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ABSTRACT

The generation of 3-D models from uncalibrated image sequences is a challenging problem that has been investigated in many
research activities in the last decade. In particular, a topic of great interest is the modeling of realistic humans, for animation,
manufacture or medicine purposes. Nowadays the common approaches try to reconstruct the human body using specialized hardware
(laser scanners) resulting in high costs. In this paper a different method for the three-dimensional reconstruction of human bodies
from image sequences acquired with a standard video-camera is presented. The core of the presented work describes the calibration
and orientation of the images but the whole process includes also the extraction of correspondences on the body using least squares
matching and the reconstruction of the 3-D body model.

1. INTRODUCTION

The actual interests in 3-D object reconstruction are motivated
by a wide spectrum of applications, such as object recognition,
city modeling, video games, animations, surveillance and
visualization. In the last years, great progress in creating and
visualizing 3-D models from images has been made, with
particular attention to the visual quality of the results. The
existing systems are often built around specialized hardware
(e.g. laser scanner), often resulting in high costs. Other methods
based on photogrammetry [Grün et al., 2001; Remondino,
2002] or computer vision [Pollefeys, 2000], can instead obtain
3-D models of objects with low cost acquisition systems, using
photo or video cameras. Since many years, photogrammetry
deals with high accuracy measurements from image sequences,
including 3-D object tracking [Maas, 1991], deformation
measurements or motion analysis [D'Apuzzo et al., 2000]; even
if these applications require very precise calibration, automated
and reliable procedures are available.
Concerning the reconstruction and modeling of human bodies,
nowadays the demand for 3-D models has drastically increased.
A complete model of a human consists of both the shape and
the movements of the body. These two modeling processes are
often considered as separate even if they are very close. A
classical approach to build human shape models uses 3-D
scanners [Cyberware, 2002, Vitus, 2002, Horiguchi, 1998]:
they are expensive but simple to use and software are available
to edit and model the obtained point cloud. Other techniques
use structured light methods [Wolf, 1996], silhouette extraction
[Zheng, 1994], multi-image photogrammetry [D'Apuzzo, 2002].
The human body models can be used in different fields, like
animation, manufacturing or medicine. For animation purpose,
only approximative measurements are necessary: the shape can
be first defined (e.g. smoothing 3-D mesh with splines,
attaching generalized cylinders or volumetric primitives to a
skeleton) and then animated using motion capture data. For
medical applications or in manufacture industries, digital
surfaces are required for metric body information and design of
clothes [McKenna, 1996]; therefore exact 3-D models of the
body are needed and usually performed with scanning devices
[Tailor, 2002].

In this paper a photogrammetric approach for the reconstruction
of 3-D models of static humans from uncalibrated image
sequences is described. The process consists of three parts:
1)   Acquisition and analysis of the image sequence (section 2)
2)   Calibration and orientation of the images (section 3)
3)  Matching process on the human body surface and point

cloud generation (section 4).
This work belongs to a project called Characters Animation and
Understanding from SEquence of images (CAUSE). Its goal is
the extraction of complete 3-D animation models of characters
from old movies or video sequences, where no information
about the cameras and the objects are available.

2. IMAGE ACQUISITION

The images can be acquired with a still-video camera or with a
camcorder. A complete reconstruction of the human body
requires a 360 degrees azimuth coverage, while, for the time
being, only frames in front of the body are acquired. The
acquisition lasts ca. 30 seconds and requires no movements of
the person. This could be considered a limit of the procedure
but also 3-D scanners need at least 15 seconds to acquire a full
body model. Figure 1 shows three images (out of 6) of a
sequence acquired with a Sony DSC-S70, with a resolution of
768x1024 pixels. During the acquisition, the camera constant
was kept fixed not to deal with varying camera constant. If a
video camera is used (section 5), the acquired video has to be
digitalized and the artefacts created by interlace effects must be
removed.

3. CALIBRATION AND ORIENTATION
OF THE IMAGES

Camera calibration and image orientation are prerequisites for
accurate and reliable results, in particular for those applications
that rely on the extraction of precise 3-D information from
imagery. The early theories and formulations of orientation
procedures were developed in the first half of the 19th century
and today a great number of procedures and algorithms is
available. A fundamental criterion for grouping the orientation
procedures is based on the used camera model, i.e. the
projective camera model or the perspective camera one. Camera
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models based on perspective collineation have high stability,
require a minimum of three corresponding points per image and
a stable optics. On the other hand, projective approaches can
deal with variable focal length, but need more parameters, a
minimum of six corresponding points and are quite instable
(equations need normalization).
The calibration and orientation process is the core of the
presented work and is based on a photogrammetric bundle-
adjustment (section 3.3); the required tie points (image
correspondences) are found automatically with the following
steps:
• interest points extraction from each image;
• matching of potential feature pairs between adjacent

images;
• false matches clearing using local filtering;
• epipolar geometry computation to refine the matching

process and remove any outliers;
• correspondences tracking in all the image sequence.
In the following section these steps are described. The process
is completely automated; it is similar to [Fitzigibbon et al.,
1998] and [Roth et al., 2000], but additional changes and
extensions to these algorithms are presented and discussed.

Fig.1: Three images (out of six) used for the reconstruction

3.1 Finding image correspondences

The first step is to find a set of interest points or corners in each
image of the sequence. Harris corner detector is used. The
threshold on the number of corners extracted is based on the
image size. A good point distribution is assured by subdividing
the images in small patches and keeping only the points with
the highest interest value in those patches.
The next step is to match points between adjacent images. At
first cross-correlation is used and then the results are refined
using adaptive least square matching (ALSM) [Grün, 1985].
The cross-correlation process uses a small window around each
point in the first image and tries to correlate it against all points
that are inside a bigger window in the adjacent image. The point
with biggest correlation coefficient is used as approximation for
the matching process. The process returns the best match in the
second image for each interest point in the first image. The final
number of possible matches depends on the threshold
parameters of the matching and on the disparity between image
pairs; usually it is around 40% of the extracted points.
The found matched pairs always contain outliers, due to the
unguided matching process. Therefore a filtering of false
correspondences has to be performed. A process based on
disparity gradient concept is used [Klette et al., 1998]. If PLEFT

and PRIGHT as well as QLEFT and QRIGHT are corresponding
points in the left and right image, the disparity gradient of two
points (P,Q) is the vector G defined as:
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where:

D(P) =  (PLEFT,X - PRIGHT,X, PLEFT,Y - PRIGHT,Y) is the parallax of
P, e.g. the pixel distance of P between the 2 images;
D(Q) = (QLEFT,X - QRIGHT,X, QLEFT,Y - QRIGHT,Y) is the parallax of
Q, e.g. the pixel distance of Q between the 2 images;
DCS = [(PLEFT + PRIGHT)/2, (QLEFT + QRIGHT)/2] is the cyclopean
separator, e.g. the difference between the two midpoints of the
straight line segment connecting a point in the left image to the
corresponding in the right one.

Figure 2: The disparity gradient between two correspondences
(P and Q) in image left and right.

If P and Q are close together in both images, they should have a
similar parallax (e.g. a small numerator in equation 1).
Therefore, the smaller the disparity gradient G is, the more the
two correspondences are in agreement. This filtering process is
performed locally and not on the whole image, because the
algorithm can achieve incorrect results due to very different
disparity values and in presence of translation, rotation,
shearing and scale between consecutive images. The sum of all
disparity gradients G of each matched point relative to all other
neighbourhood matches is computed. Those matches that have a
disparity gradient sum greater than the median of the sums of G
are removed. The process removes ca. 80% of the false
correspondences. Other possible approaches to remove false
matches are described in [Pilu, 1997] and [Zhang et al., 1994].
The next step performs a pairwise relative orientation and an
outlier rejection using those matches that pass the previous
filtering step. Based on the coplanarity condition, the process
computes the projective singular correlation between two
images [Niini, 1994], also called epipolar transformation
(because it transforms an image point from the first image to an
epipolar line in the second image) or fundamental matrix (in
case the interior orientation parameters of both images are the
same) [Faugeras et al., 1992]. The fundamental matrix M12 is
defined by the equation:

02 12
T
1 =p Mp  with   [ ]Tiii 1yx=p [2]

for every pair of matching points p1, p2 (homogeneous vectors)
in image 1 and 2. The epipoles of the images are defined as the
right and left null-space of M12 and can be computed with
singular value decomposition of M12. A point p2 in the second
image lies on the epipolar line l2 defined as 1122 pMl =  and

must satisfy the relation 0=22lp . Similarly, 2
T
121 pMl =

represents the epipolar line in the first image corresponding to
p2 in the second image. The 3x3 singular matrix M can be
computed just from image points and at least 8 correspondences
are needed to compute it. Many solutions have been published
to compute M, but to cope with possible blunders, a robust
method of estimation is required. In general least median
estimators are very powerful in presence of outliers; so the
Least Median of the Squares (LMedS) method is used to
achieve a robust computation of the epipolar geometry and to
reject possible outliers [Scaioni, 2001; Zhang et al., 1994].
LMedS estimators solve non-linear minimization problems and
yield the smallest value for the median of the squared residuals
computed for the data set. Therefore they are very robust in case
of false matches or outliers due to false localisation.



The computed epipolar geometry is then used to refine the
matching process, which is now performed as guided matching
along the epipolar lines. A maximal distance from the epipolar
line is set as threshold to accept a point as potential match or as
outlier. Then the filtering process and the relative orientation
are performed again to get rid of other possible blunders.
However, while the computed epipolar geometry can be correct,
not every correspondence that supports the relative orientation
is necessarily valid. This because we are considering just the
epipolar geometry between couple of images and a pair of
correspondences can support the epipolar geometry by chance
(e.g. a repeated pattern aligned with the epipolar line). These
kinds of ambiguities and blunders can be reduced considering
the epipolar geometry between three consecutive images. A
linear representation for the relative orientation of three views is
represented by the trifocal tensor T [Shashua, 1994]; it is
represented by a set of three 3x3 matrices and is computed only
with image correspondences without knowledge of the motion
or calibration of the cameras. For every triplet of views (Figure
3), if p1, p2 and p3 are corresponding points in the images, then
for every line l2 through p2 in image 2 and for every line l3

through p3 in image 3, the fundamental trifocal constraint
states:
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where [Tp1] is a 3x3 matrix whose (i,j) entry is
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If we consider only the corresponding points, each triplet p1, p2

and p3 must satisfy the matrix equation:

[ ] [ ] [ ] 0x31x = pTpp2
[5]

with [p]x the skew-symmetric matrix of an homogeneous vector,
built as
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where a = (a1, a2, a3)
T.

If a triplet of points p1, p2 and p3 satisfy equation (5), it means
that the corresponding points support the tensor T123 (Figure 4).

Figure 3: Three views geometry: correspondences pi and li
corresponding to point P and line L

Relation (5) can be used to verify whether image points (or
lines) are correct corresponding features between different
views. Moreover, with constraint (5), it is possible to transfer
points, e.g. compute the image coordinates of a point in the
third view, given the corresponding image positions in the first
two images. The exterior orientation of the cameras is not

required (as with collinearity equations) and only image
measurements are needed. This transfer is very useful when in
one view are not found many correspondences; calling p1 and
p2 the point correspondences in the fist two images, the image
coordinates of the corresponding point p3 in the third view are
given (up to a non zero scalar factor) by:

[ ] [ ]  TpTpp T
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T
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T
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where:
[Tp1]i* denotes the ith row of [Tp1];
p1=[x1, y1, 1]T;
ρ,τ are non-zero scale factor.
In case of noise-free image measurement, both equations are
equivalent. The same transfer can be done with lines. The point
transfer can be solved also using the fundamental matrix, but
the trifocal constraint can avoid ambiguities and remove
blunders. Moreover, from the tensor it is possible to derive the
fundamental matrices between the first and the third view; e.g.,
given 3 images, M13 between image 1 and 3 is given by:

[ ] [ ] 2321x3 T,T,T eeM31 = [8]

where:
ei is the epipole of image i;
[ei]x is the skew-symmetric matrix (6) formed with ei.
Therefore, the transfer of p3 is expressed as:

)()( 213 pMpMp 2313 ×= [9]

e.g. the intersection of two epipolar lines in the third view.
The 27 unknowns of the tensor T, defined up to a scale factor,
can be computed from at least 7 correspondences: using
equation (5), each correspondence gives 9 equations, 4 of them
linearly independent. In our process, for each triplet of images,
the tensor T is computed with a RANSAC algorithm [Fischler
and Bolles, 1981] using the correspondences that support two
adjacent pair of images and their epipolar geometry. The
RANSAC is a robust estimator, which fits a model (T tensor) to
a data set (triplet of correspondences) starting from a minimal
subset of the data. As result, for each triplet of images, a set of
corresponding points, supporting a trilinear tensor, is available.
After the computation of a T tensor for every consecutive triplet
of images, we consider all the overlapping tensors (T123, T234,
T345,...) and we look for those correspondences which are
present in consecutive tensors. That is, given two adjacent
tensors Tabc and Tbcd with supporting points (xa,ya, xb,yb, xc,yc)
and (x'b,y'b, x'c,y'c, x'd,y'd), if (xb,yb, xc,yc) in the first tensor is
equal to (x'b,y'b, x'c,y'c) in the successive tensor, this means that
the point in images a, b, c and d is the same and therefore this
point must have the same identifier. Each point is tracked as
long as possible in the sequence. The obtained correspondences
are used as tie points for the successive bundle-adjustment.

Figure 4: The relative geometry between a triplet of images



 

  

Figure.5: Extracted lines with Canny operator (a) and merged segment (b-c, d-e). Aggregated lines classified according to their
direction (f,g,h). 4 control points measured manually on the body and used for the adjustment (i)

3.2 Initial approximation of the unknowns

Because of its non-linearity, the bundle-adjustment (section 3.3)
needs initial approximations for the unknown interior and
exterior orientations.
An approach based on vanishing point is used to compute the
interior parameters of the camera (principal point and focal
length). The vanishing point is the intersection of parallel lines
in object space transformed to image space by a perspective
transformation of the camera. Man-made objects are often
present in the images, therefore geometric information of the
captured scene can be derived from these features.
The semi-automatic process to determine the approximations of
the interior parameters consists of:
• straight lines extraction with Canny operator (Figure 5, a)
• merging short segments taking into account segments slope

and distance from the center of the image (Figure 5, b-c, d-e);
• interactive identification of three mutually orthogonal

directions;
• classification of the extracted and aggregated lines according

to their directions (Figure 5, f,g,h);
• computation of the three vanishing points for each direction

[Collins, 1993]. Each line li is represented by its
homogeneous coordinates (ai, bi, ci); if there are only two
lines, the cross product of them gives the coordinates of the
vanishing point; if n lines l1, l2, ... ln are involved, we get the
"best fit" vanishing point forming the matrix L as:
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    and computing the vanishing point as the eigenvector
associated with the smallest eigenvalue.

• determination of the principal point and the focal length of
the camera [Caprile and Torre, 1990].

The approximations of the exterior orientation are instead
computed using spatial resection. In our case, 4 object points
measured on the human body (Figure 5, i) are used to compute
the approximations of the positions of the cameras.

3.3 Bundle adjustment

Using the process described in section 3.1, a total of 148
correspondences are found in the images of Figure 1 and then
imported in the adjustment. The points used for the space
resection are imported as control points. Ten additional
parameters [Brown, 1971] are used to model systematic errors:
the camera constant correction, two principal point coordinate
offsets, five parameters modelling the radial and tangential lens
distortion and two parameters for a affine scale factor and shear

[Beyer, 1992]. In our case, the principal point coordinate
offsets, the parameter for the correction of the camera constant
and the first term of the radial lens distortion turned out to be
significant. The theoretical precision of the tie points is σX =
15.5 mm, σY = 9.8 mm, σZ = 14.2 mm while the standard
deviation of unit weight a posteriori is 1.8 micron (1/4 of the
pixel size). The computed camera poses and 3-D coordinates of
the tie points are shown in Figure 6.

Figure 6: Recovered camera positions and object points

4. MATCHING PROCESS AND
3-D RECONSTRUCTION OF THE HUMAN BODY

In order to produce a dense and robust set of corresponding
image points, an automated matching process is used
[D’Apuzzo, 2002]. It establishes correspondences between
triplets of images starting from few seed points and is based on
the adaptive least squares method. One image serves as
template and the others as search image. The matcher searches
the corresponding points in the two search images
independently and at the end of the process, the data sets are
merged to become triplets of matched points. For the process,
all consecutive triplets are used. The 3-D coordinates of each
matched triplet are then computed by forward intersection using
the results of the orientation process. At the end, all the points
are joined together to create a unique point cloud. In order to
reduce the noise in the 3-D data and get a more uniform density
of the point cloud, a spatial filter is applied: the object space is
divided into boxes and the points contained in each box are
replaced by the center of gravity of the box. After the filtering
process, a uniform 3-D point cloud is obtained, as shown in
Figure 7. The generation of a surface model from unorganised
3-D point clouds requires non standard procedures which can
be found in commercial packages. A standards 2.5 Delauney
triangulation can not create a correct meshed surface from the
obtained 3-D point shown in Figure 7.
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Figure 7: 3-D point cloud (8523) of the human body

Therefore, for realistic visualization of the results, each point of
the point cloud is re-projected onto the central image of the
sequence to get the related pixel colour. The results are
presented in Figure 8.

Figure 8: Visualization of the point cloud with pixel intensity

5. ANOTHER EXAMPLE

The reconstruction of the human body is also performed using a
sequence acquired with a video camera handycam Sony DCR-
VX700E. The artefacts created by the interlacing during the
digitization process have to be removed: therefore one field of
the video is deleted and then the remaining lines are
interpolated. A less smooth sequence is obtained as the
resolution in vertical direction is reduced by 50 per cent.
Instead of removing all the odd (even) lines, another possible
approach could be to remove lines just in portions of the video
where interlace artefacts are present.
For the process 12 frames are selected out of a one minute
sequence around a standing person (Figure 9).

Figure 9: Three frames (out of 12) of the acquired video
sequence. Images have a resolution of 576x720 pixel

The testfield in the background contains many similar targets
(repeated pattern) and they are used just as features for the
processing. No 3-D information is available. As the sequence is
self-acquired, the parameters of the camera are known, but they
are recovered as described in section 3.2. The process presented
in section 3.1 is applied to find the required tie points for the
orientation of the sequence; four control points measured on the
body are used for the bundle. The final configuration of the
system after the adjustment is shown in Figure 10.

Figure 10: Recovered camera positions and object coordinates

Then the matching procedure is performed with all consecutive
triplets of images and the obtained and filtered point cloud
(5604 points) is shown in Figure 11 and 12.

Figure 11: 3-D point cloud of the human of Figure 9

Figure 12: 3-D point cloud  (left) and visualization
with grey scale pixel intensity (right)



6. CONCLUSION

In this paper a method to create 3-D models of human bodies
from uncalibrated image sequences has been presented. The
process is automated and the recovered point cloud can be
imported in commercial software for editing, surface modeling
or animation purpose. As future work, the process for the
identification of image correspondences described in [Pilu,
1997] could be included in our method, weighting the
proximity matrix with the sigma of the ALSM process. The
reconstruction of the body will also be extended to the back
part, with a 360 degree coverage. Moreover, sequences where
the camera is still and the person is moving or both camera and
person are moving will be investigated.

ACKNOWLEDGMENT

I would like to thank G.Roth, of the Institute for Information
Technology, NRC of Canada, for the useful talks about his PVT
toolkit.

REFERENCES

Beyer, H.A., 1992: Geometric and Radiometric Analysis of
CCD-Cameras. Based Photogrammetric Close-Range system.
Ph.D. thesis 51, IGP ETH Zurich

Bhatia G., Smith K. E., et al., 1994: Design of a Multisensor
Optical Surface Scanner. Sensor Fusion VII, SPIE Proc.
2355, pp. 262-273

Brown, D.C., 1971: Close-range Camera Calibration. PE&RS,
Vol.37, No.8, pp. 855-866

Caprile B., Torre, V., 1990: Using vanishing point for camera
calibration. International Journal of Computer Vision, Vol.4,
No.2, pp. 127-139

Collins, R.T., 1993: Model Acquisition using stochastic
projective geometry. PhD Thesis, Computer Science Dep.,
University of Massachusetts

D'Apuzzo N., Plänkers R, Fua, P., 2000: Least squares
matching tracking for human body modeling.  Int. Archives
of Photogrammetry and Remote Sensing, Vol.33 (B5/1)

D'Apuzzo, N., 2002: Modeling human faces with multi-image
photogrammetry. 3-Dimensional Image Capture and
Applications V, SPIE Proc., Vol. 4661, pp. 191-197

Faugeras O., Luong Q.T., et al., 1992: Camera Self-calibration:
Theory and Experiments. Lecture Notes in Computer Science
588, ECCV '92, Springer-Verlag, pp. 321-334

Fischler, M, Bolles, R, 1981: Random sample consensus: a
paradigm for model fitting with applications to image
analysis and automated cartography. Comm. Assoc. Comp.
Mach., Vol. 24 (6), pp. 381-395

Fitzgibbon, A, Zisserman, A., 1998: Automatic 3D model
acquisition and generation of new images from video
sequences. Proceedings of European Signal Processing
Conference, pp. 1261-1269

Grün A., 1985: Adaptive least squares correlation: a powerful
image matching technique. South African Journal of
Photogrammetry, Remote Sensing and Cartography Vol. 14,
No.3, pp.175-187

Grün, A., Zhang, L., Visnovcova, J., 2001: Automatic
Reconstruction and Visualization of a Complex Buddha
Tower of Bayon, Angkor, Cambodia. Proc. 21 DGPF, pp.
289-301

Horiguchi C., 1998: Body Line Scanner. The development of a
new 3-D measurement and Reconstruction system. Int.
Archives of P&RS Vol.32, part B5, pp.421-429

Klette R., Schlüns, K., Koschan, A., 1998: Computer Vision:
Three-dimensional data from images. Springer Press

McKenna P., 1996: Measuring Up. Magazine of America's Air
Force, Vol. XL, No.2

Maas, H.G., 1991: Digital Photogrammetry for determination of
tracer particle coordinates in turbulent flow research.
PE&RS, Vol.57, No.12, pp. 1593-1597

Niini, I., 1994: Relative Orientation of Multiple images using
projective singular correlation. Int. Archives of
Photogrammetry and RS, Vol. 30, part 3/2, pp. 615-621

Pilu, M, 1997: Uncalibrated stereo correspondences by singular
value decomposition. TR HPL-97-96, HP Bristol

Pollefeys, M., 2000: Tutorial on 3-D modeling from images.
Tutorial at ECCV 2000

Remondino, F., 2002: 3-D reconstruction of articulated objects
from uncalibrated images. 3-Dimensional Image Capture and
Applications V, SPIE Proc., Vol. 4661, pp. 148-154

Roth, G., Whitehead, A., 2000: Using projective vision to find
camera positions in an image sequence. 13th Vision Interface
Conference

Scaioni, M., 2001: The use of least median squares for outlier
rejection in automatic aerial triangulation. Proc. of 1st Int.
Symposium on "Robust Statistics and Fuzzy Techniques in
Geodesy and GIS", ETH Zurich, pp. 233-238.

Shashua, A., 1994: Trilinearity in visual recognition by
aligment. In Ecklund, J.O.: ECCV, Lectures Notes in
Computer Science, Vol.800, Springer-Verlag, pp.479-484

Wolf, H.G, 1996. Structured lighting for upgrading 2D-vision
system to 3D. Proc. Int.Symposium on Laser, Optics and
Vision for Productivity and Manufacturing I, pp. 10-14

Zhang, Z., Deriche, R, et al., 1994: A robust technique for
matching two uncalibrated images through the recovery of
the unknown epipolar geometry. TR 2273, INRIA

Zheng, J.Y., 1994. Acquiring 3D models from sequences of
contours. IEEE Transaction on Pattern Analysis and Machine
Intelligence 16(2), pp 163-178

Cyberware: http://www.cyberware.com [May 2002]
Taylor: http://www.taylor.com [May 2002]
Vitus: http://www.vitus.de/english/home_en.html [May 2002]


