DISS. ETH NO. 14894

MAGNETIC STRUCTURES AND INTERACTIONS IN THE INSULATING COPPER-OXYGEN COMPOUND CUB_2O_4

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Natural Sciences

presented by

MARTIN BÖHM

Dipl. Ing., Technical University Graz

born 3.1.1973

citizen of Austria

accepted on the recommendation of

Prof. Dr. A. Furrer, examiner Prof. Dr. M. Sigrist, co-examiner

2003

Summary

The magnetic properties of the insulating copper-oxygen compound CuB_2O_4 have been investigated, mainly by neutron scattering. The experimental results have been analysed in the framework of the Magnetic Representational Analysis and Linear Spin-wave Theory.

The magnetism in CuB_2O_4 stems from copper atoms in the oxydation state Cu^{2+} . The orbital part of the unfilled shell in 3d metals is in good approximation quenched by the crystalline field, which creates a magnetic system in CuB_2O_4 of interacting spins with the spin-quantum number $S = \frac{1}{2}$. The results of the magnetic diffraction experiments in zero magnetic field can be summarized as follows:

 CuB_2O_4 undergoes two second order phase transitions; one at T=21K from a paramagnetic into a commensurate antiferromagnetic phase, a second one at T*=10K from the commensurate into a phase which is incommensurate with respect to the chemical lattice along the tetragonal \vec{c} axis. The structures in the two different phases have the following characteristics:

• The antiferromagnetic phase $(T_N = 21K > T > T^* = 10K)$:

The magnetic propagation vector \vec{k}_{mag} has the value $\vec{k}_{mag} = (0,0,0)$. The magnetic moments at the symmetry site 4d, labeled 'Cu(A)', are antiferromagnetically arranged and closely confined to the tetragonal basal plane. The size of the magnetic moment at T=12K is $|\mu_{Cu(A)}| = (0.86 \pm 0.01)\mu_B$. Antiferromagnetic resonance measurements suggest an anisotropy of fourth order in the basal plane which forces spins either along the \vec{a} (or \vec{b}) axis or along the diagonals of the basal plane. Neighbouring Cu(A) atoms are slightly canted, which results in a weak ferromagnetic moment in the basal plane. The moment is temperature dependent with a maximum of $|\vec{m}_{WFM}| = (0.18 \pm 0.01)\mu_B/uc$ near T*=10K.

The second sublattice at the symmetry site 2b, denoted Cu(B), tends to align along the \vec{c} axis, also in an antiferromagnetic arrangement. The size of the magnetic moment has only a value of $|\mu_{Cu(B)}| = (0.20 \pm 0.01)\mu_B$ at T=12K, which is about a quarter of the value of the Cu(A) moment at that temperature.

• The incommensurate helical structure $(T < T^* = 10K)$:

Below T^{*} the magnetic propagation vector changes continuously with the temperature T: $\vec{k}_{mag} = (0, 0, k_z(T))$. The magnetic moments on both symmetry sites form nearly circular helices along the \vec{c} axis. The pitch of the helix changes from infinity (=ferromagnetic alignment along \vec{c}) to about 5 to 6 unit cells at T=2K.

The incommensurate phase is identified in neutron diffraction experiments by two satellite peaks around the former commensurate Bragg reflection. The intensities of $(hkl)^+$, and $(hkl)^-$, satellite peaks are mostly asymmetric, which can be explained by an overall phase shift φ between Cu(A) and Cu(B) moments. This phase shift is temperature dependent and seems to follow a simple linear relation: $\varphi \propto T$.

The results of the spin-wave calculations show that the experimental data of the inelastic neutron measurements taken at T=12K can be interpreted by a simple model which separates the complete magnetic system into two subsystems:

- the 'cage', consisting of the magnetic moments on site A,
- 'zig-zag' chains along \vec{c} , consisting of Cu(B) moments.

The Cu(A) moments start to form the magnetic 'cage' below the ordering temperature $T_N=21K$. The magnetic moments grow continuously and approach the saturation value of $|\mu(A) = 1|\mu_B$ at the temperature of T~12K. The 'strong' dispersive branches of the measured magnetic excitation spectrum can be explained by one parameter: the isotropic, antiferromagnetic exchange interaction $J_A = (3.93 \pm$ 0.04)meV between nearest Cu(A) neighbours. As J_A is the only parameter in the Cu(A) subsystem, the magnetic ground state must be antiferromagnetic. The zigzag chain model for the Cu(B) subsystem was used to explain the presence of a 'weak' dispersive branch, which was only observed along the [0,0,q] direction. Beside an antiferromagnetic nearest neighbour interaction of $J_B = (0.31 \pm 0.03)$ meV, an additional antiferromagnetic interaction of $J_{Bnnn} = (0.07 \pm 0.02)$ meV had to be taken into account between next nearest neighbours.

Any interactions between the Cu(A) and Cu(B) sublattice can be neglected for temperatures down to T~12K. With the growing size of the Cu(B) moment near $T^*=10K$, the influence on the site A becomes important and the complete system changes into the incommensurate phase. The influence of the Cu(B) system on the Cu(A) moment was summarized into the interaction D = D(T) in a mean-field approach. Above T^{*} the continuous growing D-value causes a canting of the magnetic moments on site A, which results in the weak ferromagnetic moments (WFM) in the basal plane. Below T^{*}, the formation of the helices are explained in this work by the model of the 'antiferromagnetic stairway'.

Finally, the observation of higher order harmonics close to T^{*} is explained by the formation of a magnetic soliton lattice. The model of an antiferromagnetic stairway allows to derive an expression of the free energy, which depends solely on the two interactions J_A and D. Taking into account a 4th order anisotropy term, the free energy is similar to the free energy of a one-dimensional chain derived in Ref. [26]. The limiting conditions lead to the appearence of the non-linear sine-Gordon equation for the phase of the magnetic moments. For the magnetic system the solution of the sine-Gordon equation corresponds to a disturbance of the regular helix, caused by the additional 4th order anisotropy in the plane. As a compromise between exchange interaction, DM interaction and 4th order anisotropy, the magnetic system chooses an arrangement, where the magnetic moments keep the orientation over a certain length, but change it abruptly over some lattice positions about the total angle $\pi/2$. These small regions of changing spin-orientations, are called *static solitons* or microscopic Bloch walls. They intercept in regular distances commensurate, ferromagnetic regions of the chain and form, thus, a regular *soliton lattice*.

Zusammenfassung

Es wurden die magnetischen Eigenschaften der Verbindung CuB_2O_4 , hauptsächlich mit Hilfe von Neutronenstreuexperimenten, untersucht. Die experimentellen Ergebnisse wurden im Rahmen der magnetischen Darstellungstheorie sowie der linearen Spinwellentheorie interpretiert.

Der Magnetismus in CuB_2O_4 rührt von Kupferatomen im Oxydationszustand Cu^{2+} her. Der orbitale Beitrag wird auf Grund von Kristallfeldwechselwirkungen unterdrückt, womit das magnetische System in CuB_2O_4 in guter Näherung als Spin- $\frac{1}{2}$ -System aufgefaßt werden kann. Die Zusammenfassung der Diffraktionsexperimente, ohne Anwendung eines äußeren Magnetfeldes, ergeben folgendes Bild:

Bei $T_N=21K$ wechselt das magnetische System in CuB_2O_4 in einem Phasenübergang 2.Ordnung von einem paramagnetischen in einen kommensurablen, antiferromagnetischen Zustand. Ein zweiter Phasenübergang, ebenfalls 2.Ordnung, ereignet sich bei T*=10K, wobei die magnetische Stuktur in einen inkommensurablen Zustand (bezogen auf das chemische Gitter) entlang der tetragonalen \vec{c} -Achse übergeht. Die zwei magnetischen Phasen besitzen folgende Eigenschaften:

• Die antiferromagnetische Phase $(T_N = 21K > T > T^* = 10K)$:

Der magnetische Propagationsvektor beträgt $\vec{k}_{mag} = (0, 0, 0)$. Die magnetischen Momente der Symmetrielage 4d, im folgenden als "Cu(A)" bezeichnet, liegen in der tetragonalen Ebene in einer antiferromagnetischen Anordnung. Ihr Betrag bei T=12K ist $|\mu_{Cu(A)}| = (0.86 \pm 0.01)\mu_B$. Antiferromagnetische Resonanzmessungen zeigten eine Anisotropie 4.Ordnung in der Ebene, die die Spins entweder entlang der \vec{a} (oder \vec{b})-Achse oder entlang der Flächendiagonalen zwingen. Benachbarte Cu(A)-Momente sind leicht gekantet, was ein schwaches ferromagnetisches Moment (WFM) in der Ebene zur Folge hat. Der Betrag des WFM ist temperaturabhängig mit einem Maximum von $|\vec{m}_{WFM}| = (0.18 \pm 0.01)\mu_B/EZ$ um T*=10K.

Die magnetischen Momente des zweiten Untergitters auf der Symmetrielage 2b, in weiterer Folge als 'Cu(B)' bezeichnet, orientieren sich entlang der \vec{c} -Achse in antiferromagnetischer Anordnung. Der Betrag des Momentes von $|\mu_{Cu(B)}| = (0.20 \pm 0.01)\mu_B$ erreicht bei T=12K nur etwa ein Viertel des Betrages der Cu(A)-Momente.

• Die inkommensurable Phase $(T < T^* = 10K)$:

Unterhalb von T^{*} verändert sich der magnetische Propagationsvektor kontinuierlich: $\vec{k}_{mag} = (0, 0, k_z(T))$. Die magnetischen Momente beider Symmetrielagen beschreiben regelmäßige Helices entlang \vec{c} , wobei sich die Periode von unendlich (=ferromagnetische Anordnung entlang \vec{c}) auf etwa 5 bis 6 Einheitszellen bei T=2K verkürzt. Die inkommensurable Phase ist in Neutronendiffraktionsexperimenten durch zwei Satellitenpeaks um den (ehemals kommensurablen) magnetischen Braggreflex charakterisiert. Die Intensitätsverteilung von " $(hkl)^+$ " und " $(hkl)^-$ " Satelliten stellte sich in den meisten Fällen als asymmetrisch heraus, was durch eine Phasenverschiebung φ zwischen Cu(A) und Cu(B) Momenten erklärt wird. Die Phasenverschiebung ist temperaturabhängig und kann durch eine einfache lineare Beziehung, $\varphi \propto$ T, bis T=2K angenähert werden.

Spinwellenrechnungen ergaben, daß die experimentellen Ergebnisse der inelastischen Neutronenstreuung bei T=12K durch eine Trennung des magnetischen Systems in:

- einen "Cage", von Cu(A)-Momenten aufgebaut, und
- eine "Zick-Zack"-Kette entlang \vec{c} , bestehend aus den Cu(B)-Momenten,

interpretiert werden können. Die Formierung des Cages setzt bei $T_N=21$ K ein, wobei die Cu(A)-Momente kontinuierlich wachsen und bei T~ 12K annähernd den Sättigungswert von $|\mu(A)| = 1\mu_B$ erreichen. Die als "stark" bezeichneten Dispersionsrelationen können mit Hilfe eines Parameters, des isotropen, antiferromagnetischen Austauschintegrals zwischen Cu(A)-Momenten, $J_A = (3.93 \pm 0.04)$ meV, erklärt werden. Das Modell einer "Zick-Zack"-Kette zwischen Cu(B)-Momenten wurde eingeführt, um den als "schwach" bezeichnenten Dispersionsast, der ausschließlich entlang der [0,0,q]-Richtung nachgewiesen wurde, rechnerisch anzunähern. Neben einer antiferromagnetischen Austauschwechselwirkung zwischen nächsten Nachbarn von $J_B = (0.31 \pm 0.03)$ meV wurde eine zusätzliche Austauschwechselwirkung zwischen übernächsten Nachbarn, $J_{Bnnn} = (0.07 \pm 0.02)$ meV, berücksichtigt. Wechselwirkungen zwischen dem Cu(A) und Cu(B)-Untergitter können bis ca. T~12K vernachlässigt werden. Durch das wachsende Cu(B)-Moment in der Nähe von T^{*}, wird der Einfluß auf die Cu(A) Momente spürbar, und das ganze magnetische System wechselt in den inkommensurablen Zustand. Die Wechselwirkung zwischen Cu(A) und Cu(B)-Momenten wird in einer Mean-field Näherung durch die Wechselwirkung D = D(T) berücksichtigt. Oberhalb T^{*} bewirkt ein mit abnehmender Temperatur wachsender *D*-Wert das beobachtete WFM, unterhalb T^{*}, die Formierung zu regelmäßigen Helices. Das zugrundeliegende Modell der inkommensurablen Phase wird als "antiferromagnetische Wendeltreppe" bezeichnet.

Die Beobachtung von Satelliten höherer Ordnung in der unmittelbaren Umgebung von T^{*} wird durch die Formierung eines magnetischen Solitonengitters erklärt. Das Modell einer antiferromagnetischen Wendeltreppe erlaubt es, einen Ausdruck für die freie Energie herzuleiten, der ausschließlich von den beiden Parametern J_A und Dabhängt. Unter Berücksichtigung eines zusätzlichen Anisotropietermes 4.Ordnung in der Ebene, ergibt sich ein Ausdruck der freien Energie, der identisch ist mit der freien Energie aus Ref. [26]. Die Minimisierung führt auf die nichtlineare sine-Gordon Differentialgleichung für die Phasenbeziehung der magnetischen Momente, deren Lösung dem magnetischen Solitonengitter entspricht.