(a) < 00, k > 0, we can show with the

same proof as the one given in the proof of Proposition 2.2.7 (instead
of 3P we simply use a) that for all x, lo and for any a > 0, P^-a.s.

Ni(a) < 00. Notice, (we drop the "a" from all Vk(a) and Ni(a))

exp{c£-(Xùi(a)-X0)}

= E£ [exp {c£ (XÏVo] -X0)},Ni = \V0]

+ Y, E" [exp {c£ • (X[yfe] - Xo)} , Ni = \Vk]
k>l

Further, we notice that the first term on the right hand side is smaller

than exp {c(a + ^)}> since £ (Xy0 — X0) = a and £ • (X|-yQ-| — Xy0) <

R/2 on the event {|~Vb] = Ni}. We also observe that for k > 1,

£-(X[Vk]-XVk) < f on the event {X1 = \Vk] }; and £-(XVk -Xyfc_J <
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R + Z o 9vk_1, with Z defined in (2.2.24). So, it follows from the strong
Markov property that for k > 1,

zw

-x

cR

ec£<xiVkï-x°\Ni = rVfc]

w
<e~ E

<e~E%

cR
_. ,

<e-E-

exp{c^- (XVk -X0)};A0,--- ,Ak-i

e<e<Xv^-x^+Zoev^+R)-,A0,Ai,..-,Ak.i

eci<X^-x^;A0,-.. ,Ak_2;E«Xv [e«R+z^;A]
v k — 1 L J

(Aq, , Ak-2 are omitted when k = 1). It follows from (2.5.7) that for

c > 0 small enough sup^ w E^[ec^z+R^;A] < 1 — ^f, where the constant

cq > 0 is defined in (2.2.25). Therefore, by induction we observe that

the last expression is smaller than

e^(l-f)kE"x exp{c£.(XVo-X0)} =ec^)(l-f)

Hence, for c > 0 small enough we obtain that

S*U<P E* [GXP {ci ' (XNi(a) -X0)-ca}
a>0

cR

<e* Y^i1 ~ f)k = C < oo

fc>0

To get (2.4.19), we observe that by Chebychev's inequality, for c G (0, c),

(2.4.20) sup E£ [exp {ci (X^i(a) - X0) - ca}

^OO

<l + cC dz ecze~cz < 1 + c6 ,

Jo

provided c is small enough. This proves (2.4.19).

Now, observe that it follows from the definition of Ni(a) in (2.2.13) and
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the strong Markov property, cf. Corollary 2.2.2, that

E"x[exp{c£-(XNl{a)-X0)}
= Y%\eCe<X*kM~X0)>Ni(a) = KM

fc>i

E" [exp {c£ • (X^i(a) - X0)}; A^i(a) = 1

+ J2 É* [exP ici (XNk(a) ~ Xo)}; A^i(a) = • • • = A^fe(a) = 0 ;

^fc(a).o[eXP{c£- (Xff1(3R) -X0)};Ajvl(3Ä) = 1]

Similar to (2.4.19), we can find cq > 0 such that ExQ [exp{c6^-(X^ / s
—

Xq) — Cßa}] < 1 + cV Further, we observe that under the measure P£ A,

for any integer-valued (J^)t>o-stopping time S, Xs is independent of

&s ® ^s-i-, see property 2 of Theorem 2.2.1. Therefore, we see that

for c G (0,C6) the previous expression is smaller than

eE\ exp {c£ (X^i(a) - Xo)}] + ]T Ê* [exP H • (*#*(») "*<>)};
fc>i

XN1(a) XNk(a) ~ ° edcÄ(l + C6)e,

where e is given in (2.2.5). By induction we obtain that the last expres¬

sion is

< Ew
— '-x <*(**(.,-*>)] {£ + _£_ £ [(1 _ e)c3cfi(l + c~6)]fc}
<ecaC < oo,

fe>i

for some C > 0 independent of a, provided C6 > 0 and c > 0 are small

enough. That is, supx>w>a E% [exp {c£ (XNl{a) - X0) - ca}] < C < oo.

Our claim follows by a similar computation as in (2.4.20). D

Theorem 2.4.9

There exists a constant eg > 0 such that

(2.4.21) sup E£ [exp {c8£ (Xri — X0)}] < oo

X.U)
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Proof: Observe that

Ê^[exp{c£-(XT1-X0)}

(2.4.22)
= ]TÊ£ \ec£<Xsk-x°\Sk <oo,Do9Sk= oo'

k>l

<yjÊï[erf-<^-*°>,S* < oo] d=f Y>
k>l k>l

and because for any x and lo, £ (X^ — X^^i?)) < 10i?, P^-a.s. (cf.
Theorem 2.2.1), Proposition 2.4.8 implies that hi < oo. So it suffices to

show that Y^k>i hk+i < oo. To show this, we observe that (cf. (2.2.15))

£ (XSk+1 - X0) < 10Ä + £ (XRk -X0)+£- (XNl{ak) - X0) o 9Rk,

with ak = M(Rk) - £ • (XRk - X0) + R G &Rk, see also Figure 2.2.3. We

recall that the shift 9Rk is not applied to ak- Therefore, by the strong

Markov property, cf. Corollary 2.2.2, we have:

zw
exp {c£ (XSk+1 - X0)}, Sk+i < oo

(2.4.23) <e

<e

lOcR ru

lOcR ru

ecHxRk-x0)^ Rk < oo; ^ [e^-(^l(afc)-Xo)]

exp {c£ • (X#fe - X0)}, Rk < oo; (1 + c5) e
cafc

where we applied Proposition 2.4.8 in the last step, provided c E (0, C5).

From Figure 2.2.3 we also observe that with M from (2.4.16) and Z

from (2.2.24), the following inequalities hold:

ak <Zo9Jk+Mo9Sk+2R,

£-(XRk-X0)<£-(Xjk-X0) + Zo9Jk.

We put them into the rightmost side of (2.4.23), apply the strong

Markov property at time Sk, cf. Corollary 2.2.2, then apply the strong

Markov property for the process (Xt)t>o at time Jk. We obtain

Ew
X exp {c£ (XSk+1 - X0)}; Sk+i < 00

<e12cR p.

<e
!2cR tw

ecHXjk-x0)+cMoeSk. Jk < ^ (i + c5)E-
T

[e2cZ]
Jk

exp {c£ (XJk - X0) + cMo9Sk}; Jk < 00, (1 + c5)
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provided sup3. u E£[e2cZ] < 1 + C5, for c > 0 small enough (cf. (2.5.6)).
Hence, by the strong Markov property again, the above expression is

^e11^ (1 + c5)2 ÊÏ [exp {cl (XSk - X0)}, Sk < oo;

E^Je<=M,f_H<~]

<1-^ by (2.4.17)

<(1 - a) E% exp {c£ • (XSk -X0)},Sk<oo

for some a > 0, provided C5 > 0 and c E (0, C5) are small enough such

that ellcR (1 + c5)2 (1 — ^) < 1 — a. By induction the last expression
is:

<(l-a)k Ê4exp{c£-(X5l -X0)},5i < 00

Coming back to (2.4.22), we obtain

sup E

X,W

<sup E

ec£-(XT1-X0)~

(xSl-x0)fSi <QOj .^(i_a)^<oo.,ci

k>0

D

As a corollary, we obtain an exponential estimate on the tail of ti .
Let

us point out that such an estimate together with Theorem 2.4.9 and the

renewal structure of Theorem 2.2.5 can be used to derive large deviation

controls, see [43], [44].

Corollary 2.4.10

There exist constants eg > 0 and eg > 0 such that for u EN

(2.4.24) SUp P£ [ti > U~\ < Cg exp{—Cgu}

Proof: Observe that for u > 6-R/7, x G Rd and lo E ft:

P£ [n > u] < P^ [ti >u,£- (XT1 - X0) <lu- 3R]

+ P%[£- (XT1 - X0) > \u - 3Ä]
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By Chebychev's inequality and Theorem 2.4.9, the last term on the

right hand side is smaller than ce~cu, for some c > 0 and c G (0,cs).
Hence it suffices to study the first term on the right hand side of the

above expression. Let U now be the cylinder defined in (2.4.8), which

is centered in x, has height 4L = ju in the direction £ and radius

4L2 in the directions normal to £. With the observation that P^-a.s.
pd

K-s^s
—

yvT\J ^ oil, ui. riguic ^.Li.^t, wc ace LiidL lui an j/ c iii

and lo E ft:
sups<Tl £ (Xs

—

XTl) < 3R, cf. Figure 2.2.4, we see that for all x E

P£ [n >u,£- (XT1 - Xo) <%u- 3R] < P"x [T^u > u]

<?"[Tu <Tlu]+P«[Tu = T1_u>u}

<P"X [Tu >u]+P"x [Tu < u, XTu $ d+U] + P£ [Tu = Txu > u] .

Observe that by Proposition 2.4.2 the first and the third term in the

above expression are smaller than ce~cu for suitable c > 0 and c > 0,
and by Proposition 2.4.3 the second term is also smaller than ce~cu.

This finishes our proof. D

We come now to the main result of this section:

Theorem 2.4.11

Let (Xt)t>o be the (unique strong) solution to the stochastic differential

equation dXt = dWt + W(Xt, lo) dt and Xq = x, where for each lo E ft,

V(-,lo) E C1(Md,M) has bounded and Lipschitz-continuous derivatives,
and Ae2X£-x < V(x,lo) < Be2Ux holds for some £ E 5d_1, A, B > 0

and A > 0. Then

r-,
Xt t—>-00

Po-a.s. y v
,

t

with a deterministic v E Md, which is given in (2.3.7), and £ • v > 0;

further the processes [ x^~yst ) converge in law under Po, as s —> oo,
V vs /1>0

to a non-degenerate d-dimensional Brownian motion with covariance

matrix K given in (2.3.12).

Proof: It follows from (2.4.15) and Corollary 2.4.10 that the condition

(2.3.1) is fulfilled. Our claims follow from Theorem 2.3.2 and Theorem

2.3.3. D
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2.5 Appendix

2.5.1 Some Facts about Local Martingales

Lemma 2.5.1

On some probability space (ft, 3?, (^t)t>0i P)> let (Yt)t>o oe a continuous

local martingale satisfying Yq = 0 and (Y)t < i't for t > 0. Then for

p > 1 there is a constant c(p, v) > 0 such that

(2.5.1) E[sup|ys|p] <c(p,i/)*S,

and

(2.5.2) P-a.s. -sup mi
*~"3°

> 0.

Proof: The Bernstein's inequality, cf. page 153 - 154 in [36], shows that

2

(2.5.3) P[sup|Ys|>a] <2 exp{-^-|,

hence

/•oo ^

E[sup|yfl|"] <p y^1 exp { - fl) dy =: c^v">t% •

For (2.5.2), it suffices to prove that P-a.s. - sups<n \YS\ > 0. To

see this, we observe that from (2.5.3) it follows that for a > 0

(2.5.4) ^p[-sup|Ys| >a\ < 2 ^ exp { - ^} < oo
,

n>l
lns^n J

„>1
^

and the claim follows from Borel-Cantelli's lemma. D

From this lemma we easily get the next two corollaries.

Corollary 2.5.2

Let (Xt)t>o be the solution of the stochastic differential equation (2.1.7),
whose coefficients satisfy (2.1.1), (2.1.3) and (2.1.4)- Then there exist

two constants c > 0 and c > 0 depending only on (d, v, b) such that for
all x G Rd, co Eft and L > 0,

(2.5.5) supP£[sup|Xs-X0| >L] < ce

x,u> s<l

^-cL2
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Proof: Observe that for all x E Rd and for all lo E ft, P£-a.s. Xt -

Xo = J0 b(Xs,Lo) ds + Yt((o), with the P^-local martingale Yt(uj) :=

JQ a(Xs,co) dWs. Further we observe by our assumption (2.1.4) that

(Y^(io))t < yt for all j = 1,..., d and lo G ft. Therefore with our as¬

sumption |6| < 6, it follows immediately from the Bernstein's inequality

(2.5.3) that

P£[sup|Xs-X0| >L]< P% [sup \Ys(lo)\ > (L-b)] <ce

S<1 S<1

-cL'

Corollary 2.5.3

Let Z(lo) := sups<1 |XS — Xq\, then for all a > 0 there exists a constant

ö(a, d, v, b) > 0 such that

jzi
(2.5.6) supE£[edZJ

< 1 + a
.

x,u>

Further, let A E J^i be an event such that sup^ w Px [A] < 1 — 2ß for

some ß > 0, then there exists a constant 6(ß, d, v, b) > 0 such that

(2.5.7) supE%[eôz;A] <l-ß

Proof: Because Z(lo) < sups<1 |Ys(u;)l + ^> we Set for 0 < £ < 1 that

E"x[esz]<es~bE«[exp{6sup\Ys\}]
S<1

=esl(l + 6 f da eSaP^ [sup \YS\ > a]) < e&l(l + 5 c(b, v, d)) ,

'0 s<l

<2dexp{-a2/(2dv)}

for some c(b,v,d) > 0 and this proves (2.5.6). To prove (2.5.7) we

observe by Holder's inequality that for p, q > 0 such that l/p+ 1/q = 1:

E%[esz;A] < E^[e5pZ]^ P£[A]* < (1 + a)$ (1 - 2ß)< <l-ß,

by choosing Ö small and p large enough. D
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2.5.2 Some Results about Parabolic PDE

In this part we will collect some results about parabolic partial differ¬

ential equations, which we use throughout this article. For detailed

treatment we refer to the article by Il'in, Kalashnikov and Oleinik, [18],
section 4.

Proposition 2.5.4

We consider the linear parabolic equation of second order ^ = Lu,
where

(2.5.8) L= £a«(s)ö5-+ !>(*)"
*

dxidxj ^ dxj
j J=i j

with the coefficients aij and bk satisfying for all x,y EM.d

\ai3(x) - a{j(y)\ + \bk(x) - bk(y)\ < C\x - y\6

\dij(x)\ + \bk(x)\ < K, aij(x) = aji(x),
d

..
d

V

t,j= l j=l

for some C > 0, K > 0, v > 0 and Ô > 0. Then there exists a unique
du

dtfundamental solution Z(t, x, y) of ^f- = Lu, such that for t < 1

(2.5.9) |Z(t,^)|<ilexp{-*?£},

for some constants M(v,C,K,d,ö) > 0 and fi(v,C,K,d,ö) > 0. Fur¬

ther, there exist two constants a(u, C, K, d,8) > 0 and M(v, C, K, d, 6) >
0 such that for \x — y\2 < at and t E (0,1]

M

(2.5.10) Z(t,x,y)>
fd/2

The claims (2.5.9) and (2.5.10) are just the statement (4.16) and (4.75)
in [18]. The authors of [18] did not state on which the constants M,

fi, a and M really depend on, but by working through their computa¬

tion, cf. page 63-82, one can see that these constants only depend on

(v,C,K,d,5).

As a consequence of the previous proposition we get the next corollary.
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Corollary 2.5.5

Let Ux and Bx be the open set defined in (2.2.1). Under the assumption

(2.1.1), (2.1.3) and (2.1.4), there exist two constants M(v,d,b,ä,K) >

0 and a(v, d, b, ä, K) > 0 (recall the constants v, d, b, a and K are defined
in Section 2.1), such that for all lo E ft, 1 > t > 0 and \x — y\2 < at,

the transition density pu(t,x,y) satisfies

M
(2.5.11) pu(t,x,y)>

td/2
'

and there exists a constant e(v, d, b, a, R, K) > 0 such that the sub-

transition density Pu^u* (Iix,y) (recall (2.2.4)) satisfies

(2.5.12) p ^(1,^3,) >J?L

for all y E Bx.

Proof: With a{j = (era*)., we see from (2.1.1), (2.1.3) and (2.1.4) that

the assumptions of Proposition 2.5.4 are fulfilled. Hence, (2.5.11) follows

immediately from Proposition 2.5.4.

To prove (2.5.12), first we observe that because of (2.5.10) there is

to £ (0,1] such that y/ato <
R and for all t < to,

M 2M ^R2
7d/2 - Td/2 eXPl 16^-»

lo

holds, in addition the function

1 ^
td/2

exP \ m /

is monotone increasing on {t : t < to}. Now let G = Br(x) and y E

B^j-(x), we observe that on the event {Tq < t < to}, the inequality

j9w(t — Tc,XTG,y) < ^72 exp { — ijQf} follows from the monotonicity
mentioned above. Hence, by Duhamel's formula, cf. page 331 in [40]:

Pu>,o(t,x,y)

= pUJ(t,x,y) - E%[TG < t,pu(t-TG,XTG,y)] ,
for all x, y E G,

there is ë(v,d,b,â,R,K) > 0 so that p^^t^x^) > ë > 0, for t < to

and \x — y\ < \fa~i.

By iteration, it is straightforward to see that infW)2/eßx pujjx(\, x,y) >

0. D
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