
ETH Library

Some tools for three-dimensional
modelling in structural geology and
tectonics

Report

Author(s):
Maxelon, Michael

Publication date:
2004

Permanent link:
https://doi.org/10.3929/ethz-a-004719066

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004719066
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

some tools for

three-dimensional modelling in

structural geology and tectonics

Michael Maxelon

Geologisches Institut, ETH Zentrum, 8092 Zürich, Switzerland

CONTENTS CONTENTS

Contents

1 Introduction 3

2 Dealing with Digital Elevation Models 3

2.1 Export of a DEM to Editeur Géologique 4

2.2 Export to GOCAD c© . 5

2.2.1 DHM 2 GOCAD . 5

2.2.2 Ungenerated 2 GOCAD 6

2.2.3 Polyline Decomposer 7

3 Data Export and Assessment in ArcMap c© 8

3.1 Export to Editeur Géologique 10

3.1.1 Export complete polygons 10

3.1.2 Export lower limits of polygons 11

3.1.3 Export planar measurements 12

3.2 Export to GOCAD c© . 16

3.2.1 Exporting lines and polygons to GOCAD c© 16

3.2.2 Export digitised profiles to GOCAD 17

3.3 Data Assessment . 18

3.3.1 Creating Cross-Sections 19

3.3.2 Spatial Averaging of Orientation Data 21

Acknowledgements 24

Warranty and Liability 24

References 26

APPENDIX (SOURCE CODES) 28

A Reformatter Toolbox (VB c© codes) 29

A.1 Reformatter Core . 29

A.2 Filter Query . 30

A.3 File Dialog . 31

1

CONTENTS

B Export Toolbox (VBA c© codes) 35

B.1 Export to Editeur Géologique 35

B.1.1 Export complete polygons 35

B.1.2 Export lower limits of polygons 38

B.1.3 Export planar measurements 43

B.2 Export to GOCAD c© . 52

B.2.1 Export lines . 52

B.2.2 Export polygons . 55

B.2.3 Export cross-sections 58

B.3 Data Assessment . 63

B.3.1 Creating cross-sections 63

B.3.2 Spatial averaging . 83

2

2 DEALING WITH DIGITAL ELEVATION MODELS

1 Introduction

Two small collections of computer routines for PCs running on a Microsoft

Windows c© system are described in this text. One is written in VisualBasic

(VB) as a stand-alone application, the other is written in VisualBasic for

Applications c© (VBA) in the ArcMap c© environment. The VB-application is

called Reformatter Toolbox and can be used especially for changing formats of

digital elevation models (DEM) available as ASCII-files so that they comply

with the requirements of some geoscientific modelling tools (GOCAD c© or

Editeur Géologique1). Useful preprocessing routines in ArcInfo c© GIS are

also described. The VBA-macros provide tools for data export and structural

data assessment in ArcView c© GIS (mainly ArcMap c©). They are organised

in a toolbar called Export Toolbox within the ArcMap c© environment, but are

also available independently. The source codes of all tools are also listed in

the appendix (page 28 onwards).

2 Dealing with Digital Elevation Models

The programme Reformatter Toolbox (Maxelon, 2004j) contains three main

menus called Exit, Editeur Geologique and GOCAD (see Fig. 1). Their mean-

ing is obvious: Exit terminates the programme, Editeur Geologique provides

a routine to export a DEM to the 3D modelling tool Editeur Géologique

and GOCAD provides three routines that produce files readable by the 3D

modelling tool GOCAD c©. The input ASCII-file of a DEM must have the

following format (z-values are in decimetres in this example):

ncols (number) [number of columns]

nrows (number) [number of rows]

xllcorner (coordinate) [x-coordinate of lower left corner]

yllcorner (coordinate) [y-coordinate of lower left corner]

cellsize (number) [distance between two rows/columns]

19389 19512 19618 ... [elevation values]

1developed by BRGM – 3, avenue Claude-Guillemin – BP 6009 – 45060 Orléans Cedex 2
– France; http://3dweg.brgm.fr/

3

2 DEALING WITH DIGITAL ELEVATION MODELS

Figure 1: Screenshot of the programme Reformatter Toolbox. The DEM
export routine is active, allowing specification of a filter density, of the mea-
sured unit and of a possible shift.

The input file must correspond to this format. It is the standard for-

mat obtained if an ESRI grid is exported from ArcInfo c© with the command

line tool GRIDASCII. Thus this format should be commonly available. The

syntax of the GRIDASCII tool is:

GRIDASCII <full_name_of_the_grid> <full_name_of_the_output_file>

2.1 Export of a DEM to Editeur Géologique

The routine DHM 2 EG in the menu Editeur Geologique opens the subform

shown in Fig. 1. The filter number specifies the number of lines and rows

of the GRID to be ignored. So if for instance ”5” is specified, only the 5th

line and row, the 10th line and row, the 15th line and row ... etc will be

exported. Specifying that data are in decimetres simply multiplies the input

data with a factor ”0.1”, specifying metres leaves them unchanged. Other

measures for conversion are not supported. In this case data is exported as

4

2 DEALING WITH DIGITAL ELEVATION MODELS

is. The values given in the shift boxes will be added to the cellsize in the

x- or y-direction (default value is zero; usually identical shifts are used for

x- and y-direction). The specifications are confirmed by pressing the button

Go on ..., which also opens the next interactive form. This form shows a

standard file selection environment, in which the drive can be chosen from

a drop-down list. The respective folder and the input file are selected by

doubleclicking. If the export was successful, this is confirmed in a message

box.

The exported file has the identifier .semi. Its format for usage in the

Editeur Géologique looks like this (z-values are metres in this example):

W XMIN= (number) XMAX= (number) YMIN= (number) YMAX= (number) ...

...NUMBERX= (number) NUMBERY= (number)

641000 143950 2698

641100 143950 2697

641200 143950 2691

.

X Y Z

..

... more XYZ-data-sets

As can be inferred from the first line of this example Editeur Géologique

needs a constant distance between rows and lines, although all points of the

DEM are fully specified (with X-, Y- and Z-coordinate).

2.2 Export to GOCAD c©

2.2.1 DHM 2 GOCAD

The routine DHM 2 GOCAD in the menu GOCAD of the Reformatter Tool-

box opens the same subform already discussed in chapter 2.1 (see also Fig. 1).

However, in this context the filter number specifies how many single values

are to be ignored. So if ”3” is specified, only the 3rd, 6th, 9th ... etc elevation

number of the input file are exported. The other parameters of this form have

the same meaning as already discussed in chapter 2.1, and the subsequent

procedures are also identical.

5

2 DEALING WITH DIGITAL ELEVATION MODELS

The exported file is a standard GOCAD c© point set with the identifier .vs.

The format looks like this (units are metres in this example):

GOCAD VSet 0.01

HEADER{

name:(your_filename_here)

}

VRTX 0 654987 157987 3044

VRTX 1 661237 157987 2087

VRTX 2 667487 157987 1909

.

VRTX n X Y Z

..

...

2.2.2 Ungenerated 2 GOCAD

As can be inferred from the file format example in chapter 2.2.1, every point

in a GOCAD c© point set is also fully defined by X-, Y- and Z-coordinates.

Moreover these data can be inhomogeneously distributed in space. Because

of this the ArcInfo c© command line tool VeryImportantPoints can be used to

reduce the amount of data significantly, while still maintaining their regional

relevance. In other words, in areas where there is little change in z-values

(e.g. a wide plane) more data will be left out, whereas on a crest or in a

narrow gorge with rapid changes in z-values most data will be kept. The

input data format is an ESRI grid. The usage of the tool is as follows:

1. type vip name_in name_out [Percentage of reduction]

e.g. vip D:\WorkSpace\Grids\1251_gr1 D:\WorkSpace\Grids\1251_red 15

2. change to ’Arcedit’ simply by typing arcedit

3. type mape name_out

e.g. mape D:\WorkSpace\Grids\1251_red

4. type ec name_out (i.e. edit coverage)

e.g. ec D:\WorkSpace\Grids\1251_red

5. type ef Points (i.e. edit feature)

6

2 DEALING WITH DIGITAL ELEVATION MODELS

6. type select all

7. type calculate name_out-ID = SPOT (this takes a while)

e.g. calculate 1251_RED-ID = SPOT

8. type save

9. leave Arcedit (type q)

10. in ARC type: ungenerate POINT name_out your_filename.txt # FIXED

The resulting file is of the following format:

19389 672512.500000000000000 158012.500000000000000

19512 672537.500000000000000 158012.500000000000000

19618 672562.500000000000000 158012.500000000000000

19686 672587.500000000000000 158012.500000000000000

.

..

...

The routine Ungenerated 2 Gocad in the GOCAD menu of the Reformat-

ter Toolbox transforms the exported file into GOCAD c© point set format (see

page 6). The file selection works as described in chapter 2.1.

2.2.3 Polyline Decomposer

Lines and polygons typically stored in shape files can be exported from

ArcMap c© to GOCAD c© using the tools described in chapter 3.2. However,

a shape file usually contains more than one single geometry, so the resulting

GOCAD c© polyline file (identifier .pl) contains numerous lines and polygons.

Often it is convenient to have these available as single lines in independent

files. This job is done by the routine Polyline Decomposer in the GOCAD

menu of the Reformatter Toolbox. The file selection works as described in

chapter 2.1. The file format of a polyline file looks like this:

7

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

GOCAD PLine 0.01

HEADER {

name: your_filename_here

}

ILINE

VRTX 1 697026 112081 1131

VRTX 2 697306 112394 307

VRTX 3 697536 112653 -610

...

SEG 1 2

SEG 2 3

SEG 3 4

...

ILINE

VRTX 1 697153 112223 -7698

VRTX 2 697101 112165 -7053

VRTX 3 696886 111923 -5704

...

SEG 1 2

SEG 2 3

...

END

The Polyline Decomposer stores every single ILINE in a completely in-

dependent .pl -file.

3 Data Export and Assessment in ArcMap c©

ESRI ArcView c© GIS (especially the ArcMap c© module) is a common tool

for map production and data evaluation in structural geology. The macro

routines described in the following subchapters provide methods to export

data managed in ArcMap c© to three-dimensional geoscientific modelling tools

(Editeur Géologique, GOCAD c©; chapters 3.1, 3.2). Two data assessment and

examination tools are presented in chapter 3.3. The tools can be implemented

8

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

Figure 2: Export Toolbox with opened Editeur Géologique menu in
ArcMap c©. Complete polygons, lower limits of geological units (with respect
to a (tectono)stratigraphy defined by sequence of ID numbers) or planar
measurements can be exported with the tools of this submenu.

into ArcMap c© by opening the file Moex tools.mxt that comes with this pub-

lication (Maxelon, 2004g). The map documents (indentifier .mxd) based on

this template will then have the tools available. Forms and codes included

in Moex tools.mxt can also be copied to the standard template in ArcMap c©

using the internal Macro Editor for VBA routines (opens with ALT+F11

within ArcMap c©). However, the Export Toolbox toolbar (see Fig. 2) con-

tained in Moex tools.mxt will then have to be set up again (Menu Tools →
Customize in ArcMap c©), in order to rearrange the references to the stan-

dard template. If desired Moex tools.mxt can also completely replace the

ArcMap c© standard template. To establish this it has to be renamed to Nor-

mal.mxt and copied into the local ArcMap c© template folder2. The Export

Toolbox toolbar would then remain available. Nonetheless you should backup

your old Normal.mxt for safety reasons. Finally the tools are also available

separately as module- and form-files (.bas and .frm/.frx) for VBA (Max-

elon, 2004a,b,c,d,e,f,g,h,i) and can be imported using the Macro Editor of

ArcMap c© (menu File → Import file ...).

The tools usually require ArcMap c© to be in MapView -mode. The func-

2Usually located at C:\Documents and Settings\your user name here\Application...
... Data\ESRI\ArcMap\Templates

9

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

��

�

�

���

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�
��

Elrond, ID 7Elrond, ID 7

Saruman, ID 8Saruman, ID 8

Eru, ID 3Eru, ID 3

Frodo, ID 6Frodo, ID 6

Gandalf, ID 9Gandalf, ID 9

Sauron, ID 4Sauron, ID 4

Arwen, ID 2Arwen, ID 2

Galadriel, ID 1Galadriel, ID 1

Eowyn, ID 5Eowyn, ID 5

Figure 3: Showcase map with several units identified by a name and an
ID number. Representative examples of orientation measurements are also
shown. The background shows the hillshade representation of topography as
calculated from a DEM.

tionality of the tools will be explained below considering the showcase map

illustrated in Fig. 3 as an example. Note: All geometries involved must refer

to identical projected coordinate systems (e.g. UTM, SwissGrid).

3.1 Export to Editeur Géologique

Two tools to export lines or polygons and one tool to export planar mea-

surements from ArcMap c© to Editeur Géologique are included in the Export

Toolbox (Fig. 2).

3.1.1 Export complete polygons

The Export complete polygons routine (Fig. 2; Maxelon, 2004a) exports all

lines/polygons of the feature layer selected in the Table of Contents of the

current map in ArcMap c© and stores them in a .data-file. File name and path

can be specified in the user interface. The exported file format looks like this:

10

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

9 INTERFACES

INTERFACE XX 4

13 POINTS

695408 151341

697823 151238

...

INTERFACE XX 2

13 POINTS

697853 153293

700647 153106

...

The interface IDs (”4” and ”2” in the example above) correspond to

formation names in the Editeur Géologique (compare Fig. 3). They are read

from the ID column of the shape file selected in the Table of Contents in

ArcMap c©. This field is created by default for every shape file (.shp) and

is therefore generally available. As a consequence the ID numbers should be

carefully chosen during creation or modification of a shape file, so as to reflect

the (tectono)stratigraphic sequence (lowest number = lowest unit; compare

chapter 3.1.2).

This tool can also be used to export polygons or lines from digitised

cross-sections to Editeur Géologique.

3.1.2 Export lower limits of polygons

The export routine Export complete polygons (chapter 3.1.1; Maxelon, 2004a)

works comparatively fast. However, since it exports the full polygons, bound-

aries between two polygons will be duplicated in the exported file. This

shortcoming is avoided in the slower export routine Export lower limits of

polygons (Fig. 2; Maxelon, 2004d). The selection of the geometries to be

exported works the same way as described for the Export complete polygons

routine (chapter 3.1.1). However, in addition this routine checks the bound-

aries of the polygons with respect to their (tectono)stratigraphic position in

a geologic pile. It is assumed that highest ID values correspond to those

units situated in the highest levels of the pile. Because of this the exported

.data-file for the showcase lithologies in Fig. 3 looks like this:

11

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

9 INTERFACES

INTERFACE XX 4

3POINTS

695408 151341

697823 151238

697792 150909

INTERFACE XX 3

3POINTS

700710 152112

700647 153106

697853 153293

INTERFACE XX 6

7POINTS

708898 147875

705600 151035

...

No points are exported for Galadriel and Arwen (compare Fig. 3) because

their IDs (”1” and ”2”) are the lowest IDs of all and their lower limits do not

crop out in the map area. For both Eru and Sauron (IDs ”3” and ”4”) only

three points are exported, namely their boundaries with Arwen that has a

lower ID. Thus these points are interpreted as markers for the lower limit of

Eru and Sauron.

This tool can also be used to export polygons or lines from digitised

cross-sections to Editeur Géologique.

3.1.3 Export planar measurements

Editeur Géologique requires planar measurements (e.g. foliations, bedding)

to be defined by X- and Y-coordinate, by dip direction and dip angle (in de-

grees) and by their polarity (or younging direction; +1 or -1). Moreover they

should be uniquely assigned to one geologic unit. The Z-value is automat-

ically taken from the separately imported DEM within Editeur Géologique

(compare chapter 2.1). The required file also has the identifier .data and the

following format:

12

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

45 FOLIATIONS

695816 150340 51 31 1 Sauron

697357 150696 50 30 -1 Sauron

700173 151555 200 80 1 Eowyn

699847 152533 200 80 -1 Arwen

703908 153156 98 78 1 Eru

700736 153422 200 80 1 Eru

707435 152563 298 54 1 Eru

709955 151318 300 65 1 Frodo

710370 149213 189 78 -1 Frodo

710251 145953 265 12 1 Frodo

692793 147316 245 20 -1

693682 150784 321 19 1 Sauron

695312 154075 200 80 -1 Saruman

...

The information stored herein is:

X-coordinate Y-coordinate dip direction dip angle polarity name

The above .data-file should be compared to the data shown in Fig. 3. One

value (in the third line counted from bottom) is not assigned to a specific unit.

The respective measurement is situated in the SE of Fig. 3. The polarity

values (±1) have been assigned taking into account an additional feature

layer, which specifies the polarities (visible in the background of Fig. 4).

The following paragraphs provide a stepwise instruction manual for the

respective export routine:

1. The layer containing the planar measurements to be exported must

be selected before the routine Export planar measurements (Fig. 2;

Maxelon, 2004e) is started (e.g. Test foliations in the upper left of the

Table of Contents in Fig. 4).

2. The routine (user interface shown in Fig. 4) first asks for selection of

the feature layer containing the geologic units. The selection requires

a confirmation and the routine then opens the menus for further se-

lections. Here the names of the fields containing dip direction and dip

angle must be selected.

13

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

Figure 4: Screenshot showing the user interface of the Export planar mea-
surements routine during data export. The additional transparent layer in
the map (compare to Fig. 3) contains the polarity values (horizontal lines: +1;
crosses: -1). Usage of the interface is explained in the text.

14

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

3. If polarity values have already been stored with the planar measure-

ments, the field they are stored in should be selected in the third box

(according to the sequence in which measurements are specified in the

.data-file described on page 13).

4. If polarity data are contained in another polygon layer (as shown in

Fig. 4, fro example) the third box should be left empty.

5. The selection is confirmed by pressing the button Off we go

6. If the third box was left empty it has to be confirmed that this happened

intentionally. A dummy item will then be selected in the respective list

box, but it will not be exported.

7. The field containing the names of the geologic units (e.g. ID or Name,

as chosen in Fig. 4) has to be selected next.

8. With a tick box to the right it can be specified afterwards, if data

outside the mapped area are to be exported also.

9. Below the above mentioned tick box, a selection must be made of the

way in which polarities will be treated.

(a) If they are already exported together with the planar measure-

ments (i.e. the name of their field in the respective feature layer

is selected in the right list box above, as described before) Do not

export any polarities should be selected (compare Fig. 4).

(b) If all data are to be exported with the same polarity value (+1 in

this case) Use default polarities should be selected.

(c) If the polarity data are to be assigned based on the position of the

data with respect to traces of fold axial planes, Export polarities

with respect to fold axes should be selected. This subroutine can

be helpful if dealing with flat-lying recumbent folds like nappes.

In such cases polarity information is not always available imme-

diately. Then another polygon feature layer should be created

roughly following the fold axial traces as outlines, because they

15

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

mark the positions where polarity values change their sign. If this

polarity option is chosen, two more boxes open (the two lower-

most in Fig. 4), where the name of the feature layer containing

the polarity values and the respective data field in that layer must

be specified.

10. If all these selections are done, the export is started by pressing the

button Even further we go

In principal this routine can also be used for other data export purposes

dealing with topological relationships (i.e. inside ↔ outside a polygon) of

data (e.g. assigning the names of other polygons to various point data).

3.2 Export to GOCAD c©

Three tools exporting geometries from ArcMap c© to GOCAD c© are presented.

Two of them export lines and polygons in the correct GOCAD c©-format (i.e.

polylines (.pl -files); compare format example on page 8). The third routine

exports digitised cross-sections as .pl -files, taking georeferenced start- and

end-points into account.

3.2.1 Exporting lines and polygons to GOCAD c©

Lines and polygons can be exported to GOCAD with two fast and easy-to-

handle routines.

• Lines (Maxelon, 2004c)

The feature layer to be exported must be selected in the Table of Con-

tents in ArcMap c© (like Test foliations in the upper left of Fig. 4). The

routine for line export is started by clicking the button Export lines to

GOCAD in the Export to GOCAD menu of the Export Toolbox (com-

pare Fig. 2). The user interface allows both a path and file name to be

specified and is started with the button GO!. A message box informs

the user when the export is finished and shows where the exported file

has been stored.

16

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

Figure 5: Digitised cross-section in ArcMap c©. The user interface to ex-
port the cross-section to GOCAD c© is active (lower right). The feature layer
containing the respective geometries is selected (upper left).

• Polygons (Maxelon, 2004f)

The routine for polygon export works exactly the same way as the rou-

tine for line export, but is started with the Export polygons to GOCAD

button.

3.2.2 Export digitised profiles to GOCAD (Maxelon, 2004b)

The button Export digitised profiles to GOCAD in the Export to GOCAD

menu of the Export Toolbox opens the user interface shown in the lower right

of Fig. 5. The feature layer containing the geometries to be exported must

be selected in the Table of Contents in ArcMap c© (as shown in Fig. 5). The

geometries (polygons or polylines in ArcMap c©) are exported as GOCAD c©

.pl -files (an example of the file-format is illustrated on page 8). The export

17

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

Figure 6: Three-dimensional view of a cross-section exported from
ArcMap c© to GOCAD c© according to the specifications illustrated in Fig. 5.
The principal directions of the coordinate system correspond to the limits of
the bounding box and are also shown in the lower left of the figure.

routine requires the point(s) defining the left boundary of the digitised cross-

section to be defined by the coordinates (0,y). In other words, it is assumed

that the section is referenced to its own independent (u,v)-coordinate system

with the point of origin at (0,0). The u-coordinate relates to the X-coordinate

in the 3D space and the v-coordinate represents the Z-coordinate. Addition-

ally the start- and end-point of the cross-section have to be specified in the

user interface. The coordinates entered here must be referenced to the pro-

jected coordinate system used for the three-dimensional modelling (e.g. X-

and Y-coordinate in SwissGrid notation). From these declarations the correct

X- and Y-coordinates of each constituent point in three dimensions are calcu-

lated. The showcase numbers entered in Fig. 5 (namely (0,0/10000,10000))

result in an export as visualised in Fig. 6.

3.3 Data Assessment

The menu Geology Tools in the Export Toolbox contains routines for two

common tasks in geology. The routine Profile Calculation automatically cal-

18

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

culates a cross-section from a given DEM, also recording information about

different geologic units and planar measurements along the profile. The rou-

tine Orientation Averaging creates a regularly meshed grid of spatially aver-

aged orientations (e.g. foliations) from a given set of typically heterogeneously

distributed measurements.

3.3.1 Creating Cross-Sections

This routine (Maxelon, 2004i) opens with the button Profile Calculation in

the menu Geology Tools of the Export Toolbox. The user interface is shown

in Fig. 7. The start- and endpoints must be specified using the appropriate

coordinate system in the respective text boxes (in the upper part of the user

interface). The precision of the cross-section is determined by specifying at

which interval elevation points are to be spaced – the bigger the interval,

the faster (but less precise) the calculation. Furthermore, the interval along

the cross-section at which orientation values are to be calculated can be

prescribed. These orientation values are calculated from all measurements

available within a circular buffer region around the point of interest by com-

ponent adding (possibly inverse distance weighted, if the respective tick is set

→ inverse distance weighted). The radius of the buffer can also be specified

in the user interface by setting the radius for calculation.

Once these values have been entered and options set, the button ...next

step... is pressed and the second part of the user interface opens (the upper

part of the user interface will then be locked, like it is in Fig. 7). In this step,

the appropriate DEM has to be selected first, then the layer containing the

polygons corresponding to geologic units and – as the case may be – that

containing the planar measurements. The respective boxes in the lower part

of the dialogue box then list the data fields available in the chosen feature

layers. Although several fields may be listed, it is highly recommended to

choose the ID field as the field indicating geological units, in order to

avoid data format incompatibilities. Finally the path and the file name for

the output files have to be specified. The export routine is started with the

button ...last step....

19

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

B

A

Figure 7: Screenshot of ArcMap c© showing the user interface of the Profile
Exporter. The dashed line in the northwestern part of the showcase map
delineates the trace of the cross-section (labels A and B indicate start- and
endpoints; compare Fig. 8).

A B
ID 4

ID 2

ID 3ID 8

0

0

1000

1000

2000

2000

3000

3000

4000

4000

5000

5000

6000

6000

7000

7000

8000

8000

9000

9000

10000

10000

11000

11000

0 0

50
0

50
0

10
00

10
00

15
00

15
00

20
00

20
00

25
00

25
00

30
00

30
00

35
00

35
00

Figure 8: Cross-section calculated with the Profile Exporter (compare
Fig. 7). The IDs of geologic units are labelled. The apparent dips of ori-
entations projected onto the profile trace are indicated by line markers with
a light green background.

20

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

The output is stored in two shape files: a line shape, containing the profile

line, and a point shape, containing the averaged orientation measurements.

Make sure that these files do not already exist, because the routine does not

overwrite pre-existing files and will produce an error if you try to do so. The

two shape files can then be added to a new map document in ArcMap c©. The

line shape consists of several single consecutive lines, corresponding to the

outcrop zones of geologic units crossed by the profile trace. Choosing an ap-

propriate pattern according to their ID-assignments gives the different parts

of the profile line the same colour as the geologic units have in the map (com-

pare Figs. 7, 8). In the point-shape file, three data fields for dip direction,

dip angle and apparent dip are created. If the latter is used as a rotation

field for a linear symbol representing the averaged point measurements along

the cross-section, the changes in orientation along the cross-section can be

plotted (as in Fig. 8).

3.3.2 Spatial Averaging of Orientation Data

The routine Orientation Averaging (Maxelon, 2004h) is started with the

respective button in the menu Geology Tools of the Export Toolbox. The

layer containing the measurements to be averaged must be selected in the

Table of Contents in ArcMap c© (like Test foliations in Fig. 9). In the user

interface the path and name of the shape file that will store the averaged

data must be specified. Make sure that the shape file you want to store does

not already exist, because the routine does not overwrite existing files and

produces an error when you try to do so.

The numbers of columns and rows specify how closely meshed the grid of

averaged data points must be - these numbers should be chosen with respect

to the distribution of the input data. Of course the calculation time increases

when more points have to be created and calculated. The Calculation Ra-

dius specifies the size of the buffer (area of averaging) around the newly

created points. All measurements within this buffer are taken into account

for averaging. If the Inverse Distance Weighted? (IDW) tick box is selected,

the averaging algorithm also uses IDW to produce the set of averaged data.

21

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

Figure 9: Screenshot of ArcMap c©. The routine Orientation Averaging is
active (lower left) and the layer containing the data to be averaged is selected
in the Table of Contents (upper left).

22

3 DATA EXPORT AND ASSESSMENT IN ARCMAP c©

�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

� �

�
�

�

��

�

�

���

�

�

�

�

�

�

�

�

�

�
�

�
�
�

�
��

� � �

� � � � �
� � � � �

� � �

� �

� � � � � �

� �

� � � � �

� �

� � � �

�

�

� � � �

�

98/7898/78

99/3899/3895/5095/50

99/1299/1267/7767/77
59/2759/27

58/2858/28

26/8026/80

57/2757/27

70/3270/32

50/2150/21

31/2531/25

183/65183/65

289/45289/45200/80200/80200/80200/80200/80200/80

179/74179/74
298/54298/54

200/80200/80200/80200/80109/70109/70

237/82237/82298/54298/54141/81141/81200/80200/80200/80200/80

300/65300/65305/65305/65161/88161/88200/80200/80334/29334/29

294/59294/59289/79289/79174/85174/85329/38329/38

243/62243/62

355/32355/32

332/73332/73

333/34333/34

352/48352/48245/20245/20

287/36287/36344/65344/65

44 / 4544 / 45

70 / 3270 / 32

95 / 5095 / 50

70 / 2070 / 20

99 / 1299 / 12

23 / 3623 / 36

257 / 2257 / 2
68 / 3568 / 35

31 / 2531 / 25

98 / 7898 / 78

50 / 3050 / 3051 / 3151 / 31

145 / 84145 / 84

261 / 43261 / 43

285 / 21285 / 21

333 / 54333 / 54

322 / 87322 / 87

344 / 65344 / 65

355 / 32355 / 32

295 / 30295 / 30

289 / 45289 / 45

200 / 80200 / 80

200 / 80200 / 80

200 / 80200 / 80
200 / 80200 / 80

143 / 70143 / 70

106 / 89106 / 89

174 / 85174 / 85

206 / 45206 / 45 305 / 65305 / 65

197 / 74197 / 74

341 / 85341 / 85

200 / 80200 / 80

321 / 19321 / 19

245 / 20245 / 20

265 / 12265 / 12

189 / 78189 / 78

300 / 65300 / 65

298 / 54298 / 54

200 / 80200 / 80

200 / 80200 / 80

200 / 80200 / 80

695000

695000

700000

700000

705000

705000

710000

710000

14
40

00

14
40

00

14
60

00

14
60

00

14
80

00

14
80

00

15
00

00

15
00

00

15
20

00

15
20

00

15
40

00

15
40

00

15
60

00

15
60

00

Figure 10: Showcase map illustrating input data (blue background) and
results (white background) of spatial averaging (compare Fig. 9). Labels
indicate the exact values.

23

WARRANTY AND LIABILITY

The routine is started by pressing the button Calculate. The result of the

showcase calculation of Fig. 9 is illustrated in Fig. 10.

The resulting shape-file (.shp) contains two important data fields: one is

called DipDir and provides the dip direction, the other is called DipAn and

stores the dip angle. If no data were found inside the buffer around the point

of calculation, a dummy value of -9999 is stored in both fields. Points with

no data can then be identified and easily excluded from plots.

Acknowledgements

I want to thank Martin Brändli, who introduced me patiently and with expert

knowledge into programming with VBA c© in ArcMap c©. Reviews of Diane

Seward and Neil S. Mancktelow are also gratefully acknowledged.

Warranty and Liability

DISCLAIMER OF WARRANTY

Since the Software is provided free of charge, it is provided on an as is basis,

without warranty of any kind, including, without limitation, the warranties of

merchantability, fitness for a particular purpose and non-infringement. The

entire risk as to the quality and performance of the Software is borne by the

user. Should the Software prove defective, the user will assume the entire

cost of any service and repair.

LIMITATION OF LIABILITY

Under no circumstances and under no legal theory, tort, contract, or oth-

erwise, shall the author be liable to the user or any other person for any

indirect, special, incidental, or consequential damages of any character in-

cluding, without limitation, damages for loss of goodwill, work stoppage,

24

WARRANTY AND LIABILITY

computer failure or malfunction, or any and all other commercial damages

or losses.

25

References

References

Maxelon, M., 2004a. Export complete polygons. In: E-

collection. ETH Zürich, http://e-collection.ethbib.ethz.ch/ecol-

pool/bericht/bericht 377 script3.zip.

Maxelon, M., 2004b. Export digitised profiles to GOCAD. In: E-

collection. ETH Zürich, http://e-collection.ethbib.ethz.ch/ecol-

pool/bericht/bericht 377 script7.zip.

Maxelon, M., 2004c. Export lines to GOCAD. In: E-

collection. ETH Zürich, http://e-collection.ethbib.ethz.ch/ecol-

pool/bericht/bericht 377 script6a.zip.

Maxelon, M., 2004d. Export lower limits of polygons. In: E-

collection. ETH Zürich, http://e-collection.ethbib.ethz.ch/ecol-

pool/bericht/bericht 377 script4.zip.

Maxelon, M., 2004e. Export planar measurements. In: E-

collection. ETH Zürich, http://e-collection.ethbib.ethz.ch/ecol-

pool/bericht/bericht 377 script5.zip.

Maxelon, M., 2004f. Export polygons to GOCAD. In: E-

collection. ETH Zürich, http://e-collection.ethbib.ethz.ch/ecol-

pool/bericht/bericht 377 script6b.zip.

Maxelon, M., 2004g. Moex tools.mxt. In: E-collection. ETH Zürich, http://e-

collection.ethbib.ethz.ch/ecol-pool/bericht/bericht 377 script2.zip.

Maxelon, M., 2004h. Orientation Averaging. In: E-

collection. ETH Zürich, http://e-collection.ethbib.ethz.ch/ecol-

pool/bericht/bericht 377 script9.zip.

Maxelon, M., 2004i. Profile Calculation. In: E-collection.

ETH Zürich, http://e-collection.ethbib.ethz.ch/ecol-

pool/bericht/bericht 377 script8.zip.

26

References

Maxelon, M., 2004j. Reformatter.exe. In: E-collection. ETH Zürich, http://e-

collection.ethbib.ethz.ch/ecol-pool/bericht/bericht 377 script1.zip.

27

APPENDIX A

The following chapters list the source codes

of the VisualBasic c© programmes

and the Visual Basic for Applications c© macros.

28

APPENDIX A Reformatter Toolbox (VB c© codes)

A Reformatter Toolbox (VB c© codes)

The source codes in this chapter were written in the VisualStudio c© 6.0 envi-

ronment.

A.1 Reformatter Core

The name of this form in the VisualBasic c© programming environment is

Reformatter Core!

Option Explicit

Public MnuSlct As String

Private Sub MDIForm_Resize()

Select Case Reformatter_Core.WindowState

Case 0

Reformatter_Core.Width = 6300

Reformatter_Core.Height = 6885

Case 2

Reformatter_Core.WindowState = 0

Reformatter_Core.Width = 6300

Reformatter_Core.Height = 6885

End Select

End Sub

Private Sub mnuEGdhm2eg_Click()

Reformatter_Core.Tag = "dhm2eg"

Filter_Query_dhm_exp.Show

End Sub

Private Sub mnuGCDdhm2gcd_Click()

Reformatter_Core.Tag = "dhm2goc"

Filter_Query_dhm_exp.Show

End Sub

Private Sub mnuGCDpllndcmp_Click()

File_Dialog.Caption = "Polyline Decomposer"

File_Dialog.Show

End Sub

Private Sub mnuGCDung2gcd_Click()

File_Dialog.Caption = "Ungenerated 2 Gocad"

File_Dialog.Show

End Sub

Private Sub mnuODLTpo_Click()

Unload Me

End Sub

29

APPENDIX A Reformatter Toolbox (VB c© codes)

A.2 Filter Query

The name of this form in the VisualBasic c© programming environment is

Filter Query dhm exp!

Option Explicit

Private Sub Check_dm_Click()

If Check_m.Value = 1 Then Check_m.Value = 0

End Sub

Private Sub Check_m_Click()

If Check_dm.Value = 1 Then Check_dm.Value = 0

End Sub

Private Sub Reformat_Click()

Select Case Reformatter_Core.Tag

Case "dhm2eg"

File_Dialog.Caption = "DHM 2 EG"

Case "dhm2goc"

File_Dialog.Caption = "DHM 2 GOCAD"

End Select

File_Dialog.Show

End Sub

Private Sub Buzz_Off_Click()

Unload Me

End Sub

Private Sub Xll_shift_Change()

Yll_shift.Text = Xll_shift.Text

End Sub

30

APPENDIX A Reformatter Toolbox (VB c© codes)

A.3 File Dialog

The name of this form in the VisualBasic c© programming environment is

File Dialog !

Option Explicit

Dim OldFile As String ’ file name of the input file

Dim NewFile As String ’ file name of the output file

Dim PurFilNam As String ’ input file name without path

Dim i As Double ’ used for for-next loops within the line constituents

Dim c As Double ’ used for item counting

Dim k As Double ’ used for item counting

Dim LineReader As String ’ reads whole lines from input file

Dim LnPrts() As String ’ stores the constituents of a line in an array

Private Sub Drive1_Change() ’ updates directory view when drive is changed

Dir1.Path = Drive1.Drive

End Sub

Private Sub Dir1_Change() ’ updates file view when directory is changed

File1.Path = Dir1.Path

End Sub

Private Sub File1_DblClick() ’ file chosen to be reformatted

Dim PointPos As Integer ’ stores the position of the point in the filename

PointPos = InStr(1, File1.FileName, ".") - 1

PurFilNam = Left$(File1.FileName, PointPos)

OldFile = File1.Path & "\" & File1.FileName

ProgressBar.Visible = True

Select Case File_Dialog.Caption ’ selects formatting routine based on the choice from Reformatter_Core

Case "Ungenerated 2 Gocad"

Call Formatter1

Case "DHM 2 EG"

Call Formatter2

Case "DHM 2 GOCAD"

Call Formatter2

Case "Polyline Decomposer"

Call Formatter3

End Select

Unload Filter_Query_dhm_exp

End Sub

Private Sub Formatter1() ’ Reformats ungenerated files from ArcInfo to GOCAD-

’ vs-Files

Dim AnswrPrts(3) As Double ’ stores the resorted line constituents

k = 1

c = 0

NewFile = File1.Path & "\" & PurFilNam & ".vs"

Open OldFile For Input As #1 ’ input file opened

Open NewFile For Output As #2 ’ file opened for output

Print #2, "GOCAD VSet 0.01"

Print #2, "HEADER{"

Print #2, "name:"; PurFilNam

Print #2, "}"

Print #2, ""

While Not EOF(1)

Line Input #1, LineReader ’ reads input file line by line

LnPrts = Split(LineReader) ’ splits line content into array of strings

For i = 1 To UBound(LnPrts) ’ checks all strings of the given array

31

APPENDIX A Reformatter Toolbox (VB c© codes)

If LnPrts(i) <> "" Then ’ chooses strings that are not empty

AnswrPrts(c) = Round(Val(Trim$(LnPrts(i)))) ’ non-empty strings are stored in a separate array

c = c + 1

End If

Next i

Print #2, "VRTX"; k; AnswrPrts(1); AnswrPrts(2); AnswrPrts(0) ’ strings are plotted in correct sequence

k = k + 1

c = 0

Wend

Close #1

Close #2

MsgBox "Your files have been stored in: " & Chr(13) & NewFile, 64, "Hey Babe!"

Unload Me

End Sub

Private Sub Formatter2() ’ Reformats DHM-Files either into Editeur Geologique format

’ or into GOCAD-vs-Files

Dim CS As Single ’ stores the cellsize of the DHM

Dim NCol As Single ’ stores the number of columns of the DHM

Dim NRow As Single ’ stores the number of rows of the DHM

Dim NDV As Single ’ stores nodata_value

Dim Xcnt As Single ’ stores the increments in x-direction

Dim Ycnt As Single ’ stores the increments in y-direction

Dim Xll As Single ’ stores x (lower left) of the DHM

Dim Yll As Single ’ stores y (lower left) of the DHM

Dim Yact As Single ’ stores the actual value of y for Gocad or the EG

Dim Fltr As Single ’ stores the factor by which the DHM will be filtered

Dim Unt As Single ’ divides values for metres or decimetres

Dim PrmtrPos As Single ’ stores UBound(LnPrts) in order to access NCol etc.

Dim Xmax As Single ’ stores maximum X according to filtering effects (drop-out of lines)

Dim Ymin As Single ’ stores minimum Y according to filtering effects (drop-out of lines)

Dim NmbX As Single ’ stores number of columns according to filtering effects

Dim NmbY As Single ’ stores number of rows according to filtering effects

c = 0

k = 1

Unt = 1

Xcnt = 0

Ycnt = 0

Fltr = Filter_Query_dhm_exp.Filter_Number.Text ’ reads the filter number from the filter_query...-form

If Filter_Query_dhm_exp.Check_dm.Value = 1 Then Unt = 10

Select Case Reformatter_Core.Tag ’ selects file-ending based on choice in the reformatter core

Case "dhm2eg"

NewFile = File1.Path & "\" & PurFilNam & ".semi"

Case "dhm2goc"

NewFile = File1.Path & "\" & PurFilNam & ".vs"

End Select

Open OldFile For Input As #1

Open NewFile For Output As #2

While Not EOF(1) ’ reads input file line by line

Line Input #1, LineReader

If LineReader <> "" Then ’ checks that line ist not empty

LnPrts = Split(LineReader, " ")

If k < 7 Then

PrmtrPos = UBound(LnPrts)

Select Case UCase(LnPrts(0))

Case "NCOLS"

NCol = LnPrts(PrmtrPos)

Case "NROWS"

NRow = LnPrts(PrmtrPos)

Case "XLLCORNER"

Xll = LnPrts(PrmtrPos)

32

APPENDIX A Reformatter Toolbox (VB c© codes)

Case "YLLCORNER"

Yll = LnPrts(PrmtrPos)

Case "CELLSIZE"

CS = LnPrts(PrmtrPos)

Case "NODATA_VALUE"

NDV = LnPrts(PrmtrPos)

ProgressBar.Min = c + 1

ProgressBar.Max = NCol * NRow

End Select

If k = 6 Then

Xll = Xll + Filter_Query_dhm_exp.Xll_shift.Text

Yll = Yll + Filter_Query_dhm_exp.Yll_shift.Text

Yact = Yll + (NRow - 1) * CS

Select Case Reformatter_Core.Tag

Case "dhm2goc"

Print #2, "GOCAD VSet 0.01"

Print #2, "HEADER{"

Print #2, "name:"; PurFilNam

Print #2, "}"

Print #2, ""

Case "dhm2eg" ’math explained below

Xmax = Int((NCol - 1) / Fltr) * CS * Fltr + Xll

Ymin = Yll + CS * (NRow - Int((NRow - 1) / Fltr) * Fltr - 1)

NmbX = Int((Xmax - Xll) / (CS * Fltr)) + 1

NmbY = Int((Yact - Ymin) / (CS * Fltr)) + 1

Print #2, "W XMIN="; Xll; "XMAX="; Xmax; "YMIN="; Ymin; "YMAX="; Yact; "NUMBERX="; NmbX; "NUMBERY="; NmbY

End Select

End If

End If

If k > 6 Then

For i = 0 To UBound(LnPrts)

If LnPrts(i) <> "" Then

Select Case Reformatter_Core.Tag

Case "dhm2eg" ’math explained below

If (Int((Xcnt) / Fltr) = (Xcnt) / Fltr) And (Int(Ycnt / Fltr) = Ycnt / Fltr) Then

Print #2, Int(Xll + Xcnt * CS); Int(Yact); Int(LnPrts(i) / Unt)

End If

Case "dhm2goc"

If Int(c / Fltr) = c / Fltr Then

Print #2, "VRTX"; c / Fltr; Int(Xll + Xcnt * CS); Int(Yact); Int(LnPrts(i) / Unt)

End If

End Select

ProgressBar.Value = c + 1

c = c + 1

Xcnt = Xcnt + 1

If Int(Xcnt / NCol) = Xcnt / NCol Then

Ycnt = Ycnt + 1

Xcnt = 0

Yact = Yact - CS

End If

End If

Next i

End If

k = k + 1

33

APPENDIX A Reformatter Toolbox (VB c© codes)

End If

Wend

Close #1

Close #2

ProgressBar.Visible = False

ProgressBar.Value = ProgressBar.Min

MsgBox "File(s) stored in: " & Chr(13) & NewFile, 64, "Hey Babe!"

Unload Me

End Sub

’

’calculation of Xmax after filtering:

’ delta x = -(xmin - xmaxorig)

’ stepsize = cellsize * filter-factor

’ => xmax = Int [delta x / stepsize] * stepsize + xmin

’ = Int [(xmax - xmin) / (cellsize * filter)] * (cellsize * filter) + xmin

’ xmax = xll + (Ncol - 1) * cellsize

’ => xmax

Private Sub Formatter3() ’ decomposes a polyline into its constituents

’ saving them as single files

k = 1

NewFile = File1.Path & "\" & PurFilNam & k & ".pl"

Open OldFile For Input As #1

Open NewFile For Output As #2

While Not EOF(1)

Line Input #1, LineReader

If LineReader <> "" Then

LnPrts = Split(LineReader, " ")

If LnPrts(0) = "ILINE" And k > 1 Then

Print #2, "END"

Close #2

NewFile = File1.Path & "\" & PurFilNam & k & ".pl"

Open NewFile For Output As #2

Print #2, "GOCAD Pline 0.01"

Print #2, "HEADER{"

Print #2, "name:"; PurFilNam & k

Print #2, "}"

Print #2, ""

k = k + 1

End If

If LnPrts(0) = "ILINE" And k = 1 Then k = 2

Print #2, LineReader

End If

Wend

Close #1

Close #2

MsgBox "Your files have been stored in: " & Chr(13) & File1.Path, 64, "Hey Babe!"

Unload Me

End Sub

34

APPENDIX B Export Toolbox (VBA c© codes)

B Export Toolbox (VBA c© codes)

The source codes in this chapter were written in the VBA c© Macro Editor

included in the ArcView c© 8.2 environment.

B.1 Export to Editeur Géologique

B.1.1 Export complete polygons

The name of this form in the VBA c© programming environment in

ArcMap c© is Frm Shp2EG Full Polygon!

Private Sub ExitButton_Click()

Unload Me

End Sub

Private Sub StartShp2Goc_Click()

Call GetGeometryFullPolygon_2EG

Unload Me

End Sub

The name of this module in the VBA c© programming environment in

ArcMap c© is Mod Shp2EG Full Polygon!

Dim PolygNr As Long

’ Export of complete polygons (not single points

’ according to relationship criteria) from ArcMap

’ into Mif/Mid-format

Sub Export_Shp2EG_Full_Polygon()

Frm_Shp2EG_Full_Polygon.Show

End Sub

Public Sub GetGeometryFullPolygon_2EG()

Dim aoiFeatureLayer As IFeatureLayer

’ Get the selected feature layer

Set aoiFeatureLayer = GetSelectedFeatureLayer()

If Not aoiFeatureLayer Is Nothing Then

LookForGeometries aoiFeatureLayer

End If

End Sub

Public Function GetSelectedFeatureLayer() As IFeatureLayer

Dim aoiFeatureLayer As IFeatureLayer

’Access the actual document

Dim aoiDoc As IMxDocument

Set aoiDoc = ThisDocument

35

APPENDIX B Export Toolbox (VBA c© codes)

’Verify that the active view is a data frame.

’Then access the selected layer

If TypeOf aoiDoc.ActiveView Is IMap Then

Dim aoiLayer As ILayer

Set aoiLayer = aoiDoc.SelectedLayer

If Not aoiLayer Is Nothing Then

If TypeOf aoiLayer Is IFeatureLayer Then

Set aoiFeatureLayer = aoiLayer

Else

MsgBox "Selected layer is not a FeatureLayer!"

End If

Else

MsgBox "Exactly one Layer must be active!"

End If

ElseIf TypeOf aoiDoc.ActiveView Is IPageLayout Then

MsgBox "Current View is a Page Layout"

End If

Set GetSelectedFeatureLayer = aoiFeatureLayer

End Function

’ adressing the geometries in the selected feature layer

’ and looping through all features

Public Sub LookForGeometries(aoiFeatureLayer As IFeatureLayer)

Dim aoiFeatureClass As IFeatureClass

Dim geometryType As esriGeometryType

Dim aoiCursor As IFeatureCursor

Dim aoiFeature As IFeature

Dim aoiPolygon As IGeometryCollection

Dim aoiIDField As IField

Dim aoiIDFieldIndex As Long

Dim FileParts(2) As String

Dim saveFileData As String

Set aoiFeatureClass = aoiFeatureLayer.FeatureClass

aoiIDFieldIndex = aoiFeatureClass.FindField("ID")

’ Check the geometry

geometryType = aoiFeatureClass.ShapeType

If geometryType = esriGeometryPolygon Or esriGeometryPolyline Then

FileParts(0) = Frm_Shp2EG_Full_Polygon.MifPath.Value & "\"

FileParts(1) = Frm_Shp2EG_Full_Polygon.MifName.Value

FileParts(2) = FileParts(0) & FileParts(1)

saveFileData = FileParts(2) & ".data"

Open saveFileData For Output As #1

Set aoiCursor = aoiFeatureClass.Search(Nothing, False)

Set aoiFeature = aoiCursor.NextFeature

Print #1, aoiFeatureClass.FeatureCount(Nothing) & " INTERFACES"

Do While Not aoiFeature Is Nothing

PolygNr = aoiFeature.Value(aoiIDFieldIndex)

Print #1, "INTERFACE XX " & PolygNr

Set aoiPolygon = aoiFeature.Shape

DecomposePolygon aoiPolygon

Set aoiFeature = aoiCursor.NextFeature

Loop

Close #1

MsgBox "Your file has been stored as: " & Chr(13) & saveFileData, 64

Else: MsgBox "You selected a wrong geometry type!", vbExclamation, "Unable to process!"

Unload Shp2MifF_Polygon

End If

End Sub

’ Function gets a polygon as GeomteryCollection (possibly comprising

’ more than one part) and decomposes it to find the coordinates

36

APPENDIX B Export Toolbox (VBA c© codes)

Public Sub DecomposePolygon(aoiPolygon As IGeometryCollection)

Dim aoiRing As ISegmentCollection

Dim aoiCurve As ICurve

Dim fromPoint As IPoint

Dim toPoint As IPoint

Dim segCounter As Long

Dim lngCounter As Long

’ Get the Rings

For lngCounter = 0 To aoiPolygon.GeometryCount - 1

Set aoiRing = aoiPolygon.Geometry(lngCounter)

Print #1, aoiRing.SegmentCount + 1 & " POINTS"

For segCounter = 0 To aoiRing.SegmentCount - 1

Set aoiCurve = aoiRing.Segment(segCounter)

Set fromPoint = aoiCurve.fromPoint

Set toPoint = aoiCurve.toPoint

Print #1, Round(fromPoint.x, 0); Round(fromPoint.y, 0)

Next segCounter

’ close the polygon ...

Print #1, Round(toPoint.x, 0); Round(toPoint.y, 0)

Next lngCounter

End Sub

37

APPENDIX B Export Toolbox (VBA c© codes)

B.1.2 Export lower limits of polygons

The name of this form in the VBA c© programming environment in

ArcMap c© is Frm Shp2EG Limits Polygon!

Private Sub ExitButton_Click()

Unload Me

End Sub

Private Sub StartShp2Goc_Click()

prgBr.Visible = True

Call GetGeometryPolygonLimits

Unload Me

End Sub

The name of this module in the VBA c© programming environment in

ArcMap c© is Mod Shp2EG Limits Polygon!

Dim PolygNr As Long

Dim aoiFeatureClass As IFeatureClass

Dim aoiFeatureClass2 As IFeatureClass

Dim geometryType As esriGeometryType

Dim aoiCursor As IFeatureCursor

Dim aoiCursor2 As IFeatureCursor

Dim aoiFeature As IFeature

Dim aoiFeature2 As IFeature

Dim aoiFeatureLayer As IFeatureLayer

Dim aoiPolygon As IGeometryCollection

Dim aoiPolygon2 As IGeometryCollection

Dim aoiIDField As IField

Dim aoiRing As ISegmentCollection

Dim aoiCurve As ICurve

Dim fromPoint As IPoint

Dim aoiRing2 As ISegmentCollection

Dim aoiCurve2 As ICurve

Dim fromPoint2 As IPoint

Dim intMidCntr As Integer

Dim lgGeomCntr As Long

Dim lgGeomCntr2 As Long

Dim segCounter As Long

Dim segCounter2 As Long

Dim aoiIDFieldIndex As Long

Dim lgMinID As Long

Dim dbl As Double

Dim strCoords() As String

Dim FileParts(2) As String

Dim saveFileMif As String

Sub Export_Shp2EG_Limits_Polygon()

’Shows the respective GUI

Frm_Shp2EG_Limits_Polygon.Show

End Sub

Public Sub GetGeometryPolygonLimits()

Dim aoiFeatureLayer As IFeatureLayer

38

APPENDIX B Export Toolbox (VBA c© codes)

’ Get the selected feature layer

Set aoiFeatureLayer = GetSelectedFeatureLayer()

If Not aoiFeatureLayer Is Nothing Then

’ Calls the function that indentifies and extracts the geometries

’ in the selected feature layer

LookForGeometries aoiFeatureLayer

Else: Exit Sub

End If

End Sub

Public Function GetSelectedFeatureLayer() As IFeatureLayer

’Access the actual document

Dim aoiDoc As IMxDocument

Set aoiDoc = ThisDocument

’Verify that the active view is a data frame.

’Then access the selected layer

If TypeOf aoiDoc.ActiveView Is IMap Then

Dim aoiLayer As ILayer

Set aoiLayer = aoiDoc.SelectedLayer

If Not aoiLayer Is Nothing Then

If TypeOf aoiLayer Is IFeatureLayer Then

Set aoiFeatureLayer = aoiLayer

Else

MsgBox "Selected layer is not a FeatureLayer!"

End If

Else

MsgBox "Exactly one Layer must be active!"

End If

ElseIf TypeOf aoiDoc.ActiveView Is IPageLayout Then

MsgBox "Current View is a Page Layout"

End If

Set GetSelectedFeatureLayer = aoiFeatureLayer

End Function

’ Function gets a polygon as GeomteryCollection and decomposes it

’ to find the coordinates

Public Sub LookForGeometries(aoiFeatureLayer As IFeatureLayer) Dim k

As Integer

Set aoiFeatureClass = aoiFeatureLayer.FeatureClass

Set aoiFeatureClass2 = aoiFeatureLayer.FeatureClass

k = 1

ReDim strOIDStrg(0)

aoiIDFieldIndex = aoiFeatureClass.FindField("ID")

geometryType = aoiFeatureClass.ShapeType

’ make sure that correct geometry type is selected

If geometryType = esriGeometryPolygon Then

’ compose the names for the export files

39

APPENDIX B Export Toolbox (VBA c© codes)

FileParts(0) = Frm_Shp2EG_Limits_Polygon.MifPath.Text

FileParts(1) = Frm_Shp2EG_Limits_Polygon.MifName.Text

FileParts(2) = FileParts(0) & FileParts(1)

’ decide if "upper limits" (i.e. only one ID)

’ or "contacts" (i.e. both adjacent IDs) are exported

saveFileMif = FileParts(2) & ".data"

Open saveFileMif For Output As #1

Call FindMinID

Set aoiCursor = aoiFeatureClass.Search(Nothing, False)

Set aoiFeature = aoiCursor.NextFeature

’ Initialises the progress bar for the export

Frm_Shp2EG_Limits_Polygon.prgBr.Max = aoiFeatureClass.FeatureCount(Nothing)

Frm_Shp2EG_Limits_Polygon.prgBrName.Visible = True

Frm_Shp2EG_Limits_Polygon.Repaint

’ loops through all features with an ID higher than the lowest ID

Print #1, aoiFeatureClass.FeatureCount(Nothing) & " INTERFACES"

Do While Not aoiFeature Is Nothing

Frm_Shp2EG_Limits_Polygon.prgBr.Value = k

If aoiFeature.Value(aoiIDFieldIndex) > lgMinID Then

PolygNr = aoiFeature.Value(aoiIDFieldIndex)

Set aoiPolygon = aoiFeature.Shape

DecomposePolygon aoiPolygon

End If

Set aoiFeature = aoiCursor.NextFeature

k = k + 1

Loop

Close #1

MsgBox "Your file has been stored as: " & Chr(13) & saveFileMif, 64

Else: MsgBox "Guess you selected the wrong file!", vbExclamation, "Impossible to process!"

Unload Frm_Shp2EG_Limits_Polygon

End If

End Sub

’ finds the lowest ID of all the features in the

’ selected polygon feature

Private Sub FindMinID()

Set aoiCursor = aoiFeatureClass.Search(Nothing, False)

Set aoiFeature = aoiCursor.NextFeature

lgMinID = aoiFeature.Value(aoiIDFieldIndex)

Do While Not aoiFeature Is Nothing

If lgMinID > aoiFeature.Value(aoiIDFieldIndex) Then

lgMinID = aoiFeature.Value(aoiIDFieldIndex)

End If

Set aoiFeature = aoiCursor.NextFeature

Loop

End Sub

40

APPENDIX B Export Toolbox (VBA c© codes)

’ Function gets a polygon as GeomteryCollection and decomposes it

’ to find the coordinates

Public Sub DecomposePolygon(aoiPolygon As IGeometryCollection)

dbl = 1

’ loops through all PARTS of the feature

For lgGeomCntr = 0 To aoiPolygon.GeometryCount - 1

Set aoiRing = aoiPolygon.Geometry(lgGeomCntr)

For segCounter = 0 To aoiRing.SegmentCount - 1

Set aoiCurve = aoiRing.Segment(segCounter)

Set fromPoint = aoiCurve.fromPoint

Call BoundaryChecker

Next segCounter

Next lgGeomCntr

If strCoords(0) <> "gibbdnix" Then

Print #1, "INTERFACE XX " & PolygNr

Print #1, UBound(strCoords) & "POINTS"

’ the array containing ’touch-points’ is written into the MIF-file

For segCounter = 0 To UBound(strCoords)

Print #1, strCoords(segCounter)

Next

strCoords(0) = "gibbdnix"

End If

End Sub

’ the current point is compared with all other points

’ in features with a lower ID to look for a "touch-point" and

’ store it in an array with pre-existing "touch-points"

Private Sub BoundaryChecker()

Dim i As Integer Dim aoiRelOp As esriCore.IRelationalOperator

Set aoiCursor2 = aoiFeatureClass2.Search(Nothing, False)

Set aoiFeature2 = aoiCursor2.NextFeature

’ for every single point of "aoiFeature" all points in all

’ other features are checked for their relationship to it

Do While Not aoiFeature2 Is Nothing

If aoiFeature2.Value(aoiIDFieldIndex) < aoiFeature.Value(aoiIDFieldIndex) Then

Set aoiPolygon2 = aoiFeature2.Shape

For lgGeomCntr2 = 0 To aoiPolygon2.GeometryCount - 1

Set aoiRing2 = aoiPolygon2.Geometry(lgGeomCntr2)

For segCounter2 = 0 To aoiRing2.SegmentCount - 1

Set aoiCurve2 = aoiRing2.Segment(segCounter2)

Set fromPoint2 = aoiCurve2.fromPoint

If Round(fromPoint2.x, 2) = Round(fromPoint.x, 2) And Round(fromPoint2.y, 2) = Round(fromPoint.y, 2) Then

’ the array containing the coordinates of all

’ "touch-points" is filled

ReDim Preserve strCoords(dbl)

strCoords(dbl - 1) = Round(fromPoint.x, 0) & " " & Round(fromPoint.y, 0)

dbl = dbl + 1

Exit Do

41

APPENDIX B Export Toolbox (VBA c© codes)

End If

Next segCounter2

Next lgGeomCntr2

End If

Set aoiFeature2 = aoiCursor2.NextFeature

Loop

End Sub

42

APPENDIX B Export Toolbox (VBA c© codes)

B.1.3 Export planar measurements

The name of this form in the VBA c© programming environment in

ArcMap c© is FrmSlctGeoLayer !

Option Explicit

Public aoiCrntDoc As esriCore.IMxDocument ’ Active ArcMap application

Public aoiCrntLyr As esriCore.IFeatureLayer ’ Active Layer in active document

Public aoiCrntLyr2 As esriCore.IFeatureLayer ’ Layer containing the geology for assignment

Public aoiCrntLyr3 As esriCore.IFeatureLayer ’ Layer containing the polarity for assignment

Public aoiEnumLyrs As esriCore.IEnumLayer ’ List of all layers from which the geology is chosen

Public aoiCrntMp As esriCore.IMap ’ Active Map

Public aoiCrntFtCls As esriCore.IFeatureClass ’ Feature Class for points feature (foliations)

Public aoiCrntFtCls2 As esriCore.IFeatureClass ’ Feature Class for polygon feature (geology)

Public aoiCrntFtCls3 As esriCore.IFeatureClass ’ Feature Class for polygon feature (polarity)

Public aoiCrntFt As esriCore.IFeature ’ Current Feature in point feature class

Public aoiCrntFt2 As esriCore.IFeature ’ Current Feature in polygon feature class

Public aoiCrntFt3 As esriCore.IFeature ’ Current Feature in polarity feature class

Public aoiFields As esriCore.IFields ’ Field Interface to access fields in feature classes

Public aoiCrntField As esriCore.IField ’ Field at specified index in fields collection

Public aoiFtCrs As esriCore.IFeatureCursor ’ moving through the features in aoiCrntFtCls

Public aoiFtCrs2 As esriCore.IFeatureCursor ’ moving through the features in aoiCrntFtCls2

Public aoiFtCrs3 As esriCore.IFeatureCursor ’ moving through the features in aoiCrntFtCls3

Public aoiGeomPlg As esriCore.IGeometryCollection ’ group of parts of (polygon) features

Public aoiRelOpPlg As esriCore.IRelationalOperator ’ checks if points are in/outside a polygon

Public pUID As IUID ’ unique identifier for certain (here polygon) layers

Public intFltnsCntr As Integer ’ counts the number of relevant points (foliations)

Public intFtCntr As Integer ’ counts the number of features in the point feature

Public intFtCntr2 As Integer ’ counts the number of features in the polygon feature

Public intFtCntr3 As Integer ’ counts the number of features in the polarity feature

Public lgFldCntr As Long ’ loops through fields containing export-data

Public strLctnFld As String ’ stores selected field in ’location field’

Public strDipDirFld As String ’ stores selected field in ’DipDir field’

Public strDipAngFld As String ’ stores selected field in ’DipAn field’

Public strGeoUntFld As String ’ stores selected field in ’geology unit field’

Public strPlrtUntFld As String ’ stores selected field in ’polarity unit field’

Public strFldSlctnIndx As String ’ stores selected field in polygon (geology) layer list

Public strPrntStrng As String ’ continuously appended string assembling the final result

Public varLctnVal As Variant ’ stores the value of ’location field’

Public varDipDirVal As Variant ’ stores the value of ’DipDir field’

Public varDipAngVal As Variant ’ stores the value of ’DipAn field’

Public varPlrtUntVal As Variant ’ stores the value of ’polarity field’

Public varGeoUntVal As Variant ’ stores the value of ’geology unit field’

Public Sub LstBxPlgnLyrs_Change()

Set aoiCrntDoc = ThisDocument

Set aoiCrntLyr = aoiCrntDoc.SelectedLayer

Set aoiCrntMp = aoiCrntDoc.FocusMap

Set aoiCrntFtCls = aoiCrntLyr.FeatureClass

Set aoiFields = aoiCrntFtCls.Fields

Select Case MsgBox("So the layer containing the correct polygons is " _

& FrmSlctGeoLayer.LstBxPlgnLyrs.Value & "?", vbQuestion + vbYesNo, _

"Correct layer chosen?")

Case 6

’ store the polygon layer in aoiCrntLyr2

Set pUID = New UID

pUID = "{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}"

43

APPENDIX B Export Toolbox (VBA c© codes)

Set aoiEnumLyrs = aoiCrntMp.Layers(pUID, True)

aoiEnumLyrs.Reset

Set aoiCrntLyr2 = aoiEnumLyrs.Next

Do While Not aoiCrntLyr2 Is Nothing

If aoiCrntLyr2.Name = FrmSlctGeoLayer.LstBxPlgnLyrs.Value Then

Exit Do

End If

Set aoiCrntLyr2 = aoiEnumLyrs.Next

Loop

’ fill list boxes for selection of value fields

For lgFldCntr = 0 To (aoiFields.FieldCount - 1)

Set aoiCrntField = aoiFields.Field(lgFldCntr)

If aoiCrntField.Name <> "Shape" Then

With FrmSlctGeoLayer

.LstBxFldDipDir.AddItem aoiCrntField.Name

.LstBxFldDip.AddItem aoiCrntField.Name

.LstBxFldLctn.AddItem aoiCrntField.Name

End With

End If

Next

’ making list boxes and further menu visible (for choosing labels

’ of Location, Dip Dir and Dip columns)

With FrmSlctGeoLayer

.cmdBtStrt.Visible = True

.lblDipAngle.Visible = True

.lblDipDir.Visible = True

.lblLctn.Visible = True

.LstBxFldDip.Visible = True

.LstBxFldDipDir.Visible = True

.LstBxFldLctn.Visible = True

.lblPlnrFlds.Visible = True

End With

Case 7

Unload FrmSlctGeoLayer

Call ExpPlanarsM.ChooseGeologyLayer

End Select

End Sub

Private Sub cmdBtStrt_Click()

’ get identification for Location, Dip Direction, Dip columns

If (LstBxFldLctn.ListIndex = -1) _

Or (LstBxFldDipDir.ListIndex = -1) _

Or (LstBxFldDip.ListIndex = -1) Then

strFldSlctnIndx = "111"

Select Case MsgBox("Is it ok that there’s nothing selected in at least one box?" _

, vbQuestion + vbYesNo, "Are you sure?")

Case 6

If LstBxFldLctn.ListIndex = -1 Then

LstBxFldLctn.ListIndex = 0

Mid(strFldSlctnIndx, 1, 1) = "0"

End If

If LstBxFldDipDir.ListIndex = -1 Then

44

APPENDIX B Export Toolbox (VBA c© codes)

LstBxFldDipDir.ListIndex = 0

Mid(strFldSlctnIndx, 2, 1) = "0"

End If

If LstBxFldDip.ListIndex = -1 Then

LstBxFldDip.ListIndex = 0

Mid(strFldSlctnIndx, 3, 1) = "0"

End If

Case 7

Exit Sub

End Select

End If

strLctnFld = LstBxFldLctn.Value

strDipDirFld = LstBxFldDipDir.Value

strDipAngFld = LstBxFldDip.Value

’ fill list box for selection of field containing the geology polygons

Set aoiCrntFtCls2 = aoiCrntLyr2.FeatureClass

Set aoiFields = aoiCrntFtCls2.Fields

For lgFldCntr = 0 To (aoiFields.FieldCount - 1)

Set aoiCrntField = aoiFields.Field(lgFldCntr)

If aoiCrntField.Name <> "Shape" Then

FrmSlctGeoLayer.LstBxGeoUnits.AddItem aoiCrntField.Name

End If

Next

’ making list boxes and further menu visible (for choosing label

’ of geology column)

With FrmSlctGeoLayer

.cmdBtFrthr.Visible = True

.LstBxGeoUnits.Visible = True

.lblGeoUnits.Visible = True

.chkBxExprtWthtGeol.Visible = True

.framPlrtOpt.Visible = True

.LstBxGeoUnits.Height = 120

.Repaint

End With

End Sub

Private Sub cmdBtFrthr_Click()

’ if-clauses preventing errors that result from missing selections

If LstBxGeoUnits.ListIndex = -1 Then

MsgBox "Please select the field containing the names of the geological units!", vbCritical + vbOKOnly, "Unit name ambiguities!"

Exit Sub

End If

If optBtPlrtRgrdFlds.Value = False _

And optBtDfltPlrtAssgn.Value = False _

And optBtNoPlrt.Value = False Then

MsgBox "Please specify your polarity parameters!", vbCritical + vbOKOnly, "Polarity ambiguities!"

Exit Sub

End If

If optBtPlrtRgrdFlds.Value = True Then

If lstBxPlrtUnts.ListIndex = -1 Or lstBxPlrtFld.ListIndex = -1 Then

MsgBox "Please specify your polarity parameters!", vbCritical + vbOKOnly, "Polarity ambiguities!"

Exit Sub

End If

45

APPENDIX B Export Toolbox (VBA c© codes)

MsgBox "Data outside the area of well-defined polarities will be assigned a default polarity!", _

vbInformation + vbOKOnly, "Polarity assignment rules ..."

strPlrtUntFld = lstBxPlrtFld.Value

End If

’ end of the aforementioned if-clauses

strGeoUntFld = LstBxGeoUnits.Value

Set aoiFtCrs = aoiCrntFtCls.Search(Nothing, False)

Open "C:\Output_temp.txt" For Output As #1

With FrmSlctGeoLayer

.lblPrgBr.Visible = True

.prgBr.Visible = True

.prgBr.Max = aoiCrntFtCls.FeatureCount(Nothing) - 1

.Repaint

End With

intFltnsCntr = 0

For intFtCntr = 0 To aoiCrntFtCls.FeatureCount(Nothing) - 1

With prgBr

.Value = intFtCntr

.Refresh

End With

Set aoiCrntFt = aoiFtCrs.NextFeature

Call Print_String_Assembler

’ selecting the polarity assignments for the exported foliations

Select Case FrmSlctGeoLayer.framPlrtOpt.ActiveControl.Name

’ default polarities (i.e. 1) will be assigned

Case "optBtDfltPlrtAssgn"

strPrntStrng = strPrntStrng & " 1"

’ polarities will be assigned regarding the fold axis trends

Case "optBtPlrtRgrdFlds"

Call PolarityFinder

End Select

Call GeologyFinder

Next intFtCntr

Close #1

With FrmSlctGeoLayer

.lblPrgBr.Caption = "Writing output file ..."

.prgBr.Max = intFltnsCntr

.Repaint

End With

lgFldCntr = 0

Open "C:\Output.txt" For Output As #1

Print #1, intFltnsCntr & " FOLIATIONS"

Open "C:\Output_temp.txt" For Input As #2

While Not EOF(2)

46

APPENDIX B Export Toolbox (VBA c© codes)

lgFldCntr = lgFldCntr + 1

With prgBr

.Value = lgFldCntr

.Refresh

End With

Line Input #2, strFldSlctnIndx

Print #1, strFldSlctnIndx

Wend

Close #2

Close #1

Kill "C:\Output_temp.txt"

lblPrgBr.Caption = "Finished ..."

MsgBox ("Your file has been stored in C:\Output.txt! Please rename it immediately" _

& " to prevent overwriting during next use of this export-macro!")

Unload Me

End Sub

’ refreshes the ListBox showing the fields of the polarity table

Private Sub lstBxPlrtUnts_Change()

’ store polarity layer in aoiCrntLyr3

FrmSlctGeoLayer.lstBxPlrtFld.Clear

Set pUID = New UID

pUID = "{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}"

Set aoiEnumLyrs = aoiCrntMp.Layers(pUID, True)

aoiEnumLyrs.Reset

Set aoiCrntLyr3 = aoiEnumLyrs.Next

Do While Not aoiCrntLyr3 Is Nothing

If aoiCrntLyr3.Name = FrmSlctGeoLayer.lstBxPlrtUnts.Value Then

Exit Do

End If

Set aoiCrntLyr3 = aoiEnumLyrs.Next

Loop

’ fill ListBox with field names of polarity layer

Set aoiCrntFtCls3 = aoiCrntLyr3.FeatureClass

Set aoiFields = aoiCrntFtCls3.Fields

For lgFldCntr = 0 To (aoiFields.FieldCount - 1)

Set aoiCrntField = aoiFields.Field(lgFldCntr)

If aoiCrntField.Name <> "Shape" Then

FrmSlctGeoLayer.lstBxPlrtFld.AddItem aoiCrntField.Name

End If

Next

FrmSlctGeoLayer.lstBxPlrtFld.Height = 50

End Sub

Private Sub Print_String_Assembler()

strPrntStrng = Round(aoiCrntFt.Extent.xmax, 0) & " " & Round(aoiCrntFt.Extent.ymax, 0) & " "

Select Case strFldSlctnIndx

Case "111"

varLctnVal = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strLctnFld))

varDipDirVal = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strDipDirFld))

47

APPENDIX B Export Toolbox (VBA c© codes)

varDipAngVal = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strDipAngFld))

strPrntStrng = strPrntStrng & varLctnVal & " " & varDipDirVal & " " & varDipAngVal

Case "110"

varLctnVal = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strLctnFld))

varDipDirVal = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strDipDirFld))

strPrntStrng = strPrntStrng & varLctnVal & " " & varDipDirVal

Case "101"

varLctnVal = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strLctnFld))

varDipAngVal = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strDipAngFld))

strPrntStrng = strPrntStrng & varLctnVal & " " & varDipAngVal

Case "100"

varLctnVal = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strLctnFld))

strPrntStrng = strPrntStrng & varLctnVal

Case "011"

varDipDirVal = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strDipDirFld))

varDipAngVal = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strDipAngFld))

strPrntStrng = strPrntStrng & varDipDirVal & " " & varDipAngVal

Case "010"

varDipDirVal = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strDipDirFld))

strPrntStrng = strPrntStrng & varDipDirVal

Case "001"

varDipAngVal = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strDipAngFld))

strPrntStrng = strPrntStrng & varDipAngVal

Case "000"

strPrntStrng = strPrntStrng & ""

End Select

End Sub

’ checks polarity value for respective foliation point

Private Sub PolarityFinder()

Set aoiFtCrs3 = aoiCrntFtCls3.Search(Nothing, False)

For intFtCntr3 = 0 To aoiCrntFtCls3.FeatureCount(Nothing) - 1

Set aoiCrntFt3 = aoiFtCrs3.NextFeature

If Not aoiCrntFt3 Is Nothing Then

Set aoiGeomPlg = aoiCrntFt3.Shape

Set aoiRelOpPlg = aoiGeomPlg

varPlrtUntVal = aoiCrntFt3.Value(aoiCrntFt3.Fields.FindField(strPlrtUntFld))

If aoiRelOpPlg.Contains(aoiCrntFt.Shape) Then

strPrntStrng = strPrntStrng & " " & varPlrtUntVal

Exit Sub

End If

End If

Next intFtCntr3

strPrntStrng = strPrntStrng & " 1"

End Sub

’ checks within which geology polygon the respective

’ foliation point is situated

Private Sub GeologyFinder()

Set aoiFtCrs2 = aoiCrntFtCls2.Search(Nothing, False)

48

APPENDIX B Export Toolbox (VBA c© codes)

For intFtCntr2 = 0 To aoiCrntFtCls2.FeatureCount(Nothing) - 1

Set aoiCrntFt2 = aoiFtCrs2.NextFeature

If Not aoiCrntFt2 Is Nothing Then

Set aoiGeomPlg = aoiCrntFt2.Shape

Set aoiRelOpPlg = aoiGeomPlg

varGeoUntVal = aoiCrntFt2.Value(aoiCrntFt2.Fields.FindField(strGeoUntFld))

If aoiRelOpPlg.Contains(aoiCrntFt.Shape) Then

Print #1, strPrntStrng & " " & varGeoUntVal

intFltnsCntr = intFltnsCntr + 1

Exit For

End If

End If

If FrmSlctGeoLayer.chkBxExprtWthtGeol.Value = True Then

If intFtCntr2 = aoiCrntFtCls2.FeatureCount(Nothing) - 1 Then

Print #1, strPrntStrng

intFltnsCntr = intFltnsCntr + 1

End If

End If

Next intFtCntr2

End Sub

’ adjusts polarity list boxes after re-choosing geology name field

Private Sub LstBxGeoUnits_AfterUpdate()

FrmSlctGeoLayer.LstBxGeoUnits.Height = 120

With FrmSlctGeoLayer

.lstBxPlrtFld.Visible = False

.lstBxPlrtUnts.Visible = False

.optBtPlrtRgrdFlds.Value = False

End With

End Sub

’ adjusts height of polarity field

Private Sub lstBxPlrtFld_AfterUpdate()

FrmSlctGeoLayer.lstBxPlrtFld.Height = 50

End Sub

’ visualises fields necessary for polarity assignments

’ if fold axis trends are to be regarded

Private Sub optBtPlrtRgrdFlds_Click()

FrmSlctGeoLayer.lstBxPlrtFld.Clear

With FrmSlctGeoLayer

.lstBxPlrtFld.Visible = True

.lstBxPlrtUnts.Visible = True

.lblPlrtFld.Visible = True

.lblPlrtUnt.Visible = True

.LstBxGeoUnits.Height = 50

.lstBxPlrtFld.Height = 50

.lstBxPlrtUnts.Height = 50

End With

End Sub

’ hides fields necessary for polarity assignments

’ if default polarities (i.e. 1) are to be assigned

Private Sub optBtDfltPlrtAssgn_Click()

With FrmSlctGeoLayer

.lstBxPlrtFld.Visible = False

.lstBxPlrtUnts.Visible = False

.lblPlrtFld.Visible = False

.lblPlrtUnt.Visible = False

49

APPENDIX B Export Toolbox (VBA c© codes)

.LstBxGeoUnits.Height = 120

End With

End Sub

’ hides fields necessary for polarity assignments

’ if no polarities are to be assigned

Private Sub optBtNoPlrt_Click()

With FrmSlctGeoLayer

.lstBxPlrtFld.Visible = False

.lstBxPlrtUnts.Visible = False

.lblPlrtFld.Visible = False

.lblPlrtUnt.Visible = False

.LstBxGeoUnits.Height = 120

End With

End Sub

The name of this module in the VBA c© programming environment in

ArcMap c© is ExpPlanarsM !

Sub CheckLayerSelection()

Dim aoiCrntDoc As esriCore.IMxDocument

Set aoiCrntDoc = ThisDocument

If Not aoiCrntDoc.SelectedLayer Is Nothing Then

If TypeOf aoiCrntDoc.SelectedLayer Is IFeatureLayer Then

Dim aoiCrntLayer As esriCore.IFeatureLayer

Dim aoiCrntFtCls As esriCore.IFeatureClass

Set aoiCrntLayer = aoiCrntDoc.SelectedLayer

Set aoiCrntFtCls = aoiCrntLayer.FeatureClass

If aoiCrntFtCls.ShapeType = esriGeometryPoint Then

Call ChooseGeologyLayer

Else

MsgBox ("The selected layer doesn’t contain appropriate data!")

End If

Else

MsgBox ("The selected layer is not a feature layer!")

End If

Else

MsgBox ("Please select the layer containing your planar measuremets!")

End If

End Sub

Public Sub ChooseGeologyLayer()

Dim aoiLayers As esriCore.IEnumLayer

Dim aoiCrntLayer As esriCore.ILayer

Dim aoiCrntFtLayer As esriCore.IFeatureLayer

Dim aoiUID As New UID

Dim aoiCrntMap As esriCore.IMap

Dim aoiCrntDoc As esriCore.IMxDocument

Dim aoiCrntFtCls As esriCore.IFeatureClass

Set aoiCrntDoc = ThisDocument

Set aoiCrntMap = aoiCrntDoc.FocusMap

aoiUID.Value = "{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}"

Set aoiLayers = aoiCrntMap.Layers(aoiUID, True)

50

APPENDIX B Export Toolbox (VBA c© codes)

aoiLayers.Reset

Set aoiCrntLayer = aoiLayers.Next

Do While Not aoiCrntLayer Is Nothing

If TypeOf aoiCrntLayer Is IFeatureLayer Then

Set aoiCrntFtLayer = aoiCrntLayer

Set aoiCrntFtCls = aoiCrntFtLayer.FeatureClass

If aoiCrntFtCls.ShapeType = esriGeometryPolygon Then

FrmSlctGeoLayer.LstBxPlgnLyrs.AddItem aoiCrntLayer.Name

FrmSlctGeoLayer.lstBxPlrtUnts.AddItem aoiCrntLayer.Name

End If

End If

Set aoiCrntLayer = aoiLayers.Next

Loop

FrmSlctGeoLayer.LstBxGeoUnits.Height = 120

FrmSlctGeoLayer.Show

End Sub

51

APPENDIX B Export Toolbox (VBA c© codes)

B.2 Export to GOCAD c©

B.2.1 Export lines

The name of this form in the VBA c© programming environment in

ArcMap c© is Shp2GocadF Line!

Private Sub ExitButton_Click()

Unload Me

End Sub

Private Sub StartShp2Goc_Click()

Call GetGeometryLine

End Sub

The name of this module in the VBA c© programming environment in

ArcMap c© is Shp2GocadM Lines !

Public Sub GetGeometryLine()

Dim aoiFeatureLayer As IFeatureLayer

Set aoiFeatureLayer = GetSelectedFeatureLayer()

If Not aoiFeatureLayer Is Nothing Then

LookForGeometries aoiFeatureLayer

End If

End Sub

Public Function GetSelectedFeatureLayer() As IFeatureLayer

Dim aoiFeatureLayer As IFeatureLayer

’Access the actual document

Dim aoiDoc As IMxDocument

Set aoiDoc = ThisDocument

’Verify that the active view is a data frame.

’Then access the selected layer

If TypeOf aoiDoc.ActiveView Is IMap Then

Dim aoiLayer As ILayer

Set aoiLayer = aoiDoc.SelectedLayer

If Not aoiLayer Is Nothing Then

If TypeOf aoiLayer Is IFeatureLayer Then

Set aoiFeatureLayer = aoiLayer

Else

MsgBox "Selected Layer is not a FeatureLayer"

End If

Else

MsgBox "Exactly one layer has to be selected!"

End If

If TypeOf aoiDoc.ActiveView Is IPageLayout Then

MsgBox "Current View is a Page Layout"

End If

End If

Set GetSelectedFeatureLayer = aoiFeatureLayer

End Function

’ Function gets a polygon as GeomteryCollection and decomposes it

’ to find the coordinates

52

APPENDIX B Export Toolbox (VBA c© codes)

Public Sub LookForGeometries(aoiFeatureLayer As IFeatureLayer)

Dim aoiFeatureClass As IFeatureClass

Dim aoiGeometryType As esriGeometryType

Dim aoiCursor As IFeatureCursor

Dim aoiFeature As IFeature

Dim aoiPolyLine As IGeometryCollection

Dim aoiIDField As IField

Dim lgIDFldIndx As Long

Dim strFlPrts(2) As String

Dim strSvFl As String

Set aoiFeatureClass = aoiFeatureLayer.FeatureClass

lgIDFldIndx = aoiFeatureClass.FindField("ID")

aoiGeometryType = aoiFeatureClass.ShapeType

If aoiGeometryType = esriGeometryPolyline Then

strFlPrts(0) = Shp2GocadF_Line.PlinePath.Text

strFlPrts(1) = Shp2GocadF_Line.PlineName.Text

strFlPrts(2) = ".pl"

strSvFl = Join(strFlPrts, "")

Open strSvFl For Output As #1

Print #1, "GOCAD PLine 0.01"

Print #1, "HEADER {"

Print #1, "name:"; strFlPrts(1)

Print #1, "}"

Set aoiCursor = aoiFeatureClass.Search(Nothing, False)

Set aoiFeature = aoiCursor.NextFeature

Do While Not aoiFeature Is Nothing

Print #1, ""

Print #1, "ILINE"

lgPlgnNr = aoiFeature.Value(lgIDFldIndx)

Set aoiPolyLine = aoiFeature.Shape

DecomposeCurve aoiPolyLine

Set aoiFeature = aoiCursor.NextFeature

Loop

Print #1, "END"

Close #1

MsgBox "File(s) stored in " & strSvFl

Else: MsgBox "Probably you selected a layer with a wrong geometry type! The Macro will be reset!", _

vbExclamation, "Wrong geometry type?"

Unload Shp2GocadF_Line

End If

End Sub

’ Function gets a polygon as GeomteryCollection and decomposes it

’ to find the coordinates

Public Sub DecomposeCurve(aoiPolyLine As IGeometryCollection)

Dim aoiLines As ISegmentCollection

Dim aoiCurve As ICurve

Dim aoiFrmPnt As IPoint

Dim aoiTPnt As IPoint

Dim intSgmntCntr As Integer

Dim intStrtCnt As Integer

Dim intGeomCntr As Integer

intStrtCnt = 0

intGeomCntr = 0

Do

Set aoiLines = aoiPolyLine.Geometry(intGeomCntr)

For intSgmntCntr = intStrtCnt To aoiLines.SegmentCount + intStrtCnt - 1

Set aoiCurve = aoiLines.Segment(intSgmntCntr - intStrtCnt)

Set aoiFrmPnt = aoiCurve.fromPoint

53

APPENDIX B Export Toolbox (VBA c© codes)

Set aoiTPnt = aoiCurve.toPoint

Print #1, "VRTX"; intSgmntCntr + 1; Round(aoiFrmPnt.x, 0); Round(aoiFrmPnt.y, 0); 0; lgPlgnNr

Next intSgmntCntr

Print #1, "VRTX"; intSgmntCntr + 1; Round(aoiTPnt.x, 0); Round(aoiTPnt.y, 0); 0; lgPlgnNr

intGeomCntr = intGeomCntr + 1

intStrtCnt = intSgmntCntr + 1

Loop While intGeomCntr < aoiPolyLine.GeometryCount

intSgmntCntr = 0

Do While intSgmntCntr < intStrtCnt - 1

intSgmntCntr = intSgmntCntr + 1

Print #1, "SEG"; intSgmntCntr; intSgmntCntr + 1

Loop

End Sub

54

APPENDIX B Export Toolbox (VBA c© codes)

B.2.2 Export polygons

The name of this form in the VBA c© programming environment in

ArcMap c© is Shp2GocadF Polygon!

Private Sub ExitButton_Click()

Unload Me

End Sub

Private Sub StartShp2Goc_Click()

Call GetGeometryPolygon

End Sub

The name of this module in the VBA c© programming environment in

ArcMap c© is Shp2GocadM Polygon!

Sub GocadExporter()

Shp2GocadF_Polygon.Show

End Sub

Public Function GetSelectedFeatureLayer() As IFeatureLayer

Dim aoiFeatureLayer As IFeatureLayer

’Access the actual document

Dim aoiDoc As IMxDocument

Set aoiDoc = ThisDocument

’Verify that the active view is a data frame.

’Then access the selected layer

If TypeOf aoiDoc.ActiveView Is IMap Then

Dim aoiLayer As ILayer

Set aoiLayer = aoiDoc.SelectedLayer

If Not aoiLayer Is Nothing Then

If TypeOf aoiLayer Is IFeatureLayer Then

Set aoiFeatureLayer = aoiLayer

Else

MsgBox "Selected layer is not a feature layer!"

End If

Else

MsgBox "Exactly one layer must be active!"

End If

ElseIf TypeOf aoiDoc.ActiveView Is IPageLayout Then

MsgBox "Current view is a Page Layout"

End If

Set GetSelectedFeatureLayer = aoiFeatureLayer

End Function

’ Function gets a polygon as GeomteryCollection and decomposes it

’ to find the coordinates

Public Sub DecomposePolygon(aoiPolygon As IGeometryCollection)

’ Get the Rings

Dim aoiRing As ISegmentCollection

Dim aoiCurve As ICurve

Dim fromPoint As IPoint

Dim toPoint As IPoint

’ Dim lngCounter As Long

55

APPENDIX B Export Toolbox (VBA c© codes)

Dim segCounter As Long

Set aoiRing = aoiPolygon.Geometry(lngCounter)

For segCounter = 0 To aoiRing.SegmentCount - 1

Set aoiCurve = aoiRing.Segment(segCounter)

Set fromPoint = aoiCurve.fromPoint

Set toPoint = aoiCurve.toPoint

Print #1, "VRTX"; segCounter + 1; Round(fromPoint.x, 0); Round(fromPoint.y, 0); 0

Next segCounter

segCounter = 1

Do While segCounter <= aoiRing.SegmentCount

If segCounter <> aoiRing.SegmentCount Then

Print #1, "SEG"; segCounter; segCounter + 1

Else: Print #1, "SEG"; segCounter; 1

End If

segCounter = segCounter + 1

Loop

End Sub

’ Function gets a polygon as GeomteryCollection and decomposes it

’ to find the coordinates

Public Sub LookForGeometries(aoiFeatureLayer As IFeatureLayer)

Dim aoiFeatureClass As IFeatureClass

Dim geometryType As esriGeometryType

Dim aoiCursor As IFeatureCursor

Dim aoiFeature As IFeature

Dim aoiPolygon As IGeometryCollection

Dim aoiIDField As IField

Dim aoiIDFieldIndex As Long

Dim FileParts(2) As String

Dim saveFile As String

Set aoiFeatureClass = aoiFeatureLayer.FeatureClass

aoiIDFieldIndex = aoiFeatureClass.FindField("ID")

’ Check the geometry

geometryType = aoiFeatureClass.ShapeType

If geometryType = esriGeometryPolygon Then

FileParts(0) = Shp2GocadF_Polygon.PlinePath.Text

FileParts(1) = Shp2GocadF_Polygon.PlineName.Text

FileParts(2) = ".pl"

saveFile = Join(FileParts, "")

Open saveFile For Output As #1

Print #1, "GOCAD PLine 0.01"

Print #1, "HEADER {"

Print #1, "name:"; FileParts(1)

Print #1, "}"

Set aoiCursor = aoiFeatureClass.Search(Nothing, False)

Set aoiFeature = aoiCursor.NextFeature

Do While Not aoiFeature Is Nothing

Print #1, ""

Print #1, "ILINE"

PolygNr = aoiFeature.Value(aoiIDFieldIndex)

Set aoiPolygon = aoiFeature.Shape

DecomposePolygon aoiPolygon

Set aoiFeature = aoiCursor.NextFeature

Loop

Close #1

MsgBox "Your file has been stored as: " & Chr(13) & saveFile, 64

Else: MsgBox "You probably selected a layer with a wrong geometry type! The macro will be reset!", vbExclamation, "Wrong geometry type!"

Unload Shp2GocadF_Polygon

End If

End Sub

56

APPENDIX B Export Toolbox (VBA c© codes)

Public Sub GetGeometryPolygon()

Dim aoiFeatureLayer As IFeatureLayer

’ Get the selected feature layer

Set aoiFeatureLayer = GetSelectedFeatureLayer()

If Not aoiFeatureLayer Is Nothing Then

LookForGeometries aoiFeatureLayer

End If

End Sub

57

APPENDIX B Export Toolbox (VBA c© codes)

B.2.3 Export cross-sections

The name of this form in the VBA c© programming environment in

ArcMap c© is Shp2GocadF ProfLin!

Option Explicit

Private Sub ExitButton_Click()

Unload Me

End Sub

Private Sub StartShp2Goc_Click()

Call GetGeometryProfLin

End Sub

Private Sub UserForm_Activate()

Xleft.SelStart = 0

Xleft.SelLength = Len(Xleft.Text)

End Sub

The name of this module in the VBA c© programming environment in

ArcMap c© is Shp2GocadM ProfLin!

Option Explicit

Dim lgPlgnNr As Long

Sub GocadExporter()

’enable access by a form based user interface

Shp2GocadF_ProfLin.Show

End Sub

Public Sub GetGeometryProfLin()

Dim aoiFeatureLayer As IFeatureLayer

’Function GetSelectedFeatureLayer() is called to fill aoiFeatureLayer

Set aoiFeatureLayer = GetSelectedFeatureLayer()

If Not aoiFeatureLayer Is Nothing Then

’Passes the (active!!) aoiFeatureLayer on to function LookForGeometries

LookForGeometries aoiFeatureLayer

End If

’Closing the user interface

Unload Shp2GocadF_ProfLin

End Sub

Public Function GetSelectedFeatureLayer() As IFeatureLayer

’Variable aoiFeatureLayer is defined as IFeatureLayer

58

APPENDIX B Export Toolbox (VBA c© codes)

Dim aoiFeatureLayer As IFeatureLayer

’Access the current document

Dim aoiDoc As IMxDocument

Set aoiDoc = ThisDocument

’Verify that the active view is a data frame.

If TypeOf aoiDoc.ActiveView Is IMap Then

Dim aoiLayer As ILayer

Set aoiLayer = aoiDoc.SelectedLayer

’Access the selected layer if not empty

If Not aoiLayer Is Nothing Then

If TypeOf aoiLayer Is IFeatureLayer Then

Set aoiFeatureLayer = aoiLayer

Else

MsgBox "Selected layer is no FeatureLayer"

End If

Else

MsgBox "Exactly one layer must be active!"

End If

’Checks that view is a data view

If TypeOf aoiDoc.ActiveView Is IPageLayout Then

MsgBox "Current view is a Page Layout. Change to Data View, please!"

End If

Else: MsgBox "You must select at least one layer!"

End If

Set GetSelectedFeatureLayer = aoiFeatureLayer

End Function

’ Function gets a polygon as GeometryCollection and decomposes it

’ to find the coordinates

’ Variable aoiFeatureLayer is passed on to LookForGeometries

Public Sub LookForGeometries(aoiFeatureLayer As IFeatureLayer)

Dim aoiFeatureClass As IFeatureClass

Dim aoiGeometryType As esriGeometryType

Dim aoiCursor As IFeatureCursor

Dim aoiFeature As IFeature

Dim aoiPolyLine As IGeometryCollection

Dim aoiIDField As IField

Dim lgIDFldIndx As Long

Dim strFlPrts(2) As String

Dim strSvFl As String

Set aoiFeatureClass = aoiFeatureLayer.FeatureClass

’lgIDFldIndx is index number of the item selected

lgIDFldIndx = aoiFeatureClass.FindField("ID")

’check if shape are points, polylines, or polygons

aoiGeometryType = aoiFeatureClass.ShapeType

If aoiGeometryType = esriGeometryPolyline Or _

aoiGeometryType = esriGeometryPolygon Then

59

APPENDIX B Export Toolbox (VBA c© codes)

’create the file name for the file

’in which data are going to be saved

strFlPrts(0) = Shp2GocadF_ProfLin.PlinePath.Text

strFlPrts(1) = Shp2GocadF_ProfLin.PlineName.Text

strFlPrts(2) = ".pl"

strSvFl = Join(strFlPrts, "")

’writing the GOCAD header

Open strSvFl For Output As #1

Print #1, "GOCAD PLine 0.01"

Print #1, "HEADER {"

Print #1, "name:"; strFlPrts(1)

Print #1, "}"

’Print the start of the next ILINE

Set aoiCursor = aoiFeatureClass.Search(Nothing, False)

Set aoiFeature = aoiCursor.NextFeature

Do While Not aoiFeature Is Nothing

Print #1, ""

Print #1, "ILINE"

’Set up the index for the items and read the item into aoiPolyLine

lgPlgnNr = aoiFeature.Value(lgIDFldIndx)

Set aoiPolyLine = aoiFeature.Shape

’aoiPolyLine is passed on to function DecomposeCurve

DecomposeCurve aoiPolyLine

’addressing the next feature (i.e. next line of the shape)

Set aoiFeature = aoiCursor.NextFeature

Loop

’End and close the output file

Print #1, "END"

Close #1

MsgBox "File(s) stored as " & strSvFl

’Error message if no polyline

Else: MsgBox "You probably selected the wrong geometry type! The macro will be reset", vbExclamation, "Wrong geometry type?"

Unload Shp2GocadF_ProfLin

End If

End Sub

’ Function gets a polygon as GeomteryCollection and decomposes it

’ to find the coordinates

Public Sub DecomposeCurve(aoiPolyLine As IGeometryCollection)

Dim aoiLines As ISegmentCollection

Dim aoiCurve As ICurve

Dim aoiFrmPnt As IPoint

Dim aoiTPnt As IPoint

Dim intSgmntCntr As Integer

Dim intStrtCnt As Integer

Dim intGeomCntr As Integer

Dim PI As Double

Dim dbXlmp As Double ’ x left in map

Dim dbYlmp As Double ’ y left in map

60

APPENDIX B Export Toolbox (VBA c© codes)

Dim dbXrmp As Double ’ x right in map

Dim dbYrmp As Double ’ y right in map

Dim dbAlpha As Double ’ angle alpha (explained below)

Dim dbDltxprfl As Double ’ delta x in profile

Dim dbTruex As Double ’ true x-coordinate pf profile-point

Dim dbTruey As Double ’ true y-coordinate pf profile-point

Dim strCsInctr As String ’ indicates the relationship between the profiles start-/endpoint

’ in GOCAD

’Initialisation of counters and reading the coordinates for calculating the profile

PI = 3.14159265358979

intStrtCnt = 0

intGeomCntr = 0

dbXlmp = Shp2GocadF_ProfLin.Xleft.Text

dbYlmp = Shp2GocadF_ProfLin.Yleft.Text

dbXrmp = Shp2GocadF_ProfLin.Xright.Text

dbYrmp = Shp2GocadF_ProfLin.Yright.Text

’Assign the case indicator including cases of equal x- or y-coords

If dbXlmp < dbXrmp And dbYlmp > dbYrmp Then

strCsInctr = "-11"

ElseIf dbXlmp >= dbXrmp And dbYlmp >= dbYrmp Then

strCsInctr = "11"

ElseIf dbXlmp > dbXrmp And dbYlmp < dbYrmp Then

strCsInctr = "1-1"

ElseIf dbXlmp <= dbXrmp And dbYlmp <= dbYrmp Then

strCsInctr = "-1-1"

End If

’Prevent division by zero in coordinate’s angle calculation - math explained below

If Not (dbXrmp = dbXlmp Or dbYrmp = dbYlmp) Then

dbAlpha = Atn((Abs(dbYrmp - dbYlmp) / Abs(dbXrmp - dbXlmp)) ^ _

Sgn((dbYrmp - dbYlmp) / (dbXrmp - dbXlmp)))

Else

If dbXrmp = dbXlmp Then

dbAlpha = PI / 2

Else: dbAlpha = 0

End If

End If

’Run through profile exporting all segments

Do

’Chooses the next line part of the polyline

Set aoiLines = aoiPolyLine.Geometry(intGeomCntr)

’loop through all segments of the line part

For intSgmntCntr = intStrtCnt To aoiLines.SegmentCount + intStrtCnt - 1

Set aoiCurve = aoiLines.Segment(intSgmntCntr - intStrtCnt)

Set aoiFrmPnt = aoiCurve.fromPoint

Set aoiTPnt = aoiCurve.toPoint

’Calculate and print true coordinates - math explained below

Select Case strCsInctr

Case "-11"

dbTruex = Round(dbXlmp + aoiFrmPnt.x * Sin(dbAlpha), 0)

dbTruey = Round(dbYlmp - aoiFrmPnt.x * Cos(dbAlpha), 0)

Case "11"

dbTruex = Round(dbXlmp - aoiFrmPnt.x * Cos(dbAlpha), 0)

dbTruey = Round(dbYlmp - aoiFrmPnt.x * Sin(dbAlpha), 0)

61

APPENDIX B Export Toolbox (VBA c© codes)

Case "1-1"

dbTruex = Round(dbXlmp - aoiFrmPnt.x * Sin(dbAlpha), 0)

dbTruey = Round(dbYlmp + aoiFrmPnt.x * Cos(dbAlpha), 0)

Case "-1-1"

dbTruex = Round(dbXlmp + aoiFrmPnt.x * Cos(dbAlpha), 0)

dbTruey = Round(dbYlmp + aoiFrmPnt.x * Sin(dbAlpha), 0)

End Select

Print #1, "VRTX"; intSgmntCntr + 1; dbTruex; dbTruey; Round(aoiFrmPnt.y, 0)

Next intSgmntCntr

’Adjust for reading next linepart and add it DIRECTLY

’to the continuous line in GOCAD in the next step

intGeomCntr = intGeomCntr + 1

intStrtCnt = intSgmntCntr + 1

’loops until all parts AND segments of the polyline are exported

’as VRTX-points in the GOCAD-file

Loop While intGeomCntr < aoiPolyLine.GeometryCount

’loop until all segments are described in the GOCAD file

intSgmntCntr = 0

Do While intSgmntCntr < intStrtCnt - 2

intSgmntCntr = intSgmntCntr + 1

Print #1, "SEG"; intSgmntCntr; intSgmntCntr + 1

Loop

’ Definitions:

’ alpha = Angle between vertical EW-striking plane (M-system)

’ and strike of profile line between points a and b (P-system)

’ in the map view (varies also with the coordinate situation)

’ alpha = arctan [(x(b)-x(a))/(y(b)-y(a))] in general

’ delta y(M) = delta x(P) * sin [alpha] in general

’ delta x(M) = delta x(P) * cos [alpha] in general

End Sub

62

APPENDIX B Export Toolbox (VBA c© codes)

B.3 Data Assessment

B.3.1 Creating cross-sections

The name of this form in the VBA c© programming environment in

ArcMap c© is FrmExprtPrfl !

Option Explicit

Private aoiCrntDoc As esriCore.IMxDocument ’ actual Map Document

Private aoiCrntMap As esriCore.IMap ’ Map with focus in the Map Document

Private aoiLayers As esriCore.IEnumLayer ’ collection of layers selected due to UID

Private aoiCrntLayer As esriCore.ILayer ’ the current layer when looping through many of them

Private aoiCrntFtLayer As esriCore.IFeatureLayer ’ stores selected/checked feature layers

Private aoiUID As New UID ’ Unique Identifier for layer identification

Private aoiCrntFtCls As esriCore.IFeatureClass ’ feature class for point feature storage

Dim aoiFields As esriCore.IFields ’ fields in the feature layers

Dim lgFldCntr As Long ’ counter for the aoiFields

Dim aoiField As esriCore.IField ’ one field in the aoiFields

’ exits the export form

Private Sub cmdBtQuit_Click()

Unload Me

End Sub

’ marks the first TextBox in the TabOrder

Private Sub UserForm_Activate()

txtBxXstart.SelStart = 0

txtBxXstart.SelLength = Len(txtBxXstart.Text)

FrmExprtPrfl.Height = 280

End Sub

’ unselects the orientation calculation "every ... meters"

’ and IDW if OptionButton "never" is toggled and locks the

’ orientation distance TextBox

Private Sub optBtOrientNever_Click()

With FrmExprtPrfl

.chkBxCalcOrient.Value = False

.chkBxIDW = False

.txtBxOrientDist.Enabled = False

.txtBxOrientRad.Enabled = False

End With

End Sub

’ unselects Option Button "Never" if orientation calculation

’ every ... meters is selected and (un)locks the orientation

’ distance TextBox

Private Sub chkBxCalcOrient_Click()

If chkBxCalcOrient.Value = True Then

optBtOrientNever.Value = False

txtBxOrientDist.Enabled = True

txtBxOrientRad.Enabled = True

Else

txtBxOrientDist.Enabled = False

txtBxOrientRad.Enabled = False

End If

End Sub

’ prevents selection of IDW if OptionButton "Never" is selected

63

APPENDIX B Export Toolbox (VBA c© codes)

Private Sub chkBxIDW_Click()

If optBtOrientNever.Value = True Then

chkBxIDW.Value = False

End If

End Sub

’ checks that all values entered are numeric & correct values

’ and leads on to the 2nd step for entering data

Private Sub cmdBtStart_Click()

If Not (IsNumeric(txtBxXend.Text) = True _

And IsNumeric(txtBxYend.Text) = True _

And IsNumeric(txtBxXstart.Text) = True _

And IsNumeric(txtBxYstart.Text) = True _

And IsNumeric(txtBxElevDist.Text) = True _

And IsNumeric(txtBxOrientDist.Text) = True _

And IsNumeric(txtBxOrientRad.Text) = True) _

Or (txtBxXend.Text = txtBxXstart.Text _

And txtBxYstart.Text = txtBxYend.Text) Then

MsgBox "That must be an interesting profile ;-)", vbCritical + vbOKOnly, "Take a look at your data again!"

Exit Sub

Else:

With FrmExprtPrfl

.Height = 530

.txtBxElevDist.Enabled = False

.txtBxOrientDist.Enabled = False

.txtBxXend.Enabled = False

.txtBxXstart.Enabled = False

.txtBxYend.Enabled = False

.txtBxYstart.Enabled = False

.chkBxCalcOrient.Enabled = False

.txtBxOrientRad.Enabled = False

.chkBxIDW.Enabled = False

’ .optBtOrientContact.Enabled = False

.optBtOrientNever.Enabled = False

.cmdBtStart.Enabled = False

.cmdBtQuit.Enabled = False

End With

Call ListBoxFiller

’ locks the list boxes for orientation measurements if

’ orientation measurements are not exported

If optBtOrientNever.Value = True Then

With FrmExprtPrfl

.lstBxPlanars.Clear

.lstBxPlanars.ForeColor = &H80000011

.lstBxDipDir.ForeColor = &H80000011

.lstBxDipAn.ForeColor = &H80000011

.lstBxPlanars.Enabled = False

.lstBxDipDir.Enabled = False

.lstBxDipAn.Enabled = False

.lstBxPlanars.AddItem ("not available")

.lstBxDipDir.AddItem ("not available")

.lstBxDipAn.AddItem ("not available")

.txtBxFoliationName.Text = "not available"

.txtBxFoliationName.Enabled = False

End With

End If

End If

End Sub

’ checks if necessary layers and fields in

’ the 2nd part of the form are selected

64

APPENDIX B Export Toolbox (VBA c© codes)

Private Sub cmdBtStart2_Click()

Select Case FrmExprtPrfl.optBtOrientNever.Value

Case True

If FrmExprtPrfl.lstBxDEMs.ListIndex = -1 _

Or FrmExprtPrfl.lstBxGeoID.ListIndex = -1 _

Or FrmExprtPrfl.lstBxPlgns.ListIndex = -1 Then

MsgBox "Please specify the necessary selections in the respective list boxes!", vbCritical _

+ vbOKOnly, "Selection ambiguity!"

Exit Sub

End If

Case False

If FrmExprtPrfl.lstBxDEMs.ListIndex = -1 _

Or FrmExprtPrfl.lstBxGeoID.ListIndex = -1 _

Or FrmExprtPrfl.lstBxPlgns.ListIndex = -1 _

Or FrmExprtPrfl.lstBxDipAn.ListIndex = -1 _

Or FrmExprtPrfl.lstBxDipDir.ListIndex = -1 _

Or FrmExprtPrfl.lstBxPlanars.ListIndex = -1 Then

MsgBox "Please specify the necessary selections in the respective list boxes!", vbCritical + vbOKOnly, "Selection ambiguity!"

Exit Sub

End If

End Select

FrmExprtPrfl.Height = 545

FrmExprtPrfl.lblPrgBr.Visible = True

Call ProfileCalculatorM.Main

End Sub

’ fills the list boxes for selection of the correct

’ DEM-, Geology- & planar measurement-layer

Private Sub ListBoxFiller()

Set aoiCrntDoc = ThisDocument

Set aoiCrntMap = aoiCrntDoc.FocusMap

aoiUID.Value = "{6CA416B1-E160-11D2-9F4E-00C04F6BC78E}"

Set aoiLayers = aoiCrntMap.Layers(aoiUID, True)

aoiLayers.Reset

Set aoiCrntLayer = aoiLayers.Next

’ loop through all layers to find all raster layers

’ and list them in one box and to find all point feature

’ layers and list them in the other box

Do While Not aoiCrntLayer Is Nothing

If TypeOf aoiCrntLayer Is IFeatureLayer Then

Set aoiCrntFtLayer = aoiCrntLayer

Set aoiCrntFtCls = aoiCrntFtLayer.FeatureClass

If aoiCrntFtCls.ShapeType = esriGeometryPoint Then

FrmExprtPrfl.lstBxPlanars.AddItem aoiCrntLayer.Name

End If

If aoiCrntFtCls.ShapeType = esriGeometryPolygon Then

FrmExprtPrfl.lstBxPlgns.AddItem aoiCrntLayer.Name

End If

End If

If TypeOf aoiCrntLayer Is IRasterLayer Then

FrmExprtPrfl.lstBxDEMs.AddItem aoiCrntLayer.Name

End If

Set aoiCrntLayer = aoiLayers.Next

65

APPENDIX B Export Toolbox (VBA c© codes)

Loop

End Sub

’ updates the Dip Direction and Dip Angle Fields

’ after a point feature layer is selected

Private Sub lstBxPlanars_Change()

FrmExprtPrfl.lstBxDipAn.Clear

FrmExprtPrfl.lstBxDipDir.Clear

aoiUID.Value = "{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}"

Set aoiLayers = aoiCrntMap.Layers(aoiUID, True)

aoiLayers.Reset

Set aoiCrntLayer = aoiLayers.Next

’ loop through all feature layers to find the one

’ selected feature class in the point layer list box

Do While Not aoiCrntLayer Is Nothing

If aoiCrntLayer.Name = FrmExprtPrfl.lstBxPlanars.Value Then

Set aoiCrntFtLayer = aoiCrntLayer

Set aoiCrntFtCls = aoiCrntFtLayer.FeatureClass

Exit Do

End If

Set aoiCrntLayer = aoiLayers.Next

Loop

’ loop through all fields of the feature class

’ that has been found above

Set aoiFields = aoiCrntFtCls.Fields

For lgFldCntr = 0 To (aoiFields.FieldCount - 1)

Set aoiField = aoiFields.Field(lgFldCntr)

If aoiField.Name <> "Shape" Then

With FrmExprtPrfl

.lstBxDipDir.AddItem aoiField.Name

.lstBxDipAn.AddItem aoiField.Name

End With

End If

Next lgFldCntr

End Sub

Private Sub lstBxPlgns_Change()

FrmExprtPrfl.lstBxGeoID.Clear

aoiUID.Value = "{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}"

Set aoiLayers = aoiCrntMap.Layers(aoiUID, True)

aoiLayers.Reset

Set aoiCrntLayer = aoiLayers.Next

’ loop through all feature layers to find the one

’ selected feature class in the polygon layer list box

Do While Not aoiCrntLayer Is Nothing

If aoiCrntLayer.Name = FrmExprtPrfl.lstBxPlgns.Value Then

Set aoiCrntFtLayer = aoiCrntLayer

Set aoiCrntFtCls = aoiCrntFtLayer.FeatureClass

Exit Do

End If

Set aoiCrntLayer = aoiLayers.Next

Loop

’ loop through all fields of the feature class

66

APPENDIX B Export Toolbox (VBA c© codes)

’ that has been found above

Set aoiFields = aoiCrntFtCls.Fields

For lgFldCntr = 0 To (aoiFields.FieldCount - 1)

Set aoiField = aoiFields.Field(lgFldCntr)

If aoiField.Name <> "Shape" Then

With FrmExprtPrfl

.lstBxGeoID.AddItem aoiField.Name

End With

End If

Next lgFldCntr

End Sub

The name of this module in the VBA c© programming environment in

ArcMap c© is ProfileCalculatorM !

Option Explicit

Private blIDW As Boolean ’ indicates exported orientations are to be IDW calculated

Private blOrntEvrMtr As Boolean ’ indicates if orientations are exported at regular intervals

’Private blContact As Boolean ’ indicates if orientations are exported at contacts additionally

Private blNoOrient As Boolean ’ indicates if any orientations are exported at all

Private dbElevDist As Double ’ stores value for the distance elevation points

Private dbOrientDist As Double ’ stores value for the distance between orientation calculations

Private lgXstart As Long ’ X coord of the profile’s startpoint

Private lgYstart As Long ’ Y coord of the profile’s startpoint

Private lgXend As Long ’ X coord of the profile’s endpoint

Private lgYend As Long ’ Y coord of the profile’s endpoint

Private dbPrflCrdsWrt() As Double ’ Array for all coordinates of the profile to be WRITTEN

Private dbPrflCrdsRd() As Double ’ Array for all coordinates to be READ from the DEMs for the profile

Private dbPtCrdsWrt() As Double ’ Array for all coordinates of the foliations to be WRITTEN

Private dbPtCrdsRd() As Double ’ Array for all coordinates to be READ from the DEMs for the foliations

Private strRstrLyrName As String ’ stores the name of the Raster Layer

Private strPntLyrName As String ’ stores the name of the Point Feature Layer

Private strDipDirName As String ’ stores the name of the Dip Direction Field

Private strDipAnName As String ’ stores the name of the Dip Angle Field

Private strGeoLayer As String ’ stores the name of the Polygon Feature Layer

Private strGeoID As String ’ stores the name of the Geology Unit-ID Field

Private strFolder As String ’ stores the name of the Workspace Path

Private strPllnName As String ’ stores the name of the Polyline Shape (i.e. profile-line)

Private strPointName As String ’ stores the name of the Point Shape (i.e. foliations)

Const PI As Double = 3.14159265358979

’ module start - shows the user form

Public Sub Start()

FrmExprtPrfl.Show

End Sub

’ calls all subfunctions Public Sub Main()

Call VariableAssigner ’ assigns the global variables derived from the user form

Call ShapeConstruct ’ creates the necessary shape files (polyline (and points))

Call CoordinateCalcProfile ’ calculates the coordinates for the profile

Call ElevationGripProfile ’ retrieves the elevation values from the respective DEM fro the profile

Call FillPolyline ’ writes the coordinates in the line shape and

’ internally calls a function to check points’ ID assignments

If blNoOrient = False Then ’ accesses the export routines for foliation export

67

APPENDIX B Export Toolbox (VBA c© codes)

Call CoordinateCalcFoliations ’ calculates the coords for the foliation points

Call ElevationGripFoliations ’ retrieves the elevation values at the foliation points

Call FillMultipoint ’ writes the respective values into the point shape’s fields

End If

’ notify the user about the files

’ locations

MsgBox "Your files are stored in" & " " & strFolder & Chr$(13), vbInformation + vbOKOnly, "That was it ..."

Unload FrmExprtPrfl

End Sub

’ loads all variable values from "FrmExprtPrfl"

’ into the respective (global) variables of this module

Private Sub VariableAssigner()

With FrmExprtPrfl

blIDW = .chkBxIDW.Value

blOrntEvrMtr = .chkBxCalcOrient.Value

blNoOrient = .optBtOrientNever.Value

’ blContact = .optBtOrientContact.Value

dbElevDist = Round(.txtBxElevDist.Value, 0)

dbOrientDist = Round(.txtBxOrientDist.Value, 0)

lgXstart = CLng(.txtBxXstart.Value)

lgYstart = CLng(.txtBxYstart.Value)

lgXend = CLng(.txtBxXend.Value)

lgYend = CLng(.txtBxYend.Value)

strRstrLyrName = .lstBxDEMs.Value

strGeoLayer = .lstBxPlgns.Value

strGeoID = .lstBxGeoID.Value

strFolder = .txtBxPath.Value

strPllnName = .txtBxProfileName.Value

If blNoOrient = False Then

strPntLyrName = .lstBxPlanars.Value

strDipAnName = .lstBxDipAn.Value

strDipDirName = .lstBxDipDir.Value

strPointName = .txtBxFoliationName.Value

End If

End With

End Sub

’ calculates the points for the new polyline assemblage

Private Sub CoordinateCalcProfile()

Dim strCsIndctr As String ’ indicates the relationship between the profile’s start-/endpoint

Dim dbAlpha As Double ’ angle between a horizontal or vertical line and profile trend

Dim dbPrflLen As Double ’ length of the profile

Dim dbNmbPts As Double ’ total number of points

Dim dbPtCntr As Double ’ Counter for the profile Points

’Assign the case indicator including cases of equal x- or y-coords

If lgXstart < lgXend And lgYstart > lgYend Then

strCsIndctr = "-11"

ElseIf lgXstart >= lgXend And lgYstart >= lgYend Then

strCsIndctr = "11"

ElseIf lgXstart > lgXend And lgYstart < lgYend Then

strCsIndctr = "1-1"

68

APPENDIX B Export Toolbox (VBA c© codes)

ElseIf lgXstart <= lgXend And lgYstart <= lgYend Then

strCsIndctr = "-1-1"

End If

’Prevent division by zero in coordinate’s angle calculation

If Not (lgXend = lgXstart Or lgYend = lgYstart) Then

dbAlpha = Atn((Abs(lgYend - lgYstart) / Abs(lgXend - lgXstart)) ^ _

Sgn((lgYend - lgYstart) / (lgXend - lgXstart)))

Else

If lgXend = lgXstart Then

dbAlpha = PI / 2

Else: dbAlpha = 0

End If

End If

’ Calculate the length of the profile

dbPrflLen = Sqr(((lgYend - lgYstart) ^ 2 + (lgXend - lgXstart) ^ 2))

’ Calculate the number of profile points and resize the coordinate array

’ (..., 0) = x-coord; (..., 1) = y-coord

If Not (dbPrflLen / dbElevDist) = Int(dbPrflLen / dbElevDist) Then

dbNmbPts = Int(dbPrflLen / dbElevDist) + 2

Else: dbNmbPts = Int(dbPrflLen / dbElevDist) + 1

End If

ReDim dbPrflCrdsWrt(dbNmbPts - 1, 1)

ReDim dbPrflCrdsRd(dbNmbPts - 1, 1)

’ looping through all points that have to be constructed in the profile

’ assigning their X-values (i.e. along the profile’s length)

For dbPtCntr = 0 To dbNmbPts - 2

dbPrflCrdsWrt(dbPtCntr, 0) = dbPtCntr * dbElevDist

Next dbPtCntr

dbPrflCrdsWrt(dbNmbPts - 1, 0) = dbPrflLen

’ looping through all points that have to be addressed on the

’ DEM and in the Geology-Polygon to find their X and Y values

Select Case strCsIndctr

Case "-11"

For dbPtCntr = 0 To dbNmbPts - 2

dbPrflCrdsRd(dbPtCntr, 0) = lgXstart + dbPtCntr * dbElevDist * Sin(dbAlpha)

dbPrflCrdsRd(dbPtCntr, 1) = lgYstart - dbPtCntr * dbElevDist * Cos(dbAlpha)

Next dbPtCntr

Case "11"

For dbPtCntr = 0 To dbNmbPts - 2

dbPrflCrdsRd(dbPtCntr, 0) = lgXstart - dbPtCntr * dbElevDist * Cos(dbAlpha)

dbPrflCrdsRd(dbPtCntr, 1) = lgYstart - dbPtCntr * dbElevDist * Sin(dbAlpha)

Next dbPtCntr

Case "1-1"

For dbPtCntr = 0 To dbNmbPts - 2

dbPrflCrdsRd(dbPtCntr, 0) = lgXstart - dbPtCntr * dbElevDist * Sin(dbAlpha)

dbPrflCrdsRd(dbPtCntr, 1) = lgYstart + dbPtCntr * dbElevDist * Cos(dbAlpha)

Next dbPtCntr

Case "-1-1"

For dbPtCntr = 0 To dbNmbPts - 2

dbPrflCrdsRd(dbPtCntr, 0) = lgXstart + dbPtCntr * dbElevDist * Cos(dbAlpha)

dbPrflCrdsRd(dbPtCntr, 1) = lgYstart + dbPtCntr * dbElevDist * Sin(dbAlpha)

Next dbPtCntr

End Select

dbPrflCrdsRd(dbPtCntr, 0) = lgXend

dbPrflCrdsRd(dbPtCntr, 1) = lgYend

End Sub

69

APPENDIX B Export Toolbox (VBA c© codes)

’ identifies the DEM containing the elevation data and

’ assigns the data to the respective points in the

’ dbPrflCrdsWrt array

Private Sub ElevationGripProfile()

Dim aoiCrntDoc As IMxDocument

Dim aoiCrntMp As IMap

Dim aoiUID As UID

Dim aoiEnumLyrs As IEnumLayer

Dim aoiCrntLyr As ILayer

Dim aoiCrntRasLyr As IRasterLayer

Dim aoiRaster As IRaster

Dim aoiRstrProp As IRasterProps

Dim aoiIdentify As IIdentify

Dim aoiRasIdentObj As IRasterIdentifyObj

Dim aoiRstrArr As IArray

Dim aoiChkPoint As IPoint

Dim lgPtCntr As Long

Set aoiCrntDoc = ThisDocument

Set aoiCrntMp = aoiCrntDoc.FocusMap

Set aoiUID = New UID

aoiUID = "{6CA416B1-E160-11D2-9F4E-00C04F6BC78E}"

Set aoiEnumLyrs = aoiCrntMp.Layers(aoiUID, True)

aoiEnumLyrs.Reset

Set aoiCrntLyr = aoiEnumLyrs.Next

FrmExprtPrfl.prgBr.Max = UBound(dbPrflCrdsWrt, 1)

’ look for the specified raster layer

Do While Not aoiCrntLyr Is Nothing

If aoiCrntLyr.Name = strRstrLyrName Then

Set aoiCrntRasLyr = aoiCrntLyr

Set aoiRaster = aoiCrntRasLyr.Raster

Set aoiIdentify = aoiCrntRasLyr

Exit Do

End If

Set aoiCrntLyr = aoiEnumLyrs.Next

Loop

Set aoiChkPoint = New Point

FrmExprtPrfl.Repaint

’ loop through all points in the ...Wrt-Array

For lgPtCntr = 0 To UBound(dbPrflCrdsWrt, 1)

aoiChkPoint.x = dbPrflCrdsRd(lgPtCntr, 0)

aoiChkPoint.y = dbPrflCrdsRd(lgPtCntr, 1)

’ get the raster values at the respective point

Set aoiRstrArr = aoiIdentify.Identify(aoiChkPoint)

If Not aoiRstrArr Is Nothing Then

Set aoiRasIdentObj = aoiRstrArr.Element(0)

If aoiRasIdentObj.Name <> "NoData" Then

’ store the value in the y-coord of the array

’ containing the values for the profile-shape

dbPrflCrdsWrt(lgPtCntr, 1) = CDbl(aoiRasIdentObj.Name)

End If

End If

With FrmExprtPrfl.prgBr

.Value = lgPtCntr

.Refresh

70

APPENDIX B Export Toolbox (VBA c© codes)

End With

Next lgPtCntr

End Sub

’ constructs a Polyline shapefile (for the profile line)

’ and - if necessary - also a mulitipoint shapefile (for

’ the foliation measurements)

Private Sub ShapeConstruct()

Const strShapeFieldName As String = "Shape"

’ Mark for ’goto-jump’ used if foliations are also exported

scndRun:

’ Open the folder to contain the shapefile as a workspace

Dim aoiFWS As IFeatureWorkspace

Dim aoiWorkspaceFactory As IWorkspaceFactory

Set aoiWorkspaceFactory = New ShapefileWorkspaceFactory

Set aoiFWS = aoiWorkspaceFactory.OpenFromFile(strFolder, 0)

’ Set up a simple fields collection

Dim aoiFields As IFields

Dim aoiFieldsEdit As IFieldsEdit

Set aoiFields = New esriCore.Fields

Set aoiFieldsEdit = aoiFields

Dim aoiField As IField

Dim aoiFieldEdit As IFieldEdit

’ Make the shape field including its spatial reference

Set aoiField = New esriCore.Field

Set aoiFieldEdit = aoiField

’ specify that you deal with a shape file

aoiFieldEdit.Name = strShapeFieldName

aoiFieldEdit.Type = esriFieldTypeGeometry

Dim aoiGeomDef As IGeometryDef

Dim aoiGeomDefEdit As IGeometryDefEdit

Set aoiGeomDef = New GeometryDef

Set aoiGeomDefEdit = aoiGeomDef

With aoiGeomDefEdit

’ check if profile or foliation file are created

If strPllnName <> strPointName Then

.geometryType = esriGeometryPolyline

Else

.geometryType = esriGeometryPoint

End If

.GridCount = 1

.GridSize(0) = 10

.AvgNumPoints = 2

.HasM = False

.HasZ = False

’ calls a function to find out the spatial reference of the

’ geology layer on which the calculations will be based on

Set .SpatialReference = GetSpatialReference()

End With

Set aoiFieldEdit.GeometryDef = aoiGeomDef

71

APPENDIX B Export Toolbox (VBA c© codes)

aoiFieldsEdit.AddField aoiField

’ Add an ID integer field

If strPllnName <> strPointName Then

Set aoiField = New esriCore.Field

Set aoiFieldEdit = aoiField

With aoiFieldEdit

.Length = 10

.Name = "ID"

.Type = esriFieldTypeInteger

End With

aoiFieldsEdit.AddField aoiField

End If

’ if foliation-shape is created the fields for dip

’ direction, dip angle and apparent dip angle are added

If strPllnName = strPointName Then

Set aoiField = New esriCore.Field

Set aoiFieldEdit = aoiField

With aoiFieldEdit

.Length = 5

.Name = "DipDir"

.Type = esriFieldTypeInteger

End With

aoiFieldsEdit.AddField aoiField

Set aoiField = New esriCore.Field

Set aoiFieldEdit = aoiField

With aoiFieldEdit

.Length = 5

.Name = "DipAn"

.Type = esriFieldTypeInteger

End With

aoiFieldsEdit.AddField aoiField

Set aoiField = New esriCore.Field

Set aoiFieldEdit = aoiField

With aoiFieldEdit

.Length = 5

.Name = "AppDip"

.Type = esriFieldTypeInteger

End With

aoiFieldsEdit.AddField aoiField

End If

’ Create the shapefile - i.e. a new Feature Class

Dim aoiFeatClass As IFeatureClass

Set aoiFeatClass = aoiFWS.CreateFeatureClass(strPllnName, aoiFields, Nothing, _

Nothing, esriFTSimple, strShapeFieldName, "")

’ Jump back to create a second shapefile if necessary

’ and not already done

If blNoOrient = False And strPllnName <> strPointName Then

strPllnName = strPointName

GoTo scndRun

End If

strPllnName = FrmExprtPrfl.txtBxProfileName.Value

End Sub

Private Sub FillPolyline()

72

APPENDIX B Export Toolbox (VBA c© codes)

’ Open the folder to contain the shapefile as a workspace

Dim aoiFWS As IFeatureWorkspace

Dim aoiWorkspaceFactory As IWorkspaceFactory

Dim aoiCrntFtCls As IFeatureClass

Dim aoiFeat As IFeature

Set aoiWorkspaceFactory = New ShapefileWorkspaceFactory

Set aoiFWS = aoiWorkspaceFactory.OpenFromFile(strFolder, 0)

Set aoiCrntFtCls = aoiFWS.OpenFeatureClass(strPllnName)

Dim intCaseSlctr As Integer ’ specifies what the function "CheckPointID" is used for

Dim lgSgmntCntr As Long ’ counter for ’for...next-loops’

Dim blPointsSameID As Boolean ’ specifies if 2 points are in the same polygon

Dim aoiFromPt As IPoint ’ start point of a segment

Dim aoiToPt As IPoint ’ end point of a segment

Dim aoiLine As ILine ’ a single 2-point-line

Dim aoiSegColl As ISegmentCollection ’ a collection of aoiLines

Dim aoiPath As IPath ’ geometry for the SegColl

Dim aoiGeomColl As IGeometryCollection ’ all paths

Dim aoiPlln As IPolyline ’ the polyline made of several Paths with unique IDs

Set aoiSegColl = New Path

Set aoiGeomColl = New Polyline

With FrmExprtPrfl

.lblPrgBr.Caption = "Writing Shape-File ..."

.Repaint

End With

’ loop through all points on the polyline

For lgSgmntCntr = 0 To UBound(dbPrflCrdsWrt, 1) - 1

intCaseSlctr = 1

Set aoiToPt = New Point

Set aoiFromPt = New Point

Set aoiLine = New Line

aoiFromPt.PutCoords dbPrflCrdsWrt(lgSgmntCntr, 0), dbPrflCrdsWrt(lgSgmntCntr, 1)

aoiToPt.PutCoords dbPrflCrdsWrt(lgSgmntCntr + 1, 0), dbPrflCrdsWrt(lgSgmntCntr + 1, 1)

aoiLine.PutCoords aoiFromPt, aoiToPt

’ check if the two points of a segment are in the same geology polygon

blPointsSameID = CheckPointID(aoiFromPt, aoiToPt, intCaseSlctr, lgSgmntCntr)

’ at boundary or at end of profile ...

If blPointsSameID = False _

Or lgSgmntCntr = UBound(dbPrflCrdsWrt, 1) - 1 Then

’ specifies that CheckPointID-Function is now used for

’ returning ID-values and not booleans for boundary checking

intCaseSlctr = 2

aoiGeomColl.AddGeometry aoiSegColl

Set aoiPlln = aoiGeomColl

Set aoiFeat = aoiCrntFtCls.CreateFeature

Set aoiFeat.Shape = aoiPlln

’ assign the ID of this profile part

aoiFeat.Value(aoiFeat.Fields.FindField(strGeoID)) = CheckPointID(aoiFromPt, aoiToPt, _

intCaseSlctr, lgSgmntCntr)

aoiFeat.Store

aoiLine.SetEmpty

Set aoiFeat = New Feature

73

APPENDIX B Export Toolbox (VBA c© codes)

Set aoiSegColl = New Path

Set aoiGeomColl = New Polyline

End If

If Not aoiLine.IsEmpty = True Then aoiSegColl.AddSegment aoiLine

With FrmExprtPrfl.prgBr

.Value = lgSgmntCntr

.Refresh

End With

Next lgSgmntCntr

Set aoiPlln = aoiGeomColl

Set aoiFeat = aoiCrntFtCls.CreateFeature

Set aoiFeat.Shape = aoiPlln

aoiFeat.Store

End Sub

’ checks if two points of a segment belong two the

’ same geology unit specified by the ID

Private Function CheckPointID(aoiFromPt As IPoint, aoiToPt As IPoint,

intCaseSlctr As Integer, _

lgSgmntCntr As Long)

Dim aoiCrntDoc As IMxDocument

Dim aoiCrntMp As IMap

Dim aoiUID As UID

Dim aoiEnumLyrs As IEnumLayer

Dim aoiCrntLyr As IFeatureLayer

Dim aoiCrntFtCls As IFeatureClass

Dim aoiFtCrs As IFeatureCursor

Dim aoiCrntFt As IFeature

Dim aoiRelOpPlg As IRelationalOperator

Dim aoiPlgn As IGeometryCollection

Dim intFtCntr As Integer

Set aoiCrntDoc = ThisDocument

Set aoiCrntMp = aoiCrntDoc.FocusMap

Set aoiUID = New UID

aoiUID = "{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}"

Set aoiEnumLyrs = aoiCrntMp.Layers(aoiUID, True)

aoiEnumLyrs.Reset

Set aoiCrntLyr = aoiEnumLyrs.Next

Do While Not aoiCrntLyr Is Nothing

If aoiCrntLyr.Name = strGeoLayer Then

Exit Do

End If

Set aoiCrntLyr = aoiEnumLyrs.Next

Loop

aoiFromPt.PutCoords dbPrflCrdsRd(lgSgmntCntr, 0), dbPrflCrdsRd(lgSgmntCntr, 1)

aoiToPt.PutCoords dbPrflCrdsRd(lgSgmntCntr + 1, 0), dbPrflCrdsRd(lgSgmntCntr + 1, 1)

Set aoiCrntFtCls = aoiCrntLyr.FeatureClass

Set aoiFtCrs = aoiCrntFtCls.Search(Nothing, False)

’ loop through all polygons to find those containing

’ the ToPoint and FromPoint of the respective segment

For intFtCntr = 0 To aoiCrntFtCls.FeatureCount(Nothing) - 1

Set aoiCrntFt = aoiFtCrs.NextFeature

Set aoiPlgn = aoiCrntFt.Shape

74

APPENDIX B Export Toolbox (VBA c© codes)

Set aoiRelOpPlg = aoiPlgn

’ check different possibilities of points’ positions

’ 1) both points in same geology unit and not end of profile

If (aoiRelOpPlg.Contains(aoiFromPt) _

And aoiRelOpPlg.Contains(aoiToPt)) _

And Not lgSgmntCntr = UBound(dbPrflCrdsWrt, 1) - 1 Then

aoiFromPt.PutCoords dbPrflCrdsWrt(lgSgmntCntr, 0), dbPrflCrdsWrt(lgSgmntCntr, 1)

aoiToPt.PutCoords dbPrflCrdsWrt(lgSgmntCntr + 1, 0), dbPrflCrdsWrt(lgSgmntCntr + 1, 1)

CheckPointID = True

Exit Function

’ 2) points are in two different geology units or

’ at the profile’s end

ElseIf (aoiRelOpPlg.Contains(aoiFromPt) _

And Not aoiRelOpPlg.Contains(aoiToPt)) _

Or lgSgmntCntr = UBound(dbPrflCrdsWrt, 1) - 1 Then

’ if not at the end of the profile’s end

’ there must be a boundary

Select Case intCaseSlctr

Case 1

aoiFromPt.PutCoords dbPrflCrdsWrt(lgSgmntCntr, 0), dbPrflCrdsWrt(lgSgmntCntr, 1)

aoiToPt.PutCoords dbPrflCrdsWrt(lgSgmntCntr + 1, 0), dbPrflCrdsWrt(lgSgmntCntr + 1, 1)

CheckPointID = False

Exit Function

’ if at the profile’s end, the last ID is returned

’ in order to assign it to the last polygon part

Case 2

If aoiRelOpPlg.Contains(aoiFromPt) Then

aoiFromPt.PutCoords dbPrflCrdsWrt(lgSgmntCntr, 0), dbPrflCrdsWrt(lgSgmntCntr, 1)

aoiToPt.PutCoords dbPrflCrdsWrt(lgSgmntCntr + 1, 0), dbPrflCrdsWrt(lgSgmntCntr + 1, 1)

CheckPointID = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strGeoID))

Exit Function

End If

End Select

End If

Next intFtCntr

MsgBox "Your profile trace leads through an area with no geology assignments!" _

& Chr$(13) & "The macro will be reset!", vbCritical + vbOKOnly, "Fatal error!"

Unload FrmExprtPrfl

Kill strFolder & strPllnName & ".*"

If blNoOrient = False Then Kill strFolder & strPointName & ".*"

FrmExprtPrfl.Show

End

End Function

Private Sub CoordinateCalcFoliations()

Dim strCsIndctr As String ’ indicates the relationship between the profiles start-/endpoint

Dim dbAlpha As Double ’ angle between a horizontal or vertical line and profile trend

Dim dbPrflLen As Double ’ length of the profile

Dim dbNmbPts As Double ’ total number of points

Dim dbPtCntr As Double ’ Counter for the Fol-Points

’Assign the case indicator including cases of equal x- or y-coords

75

APPENDIX B Export Toolbox (VBA c© codes)

If lgXstart < lgXend And lgYstart > lgYend Then

strCsIndctr = "-11"

ElseIf lgXstart >= lgXend And lgYstart >= lgYend Then

strCsIndctr = "11"

ElseIf lgXstart > lgXend And lgYstart < lgYend Then

strCsIndctr = "1-1"

ElseIf lgXstart <= lgXend And lgYstart <= lgYend Then

strCsIndctr = "-1-1"

End If

’Prevent division by zero in coordinate’s angle calculation

If Not (lgXend = lgXstart Or lgYend = lgYstart) Then

dbAlpha = Atn((Abs(lgYend - lgYstart) / Abs(lgXend - lgXstart)) ^ _

Sgn((lgYend - lgYstart) / (lgXend - lgXstart)))

Else

If lgXend = lgXstart Then

dbAlpha = PI / 2

Else: dbAlpha = 0

End If

End If

’ Calculate the length of the profile

dbPrflLen = Sqr(((lgYend - lgYstart) ^ 2 + (lgXend - lgXstart) ^ 2))

’ Calculate the number of profile points and resize the coordinate array

’ (..., 0) = x-coord; (..., 1) = y-coord

If Not (dbPrflLen / dbOrientDist) = Int(dbPrflLen / dbOrientDist) Then

dbNmbPts = Int(dbPrflLen / dbOrientDist) + 2

Else: dbNmbPts = Int(dbPrflLen / dbOrientDist) + 1

End If

ReDim dbPtCrdsWrt(dbNmbPts - 1, 1)

ReDim dbPtCrdsRd(dbNmbPts - 1, 1)

’ looping through all points that have to be constructed in the profile

’ assigning their X-values

For dbPtCntr = 0 To dbNmbPts - 2

dbPtCrdsWrt(dbPtCntr, 0) = dbPtCntr * dbOrientDist

Next dbPtCntr

dbPtCrdsWrt(dbNmbPts - 1, 0) = dbPrflLen

’ looping through all points that have to be addressed on the

’ DEM to find their x and Y values

Select Case strCsIndctr

Case "-11"

For dbPtCntr = 0 To dbNmbPts - 2

dbPtCrdsRd(dbPtCntr, 0) = lgXstart + dbPtCntr * dbOrientDist * Sin(dbAlpha)

dbPtCrdsRd(dbPtCntr, 1) = lgYstart - dbPtCntr * dbOrientDist * Cos(dbAlpha)

Next dbPtCntr

Case "11"

For dbPtCntr = 0 To dbNmbPts - 2

dbPtCrdsRd(dbPtCntr, 0) = lgXstart - dbPtCntr * dbOrientDist * Cos(dbAlpha)

dbPtCrdsRd(dbPtCntr, 1) = lgYstart - dbPtCntr * dbOrientDist * Sin(dbAlpha)

Next dbPtCntr

Case "1-1"

For dbPtCntr = 0 To dbNmbPts - 2

dbPtCrdsRd(dbPtCntr, 0) = lgXstart - dbPtCntr * dbOrientDist * Sin(dbAlpha)

dbPtCrdsRd(dbPtCntr, 1) = lgYstart + dbPtCntr * dbOrientDist * Cos(dbAlpha)

Next dbPtCntr

Case "-1-1"

For dbPtCntr = 0 To dbNmbPts - 2

dbPtCrdsRd(dbPtCntr, 0) = lgXstart + dbPtCntr * dbOrientDist * Cos(dbAlpha)

dbPtCrdsRd(dbPtCntr, 1) = lgYstart + dbPtCntr * dbOrientDist * Sin(dbAlpha)

76

APPENDIX B Export Toolbox (VBA c© codes)

Next dbPtCntr

End Select

dbPtCrdsRd(dbPtCntr, 0) = lgXend

dbPtCrdsRd(dbPtCntr, 1) = lgYend

End Sub

’ works the same way as ElevationGripProfile

Private Sub ElevationGripFoliations()

Dim aoiCrntDoc As IMxDocument

Dim aoiCrntMp As IMap

Dim aoiUID As UID

Dim aoiEnumLyrs As IEnumLayer

Dim aoiCrntLyr As ILayer

Dim aoiCrntRasLyr As IRasterLayer

Dim aoiRaster As IRaster

Dim aoiRstrProp As IRasterProps

Dim aoiIdentify As IIdentify

Dim aoiRasIdentObj As IRasterIdentifyObj

Dim aoiRstrArr As IArray

Dim aoiChkPoint As IPoint

Dim lgPtCntr As Long

Set aoiCrntDoc = ThisDocument

Set aoiCrntMp = aoiCrntDoc.FocusMap

Set aoiUID = New UID

aoiUID = "{6CA416B1-E160-11D2-9F4E-00C04F6BC78E}"

Set aoiEnumLyrs = aoiCrntMp.Layers(aoiUID, True)

aoiEnumLyrs.Reset

Set aoiCrntLyr = aoiEnumLyrs.Next

With FrmExprtPrfl

.prgBr.Max = UBound(dbPtCrdsWrt, 1)

.lblPrgBr.Caption = "Reading DEM for foliations ..."

End With

Do While Not aoiCrntLyr Is Nothing

If aoiCrntLyr.Name = strRstrLyrName Then

Set aoiCrntRasLyr = aoiCrntLyr

Set aoiRaster = aoiCrntRasLyr.Raster

Set aoiIdentify = aoiCrntRasLyr

Exit Do

End If

Set aoiCrntLyr = aoiEnumLyrs.Next

Loop

Set aoiChkPoint = New Point

FrmExprtPrfl.Repaint

For lgPtCntr = 0 To UBound(dbPtCrdsWrt, 1)

aoiChkPoint.x = dbPtCrdsRd(lgPtCntr, 0)

aoiChkPoint.y = dbPtCrdsRd(lgPtCntr, 1)

Set aoiRstrArr = aoiIdentify.Identify(aoiChkPoint)

If Not aoiRstrArr Is Nothing Then

Set aoiRasIdentObj = aoiRstrArr.Element(0)

If aoiRasIdentObj.Name <> "NoData" Then

dbPtCrdsWrt(lgPtCntr, 1) = CDbl(aoiRasIdentObj.Name)

End If

End If

With FrmExprtPrfl.prgBr

.Value = lgPtCntr

.Refresh

End With

Next lgPtCntr

77

APPENDIX B Export Toolbox (VBA c© codes)

End Sub

Private Sub FillMultipoint()

’ Open the folder to contain the shapefile as a workspace

Dim aoiFWS As IFeatureWorkspace

Dim aoiWorkspaceFactory As IWorkspaceFactory

Dim aoiCrntFtCls As IFeatureClass

Dim aoiFeat As IFeature

Set aoiWorkspaceFactory = New ShapefileWorkspaceFactory

Set aoiFWS = aoiWorkspaceFactory.OpenFromFile(strFolder, 0)

Set aoiCrntFtCls = aoiFWS.OpenFeatureClass(strPointName)

Dim intDipDir As Integer

Dim intDipAn As Integer

Dim intAppDip As Integer

Dim lgSgmntCntr As Long

Dim strFolFlds As String

Dim aoiFolPt As IPoint

With FrmExprtPrfl

.lblPrgBr.Caption = "Writing Point-Shape-File ..."

.prgBr.Max = UBound(dbPtCrdsWrt, 1)

.Repaint

End With

For lgSgmntCntr = 0 To UBound(dbPtCrdsWrt, 1)

Set aoiFolPt = New Point

aoiFolPt.PutCoords dbPtCrdsWrt(lgSgmntCntr, 0), dbPtCrdsWrt(lgSgmntCntr, 1)

Set aoiFeat = aoiCrntFtCls.CreateFeature

Set aoiFeat.Shape = aoiFolPt

’ retrieve the orientation values in one string

’ variable and split it into its constituents

strFolFlds = FillFolFields(aoiFolPt, lgSgmntCntr)

If strFolFlds <> "" Then

intDipDir = Split(strFolFlds, " ")(0)

intDipAn = Split(strFolFlds, " ")(1)

’ calculating the apparent dip angle in an external function

intAppDip = ApparentDipCalc(CDbl(intDipDir), CDbl(intDipAn))

aoiFolPt.PutCoords dbPtCrdsWrt(lgSgmntCntr, 0), dbPtCrdsWrt(lgSgmntCntr, 1)

aoiFeat.Value(aoiFeat.Fields.FindField("DipDir")) = intDipDir

aoiFeat.Value(aoiFeat.Fields.FindField("DipAn")) = intDipAn

aoiFeat.Value(aoiFeat.Fields.FindField("AppDip")) = Round(intAppDip, 0)

aoiFeat.Store

End If

With FrmExprtPrfl.prgBr

.Value = lgSgmntCntr

.Refresh

End With

Next lgSgmntCntr

End Sub

’ returns the components’ calculation for the orientation measurement

’ with or without Inverse Distance Weighted averaging

78

APPENDIX B Export Toolbox (VBA c© codes)

Function FillFolFields(aoiFolPt As IPoint, lgSgmntCntr As Long)

Dim aoiCrntDoc As IMxDocument

Dim aoiCrntMp As IMap

Dim aoiUID As UID

Dim aoiEnumLyrs As IEnumLayer

Dim aoiCrntLyr As IFeatureLayer

Dim aoiCrntFtCls As IFeatureClass

Dim aoiFtCrs As IFeatureCursor

Dim aoiCrntFt As IFeature

Dim aoiRelOpPt As IRelationalOperator

Dim aoiTopOpPt As ITopologicalOperator

Dim aoiPtBuffer As IGeometry

Dim aoiPnt As IPoint

Dim intFtCntr As Integer

Dim dbFolXYZ() As Double

Dim dbX As Double

Dim dbY As Double

Dim dbZ As Double

Dim dbIDWsum As Double

Dim dbDipAn As Double

Dim dbDipDir As Double

Dim dbRadius As Double

Set aoiCrntDoc = ThisDocument

Set aoiCrntMp = aoiCrntDoc.FocusMap

Set aoiUID = New UID

aoiUID = "{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}"

Set aoiEnumLyrs = aoiCrntMp.Layers(aoiUID, True)

aoiEnumLyrs.Reset

Set aoiCrntLyr = aoiEnumLyrs.Next

’ look for the respective layer

Do While Not aoiCrntLyr Is Nothing

If aoiCrntLyr.Name = strPntLyrName Then

Exit Do

End If

Set aoiCrntLyr = aoiEnumLyrs.Next

Loop

aoiFolPt.PutCoords dbPtCrdsRd(lgSgmntCntr, 0), dbPtCrdsRd(lgSgmntCntr, 1)

’ the array will have to be resized, so the

’ coord.-values are stored in the first

’ index [(0,...), (1,...) etc.]

ReDim dbFolXYZ(3, 0)

Set aoiTopOpPt = aoiFolPt

Set aoiPtBuffer = aoiTopOpPt.Buffer(FrmExprtPrfl.txtBxOrientRad.Value)

Set aoiRelOpPt = aoiPtBuffer

Set aoiCrntFtCls = aoiCrntLyr.FeatureClass

Set aoiFtCrs = aoiCrntFtCls.Search(Nothing, False)

’ loop through all foliation features, look for those

’ inside the buffer region and store their values in a

’ dynamic array

For intFtCntr = 0 To aoiCrntFtCls.FeatureCount(Nothing) - 1

Set aoiCrntFt = aoiFtCrs.NextFeature

Set aoiPnt = aoiCrntFt.Shape

If aoiRelOpPt.Contains(aoiPnt) Then

dbDipDir = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strDipDirName)) * PI / 180

79

APPENDIX B Export Toolbox (VBA c© codes)

dbDipAn = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strDipAnName)) * PI / 180

’ calculate the XYZ-coords from dip angle and dip direction

dbFolXYZ(0, UBound(dbFolXYZ, 2)) = Sqr((aoiFolPt.x - aoiPnt.x) ^ 2 + (aoiFolPt.y - aoiPnt.y) ^ 2)

dbFolXYZ(1, UBound(dbFolXYZ, 2)) = Cos(dbDipAn) * Sin(dbDipDir)

dbFolXYZ(2, UBound(dbFolXYZ, 2)) = Cos(dbDipAn) * Cos(dbDipDir)

dbFolXYZ(3, UBound(dbFolXYZ, 2)) = -Sin(dbDipAn)

ReDim Preserve dbFolXYZ(3, UBound(dbFolXYZ, 2) + 1)

End If

Next intFtCntr

’ storing the components’ sum in the "last" record of the array

’ if the buffer was not empty and regarding IDW if necessary

If UBound(dbFolXYZ, 2) <> 0 Then

Select Case blIDW

’ without IDW

Case False

’ filling the last fields of the array with the sum of X-, Y- and Z-components

For intFtCntr = 0 To UBound(dbFolXYZ, 2) - 1

dbFolXYZ(1, UBound(dbFolXYZ, 2)) = dbFolXYZ(1, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(1, intFtCntr)

dbFolXYZ(2, UBound(dbFolXYZ, 2)) = dbFolXYZ(2, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(2, intFtCntr)

dbFolXYZ(3, UBound(dbFolXYZ, 2)) = dbFolXYZ(3, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(3, intFtCntr)

Next intFtCntr

dbX = dbFolXYZ(1, UBound(dbFolXYZ, 2))

dbY = dbFolXYZ(2, UBound(dbFolXYZ, 2))

dbZ = dbFolXYZ(3, UBound(dbFolXYZ, 2))

’ with IDW

Case True

’ filling the last fields of the array with the sum of X-, Y- and Z-components

’ and weighting it by division through the distance

For intFtCntr = 0 To UBound(dbFolXYZ, 2) - 1

dbFolXYZ(0, UBound(dbFolXYZ, 2)) = dbFolXYZ(0, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(0, intFtCntr) ^ -1

dbFolXYZ(1, UBound(dbFolXYZ, 2)) = dbFolXYZ(1, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(1, intFtCntr) / dbFolXYZ(0, intFtCntr)

dbFolXYZ(2, UBound(dbFolXYZ, 2)) = dbFolXYZ(2, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(2, intFtCntr) / dbFolXYZ(0, intFtCntr)

dbFolXYZ(3, UBound(dbFolXYZ, 2)) = dbFolXYZ(3, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(3, intFtCntr) / dbFolXYZ(0, intFtCntr)

Next intFtCntr

’ normalising back for IDW

dbIDWsum = dbFolXYZ(0, UBound(dbFolXYZ, 2))

dbX = dbFolXYZ(1, UBound(dbFolXYZ, 2)) / dbIDWsum

dbY = dbFolXYZ(2, UBound(dbFolXYZ, 2)) / dbIDWsum

dbZ = dbFolXYZ(3, UBound(dbFolXYZ, 2)) / dbIDWsum

End Select

’ calculating the Dip Angle, the Dip Direction and the length of the "average-vector"

dbRadius = Sqr(dbX ^ 2 + dbY ^ 2 + dbZ ^ 2)

dbDipAn = Arcsin(-dbZ / dbRadius) * 180 / PI

If dbX >= 0 Then

dbDipDir = Arccos(dbY / (dbRadius * Cos(dbDipAn * PI / 180))) * 180 / PI

Else

dbDipDir = 360 - (Arccos(dbY / (dbRadius * Cos(dbDipAn * PI / 180))) * 180 / PI)

End If

FillFolFields = CStr(Round(dbDipDir, 0)) & " " & CStr(Round(dbDipAn, 0))

80

APPENDIX B Export Toolbox (VBA c© codes)

Else

FillFolFields = ""

End If

End Function

’ calculates the Arcus Sinus Private Function Arcsin(x As Double)

If x = -1 Then

Arcsin = PI / -2

Else

Arcsin = Atn(x / Sqr(-x * x + 1))

End If

End Function

’ calculates the Arcus Cosinus Private Function Arccos(x As Double)

If x = -1 Then

Arccos = PI

Else

Arccos = Atn(-x / Sqr(-x * x + 1)) + 2 * Atn(1)

End If

End Function

Private Function ApparentDipCalc(DipDir As Double, DipAn As Double)

Dim dbXDD As Double ’ X-component of dip direction

Dim dbYDD As Double ’ Y-component of dip direction

Dim dbDeltXprfl As Double ’ Difference in X-coord along profile

Dim dbDeltYprfl As Double ’ Difference in Y-coord along profile

Dim dbRadiusPrfl As Double ’ length of the profile

Dim dbGamma_ As Double ’ angle between dip direction and strike of profile

Dim dbResult As Double ’ apparent dip

Dim blAngleCorr As Boolean ’ specifies if the dip angle has to be corrected because

’ of an angle between profile and dip direction which

’ is bigger than PI/2 (i.e. 90)

blAngleCorr = False

If DipAn = 90 Then DipAn = 89.99999

DipDir = DipDir * PI / 180 ’ convert angles in degree to radians

DipAn = DipAn * PI / 180

dbDeltXprfl = lgXend - lgXstart

dbDeltYprfl = lgYend - lgYstart

dbRadiusPrfl = Sqr(dbDeltXprfl ^ 2 + dbDeltYprfl ^ 2)

dbXDD = Sin(DipDir)

dbYDD = Cos(DipDir)

’ applying scalar product rule

dbGamma_ = Arccos((dbXDD * dbDeltXprfl + dbYDD * dbDeltYprfl) / dbRadiusPrfl)

If dbGamma_ > PI / 2 Then

dbGamma_ = PI - dbGamma_

blAngleCorr = True

End If

dbResult = Atn(Cos(dbGamma_) * Tan(DipAn)) * 180 / PI

Select Case blAngleCorr

Case False

ApparentDipCalc = Round(dbResult, 0)

Case True

ApparentDipCalc = 180 - Round(dbResult, 0)

End Select

End Function

’ returns the spatial reference of the geology polygons

Private Function GetSpatialReference()

Dim aoiCrntDoc As IMxDocument

Dim aoiCrntMp As IMap

Dim aoiUID As UID

81

APPENDIX B Export Toolbox (VBA c© codes)

Dim aoiEnumLyrs As IEnumLayer

Dim aoiCrntLyr As IFeatureLayer

Dim aoiCrntFtCls As IFeatureClass

Dim aoiFtCrs As IFeatureCursor

Dim aoiCrntFt As IFeature

Dim aoiGeometry As IGeometry

Set aoiCrntDoc = ThisDocument

Set aoiCrntMp = aoiCrntDoc.FocusMap

Set aoiUID = New UID

aoiUID = "{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}"

Set aoiEnumLyrs = aoiCrntMp.Layers(aoiUID, True)

aoiEnumLyrs.Reset

Set aoiCrntLyr = aoiEnumLyrs.Next

Do While Not aoiCrntLyr Is Nothing

If aoiCrntLyr.Name = strGeoLayer Then

Exit Do

End If

Set aoiCrntLyr = aoiEnumLyrs.Next

Loop

Set aoiCrntFtCls = aoiCrntLyr.FeatureClass

Set aoiFtCrs = aoiCrntFtCls.Search(Nothing, False)

Set aoiCrntFt = aoiFtCrs.NextFeature

Set aoiGeometry = aoiCrntFt.Shape

Set GetSpatialReference = aoiGeometry.SpatialReference

End Function

’ Terminates the execution of the module

Public Sub Killer()

Unload FrmExprtPrfl

End

End Sub

82

APPENDIX B Export Toolbox (VBA c© codes)

B.3.2 Spatial averaging

The name of this form in the VBA c© programming environment in

ArcMap c© is FrmOrntAvrg !

Private Sub cmdBtRun_Click()

If IsNumeric(FrmOrntAvrg.txtBxXstp.Value) And _

IsNumeric(FrmOrntAvrg.txtBxYstp.Value) And _

IsNumeric(FrmOrntAvrg.txtBxRds.Value) Then

Call modOrntAvrg.Main

Else:

MsgBox "Please specify appropriate parameters!", , "Check parameters!"

Exit Sub

End If

End Sub

Private Sub UserForm_Activate()

Dim aoiFields As esriCore.IFields

Dim lgFldCntr As Long

Dim aoiField As esriCore.IField

Dim aoiCrntDoc As esriCore.IMxDocument

Dim aoiCrntLayer As esriCore.IFeatureLayer

Dim aoiCrntFtCls As esriCore.IFeatureClass

FrmOrntAvrg.Height = 310

Set aoiCrntDoc = ThisDocument

Set aoiCrntLayer = aoiCrntDoc.SelectedLayer

Set aoiCrntFtCls = aoiCrntLayer.FeatureClass

’ loop through all fields of the feature class

’ that has been found above

Set aoiFields = aoiCrntFtCls.Fields

For lgFldCntr = 0 To (aoiFields.FieldCount - 1)

Set aoiField = aoiFields.Field(lgFldCntr)

If aoiField.Name <> "Shape" Then

With FrmOrntAvrg

.lstBxDipDir.AddItem aoiField.Name

.lstBxDipAn.AddItem aoiField.Name

End With

End If

Next lgFldCntr

End Sub

The name of this module in the VBA c© programming environment in

ArcMap c© is modOrntAvrg !

Option Explicit

Dim dbNRows As Double Dim dbNCols As Double

Public Sub CheckLayerSelection()

Dim aoiCrntDoc As esriCore.IMxDocument

Set aoiCrntDoc = ThisDocument

83

APPENDIX B Export Toolbox (VBA c© codes)

If Not aoiCrntDoc.SelectedLayer Is Nothing Then

If TypeOf aoiCrntDoc.SelectedLayer Is IFeatureLayer Then

Dim aoiCrntLayer As esriCore.IFeatureLayer

Dim aoiCrntFtCls As esriCore.IFeatureClass

Set aoiCrntLayer = aoiCrntDoc.SelectedLayer

Set aoiCrntFtCls = aoiCrntLayer.FeatureClass

If aoiCrntFtCls.ShapeType = esriGeometryPoint Then

FrmOrntAvrg.Show

Else

MsgBox ("The selected layer doesn’t contain appropriate data!")

End If

Else

MsgBox ("The selected layer is not a feature layer!")

End If

Else

MsgBox ("Please select the layer containing your planar measuremets!")

End If

End Sub

Public Sub Main()

Dim dbCoords() As Double

Call ShapeConstruct

Call CalcCoords(dbCoords)

Call ShapeFiller(dbCoords)

Call NewShapeLooper

Unload FrmOrntAvrg

End Sub

Private Sub ShapeFiller(dbCoords() As Double)

Dim strShpPth As String

Dim strPntShpName As String

strShpPth = FrmOrntAvrg.txtBxShpPth.Value

strPntShpName = FrmOrntAvrg.txtBxShpName.Value

Dim aoiFWS As IFeatureWorkspace

Dim aoiWorkspaceFactory As IWorkspaceFactory

Dim aoiCrntFtCls As IFeatureClass

Dim aoiFeat As IFeature

Set aoiWorkspaceFactory = New ShapefileWorkspaceFactory

Set aoiFWS = aoiWorkspaceFactory.OpenFromFile(strShpPth, 0)

Set aoiCrntFtCls = aoiFWS.OpenFeatureClass(strPntShpName)

Dim i As Long

Dim j As Long

Dim aoiFolPt As IPoint

FrmOrntAvrg.prgB.Value = 0

FrmOrntAvrg.prgB.Max = dbNRows - 1

For i = 0 To dbNRows - 1

For j = 0 To dbNCols - 1

Set aoiFolPt = New Point

aoiFolPt.PutCoords dbCoords(j, i, 0), dbCoords(j, i, 1)

84

APPENDIX B Export Toolbox (VBA c© codes)

Set aoiFeat = aoiCrntFtCls.CreateFeature

Set aoiFeat.Shape = aoiFolPt

aoiFeat.Store

Next j

FrmOrntAvrg.prgB.Value = i

FrmOrntAvrg.prgB.Refresh

Next i

End Sub

Private Sub ShapeConstruct()

On Error GoTo Err

FrmOrntAvrg.Height = 340

FrmOrntAvrg.Repaint

Dim strShpPth As String

Dim strPntShpName As String

Const strShapeFieldName As String = "Shape"

strShpPth = FrmOrntAvrg.txtBxShpPth.Value

strPntShpName = FrmOrntAvrg.txtBxShpName.Value

’ Open the folder to contain the shapefile as a workspace

Dim aoiFWS As IFeatureWorkspace

Dim aoiWorkspaceFactory As IWorkspaceFactory

Set aoiWorkspaceFactory = New ShapefileWorkspaceFactory

Set aoiFWS = aoiWorkspaceFactory.OpenFromFile(strShpPth, 0)

’ Set up a simple fields collection

Dim aoiFields As IFields

Dim aoiFieldsEdit As IFieldsEdit

Set aoiFields = New esriCore.Fields

Set aoiFieldsEdit = aoiFields

Dim aoiField As IField

Dim aoiFieldEdit As IFieldEdit

’ Make the shape field including its spatial reference

Set aoiField = New esriCore.Field

Set aoiFieldEdit = aoiField

’ specify that you deal with a shape file

aoiFieldEdit.Name = strShapeFieldName

aoiFieldEdit.Type = esriFieldTypeGeometry

Dim aoiGeomDef As IGeometryDef

Dim aoiGeomDefEdit As IGeometryDefEdit

Set aoiGeomDef = New GeometryDef

Set aoiGeomDefEdit = aoiGeomDef

With aoiGeomDefEdit

.geometryType = esriGeometryPoint

.GridCount = 1

.GridSize(0) = 10

.AvgNumPoints = 2

.HasM = False

.HasZ = False

’ calls a function to find out the spatial reference of the

’ point shape layer on which the calculations will be based

85

APPENDIX B Export Toolbox (VBA c© codes)

Set .SpatialReference = GetSpatialReference()

End With

Set aoiFieldEdit.GeometryDef = aoiGeomDef

aoiFieldsEdit.AddField aoiField

Set aoiField = New esriCore.Field

Set aoiFieldEdit = aoiField

With aoiFieldEdit

.Length = 10

.Name = "ID"

.Type = esriFieldTypeInteger

End With

aoiFieldsEdit.AddField aoiField

Set aoiField = New esriCore.Field

Set aoiFieldEdit = aoiField

With aoiFieldEdit

.Length = 5

.Name = "DipDir"

.Type = esriFieldTypeInteger

End With

aoiFieldsEdit.AddField aoiField

Set aoiField = New esriCore.Field

Set aoiFieldEdit = aoiField

With aoiFieldEdit

.Length = 5

.Name = "DipAn"

.Type = esriFieldTypeInteger

End With

aoiFieldsEdit.AddField aoiField

’ Create the shapefile - i.e. a new Feature Class

Dim aoiFeatClass As IFeatureClass

Set aoiFeatClass = aoiFWS.CreateFeatureClass(strPntShpName, aoiFields, Nothing, _

Nothing, esriFTSimple, strShapeFieldName, "")

Exit Sub

Err:

MsgBox Err.Description & Chr$(13) & "Error Number is: " & Err.Number _

& Chr(13) & "The macro will terminate !", vbCritical, _

"An error occurred - sorry for the inconvenience!"

End

End Sub

’ returns the spatial reference of the current map

Private Function GetSpatialReference()

Dim aoiCrntDoc As IMxDocument

Dim aoiCrntLyr As IFeatureLayer

Dim aoiCrntFtCls As IFeatureClass

Dim aoiCrntFt As IFeature

Dim aoiGeometry As IGeometry

Dim aoiFtCrs As IFeatureCursor

Set aoiCrntDoc = ThisDocument

Set aoiCrntLyr = aoiCrntDoc.SelectedLayer

Set aoiCrntFtCls = aoiCrntLyr.FeatureClass

Set aoiFtCrs = aoiCrntFtCls.Search(Nothing, False)

Set aoiCrntFt = aoiFtCrs.NextFeature

Set aoiGeometry = aoiCrntFt.Shape

86

APPENDIX B Export Toolbox (VBA c© codes)

Set GetSpatialReference = aoiGeometry.SpatialReference

End Function

Private Sub CalcCoords(dbCoords() As Double)

Dim aoiCrntDoc As esriCore.IMxDocument

Dim aoiCrntLayer As esriCore.IFeatureLayer

Dim aoiCrntFtCls As esriCore.IFeatureClass

Dim dbXmin As Double

Dim dbXmax As Double

Dim dbYmin As Double

Dim dbYmax As Double

Dim dbIncrX As Double

Dim dbIncrY As Double

Set aoiCrntDoc = ThisDocument

Set aoiCrntLayer = aoiCrntDoc.SelectedLayer

dbXmin = aoiCrntLayer.AreaOfInterest.xmin

dbXmax = aoiCrntLayer.AreaOfInterest.xmax

dbYmin = aoiCrntLayer.AreaOfInterest.ymin

dbYmax = aoiCrntLayer.AreaOfInterest.ymax

dbNCols = FrmOrntAvrg.txtBxXstp.Value

dbNRows = FrmOrntAvrg.txtBxYstp.Value

Dim i As Integer

Dim j As Integer

ReDim dbCoords(dbNCols, dbNRows, 2)

dbIncrX = (dbXmax - dbXmin) / dbNCols

dbIncrY = (dbYmax - dbYmin) / dbNRows

For i = 0 To dbNRows - 1

For j = 0 To dbNCols - 1

dbCoords(j, i, 0) = (j + 0.5) * dbIncrX + dbXmin

dbCoords(j, i, 1) = (i + 0.5) * dbIncrY + dbYmin

Next j

Next i

End Sub

Private Sub NewShapeLooper()

FrmOrntAvrg.lblPrgBar.Caption = "Filling Shape-File ..."

FrmOrntAvrg.Repaint

Dim strShpPth As String

Dim strPntShpName As String

Dim aoiFWS As IFeatureWorkspace

Dim aoiWorkspaceFactory As IWorkspaceFactory

Dim aoiCrntFtCls As IFeatureClass

Dim aoiFtCrs As IFeatureCursor

Dim i As Long

Dim aoiCrntFt As IFeature

Dim aoiFolPt As IPoint

Dim strOrient As String

Dim strDipDir As String

Dim strDipAn As String

strShpPth = FrmOrntAvrg.txtBxShpPth.Value

strPntShpName = FrmOrntAvrg.txtBxShpName.Value

Set aoiWorkspaceFactory = New ShapefileWorkspaceFactory

Set aoiFWS = aoiWorkspaceFactory.OpenFromFile(strShpPth, 0)

Set aoiCrntFtCls = aoiFWS.OpenFeatureClass(strPntShpName)

87

APPENDIX B Export Toolbox (VBA c© codes)

Set aoiFtCrs = aoiCrntFtCls.Search(Nothing, False)

FrmOrntAvrg.prgB.Value = 0

FrmOrntAvrg.prgB.Max = aoiCrntFtCls.FeatureCount(Nothing) - 1

For i = 0 To aoiCrntFtCls.FeatureCount(Nothing) - 1

Set aoiCrntFt = aoiFtCrs.NextFeature

Set aoiFolPt = aoiCrntFt.Shape

strOrient = CalcOrient(aoiFolPt)

If strOrient <> "" Then

strDipDir = Split(strOrient, " ")(0)

strDipAn = Split(strOrient, " ")(1)

aoiCrntFt.Value(aoiCrntFt.Fields.FindField("DipDir")) = strDipDir

aoiCrntFt.Value(aoiCrntFt.Fields.FindField("DipAn")) = strDipAn

aoiCrntFt.Store

End If

FrmOrntAvrg.prgB.Value = i

FrmOrntAvrg.prgB.Refresh

Next i

End Sub

Private Function CalcOrient(aoiFolPt As IPoint)

On Error GoTo Err

Const PI As Double = 3.14159265358979

Dim strOrient As String

Dim aoiCrntDoc As IMxDocument

Dim aoiCrntLyr As IFeatureLayer

Dim aoiCrntFtCls As IFeatureClass

Dim aoiCrntFt As IFeature

Dim aoiPtBuffer As IGeometry

Dim aoiFtCrs As IFeatureCursor

Dim aoiTopOpPt As ITopologicalOperator

Dim aoiRelOpPt As IRelationalOperator

Dim intFtCntr As Long

Dim aoiPnt As IPoint

Dim dbFolXYZ() As Double

Dim dbX As Double

Dim dbY As Double

Dim dbZ As Double

Dim dbIDWsum As Double

Dim dbDipAn As Double

Dim dbDipDir As Double

Dim dbRadius As Double

Dim blIDW As Boolean

Dim strDipDirName As String

Dim strDipAnName As String

blIDW = FrmOrntAvrg.chkBxIDW.Value

Set aoiCrntDoc = ThisDocument

Set aoiCrntLyr = aoiCrntDoc.SelectedLayer

Set aoiTopOpPt = aoiFolPt

Set aoiPtBuffer = aoiTopOpPt.Buffer(FrmOrntAvrg.txtBxRds.Value)

Set aoiRelOpPt = aoiPtBuffer

Set aoiCrntFtCls = aoiCrntLyr.FeatureClass

Set aoiFtCrs = aoiCrntFtCls.Search(Nothing, False)

ReDim dbFolXYZ(3, 0)

strDipDirName = FrmOrntAvrg.lstBxDipDir.Value

strDipAnName = FrmOrntAvrg.lstBxDipAn.Value

For intFtCntr = 0 To aoiCrntFtCls.FeatureCount(Nothing) - 1

88

APPENDIX B Export Toolbox (VBA c© codes)

Set aoiCrntFt = aoiFtCrs.NextFeature

Set aoiPnt = aoiCrntFt.Shape

If aoiRelOpPt.Contains(aoiPnt) Then

dbDipDir = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strDipDirName)) * PI / 180

dbDipAn = aoiCrntFt.Value(aoiCrntFt.Fields.FindField(strDipAnName)) * PI / 180

’ calculate the XYZ-coords from dip angle and dip direction

dbFolXYZ(0, UBound(dbFolXYZ, 2)) = Sqr((aoiFolPt.x - aoiPnt.x) ^ 2 + (aoiFolPt.y - aoiPnt.y) ^ 2)

dbFolXYZ(1, UBound(dbFolXYZ, 2)) = Cos(dbDipAn) * Sin(dbDipDir)

dbFolXYZ(2, UBound(dbFolXYZ, 2)) = Cos(dbDipAn) * Cos(dbDipDir)

dbFolXYZ(3, UBound(dbFolXYZ, 2)) = -Sin(dbDipAn)

ReDim Preserve dbFolXYZ(3, UBound(dbFolXYZ, 2) + 1)

End If

Next intFtCntr

’ storing the components’ sum in the "last" record of the array

’ if the buffer was not empty and regarding IDW if necessary

If UBound(dbFolXYZ, 2) <> 0 Then

Select Case blIDW

’ without IDW

Case False

’ filling the last fields of the array with the sum of X-, Y- and Z-components

For intFtCntr = 0 To UBound(dbFolXYZ, 2) - 1

dbFolXYZ(1, UBound(dbFolXYZ, 2)) = dbFolXYZ(1, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(1, intFtCntr)

dbFolXYZ(2, UBound(dbFolXYZ, 2)) = dbFolXYZ(2, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(2, intFtCntr)

dbFolXYZ(3, UBound(dbFolXYZ, 2)) = dbFolXYZ(3, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(3, intFtCntr)

Next intFtCntr

dbX = dbFolXYZ(1, UBound(dbFolXYZ, 2))

dbY = dbFolXYZ(2, UBound(dbFolXYZ, 2))

dbZ = dbFolXYZ(3, UBound(dbFolXYZ, 2))

’ with IDW

Case True

’ filling the last fields of the array with the sum of X-, Y- and Z-components

’ and weighting it by division through the distance

For intFtCntr = 0 To UBound(dbFolXYZ, 2) - 1

dbFolXYZ(0, UBound(dbFolXYZ, 2)) = dbFolXYZ(0, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(0, intFtCntr) ^ -1

dbFolXYZ(1, UBound(dbFolXYZ, 2)) = dbFolXYZ(1, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(1, intFtCntr) / dbFolXYZ(0, intFtCntr)

dbFolXYZ(2, UBound(dbFolXYZ, 2)) = dbFolXYZ(2, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(2, intFtCntr) / dbFolXYZ(0, intFtCntr)

dbFolXYZ(3, UBound(dbFolXYZ, 2)) = dbFolXYZ(3, UBound(dbFolXYZ, 2)) _

+ dbFolXYZ(3, intFtCntr) / dbFolXYZ(0, intFtCntr)

Next intFtCntr

’ normalising back for IDW

dbIDWsum = dbFolXYZ(0, UBound(dbFolXYZ, 2))

dbX = dbFolXYZ(1, UBound(dbFolXYZ, 2)) / dbIDWsum

dbY = dbFolXYZ(2, UBound(dbFolXYZ, 2)) / dbIDWsum

dbZ = dbFolXYZ(3, UBound(dbFolXYZ, 2)) / dbIDWsum

End Select

’ calculating the Dip Angle, the Dip Direction and the length of the "average-vector"

dbRadius = Sqr(dbX ^ 2 + dbY ^ 2 + dbZ ^ 2)

dbDipAn = Arcsin(-dbZ / dbRadius) * 180 / PI

89

APPENDIX B Export Toolbox (VBA c© codes)

If dbX >= 0 Then

dbDipDir = Arccos(dbY / (dbRadius * Cos(dbDipAn * PI / 180))) * 180 / PI

Else

dbDipDir = 360 - (Arccos(dbY / (dbRadius * Cos(dbDipAn * PI / 180))) * 180 / PI)

End If

CalcOrient = CStr(Round(dbDipDir, 0)) & " " & CStr(Round(dbDipAn, 0))

Else

CalcOrient = "-9999 -9999"

End If

Exit Function

Err:

MsgBox Err.Description & Chr$(13) & "Error Number is: " & Err.Number _

& Chr(13) & "The macro will terminate", vbCritical, _

"An error occurred - sorry for the inconvenience!"

End

End Function

’ calculates the Arcus Sinus

Private Function Arcsin(x As Double)

Const PI As Double = 3.14159265358979

If Abs(Fix(x)) <> 1 Then

Arcsin = Atn(x / Sqr(-x * x + 1))

Else:

Arcsin = Sgn(x) * PI / 2

End If

End Function

’ calculates the Arcus Cosinus

Private Function Arccos(x As Double)

Const PI As Double = 3.14159265358979

If Abs(Fix(x)) <> 1 Then

Arccos = Atn(-x / Sqr(-x * x + 1)) + 2 * Atn(1)

Else:

Arccos = 0.5 + (-x / 2) * PI

End If

End Function

90

