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Abstract

There are many examples for the fact that the growth of a system is limited if this system
relies on important central instances for supply or control. In a growing system, the
central instances turn into bottlenecks, thus making the system inefficient. Examples for
this phenomenon can be found in computer science, in history, and even in the behavior
of dinosaurs. Distributed systems have great potential to bypass such bottlenecks, but
due to ”friction” issues such as incomplete knowledge, we may not be able to exploit their
potential.

In this thesis we show that some of these issues can be handled quite well in weak and
realistic models. More specifically, we present and discuss three examples:

1. Distributing Rare Resources: Roman Domination and Win–Win
Given a graph, servers (resources) should be placed on nodes to service a pair of
requests that can occur at nodes. Since resources are rare, the number of used
resources should be minimized. What is the computational complexity of this prob-
lems, and how much control, communication, or interaction is needed to organize
the service?

We give detailed characterization of the computational complexity of these prob-
lems. Especially, we show that these problems are NP–hard; and for Planar Roman
Domination, a Polynomial Time Approximation Scheme (PTAS) is presented.

2. Distributed Data Structure
Given a distributed system of processors/computers/servers with weak assumptions,
is it possible to build and maintain a distributed data structure in this system?

We propose a distributed dictionary that supports insert and search operations
and that tolerates arbitrary single server crashes. In contrast to other proposals of
distributed fault tolerant search structures, our solution works in an asynchronous
and weak environmental setting.

3. Distributed Coordination: Point Formation
There are n robots in the Euclidean plane that should move to one destination
point. What is a minimal set of abilities that the robots have to have in order to
complete this task?

We define the concept of contraction functions and show that with this concept, the
point formation problem can be solved in an asynchronous model.

The results show that these problems can be solved in weak and realistic settings. We
will discuss these problems individually, but we will discuss the connections between them
as well. Interestingly, we will find connections between the point formation problem and
facility location as well.



Zusammenfassung

Es gibt viele Beispiele dafür, dass das Wachstum eines Systems beschränkt ist, falls dieses
System auf zentralen Einheiten für Versorgung oder Kontrolle basiert. Wenn das System
wächst, werden die zentralen Einheiten zu Engpässen, die das System ineffizient machen.
Beispiele für dieses Phänomen finden sich in der Informatik, in der Geschichte und auch
im Verhalten von Dinosauriern. Verteilte Systeme haben die Möglichkeit, solche Engpässe
zu umgehen, aber auf Grund von ”Reibungsverlusten”, wie zum Beispiel unvollständigem
Wissen, sind wir eventuell nicht in der Lage, diese Möglichkeiten auszuschöpfen.

Das Ziel dieser Arbeit ist es, zu zeigen, dass mit solchen ”Reibungsverlusten” recht
gut umgegangen werden kann. Dies soll an drei Beispielen gezeigt werden:

1. Verteilung rarer Ressourcen: Roman Domination und Win–Win
Gegeben sei ein Graph, Server (Ressourcen) sollen auf Knoten des Graphs plaziert
werden, um jedes Paar von Anfragen bedienen zu können, die an Knoten auftreten
können. Da die Ressourcen rar sind, soll die Anzahl der verwendeten Ressourcen
minimiert werden. Wie gross ist die Berechnungskomplexität, und wie viel Kon-
trolle, Kommunikation oder Interaktion wird benötigt, um die Bedienung der An-
frage zu organisieren?

Wir präsentieren eine detailierte Charakterisierung der Berechnungskomplexität
dieser Probleme. Insbesondere zeigen wir, dass diese Probleme NP-hart sind, und
für Planares Roman Domination präsentieren wir ein Polynomielles Approximation-
sschema (PTAS).

2. Verteilte Datenstruktur
Gegeben sei ein Computernetzwerk mit schwachen Modellannahmen. Ist es möglich,
in einem solchen Netzwerk eine verteilte Datenstruktur zu unterhalten.

Wir präsentieren ein verteiltes Wörterbuch, das Einfüge– und Suchoperationen
ermöglicht und den Ausfall eines beliebigen Servers toleriert. Im Gegensatz zu
anderen vorgeschlagenen verteilten fehlertoleranten Suchstrukturen arbeitet unser
Lösungsvorschlag in einem stark asynchronen Modell.

3. Verteilte Koordination: Punkt-Formation
Es seien n Roboter in der euklidischen Ebene verteilt. Die Roboter sollen sich an
einem Punkt treffen. Was ist ein Mindestmass an Fähigkeiten, die die Roboter
haben müssen, um diese Aufgabe zu bewältigen?

Wir definieren das Konzept der Zusammenziehfunktionen und zeigen, dass das
Punkt-Formations Problem mit diesem Konzept in einem asynchronen Modell gelöst
werden kann.

Die Resultate zeigen, dass diese Probleme auch in realistischen Modellen gelöst werden
können. Die Beispiele werden separat diskutiert, es werden aber auch die Zusammenhänge
zwischen ihnen erklärt. Interessanterweise werden wir auch Zusammenhänge zwischen
dem Punkt-Formations Problem und der Plazierungstheorie (facility location) finden.
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Chapter 1

Introduction

Earth’s gravity limits the height of animals [LS00a, Lav01]. The taller an animal is,
the higher the blood pressure of the animal must be in order to pump blood through
the whole body. For instance, reptiles (e.g., crocodiles) have blood pressures between
35 and 75 mmHg1, the taller humans need pressures between 100 and 150 mmHg to
supply the body with fresh blood, and giraffes need pressures around 300 mmHg [Lav01].
Strong muscles are needed to produce high pressure, and in order to resist that pressure,
the heart and the veins have to have thick walls which consume a lot of energy. Thus,
from an energetic point of view, tallness is not attractive. [LS00a] illustrates this with
a comparison between sauropod dinosaurs and whales. If an upright neck posture of
the dinosaur is assumed, then the sauropod dinosaurs’ blood pressure would have to be
around 700 mmHg and the left heart ventricles would weigh 15 times more than those of
similarly sized whales. The large ventricles would consume about 62% of the dinosaurs’
resting metabolic rate; for humans, this rate is at about 10%. For [LS00a], this contradicts
the upright neck postures assumption. Thus, the fact that the blood of an organism is
pumped by a single, central pump (i.e., the heart) limits the potential variety of shapes
of animals.

In the second century BC, there were several wars between Rome and the (Greek)
Hellenistic kingdoms Macedonia and Seleucia. In a battle, the Greeks organized their
troops as a phalanx, i.e., as one long line, 8 to 10 men deep. A moving phalanx was
hard to control, especially in a hilly region. When trying to advance quickly over rough
ground, the phalanx line tended to break up. This made the phalanx prone to flanking
and vulnerable. The Romans used a much more flexible arrangement: the Roman legions
had a hierarchical structure and acted with less central control. In the battles, the Roman
armies consistently broke up the phalanx and defeated the Greek troops. Within a few
decades, the Romans conquered the Hellenistic kingdoms that had been very powerful
before. For the ancient Greek historian Polybius [Pol80], this proved the superiority of
the legion over the phalanx.

Their military superiority enabled the Romans to conquer a huge empire. For cen-
turies, the empire grew and grew. Emperor Trajan (98–117 AD) expanded the Roman
empire to its greatest geographic size, but then, the long decline of the empire began
(see for example [Gib95]). The central government was not powerful enough to control
the huge area. The empire had many enemies, and in order to organize the defense, the
emperors had to spend a lot of time in the provinces, far away from Rome. In the third
century AD, there were several revolts and civil wars. Especially, there were separate
empires of Gaul (261–274 AD) and Palmyra (260–272 AD), seizing large areas of the

1millimeters (mm) of mercury (Hg)
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empire. To stop the decline, emperor Diocletian (284–305 AD) split the empire and im-
perial responsibility: Diocletian established a co–emperor (286 AD) and created tetrarchy
consisting of two co–Augusti and two co–Caesars (293 AD). Although there were four em-
perors, the empire was still considered to be a single unit. After Diocletian’s abdication
in 305 AD, there were civil wars between co–emperors. Emperor Constantine (306–337
AD) won these wars and became sole emperor. Constantine reorganized the military
forces and placed the armies in a way such that the whole empire could be protected.
He applied a very interesting strategy in placing his armies that we will discuss later.
When Constantine died, the empire was split again, and there were civil wars between
the co–emperors, which led – after several decades of instability – to the definite division
of the empire into two separated parts in 395 AD.

These examples illustrate the fact that the growth of a system is limited if this system
relies on important central instances for supply or control. If the system grows, the central
instances become bottlenecks, and therefore, the system becomes ineffective. However,
such bottlenecks can be bypassed in many cases. For instance, the height limit mentioned
above can be bypassed in pipelines as follows: Instead of one gigantic pump there are
many small pumps to transport liquid or gas.

There are more modern examples, too: [Par96] argues that teams of cooperative robots
have capabilities of very high sophistication level such that in reality no robot can be
designed with these capabilities; routing in the internet is done without central control
and can be modeled as actions of independent selfish agents that try to maximize their
benefit. It is obvious that a system without central control does not always give a global
optimal solution, and one can ask for the ”price of anarchy” compared to the price of
an optimal solution [KP99]. However, in the case of internet routing, it is practically
impossible to collect all the necessary information, compute an optimal solution, and
spread this solution. Therefore, it is much more practical to have a solution generated by
independent agents.

These examples show that distributed systems occur in numerous application contexts,
which motivates our theoretical study of such systems. We call a system distributed, if
there are several interacting entities, e.g., agents, computers, peers, etc., without any or
with very limited central control. Distributed systems have the potential to overcome
issues encountered by central systems, but they also present challenges of a new kind. In
particular, there usually is some ”friction” in distributed system, i.e., the power of a system
is not linear in its size. We illustrate this with architectures for parallel computers (see for
example [Smi98, Sto01]). A parallel computer consists of several synchronized processors,
and two processors can communicate directly, if there is a communication channel between
them. The most powerful parallel architecture is the one in which each processor can
communicate with each other processor directly, i.e., the underlying network topology is
a complete graph. This architecture is a nice tool for theoretical studies, but it seems to
be impossible to build such a computer for an arbitrary number of processors, because it is
hard to provide all the possibly needed (fast) communication channels. A different network
topology is the Hypercube. A k–dimensional hypercube consists of 2k processors and every
processor has communication channels to k other processors. The diameter is k, i.e., there
are nodes with distance k (but not with bigger distance). Therefore, communication
between two processors takes more time and the k–dimensional hypercube is clearly less
powerful than 2k processors arranged in a complete graph. However, since the number
of communication channels per processor grows only logarithmically in the number of
processors, the hypercube can be used to build bigger computers. For instance, if we allow
only four communication channels per processor, it is possible to arrange five processors
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in a complete graph or to build a 4–dimensional hypercube with 16 processors. Still,
the number of communication channels grows with the size of the system, and therefore,
there is a size limit. Cube Connected Cycles (CCC) and Butterflies are alternative network
topologies. Both topologies have diameters logarithmic in the number of processors, but
the number of communication channels per processor is bounded. These topologies can be
used to build arbitrarily large computers, but they are less powerful than the hypercube.
Thus, the power of a distributed system depends on its size as well as on its level of
connectedness.

In a distributed system of processors with asynchronous message passing, there is
”friction”, too. [Wat98] shows that in every possible implementation of distributed coun-
ters, there is at least one bottleneck processor that has to do a lot of work. To be more
precise, in a distributed counter consisting of n processors, it is impossible that for every
processor the workload is not bigger than 1

n
of the whole workload. This is a performance

result, but there are also impossibility results: The consensus problem is the problem
that processors should agree on one value. Consensus is impossible, if processors can fail
[FLP85].

Thus, while distributed systems have great potential to bypass limits encountered by
centrally controlled systems, numerous issues arise in practice that seem to limit the ap-
plicability of distributed systems. The conclusion is the following. In order to study the
aspects of distributed systems that are relevant in practice, one has to take into account
”friction” issues (such as incomplete knowledge or message delays). One approach when
studying distributed systems consists of modifying the model by making unrealistic as-
sumptions such that the problem can be solved easily. An alternative approach, which
we propose in this thesis, is the following: Given a distributed system with weak assump-
tions, what can be done in this system? In particular, we consider the following three
topics.

1. Distributing Rare Resources: Roman Domination and Win–Win
Given a graph, servers (resources) should be placed on nodes to service a pair of
requests that can occur at nodes. Since resources are rare, the number of used
resources should be minimized. What is the computational complexity of this prob-
lems, and how much control, communication, or interaction is needed to organize
the service?

2. Distributed Data Structure
Given a distributed system of processors/computers/servers with weak assumptions,
is it possible to build and maintain a distributed data structure in this system?

3. Distributed Coordination: Point Formation
There are n processors in the Euclidean plane that should move to one destination
point. What is a minimal set of abilities that the robots have to have in order to
complete this task?

We will look at these topics individually, but we will show the connections between
them as well. In the following, we describe the topics in more detail.

1.1 Distribution of Rare Resources

Distributing resources is a challenging problem: Where should resources (e.g., schools,
ambulances) be placed such that a desired property is fulfilled and the number of used
resources is minimized.
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Interestingly, a very old question has also triggered new research on the topic [AF95,
RR00, Ste99]:

Roman Domination : Where should the armies of the Roman empire be
placed so that a smallest number of armies can protect the whole empire (see
Figure 1.1)?

Iberia

Gaul

North Africa

Rome Constantinople
B

ri
ta

in

Egypt

Asia Minor

Figure 1.1: The Roman empire around 300 AD

The assumption is that an area can be protected either by one army located inside
the area, or by an army in a neighbor area that comes over for the defense in case of an
attack. In the latter case it is required that a second army remains in the neighbor area,
so that it can quickly confront a second attack. A reason for the historical 1-2 requirement
(one army here or two at a neighbor) is that we want to be able to service two requests in
one time unit (provided that no two requests can come from the same point at the same
time).

The question goes back to the emperor Constantine (306–337 AD). In the third century
AD, the Roman empire had lost much of its economic and therefore military power;
furthermore, the imperial government had had problems to control the huge empire and
to organize defense against attacks from outside. Constantine’s goal was to place the
weakened remaining military power such that this power would still suffice to defend the
empire. To reach this goal, Constantine proposed the 1-2 requirement mentioned above.
One important aspect of this requirement is that the decision which army should repulse
an attack can be made locally, i.e., only armies from the attacked areas and their neighbor
areas are influenced, and armies from other areas do not have to be rearranged (shifted
to other areas).

In chapter 2, we formalize this as a variation of dominating sets: When a request can
occur at any node in a graph and requires a server at that node, a minimum dominating
set represents a minimum set of servers that serve an arbitrary single request by moving
a server along at most one edge. We study domination problems for two requests. For
the problem of placing a minimum number of servers such that two requests at different
nodes can be served with two different servers (called win-win), we present a logarithmic
approximation algorithm based on a greedy strategy, and we prove that nothing better
is possible by proposing a gap–preserving reduction from Dominating Set. We show that
the same results hold for Roman domination, the well studied problem variant that asks
for each vertex to either possess its own server or to have a neighbor with two servers.
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Still the same is true if each idle server can move along one edge while the first of both
requests is being served. For planar graphs, we propose a Polynomial Time Approximation
Scheme (PTAS) for Roman domination (and show that nothing better exists), and we get
a constant approximation for win-win. The content of this chapter is based on joint work
together with Aris Pagourtzis, Paolo Penna, Kathleen Steinhöfel, David Scot Taylor, and
Peter Widmayer, published as [PPS+01, PPS+02].

1.2 Distributed Data Structure

The amount of digital information grows at a breathtaking pace, and constantly improving
networking technology makes distributed computing power readily available. Modern
databases make use of today’s technology and develop into increasingly global information
systems. The efficient storage and retrieval of data becomes a critical issue, and as a
consequence, distributed data structures have gained considerable attention [BDSW99,
KW94, Krö97, Lam96, LN96, LNS93, Lom96, PLN00, SW98, VBW98]. Without these
distributed data structures, efficient search for the desired data is next to impossible.

It has been shown to what extent classical central concepts carry over to the distributed
setting: [LNS93] presents a distributed hash file LH∗, whereas [KW94] proposes a scalable
data structure based on random binary leaf search trees. One drawback of the LH∗

approach is that the address of a server corresponds to its position in the hash file One
drawback of the LH∗ approach is the following: To perform an operation, a client uses
a hash function to compute an index i and sends a message to the server with index i,
i.e., the address of a server corresponds with its position in the hash file. In a globally
distributed data base, this requirement is unrealistic. A different approach is CHORD
[SMK+01]. The servers are arranged in a ring, shortcut links inside the ring help to avoid
long search paths. CHORD uses hashing, too. The disadvantage of CHORD is that the
information the servers have to store grows logarithmically in the size of the structure.
For many data warehousing and multidimensional database applications, the important
access primitives include a variety of similarity search operations, such as nearest neighbor
queries or the enumeration of the data in a close neighborhood of the query. Since these
operations cannot be supported with hashing, this leaves distributed search trees as the
only viable alternative.

In their seminal paper [LNS93], Litwin et al. coined the term Scalable Distributed Data
Structure (SDDS) for structures that satisfy the following requirements: a file expands
to new servers gracefully; there is no master site that must be accessed for virtually each
operation; the file access and maintenance primitives never require atomic updates to
multiple workstations.

A distributed system offers the chance to remain operational even if an individual
computer fails. For a large distributed system, such a failure must indeed be expected
from time to time. Therefore, distributed data structures have been proposed that tolerate
limited hardware failures and still support access to all data at all times — they are called
highly available data structures [LMRS99, LN96, LS00b]. This failure resilience is achieved
by means of data replication [LN96], or by applying the technique of parity records and
buckets [LMRS99, LS00b]. In these proposals an essential feature is that a server can
detect rapidly whether some other server is operational or crashed. This is certainly a
reasonable assumption for local networks, but it is unrealistic for globally distributed
databases.

In chapter 3, we propose a distributed dictionary that allows insert and search opera-
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tions and that tolerates arbitrary single server crashes. The distinguishing feature of our
approach is that high availability can be achieved even if no server can ever detect whether
some other server is operational or has crashed. This takes asynchronicity seriously, but
makes the design of a data structure quite complicated and fundamentally different from
the situation where a server crash can be detected [Lam96, LMRS99, LN96, LS00b]. For
instance, locks are not allowed to synchronize servers, since the server that has to unlock
another server could have a crash failure, thereby letting the other wait — clearly an
unacceptable situation. The content of this chapter is based on joint work together with
Eljas Soisalon–Soininen and Peter Widmayer, published as [SSSW01, SSSW02].

1.3 Distributed Coordination

Point formation is the problem that n mobile robots in the plane should meet in one
destination point. In accordance with our approach of defining weak but realistic models,
this destination point should be independent of coordinate systems, and it should not
rely on an ordering of the robots, especially, there is no leader among the robots. The
question is the following: Which algorithm can the robots use to complete the task?

This problem comes from the field of robotics. Teams of cooperative robots are as-
sumed to have capabilities of very high sophistication level ([Par96]) and the goal is to
coordinate the robots in a distributed way. AI researchers are interested in teams of
robots as well, because they want to get a better understanding of intelligence [PS98].

Besides practical studies, the point formation problem has been investigated in a
more theoretical way [SY93, SS96, SY99, Pre01, FPSW99, FPSW00, Pre00, GP01]. The
solutions presented in these publications are complex, and some of them are hard to
understand or verify. We present a new approach whose most distinguishing feature is its
simplicity.

Chapter 4 gives the definition of contraction functions and shows that with this con-
cept, the point formation problem can be solved. Furthermore, we show a strong connec-
tion between contraction functions and the Weber problem: Given n points in the plane,
which is the point that has the smallest sum of distances to the given points. The Weber
problem plays an important role in the field of facility location. In chapter 5, we extend
the point formation problem with the restriction that the robots have to meet on a given
line. We give several results for the extended problem and discuss differences to chapter
4. Chapter 6 shows that the concept of contraction functions is useful for generalized
Weber problems as well.

1.4 Mathematical Concepts

This section presents some mathematical concepts that will be used in the thesis. The first
such concept is the concept of multi set. We will use multi sets in distributed coordination
and in distributing resources. We give a definition for multi sets of points, multi sets of
other objects can be defined in a similar way.

Definition 1.1 A mapping X : IR2 → IN is called a multi set of points. For a point
p ∈ IR2, we define the corresponding multi set

{p} := 1lp where 1lp(q) =
{

0 if q 6= p
1 if q = p

8



Throughout this thesis, we only consider finite multi sets, i.e., the cardinality

|X| :=
∑

p∈IR2

X(p)

is finite.
Let X,X ′ be two multi sets, we define the following operations.

• Union ]: (X ]X ′)(p) := X(p) +X ′(p)

• Intersection ∩: (X ∩X ′)(p) := min{X(p), X ′(p)}
• Setminus \: (X \X ′)(p) := max{X(p) −X ′(p), 0}

X is called a set, iff X(p) ≤ 1. Given a multi set X, uniq(X) denotes the set resulting
by removing multiplicities, i.e., p ∈ uniq(X), iff X(p) ≥ 1.

For a multi set X of points, we define the convex hull CH(X) as the smallest convex
set K ⊂ IR2 with uniq(X) ⊂ K.

Sometimes, we will use the more familiar notation X = {p1, . . . , pn}, where it is
possible that pi = pj for i 6= j. We have to mention that the enumeration in this notation
is not a part of the structure of the multi set X, the enumeration is arbitrary and only a
help to handle multi sets.

In the chapters about distributed coordination, multi sets of collinear points will play
an important role. For such a multi set, it will be crucial, whether it has a median or not.
Therefore, we give a formal definition of median.

Definition 1.2 Let X = {p1, . . . , pn} be a multi set of collinear points, i.e., there is a
straight line l such that pi ∈ l for all i. A point q ∈ l is called a median of X, iff∣∣∣∣∣∣∣∣

n∑
i=1

pi 6=q

pi − q

|pi − q|

∣∣∣∣∣∣∣∣ < X(q)

A basic lemma about the existence of medians will be used frequently and is therefore
shown here.

Lemma 1.3 If a multi set X of collinear points has a median q, then it is unique and
q ∈ X, i.e., X(q) ≥ 1. If n := |X| is even, then X(q) ≥ 2.

Furthermore, if n is odd, then the median exists.

Proof: Due to definition, for a median q, we obtain that 0 < X(q), i.e., X(q) ≥ 1. If n
is even, the sum of n− 1 unit vectors ±v cannot be zero, therefore X(q) ≥ 2.

In order to show uniqueness, we choose q′, q′′ ∈ X such that q′, q′′ are on different sides
of q and there are no points in between q′, q′′ than q. There are integers k′, k′′ ≥ 0 with
k′ + k′′ +X(q) = n and

n∑
i=1

pi 6=q

pi − q

|pi − q| = k′
q′ − q

|q′ − q| + k′′
q′′ − q

|q′′ − q|

9



Since |k′ − k′′| < X(q) we obtain ±(k′ − k′′) < X(q).

n∑
i=1

pi 6=q′

pi − q′

|pi − q′| = (k′ −X(q′))
q′ − q

|q′ − q| + (k′′ +X(q))
q′′ − q

|q′′ − q|

= (X(q′) +X(q) + k′′ − k′︸ ︷︷ ︸
>0

)
q − q′

|q − q′|

This implies, that q′ is not a median.
Let n be odd. If X is a set, then it has a median q ∈ X. With the following operations,

every multi set of collinear points can be constructed from a set, and the median remains
constant. Assume that X is a multi set with median q. Let pi, pj ∈ X be two points
with the property pi−q

|pi−q| =
pj−q

|pj−q| , q is the median of the multi set X ′ := (X \ {pj}) ] {pi}.
Furthermore, for a point pi ∈ X with pi 6= q, q is the median of the multi set X ′′ :=
(X \ {pi}) ] {q}. 2

For our robot model we need to define distance preserving functions.

Definition 1.4 A function o : IR2 → IR2 is called isometric, if for all pair of points
p, q ∈ IR2, |o(p) − o(q)| = |p− q| holds.

Note that, there are two different definitions of isometry. Functions that are isometric
according to the above definitions are not forced to be angle preserving, i.e., an oriented
angle α can be mapped to −α. In Riemannian geometry, this is not possible [O’N83].

In this thesis, we use several isometric functions:

• Rotation: For an angle ϕ ∈ [0o, 360o] and for a point p ∈ IR2, Rϕ,p denotes a rotation
by ϕ about p.

• Mirroring or Reflection: Given a straight line l, Ml is the mirroring about l.

• Translation: Let v ∈ IR2, the translation Tv is defined as Tv(z) := z + v.

Rotation and translation are angle preserving, while mirroring maps an angle α to −α.
The concatenation of two isometric functions is an isometric function, too. This implies
that isometries under the operation of function composition form a group.

We used the distance function to define isometric functions. The distance function is
not differentiable, but it fulfills a weaker notion of differentiability.

Definition 1.5 Let f : IR2 → IR be a function, and let v ∈ IR2 be a vector. If the limes
exists, we call

fv(q) := lim
t↘0

f(q + tv)− f(q)

t

the Directional Derivative in direction v.

Example: Let p ∈ IR2 be fixed. The function f(q) := dist(q, p) is differentiable in q 6= p
with gradient q−p

|q−p| . The function is not differentiable in p, but for every vector v, the

directional derivative exists and fv(p) = |v|.
In chapter 2, we use the notion of treewidth to derive a Polynomial Time Approxima-

tion Scheme (PTAS) for an NP–hard optimization problem. We recall the definition of
treewidth from [ABFN00].
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Definition 1.6 Let G = (V,E) be a graph. A tree decomposition of G is a pair 〈{Xi, |i ∈
I}, T 〉, where each Xi is a subset of V , called a bag, and T is a rooted tree with the elements
of I as nodes. The following three properties should hold:

1.
⋃

i∈I Xi = V ;

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi;

3. for all i, j, k ∈ I, if j lies on the path between i and k in T , then Xi ∩Xk ⊆ Xj .

The width of 〈{Xi, |i ∈ I}, T 〉 equals max{|Xi||i ∈ I} − 1. The treewidth of G is the
minimum k such that G has a tree decomposition of width k.

The treewidth of a graph is always bigger than 0, except for the case that E = ∅.
On the other hand, the size of a bag is bounded by the number of nodes in the graph.
Therefore, the treewidth of a graph is less than the number of nodes.
Example: Consider the graph G in Figure 1.2. We define the bags X1 := {v1, v3} and
X2 := {v2, v3} and a tree T with 1 as the root and 2 as a child. The pair 〈{X1, X2}, T 〉

v1 v2

v3

Figure 1.2: Graph G with treewidth 1.

is a tree decomposition. Since the size of both bags is 2, G has a treewidth of 1.
G is a tree. It is easy to show that every tree has treewidth 1. The situation changes,

if we add the edge {v1, v2} to G, i.e., we deal with the complete graph K3. There is no
tree T ′, such that 〈{X1, X2, {v1, v2}}, T ′〉 is a tree decomposition of K3 (Contradiction
to property 3). Therefore, the treewidth of K3 is 2. This result can be extended, the
treewidth of the complete graph Kn+1 is n.
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Chapter 2

Distributing Rare Resources: Roman
Domination and Win–Win

2.1 Introduction

In this chapter, we reverse the problem from the previous chapters: Instead of bringing
robots together at one point, we spread resources over a graph. The goal is that every node
of the graph has sufficient ”access” to the resources; and since the resources are expensive
or rare, we want to reach this goal with the smallest possible amount of resources.

To be more precise, we study a generalization of the dominating set problem [GJ79].
We are given a graph, and at every node of this graph a request can appear. We want
to service such requests. To do so, we place servers at nodes. The request at a node v is
serviced, if there is a server on v, or if a server in its neighborhood is moved to v. Clearly,
if we want to be able to service one request, then the multi set of server locations must
contain a dominating set of nodes. However, there are applications in which we want to
ensure that more than one request can be serviced. In this chapter, we study the case
of two requests. Imagine, e.g., that two requests occur simultaneously and a server can
satisfy only one at a time. The study of such dominating set problems is motivated by
their applications in facility location (minimizing the number of facilities, subject to every
demand being close enough to some facility), file sharing in distributed systems [NR95],
game theory [dJ62], etc.

In particular, we consider the case in which there are two requests we want to service
and no two requests appear at the same node. Moreover, a server that is used to service
the first request cannot be used to service another request. A solution to our problem
for a given graph is a set of servers at nodes; since all servers are identical, a multi set of
nodes (where the multiplicity of a node is the number of servers at that node) represents a
server placement. One possible solution is the Roman Dominating set [Dre00, Ste99],
where for every node, there is one server on this node or there is a neighbor node with
two servers.

Two factors we will consider are: (i) whether the two requests are known before the
first one must be serviced (Offline), or the first one must be serviced before the second
one is known (Online), and (ii) whether servers must stay in place unless they service a
request (Static), or we allow for a rearrangement (Dynamic): as one server services the
first request, all other servers are allowed to move to a neighbor node. The goal of the
move is to guarantee that any second request can be handled, too, in the Online case
(that is, the resulting server placement is a dominating set if we ignore the first requesting
node and its server). The Online Static Win-Win version has been discussed earlier
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Dominating 2-Set
(double dominating set)

[Dre00]Offline Static Win-Win

Online Dynamic Win-Win

(2.19) (2.20)

(2.23) (2.13)

(2.8)
Online Static Win-Win

Roman Domination
(trivial)

Offline Dynamic Win-Win

Dominating Set

(2.23) (2.19) (2.13) (2.20)

Figure 2.1: Relationships between the problems: arrows represent ‘≺’ and they are num-
bered according to the corresponding theorem.

[Och96] and called Win-Win there. (Unlike in Roman Domination, in this case we only
require to be able to win against any two consecutive attacks.) Since our problems also
deal with two consecutive requests, we adopt the name terminology and we denote the four
problem variants as Online Static Win-Win, Online Dynamic Win-Win, Offline
Static Win-Win, and Offline Dynamic Win-Win.

2.1.1 Our (and Previous) Results

In this chapter we investigate the relationships between the above problems (including
Roman Domination), as well as the complexity of computing exact and approximate
solutions. In particular, we consider the following questions:

1. Given a multi set S, is S a feasible solution to (one of) the above problem variants?
Is there a combinatorial characterization for those S?

2. Let varA Win-Win and varB Win-Win denote any two problem variants. If S
is a solution for varB Win-Win, does this imply that S is also a solution to varA
Win-Win?

3. A positive answer to the above question implies that opta(G) ≤ optb(G), where
opta and optb denote the minimum size multi set solving the two variants, resp. Is
there a graph for which the inequality is strict?

Let varA Win-Win� varB Win-Win denote the fact that Question 2 has a positive
answer, and let varA Win-Win≺ varB Win-Win denote the fact that Question 3 does
too. It turns out that the problems we look at form the partial order in Figure 2.1.1

Noticeably, this relationship also holds when we restrict ourselves to planar graphs.
As for Question 1, for two out of the four win-win problems we provide a characteri-

zation of those multi sets corresponding to each problem. For the Dynamic Win-Win,
we prove the NP-hardness of the rearrangement step after the first request. This result
seems to denote that such a characterization for this problem version does not exist, or
at least is different from those given for the other two problems (those can be checked in
polynomial time).

This leads us to complexity and (non-) approximability issues. Intuitively, the �
relationship may have some consequences on the (non-) approximability of those problems.
Indeed, the order in Figure 2.1, combined with the fact that “doubling” a dominating set
(the Dominating 2-Set problem in Figure 2.1) yields a feasible solution for all of the

1Figure 2.1 contains a new problem (Dominating 2-Set) which we introduce to prove some of our
results.
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Problem Version General Graphs Planar Graphs

(2 + 2 lnn)-APX, PTAS,
Roman Domination not c log n-APX in P for r-outerplanar

(NP-hard [Dre00]) (NP-hard [Hed00])
(in P for trees & (r × n)-grids [Dre00])

Online Sta. Win-Win, (2 + 2 lnn)-APX,
Online Dyn. Win-Win, not c log n-APX (2 + ε)-APX, for any ε > 0
Offline Sta. Win-Win

Table 2.1: Hardness and approximability: Our and previous results. (All NP-hardness
results are in strong sense, thus implying the non-existence of a FPTAS. Previous results
are displayed between brackets.)

problems, implies an approximation preserving reduction (≤AP, see [ACG+99]) between
all these problems. Let f(n)-APX denote the class of problems that admit a polynomial-
time f(n)-approximation algorithm [ACG+99]. In Table 2.1 we summarize the complexity
and (non-) approximability results of this work.

As for the results on planar graphs, our technical contribution is a Polynomial-Time
Approximation Scheme (PTAS) for Roman Domination. This result is based on an
exact polynomial-time algorithm for r-outerplanar graphs. The latter improves over the
previous results in [Dre00]: in this work only trees and r × n-grids (for any fixed r) are
shown to be exactly solvable. Our result subsumes both of them (an r× n-grid is clearly
an r-outerplanar graph).

This chapter is organized as follows. In section 2.2, we present the definition of Online
Static Win–Win and discuss the complexity. Section 2.3 does the same for Roman Dom-
ination. Additionally, for planar Roman Domination, a Polynomial Time Approxi-
mation Scheme (PTAS) is given. In sections 2.4,2.5, variants of Win-Win are discussed.
The chapter is summarized in section 2.6.

2.2 Online Static Win–Win

In this section, we assume that we know nothing about the requests in advance. This is
formalized in the following definition.

Definition 2.1 (online static) Given a graph G = (V,E), a server placement for G is
a multi set S of nodes. A server placement S is a win–win for G, if for all v ∈ V there is
an uv ∈ S with the properties:

1. v = uv or (uv, v) ∈ E,

2. for all v′ ∈ V \ {v} there is an uv′ ∈ S \ {uv} with

v′ = uv′ or (uv′, v
′) ∈ E.

The definition leads to the following lemma.

Lemma 2.2 (sandwich) Any graph G has the following properties:
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v1 v2 v3 v4 v5

Figure 2.2: A win–win.

v1 v2 v3 v4

Figure 2.3: Not a win–win.

1. For every dominating set DS, the server placement SP := DS ]DS is a win–win
for G, where ] denotes the multi-union.

2. For every win–win WW , the set uniq(WW ) is a dominating set of G.

3. For every minimum dominating set MDS and for every minimum win–win MWW ,
|MDS| ≤ |MWW | ≤ 2|MDS| hold.

Proof: For Property 1, let v1, v2 ∈ V be a pair of nodes with v1 6= v2. Since DS is a
dominating set, there are uv1, uv2 ∈ DS, such that

v1 = uv1 or (v1, uv1) ∈ E, and

v2 = uv2 or (v2, uv2) ∈ E

hold. Due to the definition of SP , {uv1 , uv2} ⊂ SP holds. This implies that requests at
v1, v2 can be serviced.

For Property 2, let v ∈ V be a node. There is a uv ∈WW with v = uv or (v, uv) ∈ E.
Since uv ∈ uniq(WW ), uniq(WW ) is a dominating set.

For Property 3, it suffices to consider the win–win WW := MDS ]MDS and the
dominating set DS := uniq(MWW ). Clearly, |MDS| ≤ |DS| ≤ |MWW | ≤ |WW | =
2|MDS|. 2

2.2.1 Characterization of win–win Multi sets

The property of being a win–win does not depend only on a node and its neighbors.
Furthermore, it is not enough that for every pair of nodes there are two different adjacent
servers. This is illustrated by the example in Figure 2.3. The server placement S =
{v2, v3} is not a win–win. If the first request is at v2, then there are two cases. Case 1,
the request is serviced by v2, then a second request at v1 cannot be serviced. Case 2, the
request is serviced by v3, then a second request at v4 cannot be serviced.

This observation lead us to the following characterization of the server placements
that are win–win.

Definition 2.3 Given a graph G(V,E) and a multi set D for it, a vertex v ∈ V is weak
if D dominates v only once. A vertex u ∈ D is safe if every v ∈ N(u)+ is not weak, where
N(u)+ = N(u) ∪ {u}.

Lemma 2.4 A multi set D for G(V,E) is a win–win if and only if the following two
properties hold:

at-most-1-weak Every u ∈ D does not dominate more than one weak node;

at-least-1-safe Every non weak node v ∈ V is dominated by at least one safe node u ∈ D.
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Proof:
(⇒) By contradiction, assume that some u ∈ D does not satisfy Property at-most-1-weak.
Then, there exist two weak nodes w1 and w2 dominated only by u. After a first request at
w1, w2 is no longer dominated (we must have used u for the first request). This contradicts
the hypothesis that D is a win–win. Now suppose (again by contradiction) that a non
weak node v is not adjacent to any safe node (thus contradicting Property at-least-1-safe).
Let u1, . . . , uk be the nodes of D adjacent to v, for some k ≥ 2 (this follows from the fact
that v is not weak). By hypothesis, none of u1, . . . , uk is safe. So, there exist w1, . . . , wk

distinct weak nodes, with wi adjacent to ui, for 1 ≤ i ≤ k. Now consider a first request
at node v. For this request we must use one among u1, . . . , uk, let us say uj. Then, if the
second request is at the weak node wj we do not have any server to react. Again, this
contradicts the hypothesis.
(⇐) Let v1 be the position of the first request. We have two cases: v1 is weak, or v1

is not weak. In the first case, we must use the only node u ∈ D that is adjacent to
v1; Property at-most-1-weak guarantees that every node in N(u)+ \ {v1} will still be
dominated. So, any second request can be handled. Otherwise, that is, v1 is not weak,
Property at-least-1-safe implies that there exists a u ∈ D which is safe; we use such a u
for this request. At this point all the nodes in N(u)+ \ {v1} will still be dominated by
some u′ ∈ D. Also in this case any second request can be handled. 2

2.2.2 Complexity

We are interested in the complexity of the Online Static Win-Win problem. We dis-
cuss hardness and approximation of this problem. Both NP-hardness and approximation
hardness can be proved using the following lemma.

Lemma 2.5 Any f(n)-approximation algorithm A for Min Dominating Set implies
a 2f(n)-approximation algorithm for Min Online Static Win-Win. Conversely, any
g(n)-approximation algorithm B for Min Online Static Win-Win implies a 2g(n)-
approximation algorithm for Min Dominating Set.

Proof: Applying A to any graph G we can find a dominating set DS of size |DS| ≤
f(n)|MDSG|. By Lemma 2.2 the server placement SP = DS ]DS is a win–win for G of
size |SP | = 2|DS| ≤ 2f(n)|MDSG| ≤ 2f(n)|MWWG|.

Conversely, applying B to any graph G we obtain a win–win SP of size |SP | ≤
g(n)|MWWG|. Then, according to Lemma 2.2 the set DS = uniq(SP ) is a dominating
set of size |DS| ≤ |SP | ≤ g(n)|MWWG| ≤ 2g(n)|MDSG|. 2

We know that Min Dominating Set is not approximable within c logn for some
c > 0 [RS97] (unless P=NP) and that it is approximable within 1 + lnn [Joh74]. From
these facts and the above lemma one can easily prove the following.

Theorem 2.6 The Min Online Static Win-Win problem in general graphs can be
approximated within 2 + 2 ln n, but (unless P=NP) cannot be approximated within c logn
for some c > 0.

For Min Dominating Set in planar graphs a Polynomial Time Approximation
Scheme (PTAS) is known [Bak94]. Therefore, Lemma 2.5 implies an approximation algo-
rithm for Min Online Static Win-Win in planar graphs, called Min Planar Online
Static Win-Win, with ratio 2 + ε for every ε > 0.
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Moreover, this approximation ratio is tight for the approach of “doubling” a domi-
nating set to construct the solution. We illustrate this by the example in Figure 2.4.
For this graph, the set M := {v1, . . . , v8} is a minimum dominating set. Doubling
it gives a solution WW with |WW | = 16. On the other hand, the server placement
MWW = {w, v1, v2, . . . , v8} is a minimum win–win with |MWW | = 9. In this case, the
approximation ratio is 16/9. If we increase the number of rays from 8 to k, then we get

v4

v3

v2

v6

u6

w
v7

u7

u8
u1

u2
v1

u3

u4
u5

v5

v8

Figure 2.4: Doubling a dominating set gives a win–win of cost roughly twice the optimum.

|WW |/|MSP | = 2k/(k + 1). This shows that there exist graphs for which the simple
doubling algorithm has approximation ratio greater than 2− ε, for any ε > 0.

2.3 Roman Domination

We come back to the original problem of the so called Roman Domination. On every
node, we can place none, one, or two servers.

Definition 2.7 (roman domination) Given a graph G = (V,E), a roman for G is a
server placement S such that every node v in V either belongs to S or has a neighbor
u in S whose multiplicity in S is at least 2. Formally, ∀v ∈ V, v /∈ S → ∃u : (v, u) ∈
E ∧ {u, u} ⊂ S.

Clearly, every roman S is a win–win: If the first request is at a node v ∈ S, then v is
serviced by its own server; if v 6∈ S, then v is serviced by a neighbor u with {u, u} ∈ S.
This implies that a minimum win–win does not have cardinality larger than a minimum
roman. The next result shows that the ‘�’ relationship between those two problems is
actually strict:2

Strict Inclusion 2.8 Online Static Win-Win≺ Roman Domination:

For the graph in Figure 2.2, the server placement S ′ = {v2, v2, v4, v4} is a minimum roman.
On the other hand, S = {v2, v3, v4} is a minimum win–win: if the first request is at v2,
then this request is serviced by v3; if after that the second request is at v3, then it is
serviced by v2 or by v4. ♦

It is known that Min Roman Domination is NP-hard for arbitrary graphs [Dre00].
We strengthen this result and show that the problem is also hard to approximate. As a
by–product, we get a new proof for the NP-hardness. In particular, Lemma 2.2 remains
true if we replace the notion of win–win by roman (see also [Dre00, Proposition 2.1]).
Hence, we get the following theorem:

2Since in all cases ‘�’ is trivial, in the sequel we will only show that ‘=’ does not hold.
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Theorem 2.9 The Min Roman Domination problem in general graphs can be approx-
imated within 2 + 2 ln n, but (unless P = NP) cannot be approximated within c logn for
some c > 0.

2.3.1 Planar Graphs

Often, our problem instances are not arbitrary graphs; planarity is quite a natural con-
dition (see Figure 1.1). It is therefore interesting to study the problem complexity for
planar graphs, since we know that minimum dominating set can be approximated well
for planar graphs. It turns out that Min Roman Domination is NP-hard for planar
graphs.3

Theorem 2.10 Min Roman Domination is strongly NP-hard even if the input graph
G is planar.

Proof Sketch. We show the NP-hardness of Min Roman Domination by reducing
Planar Vertex Cover [GJ79]. Indeed, in an adaptation of the well known reduction
from vertex cover to dominating set, we can make the local transformation upon an edge
in Figure 2.5. The resulting graph, with |V |+ 2|E| vertices and 5|E| edges is still planar,

e

G G′ w1e

uvu

e

vw2e

Figure 2.5: Reduction from Planar Vertex Cover to Roman Domination.

and it is straightforward to show that a vertex cover with k nodes in the original graph
exists if and only if a roman with 2k nodes exists in the second. 2

The results from the previous section show that the planar Min Roman Domination
can be approximated within 2 + ε. The next theorem shows that we can find a better
approximation. Its proof follows the ideas from [Bak94, ABFN00] which have become a
well known standard method to get PTASs for many problems on planar graphs. Those
approximations schemes look very similar; the only specific part is that the problem has
to be solved optimally on r–outerplanar graphs. We use dynamic programming and the
notion of bounded treewidth [ABFN00] to show how this can be done for the Min Roman
Domination problem.

Theorem 2.11 (PTAS) Min Planar Roman Domination has a Polynomial Time
Approximation Scheme (PTAS), but (unless P = NP) it does not have a Fully Polynomial
Time Approximation Scheme (FPTAS).

Proof: Let G be a r–outerplanar graph. This implies that G has a treewidth l of at
most 3r − 1 ([ABFN00], Theorem 9). A tree decomposition 〈{Xi|i ∈ I}, T 〉, with width

3In [Dre00, page 68], the NP-hardness of the planar graph case is also mentioned. At the writing time
the chapter cited in [Dre00] is unpublished, so for the sake of completeness, we include a reduction from
vertex cover. This reduction is also used to prove the “tightness” of our approximability results.
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at most 3r − 1 and with |I | = O(|V |) of G, can be found in O(r|V |) time ([ABFN00],
Theorem 12).

Let 〈{Xi|i ∈ I}, T 〉 be a tree decomposition for the graph G = (V,E). Let Xi =

{x(i)
1 , . . . , x

(i)
ni
} be a bag [ABFN00] with ni := |Xi|. A number j ∈ {0, . . . , 3ni − 1} can

be identified with a server placement S
(i)
j in the following way. We write j in ternary

arithmetic, i.e., j =
∑ni

ν=1 3ν−1jν , where jν ∈ {0, 1, 2}. Every node xν ∈ Xi occurs with

multiplicity jν in S
(i)
j .

The algorithm we will describe visits the vertices of T from the leaves to the root. For

every server placement S
(i)
j of a bag Xi, the algorithm computes a server placement S

(i)
j

for the bags in the subtree rooted at i as a partial solution.
The dynamic programming algorithm proceeds in three steps.

Step 1: For every leaf Xi, for every j ∈ {0, . . . , 3ni − 1}, we define S
(i)
j := S

(i)
j .

Step 2: After this initialization, we visit the vertices of our tree decomposition from the
leaves to the root. Suppose node i has a child k in the tree T . In the case that i has
several children k1, . . . , ks in the tree T , this step has to be repeated for each child.

1. Determine the intersection Y := Xi ∩Xk.

2. For every server placement S
(i)
j of Xi, we choose a server placement S

(k)
j′ of Xk such

that the following properties hold:

(a) S
(i)
j |Y = S

(k)
j′ |Y .

(b) For every v ∈ Xk \ Y with v 6∈ S
(k)
j′ , there is a uv with {uv, uv} ⊂ S

(k)

j′ and
(v, uv) ∈ E.

(c) The number |(S(i)
j ] S(k)

j′ ) \ (S
(i)
j |Y )| is minimized.

Then, we define S
(i)

j := (S
(i)
j ] S(k)

j′ ) \ S(i)
j |Y . For different j1, j2 ∈ {0, . . . , 3ni} with

S
(i)
j1 |Y = S

(i)
j2 |Y , the same j′1 = j′2 can be chosen.

Note that, from Property 3 of a tree decomposition, we know that none of the nodes
v ∈ Xk\Y will appear in a bag that has not been visited up to this point. Otherwise,
such a node would also appear in Xi.

Step 3: Let XR be the root of T , let n := |XR|. Choose a j ∈ {0, . . . , 3n − 1}, such that

1. S
(R)
j is a roman for G, and

2. |S(R)

j | is minimum.

The algorithm described above runs in time polynomial in the size of G and in 33r.

Due to construction, for every vertex i ∈ T and for every j ∈ {0, . . . , 3ni − 1}, S(i)

j is a
smallest server placement such that property 2 (b) of step 2 is fulfilled. This implies that

S
(R)
j is a minimum roman for G.

Finally, the strong NP-hardness proof of Theorem 2.10 implies that Roman Dom-
ination is not in FPTAS (see [GJ79] for the definition of strong NP-hardness and its
implications). 2
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2.4 Online Dynamic Win–Win

In this section, we assume that after the first request, there is enough time to move the
servers from one node to a neighbor before the second request occurs. This leads to the
following definition.

Definition 2.12 (online dynamic) Given a graph G = (V,E) and a server placement
S. A function4 r : S → V is called rearrangement for G, S, if for every server v ∈ S

r(v) = v or (v, r(v)) ∈ E

holds. We say that S is a dynamic win–win for G, if for every u ∈ V there is a rearrange-
ment ru with the properties:

• There is v ∈ S with ru(v) = u, i.e., the first request at u can be serviced.

• For all u′ ∈ V \ {u}, there is a v′ ∈ S \ {v} with ru(v
′) = u′ or (ru(v

′), u′) ∈ E.

Strict Inclusion 2.13 Online Dynamic Win-Win≺ Online Static Win-Win:

Consider the cycle of length 4, (v1, . . . , v4, v1). By one hand, the server placement S =
{v1, v3} is a dynamic win–win. For instance, if the first request is at v2, then this request
is serviced by v1 and v3 moves to v4. On the other hand, there is no server placement S ′

which is a win–win with |S ′| = 2. To see this, we consider two cases. Case 1, S ′ = S.
A first request at v2 must be serviced by v1 or v3, let us say v1. Then a second request
occurring at v1 cannot be serviced. Case 2, S ′ = {v1, v4}. Consider a request at v1. If
we use the server at v1, then v2 is no longer dominated. Similarly, using the server at v4

leaves v3 undominated. ♦
Again, the methods from Section 2.2 can be used to show the complexity of Min

Online Dynamic Win-Win.

Theorem 2.14 The Min Online Dynamic Win-Win problem is NP-hard. It can be
approximated within 2+2 ln n, but (unless P = NP) cannot be approximated within c logn
for some c > 0.

We know that finding a minimum dominating set is hard to do. What happens if we
are given a server placement, and are asked if the arrangement is ‘close to’ a dominating
set – that is, if each server is allowed to move at most 1 step, can a dominating set be
obtained?

Definition 2.15 Let r be a rearrangement for 〈G, S〉; r is called dominating rearrange-
ment for 〈G, S〉, if the server placement {r(v)|v ∈ S} contains a dominating set for G.

Given a graph G and a server placement S, the Dominating Rearrangement
problem asks whether there is a dominating rearrangement for 〈G, S〉.

Theorem 2.16 Dominating Rearrangement is NP-complete. This remains true,
even if the input graph is planar.

4Note that different servers at a node can take different values.
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Figure 2.6: Reduction from SAT, F = (u1 ∨ u2) ∧ (ū1 ∨ ū2).

Proof: It is obvious that this problem is in NP. We use a reduction from SAT [GJ79]
to show the NP-hardness.

Let F be a Boolean formula, given as a set U of variables and a collection C of clauses
over U . We define a graph GF = G = (V,E) as follows (see Figure 2.6). For every variable
u ∈ U , there is a storage node su ∈ V and two variable nodes vu, v̄u ∈ V . Each such triple
of nodes is connected by edges, i.e., (su, vu), (su, v̄u), (vu, v̄u) ∈ E.

For every clause c ∈ C , there is a clause node vc ∈ V . A clause node vc is connected
to a variable node vu (v̄u, resp.), iff u ∈ c (ū ∈ c, resp.). On every storage node, a server
is placed, i.e., the server placement has the form S := {su}u∈U .

For every dominating rearrangement r and for every variable u ∈ U , either r(su) = vu

or r(su) = v̄u hold. It is obvious, that this corresponds to a variable assignment. The
given formula F is satisfiable, iff there is a dominating rearrangement for 〈G, S〉.

To prove the NP-completeness for planar graphs, we define the subgraph G′ ⊂ G by
deleting the storage nodes and the adjacent edges. G′ is planar, iff G is planar. It has
been shown in [Lic82, Lemma 1] that SAT is NP-complete, even if the input is restricted
to formulae F with the property that G′ and G are planar. 2

Theorem 2.17 Given a graph G and a server placement S. The problem to decide
whether S is a dynamic win–win for G is NP-complete.

Proof: We extend the definition of the graph G in the proof of Theorem 2.16. We add
a dummy node vd ∈ V , and we add edges from vd to every clause node and from vd to
every variable node. The new server placement becomes S := {su}u∈U ] {vd}.

If the first request is at vd, then this request has to be serviced by vd, since no clause
node and no variable node is in S. A second request can be serviced, iff there is a
dominating rearrangement. We have seen that this is a NP-complete problem. 2

2.5 Offline Static/Dynamic Win–Win

In this section, we consider the situation in which both requests occur at the same time
(equivalently, as the first request must be serviced, it is already known where the second
one will be).

Definition 2.18 (offline static) Let G = (V,E) be a graph. A server placement S is an
offline win–win if for every pair of nodes v1, v2 ∈ V , v1 6= v2, there is a pair {uv1, uv2} ⊂ S
with

• v1 = uv1 or (v1, uv1) ∈ E, and
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Figure 2.7: Proof of Non-Inclusion 2.20

• v2 = uv2 or (v2, uv2) ∈ E.

Non-Inclusion 2.19 Online Dynamic Win-Win 6≺ Offline Static Win-Win:

For the graph in Figure 2.3 the set {v2, v3} is an offline win–win. For the same graph, no
dynamic win–win can have size 2. Indeed, consider a first request at v2. No matter what
server we use to service this request, the remaining one cannot cover the nodes {v1, v3, v4},
where a second request can occur.

Non-Inclusion 2.20 Offline Static Win-Win 6≺ Online Dynamic Win-Win:

It is easy to verify that {u, v1, v2} is a dynamic win–win for the graph in Figure 2.7. On the
other hand, there is no offline win–win multi set of size less than 4: each of the subtrees
rooted at v1 or v2 must contain at least two servers. ♦

Again, Min Offline Static Win-Win is an NP-hard problem, illustrated by the
techniques of Section 2.2. Moreover, we can give the following characterization of the
offline win–win multi sets:

Lemma 2.21 A server placement S is an offline win–win, iff for every pair of two different
nodes there is one server in the neighborhood of one node and a different server in the
neighborhood of the other node.

We conclude this section with Offline Dynamic Win-Win. Here we combine the
fact that servers can be rearranged before serving the second request (Dynamic) with the
fact that the second request is known by the time we have to serve the first one (Offline).
Therefore, we have the following definition for the corresponding server placement:

Definition 2.22 (offline dynamic) Let G = (V,E) be a graph. A server placement S,
is an offline dynamic win–win for G, if for every pair of nodes v1, v2 ∈ V , with v1 6= v2,
there is a pair of distinct nodes uv1, uv2 ∈ V such that vi is at distance at most i from uvi,
for i = 1, 2.

Strict Inclusion 2.23 Offline Dynamic Win-Win≺ Online Dynamic Win-Win:

Consider the cycle of length 5, (v1, v2, . . . , v5, v1). It is easy to verify that the set S =
{v1, v3} is an offline dynamic win–win (S is a dominating set and both servers are at
distance at most two from any other non-server node). To prove that no multi set of
size two can be a dynamic win–win we use the following argument. After the first request
has been serviced, the set of nodes to be considered as possible positions for the second
request induce a path of length four; therefore, no matter where we place the remaining
server, there is no way to dominate all such nodes. ♦
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2.6 Conclusion

We have looked at several Win-Win problems individually, but have also tried to explore
the connections between them. First of all, every Online version is more “difficult” (i.e.
requires more servers) than the corresponding Offline one (i.e. �). Similarly, every
Static problem is more “difficult” than the corresponding Dynamic one. Additionally,
our results show that the Online and the Dynamic features are somehow orthogonal:
Online Dynamic Win-Win and the Offline Static Win-Win are simply not com-
parable.

We saw that Online Dynamic Win-Win≺ Online Static Win-Win≺ Roman
Domination. In some sense, this ordering can be reversed: It is easy to check whether
a server placement is roman, it is a little bit harder to do this for Online Static Win-
Win, and it is NP–complete to do it for Online Dynamic Win-Win. For the decision
which server should service the first request, similar results hold. For instance, On-
line Dynamic Win-Win needs much or central control or communication than Roman
Domination. Maybe, this was the reason why emperor Constantine used Roman Dom-
ination instead of a Win-Win variant.
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Chapter 3

Distributed Highly Available Search
Trees

3.1 Introduction

In this chapter, we propose a scalable, distributed dictionary supporting insert and a
variety of search operations for keys from a linearly ordered universe, say integers, in a
challenging environment. It works in a totally asynchronous setting, where faulty servers
cannot be detected, and it tolerates crashes: A single server crash is guaranteed to do no
harm at all, and simultaneous crashes of more than one server are also often harmless,
but with no guarantee. More specifically: First, the dictionary remains fully operational
in the presence of a single failure, i.e., all search and insert operations work correctly and
efficiently. Second, it enables efficient recovery, i.e., a server that has suffered a crash
failure can reinvolve itself into the data structure, and after the recovery is complete, a
client cannot distinguish whether a crash occurred. In addition, the dictionary supports
its operations with a very small overhead (number of messages, memory) to achieve fault
tolerance.

This chapter has the following structure. Section 3.2 gives an exact definition of the
distributed mode. Section 3.3 reviews the distributed binary search trees, and Section
3.4 presents our proposal for a fault tolerant distributed dictionary based on distributed
binary trees. Section 3.5 proves its properties. Section 3.6 discusses modifications, and
Section 3.7 concludes the chapter.

3.2 The Model

Let us now be more precise about the distributed system and its availability. Let the set of
computers be connected by a network. Computers communicate by sending and receiving
messages. Every computer is identified uniquely by its address. We do not focus on
message size, assuming that large buffers for incoming messages are available. We express
this by assuming that messages can be arbitrarily large, but we will not exploit this in
any extreme way. Message transmission is asynchronous in the following sense. First,
no computer has access to a global clock. Second, every sent message will be delivered
eventually, but message transmission times are unpredictable and not bounded. Third,
messages can pass each other on different paths. For instance, if a computer C sends a
message m1 and then a message m2 to a computer C ′, then it is possible that C ′ receives
m2 before m1.
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We distinguish client computers that initiate insert or search operations on the data
set from servers that store data. Starting with one server S0, more and more servers
become involved as needed to keep the individual server load small; we consider the set
of potential servers to be arbitrarily large for this purpose. The SDDS conditions can be
satisfied with the following basic strategy. An SDDS is distributed among servers and
is manipulated by requests from client sites which always have their own image of the
structure. However, the image of the client can be outdated, because the SDDS may have,
for example, split some of its buckets and distributed them between old and new servers.
The structure is designed so that with an outdated image the client can find the correct
bucket but cannot send the query directly to the new server. After this, a new updated
image will be sent to the client so that it cannot make the same error twice. In this way
the most important property of an SDDS is achieved: no bottlenecks are created because
clients with updated information can usually send their queries directly to correct servers.

In our model, communication is reliable, but a server can break down. Therefore,
we distinguish operational and crashed servers. An operational server is fully functional,
while a crashed server can neither receive nor send messages nor perform a computation.
An operational server can crash. A crashed server loses all its data, except for some small
piece of data in a secure memory. The reason is that on one hand, a server cannot recover
without any information at all about its role in the data structure, and on the other hand,
it is not economically feasible to protect all its data against loss. For simplicity of the
discussion, we assume that the first crash of a server can only happen after the server has
been involved into the data structure. This assumption is not a serious restriction, as we
will show in Section 3.6.1. Since a failure cannot be detected, we have to use a technique
that can be classified as Hot Standby [GR93]; i.e., data is duplicated in a way where every
key is stored on two different servers, and without failure both copies are equally well
available. A crashed server can recover ; this will change its state to operational, and the
server will reinvolve itself into the data structure in a way that we will propose in detail.

Server S0 has an exceptional role and does not crash. This may appear like a strong
and unrealistic assumption, but it is neither. It is realistic, because securing a single
machine in a network is easy and is routinely done in practice; it is not stronger than
the minimum needed, since the impossibility of distributed consensus [FLP85] suggests
that without this assumption, the desired behavior cannot be achieved. Furthermore, to
obtain the required properties, we will see that our data structure also needs a secure and
central entity, the so called split manager. Although this is not desired in a distributed
system, its existence is not a serious drawback. In fact, all distributed data structures in
the literature need some central entity to do a small but important piece of work. For
instance, in [KW94] such an entity finds the next server that can be involved into the
data structure, and [LNS93] needs a central entity as split coordinator. For convenience,
we propose to implement the split manager within S0, but other implementations are
possible. We avoid the discussion of operational details that are local in a server, and
assume that receiving and processing a message and sending messages as a consequence
is one atomic step.

3.3 Distributed Binary Search Trees

We present a solution to the fault tolerant distributed dictionary problem with distributed
binary leaf search trees [KW94], in which the keys (and data) are stored in leaves that are
similar to B-tree leaves and the internal nodes are binary routers. The tree structure not
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only supports the access of single records but also allows a variety of efficient similarity
queries. We limit ourselves to the explicit discussion of the former, since it will become
clear how to perform the latter. The nodes of the tree are stored in servers, and the edges
are communication links. In this section we shortly review the binary tree structure, for
more details we refer to [KW94].

With every node u, we associate a nonempty responsibility interval Iu ⊂ ZZ, repre-
sented by a pair lu, ru ∈ ZZ∪{−∞,∞}. Node u is responsible for a key k, if k ∈ Iu. Each
internal node u with left child v1 and right child v2 has a split value σu ∈ Iu such that
Iv1 = [lu, σu] and Iv2 = [σu + 1, ru]. For every key k ∈ ZZ there is exactly one leaf v that
is responsible for k. Leaves store keys, with leaf v storing a set Kv ⊆ Iv of keys.

In our model, each server can hold a constant number of leaves. Internal nodes contain
routing information only, and there is no a-priori bound on the number of internal nodes
a server can contain.

In a state in which no insert operations are under way, each client has a picture of
that part of the binary tree structure above all leaves it has accessed. All searches by
clients will be directly sent to leaves and servers in the known part of the tree. If queries
are evenly distributed, so is the load of servers; even if the distribution of queries and
insertions is skewed, the load of servers can be leveled out nicely with a concept proposed
in [VBW98].

Initially, the structure contains one leaf only, and whenever, due to insertions, a split
occurs a new server is taken to store one half of the records the split node was responsible
for. A split also means that a new internal node must be created; this will be stored in the
old server that held the split node, cf. Figure 3.1. Consider then the situation depicted

(c)(b)(a)
S1

S3

S2

S1 S1

Figure 3.1: The distributed tree grows from one leaf in server S1 (a) to two leaves and
servers (b), and further to three leaves and servers (c).

in Figure 3.1, and assume that a client has an out-of-date picture of the structure telling
that there is only one leaf even though the true picture is as given in Figure 3.1(c).

Assume further that the client searches for a key which has been moved to server S3.
Using its out-of-date picture the client sends the query to server S1, and seeing that the
required key is not in its own leaf, S1 sends according to the tree structure the query to
S2. Similarly, S2 sends the query to S3 whose leaf is responsible for the key of the query.

After the query has been performed and the client has obtained the corresponding
information, the search path used is also sent to the client. Then, for all keys the nodes
in this path are responsible for, this path is first used in the client before accessing the
global structure.

3.4 Highly Available Trees

Intuitively, the Highly Available Tree (HAT) that we now propose duplicates data and
stores copies in two different distributed binary leaf search trees. Both trees are kept
as similar as possible, but failures and different execution speeds may create differences
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between the trees that will be repaired as operations progress. Every node u in one tree
has an associated node u′ in the other tree, its buddy. Every request is performed on both
trees simultaneously.

To be more precise, a HAT H consists of a pair of rooted binary trees Tl and Tr with
roots rl, rr. Initially, each of the trees T• consists of its root r• only. The trees grow by
splitting a leaf into an internal node with two children.

We define the buddy operator, denoted by a prime symbol ′, as follows. If rl is the
root of Tl and rr the root of Tr, then r′l := rr and r′r := rl. If u is an internal node and
v is its left (right) child, then v′ is defined as the left (right) child of u′. For any other
pair of nodes w1, w2, w

′
1 6= w2 and w′

2 6= w1 hold. Observe that for any node u, we have
u′′ = (u′)′ = u. The parent of a node u is denoted by p(u), the sibling of u is denoted by
s(u), see Figure 3.2. If u′ = v for two nodes u, v, then v is the buddy of u and u is the
buddy of v.

p(u) p(u′)

s(u)u u′ s(u′)

Figure 3.2: Pair of two isomorphic trees

It follows that a node has at most one buddy; a node can send a message to its
buddy’s address anytime, even though this buddy need not be part of the dictionary at
the moment at which the message is sent. A node u knows the addresses of its sibling
and its parent (if u is not a root). If u is an internal node, it knows the addresses of its
children.

InH, two trees Tl, Tr are linked in the following way. Every node u is restricted to have
the same responsibility interval as its buddy u′, i.e., Iu = Iu′ , and u knows the address of
u′. Furthermore u knows the address of its buddy’s parent p(u′) and sibling s(u′). If u′ is
an internal node with children v′1 and v′2, then u knows the addresses of v′1 and v′2 or will
know these addresses eventually.

A node u can send messages to node v, if u knows the address of v.
To simplify notation, we do not distinguish between an object and its address, i.e., u

denotes a node or the address of this node, c denotes a client or the address of this client.
If a node u receives a message m, then u is also informed about the address of the sender
of m; in particular, u knows whether m was sent from its parent p(u), its buddy u′, or a
client c.

3.4.1 Mapping Nodes to Servers

The described structure has to be mapped to the set of servers, i.e., every node u is stored
on a server S(u). The set of all potential servers is enumerated {S0, S1, S2, . . .}, but this
enumeration and the corresponding addresses of the servers need to be known only to S0.
On the other hand, the addresses of S0, S1, and S2 are known to every computer. Server
S0 maintains a counter new for the relative number of the server to be involved next.
Since we start with two root servers, initially new = 3. A server S is called involved, if
there is a node u with S = S(u). For the resilience against 1–server failures it is important
that a node and its buddy are not on the same server, i.e., S(u) 6= S(u′) for every node u.
In order to ensure scalability, no server is allowed to store more than a constant number
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of leaves. Since internal nodes contain routing information only, we do not impose an
a–priori bound on the number of internal nodes on a server.

The allocation rule maps the nodes as follows (Figure 3.3):

�
�
�
�

�
�
�
�v2v1

Snew = S3

v′1 v′2

u u′

S1 S2

Figure 3.3: Mapping trees to servers

1. The root of Tl is stored on S1, the root of Tr is stored on S2.

2. Let u ∈ Tl be a leaf that performs a split and becomes an internal node with left
child v1 and right child v2. Then

(a) The left child v1 is stored on S(u), i.e., S(v1) = S(u).

(b) The right child v′2 is stored on S(u′), i.e., S(v′2) = S(u′).

(c) The nodes v2, v
′
1 are stored on a new server Snew, i.e., S(v2) = S(v′1) = Snew.

The construction immediately implies:

Lemma 3.1 The allocation rule of mapping HAT nodes to servers has the following prop-
erties:

1. Buddies are on different servers. More formally, for every node u, S(u) 6= S(u′)
holds.

2. No server stores more than two leaves.

Note that a message from a node u to a node v has to be sent from the server S(u) to
the server S(v), and S(v) has to locally hand the message over to v. We simplify notation
by letting nodes act (instead of servers only) and therefore say that this message goes
directly from u to v even if S(u) = S(v).

It is possible that a node u is stored on a crashed server S(u). To simplify notation, we
call u crashed, if the server S(u) is crashed or has not performed its recovery. Otherwise
u is called operational.

3.4.2 Dictionary Operations

This section shows how the described structure can be used to implement the dictionary
operations search and insert.

Initialization

A HAT H is initialized as empty. The empty structure H consists only of the roots rl of
Tl and rr of Tr. Let rl be stored on S1, rr on S2. For the responsibility intervals, we get
Irl

= Irr = ZZ. The two nodes do not contain keys, i.e., Krl
= Krr = ∅. The address of rl

is stored in the secure memory of S2, and the address of rr is stored in the secure memory
of S1.
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Search

A search request of a client c for a key k is performed simultaneously in both trees of
H, since c cannot decide whether there is a failure in a tree. To perform an operation,
c sends two messages to the roots rl, rr, from which the messages are forwarded to the
responsible children, until the messages reach the responsible leaves. If a leaf receives a
search request message, it sends its response about k to c, telling whether k has been
inserted or not. Since in this naive approach the roots become bottlenecks, we apply the
ideas proposed in [KW94] of informing clients about the tree structure in a lazy fashion
so that they can start future searches further down in the tree. This will be discussed in
Section 3.6.2.

Whereas in an ordinary leaf search tree the search request leads to a search path from
the root to the responsible leaf, in a HAT such a request defines a pair of search paths,
see Figure 3.4.

Tr

u′

v′
u

v

Tl
Search(c, key k, ID)

Client c

Figure 3.4: Simultaneous search in a HAT

But, as a consequence of the weakness of our assumptions about the distributed sys-
tem, such a pair of independent search paths is not enough: If in Figure 3.4 the nodes
rl = p(u) and u′ crash, then the search request from client c cannot reach the responsible
leaves. In order to safely bypass crashed nodes without loss of information, we connect
the search paths in the following way. If a node u sends a message m to a child v, then u
sends m to also v′. If there is no crash failure, v receives two copies of the same message,
one from u, the other from u′. Theorem 3.7 proves that in this way, crashed nodes can
be bypassed.

This, however, causes the next problem: If a node sends two messages for every
message it receives, the number of messages doubles at every node on the search path.
Since this exponential growth is totally unacceptable, we control it by keeping track
of what happened as follows. If a client c wants to search for a key k, it chooses an
identifier ID that is unique w.r.t. c, for instance the number of inserts and searches c
has requested so far. Then c sends the message Search(c, k, ID) to the roots of H. If a
node receives a message, this node keeps track with a message tag for the pair c, ID of
receiving this message, and it forwards the message to its corresponding child v and to v′.
If a second copy of this message is received later, the node recognizes from the tag that
it has forwarded the message before and hence does not forward the message again.

Now, a (smaller) problem is that a tag has to be stored in memory. To save memory,
a tag should be deleted after a while. One option is to delete the tag after the node has
received the second copy of the message (if the node is a root, then no tags are needed).
But now we run into a further problem: It is possible that a tag is never deleted. In the
example of Figure 3.5, a search message is sent to buddies u and u′. Both, u and u′, are
about to split. Now, assume that node u′ has already performed its split, while u has not.
Since u is a leaf, it responds to the client. But since u′ is an internal node, it forwards
the search request to the responsible child v′2 and to v2. The corresponding tags in u
and u′ will be deleted. But the children v2, v

′
2 receive only one copy of the message, and

therefore, their tags will never be deleted. Although tags may seem like a rather small
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problem, their number might increase with every search operation, and on the long run,
this is clearly undesirable. We therefore choose to avoid the possible unbounded growth
of the number of tags with the following concept.

Search(c, k, ID)

u

v′1 v′2

u′

v1 v2

Figure 3.5: Non isomorphic trees

v′

u′

v

u

Figure 3.6: Search ladder

If u forwards the search message to children v and v′, or responds to a client c, then
u sends the message together with the addresses of v and v′ or c to its buddy u′, called
a cross message1. Lemma 3.2 shows that cross messages suffice to achieve the desired
properties. We call the pair of connected search paths, including cross messages, a search
ladder, see Figure 3.6.

In more detail, the tags work as follows. If a node u receives the c, ID pair in a message
Search(c, k, ID) for the first time, then u creates a tag. Such a tag consists of 3 entries:

• Message: The message identifier c, ID.

• Received from: The addresses of the nodes or the client c from which u has received
the message in the past. Initially, this entry is empty. After having received the
message Search(c, k, ID) from a sender, u adds the address of this sender to the
entry.

• Sent to: The addresses of the nodes or the client c to which the message is sent. If
u is a leaf, then it sends messages to c and to u′. If u is an internal node, messages
are sent to children v and v′ and to u′.

If u is the responsible leaf for key k, then u sends a response message to client c. If
u is an internal node, then u forwards the message Search(c, k, ID) to its child v and its
buddy’s child v′ with k ∈ Iv = Iv′ . In both cases a message is sent to u′, too.

If u receives a message from a client, then it expects to receive the message twice, once
from the client and once from its buddy u′. If u receives a message from a parent node
p(u) or p(u′), then u expects to receive this message three times: From p(u), p(u′), and
u′. The message tag is deleted after u has received the messages from all the expected
senders.

This mechanism lets u forward a message only once, although u receives that same
message up to three times. But unfortunately, it also introduces an extra complication
in the following situation: Leaf u has performed a split, while u′ has not. If u has sent
the message to children v and v′ while u′ has sent an answer to the client c, then the
following happens. By receiving the message from u, u′ recognizes that its buddy has
links to their children while itself has not. To remedy the situation, now u′ sends the
message Search(c, k, ID) to v and v′ and changes its tag entry ”Sent to” from (c, u) to
(v, v′, u). After that u′ will perform a split, see Section 3.4.3. Hence, the search along
connected paths in this way correctly manages the tags, provided that no crash failures
occur.

1Cross messages can be avoided if both nodes have performed their splits and have become internal
nodes.

30



Insert

To insert key k into the HAT, client c sends the message Insert(c, k, ID) to the roots rl, rr.
In the same way as a search message, this insert message is forwarded through the HAT.
Each internal node u that receives Insert(c, k, ID) forwards the message to the buddy u′

and to children v and v′ with k ∈ Iv. A tag for this message is created.
Eventually the message will reach a leaf. If k is in the responsible leaf u, i.e., k ∈ Ku,

then u sends the message NotInserted(k, ID) to c; otherwise k is inserted into u, i.e.,
Ku 7→ Ku ∪ {k}, and u sends the message Inserted(k, ID) to c.

Insertions into a leaf u could lead to a split of u, see section 3.4.3.

3.4.3 Split

A split of a leaf u is necessary if the set of stored keys Ku and therefore the workload
becomes too big. During a split, the leaf u becomes an internal node with left child v1

and right child v2.
Because a node and its buddy must have the same responsibility interval, u and u′

must have the same split value σu = σu′. Since the split should be adaptive, the split
value has to be chosen according to the key sets Ku, Ku′ , for instance as their median key
(a merely space dependent split value such as lu + b ru−lu

2
c is not sufficiently adaptive).

But, since insertions can be made in u and u′ in different order, Ku and Ku′ can differ
greatly in size. Therefore, no node alone can choose the split value, we need a consensus
between u and u′. In [FLP85] it was shown that such a consensus between two or more
nodes is impossible in our model; there is no protocol that guarantees consensus in the
presence of failures.

We arrive at a split value decision by circumventing the impossibility of consensus:
The split value is chosen by a central entity, the split manager. The split manager is
stored on the fail–safe server S0, and hence every node knows its address.

As a suggestion for the split value σu, u computes the median σ̃u of its key setKu. Then
u sends the message SplitRequest(u, u′, σ̃u) to the split manager. After having received the
first split request from u or its buddy u′, the split manager selects 4 new nodes v1, v2, v

′
1, v

′
2

(according to the scheme described in Section 3.4.1), decides the split value σu (picking
either σ̃u or σ̃u′), and sends the message SplitGrant(u, u′, v1, v2, v

′
1, v

′
2, σu) to u.

The split manager responds with SplitGrant(u′, u, v′1, v
′
2, v1, v2, σu), if it receives a split

request from u′. This implies that the split manager keeps track of that split, using a
split tag. If the split manager receives another split request from u′ or u, it uses the split
tag to reconstruct the SplitGrant message sent before and to reuse the previously chosen
split value. As before, to save memory, the split tags should be deleted as soon as they
have become useless.

Again, this requirement introduces an extra difficulty. Because a leaf can perform
many splits, it is not enough that a tag is deleted after each of both corresponding nodes
has performed a split. To see this, assume that a leaf u had performed a split before it
had a crash failure. Its buddy u′ has not performed a split. If u sends a recover request
to u′, then u is recovered as a leaf. Therefore, u can split again, and it can repeat this
over and over.

We solve this problem by keeping track of the split event history in the split tags. A
split tag t(u, u′) consists of 5 parts:

• Nodes to split: The addresses of the nodes u, u′.

31



• Split value: The split value σu that the split manager selected.

• New nodes: The addresses of the 4 children v1, v2, v
′
1, v

′
2.

• Split Performed: Two flags indicating whether the split manager has received the
forwarded messages about performed splits from u, u′. The flags are initialized as
”no”.

After having received the split grant, u uses the split value σu to compute new inter-
vals I1 := [lu, σu], I2 := [σu + 1, ru] and key sets K1 := Ku ∩ I1, K2 := Ku ∩ I2. Then
u sends the message Initialize(u, u′, vi, v

′
i, s(vi), s(v

′
i), Ii, Ki) to vi and the message Initial-

ize(u′, u, v′i, vi, s(v
′
i), s(vi), Ii, Ki) to v′i. Then u stores the addresses of v1, v2 as its children

and the addresses of v′1, v
′
2 as its buddy’s children and deletes its key setKu. Furthermore,

u sends the message SplitPerformed(u) to its buddy u′. Then u is an internal node.
Eventually u′ receives the message SplitPerformed(u). If u′ is already an internal node,

then u′ forwards the message FwSplitPerformed(u) to the split manager. If u′ is still a
leaf, SplitPerformed(u) forces u′ to begin its own split. After becoming an internal node,
u′ sends the message FwSplitPerformed(u) to the split manager.

The Initialize(u, u′, vi, v
′
i, s(vi), s(v

′
i), Ii, Ki) message reaches the server S(vi) eventu-

ally. If node vi has not been initialized already by a message from u′, then S(vi) ini-
tializes vi with responsibility interval Ivi := Ii and key set Kvi := Ki. The addresses
u, u′, v′i, s(vi), s(v

′
i) are the addresses of the parents, the buddy, the sibling and its buddy’s

sibling. The buddy address v′i is stored in the secure memory of S(vi). If a second mes-
sage Initialize(u′, u, vi, v

′
i, s(vi), s(v

′
i), Ii, K

′
i) is received, then K ′

i is inserted in Kvi , i.e.,
Kvi := Kvi ∪K ′

i.
If the split manager receives a message FwSplitPerformed(u), then it sets the corre-

sponding entry in the split tag t(u, u′) to ”yes”. If both entries are set to ”yes”, then
t(u, u′) is deleted.

As a detail on the side that illustrates the intricacy of our mechanism, note that since
every node v knows the address of its buddy v′, it could happen that v sends a message
to v′, although the server S(v′) does not know of v′ yet. However, the server S(v′) stores
the message in a large enough queue for future service. After v′ has been initialized, it
works on the messages that have been received before by S(v′). Therefore, we can safely
assume that every node has a buddy at all times.

3.4.4 Recovery

Let S be a server after a crash, whose state changes from crashed to operational. Then
S starts the following recovery protocol. According to the model, S knows the address of
the buddy of at least one of its nodes from the secure memory. Let u′ be one of these
addresses, indicating that there was a node u on S before the crash. Every such node u
on the server now sends the message RecoverRequest() to its buddy u′. If u′ is an inter-
nal node, it answers with the message Recover(Iu, v1, v2, v

′
1, v

′
2, σu, p(u), p(u

′), s(u), s(u′)),
where Iu is the responsibility interval of u and u′; v1, v2, v

′
1, v

′
2 are the addresses of the

children and their buddies; σu is the split value; p(u), p(u′) are the addresses of the
parents; s(u), s(u′) are the addresses of the siblings. If u′ is a leaf, then the answer is
Recover(Iu, p(u), p(u

′), s(u), s(u′), Ku′), where Ku′ is the set of keys of u′, and the rest
is as before. After having received and processed this recover message, server S checks
whether there is a child vi, a parent p(u) or a buddy’s sibling s(u′) that should be on S
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and that has no address of its buddy in the secure memory. If so, S initializes this node
and sends the recover request to its buddy.

After every node on the server has received and processed the recover message from
its buddy, the recovery protocol is finished.

Observe that it is enough for a server in the recovery process to know one node’s
buddy, even if many nodes were stored on that server before the crash. To see this, let
u, v be two nodes on the same server, i.e., S(u) = S(v). If both nodes are in the same
tree, w.l.o.g. u, v ∈ Tl, then these nodes are on a path from the root to a leaf, i.e., one
node is the descendant of the other. If u ∈ Tl and v ∈ Tr, then there are nodes wl ∈ Tl

and wr ∈ Tr with the properties:

• u is descendant of wl.

• v is descendant of wr.

• wl is the sibling of the buddy of wr, i.e., wl = s(w′
r).

Therefore, the recovery protocol can recover every node on a server, if the address of only
one buddy is available and none of these buddies is crashed.

3.5 Properties

Let us now argue that the mechanism described in Section 3.4 indeed leads to the desired
behavior. Let H be a HAT with subtrees Tl, Tr. In its history, H starts out as empty
data structure with two roots rl, rr. Then a finite sequence of insert and search operations
O = {o1, o2, . . . , on} is performed on H, and there are no other operations on H. During
this phase, servers are allowed to have crash failures. Eventually, H reaches a state in
which no messages are sent or received any more; measured in global time, we call this
moment τ0. Let us now observe H from an external point of view. We look at the set S
of involved servers and the set F ⊂ S of servers that have had crash failures before τ0.
For this situation, we get the following results.

Theorem 3.2 (Overhead) If no crash failure occurred, i.e., F = ∅, then every tag
(message tag or split tag) has been deleted. Furthermore, the number of messages sent to
perform O on H is less than 7 times the number of messages in each one of the underlying
trees Tl or Tr.

Proof: We prove the theorem by counting the messages that are sent to perform the
operations O. A message can be sent (1) from a node to another node, or (2) from a node
to the split manager, or (3) from the split manager to a node, or (4) from a leaf to a client.
Let MH(O) be the set of these messages, and let MH(O) := |MH(O)|. This number will
be compared to the number of messages in the tree Tl. A message m ∈ MH(O) is called
an internal message of Tl, if m is sent (1) from a node u ∈ Tl to a node v ∈ Tl, or (2)
from a node u ∈ Tl to the split manager, or (3) from the split manager to a node u ∈ Tl,
or (4) from a leaf of Tl to a client. To perform O on Tl, these internal messages have to
be sent. In order to compare MH(O), let Ml(O) be the number of internal messages of
Tl.

Lemma 3.3 If no crash failure occurs, then MH(O) < 7Ml(O) holds.
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Proof: We regard every possible case and compute the factor that bounds the number
of messages in this case.

Case 1: If u, u′ are internal nodes that receive a message, e.g., a Search(c, k, ID)
message, for the first time, then due to their routing scheme u and u′ send 6 messages.
One of them is an internal message of Tl.

Case 2: If two leaves u, u′ receive a message, then each sends 2 messages, one to the
client c and one to the buddy. One of these 4 messages is counted in Ml(O).

Case 3: It is possible that a node u has performed its split while u′ has not. In this
case at most 7 messages are sent. u sends messages to two nodes v, v′ and to u′; u′ sends
messages to u and to the client c; by receiving the message from u, u′ recognizes that it
has to send the message also to v and v′. One of these 7 messages is an internal message.
The same result holds for the case that u′ has performed a split while u has not.

Case 4: If two leaves u, u′ perform their splits 12 messages have to be sent. For each
leaf there are the SplitRequest, SplitGrant, SplitPerformed, FwSplitPerformed and two
Initialize messages. Only 3 of these 12 messages are internal messages of Tl.

Case 3 leads to the inequality MH(O) ≤ 7Ml(O), but, since for every operation o ∈ O
case 2 occurs once, the inequality becomes MH(O) < 7Ml(O). 2

Lemma 3.4 If no server has had a crash failure, i.e., F = ∅, then at τ0 the HAT H is
in the following situation:

1. The trees Tl, Tr are isomorphic.

2. For every pair of nodes u, u′, Iu = Iu′ holds.

3. For every pair of leaves u, u′, Ku = Ku′ holds.

4. All tags have been deleted.

Proof: Every insert operation is performed on both trees. Therefore, if one of the two
roots has performed a split, the other has done it too. Furthermore, the splits have been
done with the same split value. Induction shows the first three properties.

Let u, u′ be a pair of leaves. The split of one node forces the other to split, too. The
nodes u, u′ perform their splits and send the messages SplitPerformed to its buddy, and
they forward these messages to the split manager. The split manager has created the split
tag t(u, u′), and after having received these SplitPerformed messages, t(u, u′) is deleted.

Let c be a client that sends an insert or search message to a pair of nodes u, u′. Both
nodes create message tags, but these tags will be deleted after having received the second
message from the buddy. If both nodes are leaves, then they send messages only back to
c and no other tags are created. If both nodes have performed splits, then u, u′ forward
the messages to nodes v, v′. Each of these two nodes will receive messages from u, u′ and
one from its buddy. Therefore, the tags in v, v′ will be deleted. If u has performed a split
while u′ has not, then u sends the message to nodes v, v′ and u′ sends a message back
to c. The cross message (Search(c, k, ID), v, v′) forces u′ to send the message to v, v′ too.
Therefore, each of the nodes v, v′ receives 3 messages and deletes the corresponding tag
after that. 2

The combination of both lemmas completes the proof of the theorem. 2

It is obvious that H works well if no crash failure occurs: Every insertion and every
search will be carried through, the trees tend to be isomorphic and every tag will be
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deleted. Deletion of the tags cannot be guaranteed, if failures can occur. But it has to
be guaranteed that a split tag is not deleted too early. Otherwise it could happen that
the unique split value gets lost in a sequence of splits, crash failures and recoveries, i.e.,
u uses a split value different from that of u′. This would imply that the buddy condition
is violated, and recovery is not possible.

Lemma 3.5 Let u, u′ be two nodes, where one of them has sent a split request to the split
manager. After the corresponding split tag t(u, u′) is deleted, neither u nor u′ will send a
split request.

Proof: Assume that the tag t(u, u′) is deleted. Each node must have forwarded the
split performed message from its buddy. At the moment at which u has sent the message
FwSplitPerformed(u′), it has been an internal node already. If u′ sends a recover request
to u, then u′ will be recovered as an internal node. Therefore, no node will send a split
request. 2

Definition 3.6 (Recoverable crashes) Let us call the set of crashed servers F recov-
erable, if for every node u, S(u) /∈ F or S(u′) /∈ F hold.

Note that in this very strict definition, we do not pay attention to the possibility that
a crashed server could have performed its recovery before a second server crashes, without

time

Insert(c, k,ID) global

S(u) crashed S(u′) crashed

Figure 3.7: Unrecoverable situation

any loss of data or messages. But on the other hand, in contrast to what one might think
at first glance, the restriction that two buddies u, u′ are not crashed at the same time, is
not strict enough. This is shown in the example in Figure 3.7. Messages are sent to a
node u and its buddy u′. The messages get lost although the nodes u, u′ are not crashed
at the same time, because the messages reach crashed servers S(u), S(u′).

Let us only state the properties of the HAT under extreme circumstances; situations
in between will lead to behaviour in between.

Theorem 3.7 (Correct operation) If F is recoverable, then all of the following hold
at τ0:

1. Every search request has been answered.

2. Every insert request has been processed by at least one responsible leaf.

3. Let k be a key that has been inserted. If no more crash failure happens after τ0 and
a single client c starts a search for k, then c will be informed that k has been found.

Proof: We can assume that there is no recovery, i.e., crashed servers remain crashed.
Let u, u′ be the addressees of a Search(c, k, ID) message. Since F is recoverable at least
one of these nodes is operational and acts on the message: If it is a leaf, it sends a message
to c, if it is an internal node it forwards Search(c, k, ID) to the children v, v′. Since O is
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finite, the number of nodes in H is bounded and the message will reach a leaf eventually.
This leaf sends a message back to the client c. The same holds for an Insert(c, k, ID)
message.

For every inserted key k there is a node u, with k has been inserted in u and S(u) /∈ F .
The Search(c, k, ID) message will reach u eventually. If u is still a leaf, then u sends a
response to c. If u has performed a split, then u forwards Search(c, k, ID) to a child v.
Eventually Search(c, k, ID) reaches a leaf w. Since c has sent the Search(c, k, ID) after τ0,
the key k is in w, i.e., k ∈ Kw. Then w sends a response to c. 2

Theorem 3.8 (Trees are identical copies) If F is recoverable and no more crash fail-
ure happens after τ0, then H will eventually reach a state in which all of the following
hold:

1. The trees Tl, Tr are isomorphic.

2. Both nodes in a pair of nodes u, u′ has the same responsibility interval, i.e., Iu = Iu′.

3. Both nodes in a pair of leaves u, u′ has the same data, i.e., Ku = Ku′ .

Proof: Let S be a server with S ∈ F . Due to the assumption that a server can have
a crash failure only after the initialization of the first node, S had stored at least one
node before the crash failure happened. Let u be such a node. Since F is recoverable,
the server S(u′) had no crash failure. Therefore, u can determine its parent, children and
sibling. This is enough information for S to reconstruct every node v with S = S(v).
Therefore, the trees become isomorphic.

Let u, u′ be two nodes. If S(u) /∈ F and S(u′) /∈ F , then Iu = Iu′ due to construction.
If one of these nodes is on a crashed server, e.g., S(u) ∈ F , then this node is recovered
with the responsibility interval of its buddy. Therefore, the equality Iu = Iu′ holds in
both cases.

Let w be a node with S(w) /∈ F . If k ∈ Kw, every request Insert(c, k, ID) has reached
w or w has been initialized with k ∈ Kw. A leaf splits when its key set becomes too big.
Therefore, if w is a leaf, its decision to split or not to split does not depend on the size
of F . This shows that Ku = Ku′ for a pair of leaves with S(u) /∈ F and S(u′) /∈ F . If
S(u) ∈ F and S(u′) /∈ F , then the key sets are equal, since Ku is a copy of Ku′ . 2

Let us summarize: A HAT works well, if not too many servers are crashed at the same
time and recovery is performed fast enough. And of course, if crashes are too frequent
and recovery is too slow, no data structure whatsoever can offer a reliable service.

3.6 Improvements and Modifications

So far, we have described the HAT with very few assumptions and in its most simple
form. We now discuss the flexibility of the basic HAT concept.

3.6.1 Secure Memory and Early Crashes

We have assumed that every server has a small secure memory. This is done to enable a
server’s recovery after a crash. But the server can obtain the information in a different
way, too. Let S be a server that after having a crash failure wants to recover. If S receives
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a message from a node u, then S knows that there should be a node v ∈ S which is in
some relation to u. Therefore S can send a message to u, asking for the information.
Hence, an extra message exchange can replace the secure memory. The same technique
can be applied to get rid of the assumption that no server crashes before it is involved in
the data structure: If it instead does crash first, but later gets a message from some other
server, it will know that it is involved, and it will get the necessary information with a
message exchange.

3.6.2 Lazy Update

We described in Section 3.3 how clients with more activity tend to have better knowledge
of the tree. Let us now explain the (fairly obvious) extension of the lazy update concept
presented in [KW94] to the HAT. If a node u sends a message m to another node or
to a client, u attaches its address and its responsibility interval to m. Every search or
insert operation a client c initializes, gives information about the HAT’s structure to c.
If c knows the addresses of two nodes u, u′ and their responsibility interval Iu, c can send
every search for a key k ∈ Iu to u, u′ directly.

3.6.3 Hidden Data

In a distributed data structure, it is not always clear what the correct answer for a search
request is. If one client searches for a key k and a second client wants to insert k into the
structure, the answer to the search depends on factors such as the transmission time of
the messages. This is a somewhat undesirable, but unavoidable property. Therefore in a
HAT, a client can get two different answers for a search. If there is one positive answer,
then the client knows that the key is present.

But a HAT has another strange property. It is possible that a key k is not found,
although k has been inserted into a leaf earlier. This can happen if a leaf u has performed
a split (and deleted its key set Ku), while the child has not received the Initialize message
from u, i.e., the data is hidden in an unreachable message. In the following we describe a
protocol that avoids this undesired and strange behaviour.

If a node u performs a split and sends Initialize messages to children vi, v
′
i, then u

does not delete its key set Ku = K1 ∪ K2. Every following message Search(c, k, ID) is
forwarded according to the described routing scheme, but additionally u sends an answer
to c. Also, every following message Insert(c, k, ID) is forwarded according to the routing
scheme, and k is inserted in Ku. Node u is called schizophrenic, since it acts on a leaf
and an internal node at the same time.

If a node v receives an Initialize message, then it sends a message InitializationOK()
back to the sender. If node u receives the message InitializationOK() from a node vi or v′i,
then it deletes Ki, i.e. Ku 7→ Ku \Ki. If Ku = ∅, then u stops its schizophrenic behavior.

It can be easily seen that if a key k has been inserted in a leaf u, then all following
search requests will find at least one copy of k.

3.7 Conclusion

We have proposed a distributed dictionary that tolerates arbitrary single server crashes.
The distinctive feature of our model is that the crash of a server cannot be detected.
This is in contrast to all other proposals of distributed fault tolerant search structures

37



presented thus far. It reflects the real situation in a global data base more accurately,
and is in general more suitable to complex overall conditions. This makes our solution
fundamentally different from all previous ones, but also more complicated. We have
presented in detail the algorithms for searching, insertion, and graceful recovery of crashed
servers.
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Chapter 4

Point Formation: Contraction
Functions and Weber point

4.1 Introduction

The previous chapter showed that a weak environmental setting is enough to build and
maintain a highly available data structure. This chapter does something similar with a
different problem in the context of distributed coordination: It shows that with a simple
robot behaviour, the point formation problem can be solved.

The point formation problem is as follows. There are mobile robots in the plane that
should meet in one destination point. The robots cannot communicate, but they can take
snapshots of the plane and thus determine the relative location of the other robots at a
point of time. What is a strategy the robots should follow such that they can complete
this task? The goal is to derive a distributed solution for this coordination problem, i.e.,
the destination point is not given by a central coordinator or a leader robot. Furthermore,
the destination point should not rely on a coordinate system.

A distributed solution for the point formation problem is given in [SY99]. The authors
consider the following model. It is assumed that the robots are moving points, two or
more robots can occupy the same position simultaneously. Furthermore, there is discrete
time. At every time step, every robot is either active or inactive. If a robot is active at a
time step, it does the following. It takes a snapshot, computes the point it wants to move
to and moves imeadiatly. An inactive robot does nothing. Furthermore, it is assumed
that the robots have a common sense of orientation. With this model, [SY99] proved
the following results: If the robots are nonoblivious (i.e., the robots keep every snapshot
in their memory), then the point formation problem can be solved; if the robots are
oblivious (i.e., the robots forget former snapshots), then for every set of initial positions
of the robots, the point formation problem can be solved, except for the case of two robots.
To prove these results, the authors have to argue on the behavior and the internal states
of the robots.

Our goal is to solve the point formation problem with a simpler method and under
weaker assumptions than [SY99]. A rough outline of our solution is as follows: Every
robot takes a snapshot and detects the multi set of positions of the robots. This multi set
is the input for a so called contraction function, and this function gives the destination
point. Due to the definition of contraction functions, the destination point is independent
of coordinate systems and invariant against straight line movement towards the desti-
nation point. All the robots have to do is to compute the destination point and move
towards it. This solution works in an asynchronous model, where the robots take their
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snapshots independently and there is no global clock. Moreover, we get simple and easy
to understand proofs.

This chapter has the following structure. Section 4.2 gives the exact description of
the model we consider. In section 4.3, contraction function are defined. Furthermore,
this section presents contraction functions for small multi sets, gives some uniqueness
results, and proves important properties. In section 4.4, the Weber point is introduced.
It turns out that the Weber point can be used to get a contraction function for multi sets
of arbitrary cardinality. Section 4.5 gives the definition of convex core and discusses the
relation to contraction functions. Section 4.6 discusses the question whether the mapping
to the Weber point is the only contraction function? In section 4.7, we present some
model modifications. The chapter is concluded by section 4.8.

4.2 The Model

We consider the following model. There are n mobile robots in the plane. The robots are
anonymous in the sense that they all execute the same algorithm and they are identical
copies of each other. The robots have no access to a common coordinate system. There
is no way for the robots to communicate.

A robot is able to take snapshots of the whole plane. With a snapshot, the robot
is able to detect the other robots and their positions, and it can measure distances and
angles. It is possible that any two robots use different unit lengths.

The robots are assumed to be moving points, and two or more robots can occupy the
same position simultaneously. The robots are able to detect multiplicity, i.e., for every
point in the plane, the robots can count the number of robots on this point.

Initially, all robots are sleeping. Every robot will awake eventually, independent of
the others. Then, the robot can look around (i.e., it takes a snapshot), it computes the
destination point and moves towards this. The robot can do the same several times, but
we do not specify this. Furthermore, it is possible that the robot has breaks, i.e., for some
time, it does nothing. Each robot has its personal speed, but it is assumed that every
robot will reach a computed destination point, i.e., the robot needs finite time to travel a
finite distance.

4.3 Contraction Functions and their properties

In this section, we give the definition of contraction functions and discuss their proper-
ties. Furthermore, we present examples of contraction functions for multi sets of small
cardinality.

Definition 4.1 Let n ∈ IN be fixed, let C be a function that maps a multi set of n points
to a point c ∈ IR2. The function C is called a Contraction Function, if for all multi sets
X = {p1, . . . , pn} the following properties are fulfilled:

1. There is no ordering among the robots, i.e., for every permutation π : {1, . . . , n} →
{1, . . . , n},

C(pπ(1), . . . , pπ(n)) = C(p1, . . . , pn)

2. The robots do not have a common coordinate system: For every isometric function
o : IR2 → IR2,

C(o(p1), . . . , o(pn)) = o(C(p1, . . . , pn))
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3. Linear movement towards the contraction point does not change it: Let c := C(X),
for every vector t = (t1, . . . , tn) ∈ [0, 1]n,

C( . . . , (1 − ti)pi + tic, . . . ) = c

If c = C(X) for a contraction function C, then c is called a Possible Contraction Point
or Contraction Point of X.

Let X = { . . . , pi, . . .} be a multi set. For a contraction function C and a vector
t = (t1, . . . , tn) ∈ [0, 1]n, c := C(X), define the multi set X ′ := { . . . , (1− ti)pi + tic, . . .}.
X ′ is called a contraction of X, and we say that X can be contracted to X ′.

Remark: Lemma 4.3 will show that a contraction point does not exist, if the multi set
consists of collinear points without median. Therefore, the “all multi sets” in definition
4.1 means that we exclude these cases.

Property 1 says that there is no leader among the robots. Due to the definition of
multi sets, this property is always fulfilled.

We start the discussion of the properties with contraction functions for small multi
sets, the simplest (non empty) multi set of points consists of one point. For this case, we
get the following result.

Lemma 4.2 Let X = {p}, then c := p is the only possible contraction point.

Proof: It is obvious that c fulfills the properties of a contraction point.
Let o be a rotation by an arbitrary angle α ∈]0o, 360o[ about p. Since o(p) = p, for

every contraction point c, o(c) = c must hold. This can only be fulfilled with c = p. 2

The next case is X = {p1, p2}. Two points are trivially collinear, and if p1 6= p2, X has
no median. The next lemma shows that for collinear points, the existence of a median is
crucial.

Lemma 4.3 Let X be a multi set with the property that all points of X are collinear,
i.e., they are on a straight line l. Then there are two cases:

1. X has a median q. Then q is the only possible contraction point for X.

2. X has no median. Then there is no contraction point.

Especially in the case n = 2, there is a contraction point iff both points have the same
position.

Proof: Let Ml be the mirroring about the line l. Since every point pi ∈ X lies
on l, Ml(pi) = pi holds. This implies that for every contraction function C , C(X) =
C(Ml(X)) = Ml(C(X)). Therefore, C(X) ∈ l.

If the median q exists, then a point pi ∈ X can move towards it, without changing the
median property of q. This has been shown in the proof of Lemma 1.3. Therefore, the
median is a possible contraction point.

To show the uniqueness, we choose an arbitrary vector v parallel to l with |v| ≥ |pi−q|
for all pi ∈ X. If n is odd we define the multi set

X ′(p) :=




1 if p = q
n−1

2
if p = q − v or p = q + v

0 else
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If n is even, we define

X ′(p) :=




2 if p = q
n−2

2
if p = q − v or p = q + v

0 else

Due to its definition, X ′ can be contracted to X. Since X ′ is symmetric by an 180o–
rotation about q, q is the median of X ′ and it is the only possible contraction point.
Contraction of X ′ to X shows, that q is the only possible contraction point for X.

As to the next claim, assume that X has no median, this implies that n is even.
Assume that the points are ordered linearly with respect to their indices. This implies
that pn

2
6= pn

2
+1 (otherwise, pn

2
is a median). Assume for contradiction that there is a

contraction function C with c := C(X). The point c must be one of the points pn
2
, pn

2
+1

or must lie on the straight line segment between them (otherwise, n
2

points must pass
through pn

2
or pn

2
+1, such that this point becomes a median and the unique contraction

point ). For the multi set

X ′(p) :=




n
2

if p = pn
2

n
2

if p = pn
2
+1

0 else

we obtain that C(X) = C(X ′) = c. Let c′ := 1
2
(pn

2
+ pn

2
+1), rotation by 180o about c′

transforms X ′ into itself. Therefore, c = c′. But since c′ is not invariant under movement
towards it, X ′ has no contraction point. This contradicts the assumption. 2

Remark: In contrast to [SY99], contraction functions do not solve the problem for an
even number of collinear points without median. But the problem can be solved with a
little extension and one assumption from [SY99]: Initially, the positions of the robots are
different. If the number of robots is bigger than 2, then the robots inside move to the
middle point defined by the two outer points, and the two robots outside do not move
until the multi set of positions got a median. The only not solvable instance remains the
case of two different points, but this case cannot be solved for oblivious robots in [SY99],
too.

The previous lemma showed that there is no contraction function for 2 different points,
and there is no contraction function for 4 collinear points without median. However,
similar to the case of one point, there is a unique contraction point for 3 points.

Theorem 4.4 For n ∈ {3, 4}, there is a unique contraction point (except in the case of
4 collinear points without median).

Proof: We discuss 4 cases. For every case, we present a solution and show uniqueness.
Uniqueness is shown as follows: First, we prove uniqueness for symmetric multi sets.
Second, the symmetric multi sets are contracted to arbitrary multi sets.

Case 3.a n = 3 and the three points form a triangle in which every angle is smaller
than 120o. Then there is a unique point s, the so called Steiner point, with the property,
that the angle between every pair of two vectors (pi − s), (pj − s), i 6= j, is equal to 120o.
The Steiner point s is a possible contraction point (Existence and construction of the
Steiner point will be discussed after this proof).

To show uniqueness, we consider an equilateral triangle. Due to the rotation symmetry,
the Steiner point is the only possible contraction point. Since a contraction function must
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αα
α

Figure 4.1: An arbitrary triangle 2 derived from an equilateral triangle o, α = 120o.

be invariant under linear movement and each triangle with property 3.a can be obtained
from an equilateral triangle (see Figure 4.1) the result holds for every of these triangles.

Case 3.b n = 3 and the three points form a triangle in which one angle is equal to or
bigger than 120o. Then the point at the biggest angle is a possible contraction point.

It is assumed that the triangle is isosceles, we use the notation from Figure 4.2. Due to
symmetry every contraction point must lie on the straight line which goes through p1 and
is perpendicular to the straight line through the other points. Assume for contradiction,

p1

c2

p′2

p2 p3

c1

Figure 4.2: Triangle with one angle bigger than 120o.

that there is a contraction point c above p1, e.g., c = c1. When p2 moves to c1, it has to
cross the straight line through p1, p3. For the multi set {p1, p

′
2, p3}, the point p1 is the only

possible contraction point. Therefore, there is no contraction point above p1. Assume for
contradiction that there is a contraction point c below p1, e.g., c = c2. For the multi
set {p1, c2, p3}, the Steiner point is the only possible contraction point (case 3.a). In this
situation, every contraction point lies inside the triangle and cannot be equal to c. This
is a contradiction. Therefore c := p1 is the only possible contraction point for an isosceles
triangle. Since every triangle can be obtained from an isosceles triangle by movement
towards p1, c := p1 is the only solution for every case.

Case 4.a n = 4 and the four points form a convex quadrangle. In this case, the
intersection of the diagonals is a possible contraction point.

If the four points form a rectangle the intersection of the diagonals is the only possible
contraction point. Every arbitrary convex quadrangle can be obtained from a rectangle
by movement towards the diagonals. Therefore, the intersection of the diagonals is the
only possible solution.

Case 4.b n = 4 and three points form a triangle with the fourth point inside. Then
the point inside is a possible contraction point.

Figure 4.3 shows 3 different points c1, c2, c3 which might be possible solutions. Assume
for contradiction, that there is a contraction point c ∈ {c1, c2, c3}. Case c = c1, then in
order to move to c1, p2 has to cross the straight line through p1, p4. Case c = c2, p3 has
to cross the line through p2, p4. Case c = c3, p3 has to cross the line through p2, p4. In
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p1

c1

c2
c3

p4

p2

p3

Figure 4.3: 4 points in non convex position.

each case, there are 3 points on a line, which means that every contraction point must lie
on that line. But this is a contradiction. 2

Construction of the Steiner point
Theorem 4.4 stated that the Steiner point can be used as a contraction point. To show the
existence and to illustrate its properties, we present two standard methods to construct
the Steiner point. These methods have been presented in many publications, see for
example [KM97] for more details. The Steiner point has a very long history. We omit the
discussion about this and refer to [KM97].

Let p1, p2, p3 be 3 points that form a triangle such that every angle is less than 120o.
We do the following construction, see Figure 4.4. For every given point pi, we define
a point p′i such that p′i, pl, pk form a equilateral triangle, where pl, pk are the two other
points different from pi. After that, we draw straight lines from pi to p′i. The three lines
intersect in one point, this is the Steiner point s.

Figure 4.5 shows a similar way to construct the Steiner point. The point p′1 is defined
as before, let m := 1

3
(p2 +p3 +p′1) be the middle point of the equilateral triangle p2, p3, p

′
1.

We draw a circle around m with radius |p2 −m|. There are two intersections of this circle
with the straight line through p1, p

′
1. One of these intersection points is p′1 itself, the other

point is the Steiner point s. Instead of using one line and one circle, one can use two
circles (or three) circles, too.

Further Properties of Contraction Functions
We presented some existence and uniqueness results for small multi sets of cardinality less
than 5. For better understanding of contraction functions, we give characterizations for
multi sets of arbitrary cardinality. The first result can be regarded as a majority lemma.

Lemma 4.5 If there is a q ∈ IR2 with X(q) = k > n
2
, then q is the only possible

contraction point.

Proof: The property that more than half of the points have position q is invariant
under linear movement towards q. Therefore q is a possible contraction point. Let C be
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p2p1

p3

s

p′3

p′2

p′1

Figure 4.4: Construction of the Steiner point.

p2p1

p3

s

p′1
m

Figure 4.5: Construction of the Steiner point.

a contraction function and c := C(X), then

c = C(q, . . . , q︸ ︷︷ ︸
k

, pk+1, . . . , pn) = C(q, . . . , q︸ ︷︷ ︸
k

, c, . . . , c︸ ︷︷ ︸
n−k

) = C(c, . . . , c︸ ︷︷ ︸
k

, q, . . . , q︸ ︷︷ ︸
n−k

)

= q

2

Due to their definition, contraction functions fulfill the contraction property, i.e., if
the point move towards the destination point, the destination point does not change.
Contraction functions fulfill an extension property in the following sense as well. This
result is interesting for its own; moreover, it is helpful to simplify some proofs.

Lemma 4.6 Let C be a contraction function and c := C(p1, . . . , pn). For a t = (t1, . . . , tn) ∈
[−1,∞)n define p′i := pi + ti(pi − c). It holds

C(p′1, . . . , p
′
n) = c
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Proof: For t ∈ [−1, 0]n, the claim is the contraction property. To show the claim for
t ∈ [0,∞)n, we show that the lemma is true for t := (1, . . . , 1), i.e., the distance from c is
doubled. Iteration and the contraction property show the result for arbitrary t ∈ [0,∞)n.

Define p′i := pi + (pi − c) and for c′ := C(p′1, . . . , p
′
n), compute the vector v := (c′ − c),

see Figure 4.6. For the points p′′i := 1
2
(p′i + c′), we obtain p′′i − pi = 1

2
(c′− c). This leads to

cpi

c′

1
2
v

p′i

v := (c′ − c)p′′i

Figure 4.6: Extension property.

c′ = C(p′1, . . . , p
′
n) = C(p′′1, . . . , p

′′
n) = C(. . . , pi +

1

2
(c′ − c), . . .)

= C(p1, . . . , pn) +
1

2
(c′ − c) = c+

1

2
(c′ − c)

Since c′ = c+ (c′ − c), this implies c′ − c = 0. 2

Given a multi set X of points, we want to specify the possible contraction points for
X. For some special cases, we derived uniqueness results for the contraction points. For
other cases, we do not have uniqueness results, but the positions of contraction points
can be restricted as well. The following theorem shows that the set of contraction points
is a subset of the convex hull.

Theorem 4.7 If c is a contraction point for a multi set X, then c lies in the convex hull
of X.

Proof: Assume for contradiction that c is outside the convex hull of X. The convex hull
CH(X) is convex and bounded by a polygon. In order to move to c the points have to

c

X
l

Figure 4.7: Contraction point c outside the convex hull

cross a straight line l with the property c /∈ l, see Figure 4.7. The line l can be chosen as
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the straight line defined by the corresponding line segment of the boundary. Therefore,
it is possible, that all points are on l. But due to Lemma 4.3 this is either not solvable or
c must lie on l: Contradiction! 2

4.4 Weber Point

The previous section presented contraction functions only for small multi sets. In order
to get contraction functions for multi sets of arbitrary cardinality, we look at the Weber
point. This point is defined in the following way.

Definition 4.8 Let X = {p1, . . . , pn} be a multi set of points. The Weber point W (X)
of X is defined as the point, that minimizes the function

z 7→ f(z) :=
∑

pi∈X

|pi − z| z ∈ IR2

The Weber point has a long history, and since many mathematicians worked on it, it
has many different names, too, e.g., Fermat–Torricelli, Fermat–Weber. For simplicity, we
avoid the discussion of this and refer to [Dör58, Wes93, Dre95, KM97, DH02]. The Weber
point is named after Alfred Weber, who did some work on facility location [Web09].

If X consists of one point p1, then p1 is the Weber point. For a multi set of two
different points, then every point on the straight line segment connecting p1 and p2 is a
Weber point. In this case, the Weber point is not unique. To characterize such cases, we
cite the following lemma.

Lemma 4.9 ([KM97]) The Weber point is unique, except for the case of an even number
of collinear points without median.

Our interests in Weber points are based on the fundamental result that shows a strong
connection between contraction functions and Weber point.

Theorem 4.10 If the Weber Point is unique, then it is a possible contraction point.

Proof: The only thing we have to show, is that the Weber point is invariant against
linear movement towards it. It is obvious that the Weber point fulfills the other properties.
Let w := W (X) be the Weber point of X = {p1, . . . , pn}, for t ∈ [0, 1], define p′ :=
(1 − t)p1 + tw. Due definition,

n∑
i=1

|pi − w| <
n∑

i=1

|pi − z| ∀z ∈ IR2 \ {w}

holds. This and the inequality |z − p1| ≤ |z − p′| + |p′ − p1| lead to

n∑
i=2

|pi − w| + |p′ − w| <
n∑

i=2

|pi − z|+ |p1 − z| + |p′ − w| − |p1 − w|︸ ︷︷ ︸
=−|p′−p1|

≤
n∑

i=2

|pi − z|+ |p′ − z| + |p′ − p1| − |p′ − p1|

=
n∑

i=2

|pi − z|+ |p′ − z|

This means that w is the unique Weber point of the multi set (X ] {p′}) \ {p1}. 2

Theorem 4.10 leads directly to the following corollary.
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Corollary 4.11 In Theorem 4.4 it has been shown that for the cases n ∈ {3, 4} there is
exactly one possible contraction point. Since every Weber point is a contraction point, in
Theorem 4.4 a characterization of the Weber point has been given.

Furthermore, we obtain a new proof for the following well–known fact.

Corollary 4.12 ([KM97]) It holds: W (X) ∈ CH(X).

Proof: If the Weber point is not unique then the corollary is true. If the Weber point
is unique, then w := W (X) is a contraction point. And since every contraction point lies
in the convex hull (Theorem 4.7), w is in the convex hull, too. 2

The Weber point has the following properties. A similar version for sets was given in
[Wei37], we generalize this result to multi sets. The result will play an important role in
our study and will be exploited extensively.

Theorem 4.13 Let w = W (X) be the unique Weber point of X, let X(w) ∈ IN be the
multiplicity of w in X. It holds: ∣∣∣∣∣∣∣∣

n∑
i=1

pi 6=w

pi −w

|pi −w|

∣∣∣∣∣∣∣∣ ≤ X(w)

And w is the only point with this property. Especially, if w 6∈ X, i.e. X(w) = 0, we obtain

n∑
i=1

pi − w

|pi − w| = 0

Proof: [follows [KM97]] Define g(z) := |p − z| for an arbitrary point p ∈ IR2. If z 6= p,
we compute the gradient as

gradg(z) =
pi − z

|pi − z|
Let v be a unit vector. If z = p, we obtain for the directional derivative in direction v

gv(z) = 1

If w 6∈ X, the function f is differentiable in w. Since w minimizes the sum of the
distances, it holds

0 = gradf(w) = grad

(
n∑

i=1

|pi − w|
)

=
n∑

i=1

pi − w

|pi − w|

If w ∈ X, we have to be more carefully. Let k := X(w). For the function

f̃ (z) :=
n∑

i=1
pi 6=w

|pi − z| = f(z) − k|w − z|

and the directional derivative in direction v we obtain

fv(w) =
〈
gradf̃ (w), v

〉
+ k =

〈
n∑

i=1
pi 6=w

pi −w

|pi −w| , v
〉

+ k

48



Since f is minimized in w, fv(w) ≥ 0 holds. The theorem is true, if gradf̃(w) = 0.

Therefore, we can assume that gradf̃(w) 6= 0, and we define v := − gradf̃(w)

|gradf̃(w)| . This leads

to

0 ≤ fv(w) = −

∣∣∣∣∣∣∣∣
n∑

i=1
pi 6=w

pi −w

|pi −w|

∣∣∣∣∣∣∣∣+ k

On the other hand, assume that for ŵ ∈ IR2,∣∣∣∣∣∣∣∣
n∑

i=1
pi 6=ŵ

pi − ŵ

|pi − ŵ|

∣∣∣∣∣∣∣∣ ≤ X(ŵ)

holds. For the function

f̂(z) :=
n∑

i=1
pi 6=ŵ

|pi − z| = f(z) −X(ŵ)|ŵ − z|

we obtain that

0 ≤ −
〈

gradf̂(ŵ),
gradf̂(ŵ)

|gradf̂(ŵ)|

〉
+X(ŵ)

Since for all v ∈ S1,

〈
gradf̃(ŵ),

gradf̂(ŵ)

|gradf̂(ŵ)|

〉
≥
〈
gradf̃ (ŵ), v

〉

holds, it follows that fv(ŵ) ≥ 0. This means that f is minimized in ŵ, and since w is
unique, ŵ = w. 2

The inequality described in theorem 4.13 shows a strong connection to the median of
numbers: Let {r1, r2, . . . , rn} be a set of real numbers. If n is odd, then this set has a
unique median r and ∣∣∣∣∣∣∣∣

n∑
i=1
ri 6=r

ri − r

|ri − r|

∣∣∣∣∣∣∣∣ ≤ 1

holds. This is the reason why the Weber point is sometimes called spatial median.
Furthermore, the theorem shows important properties of the Weber point: For a

given point q ∈ IR2, it can be tested if q = W (X). Especially, it is easy to check whether
W (X) ∈ X or not.

Furthermore the lemma can be used to prove Theorem 4.10. For pi 6= w and t ∈ [0, 1),
p′ := (1 − t)pi + tw, we obtain

pi − w

|pi − w| =
p′ − w

|p′ − w|
However, we have to pay attention to the cases in which the multiplicity of the Weber
point changes.
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4.4.1 Construction of the Weber point

Since for n ∈ {2, 3, 4} there is at most one contraction function, the Weber point can be
constructed very easily in these cases. It is remarkable that the Weber point is a solution
which is minimal in the sense that it minimizes the path length the points have to move.

However, the Weber Point is not constructible by compass and ruler in general, this
has been shown in [Baj88], [CM69]. Constructing the Weber point is equivalent to compu-
tation of the roots of a high degree polynomial. Even for n = 5, one can find examples for
which the Weber point cannot be constructed. In [CM69] the following simple example is
given, see Figure 4.8: Due to the symmetry with respect to the x–axis, the Weber point

p4 = (a, b)

p5 = (a,−b)

p2 = (0, 1)

p1 = (0, 0)

p3 = (0,−1)

Figure 4.8: 5 points for which the Weber point is not constructible.

w of these five points has the coordinates (x, 0), where x ∈ [0, a]. The value of x has to
be chosen such that

5∑
i=1

|pi −w| = x+ 2
√

1 + x2 + 2
√
b2 + (a− x)2

is minimized. This leads to a polynomial of degree 8, which cannot be solved for all a, b.
On the other hand, this is no problem for an analog computer, Figure 4.9 shows

a so called Varignon Frame [Wes93, KM97]. A horizontal board is drilled with holes

Figure 4.9: Varignon Frame, an analog computer.

corresponding to the positions of the robots, i.e., for every p ∈ uniq(X) there is one hole
hp. Furthermore, for every p ∈ uniq(X) there is one string sp, and those strings are tied
together in a knot at one end. The loose end of the string sp is passed from above through
the hole hp. Then the loose end of sp is attached to physical weights of unit mass. The
number of weights attached to a string sp is equal to X(p). If we regard this as an ideal
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physical system without friction, then the knot moves to a position that is the Weber
point. This is due to the fact that the sum of the forces corresponds to the sum of unit
vectors. It is hard to compute the Weber point algorithmically, but it is easy to do it
with this frame.

The hardness of such a simple example is interesting because if we replace the intuitive
notion of distance by the less intuitive notion of squared distance, it becomes easy to
minimize the resulting function:

z 7→ ∑
pi∈X

(pi − z)2 is minimized in z :=
1

n

∑
pi∈X

pi

Furthermore, this function has a unique minimum for all instances of X. But unfortu-
nately, it is not invariant under movement.

On the other hand, it can be tested easily, whether one of the given points is the
Weber point itself. Therefore, one can ask for the probability that for a random multi set
X, W (X) ∈ X holds. Does the probability grow, if n becomes bigger?

The following Lemma is an example how to compute such a probability.

Lemma 4.14 Let X = {p1, p2, p3} a set of random points, where the points are cho-
sen independently, and equally distributed from the one–dimensional sphere S1 := {x ∈
IR2||x| = 1}. It holds that Pr[W (X) ∈ X] = 1

3
.

If the points are chosen from the unit disk D := {x ∈ IR2||x| ≤ 1}, we get an upper
bound for the probability Pr[W (X) ∈ X] ≤ c ≈ 0.391.

Proof: In Figure 4.10, the point p3 is the Weber point of X, iff α ≥ 120o. Let o be the

α

S1

β

p1 p2

p3

11

o

Figure 4.10: 3 Points on S1

origin, let β be the angle between the vectors p1 − o, p2 − o. Basic geometry says that
2α + β = 2π; and therefore, α ≥ 120o, iff β ≤ 120o = 2

3
π =: β0. This means that one of

the given points is the Weber point, iff for the spherical distance d between every pair of
points holds:

d(pi, pj) ≤ β0 ∀i, j ∈ {1, 2, 3}
Assume that p1, p2 are fixed. Define β := d(p1, p2). If β ≤ β0, then p3 is the Weber point
with probability Pr[p3 = W (X)] = β

2π
and Pr[p1 = W (X)] = Pr[p2 = W (X)] = β0−β

2π
.

Therefore, the following holds

Pr[W (X) ∈ X |β] =
β

2π
+ 2

β0 − β

2π
=

1

2π
(2β0 − β)
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To compute the probability, we have to integrate this expression.

Pr[W (X) ∈ X] = 2
1

2π

∫ β0

0

1

2π
(2β0 − β)dβ =

1

2π2
(2β2

0 −
β2

2

∣∣∣β0

0
)

=
1

2π2
(2β2

0 −
1

2
β2

0) =
1

3π2
β2

0 =
1

3

As to the second claim, let p1, p2, p3 ∈ D. Since Pr[pi = pj ] = 0 for i 6= j, Pr[W (X) ∈
X] = 3Pr[W (X) = p1] holds. Let A(p2, p3) ⊂ IR2 be the set such that for all p ∈ IR2,
p = W (p, p2, p3) iff p ∈ A(p2, p3) holds. For the size of A(p2, p3), we compute

|A(p2, p3)| = 2d2(p2, p3)

(
π

9
− 1

4
√

3

)
,

where d(p2, p3) denotes the distance between p2, p3. With this, we obtain

Pr[W (X) = p1 | p2, p3] =
|A(p2, p3) ∩D|

π
≤ |A(p2, p3)|

π

Since
∫
D

∫
D d

2(p2, p3)dp3 dp2 = π2, we can compute the probability

Pr[W (X) = p1] ≤ 2

π

(
π

9
− 1

4
√

3

)
1

π2

∫
D

∫
D
d2(p2, p3)dp3 dp2︸ ︷︷ ︸

=1

With this, we conclude that Pr[W (X) ∈ X] ≤ c := 3 2
π
(π

9
− 1

4
√

3
) ≈ 0.391. 2

If the number of random points grows, one expects that the probability that one point
is near by the Weber point of the other points grows. Therefore the next Lemma is not
very surprising.

Lemma 4.15 Let D := {x ∈ IR2 | |x| ≤ 1} be the unit disk. Let (pi)1≤i≤n be a sequence
of independent and uniformly distributed random variables in D. Let r := min{|pi| | i ∈
{1, . . . , n}} be the minimal distance from a point to the origin. Then it holds

E[r] =
4n(n!)2

(2n + 1)!

Which implies

E[r] ∼
√
π

2

1√
n

n→∞−→ 0

Proof: Since Pr[|pi| ≤ a] = a2 for a given a ∈ [0, 1] we obtain

Pr[r ≤ a] = 1 − Pr[r > a] = 1 −
n∏

i=1

Pr[|pi| > a]

= 1 −
n∏

i=1

(1 − Pr[|pi| ≤ a]) = 1 − (1 − a2)n

This leads to the density function ψ(a) = 2an(1 − a2)n−1.

E[r] =
∫ 1

0
a dψ(a) = 2n

∫ 1

0
a2(1 − a2)n−1 da
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=
22 n(n − 1)

3

∫ 1

0
a4(1 − a2)n−2 da (partial integration)

=
2k∏k

i=1(2i− 1)

n!

(n− k)!

∫ 1

0
a2k(1 − a2)n−k da (iteration)

=
2n∏n

i=1(2i− 1)
n!

1

2n+ 1
=

2n n!

2n n!

2n n!∏n+1
i=1 (2i− 1)

=
4n(n!)2

(2n + 1)!

The Stirling formula n! ∼ √
2πn

(
n
e

)n
leads to

4n(n!)2

(2n + 1)!
∼ 4n 2πn

(
n
e

)2n

√
2π

√
2n + 1

(
2n+1

e

)2n+1 =

√
2π√

2n + 1

n

2n + 1
e
(

2n

2n+ 1

)2n

︸ ︷︷ ︸
→e−1

∼
√
π

2

1√
n

2

Although the expected distance to the Weber point becomes smaller and smaller, the
probability that one of the given points is the Weber point decreases.

Theorem 4.16 Let D := {x ∈ IR2 | |x| ≤ 1} be the unit disk. Let (pi)i≥1 be a sequence
of independent and uniformly distributed random variables in D, let Xn := {p1, . . . , pn}
be a multi set. Then the following holds:

lim
n→∞ Pr[W (Xn) ∈ Xn] = 0

Furthermore, there exists a sequence (Pn)n with Pr[W (Xn) ∈ Xn] ∼ Pn and

0.62
1

n
≈ π2

16

1

n
≤ Pn ≤

(
π3

16π − 32

)2
1

n
≈ 2.88

1

n

Proof: The proof is done in two steps. First, we use Monte Carlo integration ([Zwi92])
to transform the sum of distances into an integral. In the second step, we derive upper
and lower bounds for this integral.

Since Pr[pi = pj ] = 0 for i 6= j, it can be assumed that Xn is a set for all n. For a
pi ∈ Xn we obtain

pi = W (Xn) ⇔
∣∣∣∣∣∣∣

n∑
j=1
j 6=i

pj − pi

|pj − pi|

∣∣∣∣∣∣∣ ≤ 1

Since Pr[pi = W (Xn) ∧ pj = W (Xn)] = 0 for i 6= j, it follows that

Pr[W (Xn) ∈ Xn] =
n∑

i=1

Pr[pi = W (Xn)] = nPr[p1 = W (Xn)]

Monte Carlo integration shows that

π

n

n∑
j=2

pj − p1

|pj − p1| −→
∫

D

z − p1

|z − p1|dz for n→ ∞
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Therefore, for n big enough,

Pr


π
n

∣∣∣∣∣∣
n∑

j=2

pj − p1

|pj − p1|

∣∣∣∣∣∣ ≤
π

n


 ≈ Pr

[∣∣∣∣∣
∫

D

z − p1

|z − p1|dz
∣∣∣∣∣ ≤ π

n

]

holds, Let δ := |p1| be the distance between p1 and the origin of D. The probability on
the right side depends only on δ. Let pδ := (−δ, 0) be a point on the x–axis, we define

A(δ) :=

∣∣∣∣∣
∫

D

z − pδ

|z − pδ|dz
∣∣∣∣∣

Due to symmetry it is easy to see that the second coordinate does not influence A(δ), i.e.,
for z = (xz, yz), we obtain

A(δ) =

∣∣∣∣∣
∫

D

xz + δ

|z − pδ|dz
∣∣∣∣∣ =

∫
D

xz + δ

|z − pδ|dz

Let Dr := {z ∈ D | |z− pδ| ≤ r} be the disk around pδ with radius r. For r ∈ [0, 1− δ], it
holds ∫

Dr

xz + δ

|z − pδ |dz = 0

which implies

A(δ) =
∫

D\D1−δ

xz + δ

|z − pδ |dz

For r ∈ [1 − δ, 1 + δ] fixed, let α be the angle between the x–axis and a point, where
∂D = S1 and ∂Dδ intersects (seen from pδ). We compute

α = arccos

(
1 − δ2 − r2

2δr

)

Using polar coordinate, we obtain

A(δ) =
∫ 1+δ

1−δ

∫ α

−α

r cos(ϕ)

r
r dϕ dr =

∫ 1+δ

1−δ

∫ α

−α
r cos(ϕ) dϕdr

= 2
∫ 1+δ

1−δ
r
∫ α

0
cos(ϕ) dϕdr = 2

∫ 1+δ

1−δ
r
(
sin(ϕ)

∣∣∣α
0

)
dr

= 2
∫ 1+δ

1−δ
r sin

(
arccos

(
1 − δ2 − r2

2δr

))
dr

Since sin(x) ≤ 1 for all x ∈ IR we obtain an upper bound for A.

A(δ) ≤ 2
∫ 1+δ

1−δ
r dr = 4δ

To obtain a lower bound, we regard the function f(r) := arccos(1−δ2−r2

2δr
). To approximate

f we define the functions

f1(r) := (r − 1 + δ)
π

2(
√

1 − δ2 − 1 + δ)
for r ∈ [1 − δ,

√
1 − δ2]

f2(r) := (r −√
1 − δ2)

π

2
(1 + δ −√

1 − δ2) +
π

2
for r ∈ (

√
1 − δ2, 1 + δ]
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Since

0 ≤ f1(r) ≤ f(r) ≤ π

2
r ∈ [1 − δ,

√
1 − δ2]

π

2
≤ f(r) ≤ f2(r) ≤ π r ∈ (

√
1 − δ2, 1 + δ]

we obtain that sin(f(r)) ≥ sin(fi(r)). Therefore

A(δ) ≥
∫ √

1−δ2

1−δ
2r sin(f1(r)) dr +

∫ 1+δ

√
1−δ2

2r sin(f2(r)) dr

=
8δ

π2
(4
√

1 − δ2 − 4 + 2π −√
1 − δ2π)

=
8δ

π2
((4 − π)︸ ︷︷ ︸

>0

√
1 − δ2︸ ︷︷ ︸
≥0

+2π − 4) ≥ 8δ

π2
(2π − 4) =

16π − 32

π2
δ

The two bounds for A lead to bounds for Pn := n
(
A−1

(
π
n

))2
. We compute

4δ ≥ A(δ)

A−1(4δ) ≥ δ

A−1
(
π

n

)
≥ π

4n

Pn = n
(
A−1

(
π

n

))2

≥ π2

16n
≈ 0.62

1

n

In a similar way we compute an upper bound:

Pn ≤
(

π3

16π − 32

)2
1

n
≈ 2.88

1

n

2

Remark: We found several better bounds for A(δ). Since they are hard to invert, we
described the linear functions only. In Figure 4.11 we compare experimental results (a)
for the probability with the lower (b) and upper (c) bounds derived in Theorem 4.16. The
experimental values were obtained by 1000000 experiments for every n ∈ {3, . . . , 17}.

To get the lower and upper bounds, we transformed the sum of unit vectors into an
integral. For large n, this method gives good bounds. However, for n = 3, the lower
bound is bigger than the experimental value. This is due to the fact, that we compare
two different but related things: The sum of unit vectors is small, if the points are almost
collinear; the integral is small, if one point is close to the origin. The experimental results
show that for n > 3, the theoretical bounds are quite good.

In [DSL92], a similar result has been presented and proved by the central limit the-
orem. We think that our result is still interesting, because our proof uses Monte Carlo
integration in a non standard way. Normally, Monte Carlo integration is used for numer-
ical integration of a function, the integral is transformed into a sum. We did the reverse
thing, a sum was transformed into an integral.

Weber–Test Algorithm
It takes not more than O(n2) time to check whether a multi set of points contains its
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Figure 4.11: Experimental results (a) compared to theoretical bounds (b),(c)

Weber point: For every point pi, compute the vector vi :=
∑n

j=1,pj 6=pi

pj−pi

|pj−pi| and test

whether |vi| ≤ X(pi) holds (where X(pi) is the multiplicity of pi in X). We call this
method the Weber–Test algorithm.

Theorem 4.13 showed that the Weber point can be regarded as a ”spatial median”. A
simple method to compute the median of n numbers is to sort the numbers in O(n log n)
time and pick the median. However, with an improved algorithm, the median can be com-
puted in linear time [BFP+73]. This leads to the question, whether we can do something
similar with the Weber point. In the following, we improve the Weber–Test algorithm. In

vi

Ci

v+
i

v−i

pi

αi

αi

Figure 4.12: Some notation

the improved Weber–Test algorithm, we use the notation indicated in Figure 4.12. For a
point pi ∈ X with vi 6= 0, define αi := arccos

(
1
|vi|X(pi)

)
. Let v+

i , v
−
i be two different unit

vectors such that the angles between vi, v
+
i and vi, v

−
i are αi. The vectors v+

i , v
−
i span

an open cone Ci := {x ∈ IR2 \ {pi}|angle(vi, x − pi) < αi}. With C we denote a set of
possible candidates.

Fast–Weber–Test Algorithm
C := X
While C 6= ∅
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Choose a pi ∈ C.
If |vi| ≤ X(pi)

return pi.
else

C = C ∩ Ci

return FALSE.

Lemma 4.17 The Fast–Weber–Test algorithm runs in O(n2) time. The Fast–Weber–
Test algorithm returns the Weber point, iff W (X) ∈ X.

Proof: Since pi 6∈ Ci, after having chosen pi, it is removed from C. For every pi,
computing the vector vi and updating C takes O(n) time. Since pi 6∈ Ci, it is removed
from C.

We have to show that the updating of C is not too restrictive, i.e., if W (X) ∈ X, then
W (X) ∈ C. Let pi ∈ X be a point with vi 6= 0. The function f(z) =

∑n
i=1 |pi−z| is strictly

convex, and therefore, the set {z ∈ IR2 | f(z) < f(pi)} is convex. f is not differentiable
in pi, but for the directional derivative, we obtain

∂

∂v+
i

f(pi) =
∂

∂v−i
f(pi) = X(pi) +

〈
−vi, v

+
i

〉
= X(pi) − |vi| cos(αi)

= X(pi) − |vi|
(

1

|vi|X(pi)

)
= 0

This implies {z ∈ IR2 | f(z) < f(pi)} ⊂ Ci, and therefore, W (X) ∈ Ci. 2

If we regard the Fast–Weber–Test algorithm as randomized, we can think about the
expected run time. If the points are collinear, the problem becomes finding the median of n
numbers. The Fast–Weber–Test algorithm finds that median in expected time O(n log n).
However, this does not hold for arbitrary multi sets. For Xn := {exp(2πi

n
) | i ∈ {1, . . . , n}},

i.e., the points are uniformly placed on the sphere S1, the Fast–Weber–Test algorithm
takes Θ(n2) time. This shows that the run time depends on the geometry of the points,
not only on the order the algorithm chooses them.

The algorithm can be improved, using the fact that the distance between a point pi

and the Weber point w cannot be too big. Since |pi−w| ≤ |pi−pj |+ |pj−w|, we compute

|pi − w| ≤ 1

n

n∑
j=1

|pi − pj| + |pj − w| ≤ 2

n

n∑
j=1

|pi − pj|

Unfortunately, this improvement does not help in the worst case example mentioned
above.

The result about the angle between vi and w − pi can be exploited in a different
context. We know that this angle is less than arccos

(
X(pi)
|vi|

)
, i.e.,

arccos

〈
vi

|vi| ,
w − pi

|w − pi|
〉
< arccos

(
X(pi)

|vi|
)

This leads to

|vi| ≥
〈
vi,

w − pi

|w − pi|︸ ︷︷ ︸
∈S1

〉
> X(pi)

This means that the length of the orthogonal projection of vi onto the vector w − pi is
bigger than the multiplicity of pi in X. This improves the inequality |vi| > X(pi) for a
point pi 6= w (theorem 4.13).
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4.4.2 Approximation

For w := W (X) 6∈ X, it is hard to construct w. Since the distance function is convex, it
is easy to approximate the Weber point. For the sake of completeness and to show how
the Weber point can be approximated, we present Weiszfeld’s algorithm [Wei37]. The
property

∑
p∈X

p−w
|p−w| = 0 leads to the following approximation scheme: Choose a point

w(0) ∈ IR2, then do the iteration

w(k+1) :=
1∑n

i=1
1

|pi−w(k) |

n∑
i=1

pi

|pi − w(k)|
This algorithm has been discussed, criticized and improved in many articles [Kuh73,
Ost78, CT89, Bri95, VZ01].

4.4.3 Things that are not true

The Weber point has a very intuitive definition. However, some of its properties are not
intuitive. Therefore, intuition can lead to wrong results. In order to illustrate this and to
get a better understanding of these properties, we present 4 wrong statements.

Wrong 4.18 Let g be a line, let h1, h2 the two half-planes defined by g. If there are more
points of X in h1 than in h2, then W (X) ∈ h1.

Figure 4.13 gives an example that this statement is wrong. For the point p1, p1 =

g
p1

p2 p3

Figure 4.13: Example for Wrong 4.18

W ({p1, p2, p3}) holds. But p1 is the only point in its half-plane, and there are two other
points in the other half-plane.

The first statement dealt only with points. We have seen that for a point pi, the vector

vi :=
n∑

j=1
pj 6=pi

pj − pi

|pj − pi|

is related to the negative gradient of the sum of distances. In the Fast–Weber–Test
algorithm, we used this to improve the Weber–Test algorithm. This naturally leads to
the question, whether this relation can be exploited in other contexts as well.

Wrong 4.19 Let g be the line through two points pi, pj, let h1, h2 the two half-planes
defined by g. If pi + vi, pj + vj ∈ h1, then W (X) ∈ h1.

The wrongness of this statement can be seen by the Example 4.14. The points p1, p2, p4

are collinear, p1, p3, p5 are collinear, too. This leads to:

v2 =
p3 − p2

|p3 − p2| +
p5 − p2

|p5 − p2|
v3 =

p2 − p3

|p2 − p3| +
p4 − p3

|p4 − p3|
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gp1p2 p3

p4 p5

Figure 4.14: Example for Wrong 4.19

Therefore, the points p2 + v2, p3 + v3 are in the lower half-plane, while the Weber point
p1 is in the upper half-plane.

Wrong 4.20 There is a constant c < 90o such that for every X and for every pi ∈ X
with pi 6= W (X), the angle between the vectors w − pi and vi is not bigger than c.

We want to illustrate this with the example in Figure 4.15. For k > 1, consider the multi

p1
p2 p3

v1

Figure 4.15: Angle between vi and w − pi can be big.

set X with X(p1) = 1, X(p2) = k − 1, and X(p3) = k. The angle between the vectors
p2 − p1, p3 − p1 is close to but less than 180o. Since the points are not collinear, p3 is the
Weber point. But for big k, the angle between v1 and p3 − p1 is close to 90o. If there
is one additional point at p2, then this angle becomes 0. This example shows that the
Weber point is, in some sense, not a continuous function. If there is one additional point
at p2, then p1 becomes the Weber point of the new multi set or the angle becomes 0. One
additional point changes much.

Let p1, p2, p3 be 3 points that form a triangle, let p4 ∈ IR2 be an arbitrary point. We
know that p4 = W (p1, p2, p3, p4) holds, iff p4 is inside this triangle. This motivates the
following question: Given a multi set X, compute the set S(X) such that q ∈ S(X) iff
q = W (X ] {q}). For a multi set X, S(X) is called the Weber set. The Weber set is not
empty, because W (X) ∈ S(X) holds.

Wrong 4.21 The Weber set is convex.

Figure 4.16 gives an example for the wrongness of the statement. There are four points in
convex position. The Weber point is on the intersection of the diagonals, the non convex
Weber set is marked grey.

4.5 Convex Core

We mentioned that a contraction point must be in the convex hull. In this section we
show that for an even number of points, this result can be improved. To be more precise,
we define a so called convex core. The convex core is a subset of the convex hull. To our
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Figure 4.16: Weber set can be non convex.

knowledge, the convex core has not been investigated in the literature. We show that for
an even number of points, every contraction point is inside the convex core. This is an
improvement of the result, that every contraction point is in the convex hull (theorem
4.7). Since the Weber Point is a contraction point, the Weber point is in the convex core,
too. This improves the result that the Weber point is in the convex hull (corollary 4.12).
To our knowledge, this has not been shown before.

Definition 4.22 For a point p ∈ X, the set Kp ⊂ IR2 is defined as the convex hull of
X \ {p}, i.e. Kp := CH(X \ {p}). The Convex Core of X is defined as

CC(X) :=
⋂

p∈X

Kp

Example: For X = {p1, p2} we obtain for the convex core

CC(X) =

{ ∅ if p1 6= p2

p1 if p1 = p2

If |X| = 4 then CC(X) consists of a single point, or, if the points are collinear, of the
line segment connecting the two middle points.

Figure 4.17 shows two examples. The convex cores are marked grey.

Figure 4.17: Examples for convex cores

The following lemma shows basic properties of the convex core. For a multi set X,
the convex hull CH(X) can be described by the multi set of boundary points ∂X ⊂ X.
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A point p ∈ X belongs to the boundary ∂X, if p is on the polygon that bounds CH(X).
Note that, in ∂X, points can occur with multiplicity bigger than 1. For instance, if X
consists of collinear points, ∂X = X holds. With X◦, we denote the multi set of inner
points, i.e., X◦ := X \ ∂X.

Lemma 4.23 The convex core CC(X) has the following properties

• CC(X) is a convex set.

• The convex core is monotone, i.e., for two multi sets X,X ′ with X ⊂ X ′, CC(X) ⊂
CC(X ′) holds.

• If p ∈ CC(X), then CC(X ] {p}) = CC(X).

• For |X| ≥ 4, CC(X) 6= ∅ holds.

• The convex core CC(X) is a superset of CH(CC(∂X) ]X◦).

• The convex core CC(X) only depends on ∂X, ∂X◦, i.e., CC(X) = CC(∂X ] ∂X◦).

Proof: The convex core is defined as the intersection of convex sets. Since the intersec-
tion of convex sets is convex, too, CC(X) is convex.

To show monotonicity, it is enough to show it for the case |X ′| = |X| + 1. For
X = {p1, . . . , pn} and X ′ = X ] {p}, we obtain

CC(X ′) =
n⋂

i=1

CH ((X ] {p}) \ {pi}) ∩ CH(X)

⊃
n⋂

i=1

CH(X \ {pi}) = CC(X)

Let p ∈ CC(X), for this we compute

CC(X ] {p}) =
n⋂

i=1

CH((X ] {p}) \ {pi}) ∩ CH(X)

⊂
n⋂

i=1

CH((X ] {p}) \ {pi}) =
n⋂

i=1

CH(X \ {pi})
= CC(X)

For every X with |X| = 4, CC(X) 6= ∅ holds. Due to monotonicity, this implies that
CC(X) 6= ∅ for |X| ≥ 4.

For pi ∈ X◦ and for pj ∈ X, pi ∈ Kpj holds. Therefore, pi ∈ CC(X) and CH(X◦) ⊂
CC(X). Since ∂X ⊂ X, CC(∂X) ⊂ CC(X) (monotonicity). Furthermore, CC(X) is
convex, CH(CC(∂X) ]X◦) ⊂ CC(X).

Let pi ∈ X \ ∂X \ ∂X◦. For pj 6= pi, CH(X \ {pj}) = CH(X \ {pj , pi}) holds. This
leads to CC(X) = CC(X \ {pi}). 2

In order to prove the main result of this section, we need the following lemma.

Lemma 4.24 Let n ≥ 4 be even, let X = {p1, . . . , pn} such that p1, . . . , pn−1 are collinear,
i.e. they lie on a straight line l, and pn /∈ l. Then the median of p1, . . . pn−1 is a contraction
point and it is unique.
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Proof: To simplify notation let the p1 be the median of p1, . . . pn−1, wlog. p1 = 0. Let
q ∈ {p2, . . . pn−1} be a point with the greatest distance to p1. Define the multi set

X ′ := {−pn,−q, . . . ,−q︸ ︷︷ ︸
n
2
−1

, q, . . . , q︸ ︷︷ ︸
n
2
−1

, pn}

or

X ′(p) =




1 if p = pn or p = −pn
n
2
− 1 if p = q or p = −q
0 else

in which the number of points on position −q is equal to the number of points on q, see
Figure 4.18 for an example. Due to rotation symmetry, for X ′ and a contraction function

pnpn

p1 = 0
l l

−pn

q−q

Figure 4.18: Example for multi sets X,X ′

C , p1 = C(−pn,−q, . . . ,−q, q, . . . , q, pn) holds. Then, the contraction property of C leads
to

p1 = C(−pn,−q, . . . ,−q, q, . . . , q, pn) = C(p1, p2, . . . , pn−1, pn)

2

This uniqueness result helps to prove the main result of this section. The following
theorem improves theorem 4.7 and corollary 4.12). Moreover, the notion of contraction
functions gives a short and elegant proof for this result.

Theorem 4.25 Let |X| be even. Then every contraction point for X lies in the convex
core CC(X). Especially, the Weber point W (X) is in the convex core as well.

Proof: The theorem is true for n = 2: Either there is no contraction point or the convex
core consists of the contraction point only. Therefore, it can be assumed, that n ≥ 4.

Let c be a contraction point. Assume for contradiction that c ∈ CH(X) \ CC(X).
Then there is a pi ∈ X with

c 6∈ CH(X \ {pi})
The set CH(X \ {pi}) is compact, convex and bounded by a polygon. Therefore, there
is a straight line l between c and CH(X \ {pi}). In order to move to c, n− 1 points have
to cross the line l. But this is the situation from Lemma 4.24, which says that c is on l.
This contradicts the assumption and proves the theorem. 2

This theorem can be used to “reprove” known results.

Lemma 4.26 (part of lemma 4.3) If X = {p1, p2} consists of two different points,
then there is no contraction point.

62



New Proof: For the convex core, CC(X) = {p1} ∩ {p2} = ∅ holds. Since every
contraction point must lie in the convex core, there is no contraction point. 2

Lemma 4.27 (part of theorem 4.4) LetX = {p1, p2, p3, p4} such that these four points
are not collinear. Then the possible contraction point mentioned in theorem 4.4 is unique.

New Proof: If the points are not collinear, the convex core CC(X) consists of one
single point. 2

It is possible that the convex core of a multi set is equal to the convex hull. If this is
the case, theorem 4.25 does not help to restrict the position of possible contraction points.
For a special case, the theorem 4.25 can be improved.

Theorem 4.28 Let |X| be even. For every k ∈ IN, k ≥ 1, the property

C(kX) ∈ CC(X)

holds.

Proof: Lemma 4.24 remains true for the weighted case. Therefore, the property holds.
2

Remark: A multi set X and its convex core CC(X) are objects of two different types.
The multi set consists of a finite number of points, the convex core is a compact region
bounded by a polygon. This is the reason why the procedure can not be iterated.

The definition of the convex core can be used to get an algorithm that computes the
convex core: Let X be a multi set and let n := |X|. For every point p ∈ X, compute Kp

in O(n log n) time (see [PS85]). Then compute the intersection of these n polygons. It
takes not less than linear time to intersect two polygons, therefore, the algorithm takes
not less than quadratic time. However, we can do better.

Theorem 4.29 Let X be a multi set, and let n := |X|. The convex core of X can be
computed in Θ(n logn) time.

Proof: To show the upper bound, we present an algorithm that computes the convex
core in O(n log n) time. We think of ∂X, ∂X◦ as circularly ordered lists.

First, compute the convex hulls CH(X) and CH(X \ ∂X) in O(n log n) time. Let
∂X = [p1, p2, . . . , pm] and let ∂X◦ = [q1, . . . qr] the ordered lists of points. DefineK := ∂X.

Second, for every pi ∈ {p1, . . . , pm}, do the following (start with i = 1 and go incre-
mentally to i = m). Detect the points q1

i , . . . q
ν
i ∈ ∂X◦ that are lying in the (possible

degenerated) triangle spanned by pi−1, pi, pi+1
1, this can be done in O(ν) time since ∂X◦

is a circularly ordered list. We detect the convex hull Hi of {pi−1, q
1
i , . . . q

ν
i , pi+1} in O(ν)

time in the following way, see Figure 4.19. For every point qj
i , compute the angle between

the two vectors (qj
i − pi−1), (pi+1 − pi−1). Let q−i the first point that maximizes this angle.

For every point qj
i , compute the angle between the two vectors (qj

i − pi+1), (pi−1 − pi+1).
Let q+

i the last point that maximizes this angle. The ordered list [pi−1, q
−
i , . . . , q

+
i , pi+1]

corresponds to the boundary polygon of Hi. Let Di be a description of Hi ∩K. Then, pi

1We omit the discussion of pm+1 = p1 and p0 = pn
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∂X∂X

∂X◦

K

∂X◦

K

pi pi

pi+1pi−1 pi+1 pi−1

Figure 4.19: Algorithm to compute CC

is removed from K, Di is inserted in K. After the second step is done for every point pi,
K = CC(X) holds.

To get the lower bound Ω(n log n), we consider the multi set X ′ := 2X. For X ′,
CC(X ′) = CH(X ′) = CH(X) holds. Since we need Ω(n log n) time to compute CH(X),
the same holds for CC(X ′), too.

2

4.6 Is c = w?

In the previous sections, we showed that there are several similarities between contraction
functions and Weber points.

• A contraction function exists, iff the Weber point is unique (lemmas 4.3,4.9).

• The Weber point is a contraction point (theorem 4.10).

• For |X| = 3, 4, the Weber point is the unique contraction point (lemma 4.4, theorem
4.10).

This leads to the question, whether the Weber point is always the only contraction point.
To be a possible contraction point, it is not enough that one point has a special

position. This has been shown for the case of three points. If the three points form
a triangle, and the biggest angle of this triangle is between 90o and 120o, none of the
three points is a contraction point, although one is characterized uniquely. We consider
an extended example in Figure 4.20. There are five points {p1, p2, p3, p4, p5}, and these
points are on two different half lines that start in p1. We call this situation A pair of
scissors. Assume for contradiction that p1 is a possible contraction point. If the other
points move towards p1, it is possible that the set {p1, p

′
2, p

′
3, p

′
4, p

′
5} is obtained. But for

this situation, the Weber point w of {p1, p
′
2, p

′
3, p

′
4, p

′
5} is the only possible contraction

point. The reason for this is that the angle α between the two lines is too small; if the
angle is bigger than 360o

5
= 72o, this construction is not possible. On the other hand, p1

is the Weber point, if cosα ≤ −7
8

(arccos(−7
8
) ≈ 150.04o) holds.

Such a pair of scissors can be defined for more points. Let n = 2k+1 (k ≥ 1); n points
are given, such that k + 1 points are on one half line starting at p1, and k + 1 points are
on a second half line starting at p1, too. Let α be the angle between the two half lines.
If α < 360o

n
and the multiplicity of p1 is 1, then p1 cannot be a contraction point. In this
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p3

p5

wp1

p2

p4

p′3

p′2

p′5
p′4

Figure 4.20: A pair of scissors.

case, a construction similar to Figure 4.20 can be done. The point p1 is the Weber point,
if α ≥ arccos( 1

2k2 − 1).
For the special case n = 3 (k = 1), we get the result that p1 is a contraction point, iff

α ≥ 120o. In this case, the bounds are tight. For n > 3, there is a gap between the two
bounds.

A similar approach to show that a point cannot be a contraction point is shown in
Figure 4.21. We are given 4 points X = {p1, p2, p3, p4} and we assume that there is a
contraction function C with C(X) = c. Since c 6∈ X, there are 4 rays that start at c and

c′
p1

p4

p2

p′3

c

p′2p′1

p′4 p3

Figure 4.21: A copy of rays.

go through the 4 points. In the picture, those rays are drawn dashed. A copy of this
arrangement of rays is mirrored and translated (drawn as dotted lines). For every dashed
ray, there is a dotted ray that intersects the dashed one, and vice versa. This defines a
matching. Define the points p′i as intersections of matchings lines. Due to the contraction
property, C(p′i) = c holds. And due to the isometric property, C(p′i) = c′ holds. This is a
contradiction, since c 6= c′.

For four points, this is not a surprising result since we know already the uniqueness
in this case. However, we can generalize this case to the following theorem.

Theorem 4.30 Let X = {p1, . . . , pn} be a multi set of points, let c 6∈ X. Let ri be the ray
starting at c and going through pi. If there is an isometric function o : IR2 → IR2 with
the property that there is a matching between the rays {ri|i} and {o(ri)|i} and c 6= o(c),
then c is not a possible contraction point.

We can use this to re-derive a well known result (part of theorem 4.4).

Lemma 4.31 Let X be a multi set with 4 points. Let W (X) 6∈ X and let c 6= W (X) be an
arbitrary point with c 6∈ X. There is a matching copy of the rays ri := [c, pi]. Therefore,
the Weber point is the only possible contraction point of X.
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Proof: Let R be the rotation by 180o about w := W (X). We will show that the
operation R gives a matching copy of the rays ri. Let pi, pi+2 (i = 1, 2) two opposite
points, i.e., w lies on the straight line going through pi, pi+2. If c lies on that line too, the
transformed rays intersect. In the other case, we obtain a parallelogram, see Figure 4.22.

p2

p4

c
c′

p′4

p′2

w

Figure 4.22: Copied rays form a parallelogram.

The points p′i are defined as the intersections of the corresponding rays. 2

c

Figure 4.23: Set of rays that cannot be matched to a copy.

Again, this result cannot be generalized to five or more points.

Lemma 4.32 For the set of rays in Figure 4.23, there is no matching copy.

4.7 Model modifications

Thus far, we have restricted ourselves to a rather simple model. To study the limits of
our results, we discuss more general models.

Higher Dimensions
Until now, the points p ∈ X have been points in IR2. But what about higher dimensions?
If we extend the definitions from IR2 to IRd, we obtain the following results.

Theorem 4.33 Let X = {p1, . . . , pn} ⊂ IRd be a multi set for a dimension d ≥ 1, let c
be a contraction point for X. Then c lies in the convex hull of X.

Proof: The proof is done by induction. The theorem is true for dimensions d = 1, 2. Let
d > 2, assume for contradiction that there is a possible contraction point c which is not
in the convex hull of X. Therefore, all points have to move through a (d−1)–dimensional
plane which does not contain c. Due to induction every contraction point must lie inside
this plane. This is a contradiction. 2
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Unfortunately theorem 4.25 about the convex core cannot be generalized.

Example: Let X = {p1, p2, p3, p4} ⊂ IR3 such that the four points are the vertices of
a regular tetrahedron. Due to symmetries, there is only one contraction point inside the
tetrahedron. But the convex core of X is empty.

Multiplicity
To this point, we have assumed that the robots can detect multiplicity, i.e., every robot can
count the number of robots on a position. The point formation problem is not solvable,
if the robots do not have this property. To see this, let us assume that n − 1 out of n
robots have reached the destination point; if the robots cannot detect multiplicity, this
configuration is equivalent to the not solvable configuration of two different points.

General Trajectories
We restricted ourselves to straight line movement towards the destination point. One can
ask, whether there are contraction functions which are invariant against other kinds of
continuous movement. For some special cases, there is a positive answer. We illustrate
this with the example from Figure 4.24. The point p1 is the Weber point. In order to

p2 p3

p1

Figure 4.24: Several possibilities for movement

move towards p1, the points p2, p3 can use the dashed paths. Let p′2 be a point on the left
dashed line, let p′3 be a point on the right dashed line. For X ′ := {p1, p

′
2, p

′
3}, p1 is the

Weber point.

Distance Function
We defined the contraction problem for the Euclidean distance only. There are many other
metrics, one important example is the so called Manhattan metric. The Manhattan metric
plays an important role in facility location. To measure a distance in the Manhattan
metric, one has to know two directions. Figure 4.25 shows an example that the Manhattan

(a) (b)

v v′

Figure 4.25: Two vectors of different lengths
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distance is not independent of the orientation. In part (a), the vector v has Manhattan
length 3, in part (b) v is rotated by 45o, but the rotated vector v′ has Manhattan length
2
√

4.5 > 4. [Dre83] mentions that ”if a function of two points in the plane is invariant to
translation and rotation of the system of coordinates, then it must be a function of the
Euclidean distance between the points”. Therefore, the Manhattan metric is useless in
the context of contraction functions.

It is interesting that for the Manhattan metric, the Weber point for an arbitrary
set of points can be easily computed. If the points have coordinates pi = (xi, yi), one
Weber point is given by the point w := (median{xi},median{yi}). Neither the Weber
point nor the paths to the Weber point must be unique. For instance, for the points
{(0, 0), (1, 0), (0, 1), (1, 1)}, every point inside this square is a Weber point.

Furthermore, it can be used to have a look at the continuous Weber problem, [FMW00]:
For a bounded region D ⊂ IR2, the function

z 7→
∫

D
dist(z, p)dp

is defined. The Weber point is the point that minimizes this integral. While [FMW00]
presents some results for the Manhattan metric, it seems to be impossible to get similar
results for the Euclidean metric.

Circle Formation
If the Weber point is not in the given set, it can be used to get a solution for the circle
formation problem, mentioned in [SS90, CFK97]. In this problem, the robots should move
such that all their positions are on a circle with radius bigger than 0. The center of the
circle is defined as the Weber point, the radius can be defined in different ways. If the
robots use all the same unit distance, an arbitrary radius can be chosen. If this is not
the case, the distances from the Weber point can be used, e.g., define the radius as the
smallest distance from a point pi to w. For any fixed k ∈ {1, . . . , n}, the kth smallest
distance to the Weber point can be chosen as radius, too.

If the w is in the point set, then it can be used to solve a modified circle formation
problem, in which all robots have to move to a circle or to the center of this circle. The
robots at the Weber point remain there, the other robots form a circle around this center.

4.8 Conclusion

In order to solve the point formation problem, we defined contraction functions. This so-
lution works in an asynchronous setting, and it is quite easy to prove and to understand
this. For multi sets of cardinality smaller than five, we presented geometric constructions
for contraction points. Furthermore, we showed that these contraction points are unique:
First, we showed uniqueness for symmetric multi sets; second, the contraction property of
contraction functions proved uniqueness for arbitrary multi sets. It turned out that con-
traction functions are interesting for their own sake, and we presented several interesting
properties of contraction functions, e.g., that every contraction point for a multi set of
points lies in the convex hull of these points.

The further discussion led to the Weber point. The Weber point plays an important
role in facility location, and we showed that the Weber point is a possible contraction
point. With this relation, we were able to ”rederive” the result that the Weber point of
a multi set of points lies in the convex hull of these points.
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We proved new results as well: For an even number of points, every contraction point
is in the convex core. The convex core is a subset of the convex hull. Since the Weber
point is a possible contraction point, the Weber point is in the convex core, too.

It is an open question, whether the Weber point is the only possible contraction point.
For multi sets with cardinality less than five, i.e., the Weber point can be constructed by
compass and ruler, we proved that the Weber point is the only possible contraction point.
Another open question is whether there is sub–quadratic algorithm to detect whether a
given multi set of points contains its Weber point.

A challenge for future research is to look at spaces other than the Euclidean plane. For
instance, it seems to be interesting to study the point formation problem on the sphere,
because the sphere plays an important role in facility location (see [Dre83]). The sphere
has a more complex structure than the plane, since for two antipodes, the shortest path
between them is not unique.
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Chapter 5

Point Formation on a line:
Contraction Functions and Weber
point

5.1 Introduction

In the previous chapter, we discussed the contraction functions for points. In order to
get a better insight as to show how broadly the concept of contraction functions can be
applied, we add a new structure to the problem: In addition to the points, a straight line
g ⊂ IR2 is given, and the goal is to find a contraction point on g. This line g is only a
point set and has no inner structure, e.g., there are no emphasized points or directions.

The additional straight line is a natural extension of the model, since we can assume
that the line has no emphasized points. For a circle, this does not hold, because the
center of the circle is defined uniquely. In this chapter, we discuss contraction functions
for points and a line. Therefore, we call this the P(oints)L(ine)–problem.

This chapter has the following structure. After having defined contraction functions
in section 5.2, we discuss the properties and compare these with results from the previous
chapter. In section 5.3, a generalized definition of Weber point is given and properties
are presented. Section 5.4 shows two additional contraction functions. The chapter is
concluded by section 5.5.

5.2 Contraction Functions and their properties

For this problem, we extend the definition of contraction functions in the following way.

Definition 5.1 Let n ∈ IN be fixed, let C be a function that maps a multi set X =
{p1, . . . , pn} and a straight line g to a (contraction) point c := C(X, g) ∈ IR2. C is called
a Contraction Function for the PL–problem if the following properties are fulfilled for
every multi set X and every straight line g.

1. The contraction point is on the line g, i.e., C(p1, . . . , pn, g) ∈ g.

2. There is no ordering among the points, i.e., for every permutation π : {1, . . . , n} →
{1, . . . , n} holds:

C(pπ(1), . . . , pπ(n), g) = C(p1, . . . , pn, g)
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3. The robots do not have a common coordinate system: For every isometric function
o : IR2 → IR2, it holds:

C(o(p1), . . . , o(pn), o(g)) = o(C(p1, . . . , pn, g))

Furthermore, the line has no emphasized points: If o is a translation parallel to g,
then

C(o(p1), . . . , o(pn), g) = o(C(p1, . . . , pn, g))

The line has no emphasized direction: If o is a mirroring perpendicular to g, then

C(o(p1), . . . , o(pn), g) = o(C(p1, . . . , pn, g))

4. Linear movement towards the contraction point does not change it: Let c := C(X, g),
for every vector t = (t1, . . . , tn) ∈ [0, 1]n holds

C(. . . , (1 − ti)pi + tic, . . . , g) = c

If C(X, g) = c for a contraction function C, then c is called a Possible Contraction Point
for X, g.

Definition 5.1 is very similar to Definition 4.1, therefore, the following lemma is not
very surprising.

Lemma 5.2 If X = {p1}, then the only possible contraction point is the perpendicular
projection of p1 onto g.

Proof: Let q be the perpendicular projection of p1 onto g. It is obvious, that q is a
contraction point. Therefore, we only have to show uniqueness.

Let C be a contraction function, let o : IR2 → IR2 be defined as the mirroring with
mirror axis as the straight line through p1 and q. For this, we obtain

C(p1, g) = C(o(p1), g) = o(C(p1, g))

This can only be fulfilled for C(p1, g) = q. 2

But there are differences between the two definitions, too. The contraction problem
was not solvable for the case of two different points. The line g as a additional geometric
entity does not help to solve the problem for two different points, if both points are on g.
But there is a solution, if this is not the case.

Lemma 5.3 PL–problem for two different points is solvable with a unique solution, if not
both points are on g.

Proof: First, we regard the case where one of the points is on g, wlog. p1 ∈ g. In this
situation, c := p1 is a contraction point. Let C be a contraction function, then

c′ := C(p1, p2) = C(c, c′)

But c, c′ are points on g. If c 6= c′, then the problem is not solvable. Therefore, c′ = c.
Now, we can assume that both points are not on g. The line g divides the plane in

two half planes, see Figure 5.1.
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Figure 5.1: Contraction point c

If the two points are in different half planes, we define c as the intersection of g with
the straight line through p1, p2. To show uniqueness, we assume, that both points have
the same distance from g. Let R be the rotation by 180o about c , let M be the mirroring
with the straight line perpendicular to g and through c as mirror axis. For this and an
arbitrary contraction function C ′ we obtain

C ′(p1, p2, g) = C ′(p1, p2,M(g)) = C ′(p2, p1,M(g)) = R(C ′(p1, p2, g))

This shows that C ′(p1, p2, g) = c. The contraction property shows that this is true for
arbitrary distances from g.

If the two points are in the same half plane, we mirror one of the two points into
the other half plane and obtain c as before. To show uniqueness, we assume that both
points have the same distance from g. This is a symmetric situation and allows only
c as contraction point. Once again, the contraction property shows the uniqueness for
arbitrary distances from g. 2

For two points, c can be computed very easily. If one point pi is on g then this point
is the contraction point. Therefore, we can assume that both points are in one half plane
defined by g. If we use coordinates g(x) = (x, 0) and pi = (xi, yi) it can be assumed that
yi > 0 and x1 ≤ x2. Then, for c = (xc, 0) we obtain

tanα =
y1

xc − x1
=

y2

x2 − xc

This leads to

xc =
y1x2 + y2x1

y1 + y2

Remark: The problem for 3 points has no longer a unique solution, in Figure 5.2 an
example is given. Given are the points {p1, p2, p3} and the straight line g. The point p1 is
the only point on g, therefore, c1 := p1 is a possible contraction point. The line g implies
two possible orderings, but in both cases p2 is the median. A second possible contraction
point c2 is the orthogonal projection of p2 onto g.

We will show that some results from the previous chapter can be generalized. One of
this results is the majority lemma 4.5.

Lemma 5.4 If there is a q ∈ g with X(q) =: k > |X |
2

, then q is the only possible contrac-
tion point for X, g.
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Figure 5.2: Example for a non uniqueness

Proof: The proof of lemma 4.5 still holds with the new interpretation. 2

The following lemma shows that the extension property still holds.

Lemma 5.5 The following extension property holds for the PL–problem.
Let C be a contraction function and c := C(p1, . . . , pn, g). For a t = (t1, . . . , tn) ∈
[−1,∞)n define p′i := pi + ti(pi − c). It holds

C(p′1, . . . , p
′
n, g) = c

Proof: The proof of lemma 4.6 still holds with the new interpretation. 2

Theorem 4.7 stated that a contraction point must lie in the convex hull. In order to
derive a similar result for the PL–problem, we need the following lemma.

Lemma 5.6 Let g⊥ be a straight line perpendicular to g. If X ⊂ g⊥ then the intersection
point c := g ∩ g⊥ is the unique contraction point for X, g.

Proof: The point c is a possible contraction point because the geometric property that
all points are on g⊥ is invariant under movement towards c. Let o : IR2 → IR2 be
mirroring on g⊥, for this we obtain

C(p1, . . . , pn, g) = C(o(p1), . . . , o(pn), g) = o(C(p1, . . . , pn, g))

Therefore, every contraction point must be on g⊥. 2

This lemma is a special case of the following theorem. We presented the lemma,
because we will use it to prove the theorem.

Theorem 5.7 Every possible contraction point lies in the interval I defined as the or-
thogonal projection of the convex hull of X onto g.

Proof: Assume for contradiction that there is a possible contraction point c outside of
I . Let p ∈ X be a point such that the orthogonal projection of p is the boundary point
of I near c. Let g⊥ the straight line through p perpendicular to g. In order to move to c
all points have to cross g⊥. Due to the result in Lemma 5.6 this implies that c must be
the orthogonal projection of p, therefore c ∈ I . This is a contradiction. 2
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Figure 5.3: Orthogonal projection of the convex hull

5.3 Weber Point

In order to get contraction functions for more than two points, we generalize the definition
of Weber points.

Definition 5.8 Let X = {p1, . . . , pn}, g be a PL–instance. The Weber Point W (X, g) is
defined as the point w ∈ g that minimizes

z 7→ f|g(z) :=
∑

pi∈X

|pi − z| z ∈ g

The following theorem gives an exact characterization of the uniqueness of the Weber
point.

Theorem 5.9 Let X, g be a PL–instance. The Weber point W (X, g) is unique, except in
the case that X consists of collinear points without median and all points are on g.

Proof: It is well known, that the function f(z) :=
∑n

i=1 |pi − z| is a convex function on
IR2, see [KM97].

Assume that the points pi ∈ X are not collinear. Then f is strictly convex. Therefore
the restricted function f|g is strictly convex with a unique minimum.

Regard the collinear case. If there is a pi ∈ X, pi /∈ g we compute for arbitrary
q1, q2 ∈ g, q1 6= q2 and a q := (1 − t)q1 + tq2, t ∈ (0, 1)

|pi − q| = |pi − ((1 − t)q1 + tq2)| = |(1 − t)(pi − q1) + t(pi − q2)|
< (1 − t)|pi − q1| + t|pi − q2|

I.e., the function q 7→ |pi − q| is strictly convex on g. Since the restriction f|g is a sum
of convex functions and one of them is strictly convex, f|g is strictly convex and has a
unique minimum.

If X is collinear with a median and all points are on g, the median is the unique Weber
point for X, g.

If X is collinear without a median and all points are on g, the set of Weber points
consists of a line segment. 2

Similar to theorem 4.10, we show that the Weber point can be used as contraction
point.

Theorem 5.10 Let X, g be a PL-instance. If the Weber Point for X, g is unique, then
it is a possible contraction point.
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Proof: Once again, we have to show, that linear movement towards the Weber point
does not influence it. Let w := W (X, g) be the Weber point for X = {p1, . . . , pn}, g. For
a t ∈ [0, 1] define p′ := (1 − t)p1 + tw. Due definition, it holds

n∑
i=1

|pi − w| <
n∑

i=1

|pi − z| ∀z ∈ g \ {w}

This and the inequality |z − p1| ≤ |z − p′| + |p′ − p1| lead to

n∑
i=2

|pi − w| + |p′ − w| <
n∑

i=2

|pi − z|+ |p1 − z| + |p′ − w| − |p1 − w|︸ ︷︷ ︸
=−|p′−p1|

≤
n∑

i=2

|pi − z|+ |p′ − z| + |p′ − p1| − |p′ − p1|

=
n∑

i=2

|pi − z|+ |p′ − z|

This means that w is the unique Weber point for the multi set (X ] {p′}) \ {p1} and g.
2

The methods used in the proof of theorem 4.13 can be used to give the following
characterization of the Weber point. To our knowledge, this characterization has not
been published before.

Theorem 5.11 For a vector v ∈ IR2 let vg be the projection of v onto g. If the Weber
point w := W (X, g) is unique, then it has the following property.∣∣∣∣∣∣∣∣

n∑
i=1

pi 6=w

(pi −w)g

|pi −w|

∣∣∣∣∣∣∣∣ ≤ X(w)

And w is the only point with this property. Especially, if w 6∈ X, i.e., X(w) = 0, we
obtain

n∑
i=1

(pi − w)g

|pi − w| = 0

Proof: Define g(z) := |p− z| for an arbitrary point p ∈ IR2. If z 6= p we compute the
derivative as

g′(z) =
(pi − z)g

|pi − z|
If z = p we obtain for the partial derivation in direction v ∈ g ∩ S1

gv(z) = 1

For the function

f̃ (z) :=
n∑

i=1
pi 6=w

|pi − z| = f(z) − k|w − z|

and the partial derivation in direction v ∈ g ∩ S1, we obtain

fv(w) =
〈
f̃ ′(w), v

〉
+ k =

〈
n∑

i=1
pi 6=w

(pi − w)g

|pi − w| , v
〉

+ k
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Since f is minimized in w, fv(w) ≥ 0 holds. The theorem is true, if f̃ ′(w) = 0. Therefore,

we can assume that f̃ ′(w) 6= 0 and define v := − f̃ ′(w)

|f̃ ′(w)| . This leads to

0 ≤ fv(w) = −

∣∣∣∣∣∣∣∣
n∑

i=1
pi 6=w

(pi −w)g

|pi −w|

∣∣∣∣∣∣∣∣+ k

On the other hand, assume that for ŵ ∈ g,∣∣∣∣∣∣∣∣
n∑

i=1
pi 6=ŵ

(pi − ŵ)g

|pi − ŵ|

∣∣∣∣∣∣∣∣ ≤ X(ŵ)

holds. For the function

f̂(z) :=
n∑

i=1
pi 6=ŵ

|pi − z| = f(z) −X(ŵ)|ŵ − z|

we obtain that

0 ≤ −
〈
f̂ ′(ŵ),

f̂ ′(ŵ)

|f̂ ′(ŵ)|

〉
+X(ŵ)

Since for both v ∈ g ∩ S1, holds

〈
f̃ ′(ŵ),

f̂ ′(ŵ)

|f̂ ′(ŵ)|

〉
≥
〈
f̃ ′(ŵ), v

〉

holds, it follows that fv(ŵ) ≥ 0. This means that f is minimized in ŵ, and since w is
unique, ŵ = w. 2

Remark: Since for n = 2 the contraction point is unique, in this case the Weber point
can be constructed very easily.

The new geometric entity g cannot help to compute the Weber point for n ≥ 5: In
section 4.4.1 we cited an example from [CM69] for a not solvable instance of 5 points.
Although we know that the Weber point for this set must lie on the x–axis, it cannot be
constructed by compass and ruler. If we take these 5 points and define g as the x–axis,
we obtain a PL–instance which is not solvable.

Furthermore, in [Baj88] it is shown that the Weber point cannot be constructed by
compass and ruler for n ≥ 3.

5.4 Additional solutions

As we have seen, the solution for the PL–problem is not unique in the general case. In this
section, we present two contraction points different from the Weber point. Furthermore,
we show that there are fast algorithm to compute these points, whereas the Weber point
cannot be constructed.
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5.4.1 Median

If n is odd, the orthogonal projection of X onto g can be used to define a median of X. To
be more precise, the contraction point c is defined as the median of the projected points.
Let pi|g be the projection of pi onto g. Since pi|g − c = (pi − c)g and c is the median, we
compute

|{i ∈ {1, . . . , n}|pi|g = c}| ≥

∣∣∣∣∣∣∣∣
n∑

i=1
pi|g 6=c

pi|g − c

|pi|g − c|

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

n∑
i=1

pi|g 6=c

(pi − c)g

|(pi − c)g|

∣∣∣∣∣∣∣∣
Again, this shows a similarity between a contraction point, the median and the Weber
point. The median can be computed for every odd n. Since this doesn’t hold for the
Weber point, the median is different from the Weber point. The projection of n points
can be computed in time O(n), the median of the projected points can be computed in
time O(n), too, see [BFP+73]. Therefore the algorithm needs time O(n).

5.4.2 Cone

We regard the situation that no point is on g or all points on g have the same position.
In this situation, a contraction point different from the Weber point can be computed.
In contrast to the non constructible Weber point, this solution can be computed in time
O(n log n).

In a first step, it is assumed that all points p ∈ X are in one of the two half-planes
defined by g.

Definition 5.12 Let q ∈ g be an arbitrary point, let α ∈ [0o, 90o]. The set

C(q, α) := {x ∈ IR2 | angle((x− q), g) ≥ α}

is called a cone.
For q ∈ g we define

αq := max
q∈g

{α ∈ [0o, 90o]|X ⊂ C(q, α)}

Since X is finite, this maximum exists. qmax ∈ g is defined as the point that maximizes
the function q 7→ αq.

To simplify notation, Cmax := C(qmax, αqmax) is called the maximum cone.

Example: In Figure 5.4 an example is given. Since angle((pq − q), g) = αq , for every
α > αq, X 6⊂ C(q, α) holds.

Theorem 5.13 Let X be a multi set, such that there is at most one q ∈ g with X(q) > 0.
Then the point qmax exists, it is well defined, and it is a possible contraction point.

Proof: If there is a point q ∈ g with X(q) > 0, then αq > 0 and for every q′ 6= q, αq′ = 0
holds. Therefore, qmax = q is defined uniquely and it is a possible contraction point.

If no point is on g, the function q 7→ αq is continuous and αq > 0. For every vector ~g
parallel to g and for every point O ∈ g, limt→∞ α(O+t~v) = 0 holds. Therefore, at least one
qmax exists.
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q

αqαq

pq

g

Figure 5.4: Cone for a given q ∈ g

For every qmax, there are at least two points pl, pr ∈ X such that

angle((pl − qmax), g) = angle((pr − qmax), g) = αqmax

and angle((pl − qmax), (pr − qmax)) = 180o − 2αqmax . This means that there are points
on every straight line that bounds the maximum cone Cmax. Assume for contradiction
that this is not true. Due to the definition of αq there is at least one point of X on the
boundary of C(q, αq). Since there is no point on one straight line, there is a q′ ∈ g on the
other side with αq′ > αqmax, which is a contradiction.

Since there are points on each straight line of the cone, the movement to the left or the
right to a point q′ ∈ g decreases the corresponding angle αq′. Therefore, qmax is unique.

If a point p ∈ X moves towards qmax, the angle αqmax remains constant or is increased.
For every other q ∈ g the angle αq remains constant or is decreased. This shows that it
is a possible contraction point. 2

Due to the fact that in the case n = 2 there is exact one solution, Weber point and
qmax are equal if X consists of two points. This is not true for more than two points. This
can be seen as follows. Let X = {p1, p2} be a multi set with p1 6= p2, W (X, g) = qmax(X)
holds. But for the multi set X ′ := X ] {p1}, qmax(X) = qmax(X

′) holds, while the Weber
points are different.

Furthermore, this shows that qmax depends only on two points pl, pr ∈ X, while all
other points can move inside the maximum cone Cmax without influencing qmax. In order
to compute qmax, one can search for a pair pl, pr that is on both straight lines bounding
Cmax. This leads to the following simple algorithm to compute qmax, the notation is taken
from Figure 5.1.

Point q := undef
Angle αmax := 0
For every pair (pi, pj)

Compute c, α for (pi, pj).
If X ⊂ C(c, α)

If α > αmax
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αmax := α
q := c

qmax := q
αqmax := αmax

It takes O(n) steps to check, whether a given cone contains all points. Since there are
O(n2) many pairs of points, the algorithm needs time O(n3). The running time can be
reduced by some pre–processing, which we will describe later, but this does not change
the worst case analysis. Nevertheless, the search for a “good” pair (pi, pj) can be done in
a more efficient way.

Theorem 5.14 The point qmax can be computed in time O(n log n).

To prove the theorem, we present the following algorithm.

Max–Cone Algorithm
For a pair (pi, pj), we can compute c, α. If one of the points is not on the boundary of the
convex hull of X then X 6⊂ C(c, α). Therefore, only points p ∈ X have to be regarded, if
they lie on the boundary of the convex hull. Computing the convex hull takes O(n log n)
time, [Ede87]. In the following, it is assumed that X is a convex (multi) set.

We introduce the coordinates g(x) := (x, 0) and pi = (xi, yi) for i ∈ {1, . . . , n}. Due
to the assumption that all points are in one of the two half planes, it can be assumed that
yi ≥ 0. Then X is sorted in x–direction in O(n log n) time, such that x1 ≤ x2 ≤ . . . ≤ xn.
This implies an orientation, we say that x1 is at the left side and that xn is at the right
side. Every cone is bounded by 2 straight lines, a left one and a right one. Let us look
at the left line. The point p1 can be on the left line of the maximum cone Cmax. But if
y1 < y2, then p2 can not lie on the left line of Cmax. To be more precise, let pi, pi+k be two
points, if yi < yi+k, then pi+k cannot be on the left line of the maximum cone. A similar
result holds for the right line of the cone: If yi > yi+k, then pi cannot be on the right line
of the maximum cone.

With this, we define two lists L,R: In L are all points which are possibly on the left
line, in R are all points which are possibly on the right line. The computation is done
due to the following schemes.

L := (p1) R := (pn)
yL := y1 yR := yn

For k := 2 to n For k := (n− 1) to 1
If yk < YL If yk < YR

L := L.append(pk) R := R.append(pk)
yL := yk yR := yk

Next k Next k

After this step, it can be assumed, that X = L ] R has a “bowl form” as indicated in
Figure 5.5. It shows the pre–processed set of points from Figure 5.4. In this example
L = (p1, p2, p3, p4) and R = (p6, p5, p4).

Let pi, pi+1 be two successive points from list L, let qi,i+1 be the intersection from the
straight line through pi, pi+1 with g. If qi,i+1 = qmax then both points are on the left line
bounding the maximum cone. If qi,i+1 < qmax then pi can not be on the boundary, if
qi,i+1 > qmax then pi+1 can not be on the boundary. A analogous result holds for two
points pi, pi−1 ∈ R.
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p5

g

p1

p2

p3

p4

p6

Figure 5.5: The pre–processed set from Figure 5.4

Let qi be the perpendicular projection of pi onto g. Generate a list I of interval
boundaries as follows:

I := (q1)
For every pair pi, pi+1 ∈ L

If qi,i+1 ∈ [q1, qn]
I := I.insert(qi,i+1)

I := I.insert(qn)
For every pair pi, pi−1 ∈ R

If qi,i−1 ∈ [q1, qn]
I := I.insert(qi,i−1)

Sort I

p5

g

L p1 p3

p5

p2

p6

p1

p2

p3

p4

p6

R

Figure 5.6: Computing the intervals

Figure 5.6 shows the computed intervals for the example from Figure 5.4. For the
following part, the algorithms needs two variables pl, pr; pl ∈ L indicates the “important”
point on the left side, pr ∈ R indicates the “important” point of the right side. For a
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point q ∈ g and a point p ∈ IR2, 6 (q, p) denotes the angle between p − q and g. It is
assumed that 0o ≤ 6 (q, p) ≤ 90o.

pl := p1

pr := pj, where j := min{ν|qν+1,ν ∈ [q1, qn], qν, qν+1 ∈ R}
q := q1
αl := 90o

αr := 6 (q, pr)
While αl > αr

q := I.successor(q)
If q = qi,i+1

pl := pi+1

If q = qi+1,i

pr := pi+1

αl := 6 (q, pl)
αr := 6 (q, pr)

If q = qi,i+1

pl := pi

If q = qi+1,i

pr := pi

pl, pr are on the boundary of the maximum cone

Example: For the example from Figure 5.6 we obtain that p2 and p5 are on the boundary
of the maximum cone.

To finish the proof of the theorem, correctness has to be shown.

Lemma 5.15 The Max–Cone algorithm computes qmax.

Proof: We have seen that the maximum cone depends on two points only. The Max–
Cone algorithm identifies these points. 2

Up to now, we assumed that X is in one of the two half planes defined by g. If this
is not the case, the coordinates of the points in one half plane can be mirrored into the
other half plane. The computation is not influenced by the choice of the half plane.

5.5 Conclusion

We presented and discussed a generalization of the contraction problem from the previous
chapter: The contraction point must be on a given straight line. We have seen that the
concept of contraction functions can be generalized to the PL–problem. For multi set of
cardinality of size less than three, we presented geometrical constructions for contraction
points. Furthermore, with the help of symmetries, we have shown that these points are
unique. Several properties of contractions functions have been derived and compared to
results from the previous section.

The notion of Weber point has been generalized, too. We presented several properties
of this generalized Weber point. It turned out, that for multi set of cardinality of size less
than three, i.e., the Weber point can be constructed by compass and ruler, the Weber
point is the only possible contraction point. Interestingly, it is easy to show that the
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Weber point is not the unique solution for multi sets of bigger cardinality. We presented
two contraction functions different to the mapping to the Weber point. These contraction
functions can be computed efficiently.
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Chapter 6

Generalizations of the Weber point

6.1 Introduction

In this chapter, we do not discuss contraction, but we will use the techniques derived
in the previous chapters to discuss modifications of the Weber problem. The original
Weber problem has points as input, and the solution for this problem is a point: Points
are mapped to a point. It is a natural generalization to think of straight lines instead of
points. In the following we discuss the two problems:

• Given n straight lines in the plane, find a point that minimizes the sum of the
distances to the given lines.

• Given n points in the plane, find a straight line that minimizes the sum of the
distances to the given points.

The two problems can be regarded as dual problems. They can be motivated as follows:
Given n railway tracks, find a good position for a service station; given the positions of n
cities, build a railway track close to the cities; given n sample points, find a straight line
that fits best the data.

The distance between a point and a line is measured in the usual way, i.e., as the
smallest Euclidean distance between the given point and a point on the line.

There are many variants of these problems, see [Sch99], we restrict ourself to the
standard cases. This chapter in organized as follows. In section 6.2, we define the Weber
point for lines and discuss its properties. Section 6.3 does the same for Weber line for
points. In section 6.4, we give a short summary.

6.2 Weber point for lines

In [Bar00, ALST01], the following problems has been presented.

Definition 6.1 Let L = {l1, . . . , ln} be a multi set of straight lines in the plane IR2. A
point pw ∈ IR2 is called Weber point for L, if pw minimizes the following function:

p 7→∑
l∈L

dist(l, p)

Example: Let L = {l1, l2}. If l1 intersects l2, then the intersection point is a Weber
point. If l1 is parallel to l2, then every point between the two lines and every point on
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one of the lines is a Weber point. In the special case that l1 = l2, every point on the line
is the Weber point.

In Figure 6.1, three lines bound an equilateral triangle. Every point inside this triangle

Figure 6.1: Three lines.

is a Weber point for the three lines. The same holds for every point on the boundary of
the triangle.

The next theorem shows that there is a Weber point for every multi set of lines.

Theorem 6.2 ([Bar00]) For every multi set L of straight lines, there is a Weber point
pw for L. Furthermore, there is a Weber point p′w ∈ L, i.e. there is a line l ∈ L with
p′w ∈ l. If two lines intersect, then there is a Weber point p′′w on an intersection of two
lines.

If there is a Weber point pw 6∈ L, then for every line l ∈ L, there is a unit vector ~l
parallel to l, such that

∑
l∈L

~l = 0.

Proof: If L consists of parallel lines, there is a line l ∈ L with pw ∈ l. If there are
at least two intersecting lines, for every vector v ∈ S1 and for an arbitrary origin O,
limt→∞

∑
l∈L dist(l, O + tv) = ∞ holds. Since dist(l, .) is continuous, there is a point pw

that minimizes the sum of distances.
As to the last claim, let pw be a Weber point with pw 6∈ L. For a line li ∈ L, we

consider the function p 7→ dist(p, li). For p 6∈ li, this function is differentiable in p with
gradient gi, where gi is the unit vector perpendicular to li. Since the sum of the distances
is minimized in pw,

∑n
i=1 gi = 0 holds. Let R be a rotation by 90o. For every line li, the

unit vector ~li := R(gi) is parallel to li. The following holds:

∑
li∈L

~li =
∑
li∈L

R(gi) = R(
∑
li∈L

gi) = R(0) = 0

Consider a Weber point pw 6∈ L. The property of the vanishing gradient is locally
constant, i.e., a point p is a Weber point, if there is no line l ∈ L between p and pw.
The Weber point p can be arbitrarily close to a line l ∈ L. Since the distance function is
continuous, there is a Weber point p′w ∈ l.

If there is one intersection, every line li ∈ L has an intersection with a line lj ∈ L\{li}.
Let p′w ∈ li be a Weber point. Assume that p′w is only on li. The function

p 7→ ∑
l∈L\{li}

dist(l, p)
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is differentiable in p′w, and the gradient of this function vanishes in p′w. This implies that
the sum of distances to the other lines is constant on a line segment of li. This line
segment is bounded by intersections with other lines. 2

The theorem leads to the following corollary.

Corollary 6.3 ([Bar00]) The Weber point for n lines can be computed in O(n3) time.

Proof: If there is no intersection, a line l with pw ∈ l can be found in O(n2) time. If
there are intersection, for every pair of lines li, lj, it can be checked in linear time whether
the intersection is the Weber point. 2

6.3 Weber line for points

The following problem has been discussed in many publications, see for example [Sch99].

Definition 6.4 Let X = {p1, . . . , pn} be a multi set of points in the plane IR2. A straight
line lw is called Weber line for X, if lw minimizes the following function:

l 7→ ∑
p∈X

dist(l, p)

Example: For X = {p1}, every line through p1 is a Weber line. For the multi set
X ′ = {p1, p2} with p1 6= p2, the unique line through p1, p2 is the unique Weber line.

In order to discuss the properties, we parameterize the lines in the plane in the following
way. Choose an origin O ∈ R2 and a vector ~x 6= 0. For a line l, we define rl := dist(l, O)
and ϕl as the angle between ~x and the intersection of l with the circle with radius rl

around O. Furthermore, we compute the unit vector vl := (cosϕl, sinϕl), see Figure 6.2.
It is obvious that vl is perpendicular to l. In a similar way, we define vϕ := (cosϕ, sinϕ)

vl

ϕl

l

O

Figure 6.2: Line parameterization.

for a given ϕ. For a point p, dist(l, p) = |〈vl, p〉 − rl| holds. It is a well known fact, that
〈vl, p〉 − rl < 0 iff p and O are in the same half-plane. If rl > 0, i.e., O 6∈ l, there is exact
one ϕl, for rl = 0, there are two possible values for ϕl. On the other hand, for every r ≥ 0
and for every ϕ ∈ [0, 2π], there is a line l such that rl = r and ϕl = ϕ.

With this preparation, we get the following results. Most of these results can be found
in [Sch99].
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Theorem 6.5 Let X be a multi set of points. The following properties hold:

1. There is a Weber line l for X.

2. There is a Weber line l′ and a point p ∈ X such that p ∈ l′.

3. If there is a Weber line that does not intersect X, then |X| is even.

Proof: Every Weber line must pass the convex hull. This is due to the fact that otherwise
the sum of the distances can be minimized by moving the line in direction to the convex
hull. Let R ∈ IR with R > dist(O, p) for all p ∈ X. Since [0, R] × [0, 2π] is a compact set
and the the function (r, ϕ) 7→ ∑

p∈X dist(l, p) is continuous, there is a minimum for the
restricted function in [0, R] × [0, 2π]. Due to definition of R, such a minimum (rm, ϕm)
cannot be obtained with rm = R. Since for r > R, the function (r, ϕ) 7→ ∑

p∈X dist(l, p)
is increasing in r, the (rm, ϕm) minimizes the non-restricted function. Therefore, l with
rl = rm and ϕl = ϕm is a Weber line.

As to the second claim, let l be a Weber line disjoint to X, i.e., 〈vϕl
, p〉 − rl 6= 0 for

all p ∈ X. Therefore, the function

(r, ϕ) 7→ f(r, ϕ) :=
∑
p∈X

|〈vϕ, p〉 − r|

is differentiable in (rl, ϕl). Let POS := {p ∈ X|〈vϕl
, p〉 − rl > 0}, and let NEG := {p ∈

X|〈vϕl
, p〉 − rl < 0}. For the derivative in direction ∂

∂r
, we obtain:

∂

∂r
f(r, ϕ) =

∑
p∈POS

−1 +
∑

p∈NEG

1

In (rl, ϕl), this expression vanishes, i.e., |POS| = |NEG|. This is not possible for an odd
number of points and proves the third claim.

Let v⊥ϕ := vϕ+90o, for the derivative in direction ∂
∂ϕ

, we compute:

∂

∂ϕ
f(r, ϕ) =

∂

∂ϕ


 ∑

p∈POS

(〈vϕ, p〉 − r) − ∑
p∈NEG

(〈vϕ, p〉 − r)




=
∑

p∈POS

〈v⊥ϕ , p〉 −
∑

p∈NEG

〈v⊥ϕ , p〉

=

〈
v⊥ϕ ,

∑
p∈POS

p

〉
−
〈
v⊥ϕ ,

∑
p∈NEG

p

〉
=

〈
v⊥ϕ ,

∑
p∈POS

p− ∑
p∈NEG

p

〉

Again, for (rl, ϕl), this expression vanishes. For all ε ≥ 0 small enough, ∂
∂r
f(rl ± ε, ϕ) = 0

holds, i.e., ε 7→ f(rl ± ε, ϕl) is locally constant. This is true for all ε ≥ 0 until the
corresponding line l′ intersects X. Since f is continuous, l′ is a Weber line, too. 2

Theorem 6.6 Let l be a straight line, l is a Weber line for X, iff the following conditions
are fulfilled:

1. |l ∩X| ≥ ||NEG| − |POS||.
2.

∑
p∈l∩X

∣∣∣〈v⊥ϕ , p〉∣∣∣ ≥
∣∣∣∣∣∣
〈
v⊥ϕ ,

∑
p∈POS

p− ∑
p∈NEG

p

〉∣∣∣∣∣∣
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Proof: We have seen already that for l∩X = ∅, the Theorem is true. For l∩X 6= ∅, the
function f is not differentiable, but we can compute the derivatives in direction ± ∂

∂r
,± ∂

∂ϕ
.

2

Example: Let X = {p1, p2, p3} be a set of points, such that the 3 points form an
equilateral triangle. Every straight line through two of the 3 points is a Weber line.

6.4 Conclusion

We discussed two natural generalizations of the classical Weber problem. Instead of
points, we considered points and lines. We have seen that the methods for contraction we
derived in the previous chapters can be used to derive results for the generalized Weber
problem as well. Especially, using directional derivatives, we got characterizations for the
generalized problems. This gave short and elegant proofs for the results, whereas, for
instance, [Bar00] had to consider many cases to prove his results.
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Chapter 7

Conclusion and Outlook

In this thesis, we highlighted three topics of distributed systems and discussed several
aspects of them.

Distributing Rare Resources was the first topic. We discussed Roman Domination,
Win–Win, and several derived problems. These are typical graph problems and we showed
that they are NP–hard. Furthermore, a PTAS for Planar Roman Domination was given.
It is an open question, whether there is a PTAS for Planar Win–Win, too. We discussed
the relations between these problems: For some problems, less resources are needed than
for Roman Domination. However, these problems need more communication. Especially,
for Roman Domination, the decision which server should service a request can be made
locally; whereas for Online Dynamic Win-Win, this is a NP–complete problem.

Second, we presented a highly available data structure, called HAT. In contrast to other
proposed data structures, the HAT structure works in a weak environmental setting. The
HAT structure has the ability to recover, i.e., a server that has suffered a crash failure
can reinvolve itself into the data structure. To do this, no central instance is needed,
communication between buddies is enough.

The last topic was the point formation problem. We defined contraction functions
and showed that they are a solution for the point formation problem and thus, the point
formation problem can be solved in a very simple robot model. It turned out that the
mapping to the Weber point is a contraction function. With this result, we could show
a new aspect of the Weber point: The Weber point is in the convex core, if the number
of points is even. Some questions remain open: Is the Weber point the only contraction
point? If an additional line is given, it is very easy to present contraction points different
from the Weber point. However, if the line is not given, we do not know the right answer.

We looked at the three topics individually, but there are similarities between the
solutions we presented. For instance, the HAT structure and the contraction functions
solve problems in weak environmental and asynchronous settings. Local decisions are
enough to coordinate the nodes in a HAT and the servers in Roman Domination. Since
Roman Domination has a simple characterization, we were able to derive a PTAS for this
problem; and since contraction functions have a simple structure, we were able to get
new insights into the point formation problem and to derive easy to understand solutions.
Interestingly, the contraction functions show that methods from facility location can be
exploited to solve the point formation problem.

Distributed systems remain an object of intense research efforts, because they have
great potential. They are also more complicated due to ”friction” issues (such as incom-
plete knowledge or message delays), but as we showed in three examples, some of these
problems can be handled quite well in weak and realistic models.
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