
Diss. ETH No. 

Architectural Trade-offs in
Dynamically Reconfigurable

Processors

A dissertation submitted to the

Swiss Federal Institute of Technology
Zurich

for the degree of
Doctor of Technical Sciences

presented by

Rolf Enzler

Dipl. El.-Ing. ETH
born  September 
citizen of Walchwil ZG

accepted on the recommendation of

Prof. Dr. Gerhard Tröster, examiner
PD Dr. Marco Platzner, co-examiner



To Susana

iv

Acknowledgments

I am grateful to my advisor, Prof. Dr. Gerhard Tröster, for his support
and for providing me with extraordinary research facilities.

Special thanks belong to Christian Plessl and Dr. Marco Platzner for
the uncountable hours of fruitful discussions and joint work within
the research project ZIPPY. Further, I want to thank Marco for co-
examining this thesis and for providing his valuable input.

I would like to thank Dr. Hubert Kaeslin and Francisco Camarero of the
Microelectronics Design Center at ETH Zurich for their technological
advice and the support with the Synopsys synthesis tools.

I am very much obliged to the members of the Electronics Laboratory
and the Computer Engineering and Networks Laboratory – way too
many to name all of them personally – for the pleasant and inspiring
research atmosphere. Special thanks go to Didier Cottet who always
had an open ear for my diverse requests.

I also want to thank Adrian M. Whatley for the careful proofreading
of the manuscript.

Finally, I would like to express my gratitude to my wife Susana as well
as to my parents; without their support and encouragement this work
would not have been possible.

Zurich, January 2004 Rolf Enzler

vi

Contents

Abstract xi

Zusammenfassung xiii

1. Introduction 1
1.1. Reconfigurable Computing Paradigm 2
1.2. Reconfigurable Systems 4
1.3. Dynamic Reconfiguration 5
1.4. Efficiency of Reconfigurable Systems 8
1.5. Research Objectives . 9
1.6. Overview . 10

2. Design Issues of Reconfigurable Processors 13
2.1. System Integration . 14

2.1.1. Coupling . 14
2.1.2. Instruction Set Extension 16
2.1.3. Synchronization 17
2.1.4. Operand Transfer 17

2.2. Reconfigurable Processing Unit 18
2.2.1. Operators and Granularity 18
2.2.2. Interconnect . 20
2.2.3. Reconfiguration Mechanism 20

2.3. Programming Models and Compilers 21
2.4. System-Level Evaluation 22

3. System-Level Evaluation Methodology 25
3.1. Methodology Outline . 26
3.2. Architecture Model . 27

3.2.1. CPU Core . 27
3.2.2. Reconfigurable Processing Unit 29

3.3. Performance Simulation Environment 29
3.3.1. Extended CPU Simulator 30
3.3.2. Co-simulation . 31
3.3.3. Stand-Alone Simulation Modes 32
3.3.4. Application Mapping and Compilation 32

viii

3.3.5. Simulation Speed 36
3.4. Chip Area Estimation 37

3.4.1. Area Model . 37
3.4.2. Basic Building Blocks 39

3.5. Energy Consumption . 41
3.5.1. High-Level Estimation Approaches for CPUs . . 41
3.5.2. Overall Reconfigurable Processor 42

4. Workload Characterization 43
4.1. Benchmarks . 44
4.2. Application Pool . 45
4.3. Evaluation Setup . 47
4.4. Workload Analysis . 50

4.4.1. Instruction Class Mix 51
4.4.2. Memory Requirements 57
4.4.3. Cache Miss Rates 57
4.4.4. Function Breakdown 59
4.4.5. Key Results . 64

4.5. Impact on Reconfigurable Processor Design 64

5. Reconfigurable Processor Architecture 67
5.1. Programming Model . 68

5.1.1. Hardware Virtualization 68
5.1.2. Macro-Pipelining and Contexts 68

5.2. System Integration . 70
5.2.1. Basic Design Features 70
5.2.2. CPU Core . 72
5.2.3. Coprocessor Registers 75
5.2.4. FIFO Buffers . 75
5.2.5. Configuration Memory 76
5.2.6. Synchronization and Context Scheduling 76
5.2.7. Context Sequencer 77

5.3. Reconfigurable Array . 80
5.3.1. Reconfigurable Cells 80
5.3.2. Two-Level Interconnect 82
5.3.3. Input/Output Ports 84
5.3.4. Configuration . 85

ix

6. Experiments and Results 87
6.1. Experimental Setup . 88
6.2. FIR Filter Virtualization 89

6.2.1. Partitioning and Mapping 89
6.2.2. Context State . 91
6.2.3. Context Scheduling 91

6.3. Computational Performance 94
6.3.1. Results . 94
6.3.2. Discussion . 94

6.4. Chip Area . 102
6.4.1. Estimation Model 102
6.4.2. Building Block Area Models 102
6.4.3. Results and Discussion 105

6.5. Area–Speed Trade-offs 110

7. Conclusion 117
7.1. Summary and Achievements 117
7.2. Conclusions . 119
7.3. Outlook . 120

Glossary 123

Bibliography 129

Curriculum Vitae 153

x

Abstract

This dissertation deals with the design and evaluation of dynamically
reconfigurable processor architectures targeting the embedded comput-
ing domain. The main objective is the investigation of the architectural
trade-offs involved in terms of computational performance and chip
area.

Reconfigurable architectures promise to be a valuable alternative
to conventional computing devices such as processors and application-
specific integrated circuits. The hardware of reconfigurable architec-
tures is, in contrast to processors or application-specific integrated cir-
cuits, not static but adapted to the applications at hand. Through
dynamic hardware customization, reconfigurable architectures poten-
tially achieve a higher efficiency than processors while maintaining a
higher level of flexibility than application-specific integrated circuits.
This work focuses on hybrid, dynamically reconfigurable processors
that couple a standard CPU core with a reconfigurable processing unit.

The development of such technology includes a multitude of design
decisions and architectural trade-offs. In order to study these issues, we
propose a system-level evaluation methodology that allows a designer
to measure the computational performance of hybrid reconfigurable
processors and to estimate their chip area. The methodology is based
on a hybrid architecture model, a system-wide, cycle-accurate simu-
lation environment, and a parameterized area estimation model. Our
approach enables a designer to investigate the system-level impact of
specific architectural design features.

In order to characterize the targeted embedded computing domain,
we analyze a pool of applications that represents a typical embedded
workload. We distinguish between the application groups multimedia,
cryptography, and communications. The analysis shows that the se-
lected embedded workload differs significantly from a general-purpose
workload. Furthermore, the analysis reveals that the three particular
application groups compared to each other also feature distinctive char-
acteristics and hence stress different architectural features of a proces-
sor. The consequence is that a reconfigurable processor design must
account for the peculiarities of the targeted application domain.

xii

For the class of data-streaming applications, which is part of the
multimedia group, we present a hybrid, dynamically reconfigurable pro-
cessor architecture that couples a multi-context, coarse-grained recon-
figurable array as a coprocessor to a CPU core. The CPU is responsible
for the data transfer, context loading, and control of the reconfigurable
array. The array stores several configurations on-chip and thus allows
for fast adaptation of its functionality. The envisioned programming
model makes use of hardware virtualization, which allows for the ab-
straction of limited reconfigurable hardware resources.

In a case study, we implemented large finite impulse response filters
and quantitatively investigated various design features of the reconfig-
urable processor. The experiments show that hardware virtualization
is a suitable programming model, and that multi-context devices can
successfully be employed in this regard. The results further prove that
hybrid multi-context architectures have the potential to yield signifi-
cant speedups. In our experiments, we achieved speedups of up to an
order of magnitude over the stand-alone CPU at the expense of moder-
ate area overheads. Overall, the case study emphasizes the importance
of our system-level evaluation approach.

Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem Entwurf und der Eva-
luation dynamisch rekonfigurierbarer Prozessorarchitekturen im Be-
reich eingebetteter Systeme. Das Hauptziel der Arbeit besteht dabei
in der Untersuchung der Design-Tradeoffs hinsichtlich Rechenleistung
und Chipfläche.

Rekonfigurierbare Architekturen stellen eine vielversprechende Al-
ternative zu konventionellen Rechenbausteinen dar, zu denen Prozes-
soren und applikationsspezifische integrierte Schaltungen gehören. Die
Hardware rekonfigurierbarer Architekturen ist im Gegensatz zu Pro-
zessoren oder applikationsspezifischen integrierten Schaltungen nicht
statisch, sondern kann dynamisch der aktuellen Applikation angepasst
werden. Durch ihre parallelen Hardwarestrukturen erzielen rekonfigu-
rierbare Bausteine eine potenziell höhere Rechenleistung als Prozes-
soren. Gleichzeitig ermöglicht die dynamische Adaption eine grössere
Flexibilität im Vergleich zu anwendungsspezifischen integrierten Schal-
tungen. Die vorliegende Arbeit konzentriert sich auf hybride, dynamisch
rekonfigurierbare Prozessoren, welche eine Standard-CPU mit einer re-
konfigurierbaren Recheneinheit koppeln.

Bei der Entwicklung solcher Architekturen sind eine Vielzahl von
Designentscheidungen und Tradeoffs zu berücksichtigen. Um die da-
mit verbundenen Fragestellungen zu untersuchen, präsentieren wir ei-
ne Evaluationsmethodik auf Systemebene, mit der die Rechenleistung
rekonfigurierbarer Prozessoren gemessen sowie deren Chipfläche ab-
geschätzt werden kann. Die Methodik basiert auf einem hybriden Ar-
chitekturmodell, einer systemweiten, zyklengenauen Simulationsumge-
bung und einem parametrisierten Modell für die Flächenabschätzung.
Mit Hilfe unseres Ansatzes kann der Einfluss der spezifischen Merkmale
einer Prozessorarchitektur auf Systemebene untersucht werden.

Um das Anwendungsgebiet der eingebetteten Systeme zu charak-
terisieren, analysieren wir eine Reihe von Benchmark-Applikationen,
welche eine für eingebettete Systeme typische Arbeitslast darstellen.
Wir unterscheiden dabei die Applikationsgruppen Multimedia, Kryp-
tographie und Kommunikation. Die Analyse belegt, dass sich der aus-
gewählte Applikationsmix deutlich von Applikationen aus dem General-
Purpose-Bereich unterscheidet. Darüber hinaus zeigt sich, dass auch die

xiv

drei untersuchten Applikationsgruppen im Vergleich zueinander ver-
schiedene Charakteristika aufweisen und folglich unterschiedliche Merk-
male eines Prozessors akzentuieren. Die Konsequenz ist, dass beim
Entwurf rekonfigurierbarer Prozessoren das Anwendungsgebiet mit-
berücksichtigt werden muss.

Für die Klasse der Streaming-Applikationen, die eine Teilgruppe der
Multimedia-Anwendungen darstellt, entwickeln wir eine rekonfigurier-
bare Prozessorarchitektur, welche ein rekonfigurierbares, grobgranula-
res Multikontext-Array als Coprozessor an einen CPU-Kern koppelt.
Die CPU ist dabei verantwortlich für den Datentransfer, das Laden
der Kontexte und die Kontrolle des rekonfigurierbaren Arrays. Das Ar-
ray speichert mehrere Konfigurationen auf dem Chip und ermöglicht
dadurch eine schnelle Adaption der Funktionalität. Das vorgesehene
Programmiermodell basiert auf Hardwarevirtualisierung und erlaubt,
limitierte rekonfigurierbare Hardwareressourcen zu abstrahieren.

In einer Fallstudie diskutieren wir die Implementierung von nicht-
rekursiven Filtern und untersuchen verschiedene Architekturmerkmale
rekonfigurierbarer Prozessoren. Die Experimente belegen, dass Hard-
warevirtualisierung ein geeignetes Programmiermodell darstellt, und
dass Multikontext-Bausteine in diesem Zusammenhang erfolgreich ver-
wendet werden können. Die Resultate zeigen des Weiteren, dass hy-
bride Multikontext-Architekturen das Potenzial haben, die Rechenlei-
stung beachtlich zu erhöhen. In unseren Experimenten erreichen wir
Verbesserungen von bis zu einer Grössenordnung im Vergleich zur ei-
genständigen CPU, bei moderat höherem Flächenbedarf. Insgesamt un-
terstreicht die Fallstudie die Wichtigkeit unseres Evaluationsansatzes
auf Systemebene.

1
Introduction

Designers of digital systems face a fundamental trade-off between flex-
ibility and efficiency when selecting computing elements. The available
alternatives span a wide spectrum with general-purpose microproces-
sors and application-specific integrated circuits (ASICs) at opposite
ends. Microprocessors are used in personal computers, in workstations,
in servers, as building blocks for contemporary supercomputers, and
increasingly in embedded systems. They are flexible due to their versa-
tile instruction sets that allow the implementation of any computation
task. ASICs on the other hand are dedicated hardware circuits tuned to
a very small number of applications or even to just one task. ASICs are
mainly used in high-volume embedded system markets such as telecom-
munications, consumer electronics, or the automotive industry. For a
given task, dedicated circuits execute faster, require less silicon area,
and are more power efficient than general-purpose architectures. The
drawback of such highly specialized architectures is their lack of flexi-
bility – if the application changes a redesign of the ASIC is required.

In the last decade, the new class of reconfigurable computing de-
vices has emerged, which promises to combine the flexibility of pro-
cessors with the efficiency of ASICs [155, 168, 171]. The hardware of
reconfigurable devices is not static but adapted to each individual ap-

 Chapter 1: Introduction

ASICs

Processors

Reconfig.
devices

Efficiency

F
le

xi
bi

lit
y

Figure 1.1. Reconfigurable computing devices promise to combine the flex-

ibility of processors with the efficiency of ASICs

plication. Through hardware customization, reconfigurable devices po-
tentially achieve a higher efficiency than microprocessors, while the
dynamics of the customization process allow a higher level of flexibility
than ASICs. Figure 1.1 outlines the trade-off between flexibility and
efficiency as well as the position of reconfigurable devices compared to
processors and ASICs.

1.1. Reconfigurable Computing Paradigm

Figure 1.2 sketches the computing paradigms of processors and ASICs,
respectively. Processors have a general, fixed architecture that allows
tasks to be implemented by temporally composing atomic operations,
which are provided for example by the arithmetic and logic unit (ALU)
or the floating-point unit. In contrast, ASICs implement tasks by spa-
tially composing operations, which are provided by dedicated computa-
tional units like adders or multipliers. Reconfigurable computing com-
bines these computing paradigms by means of reconfigurable hardware
structures, which allow tasks to be implemented both “in time” and
“in space”.

1.1. Reconfigurable Computing Paradigm 

t1

t2

C

B

t2 := A × t1

t2 := t2 + B

y := t2 + C

t2 := t2 × t1

t1 := x

A

ALU

(a) Computation in time

y

A C

Bx

(b) Computation in space

Figure 1.2. Computation of the expression y = Ax2 + Bx + C

The characteristics of the computing paradigms are also reflected in
the respective system compositions, outlined in Figure 1.3. In the pro-
cessor case, the instructions (composed into the program code) define
the behavior of the computing element. The behavior of a reconfig-
urable device is specified by its configuration. The behavior of an ASIC

is typically hard-wired and does not allow for any dynamic adaptation,
except maybe for some adjustable coefficients.

Within the domain of reconfigurable computing two fundamental
kinds of (re-)configurability are distinguished [90, 142]:

• static or compile-time reconfiguration (CTR) – where the config-
uration of the device is loaded once at the outset, after which it
does not change during the execution of the task at hand, and

• dynamic or run-time reconfiguration (RTR) – where the configu-
ration of the device may change at any arbitrary moment during
run time.

This work focuses on dynamically reconfigurable devices. Static recon-
figuration is thus not further considered and discussed.

 Chapter 1: Introduction

D
at

a

Processor ASIC

Instruction

D
at

a

D
at

a

Configuration

device
Reconfig.

Figure 1.3. System outlines corresponding to the computing paradigms of

processors, reconfigurable devices and ASICs

1.2. Reconfigurable Systems

The enabling technology for building reconfigurable systems was the
field-programmable gate array (FPGA) [26]. FPGAs were introduced to
the market at the high-end of programmable logic devices (PLDs) in the
mid 1980s. FPGAs consist of an array of logic blocks, routing channels
to interconnect the logic blocks, and surrounding I/O blocks. SRAM-
based FPGAs use static RAM (SRAM) cells to control the functional-
ity of the logic, I/O blocks, and routing. They can be reprogrammed
in-circuit arbitrarily often by downloading a bitstream of configuration
data to the device. Typically, FPGAs are fine-grained architectures that
operate on bit-wide data types and use look-up tables (LUTs) as com-
puting elements. While early FPGA generations were quite limited in
their capacity, today’s devices feature millions of gates of programmable
logic, dense enough to host complete computing systems.

Currently, a strong trend towards hybrid reconfigurable processors
can be observed. Hybrid architectures combine standard CPU cores
with arrays of field-programmable elements. Several of these new re-
configurable processors are entering the commercial market and claim
to offer three benefits:

• Functionality on demand — Typical examples are network pro-
cessors with hardware modules for tasks such as protocol han-
dling. The modules can be adapted to protocol standards that
were not fully specified or not even known at design time. An-
other example is that of set-top boxes for digital TV and Internet
connection that can be equipped with decoding hardware on de-
mand by the user. As there is a strong tendency to network all

1.3. Dynamic Reconfiguration 

kinds of embedded systems, remote and thus fast and inexpensive
hardware update is a highly desirable technology.

• Acceleration on demand — The reconfigurable processing unit of
the hybrid architecture serves as a coprocessor and accelerates
the critical parts of an application. This is especially interesting
for computationally demanding applications found in areas such
as multimedia, cryptography, and communications.

• Shorter time to market — Products that eventually target ASIC

platforms can be released earlier using reconfigurable hardware.
In many market segments, the early market entry compensates
for the more expensive and power-hungry nature of the initial
product series.

Table 1.1 lists a selection of commercial reconfigurable processors
and summarizes their main architectural characteristics. Apart from
these, Elixent (www.elixent.com) offers a coarse-grained reconfigurable
intellectual property (IP) core called D-Fabrix [160], which is intended
for integration with a CPU and further system components such as
memory. Further, QuickSilver Technology (www.quicksilvertech.com)
has announced the adaptive computing machine (ACM) architecture
[152] consisting of heterogeneous, hierarchically interconnected clus-
ters. Each cluster contains different types of computational nodes in-
cluding CPU cores, coarse-grained arithmetic nodes, fine-grained bit-
manipulation nodes, and finite state machine nodes.

1.3. Dynamic Reconfiguration

A crucial parameter for any dynamically reconfigurable computing sys-
tem is the reconfiguration time, i. e. the time it takes to switch the
functionality of the reconfigurable device. The reconfiguration time im-
poses limits on the applications that can be efficiently mapped to the
reconfigurable hardware. Commodity reconfigurable devices, in partic-
ular FPGAs, show relatively long reconfiguration times in the range of
dozens of milliseconds [197]. Consequently, rather long-running appli-
cation functionality is mapped to such devices. For shorter term func-
tionality the reconfiguration overhead can be significant, negating any
performance gain over software. The trend towards ever larger devices
aggravates the problem further, because the reconfiguration time is pro-
portional to the amount of configuration data, which grows with the
device size.

http://www.elixent.com
http://www.quicksilvertech.com

 Chapter 1: Introduction

T
a
b
le

1
.1

.
S
el

ec
ti

o
n

o
f
co

m
m

er
ci

a
l
re

co
n
fi
g
u
ra

b
le

p
ro

ce
ss

o
rs

AtmelFPSLIC
www.atmel.com

TriscendE5
www.triscend.com

TriscendA7
www.triscend.com

AlteraExcaliburARM
www.altera.com

AlteraExcaliburMIPS
www.altera.com

ChameleonSystemsCS2000

www.chameleonsystems.com

XilinxVirtex-IIPro
www.xilinx.com

PACTSMeXPP
www.pactcorp.com

PACTSDRXPP
www.pactcorp.com

Y
ea

r
2
0
0
0

2
0
0
0

2
0
0
1

2
0
0
1

2
0
0
1

2
0
0
1

2
0
0
2

>
2
0
0
3
1

>
2
0
0
3
1

C
P
U

C
o
re

A
V

C
8
0
3
2

A
R

M
7

A
R

M
9

M
IP

S
3
2

A
R

C
P
ow

er
P

C
A

R
M

7
A

R
M

1
1

F
re

q
u
en

cy
in

M
H

z
4
0

4
0

6
0

1
6
6

1
6
6

1
2
5

3
0
0

1
0
4

n
/
a

W
o
rd

w
id

th
in

b
it
s

8
8

3
2

3
2

3
2

3
2

3
2

3
2

3
2

R
ec

o
n
fi
gu

ra
bl
e

a
rr

a
y

G
ra

n
u
la

ri
ty

fi
n
e

fi
n
e

fi
n
e

fi
n
e

fi
n
e

co
a
rs

e
fi
n
e

co
a
rs

e
co

a
rs

e
F
P
G

A
fa

m
il
y

A
T

4
0
K

p
ty

.2
p
ty

.2
A

P
E

X
A

P
E

X
–

V
ir

te
x
-I

I
–

–
M

a
x
.
el

em
en

t
co

u
n
t

2
3
0
4

3
2
0
0

3
2
0
0

3
8

4
0
0

3
8

4
0
0

8
4

5
0

8
3
2

2
0

4
8

M
a
x
.
g
a
te

co
u
n
t

4
0
K

4
0
K

4
0
K

1
M

1
M

–
4
M

–
–

1
a
n
n
o
u
n
ce

d
in

2
0
0
3
;
re

le
a
se

d
a
te

u
n
d
et

er
m

in
ed

2
p
ro

p
ri

et
a
ry

te
ch

n
o
lo

g
y

http://www.atmel.com
http://www.triscend.com
http://www.triscend.com
http://www.altera.com
http://www.altera.com
http://www.chameleonsystems.com
http://www.xilinx.com
http://www.pactcorp.com
http://www.pactcorp.com

1.3. Dynamic Reconfiguration 

The data required to configure a reconfigurable device is commonly
denoted as a context. Depending on the capabilities of the device, two
basic classes are distinguished. Single-context devices store exactly one
configuration on the chip. Before a new context can execute, the cor-
responding configuration data has to be loaded from off-chip. Conven-
tional FPGAs fall into this category. Multi-context devices hold a set of
configurations on-chip. At any given time exactly one configuration is
in use: the so-called active context. To execute a new context, the con-
texts are switched, i. e. a previously inactive, stored context becomes
active. Since the configuration data does not have to be loaded from
off-chip, the context switch is significantly sped up. Commercial efforts
include the SIDSA FIPSOC device [60, 62], the Chameleon Systems
CS2000 device [141, 200], and the NEC DRP device [119].

Fast reconfiguration enables models of computation that are not,
or only rudimentarily achievable using conventional reconfigurable de-
vices:

• Time sharing — Several applications compete for the reconfig-
urable hardware resources. Each application receives a certain
share of the execution time and the applications are sequentially
swapped in and out [46, 172].

• Hardware virtualization — An algorithm is partitioned into sev-
eral parts, each implemented by an individual circuit and ex-
ecuted sequentially on the reconfigurable device. This allows
a reconfigurable device of arbitrary size to be emulated, e. g.
[32, 34, 47, 147, 172].

• Functionality on demand — The functionality of the reconfig-
urable hardware is switched when required, i. e. at arbitrary, not
predefined points in time, e. g. [89, 120, 191].

• Acceleration on demand — The reconfigurable hardware ac-
celerates critical parts of an algorithm by customizing data-
paths and operators and by massive parallel processing, e. g.
[11, 23, 71, 116, 128, 135].

• Dynamic adaptation — The algorithm is adapted at run time
depending on the incoming data. Different scenarios are feasible,
from adapting coefficients to dynamically generating whole cir-
cuits. Examples are neural networks [20, 31, 54], adaptive filters
[44, 51, 183] and constant propagation [186, 192].

 Chapter 1: Introduction

Table 1.2. Comparison between RISC, DSP, FPGA and ASIC implementa-

tions of the IDEA cryptography algorithm by Mencer et al. [114]

Type / Device Tech-
nology

Clock
rate

Perfor-
mance

Power Efficiency

µm MHz Mbit/s W Mbit/J

RISC SA-110 0.35 200 32.0 1.0 32.0
DSP TMS320C6x 0.25 200 53.1 6.0 8.9
FPGA XC4020XL 0.35 33 528.0 3.2 167.6
ASIC VINCI [42] 1.20 25 177.8 1.5 118.7

1.4. Efficiency of Reconfigurable Systems

Various case studies have shown that field-programmable devices can
achieve higher throughput and be more energy efficient than processors,
provided that the application matches well the spatial structure of the
reconfigurable device and possesses a sufficient degree of parallelism.

The first reconfigurable systems for which remarkable performance
was reported were Splash 2 [10, 68] and DECPeRLe-1 [181] in the early
1990s. These systems proved to achieve higher computational perfor-
mance than any other architecture for applications requiring highly
parallel, bit-level operations. The Splash 2 system, for example, out-
performed any contemporary supercomputer implementation of genetic
string matching by over two orders of magnitude [88]. Similar results
were reported for other applications implemented on these systems such
as image and signal processing, video compression, and computer vi-
sion [135, 178, 181]. More recent applications that exhibit significant
speedups using reconfigurable hardware include for example cryptog-
raphy [53], automatic target recognition [92, 94, 138], Boolean satisfia-
bility [128, 131], and software-defined radio [41, 50, 157].

Mencer et al. [114] compared different implementations of the IDEA

cryptography algorithm on a reduced instruction set computer (RISC),
a digital signal processor (DSP), an FPGA, and an ASIC. Table 1.2 lists
throughput, power dissipation and throughput per power. The FPGA

achieved the highest computational performance and energy efficiency.
Abnous et al. [2] performed similar studies on finite and infinite im-
pulse response filters (FIR, IIR). The FPGA achieved a better energy
efficiency than the embedded RISC CPU. The DSP outperformed the
FPGA in terms of energy efficiency, because FIR and IIR filters per-
fectly match the DSP architecture.

1.5. Research Objectives 

Stitt et al. [162] studied the energy efficiency of hybrid reconfig-
urable processors and evaluated a set of benchmarks that are rele-
vant to embedded computing. On the Triscend E5 and A7 devices
[98, 189], Stitt et al. measured average energy savings of 71% and 53%
respectively, by moving application kernels to the FPGA instead of run-
ning the applications exclusively on the CPU. The authors estimated
that energy savings would increase to 89% and 75% respectively if the
Triscend devices supported voltage scaling.

1.5. Research Objectives

Although reconfigurable computing has recently gained increasing at-
tention in the research community, a number of important research is-
sues remain open. The major issues with respect to hybrid, dynamically
reconfigurable processors can be classified as falling into the following
categories:

– the design of the reconfigurable processing unit (RPU),
– the integration of RPU and CPU into the system architecture,
– the programming model and the compilation technology, and
– the evaluation at the system level.

This work emphasizes the architectural trade-offs involved in the
design of hybrid, dynamically reconfigurable processor architectures.
The work has evolved out of the research project ZIPPY carried out at
the Swiss Federal Institute of Technology (ETH) Zurich [207]. The main
novelties compared to existing work in the field relate to the targeted
application domain, the system-level evaluation approach, and based
on this, the development of a hybrid reconfigurable processor:

• In contrast to many approaches investigating reconfigurable tech-
nology, we are aiming not at the general-purpose but the embed-
ded computing domain, in particular handheld and wearable com-
puting. Compared to general-purpose computing, the embedded
domain puts more stringent requirements on computing power,
energy consumption, costs, weight, volume, etc. and stresses the
trade-offs with respect to these objectives. In order to represent a
typical workload, we have assembled an application pool with ap-
plications from the fields of multimedia, cryptography, and com-
munications. The quantitative characteristics of these application
fields directly impact the design of our reconfigurable processor.

 Chapter 1: Introduction

• While there already exists a substantial body of work on reconfig-
urable architectures including hybrid approaches, a system-level
evaluation of the performance and the various features of the re-
configurable devices is missing. We propose a methodology that
allows for system-wide, cycle-accurate co-simulation of hybrid re-
configurable processors. Together with a parameterized area esti-
mation model this enables us to study the architectural trade-offs
involved in the processor design.

• We elaborate a hybrid reconfigurable processor architecture tar-
geting data-streaming applications that map well to macro-
pipelines. We construct a reconfigurable hybrid system by cou-
pling a coarse-grained, multi-context reconfigurable array as a
coprocessor to a CPU core. The CPU takes care of data I/O,
context loading, and control of the reconfigurable array. The re-
configurable array stores several configurations on the chip, which
allows it to quickly change functionality. As a programming model
we propose and investigate hardware virtualization, which ab-
stracts the limited reconfigurable hardware resources.

With respect to the compilation technology, we rely on a library-
based approach to generate code for the CPU and the RPU. This is
a common approach used in hybrid reconfigurable systems. Compila-
tion technology and code generation for reconfigurable hardware is a
relevant research field in its own right within the area of reconfigurable
computing. We have been careful to ensure that our methodology is
extensible and that it allows automatic compilation technology to be
incorporated later.

1.6. Overview

Chapter 2 reviews the major challenges in developing reconfigurable
technology, in particular hybrid reconfigurable processors, and discusses
related work.

Chapter 3 presents the proposed evaluation methodology, which al-
lows us to quantitatively investigate the trade-offs involved in the design
of reconfigurable processor architectures.

Chapter 4 provides a quantitative characterization of the targeted
application domain of embedded systems and discusses the impact on
the design of reconfigurable technology.

1.6. Overview 

Chapter 5 elaborates the hybrid, multi-context, reconfigurable pro-
cessor architecture aimed at data-streaming applications and discusses
hardware virtualization as the envisioned programming model.

Chapter 6 presents experiments and evaluation results based on the
proposed evaluation methodology as well as the elaborated reconfig-
urable architecture.

Chapter 7 concludes the work with a summary, a list of achieve-
ments, and an outlook.

 Chapter 1: Introduction

2
Design Issues of

Reconfigurable
Processors

Hybrid reconfigurable processors couple reconfigurable elements tightly
with a CPU. Major challenges in developing a hybrid reconfigurable
processor are the design of the reconfigurable processing unit (RPU),
its integration with a CPU into the system architecture, and the pro-
gramming model of the hybrid processor.

This chapter discusses the design issues and outlines the state of the
art in designing reconfigurable processor technology. First, the concepts
for integrating reconfigurable hardware into a computing system are
presented. Then the crucial architectural design parameters of dynam-
ically reconfigurable arrays are identified and described. Programming
models and compilation technology for hybrid reconfigurable proces-
sors are broad research areas in their own right. The major issues are
outlined and some pointers to further research are provided. Finally,

 Chapter 2: Design Issues of Reconfigurable Processors

approaches for evaluating reconfigurable processors at the system level
are discussed.

In this chapter, we focus on the relevant topics in the context of this
work. For a comprehensive survey and various approaches to classifica-
tion of reconfigurable systems we refer to [15, 22, 37, 76, 134, 145, 168].
Table 2.1 shows a selection of processors which are prominent in re-
search. The table lists the year of the first major publication, the envi-
sioned application domain, the integrated CPU core, and the status of
the processor development. The outlined design features are discussed
in this chapter. The status of the projects is either concept, simulation,
emulation on FPGA-based logic emulators, or VLSI implementation.

2.1. System Integration

CPU and RPU are two computing units with various possible interac-
tions. The architectural integration of these units concerns

– the coupling between CPU and RPU,
– the way the CPU issues instructions to the RPU,
– the synchronization between CPU and RPU, and
– the way operands are transferred between CPU and RPU.

2.1.1. Coupling

The coupling between the CPU core and the RPU determines the type
of applications that benefit most from the hybrid reconfigurable pro-
cessor. Generally, a tighter coupling leads to a smaller communication
overhead. Loose couplings thus require bigger amounts of computation
assigned to the RPU in order to operate efficiently. Couplings can be
classified into three main categories, which Figure 2.1 illustrates.

• Reconfigurable functional unit (RFU) — This is the tightest cou-
pling that can be achieved. The RPU is integrated into the CPU

core as a functional unit. Examples are PRISC [136], OneChip
[33, 91, 195], and Chimaera [77, 202].

• Reconfigurable coprocessor — The RPU is part of the processor
and placed next to the CPU core. Examples are Garp [29, 80],
NAPA [140], REMARC [116], MorphoSys [105, 153], and One-
Chip98 [91].

2.1. System Integration 

T
a
b
le

2
.1

.
S
el

ec
ti

o
n

o
f
d
y
n
a
m

ic
a
ll
y

re
co

n
fi
g
u
ra

b
le

p
ro

ce
ss

o
rs

in
re

se
a
rc

h

PRISC
[136]

OneChip

[195]

Chimaera
[77,202]

Garp

[29,80]

NAPA
[140]

REMARC
[116]

MorphoSys

[105,153]

OneChip98

[91]

Y
ea

r
1
9
9
4

1
9
9
6

1
9
9
7

1
9
9
7

1
9
9
8

1
9
9
8

1
9
9
8

1
9
9
9

A
p
p
li
ca

ti
o
n

d
o
m

a
in

1
G

P
G

P
G

P
G

P
G

P
M

M
M

M
G

P
S
ta

tu
s

co
n
ce

p
t

em
u
la

ti
o
n

co
n
ce

p
t

si
m

u
la

ti
o
n

si
m

u
la

ti
o
n

si
m

u
la

ti
o
n

V
L
S
I

em
u
la

ti
o
n

S
y
st

em
in

te
gr

a
ti
o
n

C
P
U

co
re

R
2
0
0
0

D
L
X

M
IP

S
M

IP
S
-I

I
C

o
m

p
a
ct

R
IS

C
M

IP
S
-I

I
T

in
y

R
IS

C
2

S
-D

L
X

C
o
u
p
li
n
g

R
F
U

R
F
U

R
F
U

co
p
ro

c.
co

p
ro

c.
co

p
ro

c.
co

p
ro

c.
co

p
ro

c.
C

o
n
cu

rr
en

t
o
p
er

a
ti
o
n

in
h
er

en
t

in
h
er

en
t

in
h
er

en
t

y
es

y
es

y
es

n
o

y
es

D
a
ta

tr
a
n
sf

er
3

R
R

R
R

/
M

R
/
M

/
D

R
R

/
D

R
/
M

R
ec

o
n
fi
gu

ra
bl
e

u
n
it

G
ra

n
u
la

ri
ty

fi
n
e

fi
n
e

fi
n
e

fi
n
e

fi
n
e

co
a
rs

e
co

a
rs

e
fi
n
e

M
u
lt

ip
le

co
n
te

x
ts

n
o

y
es

y
es

y
es

n
o

y
es

y
es

y
es

C
o
n
te

x
t

fe
tc

h
in

g
4

L
P

C
/
P

P
L

L
P

P

1
G

P
–

g
en

er
a
l
p
u
rp

o
se

,
M

M
–

m
u
lt
im

ed
ia

2
C

P
U

co
re

b
y

A
b
n
o
u
s

et
a
l.

[1
];

n
o
t

to
b
e

co
n
fu

se
d

w
it

h
T

in
y
R

IS
C

b
y

L
S
I

L
o
g
ic

(w
w

w
.l
si

lo
g
ic

.c
o
m

)
3

R
–

re
g
is

te
r,

M
–

m
em

o
ry

h
ie

ra
rc

h
y,

D
–

d
ed

ic
a
te

d
m

em
o
ry

p
o
rt

4
L

–
lo

a
d

o
n

d
em

a
n
d
,
C

–
co

n
fi
g
u
ra

ti
o
n

ca
ch

e,
P

–
p
re

fe
tc

h

http://www.lsilogic.com

 Chapter 2: Design Issues of Reconfigurable Processors

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

System Memory or

Coprocessor

bus I/O bus

Processor Attached
processing unit

CPU core Caches

Memory� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

Memory
RFU

Figure 2.1. Possible couplings between the CPU core and the reconfig-

urable processing unit

• Attached reconfigurable processing unit — This is the loosest
method of coupling. The RPU is located outside the processor
and connected to a memory or I/O bus, e. g. the PCI bus. Un-
like RFUs and coprocessors, the instruction set of the CPU core
is not extended. Examples are Splash 2 [10], DECPeRLe-1 [181],
PRISM [185], Teramac [7], and MORRPH [52].

The commercial processors listed in Table 1.1 are on the border
between attached units and coprocessors. Although they are integrated
with a CPU core, caches and memories on a system on a chip (SoC)1,
they are not as tightly coupled to the CPU as coprocessors. There are
no instruction set extensions for the RPU.

In the remaining part of this chapter, we concentrate on RFU and
coprocessor approaches.

2.1.2. Instruction Set Extension

Both RFU and coprocessor approaches extend the CPU’s instruction
set with customized instructions. The CPU core fetches and decodes
instructions and issues the customized instructions to the corresponding
unit. There are several types of such instructions:

1In this context sometimes referred to as configurable system on a chip (CSoC)
or system on a programmable chip (SoPC).

2.1. System Integration 

• For RFUs two types of instructions exist: instructions that start
the reconfiguration of the RFU and instructions that actually
execute the RFU function.

• Instructions for coprocessors also include reconfiguration and ex-
ecution instructions, and additionally, instructions that transfer
data and synchronize the CPU with the RPU.

2.1.3. Synchronization

Synchronization is required whenever two computing elements oper-
ate concurrently. RFUs can operate concurrently with other functional
units, because the CPU’s control logic synchronizes activities and con-
trols access to the register file. In Table 2.1 this is denoted as “inherent”
concurrent operation.

In the case of coprocessors, simple approaches force the CPU to
stall until RPU execution has completed. More advanced techniques
allow concurrent operation and synchronize by means of status flags,
semaphores or interrupt mechanisms.

While the RFU approach delivers the fastest interaction between
CPU and RPU, it requires a major redesign of the CPU core. Copro-
cessors need less core redesign but may require more effort for synchro-
nization.

2.1.4. Operand Transfer

An RFU uses the CPU register file to read and write operand data, the
same way as any ordinary functional unit does. Coprocessors can use
several options:

1. Data may be transferred between the coprocessor and the CPU

via registers.

2. Coprocessors can have access to the same memory hierarchy as
the CPU including several levels of caches, on-chip memories, and
the external memory interface.

3. To increase the overall memory bandwidth some approaches equip
the RPU with dedicated memory ports. While this certainly in-
creases bandwidth, it can also lead to data consistency problems.

In Table 2.1, these options are denoted as “R” for register, “M” for
memory hierarchy, and “D” for dedicated memory ports.

 Chapter 2: Design Issues of Reconfigurable Processors

2.2. Reconfigurable Processing Unit

The main design parameters of an RPU are the granularity of the pro-
cessing elements, the interconnect between the processing elements, and
the reconfiguration mechanism.

2.2.1. Operators and Granularity

The granularity of the processing elements can be either fine-grained
or coarse-grained:

• Fine-grained arrays use logic blocks with 1-bit to 4-bit inputs
and single flip-flops. These structures are well suited to imple-
ment bit-manipulation operations and random logic. Examples
are commercial FPGAs [6, 198] and FPGA-based architectures,
e. g. [33, 91, 195]. Not FPGA-based architectures include PRISC

[136], DPGA [47, 165], Chimaera [77, 202], and Garp [29, 80].

• Coarse-grained architectures accommodate 4-bit to 32-bit ALUs
and registers and are better suited to implement regular arith-
metic operations on word-sized data, e. g. found in multimedia
applications. Examples are CHESS (4-bit datapath) [112], Mor-
phoSys (8- or 16-bit datapath) [105, 153], REMARC (16-bit data-
path) [116], and XPP (32-bit datapath) [16].

There is a trade-off involved in selecting the granularity of the
processing elements as typical real-world workloads contain both fine-
grained and coarse-grained types of applications. Several research
groups have performed trade-off studies with respect to granularity.
Kouloheris and El Gamal [99] studied the impact of logical block gran-
ularity on FPGA performance. Betz and Rose [19] investigated the op-
timal number of inputs provided by LUT-based logic blocks. Goldstein
et al. [70] employed a parameterized model of an ALU array architec-
ture to study key design parameters including the granularity of the
processing element.

Configuration size

A parameter strongly related to the granularity is the configuration size.
Given a certain silicon area for the RPU, many fine-grained elements or
fewer coarse-grained elements can be implemented. A large number of

2.2. Reconfigurable Processing Unit 

fine-grained elements requires more configuration data than a smaller
number of coarse-grained elements.

The configuration size of the fine-grained Xilinx Virtex-II Pro family
for example ranges between 1.24 Mbits and 41.58 Mbits [198], while the
configuration size of the coarse-grained Chameleon Systems CS2000

device totals less than 50Kbits [141].

Multi-granular processing elements

Research groups also investigate multi-granular elements that are well
suited to implement bit-manipulation operators, but can also be effi-
ciently arranged to suit word-level operations.

The RAW microprocessor [182] is composed of multiple identical
tiles. Each tile incorporates an ALU and fine-grained reconfigurable
logic. Waingold et al. claim that the small amount of reconfigurable
logic in each tile – for which software can select the datapath width –
allows a RAW processor to support multi-granular operation. However,
the mechanism how the ALUs cooperate with the reconfigurable logic
is not elaborated. In more recent research, the reconfigurable logic has
been disregarded [166].

The CHESS architecture [112] is an ALU array aimed to be inte-
grated into an ASIC or a processor datapath. The CHESS array fea-
tures a chessboard-like floorplan alternating ALUs and switchboxes.
The switchboxes can be converted into 16-word by 4-bit RAMs allow-
ing them to be used as 4-input, 4-output LUTs for operations that do
not map well onto the ALUs. This same feature can also be used to
make arbitrary interconnections at the bit level, which are not sup-
ported by CHESS’ 4-bit wiring. The commercial successor D-Fabrix
[160] employs multiplexers for control and bit-level data operations.

Other research projects investigate heterogeneous arrays, i. e. ar-
rays that incorporate different types of processing elements. Work on
heterogeneous arrays can be classified into arrays that

– integrate functional blocks such as multipliers or digital signal
processing blocks, e. g. [6, 81, 198],

– use two or more different sizes of LUTs, e. g. [39, 82],
– employ embedded RAMs as supplementary logic when not used

as memory, e. g. [6, 38, 198], or
– contain both LUTs and product term arrays, e. g. [83, 97].

 Chapter 2: Design Issues of Reconfigurable Processors

2.2.2. Interconnect

The structure of the reconfigurable array is not only determined by
the granularity of the processing elements, but also by their intercon-
nect. Reconfigurable elements are typically placed in 2-dimensional ar-
rays [37]. The simplest interconnect scheme connects each element to its
four neighbors horizontally and vertically. Additional buses may exist
that for example connect all elements in a row and in a column.

Many interconnect architectures are hierarchically structured, e. g.
[4, 173, 176, 204]. The reconfigurable array is divided into compounds,
which themselves consist of several processing elements. Both the com-
pounds that form the array and the elements that form a compound
use their own interconnect. Compounds can also contain specialized
resources, e. g. embedded memory blocks [6, 198].

The interconnect constitutes a dominant component in many re-
configurable devices in terms of area requirements as well as energy
consumption. From an empirical review of conventional FPGA devices
DeHon [48, 49] concludes that in FPGAs about 90% of the chip area
is dedicated to the interconnect. By implementing a set of benchmark
netlists onto a Xilinx XC4003 FPGA, Kusse and Rabaey [101] have
found that 65% of the energy consumption is devoted to the intercon-
nect. These results are also discussed by George and Rabaey [66].

2.2.3. Reconfiguration Mechanism

A crucial parameter of dynamically reconfigurable processors is the
time it takes to reconfigure the device. The reconfiguration time de-
pends on the configuration size and the location from which the con-
figuration data is loaded. The goal is single-cycle reconfiguration, i. e.
the whole reconfigurable array can be reprogrammed within a single
clock cycle. This requires the configuration data to be stored on the
processor, near the reconfigurable elements.

For single-context devices, i. e. devices that store one configuration
on the chip, several improvements to the reconfiguration mechanism
have been proposed, including partial reconfiguration [86, 151], configu-
ration compression [78, 79, 206], configuration prefetching [75], pipeline
reconfiguration [146, 147], configuration caching [205], and wormhole
reconfiguration [21].

Multi-context devices represent another approach to overcoming the
limitations imposed by long reconfiguration times. Instead of storing
a single configuration, multi-context devices concurrently hold a set of

2.3. Programming Models and Compilers 

configurations on the chip. Holding several contexts on-chip has various
advantages. Switching to another context is fast – potentially a single
clock cycle. Furthermore, the latency of loading a context onto the de-
vice can often be hidden, partially or entirely, by writing a context while
another context is active. The optimizations used in single-context de-
vices can also be applied in multi-context devices. Research architec-
tures include WASMII [107], DPGA [46, 47, 165], time-multiplexed
FPGA [172], CSRC [106, 132, 144], DRLE [63, 64], and MorphoSys
[153]. Commercial efforts include FIPSOC [60–62], CS2000 [141, 200],
and DRP [119].

Depending on the capabilities of a reconfigurable device, different
context fetching mechanisms can be applied. Table 2.1 distinguishes
three techniques: load on demand (“L”), where the configuration is
loaded at the time it is required; configuration caching (“C”), where
the configuration memory is used as a cache that holds recently used
contexts; and prefetching (“P”), where a context can be prefetched
concurrently to the execution of the active context.

2.3. Programming Models and Compilers

Programming models for reconfigurable processors have not yet re-
ceived sufficient attention. This must change, as the success of recon-
figurable architectures strongly depends on reasonable programming
models that allow for the construction of automated code generation
tools. Consequently, a significant amount of research is dedicated to
compilation technology and code generation for reconfigurable hard-
ware, constituting a research field of its own within the reconfigurable
computing domain [8, 37, 111, 190]. A comprehensive discussion of this
topic is beyond the scope of this work. We confine the discussion to
an outline of the state of the art and provide some pointers to existing
research efforts.

Currently, commercial programming environments for reconfig-
urable systems typically consist of separate tool flows for the software
and the hardware. Processor code and configuration data for the RPU

are hand-crafted and wrapped into library functions that are linked
with the user code. Library-based approaches are also commonly em-
ployed in research, e. g. [23, 45, 104, 109, 110, 113].

The next step is compilers that automatically generate code and
configurations from a general-purpose programming language such as
C. Such a compiler constructs a control flow graph from the source

 Chapter 2: Design Issues of Reconfigurable Processors

program and then decides which operations will go into the RPU. Gen-
erally, inner loops of programs are good candidates for reconfigurable
fabrics. For general-purpose code this leads to several problems: First, it
is quite difficult to extract a set of operations with matching granularity
at a sufficient level of parallelism. Second, inner loops of general-purpose
programs often contain excess code, i. e. code that must be run on the
CPU such as exceptions, function calls, and system calls. Efforts aimed
at automatic code generation for reconfigurable architectures include
[29, 69, 70, 95, 115, 121, 175, 182, 203].

Similar problems are also being faced and tackled by researchers in
the fields of hardware/software codesign and compiler construction for
very long instruction word (VLIW) architectures. RFUs have recently
gained interest for VLIW architectures, where optimized compilers ex-
tract instruction-level parallelism and schedule customized functional
units at compile time, e. g. [5, 28, 139, 145]. VLIW techniques have also
been proposed to map program loops of general-purpose programs onto
reconfigurable coprocessors [29, 30].

In this work, we rely on a library-based approach to generate code
for the hybrid reconfigurable processor. However, we are careful that
our methodology and environment are extensible in the way that more
complex compiler layers can be constructed on top. This allows us to
incorporate automatic compilation technology and to account for ad-
vances made in this research field.

2.4. System-Level Evaluation

While there already exists a substantial body of work on reconfigurable
architectures, few attempts have been made with respect to system-
level evaluation of computational performance. System-level simulation
for performance evaluation has been used only for CPUs that integrate
RFUs into their datapath. RFU instructions are integrated with CPU

simulators by extending the simulated instruction set. The new instruc-
tions are then scheduled to the RFU.

Carrillo Esparza and Chow [33] describe the third-generation One-
Chip architecture as well as their simulation approach. To evaluate the
OneChip architecture, an extension to the SimpleScalar CPU simula-
tor [13] is used. The RFU is not modeled explicitly but treated as a
black-box, i. e. no detailed micro-architecture simulation of the RFU

is performed. Instead, the input/output behavior and the execution
latency of each particular RFU configuration are specified. The func-

2.4. System-Level Evaluation 

tional model of a particular RFU configuration comprises three main
parameters:

• the operation latency, i. e. the number of execution cycles until
the result is computed,

• the issue latency, i. e. the number of cycles before another opera-
tion can be issued on the same RFU resource, and

• a C code fragment, which specifies the functional behavior of the
RFU configuration.

The separation of the execution latency into operation and issue la-
tency allows the specification of pipelined configurations. An RPU con-
figuration can for example take 20 cycles to complete, but – since the
configuration is pipelined – a new computation can start every four
cycles. The RFU is assumed to be optimal in the sense that the corre-
lation between a configuration’s functionality and its execution latency
is neglected.

La Rosa et al. [102] propose a similar approach for the XiRisc ar-
chitecture [108]. Similar to OneChip, the RFU configurations are char-
acterized by their execution latency and their behavior, which is also
specified by a C code fragment. To evaluate the performance of the
XiRisc architecture, the RISC CPU simulator provided within the stan-
dard GNU project debugger (GDB) distribution is extended with the
additional architectural features of XiRisc and with the support for
measuring the execution cycles.

Ye et al. [202] describe a simulation approach for the Chimaera
architecture [77]. As for OneChip, the SimpleScalar CPU simulator
is extended and used for simulation. The C compiler they developed,
which automatically maps groups of instructions onto RFU operations,
is discussed in [203]. The operations mapped onto the RFU are also
modeled by specifying the execution latency of each particular RFU

configuration. Several latency models are presented, which model the
execution latency in terms of CPU cycles. The simpler models are based
on counting the number of original instructions that are replaced by the
RFU operation. The more complex models are based on hand-mapping
the RFU operations onto the reconfigurable array and measuring the
number of transistor levels in the critical path. The simulation takes
the overhead that is caused by loading the RFU configurations into
account.

 Chapter 2: Design Issues of Reconfigurable Processors

In contrast to these RFU-based architectures, the current work tar-
gets coprocessor architectures where the RPU is attached to the CPU’s
coprocessor interface. The CPU is responsible for the data transfer,
context loading, and control of the RPU. The long execution latencies
of the RPU together with data-dependent processing times as well as
dynamic effects of the CPU pipeline and the caches render functional
RPU models unrealistic. Thus, we apply a cycle-accurate co-simulation
approach that explicitly models the RPU. The functionality of the RPU

is determined by a configuration bitstream.

3
System-Level

Evaluation
Methodology

The main factors affecting the performance of a hybrid reconfigurable
processor are the architecture of the CPU and the reconfigurable pro-
cessing unit, the system integration mechanism, the compilation tech-
nology for CPU and RPU, and the applications to be executed. To quan-
titatively measure and evaluate the architectural trade-offs involved in
the design of reconfigurable systems, a methodology is required that
incorporates these factors.

This chapter proposes an evaluation methodology that allows cycle-
accurate performance statistics and area estimates to be gathered at the
system level. The computational performance is evaluated by means of a
simulation environment, which has first been proposed in [56] and is also
discussed in [58]. The area requirements are estimated by constructing
an analytical area model.

 Chapter 3: System-Level Evaluation Methodology

A further important criterion, particularly in the embedded systems
domain, is the energy consumption. However, the presented evaluation
methodology does currently not incorporate an energy estimation tool.
This topic must be seen as a viable extension. Some starting points are
discussed.

3.1. Methodology Outline

Figure 3.1 outlines the proposed evaluation methodology aimed at hy-
brid reconfigurable processor architectures. The evaluation methodol-
ogy consists of

• the architecture model, which specifies the structure and the ar-
chitectural assumptions of the hybrid reconfigurable processors
that we investigate;

• the simulation environment, which enables us to implement and
compile applications onto the modeled reconfigurable architecture
and to gather cycle-accurate performance statistics by simulation;
and

• the analytical area model, which combines parameterized area
models of architectural building blocks, such as SRAM memory,
with data from VLSI synthesis of the RPU’s processing elements
in order to estimate the overall system area.

Based on the performance statistics and the area estimates, the archi-
tecture model can be improved and the applications under consider-
ation can be optimized with respect to the architecture model. This
leads to a stepwise refinement process.

To achieve performance evaluation at the system level, we integrate
two cycle-accurate simulators into a system-wide co-simulation frame-
work. The requirements for the CPU simulator are high efficiency, cycle
accuracy, and the availability of a robust code-generation framework for
compiling benchmarking applications. The requirements for the RPU

simulator are cycle accuracy and the ability to specify the RPU archi-
tecture at various levels of abstraction including register–transfer level
and structural level.

3.2. Architecture Model 

Refinement

Set of
applications

Chip area
estimates

area model
Analytical

environment
Simulation

statistics
Performance

model
Architecture

Figure 3.1. Methodology outline for evaluating the computational perfor-

mance and the area requirements of hybrid reconfigurable processors

3.2. Architecture Model

Figure 3.2 outlines the architecture model of the hybrid reconfigurable
processor. The architecture model is rather general since the only as-
sumption is that the RPU is attached to a conventional RISC CPU

core via a dedicated coprocessor interface. Data transfers, configuration
loading, and execution control (synchronization of RPU and CPU) are
performed using the coprocessor interface. To this end the RPU pro-
vides a number of coprocessor registers.

3.2.1. CPU Core

For the simulation of the CPU core and the memory architecture we
use the SimpleScalar simulation tool suite [13]. SimpleScalar is written
in the C language and provides a widely parameterized CPU model,
which we incorporate into our architecture model.

The SimpleScalar CPU model is based on a 32-bit RISC architecture
with a MIPS-IV like instruction set called PISA [27]. The instructions
are extended to 64 bits in order to allow for experimental instruction set
extensions. The parameters of the superscalar execution core include
the number of functional units (integer and floating-point ALUs and

 Chapter 3: System-Level Evaluation Methodology

Addr Data

SimpleScalar

C language

ModelSim

VHDL language

Main memory

Ctrl

2−level cache hierarchy

core
Branch

predictor
Execution

R
P

U
C

P
U

 c
o
re

Coprocessor interface

Register interface

Reconfigurable

array

Figure 3.2. Architecture model and simulation outline of the hybrid recon-

figurable processor architecture relying on a coprocessor coupling between

CPU and RPU

multipliers), the sizes of the instruction fetch queue (IFQ), the register
update unit (RUU), and the load/store queue (LSQ). The model sup-
ports several kinds of branch predictors, parameterized decode, issue
and commit bandwidths, and optional in-order or out-of-order instruc-
tion issuing. The memory architecture can be customized by specifying
a two-level cache hierarchy and the main memory access times. Over-
all, these parameterization facilities allow for performance evaluation
of a broad spectrum of CPUs – ranging from small, embedded CPUs
to high-end, superscalar CPUs.

Since our architecture model relies on a coprocessor coupling be-
tween CPU and RPU, we add a coprocessor interface to SimpleScalar
and extend the PISA instruction set with appropriate coprocessor in-
structions. The coprocessor instructions allow the CPU to access the
RPU’s coprocessor register file.

3.3. Performance Simulation Environment 

3.2.2. Reconfigurable Processing Unit

The RPU is treated as a black box in the simulation framework. Ba-
sically, the RPU can be modeled at any level of abstraction, as for
example described with the Y-chart by Gajski [65] or the system de-
sign model by Teich [167]. The only requirement is that the RPU model
is specified by a formal, cycle-accurate description. We use the VHDL

language for this purpose.
Figure 3.3 illustrates the levels of abstraction at which the RPU

can be modeled. Although viable, our framework does not target the
algorithmic level. There are more efficient approaches for this abstrac-
tion level. Examples are the OneChip [33] and Chimaera [202] projects,
which integrate functionally modeled RFUs into the SimpleScalar CPU

simulator. These functional models merely specify the input/output be-
havior and the required number of execution cycles of each particular
RFU configuration. Our framework, in contrast, is well suited for the
register–transfer level (RTL) and allows the VHDL model to be step-
wise refined in order to develop a fully synthesizable RPU description.
We assume in the following that the architecture of the RPU is modeled
at least at the RTL level and that the RPU functionality is specified by
the configuration (via the configuration memory) – similarly to SRAM-
based FPGAs.

The simulation of the RPU is performed on the powerful ModelSim
VHDL simulator. A conventional VHDL testbench can be used in stand-
alone simulation mode to verify the RPU’s functional correctness before
integrating the model into the co-simulation environment. The decision
to use VHDL as a specification language was driven by VHDL’s mature
development, simulation and synthesis tools. For the future, we consider
the SystemC language [72, 124, 126] will be an interesting alternative,
once the tool support for SystemC is on a comparable level to that
currently available for VHDL.

3.3. Performance Simulation Environment

To enable a system-level performance evaluation, we integrate the
two cycle-accurate simulators SimpleScalar and ModelSim into one co-
simulation environment. This allows us to use the appropriate simula-
tion tool for each simulation task, as indicated in Figure 3.2.

 Chapter 3: System-Level Evaluation Methodology

Logic synthesis,
Technology mapping

Le
ve

l o
f a

bs
tr

ac
tio

n
(g

ra
de

 o
f d

et
ai

l)

Structural RTL description

Structural logic description

Behavioral/structural RTL description

Behavioral RTL description

Behavioral architectural description

Behavioral algorithmic description

Figure 3.3. Principal refinement process of the RPU architecture model

3.3.1. Extended CPU Simulator

For the simulation of the CPU core and the memory architecture, we
rely on the popular SimpleScalar tool suite [13]. SimpleScalar is an open
source project available in C source code and allows modifications for
academic purposes. As Figure 3.4 outlines, the tool set provides six
simulators, which vary in their focus of architectural detail versus sim-
ulation speed. They range from a functional simulator (sim-safe) to
a cycle-accurate simulator with a detailed microarchitectural timing
model (sim-outorder). An important feature of SimpleScalar is its ex-
tensibility, which allows the adaptation or extension of the simulated
processor architecture as well as the derivation of customized simula-
tors. In this work, we use the original simulators, which are based on
a MIPS-IV like instruction set called PISA. Only recently, the tool set
has been enhanced to support several more instruction sets, including
Alpha, PowerPC, x86, and ARM.

Since we are interested in cycle-accurate execution figures, we use
the cycle-accurate sim-outorder simulator. SimpleScalar provides a C
cross-compiler to compile the applications. The sim-outorder simulator
then gathers detailed, cycle-accurate execution statistics by executing

3.3. Performance Simulation Environment 

sim−fast

sim−safe

Functional

simulators

sim−profile

Simulation speed

Level of detail

Profiling

sim−bpred

simulator

Branch

prediction

simulator

sim−cache

Multi−level

cache

simulator

sim−outorder

Detailed micro−

architectural

timing model

Figure 3.4. The various SimpleScalar simulators vary in their focus of

architectural detail versus simulation speed

the compiled application binary on the specified CPU architecture. The
CPU model is widely parameterized, as discussed in Section 3.2.1.

To support our coprocessor architecture model, we have extended
the sim-outorder simulator to support a coprocessor interface and the
corresponding coprocessor instructions. The coprocessor interface is
modeled as an additional functional unit of the CPU with a dedicated
I/O bus and its own I/O address space. This allows concurrent access
on the memory and the coprocessor bus.

3.3.2. Co-simulation

For co-simulating the complete hybrid reconfigurable processor, Simple-
Scalar must be able to control the RPU simulation in VHDL. ModelSim
supports the extension of its VHDL simulator through the so-called
foreign language interface [117]. User-defined shared libraries can be
loaded at startup of the VHDL simulator and provide access to the
simulation kernel. Making use of this feature, we have implemented
an interface that exposes complete control over the RPU simulation in
ModelSim to the SimpleScalar simulator.

Technically, ModelSim and SimpleScalar run as two parallel pro-
cesses. They communicate via commands exchanged using a shared
memory area and semaphores which coordinate the accesses to the
shared memory [161]. A VHDL testbench is built comprising the VHDL

model of the RPU as well as an interface driver entity. By means of the
shared memory interface, SimpleScalar accesses the ports of the inter-
face driver and controls the ModelSim simulation task.

 Chapter 3: System-Level Evaluation Methodology

Whenever SimpleScalar encounters one of the coprocessor instruc-
tions, it relays the corresponding command to the ModelSim VHDL

simulator, where the request is processed. The results are then sent
back to SimpleScalar. For performance reasons we allow the simulation
time on the ModelSim VHDL simulator to lag behind the SimpleScalar
simulation time. On every communication event, the simulation times
of SimpleScalar and ModelSim are re-synchronized.1

3.3.3. Stand-Alone Simulation Modes

Besides the co-simulation mode, in which the SimpleScalar and Model-
Sim simulators run concurrently, each simulator can run individually
in stand-alone mode:

• SimpleScalar can run stand-alone simulating a “CPU only” model
without attached coprocessor. This is convenient to gather CPU

performance figures for reference purposes.

• ModelSim can run with a conventional VHDL testbench to sim-
ulate an “RPU only” model. This method is used for the verifi-
cation of the RPU architecture model.

3.3.4. Application Mapping and Compilation

Mapping an application to the hybrid reconfigurable processor starts
with partitioning the application into the parts that run on the CPU

and the parts that run on the RPU. So far, this hardware/software
partitioning step is performed manually. The same applies for the func-
tional specification of the RPU configurations. The subsequent steps of
generating the configuration bitstreams and compiling the application
program are automated.

Figure 3.5 gives an overview of the co-simulation environment. Sim-
pleScalar requires three input files: the CPU model parameters, the
cross-compiled application binary, and the configuration bitstreams for
the RPU. ModelSim requires the VHDL model of the RPU as input.

1The simulation time refers to the time representation within the simulation
model and is distinctly different to the CPU time used in executing the simulation
model or the “real world” time of the person running the simulation model.

3.3. Performance Simulation Environment 

extended with

RPU configuration

RPU functionality
specifying the
Config. bitstream

CPU model

SimpleScalar
parameter file

SimpleScalar

CPU simulator

coprocessor
support

RPU configurations,
execution control

Input data,

RPU status
Output data,

ModelSim

VHDL simulator

simulation control

extended with
inter−process

execution statistics
Cycle−accurate

RPU model

VHDL description
Cycle−accurate

Application binary

program using
coproc. instructions

Cross−compiled C

Figure 3.5. Co-simulation environment combining the SimpleScalar and

ModelSim simulators

Software tool flow

The application parts that run on the CPU are implemented in the C
language and compiled with the GCC-based C cross-compiler provided
by the SimpleScalar tool suite. The application code is responsible for
downloading the configuration bitstreams to the RPU and for control-
ling the execution of the configurations.

In order to support the coprocessor instructions that we have added
to the PISA instruction set, we have to adapt the compilation chain.
Although SimpleScalar allows easy modification of the simulated in-
struction set, the corresponding tools – in particular the compiler and
assembler – cannot be generated automatically. Thus, to avoid the te-
dious task of modifying the compiler and assembler, we have decided
to add instead some intermediate steps to the compilation flow.

The coprocessor instructions are accessed by using so-called pseudo-
assembler instructions. We provide a library that facilitates the access
to these pseudo-assembler instructions within a C application program.
The library contains functions for transferring data between CPU and
RPU, for downloading configurations from the CPU to the RPU, and for
switching between the configurations. Figure 3.6 outlines the software
tool flow and the implementation of the library functions. The figure
illustrates as an example how the get RPUreg coprocessor instruction,

 Chapter 3: System-Level Evaluation Methodology

which we have added to PISA, can be used within a C application
program:

1. In macros.h, a GCC inline assembler macro is used to define
a function-like wrapper for the underlying pseudo-assembler in-
struction.

2. Within the application program app.c, the function wrapper is
called like any ordinary C function.

3. The compiler translates the function call into the get RPUreg
pseudo-instruction. The compiler takes care of inserting the cor-
rect register names into the inline assembler macro.

4. Before passing the intermediate file app.i.s to the assembler, we
replace the pseudo-instruction by its binary instruction coding.

5. The unmodified assembler and linker then process the assembler
file app.s and generate the binary executable app.ss, which can
be run on the extended sim-outorder simulator.

Hardware tool flow

The functionality of the RPU is determined by its configuration. For
convenience, the programmer can specify an RPU configuration by
means of a VHDL record, which represents a hierarchical, structured
view of the configuration. The VHDL record comprises all control sig-
nals of the RPU that are configuration controlled. The VHDL model of
the RPU uses the configuration record to set the functionality of the
RPU’s processing elements and their interconnect. The VHDL config-
uration record is transformed by the VHDL simulator to a C readable
configuration bitstream, which the application program can read in and
download to the RPU. Figure 3.7 illustrates the tool flow for generating
an RPU configuration bitstream:

1. The library file configLib.vhd contains the collection of RPU

configurations which were developed. A configuration is accessed
by means of a function that returns the appropriate configuration
record.

2. The package file auxPkg.vhd provides the auxiliary procedure
gen hfile(), which transforms a VHDL configuration record into
a C language array and writes it into a C header file.

3.3. Performance Simulation Environment 

[...]
lw $5,160($fp)

sw $5,156($fp)
[...]

app.s

Assembly and linking

RPU instruction encoding

SimpleScalar simulation
Application binary for

app.ss

.word 0x05000500

 res; })
 : "=r" (res) : "r" (v)); \
 asm ("get_RPUreg %0,%1" \
({ int res, v = (x); \
#define get_RPUreg(x) \

macros.h

#include "macros.h"

for(i=0; i<N; i++)
 res = get_RPUreg(REG0);

app.c

Compilation

get_RPUreg $5,$5
sw $5,156($fp)

[...]

[...]

lw $5,160($fp)

app.i.s

.word 0x000000b0

Figure 3.6. Software tool flow making use of pseudo-assembler instructions

 Chapter 3: System-Level Evaluation Methodology

RPUconfig.h

C header file containing the
RPU configuration bitstream

auxPkg.vhd

 cfg: in configRec);
 file hfile: text;
procedure gen_hfile (

configLib.vhd

 return configRec;
function appx

VHDL simulation

testbench.vhd

gen_hfile(HFILE,Cfg);
[...]

[...]
signal Cfg : configRec := appx;

Figure 3.7. Hardware tool flow to generate RPU configuration bitstreams

that can be included by the C application program

3. The VHDL testbench (testbench.vhd) loads the desired config-
uration record and then calls the procedure gen hfile() with
the name of the output file and the loaded configuration record
as arguments.

4. The result of simulating the VHDL testbench is a C header
file, denoted RPUconfig.h, containing the RPU configuration bit-
stream, which the C application program can include.

During the subsequent CPU/RPU co-simulation, the application
program running on the CPU can download the configuration bitstream
to the RPU. The concept of automatically generating the configuration
bitstream ensures the consistency of the configuration data throughout
the whole (co-)simulation flow.

3.3.5. Simulation Speed

A basic characteristic of a simulation environment is its simulation
speed. Austin et al. [13] report the simulation speed of SimpleScalar in
simulated instructions per second. For the sim-outorder simulator, they

3.4. Chip Area Estimation 

measured a simulation speed of 300k instructions per second. In our case
study experiments, which are discussed in Section 6, we achieve for a
rather simple, embedded CPU model in the SimpleScalar stand-alone
mode, i. e. without simulating the attached RPU, an average simulation
speed of 132k instructions per second. The experiments were performed
on a 900-MHz SunBlade 1000. For SimpleScalar’s default, superscalar
CPU model, we achieve a simulation speed of 167k instructions per
second.

For comparison purposes with the hybrid reconfigurable processor
model, we prefer the metric simulated cycles per second rather than
instructions per second. In CPU stand-alone mode, we achieve a simu-
lation speed of 226k cycles per second using the embedded CPU model.
In the co-simulation case, i. e. when SimpleScalar and ModelSim run
concurrently, we achieve an average simulation speed of 4.2k cycles per
second. It is important to notice that the simulation speed depends both
on the load balancing between CPU and RPU, which is determined by
the application at hand, and on the CPU and RPU models.

3.4. Chip Area Estimation

Since we target not the general-purpose but rather the embedded com-
puting domain, the computational performance is not our only opti-
mization objective. In particular, we intend considering the costs that
have to be increased in order to achieve a certain performance improve-
ment. In order to relate the computational performance figures to the
dedicated costs, we apply an area model that allows us to estimate the
chip area of an architecture. We assume that silicon area is a rather
good indicator for the chip costs.

3.4.1. Area Model

The first priority for the area estimation model is not to achieve a high
accuracy for the overall total chip area. Rather, we want to observe the
trend of the impact on the chip area for the particular design features
under investigation. This allows us to evaluate the efficiency of the
design features in terms of performance and costs.

The RPU and CPU parts of the architecture are considered sepa-
rately. In order to have technology independent area figures, we follow
the common approach to normalize the area data to λ2, where λ denotes
half the minimum feature size of the CMOS process technology.

 Chapter 3: System-Level Evaluation Methodology

Table 3.1. Technology and area figures for a selection of 32-bit processors.

The area is normalized to λ2, where λ denotes half the minimum feature size

of the CMOS process technology

Processor core Year Technology Die size Area

µm mm2 Mλ2

ARM940T [149] 1997 0.35 13 425
StrongARM 110 [118] 1996 0.35 50 1 600
MIPS 3900 [163] 1997 0.40 64 1 600
StrongARM 1500 [143] 1998 0.28 60 3 061
MIPS 10000 [74] 1995 0.50 298 4 768
PowerPC 620 [74] 1995 0.50 311 4 976
Alpha 21264 [67] 1997 0.35 314 10 300
Pentium4 [87] 2001 0.18 217 26 800

CPU core

For the CPU core, we rely on data published in the literature. Table 3.1
lists a number of processors with their respective technology and area
figures. While the first four processors target the embedded domain,
the second group aims at the desktop domain.

Reconfigurable processing unit

Regarding the RPU we consider a twofold approach: we combine data
from VLSI synthesis with parameterized, analytical area models of ar-
chitectural building blocks, such as registers or SRAM memory. The
starting point is a block diagram of the RPU. To determine the overall
area requirements, the area figures for the individual building blocks
are accumulated, as Figure 3.8 illustrates.

We assume that the routing does not require a significant amount
of chip area, since today’s technology provides several metal layers to
implement the routing. A certain routing overhead implied by the fact
that the building blocks cannot be perfectly placed together, for ex-
ample due to the escaping, is taken into account through an overhead
factor based on empirical data – a typical value being 20% [93]. This is
clearly a very simplified model. However, the chosen approach allows
more accurate models to be integrated in a straight-forward way.

3.4. Chip Area Estimation 

block 3

Building
block 5

Building

Building
block 2

Building
block 1

block 4
Building

Figure 3.8. The area figures of the individual building blocks are accumu-

lated to determine the overall area requirements of the RPU. An empirical

area factor represents the routing overhead (gray area)

Thus, the overall chip area of the RPU results in

ARPU = arout ·
∑
∀b

ABBb
, (3.1)

where ABB denotes the area of the individual building blocks and arout

the routing area overhead. If available, area data from VLSI synthesis
can be employed to gain more accurate area figures. A prerequisite for
this is a synthesizable description of the relevant building blocks for
example in VHDL. Parts of the RPU model can be refined towards
a synthesizable description while leaving other parts in a behavioral
description.

3.4.2. Basic Building Blocks

Figure 3.9 depicts empirical area data collected by Kaeslin [93] for
registers (built from D-type flip-flops) and on-chip SRAM. For registers
built from latches instead of flip-flops2, we assume that a latch requires
64% of the flip-flop area [93].

Based on this empirical data, we construct parameterized, analytical
area models for these three basic building blocks. To this end, we de-
fine the functions αFF(), αLatch(), and αSRAM(), which implement the
respective correspondence between storage capacity and silicon area.
To estimate the not explicitly given design points, the register area is

2We follow the terminology that latches are level-sensitive bistable elements,
while flip-flops are edge-triggered bistable elements.

 Chapter 3: System-Level Evaluation Methodology

10
0

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

Storage capacity in bits

A
re

a
re

qu
ire

m
en

ts
 in

 k
λ2

Registers built from D−type flip−flops
SRAM macrocell

Figure 3.9. Area figures of registers and on-chip SRAM based on empirical

data collected by Kaeslin [93]

linearly approximated and the SRAM data is fitted by a cubic polyno-
mial with respect to the double-logarithmic capacity–area space. The
polynomial coefficients are determined by means of Matlab. Thus, the
functions are defined as

αFF(s) := 8.93 s− 0.112 , (3.2)
αLatch(s) := 0.64 · αFF(s) , (3.3)

αSRAM(s) := 1.91 · 10−10 s3 + 2.36 · 10−5 s2 + 2.68 s + 3800 , (3.4)

where s denotes the storage capacity. The area requirements are com-
puted in kλ2.

The construction of analytical area models for further building
blocks, such as ALUs, multipliers, etc., is feasible. However, we have
opted for another approach; we use synthesis data for the processing
cells of the reconfigurable array, which yields more accurate area figures
for these rather complex structures. Since this alternative approach
makes the area models specific to the RPU architecture, we discuss
them in Chapter 6.

3.5. Energy Consumption 

3.5. Energy Consumption

The evaluation methodology proposed in this work enables a designer to
evaluate reconfigurable architectures in terms of computational perfor-
mance and chip area. For the targeted domain of embedded computing
systems, however, further optimization objectives are of interest, the
most obvious one being the energy consumption.

A particularly interesting option for reconfigurable architectures is
to trade off the gain in computational performance against the energy
consumption, as for example proposed in [12, 35, 133]. The achieved
speedup cannot solely be employed for faster execution of the applica-
tion at hand, but also to lower the execution frequency and potentially
the supply voltage [17]. The latter is especially relevant because the
switching power in CMOS circuits depends quadratically on the supply
voltage [18].

Consequently, the integration of a high-level energy or power es-
timation tool can be seen as a valuable extension of our evaluation
methodology. Some starting points are given in the following sections.

3.5.1. High-Level Estimation Approaches for CPUs

A couple of approaches to the estimation of CPU power have been
proposed in the literature. Landman [103] provides an overview of
high-level estimation approaches and discusses the levels of abstrac-
tion that the various techniques target. In our context, two interesting
approaches are instruction-level estimation and simulation-based tech-
niques.

Instruction-level estimation

Instruction-level estimation relies on an instruction power profiling of
the CPU instruction set [154, 169]. Each instruction has a power cost
associated, which is determined by measuring the current that the CPU

draws as it repeatedly executes a sequence of this same instruction. To
account for the power overhead due to the change of the circuit state
when two different instructions are sequentially processed, the inter-
instruction effect is profiled for each pair of consecutive instructions
in a similar way. Other effects such as pipeline stalls or cache misses
can be incorporated as well. The idea is basically the same: programs,
where the desired effect occurs, are run repeatedly and the current that
is drawn by the CPU is measured.

 Chapter 3: System-Level Evaluation Methodology

Microarchitecture-level simulation

A number of approaches propose the usage of microarchitecture-level
CPU simulators, which include detailed, cycle-accurate power models
of the major CPU units. An obvious option in our case are extensions
of the SimpleScalar simulator like Wattch [24], PowerAnalyzer [122]
or SimplePower [177, 201]. The extended SimpleScalar simulators keep
track of which CPU units are accessed per cycle and record the total
energy consumed for an application. However, the proposed simulators
are currently in a development stage and, in our experience, do not yet
operate reliably.

Examples of simulation approaches at the microarchitecture level
that do not rely on the SimpleScalar infrastructure are presented in
[25, 40, 180].

3.5.2. Overall Reconfigurable Processor

In order to study the architectural trade-offs in the overall hybrid, re-
configurable processor, a power model for the attached RPU must be
developed. As in the CPU case, such a power model can aim at vari-
ous levels of abstraction, from coarse activity models to cycle-accurate
switching models.

While integrating an RPU power model into a simulation framework
is desirable and would allow for evaluation studies at the system level,
there exist simpler approaches if the problem can be restricted. For
example to determine the energy consumption of a particular architec-
ture, logic synthesis and technology mapping can be applied. However,
this does not allow for any trade-off studies.

For FPGAs – as a particular case of a reconfigurable processing
unit – power estimation has recently become a topic of interest, e. g.
[188, 199]. Researchers have also begun to investigate low-power FPGA

structures, e. g. [66, 101, 184].

4
Workload

Characterization

In contrast to many approaches investigating reconfigurable technology,
we target not the general-purpose but rather the embedded comput-
ing domain, in particular handheld and wearable computing. In order
to represent a typical workload for this computing domain, we have
assembled an application pool with applications from the fields of mul-
timedia, cryptography and communications.

This chapter deals with the quantitative characterization of this
application pool. The analysis focuses on two main issues: first, the
characteristics of the three application fields representing the embedded
computing domain and, second, the differences between the embedded
and the general-purpose domains. Based on the analysis results, we
discuss the impact on the design of reconfigurable processor technology.
The selection of representative benchmarks and the analysis approach
have first been proposed in [55].

 Chapter 4: Workload Characterization

4.1. Benchmarks

There exist several benchmarks for general-purpose computing of which
the SPEC benchmark suites by the Standard Performance Evaluation
Corporation (www.spec.org) are the most popular ones.

Benchmarking embedded systems is generally more difficult than
benchmarking general-purpose systems, mainly due to two reasons.
First, system specialization leads to several application fields in the em-
bedded domain with rather diverse applications and constraints. The
formulation of a unique embedded benchmark would thus not be very
meaningful. Second, compiler technology for embedded processors is
far from being as mature as for general-purpose processors. Many em-
bedded applications are still written in assembly language to exploit
special features of the embedded processor at hand. A benchmarking
procedure that relies exclusively on out-of-the-box code and thus in-
cludes the compiler quality in the evaluation does not reflect the likely
use case for embedded processors.

Benchmarking efforts in the embedded and reconfigurable areas can
be classified into the following categories:

• Kernel-oriented benchmarks — Benchmarks for embedded pro-
cessors typically focus on computation-intensive kernels rather
than on full applications. The underlying assumption is that em-
bedded applications spend most of their run time executing these
kernels. The kernel performance is then representative of the over-
all application. Examples for kernel-oriented, embedded bench-
marks are BDTImark [59] and EEMBC [187].

• Application-oriented benchmarks — Collections of complete ap-
plications have been used to model workloads in multimedia and
communications. These benchmarks are oriented towards SPEC

and target high-performance processors with multimedia instruc-
tion set extensions and VLIW architectures. Examples are Me-
diaBench [36], MiBench [73] and CommBench [196].

• Benchmarks for reconfigurable computers — Recently, bench-
marks specifically for the area of reconfigurable computing have
emerged. Two examples are ACS and RAW. The adaptive com-
puting systems (ACS) [100] benchmark suite evaluates the archi-
tecture and tools of a configurable computing system. ACS pro-
poses benchmarks that focus on a specific characteristic of a con-
figurable system such as versatility, capacity, timing sensitivity,

http://www.spec.org

4.2. Application Pool 

scalability or interfacing. The reconfigurable architecture work-
station (RAW) [14] benchmark suite consists of twelve programs
representing general-purpose algorithms. Each benchmark can be
parameterized to derive instances of different problem sizes.

For embedded systems that target the application domain of hand-
helds and wearables there exist currently no widely accepted bench-
marks. The existing application-oriented benchmark suites come close
to this domain from a functional point of view. However, they do not ex-
plicitly target embedded systems or even reconfigurable systems. ACS

and RAW are explicitly designed for evaluating the performance of a
given reconfigurable system in various aspects, but they do not focus
on our application domain.

In summary, current benchmarks are not well suited for our purpose
of determining the optimal reconfigurable architecture for a specialized
domain. Hence we assemble our own application pool reflecting a char-
acteristic workload for the targeted application domain. Within our
evaluation methodology, we use hand-crafted code fragments mapped
to the RPU in order to speed up the hot spots of an application. The
application programs written in C will be linked with a library of such
code fragments. For the workload characterization, we therefore concen-
trate on complete applications and out-of-the-box code, i. e. unoptimized
C code that has not been target-specifically optimized.

4.2. Application Pool

Our envisioned workload for the handheld and wearable computing do-
main emphasizes applications from the fields multimedia (MM), cryp-
tography (CRY), and communications (COM).

As the benchmark suites MediaBench [36], MiBench [73] and
CommBench [196] cover parts of the targeted application fields, we have
selected some of their programs and have added the cryptography stan-
dard RIJNDAEL [43], and the text-to-speech synthesizer SVOX [170].
The result are 32 programs, which constitute our application pool. We
denote this set of programs as MCCmix.

Table 4.1 lists the set of applications. Many of these applica-
tions actually consist of two programs: encoding/decoding or encryp-
tion/decryption. The SUSAN package contains programs to recognize
corners and edges as well as a program for image smoothing. More de-
tails on the applications that are part of one of the benchmark suites

 Chapter 4: Workload Characterization

Table 4.1. Application pool – denoted MCCmix – divided into the three

application groups multimedia, cryptography, and communications

Multimedia (MM)

JPEG Lossy image compression [36, 73, 196]
EPIC Lossy image compression based on wavelets [36]
MPEG2 Lossy video compression [36]
ADPCM Adaptive differential pulse code modulation [36, 73]
GSM European standard for speech transcoding [36, 73]
G.721 CCITT voice compression [36]
SUSAN Image recognition [73]
RASTA Speech recognition [36]
SVOX Text-to-speech synthesizer [170]

Cryptography (CRY)

RIJNDAEL Advanced encryption standard (AES) [73, 123]
PGP Cryptography program that uses IDEA for encryption and

RSA for key management [36, 73]
PEGWIT Elliptic curve cryptography algorithm [36]
CAST DES-like cryptography algorithm [196]

Communications (COM)

DRR Deficit round robin fair scheduling algorithm [196]
FRAG IP packet fragmentation with checksum computation [196]
REED Reed–Solomon forward error correction [196]
RTR Radix-tree routing table lookup [196]
ZIP Data compression based on the Lempel-Ziv (LZ77)

algorithm [196]

4.3. Evaluation Setup 

can be found in the referenced literature. The additional two applica-
tions are briefly described below:

RIJNDAEL [43] is the winner of the advanced encryption standard
(AES) effort [123] initiated by the U.S. National Institute of Stan-
dards and Technology (NIST) in order to find a successor for the
data encryption standard (DES) [148, 156]. RIJNDAEL is a block
cipher with variable block length and key length of 128, 192 or
256 bits. RIJNDAEL is also part of the MiBench suite, but the
implementation is different from the one used in this work.

SVOX [170] is a commercial text-to-speech program for the German
language and consists of three steps: word and sentence analysis,
prosody control, and voice synthesis. The word analysis step ap-
plies phonetic lexica to yield the phonetic representation of each
single word in the text. Prosody control then determines speech
melody and sound durations based on statistical models, i. e. neu-
ral networks and others. Finally, the speech signal is synthesized
by concatenation of small units extracted from natural human
speech. SVOX applies special signal processing methods to mod-
ify these units such that they achieve the previously determined
pitch and duration values.

4.3. Evaluation Setup

The goal of the application analysis is to characterize the workload
rather than to model the processor architecture. Thus, we simplify
the simulation in the sense that we do not co-simulate the attached
RPU, but reduce the evaluation infrastructure to the stand-alone CPU

simulator. We particularly use the SimpleScalar simulators sim-safe,
sim-profile and sim-outorder:

• sim-safe is a minimal, functional simulator, which emulates only
the instruction set. We use sim-safe to verify the functional cor-
rectness of the benchmarking applications that we simulate.

• sim-profile gathers profiling data for the application under inves-
tigation. The sim-profile simulator does not rely on a particular
processor architecture, i. e. the generated profiling data depends
only on the instruction set, but not on the CPU model.

 Chapter 4: Workload Characterization

Table 4.2. Embedded CPU model for the processor dependent part of the

application characterization

CPU parameter Setup

Integer units 1 ALU, 1 multiplier
Floating-point units 1 ALU, 1 multiplier
Instruction fetch queue (IFQ) size 1 instruction
Register update unit (RUU) size 4 instructions
Load/store queue (LSQ) size 4 instructions
Decode bandwidth 1 instruction
Issue bandwidth 2 instructions
Commit bandwidth 2 instructions
Instruction issuing In-order
Branch prediction Static (always “not taken”)
1st-level instruction cache 32-way 16 Kbytes
1st-level data cache 32-way 16 Kbytes
2nd-level cache None
Memory bus width 32 bits
Memory ports 1

• sim-outorder is the cycle-accurate simulator that we use within
our co-simulation environment. The sim-outorder simulator relies
on a parameterized CPU model and allows detailed execution
statistics to be gathered for the application being simulated.

For the architecture dependent simulations with sim-outorder, the Sim-
pleScalar CPU model was set up to resemble modern embedded proces-
sors such as StrongARM [194] or TinyRISC [127]. Table 4.2 summarizes
the main parameters of the CPU model used.

All applications have been simulated using out-of-the-box code, i. e.
C code that is not target specifically optimized. The optimization level
for the SimpleScalar cross-compiler was set to “O2”. This means that
the cross-compiler performs the supported optimizations that do not
involve a space–speed trade-off.

Since the original data sets of the application programs are often
small and intended only for test purposes, we have chosen our own input
data sets to represent a reasonable workload. Table 4.3 reports the sizes
of the benchmark programs in terms of committed instructions.

4.3. Evaluation Setup 

Table 4.3. Size of the MCCmix benchmark programs in terms of committed

instructions

Application
group

Benchmark
program

Instruction
count

MM JPEG decode 156 442 354
JPEG encode 235 509 725
EPIC decode 98 975 971
EPIC encode 482 568 099
MPEG2 decode 182 888 391
MPEG2 encode 1 133 718 151
ADPCM decode 277 157 028
ADPCM encode 329 225 126
GSM decode 161 614 916
GSM encode 511 706 316
G721 decode 304 731 239
G721 encode 316 152 916
SUSAN corners 61 854 613
SUSAN edges 221 187 438
SUSAN smoothing 959 423 107
RASTA 341 365 633
SVOX 506 732 113

CRY RIJNDAEL decrypt 32 928 121
RIJNDAEL encrypt 32 230 571
PGP decrypt 100 027 981
PGP encrypt 170 489 536
PEGWIT decrypt 34 115 554
PEGWIT encrypt 54 790 190
CAST decrypt 50 289 806
CAST encrypt 50 289 752

COM DRR 213 093 381
FRAG 217 174 137
REED decode 451 744 149
REED encode 226 375 969
RTR 503 135 868
ZIP decode 68 643 501
ZIP encode 400 358 085

 Chapter 4: Workload Characterization

4.4. Workload Analysis

In this section, we follow a number of conventions with regard to the
notation.

1. A set of applications is denoted as A. Examples are the multime-
dia application group or the MCCmix.

2. The value nA refers to the number of applications in A. The mul-
timedia application group for example comprises 17 applications,
the MCCmix 32 in total.

3. Let x represent a characteristic of an application, e. g. the instruc-
tion count. For a set of applications A, the respective character-
istics are organized in a vector x having nA elements:

x :=
(
x(1), x(2), . . . , x(nA)

)
,

where x(i) refers to the measured value for application i.

4. The average value of the characteristic x over all the applications
in A, denoted x, is defined as the arithmetic mean of the elements
contained in the vector x:

x :=
1
nA

∑
A

x(i) =
1
nA

nA∑
i=1

x(i) .

5. If a characteristic is represented by a function f(x) instead of a
scalar, the respective characteristics of the applications in A are
organized as a vector

f(x) :=
(
f (1)(x), f (2)(x), . . . , f (nA)(x)

)
.

6. The average value of such a characteristic for a determined x is
then defined as

f(x) :=
1
nA

∑
A

f (i)(x) =
1
nA

nA∑
i=1

f (i)(x) .

4.4. Workload Analysis 

4.4.1. Instruction Class Mix

The instruction class mix characterizes applications according to the
frequency of the different instruction groups during execution. These
frequencies depend only on the application, the processor’s instruction
set and the compiler, but not on any architectural parameters of the
processor such as the number of functional units, cache sizes, etc. We
use the instruction class mix as an indicator of the operations that an
application uses. We classify the instructions according to their func-
tionality into eight instruction classes:

1. load, 5. logic,
2. store, 6. shift,
3. branch, 7. floating-point (FP) arithmetic,
4. integer arithmetic, 8. miscellaneous.

In a different context, another classification scheme may be applied.
For example in [9], the instructions are classified into seven classes
stressing the difference between computationally “cheap” and “expen-
sive” instructions. In [129] and [130] the same classification pattern is
used as in this work to characterize an ASIC-on-demand prototype,
which incorporates reconfigurable hardware into autonomous wearable
computing nodes.

By means of the sim-profile simulator we generate the instruction
profile of each application revealing how many times each instruction
type is issued during execution. The relative instruction type frequency
of the instruction type i is defined as

fitype(i) :=
nitype(i)

ninst
, (4.1)

where nitype(i) is the number of times the instruction type i is issued,
and ninst the total number of instructions executed.

Arranging the gathered results into the predetermined instruction
classes, the relative instruction class frequency of instruction class c is
given by

ficlass(c) :=
∑
i∈Ic

fitype(i) =
1

ninst

∑
i∈Ic

nitype(i) , (4.2)

where Ic denotes the set of instructions forming the instruction class c.
Figure 4.1 depicts the distribution of the instruction classes over the

 Chapter 4: Workload Characterization

 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
JP

EG
 d

ec
JP

EG
 e

nc
EP

IC
 d

ec
EP

IC
 e

nc
M

PE
G

2
de

c
M

PE
G

2
en

c
AD

PC
M

 d
ec

AD
PC

M
 e

nc
G

SM
 d

ec
G

SM
 e

nc
G

72
1

de
c

G
72

1
en

c
SU

SA
N

 c
or

SU
SA

N
 e

dg
SU

SA
N

 s
m

o
R

AS
TA

SV
O

X
R

IJ
N

D
. d

ec
R

IJ
N

D
. e

nc
PG

P
de

c
PG

P
en

c
PE

G
W

IT
 d

ec
PE

G
W

IT
 e

nc
C

AS
T

de
c

C
AS

T
en

c
D

R
R

FR
AG

R
EE

D
 d

ec
R

EE
D

 e
nc

R
TR

ZI
P

de
c

ZI
P

en
c

R
el

at
iv

e
is

su
in

g
fr

eq
ue

nc
y

load
store

branch
int. arithm.

logic
shift

FP arithm.
misc

Figure 4.1. Instruction class mix for the MCCmix applications depicting

the relative issuing frequencies of the eight determined instruction classes

MCCmix applications. Figure 4.2 shows the results in more detail by
displaying the relative issuing frequencies for each instruction class in-
dividually.

In order to compare the different application groups, we compute
for each group the average relative instruction class frequencies

µiclass(c) := f iclass(c), for all c . (4.3)

Figure 4.3(a) displays the relative instruction class averages for the indi-
vidual MCCmix application groups. For comparison purposes, we have
also gathered the instruction class mix of the integer SPEC95 bench-
marks (CINT95) [137, 158] as a representative of a general-purpose
workload. Figure 4.3(b) shows the results for MCCmix overall and
CINT95. Table 4.4 provides the results quantitatively.

4.4. Workload Analysis 

Observations

The comparative analysis between the MCCmix application groups
leads to a number of observations.

• Multimedia applications require a significant larger number of in-
teger arithmetic instructions compared to the MCCmix average.
This observation is not astonishing since most multimedia appli-
cations perform arithmetic-intensive signal processing relying on
fixed-point data. Logic operations, on the other hand, are used
only rarely.

• Cryptography algorithms are characterized by regular code oper-
ating on bit-level data. The regularity of these algorithms reflects
in a small number of branch instructions. Since the PISA instruc-
tion set does not provide special instructions for bit manipula-
tion, the bit-level operations are performed using repeated shift
and logic operations, which is evidenced by a high percentage of
shift and logic instructions.

• Communication applications are characterized by using a high
number of branch instructions. This results from the control-flow
dominated nature of communication applications. Arithmetic and
shift operations, in contrast, are of less significance for this appli-
cation group.

The results underline the importance of dividing the benchmark appli-
cations into several application groups. Each group shows its particular
characteristics and hence emphasizes different architectural features of
a processor.

Another observation is that only eight out of 32 programs require
floating-point operations. Given the fact that the results were generated
with out-of-the-box code, we can expect optimized programs to use
floating-point operations even less.

Comparing the overall results of the MCCmix to the general-purpose
CINT95, we observe major differences. The instruction classes store,
integer arithmetic, logic, and shift show the most significant differences.
Particularly notable is the small average percentage of store instructions
in the MCCmix.

 Chapter 4: Workload Characterization

(a)

0%

10%

20%

30%

40%

50%

60%

JP
EG

 d
ec

JP
EG

 e
nc

EP
IC

 d
ec

EP
IC

 e
nc

M
PE

G
2

de
c

M
PE

G
2

en
c

AD
PC

M
 d

ec
AD

PC
M

 e
nc

G
SM

 d
ec

G
SM

 e
nc

G
72

1
de

c
G

72
1

en
c

SU
SA

N
 c

or
SU

SA
N

 e
dg

SU
SA

N
 s

m
o

R
AS

TA
SV

O
X

R
IJ

N
D

. d
ec

R
IJ

N
D

. e
nc

PG
P

de
c

PG
P

en
c

PE
G

W
IT

 d
ec

PE
G

W
IT

 e
nc

C
AS

T
de

c
C

AS
T

en
c

D
R

R
FR

AG
R

EE
D

 d
ec

R
EE

D
 e

nc
R

TR
ZI

P
de

c
ZI

P
en

c

Instruction class: load
R

el
. i

ss
ui

ng
 fr

eq
ue

nc
y

(b)

0%

10%

20%

30%

40%

50%

60%

JP
EG

 d
ec

JP
EG

 e
nc

EP
IC

 d
ec

EP
IC

 e
nc

M
PE

G
2

de
c

M
PE

G
2

en
c

AD
PC

M
 d

ec
AD

PC
M

 e
nc

G
SM

 d
ec

G
SM

 e
nc

G
72

1
de

c
G

72
1

en
c

SU
SA

N
 c

or
SU

SA
N

 e
dg

SU
SA

N
 s

m
o

R
AS

TA
SV

O
X

R
IJ

N
D

. d
ec

R
IJ

N
D

. e
nc

PG
P

de
c

PG
P

en
c

PE
G

W
IT

 d
ec

PE
G

W
IT

 e
nc

C
AS

T
de

c
C

AS
T

en
c

D
R

R
FR

AG
R

EE
D

 d
ec

R
EE

D
 e

nc
R

TR
ZI

P
de

c
ZI

P
en

c

Instruction class: store

R
el

. i
ss

ui
ng

 fr
eq

ue
nc

y

(c)

0%

10%

20%

30%

40%

50%

60%

JP
EG

 d
ec

JP
EG

 e
nc

EP
IC

 d
ec

EP
IC

 e
nc

M
PE

G
2

de
c

M
PE

G
2

en
c

AD
PC

M
 d

ec
AD

PC
M

 e
nc

G
SM

 d
ec

G
SM

 e
nc

G
72

1
de

c
G

72
1

en
c

SU
SA

N
 c

or
SU

SA
N

 e
dg

SU
SA

N
 s

m
o

R
AS

TA
SV

O
X

R
IJ

N
D

. d
ec

R
IJ

N
D

. e
nc

PG
P

de
c

PG
P

en
c

PE
G

W
IT

 d
ec

PE
G

W
IT

 e
nc

C
AS

T
de

c
C

AS
T

en
c

D
R

R
FR

AG
R

EE
D

 d
ec

R
EE

D
 e

nc
R

TR
ZI

P
de

c
ZI

P
en

c

Instruction class: branch

R
el

. i
ss

ui
ng

 fr
eq

ue
nc

y

(d)

0%

10%

20%

30%

40%

50%

60%

JP
EG

 d
ec

JP
EG

 e
nc

EP
IC

 d
ec

EP
IC

 e
nc

M
PE

G
2

de
c

M
PE

G
2

en
c

AD
PC

M
 d

ec
AD

PC
M

 e
nc

G
SM

 d
ec

G
SM

 e
nc

G
72

1
de

c
G

72
1

en
c

SU
SA

N
 c

or
SU

SA
N

 e
dg

SU
SA

N
 s

m
o

R
AS

TA
SV

O
X

R
IJ

N
D

. d
ec

R
IJ

N
D

. e
nc

PG
P

de
c

PG
P

en
c

PE
G

W
IT

 d
ec

PE
G

W
IT

 e
nc

C
AS

T
de

c
C

AS
T

en
c

D
R

R
FR

AG
R

EE
D

 d
ec

R
EE

D
 e

nc
R

TR
ZI

P
de

c
ZI

P
en

c

Instruction class: integer arithmetic

R
el

. i
ss

ui
ng

 fr
eq

ue
nc

y

MM group CRY group COM group

Figure 4.2. Separated instruction class mix, showing the instruction classes

individually. (continued on the next page)

4.4. Workload Analysis 

(e)

0%

10%

20%

30%

40%

50%

60%

JP
EG

 d
ec

JP
EG

 e
nc

EP
IC

 d
ec

EP
IC

 e
nc

M
PE

G
2

de
c

M
PE

G
2

en
c

AD
PC

M
 d

ec
AD

PC
M

 e
nc

G
SM

 d
ec

G
SM

 e
nc

G
72

1
de

c
G

72
1

en
c

SU
SA

N
 c

or
SU

SA
N

 e
dg

SU
SA

N
 s

m
o

R
AS

TA
SV

O
X

R
IJ

N
D

. d
ec

R
IJ

N
D

. e
nc

PG
P

de
c

PG
P

en
c

PE
G

W
IT

 d
ec

PE
G

W
IT

 e
nc

C
AS

T
de

c
C

AS
T

en
c

D
R

R
FR

AG
R

EE
D

 d
ec

R
EE

D
 e

nc
R

TR
ZI

P
de

c
ZI

P
en

c

Instruction class: logic
R

el
. i

ss
ui

ng
 fr

eq
ue

nc
y

(f)

0%

10%

20%

30%

40%

50%

60%

JP
EG

 d
ec

JP
EG

 e
nc

EP
IC

 d
ec

EP
IC

 e
nc

M
PE

G
2

de
c

M
PE

G
2

en
c

AD
PC

M
 d

ec
AD

PC
M

 e
nc

G
SM

 d
ec

G
SM

 e
nc

G
72

1
de

c
G

72
1

en
c

SU
SA

N
 c

or
SU

SA
N

 e
dg

SU
SA

N
 s

m
o

R
AS

TA
SV

O
X

R
IJ

N
D

. d
ec

R
IJ

N
D

. e
nc

PG
P

de
c

PG
P

en
c

PE
G

W
IT

 d
ec

PE
G

W
IT

 e
nc

C
AS

T
de

c
C

AS
T

en
c

D
R

R
FR

AG
R

EE
D

 d
ec

R
EE

D
 e

nc
R

TR
ZI

P
de

c
ZI

P
en

c

Instruction class: shift

R
el

. i
ss

ui
ng

 fr
eq

ue
nc

y

(g)

0%

10%

20%

30%

40%

50%

60%

JP
EG

 d
ec

JP
EG

 e
nc

EP
IC

 d
ec

EP
IC

 e
nc

M
PE

G
2

de
c

M
PE

G
2

en
c

AD
PC

M
 d

ec
AD

PC
M

 e
nc

G
SM

 d
ec

G
SM

 e
nc

G
72

1
de

c
G

72
1

en
c

SU
SA

N
 c

or
SU

SA
N

 e
dg

SU
SA

N
 s

m
o

R
AS

TA
SV

O
X

R
IJ

N
D

. d
ec

R
IJ

N
D

. e
nc

PG
P

de
c

PG
P

en
c

PE
G

W
IT

 d
ec

PE
G

W
IT

 e
nc

C
AS

T
de

c
C

AS
T

en
c

D
R

R
FR

AG
R

EE
D

 d
ec

R
EE

D
 e

nc
R

TR
ZI

P
de

c
ZI

P
en

c

Instruction class: floating−point arithmetic

R
el

. i
ss

ui
ng

 fr
eq

ue
nc

y

(h)

0%

10%

20%

30%

40%

50%

60%

JP
EG

 d
ec

JP
EG

 e
nc

EP
IC

 d
ec

EP
IC

 e
nc

M
PE

G
2

de
c

M
PE

G
2

en
c

AD
PC

M
 d

ec
AD

PC
M

 e
nc

G
SM

 d
ec

G
SM

 e
nc

G
72

1
de

c
G

72
1

en
c

SU
SA

N
 c

or
SU

SA
N

 e
dg

SU
SA

N
 s

m
o

R
AS

TA
SV

O
X

R
IJ

N
D

. d
ec

R
IJ

N
D

. e
nc

PG
P

de
c

PG
P

en
c

PE
G

W
IT

 d
ec

PE
G

W
IT

 e
nc

C
AS

T
de

c
C

AS
T

en
c

D
R

R
FR

AG
R

EE
D

 d
ec

R
EE

D
 e

nc
R

TR
ZI

P
de

c
ZI

P
en

c

Instruction class: miscellaneous

R
el

. i
ss

ui
ng

 fr
eq

ue
nc

y

MM group CRY group COM group

Figure 4.2. (continued)

 Chapter 4: Workload Characterization

0%

10%

20%

30%

40%

A
vg

. r
el

. i
ss

ui
ng

 fr
eq

ue
nc

y

load store branch INT arith. logic shift FP arith. misc

MM group
CRY group
COM group

(a) MCCmix application groups

0%

10%

20%

30%

40%

A
vg

. r
el

. i
ss

ui
ng

 fr
eq

ue
nc

y

load store branch INT arith. logic shift FP arith. misc

MCCmix
CINT95

(b) MCCmix and CINT95

Figure 4.3. Average relative issuing frequencies of the eight determined

instruction classes

Table 4.4. Average relative issuing frequencies of the eight instruction

classes for the MCCmix application groups individually, the MCCmix overall,

and CINT95

Application
group

Average relative issuing frequency of instruction class in %

load store branch integer logic shift FP misc

MM 17.3 4.5 14.9 44.3 2.3 10.0 3.5 3.0
CRY 26.0 6.4 7.0 28.6 16.2 15.1 0.0 0.9
COM 26.2 6.7 19.9 33.4 7.8 5.8 0.0 0.1

MCCmix 21.4 5.5 14.0 38.0 7.0 10.4 1.9 1.9
CINT95 24.4 18.8 17.0 32.7 1.7 5.1 0.2 0.3

4.4. Workload Analysis 

4.4.2. Memory Requirements

With respect to the memory requirements of the applications, we dif-
ferentiate between program text, data size, and dynamic memory.

• Program text refers to the size of the executable code.

• Data size is the size of data (DATA and BSS segments). The
initialized data section is also incorporated in the program text.

• Dynamic memory is the amount of memory that is allocated by
the application at run time. This number has to be treated as an
upper bound because the SimpleScalar simulators do not report
on memory deallocation.

Figure 4.4 and Table 4.5 show the average memory requirements of
the three MCCmix application groups individually, the MCCmix over-
all, and CINT95. The RASTA benchmark includes an 8-Mbyte static
data structure, which is most likely not always fully used. In order to
have a realistic comparison, the results are hence reported with and
without including RASTA.

Observations

The MCCmix applications have rather small memory requirements.
The data size requirements of CINT95 exceeds the requirements of
MCCmix by a factor of 24. If the RASTA benchmark is omitted from
MCCmix, a factor of 132 results. In Figure 4.4 the results excluding
the RASTA benchmark are plotted with a dashed line. The average
program text of CINT95 is four times larger than the average program
text of MCCmix. The upper bound for dynamic memory is between
seven and eight times higher for CINT95.

4.4.3. Cache Miss Rates

A cache miss occurs when the CPU does not find a data item or in-
struction in the accessed cache. The cache miss rate is defined as the
fraction of the cache accesses that result in a miss [85]:

rcmiss :=
ncmiss

ncaccess
, (4.4)

where ncmiss denotes the number of cache misses and ncaccess the total
number of cache accesses.

 Chapter 4: Workload Characterization

10
1

10
2

10
3

10
4

A
vg

. m
em

or
y

us
ag

e
in

 K
by

te

MM group CRY group COM group MCCmix CINT95

Dynamic memoryData sizeProgram text

Figure 4.4. Average memory usage for the MCCmix application groups

individually, the MCCmix as a whole, and CINT95. The dotted lines indicate

the results if RASTA is omitted

Table 4.5. Average memory usage for the MCCmix application groups

individually, the MCCmix as a whole, and CINT95 (with and without RASTA)

Application
group

Average memory usage in Kbyte

Program
text

Data
size

Dynamic
memory

MM w/ RASTA 181.9 535.9 1635.5
MM w/o RASTA 164.2 24.6 1627.9
CRY 177.2 82.1 327.2
COM 107.5 110.4 466.4

MCCmix w/ RASTA 164.5 329.3 1052.7
MCCmix w/o RASTA 154.8 58.8 1029.9
CINT95 661.0 7766.2 7748.1

4.4. Workload Analysis 

The sim-outorder simulator reports the miss rates of the involved
caches. For the simulation runs we used the CPU model outlined in
Table 4.2, which incorporates first-level instruction and data caches,
but no second-level cache. Figure 4.5(a) and Figure 4.5(b) show the
measured cache miss rates. For comparison purposes, the average cache
miss rates, i. e.,

µcmiss := rcmiss , (4.5)

for both MCCmix and CINT95 are plotted in the form of horizontal
lines.

Observations

MCCmix has lower miss rates for both instruction and data caches, but
the difference is more significant for the instruction cache. This confirms
the assumption that many embedded applications spend most of their
run time in rather small code sections – the kernels. The MCCmix
applications contain compute-intensive code parts with high data lo-
cality. Thus, processors for the MCCmix application domain can work
efficiently with smaller instruction caches compared to general-purpose
processors.

4.4.4. Function Breakdown

In order to investigate the structure of the MCCmix and CINT95 pro-
grams and to identify the most compute-intensive program parts, we
generate the function breakdown for each application. The function
breakdown reports the fraction on the application’s run time taken by
each function in terms of execution cycles. The relative run time spent
in function f is thus defined as

tfct(f) :=
nfct(f)
ncycles

, (4.6)

where nfct(f) refers to the number of cycles spent in function f , and
ncycles refers to the total number of execution cycles. To determine the
number of execution cycles spent in each function, we merge address
information from the disassembled program binaries with run-time in-
formation delivered by the sim-outorder simulator.

 Chapter 4: Workload Characterization

 0%

 1%

 2%

 3%

 4%

CINT95

MCCmix

ZI
P

en
c

ZI
P

de
c

R
TR

R
EE

D
 e

nc

R
EE

D
 d

ec

FR
AG

D
R

R

C
AS

T
en

c

C
AS

T
de

c

PE
G

W
IT

 e
nc

PE
G

W
IT

 d
ec

PG
P

en
c

PG
P

de
c

R
IJ

N
D

. e
nc

R
IJ

N
D

. d
ec

SV
O

X

R
AS

TA

SU
SA

N
 s

m
o

SU
SA

N
 e

dg

SU
SA

N
 c

or

G
72

1
en

c

G
72

1
de

c

G
SM

 e
nc

G
SM

 d
ec

AD
PC

M
 e

nc

AD
PC

M
 d

ec

M
PE

G
2

en
c

M
PE

G
2

de
c

EP
IC

 e
nc

EP
IC

 d
ec

JP
EG

 e
nc

JP
EG

 d
ec

C
ac

he
 m

is
s

ra
te

CINT95 average: 2.31%
MCCmix average: 0.16%

(a) Instruction cache

 0%

 4%

 8%

12%

16%

CINT95
MCCmix

ZI
P

en
c

ZI
P

de
c

R
TR

R
EE

D
 e

nc

R
EE

D
 d

ec

FR
AG

D
R

R

C
AS

T
en

c

C
AS

T
de

c

PE
G

W
IT

 e
nc

PE
G

W
IT

 d
ec

PG
P

en
c

PG
P

de
c

R
IJ

N
D

. e
nc

R
IJ

N
D

. d
ec

SV
O

X

R
AS

TA

SU
SA

N
 s

m
o

SU
SA

N
 e

dg

SU
SA

N
 c

or

G
72

1
en

c

G
72

1
de

c

G
SM

 e
nc

G
SM

 d
ec

AD
PC

M
 e

nc

AD
PC

M
 d

ec

M
PE

G
2

en
c

M
PE

G
2

de
c

EP
IC

 e
nc

EP
IC

 d
ec

JP
EG

 e
nc

JP
EG

 d
ec

C
ac

he
 m

is
s

ra
te

CINT95 average: 2.46%
MCCmix average: 1.80%

(b) Data cache

Figure 4.5. Instruction and data cache miss rates for the MCCmix appli-

cations. For comparison purposes, the overall MCCmix and CINT95 averages

are drawn as horizontal lines

4.4. Workload Analysis 

Figure 4.6 shows the function breakdown of the MCCmix and
CINT95 applications. The three left-most segments of each horizon-
tal bar represent the percentages for the three most compute-intensive
(or dominating) program functions – denoted f1, f2 and f3, respec-
tively. The fourth segment represents the accumulated percentages of
all the remaining functions – denoted f123. The run-time distribution
of MPEG2 encoding is for example:

f1 – function dist1 : tfct(f1) = 67.8% ,
f2 – function fdct : tfct(f2) = 11.1% ,
f3 – function fullsearch : tfct(f3) = 5.7% ,
f123 – remaining functions : tfct(f123) = 15.4% .

In order to compare the run time spent in the program functions,
we consider the cumulative relative run time, denoted Tfct(f), of the
dominating functions. Figure 4.7 displays the average cumulative rela-
tive run times of the dominating functions for MCCmix and CINT95,
which are computed as

µT1 := Tfct(f1) = tfct(f1) , (4.7)

µT2 := Tfct(f2) = tfct(f1) + tfct(f2) , (4.8)
...

µTi := Tfct(fi) = tfct(f1) + tfct(f2) + . . . + tfct(fi) . (4.9)

Table 4.6 provides some quantitative results of the cumulative function
breakdown.

Observations

The function breakdown facilitates the identification of the compute-
intensive parts of the applications – the kernels. The quantitative in-
formation about the MCCmix kernels is essential for the design of a
reconfigurable processor since the kernels form the greatest potential
for improvements in terms of performance and energy consumption.

The results point out that MCCmix and CINT95 differ strongly. The
quantitative numbers show that the MCCmix applications are strongly
kernel oriented, while the general-purpose CINT95 applications consist
of many, smaller sized functions. While in the MCCmix 61.1% of the
run time is spent in the most compute-intensive function and 90.9%
in the five dominating functions, the corresponding figures in case of
CINT95 are only 19.0% and 47.9%, respectively.

 Chapter 4: Workload Characterization

JPEG dec
JPEG enc
EPIC dec
EPIC enc

MPEG2 dec
MPEG2 enc
ADPCM dec
ADPCM enc

GSM dec
GSM enc
G721 dec
G721 enc

SUSAN cor
SUSAN edg
SUSAN smo

RASTA
SVOX

RIJND. dec
RIJND. enc

PGP dec
PGP enc

PEGWIT dec
PEGWIT enc

CAST dec
CAST enc

DRR
FRAG

REED dec
REED enc

RTR
ZIP dec
ZIP enc

Relative run time
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(a) MCCmix

RIJND. enc

COMPRESS
GCC

GO
IJPEG

LI
M88KSIM

PERL
VORTEX

Relative run time
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(b) CINT95

3rd most dominating functionMost dominating function

2nd most dominating function Accumulated remainder

Figure 4.6. Function breakdown based on the execution cycles

4.4. Workload Analysis 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 0%

20%

40%

60%

80%

100%

Run−time dominating functions

A
ve

ra
ge

 c
um

ul
at

iv
e

re
la

tiv
e

ru
n

tim
e

MCCmix
CINT95

Figure 4.7. Cumulative function breakdown, revealing the average cumu-

lative relative run time of the dominating functions

Table 4.6. Quantitative results of the cumulative function breakdown

Avg. cumulative
relative run time

MCCmix CINT95

% %

µT1 61.1 19.0
µT2 75.8 29.3
µT3 84.1 36.7

µT5 90.9 47.9
µT10 95.9 67.0
µT20 98.4 81.6

 Chapter 4: Workload Characterization

4.4.5. Key Results

In summary, based on the application analysis we draw the following
qualitative conclusions:

• The embedded applications are strongly kernel oriented.

• The memory requirements are one to two orders of magnitude
lower compared to CINT95.

• The MCCmix applications achieve a higher cache performance
than the CINT95 applications employing a rather small instruc-
tion cache.

• Floating-point operations are used moderately in MCCmix. Only
8 out of the 32 MCCmix applications use floating-point operations
at all.

• The three application groups distinguished in MCCmix show
quite differing characteristics:

– multimedia applications are dominated by integer arithmetic
operations,

– cryptography applications require a large number of logic
and shift operations, and

– communication applications rely on many branch opera-
tions.

4.5. Impact on Reconfigurable Processor Design

Each particular application group shows its distinctive characteristics
and hence emphasizes different architectural features of a processor.
Multimedia applications stress integer arithmetic on word-organized
data and thus benefit from a coarse-grained architecture. The control-
oriented communication applications, on the other hand, benefit from
fine-grained structures, which allow finite state machines to be effi-
ciently implemented. Cryptography applications use a large number of
bit-level operations, which due to the absence of bit-operators in the
PISA instruction set results in many logic and shift operations. Con-
sequently, the RPU features, e. g. the supported operations and their
granularity, are subject to a trade-off which depends on the priorities
of the applications at hand.

4.5. Impact on Reconfigurable Processor Design 

We consider the insights revealed by the workload analysis in the
design of the processor architecture described in the following chapter:

• The applications are highly kernel-dominated, which supports our
approach of attaching the RPU to the standard CPU via a dedi-
cated coprocessor interface. The reconfigurable coprocessor is re-
sponsible for the bulk of the data processing, while the CPU han-
dles the main control flow and the operations that do not map
well onto the reconfigurable array.

• The analysis reveals that small caches perform well. This supports
the notion of incorporating a rather small CPU core that is well
suited for the embedded systems domain.

• Since we target particularly data-streaming applications, we em-
phasize word-oriented integer arithmetic operators and develop
a coarse-grained reconfigurable array. Additionally, we integrate
some fine-grained reconfigurable resources that allow us to adapt
the data access controller according to the memory access pat-
terns of the application at hand.

• Data-streaming applications show less complex data flow patterns
than general-purpose applications. For this reason, rather mod-
erate interconnect facilities are provided compared to general-
purpose devices, in particular FPGAs.

• Since very few floating-point operations are required, the recon-
figurable array does not provide any floating-point operators. If
required, the CPU takes care of the floating-point operations.

 Chapter 4: Workload Characterization

5
Reconfigurable

Processor Architecture

Based on the proposed evaluation methodology and on the results of
the workload characterization, this chapter elaborates a hybrid recon-
figurable processor architecture. We form a reconfigurable processor by
coupling a coarse-grained, multi-context reconfigurable processing unit
to a CPU core. The RPU stores several configurations on the chip allow-
ing for fast switching of its functional behavior. The CPU is responsible
for the data transfer, context loading, and control of the multi-context
RPU. We target the embedded domain, in particular data-streaming
applications that map well to macro-pipelines. To this end, we intro-
duce hardware virtualization as a programming model. Hardware vir-
tualization is supported by the multi-context features of the RPU. The
programming model as well as parts of the reconfigurable processor
architecture were first published in [57].

 Chapter 5: Reconfigurable Processor Architecture

5.1. Programming Model

A drawback of current reconfigurable devices – in particular FPGAs –
is the lack of appropriate programming models. Applications are com-
piled (or synthesized in this context) to given, fixed-size hardware. The
resulting configuration bitstream cannot be reused to program a de-
vice of different type or size, not even inside the same device family.
Consequently, in order to leverage advances in VLSI technology – i. e.
increased transistor count and higher clock rates – a complete recom-
pilation process needs to be performed. The key to overcome this limi-
tation is hardware virtualization [16, 34, 147, 172].

5.1.1. Hardware Virtualization

In order to achieve hardware virtualization, we define a set of basic
operators that a hardware device can execute. Together with a descrip-
tion of the data flow (the communication paths between the operators)
and the control flow (the sequencing of the operators), we establish a
hardware programming model that compilers can target.

In comparison, processors use a well-established form of hardware
virtualization by defining an instruction set architecture, which decou-
ples the compiler from the actual hardware organization. This allows
the processor architecture to change as long as the defined instruction
set is still supported. Programs can be used on the new processor with-
out a recompilation process.

Achieving virtualization of reconfigurable hardware is more com-
plex. Reconfigurable hardware excels when computations are organized
spatially. The basic operators will thus have greater complexity than
processor instructions and the number of possible operators is very
large. Further, the reconfigurability allows many basic operators to be
implemented with one type of hardware block.

5.1.2. Macro-Pipelining and Contexts

We consider data-streaming applications that map well to macro-pipe-
lines, where a pipeline stage is implemented by one basic hardware
block. We assume the basic hardware block to be a reconfigurable array.
The inputs and outputs of the array connect to first-in, first-out (FIFO)
buffers in order to facilitate data streaming. One configuration of the
array is denoted as a context. Applications are organized by pipelining
several logical context executions.

5.1. Programming Model 

(a)
active context
Array −

Logical context FIFO

stored context
Array −

(b)

(c)

Figure 5.1. Models of virtualized macro-pipelining representing different

trade-offs with respect to multiple contexts and physical pipelining

A reconfigurable array can hold one or more contexts on the chip.
Single-context devices hold exactly one configuration on the device. Be-
fore a new logical context can be executed, the corresponding configura-
tion has to be loaded from off-chip. Multi-context devices hold a set of
configurations on-chip, denoted as physical contexts. At any given time
there is exactly one configuration in use, the so-called active context.
Figure 5.1 illustrates different models of virtualized macro-pipelining.

• Figure 5.1(a) shows one multi-context array that is reconfigured
to execute logical contexts as required. The array stores multiple
physical contexts to minimize or even hide the reconfiguration
time.

• Figure 5.1(b) shows several single-context arrays arranged in a
pipelined fashion. The arrays are still reconfigured to execute dif-
ferent logical contexts. However, the configuration data of the
inactive contexts is not stored on-chip, which leads to a longer
reconfiguration time. On the other hand, since several contexts
run in parallel, the throughput increases.

• Multiple contexts and physical pipelining can be combined, which
is illustrated in Figure 5.1(c).

 Chapter 5: Reconfigurable Processor Architecture

All these architectures achieve hardware virtualization as they provide
the logical pipeline of context executions as the programming model,
but differ in their potential computational performance and hardware
requirements. Although this model is rather restrictive, it is amenable
to true hardware virtualization and targets the important domain of
data-streaming applications.

In the following, we focus on an architecture with one coarse-
grained, multi-context reconfigurable array. We form a hybrid system
by coupling the reconfigurable array to a standard CPU.

5.2. System Integration

Unlike many other approaches studying reconfigurable computing sys-
tems, we aim not at the general-purpose but rather at the embedded
computing domain. The embedded domain puts more stringent require-
ments on computing power, energy consumption, costs, weight, volume,
etc. and stresses the trade-offs with respect to these objectives. Conse-
quently, our goal is to employ limited reconfigurable hardware resources
in an efficient way, rather than using devices of arbitrarily large size.

5.2.1. Basic Design Features

As the application analysis of the embedded workload has revealed, the
specific domain of data-streaming applications already points to some
desirable basic design features. First, streaming applications typically
make extensive use of integer arithmetic and show a high degree of
parallelism which favors coarse-grained reconfigurable arrays. Second,
the rather simple memory access patterns as well as the designated
programming model indicate the need for FIFO buffers in the RPU.

Figure 5.2 shows the block diagram of the reconfigurable processing
unit attached to the coprocessor interface of the CPU core. The RPU

architecture comprises the coprocessor register interface, two FIFO

buffers for data transfer, the configuration memory, the context se-
quencer, and the reconfigurable processing fabric – an array of coarse-
grained reconfigurable cells. Data to and from the RPU is transferred
via the two FIFO buffers. In order to communicate with the CPU,
the RPU provides a set of coprocessor registers, listed in Table 5.1.
To access a FIFO for example, the CPU reads from or writes to the
corresponding FIFO coprocessor register.

5.2. System Integration 

Addr DataCtrl

Main memory

R
P

U

Execution
core

Coprocessor interface

FIFO

FIFO

Context
sequencer reconfigurable

array

Coarse−grained

Register interface

predictor
Branch

2−level cache hierarchy

C
P

U
 c

o
re

Config.
memory

Figure 5.2. System outline showing the reconfigurable processing unit at-

tached to the coprocessor interface of the CPU core

Table 5.1. Coprocessor registers provided by the RPU with the correspond-

ing read (R) and write (W) CPU access options

RPU coprocessor register CPU access

RPU reset W
FIFO {1, 2} R/W
FIFO {1, 2} – fill level R
Configuration memory: context {1, . . . , c} W
Configuration memory pointer: context {1, . . . , c} W
Context select – clearing context state W
Context select – holding context state W
Cycle count R/W
Context sequencer – start W
Context sequencer – status R
Context sequencer – program store: instruction {1, . . . , s} W

 Chapter 5: Reconfigurable Processor Architecture

Two important design features that we investigate are multiple con-
texts and register replication. If the cells of the reconfigurable array
contain registers in their datapath, then a context carries state. Upon
a context switch, the state information, i. e. the content of the data-
path registers, must be saved such that it can be restored on the next
invocation of the same logical context. In general, there are three ways
to achieve this:

• the content of the datapath register is transferred to a memory
from which it can be read back;

• the state is not explicitly saved and then restored, but it is re-
computed; or

• the datapath registers are replicated such that each context ac-
cesses its own, dedicated register set, i. e. the state remains in the
corresponding registers.

Our RPU architecture model concentrates on the latter two alterna-
tives.

Recapitulating, the architectural model of the RPU incorporates
several parameterized design features in order to represent different
RPU variants:

– the datapath width (up to 32 bits),
– the size of the FIFO buffers,
– the number of physical contexts that the configuration memory

can store, and
– the number of register planes, if the datapath registers within the

reconfigurable cells are replicated.

5.2.2. CPU Core

As discussed in Chapter 3, we build on the CPU model provided by
SimpleScalar, which is based on a 32-bit RISC processor architecture
with a MIPS-like instruction set called PISA. The data and control
path of the CPU as well as the memory architecture are highly param-
eterized. The main architectural units of which the CPU is comprised
can be divided into the execution core, the branch predictor, and the
two-level cache hierarchy. The following list gives the major CPU pa-
rameters involved.

5.2. System Integration 

• Execution core:

– Number of integer and floating-point functional units, i. e.
ALUs and multipliers

– size of the instruction fetch queue (IFQ)
– size of the register update unit (RUU)
– size of the load/store queue (LSQ)
– decode, issue, and commit bandwidths
– instruction issuing (in-order or out-of-order)

• Branch predictor:

– type and configuration
– size of the return address stack (RAS)
– configuration of the branch target buffer (BTB)

• Memory hierarchy:

– types of the first-level (L1) and second-level (L2) caches
– configuration and access time of the caches
– configuration of the instruction and data translation look-

aside buffers (ITLB and DTLB)
– main memory bus width and access time

Burger and Austin [27] provide an in-depth discussion of the CPU

model and its parameters.
Five branch predictor types are supported: two simple, static types

(always “taken”, always “not taken”) and three more complex, dynamic
types (bimodal, 2-level, combined). The dynamic branch predictors have
further configuration options, in particular the sizes of their branch
history tables.

The two-level cache hierarchy supports L1 and L2 instruction (ILx),
data (DLx), and unified (ULx) caches. The configuration parameters
of the caches include the number of sets, block size, associativity, and
replacement policy.

Due to the rich configuration options, the CPU model can be set up
to resemble a broad spectrum of architectures, from small low-end to
powerful high-end CPUs. Figure 5.3 illustrates two simplified example
setups of the CPU model. The first setup corresponds to a typical low-
end CPU, the second setup to a high-end CPU.

 Chapter 5: Reconfigurable Processor Architecture

FP FUs

INT FUs

bimodalBranch predictor: CPU core

LSQ: 4

RUU: 8IFQ: 2

hierarchy
Memory

16KDL116KIL164ITLB 64DTLB

Main memory

2KBTB 8RAS

(a) Low-end CPU

BTB 4K

IFQ: 16

LSQ: 32

RUU: 64 CPU coreBranch predictor: combined

INT FUs

FP FUs

Memory
hierarchy

RAS 32

128DTLB128ITLB IL1 64K DL1 64K

UL2

Main memory

512K

(b) High-end CPU

Figure 5.3. Two example setups of the CPU model illustrating the major

parameterized architecture features of the model

5.2. System Integration 

5.2.3. Coprocessor Registers

CPU and RPU communicate by means of the coprocessor register
file (CRF). Table 5.1 lists the coprocessor registers that the RPU pro-
vides. To perform a certain action, the CPU reads from or writes to the
appropriate coprocessor register.

For example to initiate a reset on the RPU, the CPU writes to the
RPU reset register. The coprocessor interface controller of the RPU is
responsible for handling the request and for taking care of the control
signals within the RPU. The CPU accesses the FIFO buffers, the con-
figuration memory, the cycle count and context select registers, as well
as the context sequencer registers in a similar way.

Some of the coprocessor registers are virtual registers, i. e. they are
not physically implemented as registers in hardware. The RPU reset or
the context sequencer start registers for example just initiate a certain
action when they are written, while the FIFO register corresponds to
an SRAM-based FIFO buffer implementation.

5.2.4. FIFO Buffers

Data is transferred between the CPU and RPU via the two FIFO buffers
that the RPU incorporates. Both FIFOs are readable and writable by
the CPU as well as by the RPU. The FIFOs also serve as data buffers
between consecutive executions of two RPU contexts.

In a typical scenario the CPU first writes a data block to one of the
FIFOs. The samples are then processed by the active RPU context and
written to the second FIFO. The context may then be switched and
the new active context processes the samples again, writing the results
back to the first FIFO. In the same way, several more context switches
may be initiated. Finally, the CPU reads the data block back from the
appropriate FIFO.

To arbitrate between the accesses of the reconfigurable array and
the CPU (via the coprocessor interface), each FIFO has a small con-
trol unit associated with it. The control unit is responsible for routing
the datapath to the FIFO and for setting the FIFO control signals. To
this end, the reconfigurable array provides read and write enable sig-
nals, which are controlled by the RPU configuration. The control unit
makes sure that these enable signals only take effect while a computa-
tion is active on the reconfigurable array. The control unit prioritizes
the reconfigurable array over the CPU, i. e. if the reconfigurable array
requests access to a FIFO, the CPU access is blocked.

 Chapter 5: Reconfigurable Processor Architecture

FIFO

FIFO

array

Reconfigurable

Context select

Cycle count

memory
Configuration

Figure 5.4. Interface provided by the RPU for controlling the execution of

the reconfigurable array

5.2.5. Configuration Memory

The configuration memory holds one or more entire configurations (the
contexts) for the reconfigurable array. In Table 5.1, the number of phys-
ical contexts is denoted as c. For each physical context, the coprocessor
interface provides a configuration memory register. The configuration
bitstream is written from the CPU to the RPU via the correspond-
ing configuration memory register in 32-bit chunks. The coprocessor
interface controller on the RPU is responsible for inserting the 32-bit
configuration chunks at the correct physical location in the configura-
tion memory.

The RPU supports the download of full and partial configurations
for any of the physical contexts. To support partial reconfiguration,
the coprocessor interface provides an additional configuration memory
pointer register for each physical context. To download a partial config-
uration, the CPU first writes the start address of the partial bitstream
to the configuration memory pointer register, followed by writing one or
more 32-bit configuration chunks to the configuration memory register.

5.2.6. Synchronization and Context Scheduling

In order to control the execution of the reconfigurable array, the RPU

incorporates an interface comprising the cycle count register and the
context select register. Figure 5.4 illustrates the control interface.

The CPU selects the active RPU context by means of the context
select register. Two modes are provided for the CPU writing into the

5.2. System Integration 

context select register, either the context state is cleared or kept. This
means that the datapath registers of the reconfigurable array are either
reset upon a context switch or the registers hold their state, respec-
tively.

The CPU starts the RPU execution by writing the number of clock
cycles the reconfigurable array is to execute to the cycle count register.
In every clock cycle, the cycle count register is decremented by one. The
execution of the reconfigurable array stops when the cycle count register
reaches zero. This synchronization mechanism between CPU and RPU

is similar to the mechanism proposed by Hauser and Wawrzynek [80].
As our hybrid processor model does not so far support interrupts, the
synchronization of CPU and RPU execution is done by polling the cycle
count register. Furthermore, the output of the cycle count register is
used to communicate to the FIFO control units that the reconfigurable
array is active.

The application program running on the CPU is responsible for
scheduling and activating the contexts. There are two modes for how
the CPU can control the execution of the contexts:

1. The CPU activates a context on the RPU for execution by writing
the context ID to the context select register. The RPU context
is immediately switched and the CPU can trigger the execution
of the reconfigurable array by writing the desired number of exe-
cution cycles to the cycle count register.

2. The CPU makes use of the hardware context scheduler, the con-
text sequencer, that is incorporated into the RPU. The context
sequencer allows a sequence of contexts to be autonomously ex-
ecuted by the RPU without the intervention of the CPU. At the
beginning of an application, the CPU downloads the program
for the sequencer. Afterwards, the CPU can trigger the context
sequencer by accessing the context sequencer start register. The
sequencer then autonomously executes the programmed context
sequence. After termination, the sequencer activates the sequence
status register, which the CPU can poll.

5.2.7. Context Sequencer

As Figure 5.5 outlines, the context sequencer consists of the sequence
program store and some control facilities. It attaches to the execution
interface depicted in Figure 5.4.

 Chapter 5: Reconfigurable Processor Architecture

Context select

Cycle count

Last flag / status

sequence

store
program

Context

Sequence PC

next instruction
Address of

Figure 5.5. Context sequencer, which allows the RPU to execute a sequence

of contexts autonomously, i. e. without intervention of the CPU

Context ID Next addressNumber of execution cycles

Last context flag

31 24 8 0

Figure 5.6. Instruction word for the context sequencer held in the context

sequence program store

5.2. System Integration 

terminated & last

/terminated

/last
terminated &

start
/start

context
Switch

Idle execution
Context

Figure 5.7. Control state machine of the context sequencer which controls

the autonomous execution of a context sequence

The sequence program store holds a number of sequencer instruc-
tions, which control the execution of the contexts. In Table 5.1 the
number of sequencer instructions is denoted as s. Figure 5.6 shows the
format of a sequencer instruction consisting of four fields: the ID of the
context to be activated, the number of execution cycles, the address of
the next instruction to be processed, and the last context flag, which
determines whether the current context is the last one in the sequence.
The lengths of the individual instruction fields are parameterized, the
figure shows an example. The sequence program counter (SPC) is used
to supply the next sequencer instruction.

Upon termination of a context execution, a small control state ma-
chine, depicted in Figure 5.7, loads the SPC either with the address of
the next instruction or actives the sequencer status register in order to
signal to the CPU that the context sequence has finished, depending
on the last context flag.

The concept of the context sequencer is similar to the micropro-
gramming in some general-purpose CPUs [84]. However, the function-
ality is fundamentally different. While microinstructions are simple in-
structions used in sequences to implement a more complex instruction
set, we use the sequencer instructions to control the execution of com-
plex array contexts. Nevertheless, the advancements achieved in mi-
croprogramming [84], such as more complex next-address mechanisms,
could be adapted in order to extend the functionality of the context
sequencer.

 Chapter 5: Reconfigurable Processor Architecture

5.3. Reconfigurable Array

Since we are targeting the embedded domain, our goal is to employ
limited hardware resources in an efficient way. Hence, we start with
a rather small reconfigurable array that features relatively few routing
facilities. The reconfigurable array is comprised of a 4×4 array of homo-
geneous, coarse-grained, reconfigurable cells, which are interconnected
by a two-level network.

5.3.1. Reconfigurable Cells

As the workload analysis has revealed, data-streaming applications
make extensive use of integer arithmetic on word-sized data. Thus, we
favor coarse-grained over fine-grained processing elements. The logical
and arithmetic operations can either be implemented by an ALU or a
LUT. Since ALUs are more efficient for coarse-grained operators, we
prefer this alternative. Figure 5.8 depicts the datapath of a reconfig-
urable cell consisting of a fixed-point ALU, datapath multiplexers, and
input and output registers.

The control signals for the ALU and the multiplexers are part of
the configuration. The configuration also contains a constant operand,
which can be routed to either ALU input. The ALU implements the
common arithmetic and logic operations (addition, subtraction, shift,
OR, NOR, NOT, etc.) as well as multiplication.

An important design feature is register replication. Figure 5.8(a)
sketches a reconfigurable cell with a single set of registers. Consequently,
all contexts share the same registers. The registers are reset upon a con-
text switch, i. e. their state cannot be stored. Figure 5.8(b) displays a
reconfigurable cell that replicates the registers. This allows the regis-
ter state to be stored over several context switches. Alternatively, the
registers can also be reset upon a context switch. If the array provides
sufficient registers sets, each context can have its own, dedicated regis-
ter set assigned. The configuration determines on which register plane
the current context operates.

The reconfigurable cells connect to the local interconnect network
and the global buses. Figure 5.9 outlines the routing facilities within a
reconfigurable cell. The cell’s inputs are routed by means of multiplex-
ers. The cell’s output is directly connected to the local interconnects
and via tristate buffers to the global buses.

5.3. Reconfigurable Array 

out

in0 in1

const

ALU/MULT

(a) Single register set

in0

out

in1

ALU/MULT

select
reg.−set

const

(b) Replicated register sets

Figure 5.8. Datapath of a reconfigurable cell with a single register set and

with replicated register sets, respectively. The shaded parts are controlled by

the configuration

 Chapter 5: Reconfigurable Processor Architecture

To global
interconnects buses

To local

and global buses
From local interconnects and

Cell datapath

in0

out

in1

Figure 5.9. Routing facilities within a reconfigurable cell. The shaded parts

are controlled by the configuration

5.3.2. Two-Level Interconnect

The cell interconnect reflects the mainly forward streaming nature of
the data flow in data-streaming applications. The interconnect network
consists of two routing levels:

1. local interconnects between adjacent reconfigurable cells, shown
in Figure 5.10, and

2. global buses between cell rows, depicted in Figure 5.11.

The local interconnect is cyclically continued at the array borders.
Each reconfigurable cell can route the outputs of five of its neighbors to
its inputs via the local connections. The inputs can also be connected
to any of the three global buses located between the cell rows. Two of
the global buses can be driven by the cells from the row above. The
third bus can be driven by the cells in the same row, which allows for
feed back of the outputs from the same row.

The reconfigurable array features two input and two output ports
(IPx, OPx), which are connected to the FIFO buffers of the RPU. Inside
the array, the connections to the I/O ports are routed via the global
buses.

5.3. Reconfigurable Array 

W E

NENW

S SESW

N

Figure 5.10. Local interconnects between adjacent reconfigurable cells; for

visibility, the connections of one cell are highlighted

IP
0

IP
1

O
P

0

O
P

1

Figure 5.11. Global bus interconnect and I/O ports (IPx, OPx)

 Chapter 5: Reconfigurable Processor Architecture

Comparator

Comparator

F
IF

O
 r

e
a
d
/w

ri
te

 e
n
a
b
le

LSB

LSB+1

counter
Cycle up−Cycle down−

counter

const

const

4−input,

LUT

1−output

Figure 5.12. I/O port controller providing a FIFO read/write enable signal.

The shaded parts are controlled by the configuration

5.3.3. Input/Output Ports

To access the FIFO buffers, the reconfigurable array has to provide
their control signals, i. e. read and write enables. To this end, each I/O

port has a configurable, fine-grained controller associated with it, which
is responsible for controlling the data access.

Figure 5.12 outlines the architecture of an I/O port controller, con-
sisting mainly of two comparators and a 4-input, 1-output LUT. The
inputs to the I/O port controller are the values of two execution cy-
cle counters, which count up and down the execution cycles computed
on the reconfigurable array. The down-counter coincides with the cycle
count register used for the synchronization of the CPU and RPU. Each
comparator compares one of the cycle counters with a constant value
provided by the configuration. The comparators can be configured to
operate in either “greater than” or “equal” mode. The outputs of the
comparators together with the two least significant bits (LSBs) of the
up-counter form the input to the LUT. The functionality of the LUT

is specified by the configuration.
This scheme allows us to generate moderately complex rules for the

enable signals of the FIFOs. Examples are setting the enable signals
after a certain number of execution cycles, or setting them a certain
number of cycles before the end of a computation. Other examples are
setting the enables every second or every forth execution cycle.

5.3. Reconfigurable Array 

Table 5.2. RPU configuration size for a selection of datapath widths

Datapath
width

Configura-
tion size

Datapath
width

Configura-
tion size

bits bits bits bits

4 734 20 990
8 798 24 1054

12 862 28 1118
16 926 32 1182

5.3.4. Configuration

To summarize, the configuration of the reconfigurable array is respon-
sible for

• the functionality of the reconfigurable cells and the I/O port con-
trollers,

• in the case of replicated datapath registers, the selection of the
active register plane, and

• the routing of the datapath between the reconfigurable cells, from
the input ports to the reconfigurable cells, and from the reconfig-
urable cells to the output ports.

The configuration memory stores one or more entire configurations.
Since the configuration incorporates constant values, which can be

used as inputs to the processing elements in the reconfigurable cells,
as depicted in Figure 5.8, the number of configuration bits depends on
the datapath width, which is parameterized. Table 5.2 lists some of the
design points. Given a datapath width of 16 bits, the configuration size
for the reconfigurable array will be 926 bits. For comparison with a fine-
grained architecture, the configuration size of the Xilinx Virtex-II Pro
family ranges between 1.24 Mbits and 41.58 Mbits [198]. Compared to
our coarse-grained architecture, the configuration size of the Virtex-
II Pro devices is three to four orders of magnitude larger.

 Chapter 5: Reconfigurable Processor Architecture

6
Experiments and

Results

As a case study we discuss the partitioning and mapping of finite im-
pulse response (FIR) filters of arbitrary order onto RPUs with lim-
ited hardware resources. We make use of the hardware virtualization
programming model introduced in the previous chapter. We perform
several experiments by implementing the same filter on different archi-
tectural variants of our parameterized reconfigurable processor model.
We determine the computational performance gains for the reconfig-
urable hybrid over the stand-alone CPU, depending on a number of
design parameters such as the number of physical on-chip contexts,
the FIFO buffer size, and the ability to restore the state of a previous
context. We also measure the impact on the CPU load for the various
system configurations. Further, we estimate the chip area requirements
of the different system designs and study their area–speed trade-offs.

 Chapter 6: Experiments and Results

Table 6.1. CPU model resembling an embedded CPU

CPU parameter Setup

Integer units 1 ALU, 1 multiplier
Floating-point units 1 ALU, 1 multiplier
Instruction fetch queue (IFQ) size 1 instruction
Register update unit (RUU) size 4 instructions
Load/store queue (LSQ) size 4 instructions
Decode bandwidth 1 instruction
Issue bandwidth 2 instructions
Commit bandwidth 2 instructions
Instruction issuing In-order
Branch prediction Static (always “not taken”)
1st-level instruction cache 32-way 16 Kbytes
1st-level data cache 32-way 16 Kbytes
2nd-level cache None
Memory bus width 32 bits
Memory ports 1

6.1. Experimental Setup

We have set up our hybrid processor architecture to study the following
system configurations:

• stand-alone CPU without attached RPU,

• CPU with attached single-context RPU, and

• CPU with attached multi-context RPU holding 2, 4 or 8 contexts.

We assume that CPU and RPU operate at the same clock frequency.
This assumption is realistic for two reasons: first, we aim at the em-
bedded computing domain, where maximal clock speed is not the sole
and major optimization criteria; and second, we use a coarse-grained
reconfigurable array allowing for higher clock speeds than fine-grained
FPGAs.

We consider reconfigurable arrays with one shared set of registers
as well as replicated register sets. Additionally, we regard RPUs with
and without integrated hardware context sequencer (hardware sched-
uler). We use the same CPU model as for the workload characterization
resembling a low-end, embedded CPU. Table 6.1 lists the main CPU

parameters.

6.2. FIR Filter Virtualization 

h3h1 h2h0

Figure 6.1. Transposed direct form realization of a 4-tap FIR filter

6.2. FIR Filter Virtualization

6.2.1. Partitioning and Mapping

The response Y (z) of an FIR filter given by its transfer function H(z)
to an input signal X(z) can be computed as Y (z) = H(z) · X(z). The
transfer function H(z) is a polynomial in z−i given by

H(z) = h0 + h1 · z−1 + . . . + hm · z−m =
m∑

i=0

hi · z−i . (6.1)

In the FIR filter case, the transfer function H(z) can be factorized
into first and second order polynomials Hi(z) [125]. That is, we can
represent H(z) as

H(z) = H1(z) ·H2(z) · . . . ·Hn(z) . (6.2)

This relation allows us to split up an FIR filter into a cascade of FIR

subfilter sections of smaller order, which are sequentially executed.
In our case study, we implement a 56th-order FIR filter as a cas-

cade of eight subfilters, each of 7th order. The subfilter sections are
implemented in transposed direct form [125]. Figure 6.1 illustrates an
example with four taps. Each section is mapped to an individual logical
RPU context. Fig. 6.2 shows a simplified schematic of the mapping of
one section onto the reconfigurable array. The filter coefficients hi are
part of the RPU configuration.

 Chapter 6: Experiments and Results
IP

0

IP
1

O
P

0

O
P

1

h4 h7h6h5

h3h0 h2h1

IP
0

O
P

1

Figure 6.2. One 8-tap FIR subfilter section mapped onto the reconfigurable

array, constituting a logical RPU context

6.2. FIR Filter Virtualization 

It is important to notice the difference between a cascaded and a
non-cascaded implementation of a FIR filter, which is in our case of
order 56:

• The cascaded filter implementation employs 8 subfilter sections
of order 7, resulting in an overall filter order of 8 times 7, i. e. 56.
Each 7th-order subfilter section features 8 taps, resulting overall
in 8 times 8, i. e. 64, taps.

• In the non-cascaded case on the other hand, where the filter is
not partitioned into subfilter sections but constructed directly,
the implementation requires 57 taps.

Thus, the partitioning of the FIR filter creates a certain computing
overhead due to the higher number of taps that have to be processed.

6.2.2. Context State

Each FIR subfilter section requires delay registers in the datapath which
form the state of the corresponding RPU context. The state information
must be restored before the same context is executed again. Depending
on the capabilities of the reconfigurable array, there are two ways to
achieve this:

1. If all contexts of the array share the same set of registers, the
state cannot be saved and restored, but must be recomputed. We
achieve this by overlapping subsequent data blocks, according to
the overlap-save method by Oppenheim and Schafer [125]. Over-
all, this results in an execution overhead, since the overlapped
samples are processed twice.

2. If the array provides a dedicated register plane for each logical
context, which we denote as full register replication, the state
can be kept automatically in the datapath registers and no over-
lapping of data blocks is required. Thus, there is no execution
overhead.

6.2.3. Context Scheduling

In each experiment, 64K samples organized in data blocks are pro-
cessed. The size of the data block depends on the size of the FIFO

buffers available on the RPU. We vary the size of the FIFOs between
64 and 1K words.

 Chapter 6: Experiments and Results

In the system configurations that make use of an RPU coprocessor,
a data block is written to the RPU, processed sequentially by the eight
FIR subfilter sections (the eight logical contexts), and then read back.

At the beginning of the application computation, the program run-
ning on the CPU loads as many logical contexts as fit onto the RPU.
If not all logical contexts fit, the contexts are loaded on demand. Each
time a filter context is required that is not present on the RPU, the
CPU control task performs the download by overwriting a physical
RPU context. To switch between logical contexts that are available on
the RPU, the CPU has two possibilities: either to explicitly initiate a
switch by writing to the context select register and then to start the
execution of the reconfigurable array, or to make use of the hardware
context sequencer.

Figure 6.3 illustrates the execution flow of one data block for various
system configurations considering a simplified application with only
three logical contexts.

(a) 1 physical context, shared register set, no sequencer.
If only one physical context is present on the RPU, each logical
context must be loaded on demand. After loading the desired
context onto the RPU (“Ld Cx”), the CPU starts the execution
of the context (“St Cx”). Then, the state of the last activation of
this context needs to be restored (“Rs Cx”). Finally, the context
executes (“Ex Cx”). This procedure is repeated for all logical
contexts (and, accordingly, for all data blocks).

(b) 3 physical contexts, shared register set, no sequencer.
If the configuration memory provides sufficient physical contexts
to hold all logical contexts on-chip, the logical contexts are loaded
only once at the beginning of the computation. The overhead
for activating a new context reduces to switching to the desired
context and starting it (“Sw Cx”), plus restoring its state.

(c) 3 physical contexts, dedicated registers, no sequencer.
If the datapath registers are fully replicated, i. e. each logical con-
text operates on its dedicated register set, the context state is
kept automatically and no longer needs to be restored.

(d) 3 physical contexts, dedicated registers, sequencer.
The on-chip context sequencer reduces the overhead to initiating
the start of every sequence (“St Seq”). The sequencer is pro-
grammed once at the beginning of the computation (“Ld Seq”).

6.2. FIR Filter Virtualization 

(a)

Ld
 C

3

S
t C

3

E
x

C
3

S
t C

2

Ld
 C

2

R
s

C
3

R
s

C
1

E
x

C
2

R
s

C
2

S
t C

1

Ld
 C

1

E
x

C
1

(b)

Ld
 C

2

Ld
 C

1

Ld
 C

3

E
x

C
3

S
w

 C
1

S
w

 C
3

E
x

C
2

R
s

C
2

S
w

 C
2

E
x

C
1

R
s

C
1

R
s

C
3

(c)

Ld
 C

3

S
w

 C
1

Ld
 C

2

Ld
 C

1

E
x

C
1

E
x

C
3

S
w

 C
2

S
w

 C
3

E
x

C
2

(d)

Ld
 C

2

Ld
 S

eq

S
t S

eq

Ld
 C

3

E
x

C
1

Ld
 C

1

E
x

C
2

E
x

C
3

time

Legend: − Switch to Cx and startSw Cx
− Load sequencer progam
− Start sequencerSt Seq

Ld Seq

− Execute CxEx Cx
− Restore state of CxRs Cx
− Start CxSt Cx
− Load CxLd Cx

(a) 1 physical context, shared register set, no context sequencer
(b) 3 physical contexts, shared register set, no context sequencer
(c) 3 physical contexts, dedicated registers, no context sequencer
(d) 3 physical contexts, dedicated registers, context sequencer

Figure 6.3. Execution flow of one data block for various system setups

considering a simplified application example with three logical contexts

 Chapter 6: Experiments and Results

6.3. Computational Performance

6.3.1. Results

For reference purposes, we have determined the performance results
of the stand-alone CPU without attached RPU. The execution time
of the FIR filter program processing the 64K samples has been mea-
sured as 110.65 million cycles. In this case, we use the non-cascaded
implementation of the 56th-order FIR filter, which requires 57 taps.

Figures 6.4, 6.5, 6.6 and 6.7 illustrate the results of our experiments
with the hybrid processor incorporating an RPU. The results are plot-
ted as a function of the FIFO buffer size (shown on the horizontal axis)
and the system configuration. Figures 6.4 and 6.5 show the speedups
achieved relative to the execution time of the stand-alone CPU. The
results shown in Figures 6.4 do not include the hardware context se-
quencer, those shown in Figures 6.5 do. Figures 6.6 and 6.7 show the
CPU load normalized to the stand-alone CPU, again without and with
making use of the context sequencer, respectively. That is, the load of
the stand-alone CPU serves as a reference point, representing the 100%
mark. Additionally, Tables 6.2 and 6.3 provide the detailed speedup
figures, Tables 6.4 and 6.5 the detailed CPU load figures.

6.3.2. Discussion

In general, making use of the RPU for an application function shows
two benefits:

• First, we accelerate the application function, which is measured
by the speedup in the Figures 6.4 and 6.5 (Tables 6.2 and 6.3).

• Second, the CPU is relieved from some operations and can devote
the free capacity to other functions. We measure this effect by the
relative CPU load in the Figures 6.6 and 6.7 (Tables 6.4 and 6.5).

We make the following observations, with reference to the system con-
figurations that use the hardware context sequencer:

• Using an RPU we achieve significant speedups, ranging up to a
factor of 9.5 for an 8-context RPU with dedicated register sets.
The performance deteriorates with decreasing FIFO size due to
the imposed communication overhead.

6.3. Computational Performance 

• Enlarging the FIFOs increases the performance, but at the same
time increases the filter delay. Practical applications could limit
these potential gains by imposing delay constraints. For instance,
a 2-context, shared-register-set RPU using FIFOs of 1K words
instead of 128 words improves the speedup by a factor of 2.7,
while increasing the latency by a factor of 8.

• Full register replication greatly benefits our application as we
totally avoid the overlapping of data blocks. For an 8-context
RPU with 128-word FIFOs, the speedup increases by a factor
of 2. Additionally, the speedup compared to the stand-alone CPU

becomes almost independent of the FIFO size because no context
reloading is required.

• The RPU use lowers the CPU load significantly. For a single-
context RPU with a shared register set, the CPU load drops from
100% to 28.3% for 128-word FIFOs and to 6.4% for 1K-word
FIFOs. Increasing the number of physical contexts and providing
dedicated register sets, the load approaches the asymptotic value
of 4.7%. The CPU task reduces to transferring data and starting
the context sequencer.

• As a rather surprising result we have found that the impact of us-
ing the on-chip context sequencer is moderate. For an 8-context,
dedicated-register-sets RPU with 64-word FIFOs, the speedup im-
proves by 8.2% and the CPU load drops by 18.3%. However, for
fewer physical RPU contexts and with increasing FIFO size the
improvement is not so large. The reason is that our coarse-grained
architecture requires only a small amount of configuration data.
With increasing FIFO size the context switch overhead becomes
marginal.

Overall, the results emphasize the importance of our system-level,
cycle-accurate simulation approach for architectural evaluation and op-
timization. As an example, Figure 6.5 shows that for most FIFO sizes
a single-context RPU with dedicated register sets performs similarly
to or even better than an 8-context RPU with a shared register set –
a finding that is not obvious. Nevertheless, the speedup results show
that incorporating multiple contexts on the RPU is valuable. For the
FIR filter example in our case study though, register replication can be
more beneficial.

 Chapter 6: Experiments and Results

64 128 256 512 1K
0

1

2

3

4

5

6

7

8

9

10

FIFO size in words

S
pe

ed
up

 (
no

rm
al

iz
ed

 to
 s

ta
nd

−
al

on
e

C
P

U
)

Stand−alone CPU

Dedicated register sets
Shared register set

1−context RPU
2−context RPU
4−context RPU
8−context RPU

Figure 6.4. Speedup compared to the stand-alone CPU for RPUs without

a hardware context sequencer

6.3. Computational Performance 

64 128 256 512 1K
0

1

2

3

4

5

6

7

8

9

10

FIFO size in words

S
pe

ed
up

 (
no

rm
al

iz
ed

 to
 s

ta
nd

−
al

on
e

C
P

U
)

Stand−alone CPU

Dedicated register sets
Shared register set

1−context RPU
2−context RPU
4−context RPU
8−context RPU

Figure 6.5. Speedup compared to the stand-alone CPU for RPUs with a

hardware context sequencer

 Chapter 6: Experiments and Results

64 128 256 512 1K
 0%

10%

20%

30%

40%

50%

FIFO size in words

C
P

U
 lo

ad
 (

no
rm

al
iz

ed
 to

 s
ta

nd
−

al
on

e
C

P
U

)

Stand−alone CPU

Dedicated register sets
Shared register set

1−context RPU
2−context RPU
4−context RPU
8−context RPU

Figure 6.6. CPU load normalized to the stand-alone CPU for RPUs without

a hardware context sequencer (only the region of interest is shown)

6.3. Computational Performance 

64 128 256 512 1K
 0%

10%

20%

30%

40%

50%

FIFO size in words

C
P

U
 lo

ad
 (

no
rm

al
iz

ed
 to

 s
ta

nd
−

al
on

e
C

P
U

)

Stand−alone CPU

Dedicated register sets
Shared register set

1−context RPU
2−context RPU
4−context RPU
8−context RPU

Figure 6.7. CPU load normalized to the stand-alone CPU for RPUs with a

hardware context sequencer (only the region of interest is shown)

 Chapter 6: Experiments and Results

Table 6.2. Speedup compared to the stand-alone CPU for RPUs without a

hardware context sequencer (cf. Figure 6.4)

Register
set

RPU
contexts

Speedup

FIFO size in words

64 128 256 512 1024

Shared 1 0.33 2.43 4.40 5.89 6.85
2 0.36 2.58 4.57 6.02 6.93
4 0.44 2.93 4.94 6.30 7.10
8 0.91 4.49 6.25 7.13 7.57

Dedicated 1 3.07 4.62 6.22 7.54 8.41
2 3.33 4.92 6.48 7.73 8.52
4 4.04 5.64 7.08 8.13 8.76
8 8.56 8.95 9.21 9.38 9.43

Table 6.3. Speedup compared to the stand-alone CPU for RPUs with a

hardware context sequencer (cf. Figure 6.5)

Register
set

RPU
contexts

Speedup

FIFO size in words

64 128 256 512 1024

Shared 1 0.33 2.43 4.40 5.90 6.85
2 0.36 2.59 4.58 6.03 6.94
4 0.44 2.97 4.98 6.32 7.12
8 0.98 4.69 6.38 7.19 7.60

Dedicated 1 3.07 4.63 6.23 7.54 8.41
2 3.35 4.95 6.51 7.74 8.53
4 4.10 5.73 7.14 8.16 8.78
8 9.26 9.39 9.44 9.47 9.48

6.3. Computational Performance 

Table 6.4. CPU load normalized to the stand-alone CPU for RPUs without

a hardware context sequencer (cf. Figure 6.6)

Register
set

RPU
contexts

CPU load in %

FIFO size in words

64 128 256 512 1024

Shared 1 245.0 28.4 13.1 8.4 6.4
2 221.1 26.0 12.3 8.0 6.2
4 173.4 21.3 10.6 7.3 5.9
8 53.6 9.5 6.4 5.4 5.0

Dedicated 1 26.9 15.8 10.2 7.4 6.1
2 24.3 14.5 9.6 7.1 5.9
4 19.0 11.9 8.3 6.5 5.6
8 6.0 5.3 5.0 4.8 4.8

Table 6.5. CPU load normalized to the stand-alone CPU for RPUs with a

hardware context sequencer (cf. Figure 6.7)

Register
set

RPU
contexts

CPU load in %

FIFO size in words

64 128 256 512 1024

Shared 1 244.3 28.3 13.1 8.4 6.4
2 219.2 25.8 12.2 8.0 6.2
4 169.0 20.9 10.5 7.2 5.9
8 44.4 8.6 6.1 5.3 5.0

Dedicated 1 26.8 15.7 10.2 7.4 6.0
2 24.1 14.4 9.5 7.1 5.9
4 18.6 11.6 8.1 6.4 5.5
8 4.9 4.8 4.7 4.7 4.7

 Chapter 6: Experiments and Results

6.4. Chip Area

6.4.1. Estimation Model

For the area requirements of the RPU we consider the area contribu-
tions of the following building blocks:

– the reconfigurable array (AArray),
– the configuration memory (ACMem),
– the two FIFO buffers (2 ·AFIFO),
– the hardware context sequencer (ACSeq), and
– the coprocessor register file (ACRF).

The area taken up by the I/O port controllers and the various small
hardware controllers integrated on the RPU is currently not taken into
account. Thus, considering (3.1) the area of the RPU follows

ARPU = arout ·
(
AArray + ACMem + 2AFIFO + ACSeq + ACRF

)
, (6.3)

where arout denotes the overall area overhead of the routing. Based on
an empirical value of 20% [93], we choose a slightly increased routing
overhead of 25% in order to compensate for the routing between the
building blocks as well as for the neglected parts of the RPU such as
the hardware controllers.

6.4.2. Building Block Area Models

For the building blocks, we define parameterized area models repre-
sented by the equations (6.4) through (6.8). The individual area models
are discussed in detail below.

AArray = ncell ·
(
Acell + αFF

(
(frepl − 1) · nreg · wreg

))
, (6.4)

ACMem = c · αLatch(scfg) , (6.5)

AFIFO = minarea(sFIFO · wFIFO) , (6.6)

ACSeq = minarea(nCStore · wCStore) + αFF(wSPC) , (6.7)

ACRF = αFF(wCC) + αFF(wCS) + αFF(wCSS) . (6.8)

We make use of the area functions αFF(), αLatch(), and αSRAM() in-
troduced in (3.2), (3.3), and (3.4), respectively. Furthermore, we define

6.4. Chip Area 

Table 6.6. Area for various configurations of the reconfigurable cell deter-

mined through synthesis using a standard cell library for a 0.25 µm UMC

CMOS process maintained by Virtual Silicon

Register
replication

Area of reconfigurable cell in Mλ2

Datapath width in bits

frepl 4 8 16 32

1 1.754 3.622 9.077 25.931
2 2.064 4.303 9.477 26.407
4 2.787 5.416 12.680 31.309
8 3.950 8.512 17.930 42.526

the auxiliary function minarea(s), which chooses the more area-efficient
implementation of either registers or SRAM memory for a given storage
capacity s, i. e.

minarea(s) := min
(
αFF(s), αSRAM(s)

)
. (6.9)

Reconfigurable array

The reconfigurable array is composed of a 4×4 array of reconfigurable
cells. The number of reconfigurable cells (ncell) is therefore 16. We have
determined the area of an individual cell featuring a single register set
(Acell) through RTL synthesis using a standard cell library for a 0.25µm
UMC CMOS process maintained by Virtual Silicon [179]. For the syn-
thesis, we employed the Synopsys Design Compiler tool suite [164]. If
the datapath registers are replicated, the additional area depends on
the replication factor (frepl), the number of registers within an individ-
ual cell (nreg), and the register width in bits (wreg).

We have synthesized various configurations of the reconfigurable cell
varying the datapath width and the number of replicated datapath reg-
isters. Table 6.6 lists the synthesis results. If we compare the synthesis
results with the area model, we observe that for a replication factor of 2
the results are accurate, while for higher replication factors the model
underestimates the chip area. The difference can be explained by the
neglected routing overhead for the additional register planes, which is
more significant for higher replication factors.

 Chapter 6: Experiments and Results

Configuration memory

For simplicity reasons, the configuration memory is considered as a self-
contained building block. In an actual silicon implementation, however,
the configuration memory is most likely to be distributed over the re-
configurable array in order to have the configuration bits located phys-
ically near the reconfigurable cells. The configuration memory holds a
certain number of physical contexts (c). The size of a configuration in
bits is denoted scfg. Since we deal with rather small configuration sizes,
we assume that the configuration memory is implemented with latches
rather than in SRAM technology.

FIFO buffer

The area of a FIFO buffer depends on the FIFO size in words (sFIFO)
and the data width (wFIFO), which ranges in our experiments from 4
to 32 bits. Consequently, we have to cover a rather large range in terms
of storage capacity and it is not a priori clear, which implementation is
most area efficient (registers or SRAM). For this reason, we make use
of the minarea() function, which selects the more area-efficient solution
of either registers (built from flip-flops) or SRAM.

Hardware context sequencer

The hardware context sequencer consists of the program store and the
sequence program counter (SPC). The program store is characterized
by the number of sequencer instructions it holds (nCStore) and the in-
struction width in bits (wCStore). As with the FIFO buffers we choose
the more area-efficient solution comparing register and SRAM imple-
mentations. The SPC is implemented as a register of a certain bit width
(wSPC), which corresponds to the number of instructions in the pro-
gram store. We assume a program store holding 64 32-bit instructions
and, thus, employ a 6-bit wide SPC.

Coprocessor register file

We also incorporate the area of the coprocessor registers that are phys-
ically implemented and not covered by other area models. We consider
the bit widths of the cycle count register (wCC), the context select
register (wCS) and the context sequencer status register (wCSS). We
assume a 32-bit cycle count and a 16-bit context select register. The
context sequencer status register consists of a single bit.

6.4. Chip Area 

6.4.3. Results and Discussion

Figures 6.8 and 6.9 depict the results of the area estimation as a func-
tion of the FIFO buffer size (shown on the horizontal axis) and the
system configuration. Figure 6.8 assumes an 8-bit RPU datapath, Fig-
ure 6.9 a 16-bit RPU datapath. Tables 6.7 and 6.8 list the detailed area
figures.

The area figures show the quantitative impact of the design parame-
ters such as FIFO buffer size, register replication and multiple contexts.
We make the following observations, particularly with reference to the
RPUs with a 16-bit datapath:

• Integrating eight physical contexts instead of a single context re-
sults in an additional area requirement of 46.6 Mλ2. Comparing
the single-context, shared-register-set RPU featuring 128-word
FIFO buffers with its 8-context counterpart reveals an area in-
crease of 21%.

• Full register replication, i. e. in this case eight times replicated
registers, results in an additional area requirement of 60.0 Mλ2.
For a single-context RPU with 128-word FIFO buffers this con-
stitutes an area increase of 27%.

• Increasing the FIFO buffer size from 128 to 1K words, results in
an additional area requirement of 82.4 Mλ2. For a single-context
RPU featuring a shared register set this represents an area in-
crease of 37%.

For a selection of RPU architectures, Figure 6.10 illustrates the area
breakdown, which reveals the relative area contributions of the major
building blocks. The four selected RPUs all feature a 16-bit datapath
and incorporate 512-word FIFOs. In all cases, the reconfigurable array
is the major area contributor, followed by the FIFO buffers. The contri-
bution of the coprocessor registers, on the other hand, can be neglected
in the current RPU implementations. The pie charts also illustrate the
relative increase in the RPU area for

1. employing an 8-context RPU instead of a single-context RPU (left
versus right diagrams), as well as

2. fully replicating the datapath registers (upper versus lower dia-
grams).

 Chapter 6: Experiments and Results

64 128 256 512 1K

100

150

200

250

300

350

400

FIFO size in words

R
P

U
 a

re
a

in
 M

λ2

Dedicated register sets
Shared register set

1−context RPU
2−context RPU
4−context RPU
8−context RPU

Figure 6.8. Area of the 8-bit datapath RPUs

6.4. Chip Area 

64 128 256 512 1K

100

150

200

250

300

350

400

FIFO size in words

R
P

U
 a

re
a

in
 M

λ2

Dedicated register sets
Shared register set

1−context RPU
2−context RPU
4−context RPU
8−context RPU

Figure 6.9. Area of the 16-bit datapath RPUs

 Chapter 6: Experiments and Results

Table 6.7. Area figures of the 8-bit datapath RPUs (cf. Figure 6.8)

Register
set

RPU
contexts

RPU area in Mλ2

FIFO size in words

64 128 256 512 1024

Shared 1 101.1 105.7 113.1 127.8 150.6
2 106.9 111.5 118.8 133.5 156.4
4 118.3 122.9 130.3 145.0 167.8
8 141.3 145.9 153.2 167.9 190.8

Dedicated 1 131.1 135.7 143.1 157.8 180.6
2 136.9 141.5 148.8 163.5 186.4
4 148.3 152.9 160.3 175.0 197.8
8 171.3 175.9 183.2 197.9 220.8

Table 6.8. Area figures of the 16-bit datapath RPUs (cf. Figure 6.9)

Register
set

RPU
contexts

RPU area in Mλ2

FIFO size in words

64 128 256 512 1024

Shared 1 215.8 223.1 237.8 260.6 305.5
2 222.4 229.8 244.4 267.3 312.2
4 235.7 243.1 257.8 280.6 325.5
8 262.3 269.7 284.4 307.2 352.1

Dedicated 1 275.7 283.1 297.8 320.6 365.5
2 282.4 289.8 304.4 327.3 372.2
4 295.7 303.1 317.8 340.6 385.5
8 322.3 329.7 344.4 367.2 412.1

6.4. Chip Area 

70%

3%

23%

4%< 1%

Total area:
260.6 Mλ2

(a) Shared register set / 1 context

59%
17%

20%

4%< 1%

Total area:
307.2 Mλ2

(b) Shared register set / 8 contexts

75%

2%

19%

4%< 1%

Total area:
320.6 Mλ2

(c) Dedicated register sets / 1 context

66%

14%

16%

3%< 1%

Total area:
367.2 Mλ2

(d) Dedicated register sets / 8 contexts

Reconfigurable array

Coprocessor registersConfiguration memory

FIFO buffers

Context sequencer

Figure 6.10. Area breakdown for a selection of 16-bit datapath RPUs (with

512-word FIFOs), revealing the relative area contributions of the major build-

ing blocks

 Chapter 6: Experiments and Results

The results show again the importance of the system-level evalua-
tion approach. As an example, if our starting point is a single-context,
shared-register-set RPU with 128-word FIFOs and we can afford to em-
ploy some more chip area, say 60 Mλ2, Figure 6.9 shows that we can
then either switch to

– an RPU with fully replicated registers,
– an 8-context RPU, or
– a 4-context RPU with 256-word FIFOs.

Comparing the results for the 8-bit datapath RPUs with the re-
sults for the 16-bit datapath RPUs, the picture changes. The propor-
tional impact of providing multiple contexts and replicating the data-
path registers changes in comparison to each other. In contrast to the
16-bit case, the single-context, dedicated-register-sets RPUs with 8-bit
datapath show lower area requirements than their 8-context, shared-
register-set counterparts. Consequently, we observe that the datapath
width is an important design parameter as well and cannot be neglected
in the trade-off considerations.

6.5. Area–Speed Trade-offs

In order to compare the various processor architectures in terms of
computational power and area requirements, it is helpful to be able
to relate the performance and area figures to one another. To perform
such comparisons at the system level, besides the RPU we also need to
consider the CPU core. To this end, we assume a hypothetical embedded
CPU core operating at 100 MHz with an area requirement of 1500Mλ2

(cf. Table 3.1).
Figure 6.11 illustrates the evaluation results as a function of the

execution time (on the horizontal axis) and the overall area of the
hybrid architectures with an attached 16-bit RPU. Results are shown
for the same RPU architectures as in the previous performance and
area figures. Table 6.9 provides the detailed area and execution time
numbers.

The figure allows the Pareto-optimal design points to be deter-
mined. In this context, a design point is considered Pareto-optimal if
there exists no other design point that performs better on both criteria,
i. e. area requirements and execution time. Assuming no further con-
straints, such as for example a maximal latency, we make the following
observations:

6.5. Area–Speed Trade-offs 

• The 8-context RPUs with dedicated registers are all Pareto-
optimal.

• Many of the dedicated-register-sets RPUs are dominated by
shared-register-set RPUs. This holds in particular true for de-
creasing FIFO sizes.

• The single-context RPUs with shared register set become Pareto-
optimal for FIFO sizes smaller than 512 words.

A common metric for the efficiency of a computing architecture
is the area–time product [49, 150, 193]. This metric is similar to the
(inverse) throughput but incorporates the area costs as well. Figure 6.12
shows the results of the area–time product for the architectures with
16-bit RPU as a function of the FIFO size (on the horizontal axis).
Table 6.10 lists the detailed results. We make the following observations:

• The architectures incorporating an 8-context RPU with dedicated
register sets perform the best for any FIFO buffer size.

• For these architectures, the RPU incorporating 128-word FIFO

buffers is the optimum with respect to the area–time product.
For all other cases, the optimum is not apparent and lies higher
than 1K-word FIFOs.

• The single-context, dedicated-register-sets RPUs perform better
than most multi-context, shared-register-set RPUs. The only ex-
ceptions are the 8-context RPUs incorporating FIFOs of size 128
and 256. This emphasizes the observation again that for the FIR

filter example in our case study, register replication is in many
cases more beneficial than using multiple contexts.

In comparison, the area–time product for the stand-alone hypotheti-
cal CPU is 1659.8 Mλ2s. Thus, the coupling of an RPU to the CPU

improves the area–time product up to a factor of 7.7.

 Chapter 6: Experiments and Results

10 15 20 25 30 35 40 45

1720

1740

1760

1780

1800

1820

1840

1860

1880

1900

1920

Execution time in million cycles

O
ve

ra
ll

re
co

nf
ig

ur
ab

le
 p

ro
ce

ss
or

 a
re

a
in

 M
λ2

FIFO size in words
[1K,512,256,128,64]

Dedicated register sets
Shared register set

1−context RPU
2−context RPU
4−context RPU
8−context RPU

Figure 6.11. Area requirements versus execution time for processor ar-

chitectures considering a hypothetical embedded CPU core and an attached

16-bit RPU (only the region of interest is shown)

6.5. Area–Speed Trade-offs 

T
a
b
le

6
.9

.
A

re
a

re
q
u
ir

em
en

ts
a
n
d

ex
ec

u
ti

o
n

ti
m

e
fi
g
u
re

s
fo

r
p
ro

ce
ss

o
r

a
rc

h
it

ec
tu

re
s

w
it

h
a

h
y
p
o
th

et
ic

a
l

em
b
ed

d
ed

C
P
U

co
re

a
n
d

a
n

a
tt

a
ch

ed
1
6
-b

it
R

P
U

(c
f.

F
ig

u
re

6
.1

1
)

R
eg

is
te

r
se

t
R

P
U

co
n
te

x
ts

A
re

a
in

M
λ
2

/
E

x
ec

u
ti
o
n

ti
m

e
in

m
il
li
o
n

cy
cl

es

F
IF

O
si

ze
in

w
o
rd

s

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

S
h
a
re

d
1

1
7
1
5
.8

/
3
3
2
.6

4
1
7
2
3
.1

/
4
5
.4

5
1
7
3
7
.8

/
2
5
.1

4
1
7
6
0
.6

/
1
8
.7

7
1
8
0
5
.5

/
1
6
.1

4
2

1
7
2
2
.4

/
3
0
5
.2

1
1
7
2
9
.8

/
4
2
.7

1
1
7
4
4
.4

/
2
4
.1

5
1
7
6
7
.3

/
1
8
.3

5
1
8
1
2
.2

/
1
5
.9

5
4

1
7
3
5
.7

/
2
5
0
.0

2
1
7
4
3
.1

/
3
7
.2

4
1
7
5
7
.8

/
2
2
.2

0
1
7
8
0
.6

/
1
7
.5

0
1
8
2
5
.5

/
1
5
.5

5
8

1
7
6
2
.3

/
1
1
2
.7

2
1
7
6
9
.7

/
2
3
.6

0
1
7
8
4
.4

/
1
7
.3

5
1
8
0
7
.2

/
1
5
.3

9
1
8
5
2
.1

/
1
4
.5

6

D
ed

ic
a
te

d
1

1
7
7
5
.7

/
3
5
.9

9
1
7
8
3
.1

/
2
3
.8

9
1
7
9
7
.8

/
1
7
.7

7
1
8
2
0
.6

/
1
4
.6

7
1
8
6
5
.5

/
1
3
.1

6
2

1
7
8
2
.4

/
3
2
.9

9
1
7
8
9
.8

/
2
2
.3

7
1
8
0
4
.4

/
1
7
.0

0
1
8
2
7
.3

/
1
4
.3

0
1
8
7
2
.2

/
1
2
.9

7
4

1
7
9
5
.7

/
2
6
.9

6
1
8
0
3
.1

/
1
9
.3

2
1
8
1
7
.8

/
1
5
.4

9
1
8
4
0
.6

/
1
3
.5

5
1
8
8
5
.5

/
1
2
.6

0
8

1
8
2
2
.3

/
1
1
.9

5
1
8
2
9
.7

/
1
1
.7

9
1
8
4
4
.4

/
1
1
.7

2
1
8
6
7
.2

/
1
1
.6

8
1
9
1
2
.1

/
1
1
.6

7

 Chapter 6: Experiments and Results

64 128 256 512 1K
200

250

300

350

400

450

500

550

600

650

FIFO size in words

A
re

a−
tim

e
pr

od
uc

t i
n

M
λ2 s

Dedicated register sets
Shared register set

1−context RPU
2−context RPU
4−context RPU
8−context RPU

Figure 6.12. Area–time product for processor architectures with a hy-

pothetical embedded CPU core and an attached 16-bit RPU operating at

100MHz (only the region of interest is shown)

6.5. Area–Speed Trade-offs 

Table 6.10. Area–time product for processor architectures with a hypothet-

ical embedded CPU core and an attached 16-bit RPU operating at 100MHz

(cf. Figure 6.12)

Register
set

RPU
contexts

Area–time product in Mλ2s

FIFO size in words

64 128 256 512 1024

Shared 1 5707.3 783.1 436.9 330.4 291.5
2 5256.9 738.8 421.3 324.2 289.0
4 4339.6 649.1 390.2 311.6 283.8
8 1986.5 417.7 309.6 278.1 269.7

Dedicated 1 639.0 425.9 319.4 267.1 245.5
2 588.0 400.4 306.8 261.3 242.8
4 484.1 348.4 281.5 249.4 237.5
8 217.8 215.7 216.2 218.2 223.1

 Chapter 6: Experiments and Results

7
Conclusion

7.1. Summary and Achievements

In the last decade, reconfigurable computing has gained increasing in-
terest in the research community. Reconfigurable architectures promise
to become a valuable alternative to conventional computing devices
such as processors and ASICs. This work focuses on hybrid, dynami-
cally reconfigurable processors that combine a CPU core with a recon-
figurable processing unit. The objective of this work is the quantitative
evaluation of the architectural trade-offs involved in the design of such
reconfigurable architectures – in particular with respect to computa-
tional performance and area requirements. The major contributions
are the following:

• We have proposed a system-level evaluation methodology for hy-
brid reconfigurable processors. The methodology consists of an
architecture model, a cycle-accurate co-simulation environment
and a parameterized area model. The evaluation approach en-
ables us to study the system-level impact of the architectural
design features on the computational performance and the area
requirements.

 Chapter 7: Conclusion

• To measure the computational performance, we have developed a
co-simulation framework for hybrid reconfigurable processors that
attach a reconfigurable processing unit to the coprocessor port of
a standard CPU core. The co-simulation framework integrates a
C and a VHDL simulator and allows us to gather cycle-accurate
performance statistics for the overall reconfigurable system.

• To estimate the area requirements of the hybrid reconfigurable
processor architectures, we have elaborated a parameterized area
model. For the RPU, we combine area models of architectural
building blocks, such as registers or SRAM memory, with data
from VLSI synthesis. Together with data found in the literature
regarding CPU area, this approach allows us to estimate the over-
all chip area in a rather straight-forward way.

• In contrast to most work on reconfigurable processors, we aim at
the embedded and not the general-purpose computing domain.
To represent a typical embedded workload, we have assembled
an application pool denoted MCCmix from the fields of multime-
dia, cryptography and communications. We have analyzed the ap-
plications in order to quantitatively characterize the application
domain and to draw conclusions for the design of reconfigurable
processor technology.

• We have presented a hybrid, dynamically reconfigurable proces-
sor architecture that aims at data-streaming applications. The ar-
chitecture couples a multi-context, coarse-grained reconfigurable
array to a CPU core as a coprocessor and allows for fast switching
of the active context. We have described hardware virtualization
which abstracts limited reconfigurable hardware resources as the
envisioned programming model.

• As a case study, we have implemented FIR filters of arbitrary or-
der on different configurations of the proposed RPU architecture.
To this end, we have made use of hardware virtualization. We
have evaluated different system configurations and investigated
a number of RPU design features – such as multiple contexts,
register replication, FIFO buffer size and context scheduling in
hardware – in terms of computational performance and chip area.

7.2. Conclusions 

7.2. Conclusions

We draw the following conclusions:

1. The results achieved illustrate the importance of the system-level
evaluation approach. Without a system-level methodology, the
architectural trade-offs involved in reconfigurable processor de-
sign could not be satisfactorily analyzed. The cycle-accurate co-
simulation framework developed has shown itself to be a valuable
tool to investigate the computational performance of hybrid re-
configurable architectures. The estimation approach for the over-
all chip area has proven convenient for gathering system-level
area figures. Further investigations of both the currently neglected
parts of the system and the adjustment of the model to the results
of VLSI synthesis would allow us to increase the accuracy.

2. The application analysis of the assembled embedded workload
has revealed that the general-purpose and embedded computing
domains feature significantly different characteristics. Within the
embedded domain, the three application groups considered (mul-
timedia, cryptography, and communications) show distinctive re-
quirements as well and hence emphasize different architectural
features of a reconfigurable processor. Consequently, it is impor-
tant to account for the peculiarities of the targeted application
field when designing reconfigurable processor technology.

3. The results from the case study show that hardware virtualiza-
tion is a powerful concept and that multi-context features can
successfully support this programming model. The results show
furthermore that hybrid multi-context architectures have the po-
tential to yield significant speedups. In the FIR filter case, we
have achieved speedups of up to an order of magnitude over the
stand-alone CPU by employing an RPU that comprises a 4×4 ar-
ray of reconfigurable cells. Specifically, we have seen that in most
cases register replication delivers more benefit than multiple con-
texts. Another insight is that the size of the FIFO buffers used
for transferring data between CPU and RPU has a major impact.
A rather surprising result is that the benefit of using a hardware
context sequencer is rather moderate. The reason for this is that
our coarse-grained architecture requires only a small amount of
configuration data and, thus, the overhead of a context switch is
rather small.

 Chapter 7: Conclusion

7.3. Outlook

There are several starting points for further research, which we briefly
discuss in the following paragraphs.

The architecture model presented makes the assumption that the
RPU is attached to the CPU via a coprocessor interface. Our experi-
ments have revealed that the integration of a dedicated RPU memory
port to the main memory promises to be a valuable extension. This
would relieve the CPU load and increase the bandwidth. To achieve
such a system integration, the co-simulation framework has to be ex-
tended and an appropriate memory controller integrated. Furthermore,
the potential data consistency problem which might arise has to be ad-
dressed.

Regarding the RPU, a number of design features are worth fur-
ther investigation, including larger reconfigurable arrays consisting for
example of 8×8 or 16×16 cells, the consideration of context predic-
tion and prefetching techniques, and the implementation of applica-
tions that require more complex context sequences and hence require
the RPU to provide control flow features. A further promising option is
the incorporation of more memory as well as a programmable memory
controller into the RPU. This would allow for more complex memory
access patterns and open new application fields besides data-streaming
applications. In a larger context, the potential of the hardware virtu-
alization programming model could be explored further by extending
the RPU to several physical arrays arranged in a macro-pipeline.

The proposed methodology enables the designer to evaluate recon-
figurable architectures in terms of computational performance and chip
area. For the targeted domain of embedded computing systems, how-
ever, further optimization objectives are of interest such as the energy
consumption. Consequently, the integration of an energy or power sim-
ulator would be a valuable extension to the evaluation methodology.
On the CPU side, a number of approaches exist. An obvious option
in our case are SimpleScalar extensions like Wattch, PowerAnalyzer or
SimplePower. However, these simulators are currently in a development
stage and, in our experience, do not yet operate reliably. On the RPU

side, a power model would have to be developed. Approaches at several
levels of abstractions are viable, from coarse activity models to detailed,
cycle-accurate switching models.

7.3. Outlook 

The simulation framework developed relies so far on a library-based
approach to generate code for the CPU and reconfigurable processing
unit. Basic functions have been constructed that exploit the recon-
figurable array. These functions are provided as a library to the pro-
grammer. This represents a common approach in reconfigurable sys-
tems. However, based on our simulation framework, more advanced
techniques could be explored. A currently very active research topic is
compilers that automatically extract runtime-intensive functions from
high-level language programs and synthesize code that targets the hy-
brid reconfigurable processor.

The problem of finding an optimal architecture in terms of compu-
tational power, chip area, energy consumption, etc. can be seen as a
multi-objective optimization problem. As a long-term vision, we would
like to apply more formal approaches by using stochastic search pro-
cedures, e. g. evolutionary algorithms, in order to find Pareto-optimal
design points. For stand-alone CPUs the first approaches in this direc-
tion already exist [3, 96, 159]. To achieve an automated framework for
the overall hybrid reconfigurable processor, however, advances in au-
tomatic code generation, i. e. compilers, and appropriate simulator or
estimation extensions, such as a power simulator, are required.

 Chapter 7: Conclusion

Glossary

Symbols

αFF(s) area of flip-flop-based registers with storage capacity s

αLatch(s) area of latch-based registers with storage capacity s

αSRAM(s) area of on-chip SRAM with storage capacity s

λ half the minimum feature size of a process technology
µcmiss average cache miss rate over a set of applications
µiclass(c) average relative issuing frequency of instruction class c

over a set of applications
µTi average cumulative relative run time of function fi over

a set of applications
arout routing area factor of the RPU
A set of applications
AArray area of the reconfigurable array
ABBb

area of building block b

Acell area of a reconfigurable cell without replicated registers
ACMem area of the configuration memory
ACRF area of the coprocessor register file
ACSeq area of the hardware context sequencer
AFIFO area of a FIFO buffer
ARPU area of the RPU
c number of contexts the configuration memory can hold
f1, f2, fi most, 2nd most, ith most compute-intensive

(dominating) program function
f123 all program functions except the three dominating ones
ficlass(c) relative issuing frequency of instruction class c

fitype(i) relative issuing frequency of instruction type i

frepl replication factor of the datapath registers
hi filter coefficients
H(z) filter transfer function
Ic set of instructions forming instruction class c

 Glossary

minarea(s) area requirement of the most efficient technology for
storage capacity s

nA number of applications in A
ncaccess total number of cache accesses
ncell number of cells constituting the reconfigurable array
ncmiss number of cache misses
nCStore number of instructions the program store can hold
ncycles total number of execution cycles
nfct(f) number of cycles spent in program function f

ninst total instruction count of an application
nitype(i) absolute issuing frequency of instruction type i

nreg number of datapath registers in a reconfigurable cell
rcmiss cache miss rate
scfg configuration size in bits
sFIFO size of a FIFO buffer in words
tfct(f) relative run time spent in program function f

Tfct(f) cumulative relative run time of program function f

wCC width of the cycle count register in bits
wCS width of the context select register in bits
wCSS width of the context sequencer status register in bits
wCStore width of a context sequencer instruction in bits
wFIFO width of a FIFO buffer in bits
wreg width of the datapath registers in bits
wSPC width of the sequence program counter (SPC) in bits

Glossary 

Acronyms and Abbreviations

ADPCM adaptive differential pulse code modulation
AES advanced encryption standard
ALU arithmetic and logic unit
ASIC application-specific IC

BTB branch target buffer
CCITT International Consultative Committee on Telecommuni-

cations and Telegraphy
CINT95 SPEC95 integer benchmark suite
CMOS complementary metal oxide semiconductor
COM communications
CPU central processing unit
CRF coprocessor register file
CRY cryptography
CSoC configurable system on a chip
CTR compile-time reconfiguration
DES data encryption standard
DL1 L1 data cache
DL2 L2 data cache
DSP digital signal processor or processing
DTLB data TLB

EEMBC Embedded Microprocessor Benchmark Consortium
(www.eembc.org)

FIFO first-in, first-out
FIR finite impulse response
FP floating point
FPGA field-programmable gate array
FU functional unit
G standard prefix for billion (109) or giga
GCC GNU C compiler
GDB GNU project debugger
GNU recursive acronym for “GNU’s Not Unix”; the Free

Software Foundation’s project to provide a freely
distributable replacement for Unix (www.gnu.org)

http://www.eembc.org
http://www.gnu.org

 Glossary

GP general purpose
GSM global system for mobile communications
IC integrated circuit
ID identification
IDEA international data encryption algorithm
IFQ instruction fetch queue
IIR infinite impulse response
IL1 L1 instruction cache
IL2 L2 instruction cache
I/O input/output
IP 1 Internet protocol; 2 intellectual property
IPx input port x

ISA instruction set architecture
ITLB instruction TLB

JPEG Joint Photographic Experts Group (www.jpeg.org)
k decimal thousand (1000)
K binary thousand (1024)
Kbit kilobit
Kbyte kilobyte
L1 first-level or primary (cache)
L2 second-level or secondary (cache)
LSB least significant bit
LSQ load/store queue
LUT look-up table
M standard prefix for million or mega
MCCmix set of embedded benchmark programs from the fields of

multimedia, cryptography, and communications
MIPS 1 million instructions per second;

2 MIPS Technologies Inc. (www.mips.com)
MM multimedia
MPEG Moving Picture Experts Group

(www.chiariglione.org/mpeg)
Mbit megabit
Mbyte megabyte

http://www.jpeg.org
http://www.mips.com
http://www.chiariglione.org/mpeg

Glossary 

NIST U.S. National Institute of Standards and Technology
(www.nist.gov)

OPx output port x

PCI peripheral component interconnect
PGP pretty good privacy; cryptography program
PISA portable instruction set architecture
PLD programmable logic device
RAM random access memory
RAS return address stack
RFU reconfigurable functional unit
RISC reduced instruction set computer
RPU reconfigurable processing unit
RSA cryptography algorithm named after Ronald Rivest,

Adi Shamir and Leonard Adleman
RTL register–transfer level
RTR run-time reconfiguration
RUU register update unit
SPC sequence program counter
SPEC Standard Performance Evaluation Corporation

(www.spec.org)
SPEC95 general-purpose benchmark suite by SPEC

SRAM static RAM
SoC system on a chip
SoPC system on a programmable chip
TLB translation look-aside buffer
VHDL VHSIC hardware description language
VHSIC very high speed integrated circuit
VLIW very long instruction word
VLSI very large-scale integration

http://www.nist.gov
http://www.spec.org

 Glossary

Bibliography

[1] A. Abnous, C. Christensen, J. Gray, J. Lenell, A. Naylor, and
N. Bagherzadeh. VLSI design of the Tiny RISC microprocessor.
In Proc. 14th IEEE Custom Integrated Circuits Conf. (CICC),
pp. 30.4.1–30.4.5, 1992. 15

[2] A. Abnous, K. Seno, Y. Ichikawa, M. Wan, and J. Rabaey. Eval-
uation of a low-power reconfigurable DSP architecture. In Proc.
5th Reconfigurable Architectures Workshop (RAW), vol. 1388 of
Lecture Notes in Computer Science, pp. 55–60. Springer-Verlag,
1998. 8

[3] S. Agarwal, E. Chan, B. Liblit, and C. J. Lin. Processor character-
istic selection for embedded applications via genetic algorithms.
CS252 semester project report, EECS, UC Berkeley, Dec. 1998.
Available at http://www.cs.berkeley.edu/∼liblit/darwin/. 121

[4] A. A. Aggarwal and D. M. Lewis. Routing architectures for hier-
archical field programmable gate arrays. In Proc. 12th Int. Conf.
on Computer Design (ICCD), pp. 475–478, 1994. 20

[5] C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami. Determining
the optimum extended instruction-set architecture for application
specific reconfigurable VLIW CPUs. In Proc. 12th IEEE Int.
Workshop on Rapid System Prototyping (RSP), pp. 50–56, 2001.
22

[6] Altera. Stratix Device Handbook (Vol. 1–3), Oct. 2003. Available
at http://www.altera.com/. 18, 19, 20

[7] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, and
G. Snider. Teramac – configurable custom computing. In Proc.
3rd IEEE Workshop on FPGAs for Custom Computing Machines
(FCCM), pp. 32–38, 1995. 16

[8] D. Andrews, D. Niehaus, and P. Ashenden. Programming models
for hybrid CPU/FPGA chips. IEEE Computer, 37(1):118–120,
Jan. 2004. doi:10.1109/mc.2004.1260732. 21

http://www.cs.berkeley.edu/~liblit/darwin/
http://www.altera.com/

 Bibliography

[9] U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz, L. Thiele,
and G. Tröster. A systematic approach to the design of dis-
tributed wearable systems. IEEE Trans. on Computers, to be
published. 51

[10] J. M. Arnold, D. A. Buell, and E. G. Davis. Splash 2. In Proc. 4th
ACM Symp. on Parallel Algorithms and Architectures (SPAA),
pp. 316–322, 1992. doi:10.1145/140901.141896. 8, 16

[11] P. M. Athanas and H. F. Silverman. Processor reconfiguration
through instruction-set metamorphosis. IEEE Computer, 26(3):
11–18, Mar. 1993. doi:10.1109/2.204677. 7

[12] E. Atzori, S. M. Carta, and L. Raffo. 44.6% processing cy-
cles reduction in GSM voice coding by low-power reconfigurable
co-processor architecture. Electronics Letters, 38(24):1524–1526,
Nov. 2002. doi:10.1049/el:20021019. 41

[13] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infras-
tructure for computer system modeling. IEEE Computer, 35(2):
59–67, Feb. 2002. doi:10.1109/2.982917. 22, 27, 30, 36

[14] J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua, M. Taylor,
J. Kim, S. Devabhaktuni, and A. Agarwal. The RAW benchmark
suite: Computation structures for general purpose computing. In
Proc. 5th IEEE Symp. on Field-Programmable Custom Comput-
ing Machines (FCCM), pp. 134–143, 1997. 45

[15] F. Barat and R. Lauwereins. Reconfigurable instruction set pro-
cessors: A survey. In Proc. 11th IEEE Int. Workshop on Rapid
System Prototyping (RSP), pp. 168–173, 2000. 14

[16] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and
M. Weinhardt. PACT XPP – A self-reconfigurable data process-
ing architecture. Journal of Supercomputing, 26(2):167–184, Sept.
2003. doi:10.1023/a:1024499601571. 18, 68

[17] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design
techniques for system-level dynamic power management. IEEE
Trans. on Very Large Scale Integration (VLSI) Systems, 8(3):
299–316, June 2000. doi:10.1109/92.845896. 41

Bibliography 

[18] L. Benini, G. De Micheli, and E. Macii. Designing low-power
circuits: Practical recipes. IEEE Circuits and Systems Mag., 1
(1):6–25, 2001. doi:10.1109/7384.928306. 41

[19] V. Betz and J. Rose. How much logic should go in an FPGA
logic block? IEEE Design & Test of Computers, 15(1):10–15,
Jan.–Mar. 1998. doi:10.1109/54.655177. 18

[20] J.-L. Beuchat, J.-O. Haenni, and E. Sanchez. Hardware reconfig-
urable neural networks. In Proc. 5th Reconfigurable Architectures
Workshop (RAW), vol. 1388 of Lecture Notes in Computer Sci-
ence, pp. 91–98. Springer-Verlag, 1998. 7

[21] R. Bittner and P. Athanas. Wormhole run-time reconfiguration.
In Proc. 5th ACM Int. Symp. on Field-Programmable Gate Ar-
rays (FPGA), pp. 79–85, 1997. doi:10.1145/258305.258315. 20

[22] K. Bondalapati and V. K. Prasanna. Reconfigurable computing
systems. Proceedings of the IEEE, 90(7):1201–1217, July 2002.
doi:10.1109/jproc.2002.801446. 14

[23] B. Bosi, G. Bois, and Y. Savaria. Reconfigurable pipelined 2-
D convolvers for fast digital signal processing. IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, 7(3):299–308, Sept.
1999. doi:10.1109/92.784091. 7, 21

[24] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. In Proc.
27th Int. Symp. on Computer Architecture (ISCA), pp. 83–94,
2000. doi:10.1145/339647.339657. 42

[25] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva,
A. Buyuktosunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and
P. W. Cook. Power-aware microarchitecture: Design and model-
ing challenges for next-generation microprocessors. IEEE Micro,
20(6):26–44, Nov./Dec. 2000. doi:10.1109/40.888701. 42

[26] S. Brown and J. Rose. FPGA and CPLD architectures: A tutorial.
IEEE Design & Test of Computers, 13(2):42–57, 1996. doi:10.
1109/54.500200. 4

[27] D. Burger and T. M. Austin. The SimpleScalar tool set, version
2.0. Technical Report #1342, Computer Sciences Dept., Univ. of
Wisconsin–Madison, June 1997. 27, 73

 Bibliography

[28] N. G. Busa and C. R. Sala. A run-time word-level reconfigurable
coarse-grain functional unit for a VLIW processor. In Proc. 15th
Int. Symp. on System Synthesis (ISSS), pp. 44–49, 2002. 22

[29] T. J. Callahan, J. R. Hauser, and J. Wawrzynek. The Garp
architecture and C compiler. IEEE Computer, 33(4):62–69, Apr.
2000. doi:10.1109/2.839323. 14, 15, 18, 22

[30] T. J. Callahan and J. Wawrzynek. Instruction-level parallelism
for reconfigurable computing. In Proc. 8th Int. Workshop on Field
Programmable Logic and Applications (FPL), vol. 1482 of Lecture
Notes in Computer Science, pp. 248–257. Springer-Verlag, 1998.
22

[31] H. C. Card, G. K. Rosendahl, D. K. McNeill, and R. D. McLeod.
Competitive learning algorithms and neurocomputer architec-
ture. IEEE Trans. on Computers, 47(8):847–858, Aug. 1998.
doi:10.1109/12.707586. 7

[32] J. M. P. Cardoso. On combining temporal partitioning and shar-
ing of functional units in compilation for reconfigurable architec-
tures. IEEE Trans. on Computers, 52(10):1362–1375, Oct. 2003.
doi:10.1109/tc.2003.1234532. 7

[33] J. E. Carrillo Esparza and P. Chow. The effect of reconfigurable
units in superscalar processors. In Proc. 9th ACM Int. Symp.
on Field-Programmable Gate Arrays (FPGA), pp. 141–150, 2001.
doi:10.1145/360276.360328. 14, 18, 22, 29

[34] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. De-
Hon. Stream computations organized for reconfigurable execution
(SCORE). In Proc. 10th Int. Conf. on Field Programmable Logic
and Applications (FPL), vol. 1896 of Lecture Notes in Computer
Science, pp. 605–614. Springer-Verlag, 2000. 7, 68

[35] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos. Data
driven signal processing: An approach for energy efficient com-
puting. In Proc. Int. Symp. on Low Power Electronics and Design
(ISLPED), pp. 347–52, 1996. 41

[36] Chunho Lee, M. Potkonjak, and W. H. Mangione-Smith. Me-
diaBench: A tool for evaluating and synthesizing multimedia and
communications systems. In Proc. 30th Int. Symp. on Microar-
chitecture (MICRO-30), pp. 330–335, 1997. 44, 45, 46

Bibliography 

[37] K. Compton and S. Hauck. Reconfigurable computing: A survey
of systems and software. ACM Computing Surveys, 34(2):171–
210, June 2002. doi:10.1145/508352.508353. 14, 20, 21

[38] J. Cong and S. Xu. Technology mapping for FPGAs with
embedded memory blocks. In Proc. 6th ACM Int. Symp. on
Field-Programmable Gate Arrays (FPGA), pp. 179–188, 1998.
doi:10.1145/275107.275138. 19

[39] J. J. Cong and S. Xu. Performance-driven technology mapping for
heterogeneous FPGAs. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 19(11):1268–1281, Nov. 2000.
doi:10.1109/43.892851. 19

[40] T. M. Conte, K. N. Menezes, S. W. Sathaye, and M. C. Toburen.
System-level power consumption modeling and tradeoff analysis
techniques for superscalar processor design. IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, 8(2):129–137, Apr. 2000.
doi:10.1109/92.831433. 42

[41] M. Cummings and S. Haruyama. FPGA in the software radio.
IEEE Communications Mag., 37(2):108–112, Feb. 1999. doi:
10.1109/35.747258. 8

[42] A. Curiger, H. Bonnenberg, R. Zimmermann, N. Felber, H. Kaes-
lin, and W. Fichtner. VINCI: VLSI implementation of the new
secret-key block cipher IDEA. In Proc. 15th IEEE Custom Inte-
grated Circuits Conf. (CICC), pp. 15.5.1–15.5.4, 1993. 8

[43] J. Daemen and V. Rijmen. The Design of Rijndael, AES – The
Advanced Encryption Standard. Springer-Verlag, 2002. ISBN 3-
540-42580-2. 45, 47

[44] A. Dandalis and V. K. Prasanna. Signal processing using recon-
figurable system-on-chip platforms. In Proc. 1st Int. Conf. on
Engineering of Reconfigurable Systems and Algorithms (ERSA),
pp. 36–42. CSREA Press, 2001. 7

[45] D. Davis, M. Barr, T. Bennett, S. Edwards, J. Harris, I. Miller,
and C. Schanck. A Java development and runtime environment
for reconfigurable computing. In Proc. 5th Reconfigurable Archi-
tectures Workshop (RAW), vol. 1388 of Lecture Notes in Com-
puter Science, pp. 43–48. Springer-Verlag, 1998. 21

 Bibliography

[46] A. DeHon. DPGA-coupled microprocessors: Commodity ICs for
the early 21st century. In Proc. 2nd IEEE Workshop on FPGAs
for Custom Computing Machines (FCCM), pp. 31–39, 1994. 7,
21

[47] A. DeHon. DPGA utilization and application. In Proc. 4th
ACM Int. Symp. on Field-Programmable Gate Arrays (FPGA),
pp. 115–121, 1996. doi:10.1145/228370.228387. 7, 18, 21

[48] A. DeHon. Reconfigurable Architectures for General-Purpose
Computing. PhD thesis, Massachusetts Institute of Technology,
1996. Available at http://www.cs.caltech.edu/∼andre/abstracts/
dehon phd.html. 20

[49] A. DeHon. The density advantage of configurable computing.
IEEE Computer, 33(4):41–49, Apr. 2000. doi:10.1109/2.839320.
20, 111

[50] C. Dick, F. Harris, and M. Rice. FPGA implementation of carrier
synchronization for QAM receivers. Journal of VLSI Signal Pro-
cessing, 36(1):57–71, Jan. 2004. doi:10.1023/b:vlsi.0000008070.
30837.e1. 8

[51] C. Dick and F. J. Harris. Configurable logic for digital commu-
nications: Some signal processing perspectives. IEEE Communi-
cations Mag., 37(8):107–111, Aug. 1999. doi:10.1109/35.783133.
7

[52] T. H. Drayer, W. E. King IV, J. G. Tront, and R. W. Conners.
A modular and reprogrammable real-time processing hardware,
MORRPH. In Proc. 3rd IEEE Workshop on FPGAs for Custom
Computing Machines (FCCM), pp. 11–19, 1995. 16

[53] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An FPGA-
based performance evaluation of the AES block cipher candidate
algorithm finalists. IEEE Trans. on Very Large Scale Integra-
tion (VLSI) Systems, 9(4):545–557, Aug. 2001. doi:10.1109/92.
931230. 8

[54] J. G. Eldredge and B. L. Hutchings. Run-time reconfiguration:
A method for enhancing the functional density of SRAM-based
FPGAs. Journal of VLSI Signal Processing, 12(1):67–86, Jan.
1996. 7

http://www.cs.caltech.edu/~andre/abstracts/dehon_phd.html
http://www.cs.caltech.edu/~andre/abstracts/dehon_phd.html

Bibliography 

[55] R. Enzler, M. Platzner, C. Plessl, L. Thiele, and G. Tröster.
Reconfigurable processors for handhelds and wearables: Appli-
cation analysis. In Reconfigurable Technology: FPGAs and Re-
configurable Processors for Computing and Communications III,
vol. 4525 of Proceedings of SPIE, pp. 135–146, 2001. doi:
10.1117/12.434376. 43

[56] R. Enzler, C. Plessl, and M. Platzner. Co-simulation of a hybrid
multi-context architecture. In Proc. 3rd Int. Conf. on Engineering
of Reconfigurable Systems and Algorithms (ERSA), pp. 174–180.
CSREA Press, 2003. 25

[57] R. Enzler, C. Plessl, and M. Platzner. Virtualizing hardware
with multi-context reconfigurable arrays. In Proc. 13th Int. Conf.
on Field Programmable Logic and Applications (FPL), vol. 2778
of Lecture Notes in Computer Science, pp. 151–160. Springer-
Verlag, 2003. 67

[58] R. Enzler, C. Plessl, and M. Platzner. System-level performance
evaluation of reconfigurable processors. Microprocessors and Mi-
crosystems Journal, to be published. 25

[59] J. Eyre and J. Bier. Independent DSP benchmarks: Methodolo-
gies and results. In Proc. Int. Conf. on Signal Processing Appli-
cations and Technology (ICSPAT), 1999. 44

[60] J. Faura, M. A. Aguirre, J. N. Moreno, P. van Duong, and J. M.
Insenser. FIPSOC: A field programmable system on a chip. In
Proc. 12th Int. Conf. on Design of Circuits and Integrated Sys-
tems (DCIS), pp. 597–602, 1997. 7, 21

[61] J. Faura, C. Horton, P. van Duong, J. Madrenas, M. A. Aguirre,
and J. M. Insenser. A novel mixed signal programmable device
with on-chip microprocessor. In Proc. 19th IEEE Custom Inte-
grated Circuits Conf. (CICC), pp. 103–106, 1997. 21

[62] J. Faura, J. N. Moreno, M. A. Aguirre, P. van Duong, and J. M.
Insenser. Multicontext dynamic reconfiguration and real-time
probing on a novel mixed signal programmable device with on-
chip microprocessor. In Proc. 7th Int. Workshop on Field Pro-
grammable Logic and Applications (FPL), vol. 1304 of Lecture
Notes in Computer Science, pp. 1–10. Springer-Verlag, 1997. 7,
21

 Bibliography

[63] T. Fujii, K.-i. Furuta, M. Motomura, M. Nomura, M. Mizuno, K.-
i. Anjo, K. Wakabayashi, Y. Hirota, Y.-e. Nakazawa, H. Itoh, and
M. Yamashina. A dynamically reconfigurable logic engine with a
multi-context/multi-mode unified-cell architecture. In 46th IEEE
Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech. Papers, pp.
364–365, 1999. 21

[64] K. Furuta, T. Fujii, M. Motomura, K. Wakabayashi, and M. Ya-
mashina. Spatial–temporal mapping of real applications on a
dynamically reconfigurable logic engine (DRLE) LSI. In Proc.
22nd IEEE Custom Integrated Circuits Conf. (CICC), pp. 151–
154, 2000. 21

[65] D. D. Gajski, ed. Silicon Compilation. Addison-Wesley, 1988.
ISBN 0-201-09915-2. 29

[66] V. George and J. M. Rabaey. Low-Energy FPGAs: Architecture
and Design. Kluwer Academic Publishers, 2001. ISBN 0-7923-
7428-2. 20, 42

[67] B. A. Gieseke, R. L. Allmon, D. W. Bailey, B. J. Benschneider,
S. M. Britton, J. D. Clouser, H. R. Fair III, J. A. Farrell, M. K.
Gowan, C. L. Houghton, J. B. Keller, T. H. Lee, D. L. Leibholz,
S. C. Lowell, M. D. Matson, R. J. Matthew, V. Peng, M. D.
Quinn, D. A. Priore, M. J. Smith, and K. E. Wilcox. A 600 MHz
superscalar RISC microprocessor with out-of-order execution. In
44th IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech.
Papers, pp. 176–177,451, 1997. 38

[68] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich,
D. Sweely, and D. Lopresti. Building and using a highly par-
allel programmable logic array. IEEE Computer, 24(1):81–89,
Jan. 1991. doi:10.1109/2.67197. 8

[69] M. B. Gokhale, J. M. Stone, and E. Gomersall. Co-synthesis
to a hybrid RISC/FPGA architecture. Journal of VLSI Sig-
nal Processing, 24(2/3):165–180, Mar. 2000. doi:10.1023/a:
1008141305507. 22

[70] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,
and R. R. Taylor. PipeRench: A reconfigurable architecture
and compiler. IEEE Computer, 33(4):70–77, Apr. 2000. doi:
10.1109/2.839324. 18, 22

Bibliography 

[71] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R.
Taylor, and R. Laufer. PipeRench: A coprocessor for streaming
multimedia acceleration. In Proc. 26th Int. Symp. on Computer
Architecture (ISCA), pp. 28–39, 1999. 7

[72] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer Academic Publishers, May 2002. ISBN
1-4020-7072-1. 29

[73] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In Proc. 4th Work-
shop on Workload Characterization (WWC), pp. 3–14, 2001. 44,
45, 46

[74] L. Gwennap. MIPS R10000 uses decoupled architecture. Micro-
processor Report, 8(14):18–22, Oct. 1994. 38

[75] S. Hauck. Configuration prefetch for single context reconfig-
urable coprocessors. In Proc. 6th ACM Int. Symp. on Field-
Programmable Gate Arrays (FPGA), pp. 65–74, 1998. doi:
10.1145/275107.275121. 20

[76] S. Hauck. The roles of FPGA’s in reprogrammable systems. Pro-
ceedings of the IEEE, 86(4):615–638, Apr. 1998. doi:10.1109/5.
663540. 14

[77] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao. The Chimaera
reconfigurable functional unit. In Proc. 5th IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), pp. 87–96,
1997. 14, 15, 18, 23

[78] S. Hauck and W. D. Wilson. Runlength compression techniques
for FPGA configurations. In Proc. 7th IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), pp. 286–
287, 1999. 20

[79] S. Hauck, Zhiyuan Li, and E. J. Schwabe. Configuration com-
pression for the Xilinx XC6200 FPGA. In Proc. 6th IEEE Symp.
on Field-Programmable Custom Computing Machines (FCCM),
pp. 138–146, 1998. 20

 Bibliography

[80] J. R. Hauser and J. Wawrzynek. Garp: A MIPS processor with
a reconfigurable coprocessor. In Proc. 5th IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), pp. 12–21,
1997. 14, 15, 18, 77

[81] S. D. Haynes, A. B. Ferrari, and P. Y. K. Cheun. Flexible recon-
figurable multiplier blocks suitable for enhancing the architecture
of FPGAs. In Proc. 21st IEEE Custom Integrated Circuits Conf.
(CICC), pp. 191–194, 1999. 19

[82] J. He and J. Rose. Advantages of heterogeneous logic block ar-
chitecture for FPGAs. In Proc. 15th IEEE Custom Integrated
Circuits Conf. (CICC), pp. 7.4.1–7.4.5, 1993. 19

[83] F. Heile and A. Leaver. Hybrid product term and LUT based
architectures using embedded memory blocks. In Proc. 7th ACM
Int. Symp. on Field-Programmable Gate Arrays (FPGA), pp. 13–
16, 1999. doi:10.1145/296399.296415. 19

[84] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers, 1990.
ISBN 1-55860-069-8. 79

[85] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers, 3rd
edition, 2002. ISBN 1-55860-596-7. 57

[86] J.-P. Heron and R. F. Woods. Accelerating run-time reconfigura-
tion on FCCMs. In Proc. 7th IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), pp. 260–261, 1999. 20

[87] G. Hinton, M. Upton, D. J. Sager, D. Boggs, D. M. Carmean,
P. Roussel, T. I. Chappell, T. D. Fletcher, M. S. Milshtein,
M. Sprague, S. Samaan, and R. Murray. A 0.18-µm CMOS
IA-32 processor with a 4-GHz integer execution unit. IEEE
Journal of Solid-State Circuits, 36(11):1617–1627, Nov. 2001.
doi:10.1109/4.962281. 38

[88] D. T. Hoang. Searching genetic databases on Splash 2. In Proc.
1st IEEE Workshop on FPGAs for Custom Computing Machines
(FCCM), pp. 185–191, 1993. 8

Bibliography 

[89] Huesung Kim, A. K. Somani, and A. Tyagi. A reconfigurable mul-
tifunction computing cache architecture. IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, 9(4):509–523, Aug. 2001.
doi:10.1109/92.931228. 7

[90] B. L. Hutchings and M. J. Wirthlin. Implementation approaches
for reconfigurable logic applications. In Proc. 5th Int. Workshop
on Field Programmable Logic and Applications (FPL), vol. 975
of Lecture Notes in Computer Science, pp. 419–428. Springer-
Verlag, 1995. 3

[91] J. A. Jacob and P. Chow. Memory interfacing and instruction
specification for reconfigurable processors. In Proc. 7th ACM Int.
Symp. on Field-Programmable Gate Arrays (FPGA), pp. 145–
154, 1999. doi:10.1145/296399.296446. 14, 15, 18

[92] J. Jean, Xuejun-Liang, B. Drozd, K. Tomko, and Yan-Wang. Au-
tomatic target recognition with dynamic reconfiguration. Jour-
nal of VLSI Signal Processing, 25(1):39–53, May 2000. doi:
10.1023/a:1008173519198. 8

[93] H. Kaeslin. Personal communication. Microelectronics Design
Center, Swiss Federal Institute of Technology (ETH) Zurich,
Oct.–Dec. 2003. 38, 39, 40, 102

[94] Kang-Ngee Chia, Hea Joung Kim, S. Lansing, W. H. Mangione-
Smith, and J. Villasensor. High-performance automatic tar-
get recognition through data-specific VLSI. IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, 6(3):364–371, Sept.
1998. doi:10.1109/92.711308. 8

[95] B. Kastrup, J. Trum, O. Moreira, J. Hoogerbrugge, and J. van
Meerbergen. Compiling applications for ConCISe: An example
of automatic HW/SW partitioning and synthesis. In Proc. 10th
Int. Conf. on Field Programmable Logic and Applications (FPL),
vol. 1896 of Lecture Notes in Computer Science, pp. 695–706.
Springer-Verlag, 2000. 22

[96] V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. C. Cron-
quist, and M. Sivaraman. PICO: Automatically designing cus-
tom computers. IEEE Computer, 35(9):39–47, Sept. 2002. doi:
10.1109/mc.2002.1033026. 121

 Bibliography

[97] A. Kaviani and S. Brown. Hybrid FPGA architecture. In
Proc. 4th ACM Int. Symp. on Field-Programmable Gate Arrays
(FPGA), pp. 3–9, 1996. doi:10.1145/228370.228371. 19

[98] S. Knapp and D. Tavana. Field configurable system-on-chip de-
vice architecture. In Proc. 22nd IEEE Custom Integrated Circuits
Conf. (CICC), pp. 155–158, 2000. 9

[99] J. L. Kouloheris and A. El Gamal. FPGA performance versus
cell granularity. In Proc. 13th IEEE Custom Integrated Circuits
Conf. (CICC), pp. 6.2.1–6.2.4, 1991. 18

[100] S. Kumar, L. Pires, S. Ponnuswamy, C. Nanavati, J. Golusky,
M. Vojta, S. Wadi, D. Pandalai, and H. Spaanenburg. A bench-
mark suite for evaluating configurable computing systems – sta-
tus, reflections, and future directions. In Proc. 8th ACM Int.
Symp. on Field-Programmable Gate Arrays (FPGA), pp. 126–
134, 2000. doi:10.1145/329166.329193. 44

[101] E. Kusse and J. Rabaey. Low-energy embedded FPGA struc-
tures. In Proc. Int. Symp. on Low Power Electronics and Design
(ISLPED), pp. 155–160, 1998. doi:10.1145/280756.280873. 20,
42

[102] A. La Rosa, L. Lavagno, and C. Passerone. A software develop-
ment tool chain for a reconfigurable processor. In Proc. 4th Int.
Conf. on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES), pp. 93–98, 2001. 23

[103] P. Landman. High-level power estimation. In Proc. Int. Symp. on
Low Power Electronics and Design (ISLPED), pp. 29–35, 1996.
41

[104] D. Lau, A. Scheider, M. D. Ercegovac, and J. Villasenor. A
FPGA-based library for on-line processing. Journal of VLSI Sig-
nal Processing, 28(1/2):129–143, May/June 2001. doi:10.1023/a:
1008119407508. 21

[105] M.-H. Lee, H. Singh, G. Lu, N. Bagherzadeh, F. J. Kurdahi,
E. M. C. Filho, and V. Castro Alves. Design and implemen-
tation of the MorphoSys reconfigurable computing processor.
Journal of VLSI Signal Processing, 24(2/3):147–164, Mar. 2000.
doi:10.1023/a:1008189221436. 14, 15, 18

Bibliography 

[106] D. I. Lehn, K. Puttegowda, J. H. Park, P. M. Athanas, and M. T.
Jones. Evaluation of rapid context switching on a CSRC device.
In Proc. 2nd Int. Conf. on Engineering of Reconfigurable Systems
and Algorithms (ERSA), pp. 209–215. CSREA Press, 2002. 21

[107] X.-P. Ling and H. Amano. WASMII: A data driven computer on
a virtual hardware. In Proc. 1st IEEE Workshop on FPGAs for
Custom Computing Machines (FCCM), pp. 33–42, 1993. 21

[108] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and
R. Guerrieri. A VLIW processor with reconfigurable instruc-
tion set for embedded applications. IEEE Journal of Solid-State
Circuits, 38(11):1876–1886, Nov. 2003. doi:10.1109/jssc.2003.
818292. 23

[109] R. Maestre, F. J. Kurdahi, M. Fernández, R. Hermida, N. Bagher-
zadeh, and H. Singh. A formal approach to context scheduling for
multicontext reconfigurable architectures. IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, 9(1):173–185, Feb. 2001.
doi:10.1109/92.920831. 21

[110] R. Maestre, F. J. Kurdahi, M. Fernández, R. Hermida, N. Bagher-
zadeh, and H. Singh. A framework for reconfigurable computing:
Task scheduling and context management. IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, 9(6):858–873, Dec. 2001.
doi:10.1109/92.974899. 21

[111] W. H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon,
C. Ebeling, R. Hartenstein, O. Mencer, J. Morris, K. Palem, V. K.
Prasanna, and H. A. E. Spaanenburg. Seeking solutions in con-
figurable computing. IEEE Computer, 30(12):38–43, Dec. 1997.
doi:10.1109/2.642810. 21

[112] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and
B. Hutchings. A reconfigurable arithmetic array for multi-
media applications. In Proc. 7th ACM Int. Symp. on Field-
Programmable Gate Arrays (FPGA), pp. 135–143, 1999. doi:
10.1145/296399.296444. 18, 19

[113] O. Mencer. PAM-Blox II: Design and evaluation of C++ module
generation for computing with FPGAs. In Proc. 10th IEEE Symp.
on Field-Programmable Custom Computing Machines (FCCM),
pp. 67–76, 2002. 21

 Bibliography

[114] O. Mencer, M. Morf, and M. J. Flynn. Hardware software tri-
design of encryption for mobile communication units. In Proc.
23rd IEEE Int. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 5, pp. 3045–3048, 1998. 8

[115] O. Mencer, M. Platzner, M. Morf, and M. J. Flynn. Object-
oriented domain specific compilers for programming FPGAs.
IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
9(1):205–210, Feb. 2001. doi:10.1109/92.920835. 22

[116] T. Miyamori and K. Olukotun. REMARC: Reconfigurable mul-
timedia array coprocessor. IEICE Trans. on Information and
Systems, E82-D(2):389–397, Feb. 1999. 7, 14, 15, 18

[117] Model Technology. ModelSim Foreign Language Interface, ver.
5.5f, Aug. 2001. Available at http://www.model.com/. 31

[118] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper,
D. W. Dobberpuhl, P. M. Donahue, J. Eno, W. Hoeppner,
D. Kruckemyer, T. H. Lee, P. C. M. Lin, L. Madden, D. Mur-
ray, M. H. Pearce, S. Santhanam, K. J. Snyder, R. Stehpany, and
S. C. Thierauf. A 160-MHz, 32-b, 0.5-W CMOS RISC micropro-
cessor. IEEE Journal of Solid-State Circuits, 31(11):1703–1714,
Nov. 1996. 38

[119] M. Motomura. A dynamically reconfigurable processor architec-
ture. Microprocessor Forum, Oct. 2002. 7, 21

[120] M. Motomura, Y. Aimoto, A. Shibayama, Y. Yabe, and M. Ya-
mashina. An embedded DRAM-FPGA chip with instanta-
neous logic reconfiguration. In Proc. 6th IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), pp. 264–
266, 1998. 7

[121] W. A. Najjar, W. Bohm, B. A. Draper, J. Hammes, R. Rinker,
M. Chawathe, and C. Ross. High-level language abstraction for
reconfigurable computing. IEEE Computer, 36(8):63–69, Aug.
2003. doi:10.1109/mc.2003.1220583. 22

[122] Nam Sung Kim, T. Austin, T. Mudge, and D. Grunwald. Chal-
lenges for architectural level power modeling. In R. Graybill and
R. Melhem, ed., Power Aware Computing, Series in Computer
Science, pp. 317–337. Kluwer Academic/Plenum Publishers, June
2002. ISBN 0-306-46786-0. 42

http://www.model.com/

Bibliography 

[123] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin,
J. Foti, and E. Roback. Report on the development of the Ad-
vanced Encryption Standard (AES). Technical report, National
Institute of Standards and Technology (NIST), Oct. 2000. 46, 47

[124] Open SystemC Initiative (OSCI). SystemC 2.0 User’s Guide,
2002. Available at http://www.systemc.org/. 29

[125] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Pro-
cessing. Prentice Hall, int’l edition, 1998. ISBN 0-13-216771-9.
89, 91

[126] P. R. Panda. SystemC: A modeling platform supporting mul-
tiple design abstractions. In Proc. 14th Int. Symp. on Systems
Synthesis (ISSS), pp. 75–80, 2001. 29

[127] J. Panfil. The TinyRISC CPU – an area efficient CPU core opti-
mized for embedded applications. The European Microprocessor
and Microcontroller Conf., Nov. 1996. 48

[128] M. Platzner. Reconfigurable accelerators for combinatorial prob-
lems. IEEE Computer, 33(4):58–60, Apr. 2000. doi:10.1109/2.
839322. 7, 8

[129] C. Plessl, R. Enzler, H. Walder, J. Beutel, M. Platzner, and
L. Thiele. Reconfigurable hardware in wearable computing nodes.
In Proc. 6th Int. Symp. on Wearable Computers (ISWC), pp.
215–222, 2002. 51

[130] C. Plessl, R. Enzler, H. Walder, J. Beutel, M. Platzner, L. Thiele,
and G. Tröster. The case for reconfigurable hardware in wearable
computing. Personal and Ubiquitous Computing, 7(5):299–308,
Oct. 2003. doi:10.1007/s00779-003-0243-x. 51

[131] C. Plessl and M. Platzner. Instance-specific accelerators for min-
imum covering. Journal of Supercomputing, 26(2):109–129, Sept.
2003. doi:10.1023/a:1024443416592. 8

[132] K. Puttegowda, D. I. Lehn, P. Athanas, and M. Jones. Con-
text switching in a run-time reconfigurable system. Journal
of Supercomputing, 26(3):239–257, Nov. 2003. doi:10.1023/a:
1025694914489. 21

http://www.systemc.org/

 Bibliography

[133] J. M. Rabaey. Reconfigurable processing: The solution to low
power programmable DSP. In Proc. 22nd IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP), pp. 275–278,
1997. 41

[134] B. Radunović and V. Milutinović. A survey of reconfigurable
computing architectures. In Proc. 8th Int. Workshop on Field
Programmable Logic and Applications (FPL), vol. 1482 of Lecture
Notes in Computer Science, pp. 376–385. Springer-Verlag, 1998.
14

[135] N. K. Ratha and A. K. Jain. Computer vision algorithms on
reconfigurable logic arrays. IEEE Trans. on Parallel and Dis-
tributed Systems, 10(1):29–43, Jan. 1999. doi:10.1109/71.744833.
7, 8

[136] R. Razdan and M. D. Smith. A high-performance microarchi-
tecture with hardware-programmable functional units. In Proc.
27th Int. Symp. on Microarchitecture (MICRO-27), pp. 172–180,
1994. doi:10.1145/192724.192749. 14, 15, 18

[137] J. Reilly. SPEC describes SPEC95 products and benchmarks.
SPEC Newsletter, Sept. 1995. URL http://www.spec.org/osg/
news/articles/news9509/cpu95descr.html. 52

[138] M. Rencher and B. L. Hutchings. Automated target recognition
on SPLASH 2. In Proc. 5th IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), pp. 192–200, 1997. 8

[139] D. Rizzo and O. Colavin. A video compression case study on a
reconfigurable VLIW architecture. In Proc. Design, Automation
and Test in Europe Conf. (DATE), pp. 540–546, 2002. 22

[140] C. R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt,
J. M. Arnold, and M. Gokhale. The NAPA adaptive processing
architecture. In Proc. 6th IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), pp. 28–37, 1998. 14, 15

[141] B. Salefski and L. Caglar. Re-configurable computing in wire-
less. In Proc. 38th Design Automation Conf. (DAC), pp. 178–183,
2001. doi:10.1145/378239.378459. 7, 19, 21

http://www.spec.org/osg/news/articles/news9509/cpu95descr.html
http://www.spec.org/osg/news/articles/news9509/cpu95descr.html

Bibliography 

[142] E. Sanchez, M. Sipper, J.-O. Haenni, J.-L. Beuchat, A. Stauffer,
and A. Perez-Uribe. Static and dynamic configurable systems.
IEEE Trans. on Computers, 48(6):556–564, June 1999. doi:10.
1109/12.773792. 3

[143] S. Santhanam, A. J. Baum, D. Bertucci, M. Braganza, K. Broch,
T. Broch, J. Burnette, E. Chang, Kwong-Tak Chui, D. Dob-
berpuhl, P. Donahue, J. Grodstein, Insung Kim, D. Murray,
M. Pearce, A. Silveria, D. Souydalay, A. Spink, R. Stepanian,
A. Varadharajan, V. R. van Kaenel, and R. Wen. A low-cost,
300-MHz, RISC CPU with attached media processor. IEEE
Journal of Solid-State Circuits, 33(11):1829–1839, Nov. 1998.
doi:10.1109/4.726584. 38

[144] S. M. Scalera and J. R. Vázquez. The design and implementation
of a context switching FPGA. In Proc. 6th IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), pp. 78–85,
1998. 21

[145] P. Schaumont, I. Verbauwhede, K. Keutzer, and M. Sarrafzadeh.
A quick safari through the reconfiguration jungle. In Proc. 38th
Design Automation Conf. (DAC), pp. 172–177, 2001. doi:10.
1145/378239.378404. 14, 22

[146] H. Schmit. Incremental reconfiguration for pipelined applications.
In Proc. 5th IEEE Symp. on Field-Programmable Custom Com-
puting Machines (FCCM), pp. 47–55, 1997. 20

[147] H. H. Schmit, S. Cadambi, M. Moe, and S. C. Goldstein. Pipeline
reconfigurable FPGAs. Journal of VLSI Signal Processing, 24
(2/3):129–146, Mar. 2000. doi:10.1023/a:1008137204598. 7, 20,
68

[148] B. Schneier. Applied Cryptography: Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, 2nd edition, 1996. ISBN
0-471-12845-7. 47

[149] S. Segars. The ARM9 family – high performance microprocessors
for embedded applications. In Proc. 16th Int. Conf. on Computer
Design (ICCD), pp. 230–235, 1998. 38

[150] C. L. Seitz. Concurrent VLSI architectures. IEEE Trans. on
Computers, C-33(12):1247–1265, Dec. 1984. 111

 Bibliography

[151] S. Sezer, J. Heron, R. Woods, R. Turner, and A. Marshall. Fast
partial reconfiguration for FCCMs. In Proc. 6th IEEE Symp. on
Field-Programmable Custom Computing Machines (FCCM), pp.
318–319, 1998. 20

[152] R. Shoup. Heterogeneous architectures and adaptive comput-
ing. Presentation at Dagstuhl Seminar on Dynamically Recon-
figurable Architectures, July 2003. Available at http://www.
dagstuhl.de/03301/Proceedings/. 5

[153] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and
E. M. Chaves Filho. MorphoSys: An integrated reconfigurable
system for data-parallel and computation-intensive applications.
IEEE Trans. on Computers, 49(5):465–481, May 2000. doi:10.
1109/12.859540. 14, 15, 18, 21

[154] A. Sinha and A. P. Chandrakasan. JouleTrack – A web based tool
for software energy profiling. In Proc. 38th Design Automation
Conf. (DAC), pp. 220–225, 2001. doi:10.1145/378239.378467. 41

[155] M. Sipper and E. Sanchez. Configurable chips meld software
and hardware. IEEE Computer, 33(1):120–121, Jan. 2000. doi:
10.1109/2.963133. 1

[156] M. E. Smid and D. K. Branstad. Data Encryption Standard: Past
and future. Proceedings of the IEEE, 76(5):550–559, May 1988.
doi:10.1109/5.4441. 47

[157] S. Srikanteswara, R. C. Palat, J. H. Reed, and P. Athanas. An
overview of configurable computing machines for software ra-
dio handsets. IEEE Communications Mag., 41(7):134–141, July
2003. doi:10.1109/mcom.2003.1215650. 8

[158] Standard Performance Evaluation Corporation. SPEC CINT95
benchmarks. Online, 1995–2003. URL http://www.spec.org/
cpu95/CINT95/. 52

[159] T. J. Stanley and T. Mudge. Systematic objective-driven com-
puter architecture optimization. In Proc. 16th Conf. on Advanced
Research in VLSI (ARVLSI), pp. 286–300, 1995. 121

[160] T. Stansfield. Using multiplexers for control and data in D-
Fabrix. In Proc. 13th Int. Conf. on Field Programmable Logic

http://www.dagstuhl.de/03301/Proceedings/
http://www.dagstuhl.de/03301/Proceedings/
http://www.spec.org/cpu95/CINT95/
http://www.spec.org/cpu95/CINT95/

Bibliography 

and Applications (FPL), vol. 2778 of Lecture Notes in Computer
Science, pp. 416–425. Springer-Verlag, 2003. 5, 19

[161] R. Stevens. UNIX Network Programming, Volume 2: Interprocess
Communications. Prentice Hall, 2nd edition, 1999. ISBN 0-13-
081081-9. 31

[162] G. Stitt, B. Grattan, J. Villarreal, and F. Vahid. Using on-chip
configurable logic to reduce embedded system software energy.
In Proc. 10th IEEE Symp. on Field-Programmable Custom Com-
puting Machines (FCCM), pp. 143–151, 2002. 9

[163] K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba,
Y. Watanabe, K. Matsuda, T. Maeda, and T. Kuroda. A 300
MIPS/W RISC core processor with variable supply-voltage. In
Proc. 19th IEEE Custom Integrated Circuits Conf. (CICC), pp.
587–590, 1997. 38

[164] Synopsys. Design Compiler. Technology Backgrounder, May
2002. Available at http://www.synopsys.com/. 103

[165] E. Tau, D. Chen, I. Eslick, J. Brown, and A. DeHon. A first
generation DPGA implementation. In Canadian Workshop on
Field-Programmable Devices (FPD), pp. 138–143, 1995. 18, 21

[166] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,
B. Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma,
A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, and A. Agarwal. The Raw microprocessor: A
computational fabric for software circuits and general-purpose
programs. IEEE Micro, 22(2):25–35, Mar./Apr. 2002. doi:
10.1109/mm.2002.997877. 19

[167] J. Teich. Digitale Hardware/Software-Systeme. Synthese und Op-
timierung. Springer-Verlag, 1997. ISBN 3-540-62433-3. 29

[168] R. Tessier and W. Burleson. Reconfigurable computing for digital
signal processing: A survey. Journal of VLSI Signal Processing,
28(1/2):7–27, May 2001. doi:10.1023/a:1008155020711. 1, 14

[169] V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee. Instruction
level power analysis and optimization of software. Journal of
VLSI Signal Processing, 13(2/3):223–238, Aug. 1996. 41

http://www.synopsys.com/

 Bibliography

[170] C. Traber. Syntactic processing and prosody control in the
SVOX TTS system for German. In Proc. 3rd European Conf. on
Speech Communication and Technology (Eurospeech), pp. 2099–
2102, 1993. 45, 46, 47

[171] N. Tredennick and B. Shimamoto. Go reconfigure. IEEE Spec-
trum, 40(12):36–40, Dec. 2003. doi:10.1109/mspec.2003.1249977.
1

[172] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A
time-multiplexed FPGA. In Proc. 5th IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), pp. 22–28,
1997. 7, 21, 68

[173] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung,
O. Rowhani, V. George, J. Wawrzynek, and A. DeHon. HSRA:
High-speed, hierarchical synchronous reconfigurable array. In
Proc. 7th ACM Int. Symp. on Field-Programmable Gate Arrays
(FPGA), pp. 125–134, 1999. doi:10.1145/296399.296442. 20

[174] Univ. of Chicago Press, ed. The Chicago Manual of Style. Univ.
of Chicago Press, 15th edition, 2003. ISBN 0-226-10403-6.

[175] G. Venkataramani, W. Najjar, F. Kurdahi, N. Bagherzadeh,
W. Bohm, and J. Hammes. Automatic compilation to a coarse-
grained reconfigurable system-on-chip. ACM Trans. on Embedded
Computing Systems, 2(4):560–589, Nov. 2003. 22

[176] Vi Cuong Chan and D. M. Lewis. Area-speed tradeoffs for hier-
archical field-programmable gate arrays. In Proc. 4th ACM Int.
Symp. on Field-Programmable Gate Arrays (FPGA), pp. 51–57,
1996. doi:10.1145/228370.228378. 20

[177] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and
W. Ye. Energy-driven integrated hardware-software optimiza-
tions using SimplePower. In Proc. 27th Int. Symp. on Computer
Architecture (ISCA), pp. 95–106, 2000. doi:10.1145/339647.
339659. 42

[178] J. Villasenor and B. Hutchings. The flexibility of configurable
computing. IEEE Signal Processing Mag., 15(5):67–84, Sept.
1998. doi:10.1109/79.708541. 8

Bibliography 

[179] Virtual Silicon Technology. UMC L250 Standard Cell Library
Databook, 2002. Available at http://www.virtual-silicon.com/.
103

[180] T. Šimunić, L. Benini, and G. De Micheli. Cycle-accurate sim-
ulation of energy consumption in embedded systems. In Proc.
36th Design Automation Conf. (DAC), pp. 867–872, 1999. doi:
10.1145/309847.310090. 42

[181] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and
P. Boucard. Programmable active memories: Reconfigurable sys-
tems come of age. IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, 4(1):56–69, Mar. 1996. doi:10.1109/92.486081.
8, 16

[182] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe,
and A. Agarwal. Baring it all to software: Raw machines. IEEE
Computer, 30(9):86–93, Sept. 1997. doi:10.1109/2.612254. 19,
22

[183] M. Wan, Hui Zhang, M. Benes, and J. Rabaey. A low-power re-
configurable data-flow driven DSP system. In Proc. IEEE Work-
shop on Signal Processing Systems (SiPS), pp. 191–200, 1999.
7

[184] M. Wan, Hui Zhang, V. George, M. Benes, A. Abnous, V. Prabhu,
and J. Rabaey. Design methodology of a low-energy reconfig-
urable single-chip DSP system. Journal of VLSI Signal Process-
ing, 28(1/2):47–61, May 2001. doi:10.1023/a:1008159121620. 42

[185] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas,
H. Silverman, and S. Ghosh. PRISM-II compiler and architecture.
In Proc. 1st IEEE Workshop on FPGAs for Custom Computing
Machines (FCCM), pp. 9–16, 1993. 16

[186] M. Weinhardt and W. Luk. Pipeline vectorization. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems,
20(2):234–248, Feb. 2001. doi:10.1109/43.908452. 7

[187] A. R. Weiss. The standardization of embedded benchmarking:
Pitfalls and opportunities. In Proc. 17th Int. Conf. on Computer
Design (ICCD), pp. 492–498, 1999. 44

http://www.virtual-silicon.com/

 Bibliography

[188] K. Weiß, C. Oetker, I. Katchan, T. Steckstor, and W. Rosenstiel.
Power estimation approach for SRAM-based FPGAs. In Proc. 8th
ACM Int. Symp. on Field-Programmable Gate Arrays (FPGA),
pp. 195–202, 2000. doi:10.1145/329166.329207. 42

[189] S. Winegarden. Bus architecture of a system on a chip with user-
configurable system logic. IEEE Journal of Solid-State Circuits,
35(3):425–433, Mar. 2000. doi:10.1109/4.826825. 9

[190] N. Wirth. Hardware compilation: Translating programs into cir-
cuits. IEEE Computer, 31(6):25–31, June 1998. doi:10.1109/2.
683004. 21

[191] M. J. Wirthlin and B. L. Hutchings. A dynamic instruction set
computer. In Proc. 3rd IEEE Workshop on FPGAs for Custom
Computing Machines (FCCM), pp. 99–107, 1995. 7

[192] M. J. Wirthlin and B. L. Hutchings. Improving functional density
through run-time constant propagation. In Proc. 5th ACM Int.
Symp. on Field-Programmable Gate Arrays (FPGA), pp. 86–92,
1997. doi:10.1145/258305.258316. 7

[193] M. J. Wirthlin and B. L. Hutchings. Improving functional density
through run-time circuit reconfiguration. IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, 6(2):247–256, June 1998.
doi:10.1109/92.678880. 111

[194] R. Witek and J. Montanaro. StrongARM: A high-performance
ARM processor. In Proc. 41st IEEE Int. Computer Conf.
(COMPCON), pp. 188–191, 1996. 48

[195] R. D. Wittig and P. Chow. OneChip: An FPGA processor with
reconfigurable logic. In Proc. 4th IEEE Symp. on FPGAs for
Custom Computing Machines (FCCM), pp. 126–135, 1996. 14,
15, 18

[196] T. Wolf and M. Franklin. CommBench – a telecommunications
benchmark for network processors. In Proc. IEEE Int. Symp. on
Performance Analysis of Systems and Software (ISPASS), pp.
154–162, 2000. 44, 45, 46

[197] Xilinx. System ACE MPM Solution (DS087), ver. 2.2, June 2003.
Available at http://www.xilinx.com/. 5

http://www.xilinx.com/

Bibliography 

[198] Xilinx. Xilinx Virtex-II Pro Platform FPGAs: Complete Data
Sheet (DS083), Oct. 2003. Available at http://www.xilinx.com/.
18, 19, 20, 85

[199] Xilinx. Power tools. Online, 2004. URL http://www.xilinx.com/
ise/power tools/. 42

[200] Xinan Tang, M. Aalsma, and R. Jou. A compiler directed ap-
proach to hiding configuration latency in Chameleon processors.
In Proc. 10th Int. Conf. on Field Programmable Logic and Appli-
cations (FPL), vol. 1896 of Lecture Notes in Computer Science,
pp. 29–38. Springer-Verlag, 2000. 7, 21

[201] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The
design and use of SimplePower: A cycle-accurate energy estima-
tion tool. In Proc. 37th Design Automation Conf. (DAC), pp.
340–345, 2000. doi:10.1145/337292.337436. 42

[202] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHIMAERA:
A high-performance architecture with a tightly-coupled reconfig-
urable functional unit. In Proc. 27th Int. Symp. on Computer
Architecture (ISCA), pp. 225–235, 2000. doi:10.1145/339647.
339687. 14, 15, 18, 23, 29

[203] Z. A. Ye, N. Shenoy, and P. Banerjee. A C compiler for a processor
with a reconfigurable functional unit. In Proc. 8th ACM Int.
Symp. on Field-Programmable Gate Arrays (FPGA), pp. 95–100,
2000. doi:10.1145/329166.329187. 22, 23

[204] Yen-Tai Lai and Ping-Tsung Wang. Hierarchical interconnection
structures for field programmable gate arrays. IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, 5(2):186–196, June
1997. doi:10.1109/92.585219. 20

[205] Zhiyuan Li, K. Compton, and S. Hauck. Configuration caching
management techniques for reconfigurable computing. In Proc.
8th IEEE Symp. on Field-Programmable Custom Computing Ma-
chines (FCCM), pp. 22–36, 2000. 20

[206] Zhiyuan Li and S. Hauck. Don’t care discovery for FPGA config-
uration compression. In Proc. 7th ACM Int. Symp. on Field-
Programmable Gate Arrays (FPGA), pp. 91–98, 1999. doi:
10.1145/296399.296435. 20

http://www.xilinx.com/
http://www.xilinx.com/ise/power_tools/
http://www.xilinx.com/ise/power_tools/

 Bibliography

[207] ZIPPY: A novel dynamically reconfigurable embedded proces-
sor. TH Research Project, Swiss Federal Institute of Technology
(ETH) Zurich, 2000–2003. URL http://www.zippy.ethz.ch/. 9

http://www.zippy.ethz.ch/

Curriculum Vitae

Personal Information

Rolf Enzler
Born 30 September 1971, Thalwil ZH, Switzerland
Citizen of Walchwil ZG, Switzerland

Education

1998–2004 PhD studies in information technology and electrical en-
gineering (Dr. sc. techn.) at ETH Zurich, Switzerland

1991–1997 MSc studies in information technology and electrical engi-
neering (Dipl. El.-Ing. ETH) at ETH Zurich, Switzerland

1984–1991 Gymnasium (Matura, Typus C) at Kantonsschule Zug,
Switzerland

1978–1984 Primary school in Horgen and Walchwil, Switzerland

Professional Experience

1997–2004 Research and teaching assistant at Electronics Laboratory,
ETH Zurich, Switzerland

1997 Teaching substitution in mathematics and computer sci-
ence at Kantonsschule Zug, Switzerland

1994 Internship with ESEC SA, Cham, Switzerland:
Development of ESEC Autoline® monitoring software

1992 Internship with Landis & Gyr AG, Zug, Switzerland:
Course on basic engineering skills

	Acknowledgments
	Contents
	Abstract
	Zusammenfassung
	Introduction
	Reconfigurable Computing Paradigm
	Reconfigurable Systems
	Dynamic Reconfiguration
	Efficiency of Reconfigurable Systems
	Research Objectives
	Overview

	Design Issues of Reconfigurable Processors
	System Integration
	Coupling
	Instruction Set Extension
	Synchronization
	Operand Transfer

	Reconfigurable Processing Unit
	Operators and Granularity
	Interconnect
	Reconfiguration Mechanism

	Programming Models and Compilers
	System-Level Evaluation

	System-Level Evaluation Methodology
	Methodology Outline
	Architecture Model
	CPU Core
	Reconfigurable Processing Unit

	Performance Simulation Environment
	Extended CPU Simulator
	Co-simulation
	Stand-Alone Simulation Modes
	Application Mapping and Compilation
	Simulation Speed

	Chip Area Estimation
	Area Model
	Basic Building Blocks

	Energy Consumption
	High-Level Estimation Approaches for CPUs
	Overall Reconfigurable Processor

	Workload Characterization
	Benchmarks
	Application Pool
	Evaluation Setup
	Workload Analysis
	Instruction Class Mix
	Memory Requirements
	Cache Miss Rates
	Function Breakdown
	Key Results

	Impact on Reconfigurable Processor Design

	Reconfigurable Processor Architecture
	Programming Model
	Hardware Virtualization
	Macro-Pipelining and Contexts

	System Integration
	Basic Design Features
	CPU Core
	Coprocessor Registers
	FIFO Buffers
	Configuration Memory
	Synchronization and Context Scheduling
	Context Sequencer

	Reconfigurable Array
	Reconfigurable Cells
	Two-Level Interconnect
	Input/Output Ports
	Configuration

	Experiments and Results
	Experimental Setup
	FIR Filter Virtualization
	Partitioning and Mapping
	Context State
	Context Scheduling

	Computational Performance
	Results
	Discussion

	Chip Area
	Estimation Model
	Building Block Area Models
	Results and Discussion

	Area--Speed Trade-offs

	Conclusion
	Summary and Achievements
	Conclusions
	Outlook

	Glossary
	Bibliography
	Curriculum Vitae

