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Abstract

In recent years, the generation of supercontinua has become possible by a variety of dif¬

ferent techniques. Especially two methods allowing for the generation of spectra span¬

ning more than an optical octave found widespread use, namely, supercontinuum gen¬

eration using hollow fibers and microstructure fibers. A number of fundamental ex¬

periments, ranging from the production of single attosecond pulses via high-order har¬

monic generation (HHG) to the investigation of various nonlinear processes in which

the absolute phase plays an important role, rely on the generation of high-peak-power

light pulses in the single-cycle regime. Therefore, the desire arose to compress the

enormous bandwidths of the generated supercontinua to yield a single-cycle optical

pulse.

In this thesis, the generation and compression of supercontinua using the above

mentioned techniques for their production is studied experimentally. Adaptive pulse

compression is achieved by using the spectral phase obtained from a spectral phase in¬

terferometry for direct electric field reconstruction (SPIDER) measurement as feedback

for a liquid crystal spatial light modulator (SLM). In addition, numerical simulations on

the compressibility of microstructure fiber generated supercontinua are presented.

The generation of supercontinua in hollow-core fibers calls for input pulses

with mJ pulse energies at a repetition rate of typically 1 kHz. The spectral phase of

these supercontinua is found to be extremely stable over several hours. This allowed us

to demonstrate successful compression to pulses as short as 3.8 fs with a pulse energy of

15 uJ. These pulse are among the shortest pulses ever generated in the visible and near-
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infrared spectral region. Compared to other pulses with similar durations these pulses

provide more than an order of magnitude higher pulse energies.

Using microstructure fibers for supercontinuum generation is already possible

with nanojoule pulse energies at the full oscillator repetition rate. We investigate super¬

continuum generation and compression in two different fibers, pumping in the normal

and anomalous dispersion regime, respectively. Pumping in the normal dispersion re¬

gime allowed for the compression of the generated bandwidths to 5.5 fs pulses. On the

other hand, compression could not be demonstrated for the broader supercontinua gen¬

erated in the anomalous dispersion regime.

We have performed numerical simulations of pulse propagation in both fibers,

including a calculation of the coherence of the generated supercontinua and taking into

account that the compressor has only a limited resolution. These simulations suggest

that pumping in the normal dispersion regime should lead to the production of com¬

pressible spectra. This is in excellent agreement with our experimentally obtained re¬

sults. Pumping in the anomalous dispersion regime leads to a significant coherence deg¬

radation and due to the broader spectra the finite compressor resolution starts to play a

role. Nonetheless, the simulation predicts that compression to sub-2-fs pulses should

still be possible, however only with a poor pulse quality. The fact that we were not able

to compress these supercontinua at all is probably due to a limitation of the SPIDER-

technique. The spectra generated in the anomalous dispersion regime exhibited strong

spectral features, which were directly imposed onto the SPIDER-signal. As a conse¬

quence, the fringe visibility was destroyed rendering a correct reconstruction of the

spectral phase impossible.

In conclusion, we have successfully demonstrated the compression of both a

hollow fiber supercontinuum and a microstructure fiber supercontinuum generated in

the normal dispersion regime to pulse durations never achieved before with these tech¬

niques. Following our numerical simulations, we believe that a clean compression of the

supercontinua generated in the anomalous dispersion regime using today's state-of-the-

art pulse compressors is not possible.



Kurzfassung

Die Erzeugung von Superkontinua konnte in den letzten Jahren mit Hilfe verschiedener

Techniken demonstriert werden. Besonders zwei Methoden, die die Erzeugung von

Spektren über mehr als eine optische Oktave ermöglichen, haben verbreitet Einsatz ge¬

funden. Dies sind die Superkontinuumserzeugung in Hohlfasern und in Mikrostruktur-

fasern. Einige Grundlagenexperimente, wie z. B. die Produktion von einzelnen Attose-

kundenpulsen durch die Erzeugung höherer Harmonischer oder die Untersuchung ver¬

schiedener nichtlinearer Prozesse, bei denen die absolute Phase eine wichtige Rolle

spielt, sind von der Erzeugung von Lichtpulsen mit hoher Spitzenleistung und einer

Pulsdauer im Einzyklenbereich abhängig. Daraus entstand der Wunsch die riesigen

Bandbreiten der erzeugten Superkontinua zu einem Puls mit nur einem optischen Zyk¬

lus zu komprimieren.

Im Rahmen dieser Dissertation wurde die Erzeugung und Kompression von

Superkontinua mit Hilfe der oben genannten Methoden und einem adaptiven Pulskom¬

pressionsverfahren experimentell untersucht, das auf der Messung der spektralen Phase

mittels eines "spectral phase interferometry for direct electric field reconstruction"

(SPIDER) Aufbaus basiert, welche dann als Feedback für einen Modulator mit Flüssig¬

kristallmaske (SLM) benutzt wird. Ausserdem wurden numerische Simulationen zur

Kompressibilität der in Mikrostrukturfasern erzeugten Superkontinua durchgeführt.

Für die Superkontinuumserzeugung in Hohlfasern werden Eingangspulse mit

einer Pulsenergie im mJ-Bereich bei Repetitionsraten von typischerweise 1 kHz benö¬

tigt. Es zeigt sich, dass die spektrale Phase dieser Superkontinua über mehrere Stunden
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hinweg extrem stabil ist. Dies ermöglichte uns eine erfolgreiche Kompression zu einer

Pulsdauer von nur 3.8 fs mit einer Pulsenergie von 15 uJ. Diese Pulse gehören zu den

kürzesten, die jemals im sichtbaren und nahen infraroten Spektralbereich erzeugt wor¬

den sind. Verglichen mit anderen Pulsen mit ähnlicher Pulsdauer haben diese Pulse eine

um mehr als eine Grössenordnung höhere Pulsenergie.

Mit Hilfe von Mikrostrukturfasern ist die Superkontinuumserzeugung bereits

mit Pulsenergien im nJ-Bereich bei der vollen Repetitionsrate eines Oszillators möglich.

Wir untersuchen die Superkontinuumserzeugung und Kompression mit zwei verschie¬

denen Fasern. Eine wird im normalen Dispersionsbereich, die andere im anomalen Dis¬

persionsbereich gepumpt. Wenn wir im normalen Dispersionsbereich pumpen, konnten

wir die Kompression dieser Bandbreiten zu 5.5 fs langen Pulsen demonstrieren. Aller¬

dings gelang uns keine Kompression der breiteren, im anomalen Dispersionregime er¬

zeugten Superkontinua.

Wir haben numerische Simulationen zur Propagation von Lichtpulsen durch

beide Fasern durchgeführt, einschliesslich einer Berechnung der Kohärenz der Super¬

kontinua und unter Berücksichtigung der Tatsache, dass der Kompressor nur eine limi¬

tierte Auflösung besitzt. Diese Simulationen legen nahe, dass eine Kompression der im

normalen Dispersionsregime erzeugten Spektren möglich sein sollte, was perfekt mit

unserem experimentell erhaltenen Result übereinstimmt. Dagegen führt Pumpen im a-

nomalen Dispersionsbereich zu einer Signifikaten Verschlechterung der Kohärenz. Aus¬

serdem beginnt hier die limitierte Auflösung des Kompressors eine Rolle zu spielen, da

die erzeugten Spektren breiter sind. Trotzdem sollte laut Simulation eine Kompression

zu Pulsen, die kürzer als 2 fs sind, noch möglich sein, wenn auch nur mit schlechter

Pulsqualität. Vermutlich ist eine Limitation der SPIDER-Technik der Grund dafür, dass

wir diese Superkontinua überhaupt nicht komprimieren konnten. Die im anomalen Dis¬

persionsbereich erzeugten Superkontinua zeigen starke spektrale Strukturen, welche

auch im SPIDER-Signal sichtbar sind. Dies zerstört das Interferenzmuster, was eine

korrekte Rekonstruktion der spektralen Phase unmöglich macht.

In dieser Arbeit wurde die erfolgreiche Kompression sowohl eines Hohlfaser-

als auch eines Mikrostrukturfaser-Superkontinuums zu Pulsdauern demonstriert, wie sie

vorher mit diesen Methoden nie erreicht worden sind. Aus unseren Simulationen

schliessen wir, dass eine saubere Kompression der im anomalen Dispersionsbereich er¬

zeugten Superkontinua mit heute verfügbaren Pulskompressoren nicht möglich ist.





Chapter 1

Introduction

At the beginning of mankind, God set his rainbow in the sky as a sign of the everlasting

covenant between himself and all living creatures of every kind on the earth [1]. Since

then the rainbow has preserved the fascination that emanates from it. With the invention

of the electric bulb in the nineteenth century, white light, spanning the whole spectral

range of a rainbow, found its way into almost every house. Although this light is ex¬

tremely useful in our everyday lifes, it has the disadvantage of not being coherent.

Many applications would benefit from a coherent white-light source. There¬

fore, in the past decades research groups tried to develop such white-light sources,

spanning the whole spectral range of a rainbow from violet over blue, green, yellow and

orange to the red and near-infrared. The process used to generate these white-light

sources is called supercontinuum generation and is a complex nonlinear phenomenon

that is characterized by the dramatic spectral broadening of intense light pulses passing

a nonlinear material [2].

The first observation of supercontinuum generation producing a 200-THz-wide

continuum in bulk glass was reported in 1970 [3, 4]. Since then, supercontinuum gen¬

eration has been successfully demonstrated in a wide variety of nonlinear media includ¬

ing solids [3, 4, 5], organic and inorganic liquids [6, 7, 8, 9], gases [10, 11, 12], and dif¬

ferent types of waveguide structures such as silica optical fibers [13, 14] and hollow op¬

tical waveguides [15].

These supercontinua have found applications in time-resolved absorption and

excitation spectroscopy, in which the high-brightness and wide frequency band of the

-1 -
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the supercontinua have permitted single-shot recording of broad spectra [2]. Subse¬

quently, the exploitation of supercontinuum generation in pulse compression techniques

has led to the design of sources of coherent optical femtosecond pulses [2, 15, 16, 17].

These "first generation" supercontinua had in common, that they did not span

one optical octave. The generation of supercontinua spanning more than one optical oc¬

tave has become possible only in the last decade. With the invention of microstructure

fibers in the late 1990s, supercontinua over two optical octaves have been demonstrated

[18]. Supercontinuum generation over more than one optical octave has as well been

achieved with an improved version of the hollow-fiber technique using either a single or

two cascaded hollow fibers [19, 20].

As a result of these research efforts, it has recently become possible to measure

and control the carrier-envelope offset (CEO) phase of femtosecond pulses [21]. This

has led to dramatic advances in optical frequency metrology, enabling absolute meas¬

urements of optical frequencies with unprecedented accuracy [21, 22, 23, 24]. There¬

fore, supercontinuum generation could be the key to direct optical frequency and optical

waveform synthesis and to the development of a new frequency standard based on an

all-optical clock.

Other applications rely on the generation of ultrashort pulses in the single-cycle

regime. Such applications include the study of nonlinear processes, in which the abso¬

lute phase plays a relevant role [25], and - in combination with a stabilized CEO-phase -

the generation of single attosecond pulses via higher-order harmonic generation (HHG)

[26]. To produce such pulses, a coherent supercontinuum spanning approximately one

optical octave in the visible spectral region has to be properly compressed.

Until now, the supercontinuum output of a single hollow fiber has been com¬

pressed to 4.5 fs using a combination of chirped mirrors and thin prisms [27]. Pulses

with a duration of 5 fs were obtained with the same technique by using either only

chirped mirrors [28] or a sole spatial light modulator (SLM) [29] for dispersion com¬

pensation. Generation of 4.5-fs pulses was achieved from a fiber-compressed output of

a cavity-dumped Ti:sapphire laser [30]. Using noncollinear optical amplification, pulses

as short as 4 fs with an energy of 0.5 uJ were generated. In this case a dispersive delay

line consisting of chirped mirrors, gratings, and a programmable deformable mirror was

used for compression [31].
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In this thesis, we study the generation and compression of octave spanning su¬

percontinua using two methods for their production: Supercontinuum generation in cas¬

caded hollow fibers using amplified pulses at kHz repetition rates and in two different

microstructure fibers using nanojoule pulses directly from a Ti:sapphire oscillator. For

pulse compression, we use in both cases a state-of-the-art liquid crystal SLM with 640

pixels. Compression of these ultrabroadband spectra was performed in an iterative pro¬

cedure.

In Chapter 2, we start with an introduction to nonlinear pulse propagation in

optical fibers. The fundamental fiber nonlinearities are explained and the propagation

equation for ultrashort pulses is derived. Then, the particular spectral broadening

mechanisms in hollow-core fibers and microstructure fibers are explained in more de¬

tail. For microstructure fibers, it has to be differentiated mainly between two pumping

regimes: normal and anomalous dispersion pumping. Continuum generation mecha¬

nisms in these regimes will be discussed.

A broad variety of pulse compression techniques exists. In Chapter 3, we in¬

troduce the classical dispersion compensation methods such as Gires-Tournois Interfer¬

ometers (GTI), prism and grating compressors. These techniques however are not appli¬

cable to ultrabroadband pulse compression because of their limited bandwidth. A new

variant of chirped mirrors, the back-side-coated (BASIC) mirrors offers a large band¬

width, but has the disadvantage of not being flexible. This drawback is overcome with

adaptive pulse shaping using deformable mirrors and in particular SLMs as is explained

in this Chapter in more detail. Successful pulse compression is closely linked to correct

pulse characterization. Thus, in this Chapter, we also discuss the particular implementa¬

tion of our spectral phase interferometry for direct electric-field reconstruction

(SPIDER) setup optimized for pulses with more than octave spanning spectra. The

Chapter ends with a description of the optimization procedure used in our compression

experiments, which relied on a direct feedback from the measured spectral phase to the

pulse shaper.

Our experiments with cascaded hollow fibers are presented in Chapter 4. These

experiments resulted in successful compression to 3.8 fs pulses with a pulse energy of

15 uJ. These pulses are among the shortest pulses ever generated in the visible to near-

infrared spectral region. Compared to other similarly short pulses the pulse energy is

more than an order of magnitude higher. Due to the subtleties involved in characterizing
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such ultrashort pulses, we conclude the Chapter with a thorough estimation of meas¬

urement errors.

In Chapter 5, we present our experiments using microstructure fibers for super¬

continuum generation. We show that pumping in the normal dispersion regime leads to

a relatively stable continuum. In this case, we were able to demonstrate successful com¬

pression to a pulse duration of 5.5 fs. To the best of our knowledge, this is the shortest

pulse ever generated using microstructure fibers. Pumping in the anomalous dispersion

regime allowed for the generation of a much broader but heavily structured spectrum.

Here, compression failed due to a combination of several factors such as coherence deg¬

radation due to power fluctuations, the finite compressor resolution, and a limitation of

the SPIDER-technique for strongly structured spectra. To study the influence of these

effects, we performed numerical simulations of pulse propagation through both avail¬

able fibers including the effects of coherence degradation and the limited compressor

resolution. Our simulations predict excellent compressibility in the normal dispersion

regime. This is in good agreement with our experimental result. In the anomalous dis¬

persion regime however, a bigger coherence degradation is observed and due to the

broader spectra, the compressor resolution starts to play a role. Nonetheless, the simula¬

tion predicts that pulse compression should still be possible, but only with a reduced

pulse quality.

In Chapter 6, we will draw the conclusions on the work presented in this thesis

and provide a short outlook on the future development of ultrashort pulse compression.



Chapter 2

Generation of Supercontinua

The first supercontinuum generation experiments were based on focusing short, intense

optical pulses into bulk materials exhibiting a rf3) nonlinearity. In those experiments the

primary mechanism that led to spectral broadening was self-phase-modulation (SPM)

[4, 5, 9]. The main problem these experiments had in practice, was that due to the tight

focusing necessary to reach high enough intensities the interaction length was limited.

In addition, if the intensities are too high multiphoton ionization occurs, which leads to

damage and destroys the spatial beam quality. Therefore, the second-generation ex¬

periments on supercontinuum generation were based on silica optical waveguides. Opti¬

cal fibers allow high optical intensities to be maintained over long lengths, thereby en¬

hancing the nonlinear effects. This high effective nonlinearity of optical fibers has led to

a dramatic reduction in the pump power requirements compared with those for bulk

media. In these early fiber experiments the supercontinuum resulted from the direct

generation of new spectral components through cascaded stimulated Raman scattering

(SRS) and four-wave mixing (FWM) and from a further broadening and merging of

these frequency components [13, 14]. The role of SPM was limited because the pump

pulses were relatively long (10 ps - 10 ns). The latest step in the development of super¬

continuum sources is the generation of supercontinua covering the whole visible spec¬

tral range, which became possible with the advent of femtosecond pump pulses. There

exist several techniques with which such supercontinua can be produced, e.g. by focus¬

ing high energy pulses into gases or liquids, or by using an optical parametric amplifier

[31] or by producing the continuum in different fibers. In this Chapter we will discuss

the two techniques used in our experiments in more detail. These are launching ampli¬

fied pulses at a reduced repetition rate into gas-filled hollow fibers [15, 20], and seeding
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the recently developed photonic crystal fibers (PCF) or microstructure fibers with low

energy pulses at the full oscillator repetition rate [18, 32].

In this Chapter, the basic mechanisms of supercontinuum generation will be in¬

troduced and a mathematical description of nonlinear pulse propagation is given. First,

an overview of the nonlinear phenomena in optical fibers is presented and in order to

understand these phenonema we shortly discuss the theory of electromagnetic wave

propagation in dispersive nonlinear media. From this we derive a basic propagation

equation for optical pulses in single-mode fibers.

Depending on the fiber type, different nonlinear mechanisms dominate the

spectral broadening process. In gas-filled hollow fibers supercontinuum generation is

governed mainly by one process, namely self-phase modulation (SPM). Whereas in the

recently developed PCFs or microstructured fibers spectral broadening results from a

complicated interplay of different nonlinear mechanisms. This interplay is not yet fully

understood and there is continuing research going on in this field. We will explain the

differences in supercontinuum generation between hollow and microstructured fibers in

more detail later in this Chapter.

2.1 Nonlinear Pulse Propagation in Optical Fibers

This section follows very closely the book of G. P. Agrawal [33]. For simplicity, we

begin this Chapter with a description of the nonlinear effects in fibers for continuous

wave (cw) laser beams. It is straightforward to transfer these mechanisms to pulsed la¬

ser sources. The derivation of the basic propagation equation in Subsection 2.1.3 is then

given for pulsed laser beams.

2.1.1 Fiber nonlinearities

As in any other dielectric the response to light becomes nonlinear in optical fibers for

intense electromagnetic fields. The origin of this nonlinear response is related to anhar-

monic motion of bound electrons under the influence of an applied field. Therefore, the

induced polarization P from the electric dipoles is not linear in the electric field E any¬

more, but satisfies the relation [34]
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P = s\xil)E + X{2)E2+X0)E' +...], (2.1)

where s0 is the vacuum permittivity and ^ (i = 1, 2, ...) is the z'-th order sus¬

ceptibility. Here, the linear susceptibility ^ is the dominant contribution to P. The

second-order susceptibility ^2) is responsible for processes such as second-harmonic

generation (SHG) and sum-frequency generation (SFG) [34]. However, it is zero for

media exhibiting an inversion symmetry at the molecular level. Therefore, ^2) vanishes

for silica glasses since Si02 is isotrop. As a result, optical fibers do not normally show

second-order nonlinear effects.

This is the reason why the lowest order nonlinear effects in optical fibers origi¬

nate from the third-order susceptibility %^3\ which is responsible for phenomena such as

third-harmonic generation (THG), four-wave mixing (FWM), and nonlinear refraction

[34]. However, the processes which involve the generation of new frequencies like

THG and FWM (nonlinear refraction does not generate new frequencies for cw laser

beams) are not efficient in optical fibers unless special efforts are made to achieve phase

matching (this is the matching of fundamental and signal phase velocities). Therefore,

most of the nonlinear effects in optical fibers originate from nonlinear refraction. This

phenomenon corresponds to an the intensity dependence of the refractive index result¬

ing from the contribution of rf3). That means, the refractive index becomes

n(co,I) = n(co) + n2I, (2.2)

where n(a>) is the linear refractive index, / is the optical intensity inside the fi¬

ber and n2 is the nonlinear-index coefficient. Strictly speaking, n2 is also dependent on

a>, but is assumed to be constant in the following discussions.

The higher-order susceptibilities rf4'\ rf5\ ...

in Equation (2.1) can be ne¬

glected since all even-order susceptibilities are zero for silica fibers like ^2\ and ^5) is

the susceptibility corresponding to the contribution ofE5 to the polarization P.

The intensity dependence of the refractive index leads to a large number of in¬

teresting nonlinear effects. The two most widely studied are SPM and cross-phase

modulation (XPM). SPM refers to the self-induced phase shift experienced by an opti¬

cal field during its propagation in optical fibers. Its magnitude can be obtained by not¬

ing that the phase of an optical field changes by
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<p = (n + n2I)-kL, (2.3)

where k = 2tz/X and L is the fiber length. The intensity-dependent nonlinear

phase shift <Pnl = n2kLI is due to the nonlinear refraction. This process generates new

frequencies for pulsed laser light, because the intensity becomes time-dependent. In this

case, SPM broadens the bandwidth of the pulses, because the frequency is given by

»10 =
-«

=-»^« (2.4)
dt dt

For a bandwidth-limited pulse SPM generates in the leading part of the pulse

(meaning dl(t)/dt > 0)) a decrease in frequency {co(t) < 0) and in the trailing part of the

pulse {dl(t)/dt < 0) an increase in frequency {{co(t) > 0). Among other things, SPM is

responsible for spectral broadening of ultrashort pulses [35] and the existence of optical

solitons in the anomalous-dispersion regime of fibers [36].

XPM refers to the nonlinear phase shift of an optical field induced by a second

field at a different wavelength. Due to the fact that we never have two different fields in

our experiments, the effect of XPM does not occur and we will therefore not explain it

further.

The nonlinear effects governed by the third-order susceptibility are elastic in

the sense that no energy is exchanged between the electromagnetic field and the dielec¬

tric medium. A second class of nonlinear effects results from stimulated inelastic scat¬

tering in which the optical field transfers part of its energy to the nonlinear medium.

Two important nonlinear effects in optical fibers fall into this category. Both of them

are related to vibrational excitation modes of silica. These phenomena are known as

stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) [37, 38].

The main difference between the two is that optical phonons participate in SRS while

acoustic phonons participate in SBS. In a simple quantum-mechanical picture applica¬

ble to both SRS and SBS, a photon of the incident field (the pump) is annihilated to cre¬

ate a photon at the downshifted Stokes frequency and a phonon with the right energy

and momentum to conserve the energy and the momentum. Of course, a higher-energy

photon at the so-called anti-Stokes frequency can also be created via the inverse process

if a phonon of right energy and momentum is available. The generation of an anti-

Stokes photon is achieved via FWM, where two pump photons annihilate themselves to
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produce Stokes and anti-Stokes photons provided the total momentum is conserved. The

momentum-conservation requirement leads to a phase-matching condition, that must be

statisfied for FWM to take place. This phase-matching condition is not easily satisfied

in single-mode fibers, thus the anti-Stokes wave is rarely observed during SRS. Even

though SRS and SBS are very similar in their origin, different dispersion relations for

acoustic and optical phonons lead to some basic differences between the two. A funda¬

mental difference is that SBS in optical fibers occurs only in the backward direction

whereas SRS dominates in the forward direction.

Although a complete description of SRS and SBS in optical fibers is quite in¬

volved, the initial growth of the Stokes wave can be described by a simple relation. For

SRS, this relation is given by

d^ = gJpIs, (2-5)
dz

where h is the Stokes intensity, Ip the pump intensity, and gp the Raman-gain

coefficient. The growth of the anti-Stokes wave is not discussed here, because as we

have seen above its contribution is negligible. A similar relation holds for SBS with gR

replaced by the Brillouin-gain coefficient gp. The Raman-gain spectrum is measured to

be very broad extending up to ~30 THz [37]. By contrast, the Brillouin-gain spectrum is

extremely narrow with a bandwidth of only ~10 MHz [38]. The peak value of Brillouin-

gain decreases by a factor of Avp/Avp for a broad-bandwidth pump, where Avp is the

pump bandwidth and Avp is the Brillouin-gain bandwidth. Therefore SBS is negligible

for pump pulses shorter than approximately 50 ns with a broad spectrum.

An important feature of SRS and SBS is that they exhibit a threshold-like be¬

havior, which means that significant conversion of pump energy to Stokes energy oc¬

curs only when the pump intensity exceeds a certain threshold level. For SRS the

threshold pump intensity typically is Ipth ~ 10 MW/cm2.

2.1.2 Advantages of optical fibers over bulk

Recent measurements of the nonlinear-index coefficient n2 in silica fibers yield a value

in the range 2.2-3.4-10"20 m2/W depending on the core composition and on whether the

input polarization is preserved inside the fiber or not. This value is small compared to
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most other nonlinear media by at least two orders of magnitude. But in spite of these

intrinsically small values of the nonlinearity coefficients in fused silica, the nonlinear

effects in optical fibers can be observed at relatively low power levels. This is possible

because of two important characteristics of single-mode fibers: A small spot size (~2 -

4 urn) and extremely low loss (< 1 dB/km).

A figure of merit for the efficiency of a nonlinear process in bulk media is the

productZLg^, where/is the optical intensity andZ^is the effective length of interaction

[39]. If light is focused to a spot of radius w0, then I = P/tzw02-, where P is the incident

optical power. Clearly, I can be increased by focusing the light tightly to reduce w0.

However, this results in a smaller Leff since the length of the focal region decreases with

tight focusing. For a Gaussian beam, Leff = tcwç/A (corresponds to Rayleigh-range), and

the product

IL
-J-L-L

(2 6)
eff~mvl A ~A

{)

is independent of the spot size w0.

In contrast, the situation in fibers is the following: because of dielectric

waveguiding, the same spot size can be maintained along the entire fiber length L. In

this case the interaction length is limited by the fiber loss a. Using I(z) = Ioexp(-ccz),

where Io = P/tzw02 and P is the optical power coupled into the fiber, the product ILeffbe¬

comes

L. T3 T> ( \ „-aL\
P P

IT = -L-e-<*dz
^eff I 2 2

o wo ^0

\-e

v
a

(2.7)

A comparison of Equations 2.6 and 2.7 shows that the efficiency of the nonlin¬

ear process in optical fibers can be improved by a factor [39]

(ITeff) fiber
_

A

777—^
~—~

' v2-8)
(ILeff )bulk TWoV

where ccL » 1 was assumed. In the visible region, for A = 0.53 urn, w0
= 2 urn,

and a= 2.5-10"5 cm"1 (10 dB/km), the enhancement factor is ~ 107. It is this tremendous

enhancement in the efficiency of the nonlinear processes that makes silica fibers a suit-
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able nonlinear medium for the observation of a wide variety of nonlinear effects at rela¬

tively low power levels.

As will be discussed in Chapter 5, when using a microstructured fiber for su¬

percontinuum generation only very short pieces of fiber (2-5 mm) are used in our ex¬

periments for dispersion management reasons. Here, the question might arise, why still

use such short fibers, but not bulk? The effective interaction length of a 2 mm piece of

fiber with a core diameter of 1.7 urn is 2 mm. But the effective interaction length in

bulk when focusing to the "same" spot size (wo = 0.85 urn) is the Rayleigh-range

z0
= 7üw02/A. With A =0.53 urn, we retrieve for the Rayleigh-range a value of

z0
= 4.3 urn, which is much smaller than the effective interaction length even in very

short pieces of fiber.

As already mentioned, another advantage of fibers over bulk is the higher

threshold for multiphoton ionization. In bulk, tight focusing is necessary to achieve high

enough intensities. These are easily above the threshold for multiphoton ionization, thus

causing damage and the generation of a filament, which destroys the spatial properties

of the beam.

2.1.3 Basic propagation equation

The study of most nonlinear effects in optical fibers involves the use of short pulses

with widths ranging from ~ 10 ns to ~ 10 fs, because of the high peak intensities which

can be achieved with them. When such optical pulses propagate inside the fiber, both

dispersive and nonlinear effects influence their shape and spectrum. In this subsection

we derive a basic equation that governs the propagation of optical pulses in nonlinear

dispersive fibers.

The starting point is the wave equation that describes light propagation in opti¬

cal fibers obtained by using Maxwell's equations. If we include only the third-order

nonlinear effects governed by ^3\ the induced polarization consists of two parts

P(r,t) = PL(r,t) + PNL(r,t), (2.9)

such that the wave equation can be written in the form
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}_C^E__ ë^r\ Ô%
c2 dt2

~Uo
dt2

+Uo
dt2

V2E--^
=

Vo^±
+ Mo^, (2.10)

where c is the speed of light in vacuum, juo is the vacuum permeability and Pp

and Pnl are the linear and nonlinear induced polarizations respectively.

It is necessary to make several simplifying assumptions in order to solve Equa¬

tion 2.10. First, Pnl is treated as a small perturbation to Pl. Second, the optical field is

assumed to maintain its polarization along the fiber length so that a scalar approach is

valid. Third, the slowly varying envelope approximation is used, that means, the optical

field is assumed to be quasi-monochromatic, i.e. its spectrum, centered at coo, has a

spectral width Aco such that Aco/coo « 1. Numerical simulations show that this approxi¬

mation still holds very well even for few-cycle pulses.

Further considerable simplification occurs if the nonlinear response is assumed

to be instantaneous, which corresponds to neglecting the contribution of molecular vi¬

brations to ^3) (the Raman effect). In general, both electrons and nuclei respond to the

optical field in a nonlinear manner. The nuclei response is inherently slower compared

with the electronic response. For silica fibers the vibrational or Raman response occurs

over a time scale 60-70 fs. Thus, the assumption of instantaneous nonlinear response is

approximately valid for pulse durations > 1 ps.

Before solving Equation 2.10 we introduce the mode propagation constant

ß(co) and expand it in a Taylor series about the carrier frequency coo, i.e.,

ß(co) = n(co)- = ß0+(co-co0)ßl+-(co-co0)2ß2+-(co-cooyß3+..., (2.11)
c 2 6

where

(d" ß^i
ßn=\^4\ • (2-12)

I dco )
V y ö?=ö?0

For pulse durations > 0.1 ps the cubic and higher-order terms in this expansion

are generally negligible. Thus, with these simplifications the result is
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-^T^ +ß^+^ß^^ + ^A = iy\A(zA A(z^> (2-13)
az at 2 at 2

where the nonlinearity coefficient is defined by

r =^, (2.14)
off

where the parameter Aeffis known as the effective core area. A(z,t) is the slowly

varying envelope of the electric field E(z,t) given by

A(z,t) = ^n^E(z,t)e^t-^)z\

where cn is the velocity of light in a dielectric material, s is the dielectric con¬

stant and So is the vacuum permittivity. In obtaining Equation 2.13 the pulse amplitude

A is normalized such that \A\2 represents the optical intensity.

Equation 2.13 describes the propagation of an optical pulse in single-mode fi¬

bers. It is sometimes referred to as the nonlinear Schrödinger equation since it can be

reduced to that equation under certain conditions. It includes the effects of fiber loss

through a, of chromatic dispersion through ßj (the group delay) and ß2 (the group delay

dispersion (GDD)), and of the fiber nonlinearity through y

Since we have made several assumptions in the derivation of Equation 2.13

that are not valid for ultrashort pulses, this equation has to be modified for pulses

shorter than 100 fs. First, higher-order dispersion terms have to be included for ul¬

trashort pulses [40]. Second, the spectrum of such short pulses is wide enough

(> 1 THz) that the Raman gain can amplify their low-frequency components by trans¬

ferring energy from the high-frequency components of the same pulse. This effect is

sometimes called intrapulse Raman scattering. As a result of intrapulse Raman scatter¬

ing, the pulse spectrum shifts toward the red side as the pulse propagates inside the fi¬

ber, a phenomenon referred to as the self-frequency shift [41]. The physical origin of

this effect is related to the retarded nature of nonlinear response [42]. Thus, the delayed

nonlinear response has to be included as well. The last additional contribution results

from including the first derivative of the slowly varying part PNL of the nonlinear po-
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larization in Equation 2.10. It is responsible for self-steepening and shock formation at a

pulse edge [43, 44].

Thus, with the inclusion of these additional effects we obtain the generalized

Schrödinger equation in the following form

dA(z,t)
a

. .^i"ßnd"A .

f i dY
.,

Jrn,^A, ,.,2,^
v';-

-A + iJ^ +iy 1 +—-
A{z,t)\R{t')\A{z,t-t')\

dt'

y co0 at j[^ 0
dz 2 ~i n\ dt

n>\

(2.15)

where the time t
'

comes from the retarded medium response. The first term on

the right hand side of Equation 2.15 describes the losses, the second term the higher-

order dispersion, the first term in brackets includes SPM, FWM and intrapulse Raman

scattering and the second term in the bracket is responsible for the effect of self-

steepening. The nonlinear response function R(t) should include both the electronic and

vibrational (Raman) contributions. By assuming that the electronic contribution is

nearly instantaneous, the functional form oîR(t) can be written as [45]

R(t) = (l-fR)â(t) + fRhR(t), (2.16)

where fR represents the fractional contribution of the delayed Raman response

governed by hR(t). The Raman response function hR(t) can be obtained from the Raman

gain spectrum that has been measured experimentally. By using the known numerical

value of peak Raman gain,^? is estimated to be about 0.18 [45].

Equation 2.15 together with the response function R(t) governs the evolution of

femtosecond optical pulses within the slowly varying envelope approximation. It is easy

to see that Equation 2.15 reduces to the conventional nonlinear Schrödinger equation

(Eq. 2.13) for optical pulses much longer than the time scale of the Raman response

function hR(t) since R(t) for such pulses is replaced by the delta function S(t). Noting

that hR(t) becomes nearly zero for t > 1 ps, this replacement is valid for pulses having

widths much greater than 1 ps.
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2.2 Supercontinuum Generation in Hollow Fibers

Ultrashort pulses can be obtained not only directly out of an oscillator, but also by ap¬

plying extracavity compression techniques. In this approach, the pulses are spectrally

broadened by propagation through a suitable nonlinear medium and subsequently com¬

pressed in a dispersive delay line. In 1981, a new method for optical pulse compression

based on spectral broadening by SPM was introduced, which arises during the propaga¬

tion of short pulses in single-mode optical fibers [46]. With this technique 6 fs pulses at

620 nm have been generated using a prism-pair for external dispersion compensation

[47]. Using an improved ultrabroad-band dispersion compensation scheme even 4.5 fs

pulses at 800 nm have been achieved with the same technique [48]. However, the use of

single-mode optical fibers limits the pulse energy of the input pulses to a few

nanojoules.

Therefore, with the availability of high-energy (mJ) femtosecond pulses from

solid-state laser amplifiers the need for new spectral broadening techniques was born.

One possibility is to achieve spectral broadening in bulk materials [49]. However, due

to the very short interaction length high intensities are needed to achieve the necessary

nonlinearity for spectral broadening. These high intensities can lead to damage and spa¬

tial beam quality problems due to multiphoton ionization. Another particularly suitable

technique for high-energy ultrashort pulses was introduced in 1996. It relies on spectral

broadening by SPM in a hollow cylindrical fused silica fiber filled with a noble gas un¬

der pressure [15]. Using this approach pulses shorter than 5 fs have been generated at

multigigawatt peak powers [27, 28]. It is this technique which we will study in this sec¬

tion in more detail.

2.2.1 Spectral broadening mechanisms in hollow fibers

Hollow fibers are suitable for large pulse energies because they provide a guiding ele¬

ment with a large-diameter single mode. In addition, the use of noble gases as nonlinear

medium offers several important advantages compared to optical fibers. First, as long as

the pressure in the fiber is not too high, the third-order nonlinearity is purely electronic.

Thus, the Raman effect does not occur in hollow fibers. Second, by changing the gas

type and its pressure it is possible to change the nonlinearity. And last but not least, no-
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ble gases exhibit a high threshold intensity for multiphoton ionization especially for

femtosecond pulses [15].

Propagation along hollow fibers can be thought of as occurring through grazing

incidence reflections at the dielectric inner surface. Due to the angle-of-incidence de¬

pendence of the losses caused by these multiple reflections higher order modes are

greatly suppressed. Thus, in a sufficiently long fiber only the fundamental mode can

propagate. By proper mode matching [50] (i.e., wo/a ~ 2/3, where w0 is the spot size at

the fiber entrance and a is the capillary radius), the incident radiation can be dominantly

coupled into the fundamental EHn hybrid mode, whose intensity profile as a function of

the radial coordinate r is given by Io(r) = IoJo2(2.405r/a), where Io is the peak intensity

and Jo is the zero-order Bessel function [51].

In general, pulse propagation in gas-filled hollow fibers can be described by

the same equations used for optical fibers. In hollow fibers two pulse broadening re¬

gimes exist depending on the input pulse duration. For longer pulses (140 fs) a purely

SPM-broadened highly modulated spectrum is observed [52]. Whereas for shorter

pulses (20 fs) a much more uniform spectrum is obtained which indicates that besides

SPM also gas dispersion plays an important role [52]. For such short pulses the higher-

order nonlinear effect of self-steepening has to be taken into account as well. This effect

results from the intensity dependence of the group velocity [43, 44] and leads to an

asymmetry in the SPM-broadened spectra with a larger broadening on the blue side.

The relative weights of SPM and dispersion can be evaluated using characteris¬

tic parameters such as the nonlinear length LNp and the dispersion length LD, defined as

LNL = l/(yP0) and LD = T02/\ß2\ [53], where ß2 is the GVD of the fiber filled with gas, P0

is the peak power of the pulse and T0 is the half-width (at the 1/e-intensity point) of the

pulse. As soon as the fiber length L exceeds the nonlinear length LNp and/or the disper¬

sion length Ld, SPM and/or dispersion will play an important role in pulse propagation

through the fiber. For best pulse compression, i.e. for the generation of linearly chirped
1/7

pulses, an optimum fiber length Lopt exists, which is approximated by Lopt
~ (6LNlLd)

[54].

Two considerations set the limit when scaling this approach to supercontinuum

generation to higher pulse energies. First, the laser peak power must stay smaller than

the critical power Pc for self-focusing (for a Gaussian beam Pc = A2/2nn2). This sets a
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constraint on the type of noble gas used and its pressure. Second, the laser peak inten¬

sity should be smaller than the multiphoton ionization threshold which applies for the

given pulse duration. This represents a constraint on the hollow fiber diameter and the

type of gas used. Since the threshold for multiphoton ionization increases with decreas¬

ing pulse duration, this second constraint can be "softened" by using shorter pulses.

2.3 Supercontinuum Generation in Microstructure Fibers

With the invention of PCFs and microstructured fibers in the late 1990s it became pos¬

sible to generate broadband supercontinua using oscillator pulses with pulse energies in

the nanojoule range and at a repetition rate of- 100 MHz. Until then supercontinuum

generation was only possible using amplified pulses at a kHz repetition rate.

The two fiber types, PCFs and microstructure fibers, differ in their guiding

mechanisms. PCFs, also called photonic bandgap fibers, guide light by means of a

photonic bandgap. Whereas microstructure or holey fibers, as they are sometimes

called, take advantage of a microstructure cladding that has a reduced refractive index

compared with the core and guide light like step-index fibers. As we only use micro-

structure fibers in our experiments we will limit our discussion in this Subsection to

them. We will discuss the very special properties of these newly developed fibers and

the nonlinear phenomena underlying the spectral broadening process in these fibers.

2.3.1 Special properties of microstructure fibers

Two recently published review articles provide a very good introduction to these new

fibers [55, 56]. Microstructure fibers consist of a solid silica core surrounded by an ar¬

ray of air holes as shown in Figure 2.1. The first working microstructure fiber, which

consisted of an array of- 300 nm air holes, spaced 2.3 urn apart, with a central solid

core was demonstrated in 1996 [32]. The striking property of this fiber was its "end¬

lessly single-mode" behaviour in the experiment, ranging from 337 nm to at least 1550

nm [57].
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Figure 2.1: SEM-image of 1.7 um core diameter microstructure fiber cross section (cour¬

tesy of Crystal Fibre).

Another very interesting property of microstructured fibers is that their disper¬

sion can be controlled with unprecedented freedom. In conventional fibers the zero dis¬

persion wavelength is located at 1.3 urn. But in microstructure fibers the zero dispersion

point of the fiber can be shifted almost arbitrarily even to wavelengths in the visible by

changing the waveguide contribution to the dispersion. By increasing (decreasing) the

core diameter of the fiber, the waveguide contribution can be reduced (increased) thus

allowing a fiber design with a zero dispersion wavelength anywhere from 650 nm to

1300 nm [58]. Only recently, a microstructure fiber was reported with close to zero dis¬

persion over hundreds of nm in the infrared spectral region, making glass fiber almost

as free of dispersion as vacuum [59].

Microstructure fibers with extremely small core diameters and very high air-

filling fractions not only display unusual dispersion characteristics but also yield very

high nonlinear interactions. Thus, one of the most successful applications of microstruc¬

ture fibers is to nonlinear optics, where high effective nonlinearities together with a con¬

trollable dispersion are essential for efficient devices. As already mentioned, one such

example is supercontinuum generation. It was discovered, that highly nonlinear micro-

structure fiber, designed with a zero dispersion wavelength close to 800 nm, displays

giant spectral broadening when the 100 MHz pulses from a standard Ti:Sa-oscillator

were injected into just a few cm of fiber [18, 60]. The emerging pulses have the band-
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width of sunlight but are 104 times brighter (> 100 GW m"2sterad_1). Thus it is not sur¬

prising, that this source is finding many uses, e.g. in optical coherence tomography [61].

The supercontinuum consists of millions of individual frequencies, precisely separated

by the laser repetition rate. This "frequency comb" can be used to measure optical fre¬

quencies to an accuracy of one part in 5-10"16 [62] or better.

2.3.2 Spectral broadening mechanisms in microstructure fibers

Unlike other nonlinear mechanisms the supercontinuum generation process in micro-

structure optical fibers is not yet fully understood. There exist several theories in paral¬

lel, some of them even contradicting each other. In this Subsection we will therefore

present the most widespread opinion explained by means of two different propagation

regime examples.

We begin our discussion by shortly explaining the spectral broadening mecha¬

nisms for picosecond input pulses. In contrast to femtosecond pulse pumping, the inter¬

play between the different nonlinear processes involved is well understood. For pico¬

second pulses the contribution to spectral broadening from SPM is negligible. The pri¬

mary mechanism is a combined action of SRS and parametric FWM [63].

In the femtosecond regime, there is a debate going on in the community about

whether Raman processes are negligible for certain parameter regions (especially for

input pulses with pulse durations of about 100 fs) or not. The most widely spread opin¬

ion is the following: For 100 fs pulses propagating through approximately lm of fiber, a

combination of SPM, FWM, SHG and Raman scattering produces a broad flat spectrum

[18, 64]. In contrast, for pulses shorter than 30 fs propagating through only a few cm of

fiber, the Raman contribution is suppressed and a stable continuum, generated primarily

through SPM, is possible [64].

We split the discussion on femtosecond pulse propagation in two different

pumping regimes. Depending on whether the pump wavelength is located below or

above the zero dispersion wavelength (ZDW) of the fiber, we talk of normal dispersion

pumping or anomalous dispersion pumping, respectively. Pumping in the normal dis¬

persion regime allows for the generation of a stable continuum but at the cost of a lim¬

ited bandwidth. The ultrabroadband, more than two octaves spanning supercontinua are
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all produced in the anomalous dispersion regime, but have the disadvantage of being

deeply modulated and unstable.
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Figure 2.2: Dispersion curve of the 2.6 um core diameter microstructure fiber showing a

zero dispersion wavelength of 940 nm.

The 2.6 urn core diameter microstructure fiber, with which we were able to

generate a stable continuum and demonstrated successful compression to 5.5 fs, exhibits

the dispersion characteristics plotted in Figure 2.2. Its ZDW is at 940 nm and it is

pumped by a Ti:Sa-oscillator centered at 790 nm. Therefore we start with the descrip¬

tion of the spectral broadening process in the normal dispersion regime:

We first consider the case of pumping the fiber far below the ZDW (about

150 nm), as this is also the case in our experiment. We performed a numerical simula¬

tion on the propagation of 100 fs input pulses with a repetition rate of 80 MHz through

10 m of a microstructure fiber with the dispersion profile depicted above. More details

on the numerical simulation are given in Chapter 5. At low powers launched into the

fiber (5 mW) symmetric broadening due to SPM is observed (see Figure 2.3 for illustra¬

tion). With increasing power new frequencies are generated on the red side through

SRS, resulting in asymmetric broadening [65]. At 50 mW the output is very stable but

has a limited bandwidth. It becomes unstable as soon as the first solitons are created

when the broadened spectrum exceeds the ZDW. This happens at about 100 mW cou¬

pled into the fiber. The first soliton is formed just around the ZDW and is subsequently
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self-frequency shifted to longer wavelengths as the pump power is further increased

[66]. These simulation results are in good agreement with numerical simulations of

other authors [65]. For powers of more than 100 mW our algorithm breaks down, but

other simulations show that a tail starts to emerge on the blue side, its origin being self-

steepening [65].

We did not try to pump closer to the ZDW, because in this case the generated

continuum is more sensitive to changes in coupling efficiency and power fluctuations,

leading to an increased instability. Here, the new spectral components generated on the

short wavelength side are believed to originate from FWM, where solitons phase-match

to spectral components from below the ZDW [66].
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Figure 2.3: Simulation for 100 fs pulses propagating through 10 m of the 2.6 um core di¬

ameter microstructure fiber for different launched input powers (the dashed curve shows

the input pulse).
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The second fiber used in our experiments, with which we generated broad

white-light supercontinua but did not achieve successful compression, had a core di¬

ameter of 1.7 urn and the ZDW at 665 nm. This is depicted in Figure 2.4. In contrast to

the other fiber, this fiber was pumped in the anomalous dispersion regime.
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Figure 2.4: Dispersion curve of the 1.7 um core diameter microstructure fiber showing a

zero dispersion wavelength of 665 nm.

Pumping significantly higher than the ZDW (around 100 nm higher), as it is

the case for this fiber, leads to a complex interaction between multiple nonlinear effects

allowing for ultrabroadband supercontinuum generation [66]. Again, we performed a

numerical simulation on the propagation of 100 fs input pulses with a repetition rate of

80 MHz travelling through 5 m of a fiber with the dispersion profile shown in Figure

2.4. For an average power of 1 mW coupled into the fiber, the spectrum is initially

broadened by SPM. This can be seen in Figure 2.5. The formation of a continuum is ini¬

tiated by soliton decay due to Raman scattering. The initial pulse first decays into sev¬

eral sub-pulses: distinct redshifted Stokes components and simultaneously generated

blueshifted anti-Stokes components (slowly growing) and a gap is formed in the vicinity

of the ZDW.
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Figure 2.5: Simulation for 100 fs pulses propagating through 5 m of the 1.7 um core diame¬

ter microstructure fiber for different launched input powers.

The onset of continuum generation can be described as follows: The pulse is

initially compressed due to the combined effects of nonlinearities and anomalous dis-
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persion before it breaks into multiple solitons. The solitons undergo a self-frequency

shift and therefore appear in the spectrum as redshifted components (corresponding to

the Stokes peaks). For input powers of about 30 mW these solitons get perturbed by

higher order dispersion and therefore radiate energy to maintain their shape. This radi¬

ated energy appears in the spectrum as anti-Stokes peaks on the short wavelength side.

Looking at the temporal evolution several delayed pulse components corresponding to

the redshifted Raman solitons can be observed. The delay increases with peak power

and thus with frequency shift. This is due to a decrease of the group velocity as the soli¬

tons shift towards the infrared. Dispersive waves are superimposed onto the temporal

profile of the delayed solitons. These waves can be identified with the anti-Stokes com¬

ponents in the spectrum. This indicates that the Stokes and anti-Stokes components ini¬

tially travel at the same group velocity so that energy transfer from the solitons to the

radiated waves is possible. Pumping with higher average powers would result in the

generation of a more uniform continuum [65]. Unfortunately, it was not possible to

simulate this with our simulation algorithm.

Other simulations have shown that for 17.5 fs input pulses with the same peak

intensity, the generated spectral width is 10 times smaller than for 100 fs pulses. This is

in direct contrast to the behaviour of SPM-induced spectral broadening. Therefore, this

indicates that in this regime, SPM is not the dominant contribution to spectral broaden¬

ing, but that the spectrum broadens due to soliton fission. An explanation for the smaller

bandwidth obtained with shorter pulse is that since for the smaller pulse duration the

soliton number with N = 1.5 corresponds to one fundamental soliton, no soliton fission

can occur and only an isolated blueshifted side peak is generated [67].

Let us now briefly consider the case of pumping only slightly above the ZDW

in the anomalous dispersion regime. This leads to the same broadening mechanisms as

described in the previous paragraphs, also for shorter (30 fs) pulses. But one can show

that under these conditions the Raman contribution is negligible during the initial pulse

propagation. Although Raman effects play an important role in the later stages of super¬

continuum generation, the proximity of the pump wavelength to the ZDW means that

the initial propagation is dominated by the interaction of SPM and self-steepening with

higher-order dispersion (particularly TOD).

Pumping only slightly above the ZDW has the disadvantage, that the spectrum

exhibits a highly complicated substructure that is extremely sensitive to the input pulse
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energy. A 0.1% increase in pulse energy leads to a spectrum with a completely differ¬

ent fine substructure [68].
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Compression of Supercontinua

One application of coherent supercontinua is the generation of few-femtosecond optical

pulses. To achieve this, the spectral phase distortion acquired during the spectral broad¬

ening process in the fiber has to be compensated for as good as possible. In the first

Subsection of this Chapter, a short description of classical pulse compression tech¬

niques, such as the Gires-Tournois Interferometer (GTI) and prism and grating com¬

pressors [69, 70] is given. A well established technique for pulse compression based on

silica fibers is the fiber-grating-compressor [71]. However, these classical techniques

are not suitable anymore for the compression down to few-femtosecond pulses. There¬

fore, new dispersion compensation devices such as chirped [72] and double chirped

mirrors [73, 74] have been invented. The disadvantage of these devices however is, that

they are designed for one specific dispersion profile and it is not possible to continu¬

ously increase or decrease the introduced dispersion by an easily accessible, simple pa¬

rameter of the mirrors or the mirror configuration (as it is possible with prism and grat¬

ing compressors). It is only possible to change the amount of dispersion in discrete steps

by adding or removing bounces off these mirrors. More flexible dispersion compensat¬

ing devices are deformable mirrors [75] and spatial light modulators [76, 77]. Both de¬

vices are computer-controlled and can therefore be used for adaptive pulse compression

or pulse shaping.

Using pixellated devices for dispersion compensation such as deformable mir¬

rors or SLMs limits the compressor resolution and thus the amount of dispersion that

can be compensated for. This effect is discussed in Section 3.3 and an estimation on the

-27 -
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maximum group delay and group delay dispersion, that can be compensated for with

our SLM is given.

The most important prerequisite for proper dispersion compensation is an accu¬

rate measurement of the spectral phase of the pulse to be compressed. For such broad¬

band pulses there exist only two reliable pulse characterization techniques: Frequency

resolved optical gating (FROG) [78, 79] and spectral phase interferometry for direct

electric field reconstruction (SPIDER) [80, 81]. Section 3.4 gives details on the

SPIDER-setup used for our experiments and the improvements made to ensure correct

pulse characterization of up to 600 nm broad spectra.

3.1 Different Compression Techniques

3.1.1 Classical techniques

3.1.1.1 Gires-Tournois Interferometer (GTI)

Figure 3.1: A Gires-Tournois Interferometer has a left mirror with a reflectivity of 100%,

an air gap with thickness d, and a right mirror with a reflectivity of typically < 10%.

A GTI is a Fabry-Perot reflector consisting of one mirror with a 100% reflectivity, an

air gap or a non-absorbing material with thickness d, and a second mirror with a reflec¬

tivity of typically < 10%. This is shown in Figure 3.1. This configuration introduces a
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phase change, which is strongly frequency-dependent. In order to generate a large

amount of negative dispersion, the thickness Jmust be relatively big. On the other hand

the bandwidth is inversely proportional to d. This limits the applicability of the GTI

typically to pulses longer than ~100 fs.

3.1.1.2 Prism-pair

Prism-pair compressors [69] are widely used for example inside Ti:sapphire-oscillators

to compensate for the intracavity dispersion. In this technique the frequency-dependent

deviation of a light beam as it passes through a prism is exploited. A schematic of such

a prism compressor is shown in Figure 3.2. A prism with normal dispersion refracts

short wavelength light (i.e. blue light) stronger than long wavelength light (i.e. red

light). Therefore, the beam path inside the prism-pair is longer for the blue than for the

red light. In this way, negative dispersion is produced. Because the beam is spectrally

dispersed after the second prism one either reflects the beam back so that it passes

through the same prisms again or one uses two more prisms aligned symmetrically to

the first two prisms. This is a four-prism-compressor. The distance S between the two

prisms determines the amount of negative dispersion. The prisms are Brewsters cut,

which minimizes losses for p-polarized light and makes it possible to continuously ad¬

just the total group velocity dispersion (GVD) of the prism sequence by moving one

prism without spatially displacing the beam. By moving one prism into the beam posi¬

tive dispersion is continuously added, because the beam has to propagate through a lar¬

ger amount of prism material with positive dispersion.

One big advantage of prism compressors is that the introduced dispersion can

be continously adjusted without changing the beam position. A drawback of this tech¬

nique is that it is usually only possible to compensate for one order of dispersion, typi¬

cally the second. But the prism sequence itself introduces also third-order dispersion.

Thus, for short pulses this limits the achievable pulse duration, because the non¬

compensated higher-order dispersion terms contribute dominantly to the pulse broaden¬

ing. Using a prism-pair for the dispersion compensation of broad supercontinua would

not be very practicable since the beam at the second prism would be spatially so much

dispersed that either frequency components would be cut off or the second prism would

have to be very big.
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Figure 3.2: Schematic of a Four-prism-compressor, where the beam is backreflected with a

mirror. The distance S between the prisms determines the amount of negative dispersion.

3.1.1.3 Grating-pair

Optical pulse compressors consisting of a diffraction grating pair have been developed

already very early [70] and have found widespread use for example as stretcher-

compressor assemblies in chirped pulse amplification (CPA) systems. Similar to the

prism compressor the property that diffraction of light depends upon its wavelength is

used for dispersion compensation. The difference is that here long wavelength light is

diffracted more strongly than short wavelength light, thus increasing the beam path for

the long wavelength components. Therefore, the frequency-dependent phase shift is in¬

troduced by the different beam paths the light passes between the gratings.

The incoming beam has an angle of incidence 9, and the diffracted beam (w-th

order) is determined by the angle 9m. See Figure 3.3 for illustration. For m > 0 9m is lar¬

ger than 9, and gets even larger with longer wavelengths. Thus, the grating pair intro¬

duces positive dispersion. On the other hand, for m < 0, 9m is smaller than 9, and can

even become negative. In this case, negative dispersion is produced.
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Figure 3.3: Negative dispersion introduced by a pair of diffraction gratings. 0, is the angle

of incidence of the incoming beam, and 9m is the angle of diffraction.

In order to keep the losses in a grating compressor low, usually blazed gratings

are used, because in such a grating only one order of diffraction is generated. According

to the discussion above, a blazed grating for m = -1 is typically chosen for dispersion

compensation. Diffraction efficiency is of particular importance, because analogous to

the prism compressor, the light has to pass four gratings before the beam is spatially co¬

herent again.

For pulse compression of broadband pulses, a grating pair is not the ideal solu¬

tion because the diffraction efficiency of the gratings is strongly wavelength-dependent

(and gratings with a good diffraction efficiency over several hundreds of nm do not ex¬

ist). This may result in a significant spectral shaping of the continuum. The main disad¬

vantage of using a grating pair for the compression of a continuum is however, that a

large amount of higher-order dispersion is introduced.

3.1.1.4 Fiber-grating-compressor

SPM-induced pulse broadening can be used to further compress bandwidth-limited

pulses. Pulse compression using fibers was first studied experimentally by Mollenauer

et al. [82]. They used the combined action of SPM and negative dispersion in the fiber

to compress the pulse already in the fiber itself. Working in the positive dispersion re-
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gime of the fiber can also be used to further shorten a bandwidth-limited pulse by ex¬

ploiting spectral broadening through SPM [54]. Here, the pulse is first launched into the

fiber to broaden its spectrum and simultaneously it acquires a linear chirp during propa¬

gation through the fiber. This linear chirp is then compensated for by a grating pair as is

illustrated in Figure 3.4. This technique was first developed by Nakatsuka and

Grischkowsky [46, 83], whereas the grating compressor after the fiber was introduced

by Shank [84].

/ \
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Dulse Single-mode fiber broadened

Grating compressor pu|se

Figure 3.4: Schematic of a fiber-grating-compressor suitable forfs-pulses (after [71]).

To achieve pulse durations of below 10 fs the third-order dispersion had to be

compensated for as well. Therefore, a combination of a grating- and a prism-compressor

was used. This resulted in the generation of 6 fs pulses [47].

3.1.2 Chirped mirrors

A new concept for dispersion compensation was introduced in 1994 by Szipöcs et al.

[72]. They designed a dielectric or "chirped" mirror which allows for the control of the

effective plane of reflection of the different wavelength components. Chirped mirrors

are custom tailored multilayer coatings, in which the Bragg wavelength is gradually de¬

creased during deposition. Therefore, longer wavelengths can penetrate deeper into the

coating than short wavelengths. This introduces negative dispersion.

A few years later, this original chirped mirror design was refined by the double

chirped mirror (DCM) concept, which takes into account the impedance matching prob¬

lem which occurs at the air mirror interface and the grating structure in the mirror [73,

74]. These DCMs resulted in new world-record pulse durations in the two-optical-cycle

regime from Kerr-lens-modelocked (KLM) Ti:sapphire lasers [85, 86]. However, the
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impedance matching to the air sets a limit. This impedance matching is based on a

broadband anti-reflection (AR)-coating. Residual reflected light interferes with the main

reflected beam. This interference results in a potentially detrimental modulation of the

spectral phase. Therefore, the AR-coating has to be of high quality with a very low re¬

sidual power reflectivity of less than 10"4 to minimize this effect [87]. However, this can

only be achieved over a limited bandwidth and is impossible for more than about 0.7

optical octaves in the near-infrared and visible spectral range [88].

AR coating

DCM structure

Wedged substrate

Figure 3.5: Schematic drawing of BASIC mirror showing the wedged substrate, the AR-

coating on top of it and the DCM structure, which is deposited on the back of the substrate.

The invention of the back-side coated (BASIC) mirrors [87] or later the tilted

front-side mirrors [89] resolved this issue. In the BASIC mirror, the DCM structure is

impedance matched to the low index material of the mirror coating. The substrate mate¬

rial is chosen to match in refractive index to the low index coating material. The DCM

structure is deposited on the back of the substrate. The substrate is slightly wedged or

curved, so that the front reflection is directed out of the beam and does not deteriorate

the dispersion properties of the DCM. An AR-coating is deposited on the front side of

the substrate. For illustration see Figure 3.5. The purpose of this AR-coating is only to

reduce the insertion losses of the mirror at the air-substrate interface. For most applica¬

tions, it is sufficient to get this losses down to about 0.5%. Therefore, the bandwidth of

such an AR-coating can be much broader. The trade-off is that the substrate has to be as

thin as possible to minimize the overall material dispersion. In addition, the wedged
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mirror leads to an undesired angular dispersion of the beam. Another possibility to

overcome the AR-coating problem is given with the idea to use a DCM structure at the

Brewster-angle incidence [90]. In this case, the low index layer is matched to air.

We conclude this Subsection with a discussion on the advantages and disad¬

vantages of using chirped mirrors for dispersion compensation. It has to be noted, that

the biggest advantage of chirped mirrors is that they allow for a very compact experi¬

mental setup and are easy to align. The limited bandwidth of conventional chirped mir¬

rors and even DCMs was overcome with the invention of BASIC mirrors. But here the

problem is, that these mirrors are very difficult to fabricate and very often several coat¬

ing runs have to be performed before the mirrors have the dispersion properties they

were designed for. Another disadvantage is that only relatively small amounts of disper¬

sion can be compensated for by one mirror, so that usually several bounces off these

mirrors are necessary for adequate dispersion compensation. In contrast to prism- and

grating-compressors it is also not possible to continuously adjust the necessary disper¬

sion. It is only possible to remove or add one bounce off a DCM. Thus, the step size is

given by the amount of dispersion introduced by one mirror. A large number of bounces

means also that the deviations from the desired phase multiply up.

3.2 Pulse Shaping Techniques: Deformable Mirrors and

Spatial Light Modulators

Spatial light modulators (SLMs) and deformable mirrors were introduced not primarily

for pulse compression applications but for femtosecond pulse shaping in general. Sev¬

eral different techniques for ultrafast pulse shaping have been developed. Here we con¬

centrate on the most successful and widely spread method, in which waveform synthe¬

sis is achieved by spatial masking of the spatially dispersed optical frequency spectrum.

We will focus on pulse shaping using deformable mirrors and in particular using SLMs.

Both the deformable mirror and the SLM allow reprogrammable waveform generation

under computer control.

Adaptive pulse shaping experiments have been performed using liquid crystal

SLMs [91, 92, 93, 94, 95, 96], deformable mirrors [75], and acousto-optic modulators

[97, 98]. Experimental demonstrations have included chirp compensation and shaping
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of low energy pulses from femtosecond oscillators [75, 91, 92, 94], correction of resid¬

ual chirps remaining after the pulse stretching and recompression process in high energy

chirped pulse amplifiers [93, 95], and quantum control experiments, for example dem¬

onstrating adaptive pulse shape control of fluorescence yields [97] and photodissocia¬

tion products [96].

In pulse shaping experiments it is generally desirable to be able to control both

the phase and the amplitude of the pulse. As for our compression experiments only

phase shaping is necessary, we will not discuss the aspects of amplitude shaping here.

Using adaptive pulse shapers in combination with a learning algorithm offers

the big advantage, that an experimental observable (e.g., second harmonic generation

intensity) can be optimized, for which the required spectral phase or pulse shape is not a

priori known. The disadvantage is, that this method is very slow. The optimization pro¬

cedure is significantly faster, if the required spectral phase is known, as it is the case in

pulse compression experiments. Here, a measurement of the spectral phase or pulse

shape is used as feedback. Thus, a few iterations are sufficient for optimization.

3.2.1 Femtosecond pulse shaping basics

3.2.1.1 Linear filtering

The description we use for the femtosecond pulse shaping approach is based on the lin¬

ear, time-invariant filter, a concept well known in electrical engineering. Here linear

filtering is applied for the generation of specially shaped optical waveforms on the pico¬

second and femtosecond time scale.

Linear filtering can be described either in the time domain or the frequency

domain. This is shown in Figure 3.6 ([99]). In the time domain, the filter is character¬

ized by an impulse response function h(t). The output of the filter eout(t) in response to

an input pulse em(t) is given by the convolution of em(t) and h(t)

eout (t) = em (t) * h(t) = \dt'em (t')h(t -f), (3.1)

where * denotes convolution. If the input is a delta function, the output is sim¬

ply h(t).
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Figure 3.6: Pulse shaping by linear filtering. Top: Time-domain view, bottom: Frequency-

domain view.

In the frequency domain, the filter is characterized by its frequency response

H(a). The output of the linear filter Eout((o) is the product of the input signal Em(a>) and

the frequency response H(a>)

Eout(o)) = Em(û))H(û)). (3.2)

Here, e,„(t), eout(t), and h(t) and Em(a>), Eout(a>), and H(a>), respectively, are

Fourier transform pairs

H(a) = jh(t)e-a*dt (3.3)

and

h(t) = —\H(o))elwtdo) (3.4)

For a delta function input pulse, the input spectrum Ein(a>) is equal to unity, and

the output spectrum is equal to the frequency response of the filter. Therefore, due to

the Fourier transform relations, generation of a desired output waveform can be accom¬

plished by implementing a filter with the required frequency response.
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3.2.1.2 Pulse shaping apparatus

A typical pulse shaping apparatus is shown in Figure 3.7. It consists of a pair of diffrac¬

tion gratings and lenses, arranged in a configuration known as "zero dispersion pulse

compressor", and a pulse shaping mask [100]. The individual frequency components

contained within the incident ultrashort pulse are angularly dispersed by the first dif¬

fraction grating, and then focused to small diffraction limited spots at the back focal

plane of the first lens, where the frequency components are spatially separated along

one dimension. Spatially patterned amplitude and phase masks (e. g. a SLM) are placed

in this plane in order to manipulate the spatially dispersed frequency components. After

a second lens and grating all the frequencies are recombined into a single collimated

beam, and a shaped output pulse is obtained. As the name already suggests, the "zero

dispersion" configuration of the gratings does ideally not introduce any dispersion, in

contrast to the grating-compressor.

Figure 3.7: Pulse shaping setup that works by spatially masking spatially separated spectral

components of a broadband optical pulse.

In order for this technique to work as desired, one has to make sure that in the

absence of a pulse shaping mask, the output pulse is identical to the input pulse. There¬

fore, the grating and lens arrangement has to be truly free of dispersion. This can be

guaranteed if the lenses are set up as a unit magnification telescope, with the gratings

located at the outside focal planes of the telescope.
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Note that this dispersion-free condition also depends on several approxima¬

tions, e.g., that the lenses are thin and free of aberrations, that chromatic dispersion in

passing through the lenses or other elements which may be inserted into the pulse

shaper is small, and that the gratings have a flat spectral response. To fulfill these condi¬

tions is not a problem for pulses with durations down to roughly 50 fs (see [100, 101]).

For much shorter pulses, especially in the 10 - 20 fs range, more care has to be taken to

satisfy these approximations. For example, both the chromatic aberration of the lenses

in the pulse shaper and the dispersion experienced in passing through the lenses can be¬

come important effects. However, by using spherical mirrors instead of lenses, these

problems can be avoided and dispersion-free operation can be maintained [102].

The pulse shaper shown in Figure 3.7 was first used by Froehly et al., who per¬

formed pulse shaping experiments with 30-ps input pulses [103]. The same apparatus

was subsequently adopted by Weiner et al. for manipulation of 100 fs pulses, initially

using fixed masks [100] and later using programmable SLMs [76, 104]. With minor

modifications, namely, replacing the lenses with spherical mirrors, pulse-shaping opera¬

tion has been successfully demonstrated for input pulses on the 10 - 20 fs time scale

[75,91, 102, 105].

3.2.2 Deformable mirrors

Implementation of adaptive dispersion control based on a micro-machined deformable

or flexible mirror requires spatial dispersion of the laser beam in order to actuate inde¬

pendently the path length of all frequency components across the spectrum. Therefore,

the pulse compressor should inevitably incorporate a dispersion line that includes a fo¬

cusing element and thereby provides a Fourier plane for spatial modulation of the dis¬

persed laser beam. A common implementation of this device is shown in Figure 3.8,

where a grating, which is set to the -1 diffraction order, is used to achieve the spectral

divergence. This ensures that the system operates in the negative dispersion regime,

which is important because of the low group delay correction provided by the mem¬

brane deflection of the micro-machined mirror. Therefore, the main correction of the

spectral phase should be carried out by other elements of the pulse compressor, whereas

the computer-controlled flexible mirror can only be employed for the fine group-delay

tuning.
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Figure 3.8: Schematic drawing of a typical implementation of a deformable mirror.

The membrane of a typical mirror frequently used by various groups is typi¬

cally controlled by 39 actuators that are lined up in three rows and provides a clear aper¬

ture of-30x7 mm2 [75, 106]. The stiffness of the 0.5-um silicon-nitride membrane

depends on the material and amount of layers of the deposited optical coating. An Au

coating with a Cr bonding layer underneath, for example, limits the maximum deflec¬

tion to about 6 urn in the center of the mirror.

Due to the relatively small number of actuators, and the existence of a mini¬

mum radius of curvature which can be induced on the membrane, this device is mainly

useful for providing smooth phase variations.

Using a combination of chirped mirrors, a grating and a deformable mirror the

successful compression of a noncollinear optical parametric amplifier (NOPA) spec¬

trum to a pulse duration of 4 fs was demonstrated [31, 107].

3.2.3 Liquid crystal spatial light modulators

An excellent review on femtosecond pulse shaping using SLMs is given by Weiner

[77]. Liquid crystal modulator arrays have been primarily configured for either phase-

only or phase-and-amplitude operation. The liquid crystal array allows continuously

variable phase control of each separate pixel (whereas fixed masks usually provide only
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binary phase modulation) and allows programmable control of the pulse shape on a mil¬

lisecond time scale.

Figure 3.9 shows a schematic of an electronically addressed, phase-only liquid

crystal SLM [104]. A thin layer of a nematic liquid crystal (~ 9 urn) is sandwiched be¬

tween two pieces of glass. The nematic liquid crystal consists of long, thin, rod-like

molecules, which in the absence of an electric field are aligned with their long axes

along the x direction. When an electric field is applied (in the z direction), the liquid

crystal molecules tilt along z, causing a refractive index change for x-polarized light. A

maximum phase change of at least 2% is required for complete phase control. In order to

apply the electric field, the inside surface of each piece of glass is coated with a thin,

transparent, electrically conducting film of indium tin oxide. One piece is patterned into

a number of separate electrodes (or pixels) with the corresponding fan out for electrical

connections. Current commercially available liquid crystal SLMs have up to 640 pixels.

Typically, each pixel is 97 urn wide and the pixels are separated by 3 urn gaps, thus

such a SLM has a total aperture of 64 mm.

liquid
^ crystal

Figure 3.9: Schematic diagram of an electronically addressed, phase-only liquid crystal

SLM.

In order to use liquid crystal SLMs for continuous phase control, a careful

phase versus voltage calibration is required.
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In comparison with deformable mirrors, liquid crystal SLMs have the advan¬

tage of much higher spectral resolution due to the much higher number of individual

phase-controlling elements. Thus, it is possible to achieve complete dispersion compen¬

sation even for broadband spectra using only spatial light modulators [29, 108].

3.3 Compressor Resolution

Pixellated liquid crystal modulator arrays can be programmed to provide the desired

phase function modulo 2%. This allows for the generation of large phase sweeps even

with modulators, where the maximum phase change per pixel is as small as 2%. How¬

ever, in any case of a smoothly varying target phase function the phase change from one

pixel to the next should remain small enough that the staircase phase pattern, which is

achieved by the liquid crystal modulator with its discrete pixels is a sufficiently good

approximation to the desired phase function (mod 2%). In contrast to smooth phase func¬

tions, phase jumps can always be correctly shaped.

Let us now consider a smoothly varying phase function as it is required for

pulse compression. Essentially the requirement addressed above is a sampling limita¬

tion: The phase must vary sufficiently slow that it is adequately sampled by the fixed

modulator elements. This means we require /S<p/ « tz, where 8<f> is the imposed phase

change per pixel.

Assuming a compressor resolution of 1.1 nm as it is the case in our experi¬

ments, we calculate the maximum group delay (GD) and group delay dispersion (GDD)

that can be compensated for by our 640-pixel SLM. For the maximum GD, we find the

requirement

GD«-^-, (3.5)

where Aap is the frequency bandwidth spanned by one pixel. Since the grating

generates a spatially dispersed beam, which is aequidistant in wavelength, the frequency

bandwidth Aap covered by one pixel varies significantly over the whole bandwidth of

the spectrum. Therefore, we find a maximum GD of approximately 240 fs for 400 nm

light and of 1500 fs for 1000 nm light.
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For the maximum GDD we find as an estimate the condition

2n
GDD«- —— —

-, (3.6)
(a-a0) - {{a + AaP )-a0)

where a0 is the vertex position of the parabolic phase corresponding to the

GDD. The maximum GDD that can safely be shaped lies below the value obtained by

this equation. The larger the bandwidth covered by the shaper the larger the safety mar¬

gin with respect to this estimate needs to be. The reason for this lies again in the fact

that the pixel spacing is evenly spaced in wavelengths but not in frequency.

For our shaper, covering a very large bandwidth from 310 nm to 1020 nm, the

above equation yields -420 fs2 and an ao
= 5.73 fs"1 (Ao = 329 nm) if we try to balance

the maximum allowable GDD between the extreme blue and the extreme infrared side.

In practice, we find that the real limit lies at about 200 fs2 for this scenario. Significantly

higher values can be achieved on the long wavelength side, if the requirements on the

short wavelength side are relaxed (i. e., ao is shifted to lower frequencies).

3.4 Broadband Pulse Characterization

The task of producing a shaped ultrashort pulse is closely related to the task of

measuring such a shaped pulse. The field of ultrashort pulse measurement has under¬

gone dramatic progress during the last decade, in parallel with progress in pulse shap¬

ing.

The technique which has been most often used for measuring shaped pulses

(especially until recently) is intensity cross correlation [109]. The most significant limi¬

tation of this technique is the lack of any direct phase information. Furthermore, if the

shaped pulse and the reference pulse are of comparable length, only very limited infor¬

mation on the shaped pulse shape can be extracted from the crosscorrelation. For meas¬

uring very broadband pulses the limited conversion efficiency bandwidth of the nonlin¬

ear crystal is another big drawback.
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Unshaped pulses have been measured for many years via intensity autocorrela¬

tion [110]. However, for complicated pulse shapes, the intensity autocorrelation is usu¬

ally not useful since most pulse shape information is lost.

An important breakthrough in the field of ultrafast optics was the relatively re¬

cent development of techniques for complete amplitude and phase characterization of

ultrashort optical pulses. The two most widely spread techniques are frequency resolved

optical gating (FROG) [78, 79] and spectral phase interferometry for direct electric field

reconstruction (SPIDER) [81, 111].

In FROG, one gates the pulse to be measured with an identical time-delayed

version of itself. The power spectrum of the output pulse resulting from the nonlinear

gating interaction (usually second harmonic generation) is measured with a spectrome¬

ter as a function of time delay between the two pulses. Using an iterative computer al¬

gorithm both the complete intensity and phase profile of the ultrashort pulse can be re¬

covered. A limitation of this approach is that for complicated waveforms, convergence

of the iterative algorithm for recovering the temporal phase and intensity profiles from

FROG data may become less dependable.

3.4.1 Spectral phase interferometry for direct electric-field reconstruction

(SPIDER)

In our experiments, we choose to characterize the shaped pulses using the SPIDER-

technique. In SPIDER, two temporally separated replicas of the pulse to be character¬

ized are generated in a Michelson-Interferometer like setup and upconverted with a

strongly linearly chirped pulse. This is illustrated in Figure 3.10. In the upconversion

process, two identical but spectrally shifted pulses are generated. The resulting spectral

interferogram is measured with a spectrometer and contains the phase difference be¬

tween the two spectrally shifted pulses and a linear phase term owing to the time delay

between them. Within the SPIDER retrieval algorithm this linear phase has to be sub¬

tracted from the SPIDER interferogram phase. Therefore, a calibration of the time delay

is performed by additionally recording the interferogram of the SHG of the pulse repli¬

cas. Finally, the spectral phase is obtained by proper concatenation of the remaining

phase differences.
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Figure 3.10: SPIDER setup: GDD: glass block for pulse stretching, PR: periscope for po¬

larization rotation, BS: beamsplitter, TS1: translation stage for adjustment of delay, HA:

periscope for height adjustment, FM: focusing mirror, SFG: nonlinear crystal, OMA: opti¬

cal multichannel analyzer, TS2: translation stage for adjustment of overlap with upcon-

verter pulse. Dots and arrows on the beam path display the polarization state of the beam.

A big advantage of SPIDER over other ultrashort pulse characterization tech¬

niques is that all the information is extracted from the fringe spacing of the interfero¬

gram. Therefore, slow variations in the nonlinear crystal's conversion efficiency over

the pulse spectrum do not influence the reconstructed spectral phase. This is a conse¬

quence of the Takeda-theorem [112]. Another advantage especially compared to FROG

is, that the reconstruction algorithm is much faster. Using SPIDER single-shot charac¬

terization of approximately 1 mJ pulses at a repetition rate of 1 kHz was demonstrated

[113].

3.4.2 Implementation of a broadband SPIDER setup

When implementing our SPIDER setup for the characterization of broad supercontinua

spanning bandwidths of up to 600 nm, we made sure not to introduce too much addi¬

tional dispersion by using very thin beamsplitters and apart from that only reflective op¬

tics. Additionally, we were especially careful concerning the following two issues: the
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bandwidth of our beamsplitters and the sum-frequency-generation (SFG) crystal we

used.
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Figure 3.11: Designed reflectivity of the ultrabroadband beamsplitters.
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Figure 3.12: The solid curve shows the designed GDD of the beamsplitter coating in reflec¬

tion and the dashed curve depicts the GDD in transmission.

We therefore decided to use custom-designed 400 urn thick ultrabroadband di¬

electric beamsplitters optimized for ultralow dispersion over bandwidths spanning from
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450 nm to 1000 nm. As can be seen in Figure 3.11, the reflectivity of these beamsplit¬

ters varies only slightly over this bandwidth. Figure 3.12 shows the GDD on reflection

and in transmission, respectively. In both cases the GDD varies only by a few fs2. We

want to point out, that these are the theoretical design curves. From the measured

transmission the reflectivity was calculated and is in very good agreement with the de¬

sign. Simulations have shown that the dispersion properties of these beamsplitters are

relatively insensitive against coating deposition errors.

For negative-uniaxial crystals, the phase-matching bandwidth in the ordinary

axis of a type-II crystal is usually much larger than in a type-I crystal of same material

and thickness, whereas the bandwidth in the extraordinary axis is smaller. Therefore, we

chose a 30 urn thick ß-barium-borate (BBO) crystal cut for type-II interaction. Using

this crystal for type-II sum-frequency mixing of a broadband input pulse with the quasi-

cw upconversion spectral slices in the extraordinary axis ensures a conversion effi¬

ciency bandwidth spanning from 530 nm to 1030 nm (FWHM) as is shown in Figure

3.13.
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Figure 3.13: Conversion efficiency of a 30 um BBO crystal cut for type II interaction at an

angle of 44.5°
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3.5 Adaptive Compression

We decided to use a 640-pixel liquid crystal spatial light modulator (SLM) for compres¬

sion of the generated supercontinua, because it allows for adaptive and flexible optimi¬

zation of the generated pulses. This is important because already slightly different fiber

lengths make it necessary to be able to change the compressor settings. Compared to

deformable mirrors the SLM has the advantage of a better compressor resolution due to

a larger number of programmable elements.

One way to achieve compression with the SLM would be to use an evolution¬

ary algorithm, starting the optimization procedure with a guess of the spectral phase. As

this would result in a rather slow optimization and due to the fact, that we are able to

measure the spectral phase of our supercontinuum, we decided to use this measured

property as a feedback for our pulse compressor. In this way, compression can be

achieved much faster after only a few iterations.

We will now explain how the adaptive compression of the generated supercon¬

tinua was implemented in our experiments. For illustration see Figure 3.14.

^^k Measure spectral pnase ^^^

r \

Add to phase on SLM Shortest pulse?

ti IÜJ
Invert spectral phase ^^^

STOP

Figure 3.14: Schematic of the implementation of the compression algorithm used in the ex¬

periments
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The compression was started by writing a flat spectral phase on the liquid crys¬

tal mask. Then the spectral phase of the transmitted pulse was measured using the

SPIDER setup. Then we check whether the pulse is already fully compressed or not. If

this is not the case yet, the spectral phase is inverted and added to the phase currently

applied to the SLM. Then, we measure the spectral phase again and a new iteration be¬

gins. This procedure is continued until we yield the shortest pulse and then stopped. We

find that typically 3-5 iterations are necessary to obtain maximum compression.



Chapter 4

Hollow-Fiber Experiments

In this Chapter, we will present our experiments on supercontinuum generation and

compression using gas-filled hollow fibers. We were able to generate sub-4-fs light

pulses with energies up to 15 uJ by compressing a portion of the supercontinuum pro¬

duced in two cascaded gas-filled hollow fibers [108]. Dispersion compensation is

achieved by measuring the spectral phase with spectral-phase interferometry for direct

electric-field reconstruction (SPIDER, [81, 111]) and using this information as feedback

for a liquid crystal SLM to iteratively compress the pulse.

The Chapter is organised as follows: First, we give a short motivation on why

the generation of ultrashort pulses with high pulse energies is desirable and present an

overview on what has been achieved towards this goal until now. The next Subsection

is dedicated to our experimental setup including an explanation why we used two hol¬

low fibers instead of only one. Our experimental results are presented in Subsection 4.3,

followed by an estimation of the measurement error.

4.1 Motivation and Overview

The generation of high-peak power light pulses in the sub-4-fs regime is particularly

important for a number of fundamental experiments, ranging from the production of

single attosecond pulses by high-order harmonic generation [26], to the investigation of

various nonlinear processes, where the absolute phase of the pulse plays a relevant role

[25].

-49-
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Figure 4.1: The top graph shows the measured supercontinuum output of two cascaded hol¬

low fibers spanning a bandwidth of more than 600 nm. For comparison the output of a sin¬

gle hollow fiber is shown at the bottom.

In recent years, significant progress has been made in the generation of super¬

continua in the visible and near-infrared spectral region from hollow and microstruc¬

tured fibers. Since microstructure fiber supercontinua are not produced with high-

energy pulses a detailed discussion on them is given separately in Chapter 5. Recently, a
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high-energy supercontinuum extending on a bandwidth exceeding 500 THz (see Figure

4.1 (top graph)) has been generated using two gas-filled hollow fibers in a cascading

configuration [20]. The main challenge now lies in the effective dispersion compensa¬

tion and hence compression of the generated bandwidths to yield an isolated ultrashort

optical pulse.

In previous work, compression of energetic supercontinua was achieved with

different sources and/or compression techniques. The supercontinuum output of a single

gas-filled hollow fiber has been compressed to 4.5 fs using a combination of chirped

mirrors and thin prisms [27]. 5 fs pulses were obtained from the same technique by us¬

ing chirped mirrors only [28] or a sole spatial light modulator (SLM) [29] for dispersion

compensation. The generation of 4.5 fs pulses was achieved from a fiber-compressed

output of a cavity-dumped Ti: sapphire laser [30]. From a completely different tech¬

nique, pulses as short as 4 fs with an energy of 0.5 uJ have been generated using a non-

collinear optical parametric amplifier (NOPA) and a dispersive delay line consisting of

chirped mirrors, gratings and a programmable deformable mirror [31].

4.2 Experimental Setup

4.2.1 Continuum generation

The output beam of a 1-kHz Ti:Sapphire laser-amplifier system, delivering 25 fs pulses

with pulse energies of 0.5 mJ, is focused into the first Argon-filled capillary consisting

of a 60 cm long fiber with an inner diameter of 0.5 mm at the entrance side and 0.3 mm

at the exit side (see Figure 4.2). The emerging pulses are then compressed by chirped

mirrors (5 bounces, 30 fs2 each). We like to note, that the gas pressure in the first fiber

(0.3 bar) was not optimized for maximum spectral broadening, but chosen such that -

after compression - 10 fs pulses with negligible wings are obtained. Sending these

pulses (~ 300 uJ) into a second Ar-filled hollow fiber (constant inner diameter of

0.3 mm, 60 cm long) finally leads to a high-energy supercontinuum (100 uJ, 500 THz)

with excellent spatial characteristics. Note that in comparison to a single hollow fiber,

the use of two cascaded hollow fibers with an intermediate compression stage allows

for the generation of a supercontinuum with more spectral energy in the blue and green

part of the spectrum. This can be clearly seen in Figure 4.1, where the supercontinuum
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obtained after two hollow fibers is plotted on top for comparison with the continuum

generated with a single hollow fiber at the bottom.

SLM /

SPIDER

Figure 4.2: Schematic of our experimental setup: Amp, Ti:sapphire laser amplifier, 25 fs,

0.5 mJ, 1 kHz; CMs, chirped mirrors; Gs, 300 line/mm diffraction gratings; SMs, spherical

mirrors,/= 300 mm.

4.2.2 Pulse shaper

The emerging beam is then collimated and sent into the pulse shaper [77] consisting of

a 640 pixel liquid crystal SLM (Jenoptik, each pixel is 97 urn wide and separated by a

3 urn gap), two 300 1/mm gratings and two 300 mm focal length spherical mirrors (4-f-

setup). Alignment for normal incidence on the spherical mirrors (see Figure 4.2) proved

to be very critical in order to preserve the good beam quality. This was necessary be¬

cause of the very large beam diameter of 6.4 cm caused by the divergence of the grat¬

ings and the aperture of the SLM mask. Unfortunately, the gratings introduced consid¬

erable losses: with the pulse energy at the entrance of the pulse shaper being 100 uJ, it

was measured to be 15 uJ at the exit.
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4.2.3 Pulse characterization and compression

Pulse characterization was performed by using SPIDER as it was already described in

detail in Chapter 3. The spectral phase was reconstructed from the measured SPIDER

trace and used to iteratively compress the pulse: Compression is started by writing an

initially flat phase on the liquid crystal mask. Then, the measured spectral phase is in¬

verted and added to the phase already applied to the SLM. In practice, we find that typi¬

cally 5 iterations were necessary to yield the shortest pulse.

4.3 Results

The spectral phase of the supercontinuum has been observed to be very stable and con¬

stant for several hours. This is in excellent agreement with earlier measurements per¬

formed on phase fluctuations in hollow fibers [113] and is an important prerequisite for

the successful application of this compression technique, which relies on a stable spec¬

tral phase.

To improve the performance of the SLM, it was necessary to reduce the steep¬

ness of the spectral phase in the center part of the spectrum. This decreases the phase

difference applied to adjacent pixels on the liquid crystal mask and therefore facilitates

dispersion compensation with the SLM. Herefor, we changed the position of the second

grating in the pulse shaping setup from the zero dispersion position to a position, where

most of the dominating quadratic phase of the pulse is compensated for.

Figure 4.3 shows the temporal profile of the shortest pulse we were able to

generate with this technique. The full-width-at-half-maximum (FWHM) is measured to

be 3.8 fs with a pulse energy of 15 uJ. The measured power spectrum spans a band¬

width of about 470 nm (see Figure 4.4) and has been cut at 530 nm by inserting a knife-

edge into the spectrally dispersed beam inside the pulse shaping apparatus. The reason

for this cutting is two-fold: Because of the lack of a strong enough up-conversion signal

in the SPIDER apparatus from the shorter wavelength region, the spectral phase re¬

mained undetermined in this area. The second reason is the strong scattered fundamen¬

tal light which has to be kept from interfering with the SPIDER-signal in the spectrome¬

ter and therefore from decreasing the modulation depth. These problems could be re-
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solved by using cross-correlation-SPIDER [114], increasing the signal strength and de¬

creasing interference effects with scattered light.
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Figure 4.3: Reconstructed temporal pulse profile showing a FWHM pulse duration of

3.77 fs.
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Figure 4.4: Solid curve, experimentally measured fundamental spectrum obtained after the

pulse shaper, which has been cut at 530 nm and spans a bandwidth of 470 nm. The dashed

curve depicts the reconstructed spectral phase of the pulse.
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Figure 4.4 shows the spectral phase to be essentially flat over the entire band¬

width except for a near 2k step at about 710 nm. The jump in phase accounts for the

pre- and after-pulses in the temporal domain (Figure 4.3). The corresponding SPIDER-

trace is shown in Figure 4.5. As can be seen, the fringe visibility is good over the entire

bandwidth.
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Figure 4.5: Measured SPIDER-interferogram showing a good fringe visibility over the en¬

tire bandwidth.

We calculated the center-wavelength of this pulse to be 673 nm. From this we

find that the pulse is 1.7 cycles long. For further illustration the electric field of the

pulse was calculated and is shown in Figure 4.6.

For completeness we also calculated the interferometric autocorrelation (IAC)

of the pulse. Figure 4.7 shows that it is looking reasonable. If one extracts the pulse du¬

ration out of this IAC taking into account that the center wavelength is 673 nm, one

finds that the pulse is only 3.5 fs long (assuming a sech2 pulse shape).
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Figure 4.6: Solid curve: Calculated electric field showing 1.7 cycles under the pulse enve¬

lope (dashed curve).
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Figure 4.7: Calculated interferometric autocorrelation of the 3.8 fs pulse.

We tried to eliminate the phase jump by adding one more iteration but with no

success. The top graph in Figure 4.8 shows the phase which was applied to the SLM at

the time of measurement. An "edge" at 710 nm can be clearly seen, which is exactly the

position at which the phase jump occurs in the measured spectral phase. Going back

through the previous iterations we find, that this edge arises by adding up the individu-



-57 - Hollow-Fiber Experiments

ally measured spectral phases, which show som high-frequency noise around 710 nm.

This disturbance can also be clearly seen in the bottom graph of the same Figure. Here,

the phasedifference between adjacent pixels on the SLM is plotted versus wavelength.

We note that careful application of a smoothing algorithm between the individual itera¬

tions could resolve the above problem.
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1000

Figure 4.8: Top: Spectral phase applied to the SLM showing an edge at 710 nm, bottom:

phasedifference between adjacent pixels on the SLM clearly showing a disturbance at

710 nm.
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Due to this high-frequency noise locally accumulated over a few iterations,

compression failed in this spectral region. However, due to the steep phase transition,

the pulse duration was only slightly influenced and the main impact is on the pulse con¬

trast. We proved this statement by adding 2% to the short wavelength part of the spectral

phase and removing the dip which then appears in the center. This leads to an artifi¬

cially flattened spectral phase over the entire bandwidth as shown in Figure 4.9. Using

this artificial spectral phase to reconstruct the pulse shape leads to the pulse shown in

Figure 4.10. The pulse has a FWHM pulse duration of 4.1 fs and less after-pulses.

It may be surprising, that the FWHM pulse duration of the pulse is slightly

longer with the flat spectral phase. But this can be explained by the fact, that a flat spec¬

tral phase does not necessarily result in the shortest FWHM pulse duration, but does re¬

sult in the shortest rms pulse duration, which takes into account the whole shape to the

pulse.

In conclusion, we have demonstrated the generation of pulses as short as 3.8 fs

with pulse energies of 15 uJ by adaptive compression of the supercontinuum output of

two cascaded hollow fibers using only a SLM for dispersion compensation [108]. To

the best of our knowledge, these are among the shortest pulses ever generated in the

visible and near-infrared spectral region. Last year, the group of Yamashita demon¬

strated 3.4 fs pulses with a pulse energy of 0.5 uJ using only a single hollow fiber for

continuum generation [19]. Compared to these pulses and the OPA [31] - the technique

of adaptive cascaded hollow fiber compression provides more than an order of magni¬

tude higher pulse energies (15 uJ) therefore being a potential source even for high har¬

monic generation experiments.



-59- Hollow-Fiber Experiments

500 750

Wavelength (nm)

1000

Figure 4.9: Artificially flattened spectral phase by adding 2% to the short wavelength side

and removing the dip (dotted line), which then appears.
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Figure 4.10: Reconstructed pulse shape showing a FWHM pulse duration of 4.1 fs, ob¬

tained with the artificially flattened spectral phase from the previous Figure.

4.4 Error Estimations

As already mentioned in Chapter 3, within the SPIDER retrieval algorithm, the linear

phase owing to the time delay between the two pulse replicas has to be subtracted from

the SPIDER interferogram phase [111]. The determination of this time delay is crucial

because it has the most significant influence on measurement errors of the reconstructed

pulse duration [115]. We therefore performed an error estimation on the measured pulse

duration by evaluating the precision of the calibration of this time delay. The value of

the delay retrieved from the interferogram of the two replicas was measured to be

t = 179.81 fs. Hence, the reconstruction algorithm yields the spectral phase and tempo¬

ral pulse profile with a FWHM duration of 3.77 fs depicted in Figure 4.4 and Figure 4.3

respectively. We compared the linear phase of the above measurement with the linear

phase measured several hours before. We found that the long term stability is good

enough to yield a value within Ax = 0.01 fs of the original delay. Performing the recon¬

struction with t + At yields a FWHM pulse duration of 3.81 fs. The influence of ran¬

dom noise on the pulse reconstruction was estimated by fitting a straight line to the lin¬

ear phase caused by the delay. The standard deviation of the delay was found to be

<At> = 0.07 fs. This corresponds to an error of (3.77 + 0.11 - 0) fs in pulse duration.
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From our experience with SPIDER and our particular implementation of it [81], we find

that this delay parameter is typically reproducible to within better than 0.1 fs over hours

of operation.

We have also checked the influence of the finite bandwidth of our sum-

frequency mixing crystal on the measured pulse duration. Correcting the measured

SPIDER-trace for a finite crystal bandwidth yields a FWHM pulse duration of 3.79 fs.

Another possible error source is the measurement of the spectrum: We have performed

a careful calibration of our spectrometer and have checked that wavelength-shifting the

measured spectrum by +/- 0.1 nm yields a deviation from our measured pulse duration

of only 0.03 fs. Furthermore, the influence of noise on the spectrum was simulated by

adding 1% rms gaussian noise onto the spectrum, which is significantly more than ex¬

perimentally observed. We find that this only yields a 1% rms error in pulse duration.

Therefore, we can conclude that these error sources play no significant role.





Chapter 5

Microstructure-Fiber Experiments

With the advent of microstructure fibers, supercontinuum generation has become possi¬

ble even with nanojoule pulses directly generated by a mode-locked Ti:sapphire laser

[18]. The continua generated in these fibers show some remarkable properties: they can

span a whole optical octave or more, are spatially coherent, and have a brightness which

exceeds the brightness of a light bulb by at least 5 orders of magnitude. These continua

have already found applications in optical coherence tomography [61] and in frequency

metrology, where they deliver precise octave-spanning frequency combs [22] [24]. The

enormous bandwidth lead to the desire to compress these supercontinua to yield single-

cycle pulses. However, the shortest pulse duration achieved so far with this approach is

25 fs [116] [117]. Here, we demonstrate compression down to as short as 5.5 fs and also

discuss in depth the limitations of this technique.

It is known [118] that the spectral coherence of supercontinua generated in

strongly nonlinear processes can be imperfect, and that this can inhibit the compression

process, because the dispersive compressor can be adjusted only relatively slowly and

thus can not be optimized for each pulse separately when the spectral phase undergoes

strong fluctuations. Particularly for very broad spectra, this problem can be severe.

However, it is also strongly affected by the detailed parameters of the fiber (in particu¬

lar, by its dispersion) and of the initial pulses. In Section 5.3, we investigate this issue

for our fibers, using numerical simulations of the pulse propagation. Also we discuss

effects of the limited compressor resolution and a limitation of the SPIDER technique.

-63-
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In this Chapter, we present our experiments on generation and compression of

supercontinua using two different microstructure fibers. One is pumped in the normal

dispersion region and has a core diameter of 2.6 urn. With this fiber we were able to

successfully demonstrate compression down to 5.5 fs. The other fiber has a smaller core

diameter of only 1.7 urn and is pumped in the anomalous dispersion region. Using this

fiber we were able to produce broader supercontinua spanning a bandwidth of more

than 600 nm, but due to the above mentioned problems we have not been able to com¬

press these supercontinua. Our simulations suggest that with today's state-of-the-art

pulse compressors clean compression of these supercontinua is not possible due to the

effects of coherence degradation and the limited compressor resolution.

We start this Chapter with a detailed presentation of our experimental setup.

Again a spatial light modulator (SLM) is used for pulse compression and the feedback

is obtained by measuring the spectral phase using a cross-correlation SPIDER setup.

Section 5.2 is dedicated to our experimental results obtained with both fibers, and in

Section 5.3 our numerical simulations are presented. A comparison with the experimen¬

tal data shows qualitative agreement, although the simulations suggest, that pulse com¬

pression should in principle have been possible even for the 1.7 urn core diameter fiber,

but at the cost of a poor pulse quality. At the end we give a discussion on the problems

encountered with the smaller core diameter fiber and conclude with a comparison be¬

tween the microstructure fiber and the hollow-fiber experiments.

5.1 Experimental Setup

5.1.1 Supercontinuum generation

Figure 5.1 shows our experimental setup. The seed laser is a Kerr-lens mode-locked

Ti:sapphire laser in which dispersion compensation is achieved with a combination of 7

double-chirped mirrors [74] and a prism pair [69]. The laser generates 15-fs pulses with

a pulse energy of 16 nJ, a center wavelength of 800 nm, and a repetition rate of

19 MHz. The relatively low repetition rate was chosen in order to obtain output pulses

with a higher pulse energy, as required for achieving broad spectra in very short pieces

(few millimeters) of microstructure fiber.
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Figure 5.1: Schematic of our experimental setup: Ti:Sa, Ti:sapphire oscillator; OC, output

coupler; DCMs, double chirped mirrors; AS, ashperic lens; MF, microstructure fiber; SM,

sperical mirror; G, grating; SLM, spatial light modulator.

The use of such short fiber pieces has been motivated by the need to work with

a limited compressor resolution: the SLM can control the spectral phase only for a dis¬

crete set of frequency components. The transmission phase should not vary by more

than «1 rad between adjacent two of these spectral components. Thus, the achievable

group delay, which is the frequency derivative of the spectral phase, is limited. In order

to limit the group delay required for compression, we are using very short pieces of fi¬

ber, pumped with rather short initial pulses. The short initial pulse duration and the use

of a fiber with normal dispersion also lead to a relatively good spectral coherence of the

supercontinuum.

We use 75% of the initial pulse energy as incident power on the microstructure

fiber, while 25% are split off before the fiber for use in the cross-correlation SPIDER

setup (see Section 5.1.3) used for characterization of the compressed pulses. An

aspheric lens with a focal length of 4.5 mm is used to couple the pulses into the 5-mm

long microstructure fiber. The dispersion of the aspheric lens is precompensated with
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two double-chirped mirrors (DCMs). Both ends of the fiber were cleaved at an angle of

approximately 8° in order to prevent backreflections into the laser. The output beam

from the fiber was collimated with another lens with a short focal length (10 mm) and a

thickness of 3.9 mm, which contributes a significant amount of unwanted normal dis¬

persion.

The microstructure fiber has a design as often used for supercontinuum genera¬

tion, containing a regular hexagonal array of air holes, with the central hole missing.

Effectively the central region is similar to a cylinder with a diameter of 2.6 urn. Figure

2.2 in Chapter 2 shows the measured dispersion profile of this fiber.

Because of their importance for the supercontinuum coherence, we measured

the power fluctuations of the transmitted pulses to be in the order of 3% rms in a 50-

kHz bandwidth, while the rms fluctuations of the incident laser pulses were «4 times

smaller. We explain the larger output pulse fluctuations with the beam pointing fluctua¬

tions of the laser, which affect the input coupling efficiency.

We also did some experiments with another fiber with a smaller core (1.7 urn

diameter). Due to its slightly elliptical core this fiber is polarization maintaining. There¬

fore, the coupling efficiency into the fiber is strongly polarization dependent. For this

reason we placed the fiber in a rotational mount in order to adjust the fiber axes to the

polarization of the input pulse. Usually one would not rotate the fiber itself for this pur¬

pose, but use a half-wave plate in front of the fiber, to rotate the polarization of the in¬

put pulse. We used the other approach to limit the amount of addition normal dispersion

in the beam path. For this fiber, the power fluctuations of the transmitted pulses were

even larger. This fiber delivered broader spectra of more than 600 nm width, but - as

we will see - the shortest compressed pulses have been achieved with the other fiber.

The coupling efficiency into the fibers was estimated by comparison with nu¬

merical simulations (see below) to be «20% for the fiber with the smaller core and

«30%) for the other one. Note that it is difficult to measure the launch efficiency for a

short piece of fiber where the parts launched into the core and the cladding of the fiber

can not be easily separated.
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5.1.2 Pulse shaper

The pulse shaper setup (see Figure 5.1), which is the same as described in Chapter 4,

was designed for the broadest generated supercontinua spanning a range from «400 nm

to 1050 nm. In order to obtain sufficient wavelength resolution (for sufficient group de¬

lay), we used a 640-pixel liquid crystal spatial light modulator (SLM), where the pixels

are 97 urn wide and are separated by 3-um gaps. The SLM was placed in the Fourier

plane of a 4-f setup [77]. For mapping the range of 400-1050 nm onto the SLM, we

used gratings with 300 lines/mm and spherical mirrors with a focal length of 300 mm.

To avoid excessive astigmatism, we used plane folding mirrors next to the gratings and

operated the spherical mirrors with nearly normal incidence. This proved to be very

crucial for these huge bandwidth to get a collimated beam at the exit of the pulse

shaper. The obtained compressor resolution is «1 nm, corresponding to a maximum

group delay in the order of 340 fs. The total power throughput of the pulse shaping

setup is only 15%, because the gratings introduce considerable losses over such a large

bandwidth.

5.1.3 Pulse characterization and compression

After the pulse shaper the pulses are fed into the pulse characterization setup. Because

of the losses introduced due to the coupling into the fiber and in the pulse shaping appa¬

ratus, the average power of the pulses at the entrance of the pulse characterization setup

is only 4 mW. Due to the huge bandwidth of the supercontinua, the spectral energy den¬

sity is therefore very low, making a conventional SPIDER [81, 111] measurement as it

is described in Chapter 3 impossible. One would not be able to obtain a detectable

SPIDER signal over the entire bandwidth of the spectrum. We therefore decided to

build a cross-correlation SPIDER [114] using the laser pulse as the strongly linearly

chirped pulse and feeding the continuum into the „replica"-arm. In principle the setup is

the same as described in Chapter 3, except that we do not use a reflection off the glass

block to generate the replicas but instead use the entire continuum beam. Due to the

enormous bandwidths we used the same custom-designed beamsplitters and sum-

frequency-generation (SFG) crystal as described in detail in Chapter 3.

When performing the SPIDER measurements with the broad supercontinuum

generated with the 1.7-um core diameter fiber, we noticed that strong scattered light

from the shorter wavelength region of the fundamental spectrum completely overlapped
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with the SPIDER signal in the spectrometer above 400 nm. We first tried to cut the

shorter wavelength region of the supercontinuum by inserting a knife edge in the Fou¬

rier plane of the pulse shaping setup. However, the second diffraction order of the short

wavelengths still overlapped in the Fourier plane with the long wavelengths, and its

scattered light in the spectrometer was still too strong compared to the SPIDER signal.

Therefore, we had to use a color filter (1 mm Schott GG 495) to cut all spectral compo¬

nents below 495 nm, although this meant introducing additional dispersion.

The spectral phase reconstructed from the SPIDER measurement is used as

feedback to iteratively compress the pulse, as already described in Chapter 3. We start

the compression by writing a flat phase onto the SLM. Then, we measure the spectral

phase of the pulse using our SPIDER setup. We then control, whether the pulse is al¬

ready short or not. If it is not short yet, the measured spectral phase is inverted and

added to the phase currently applied to the SLM. Such iterations are repeated until the

pulse does not change significantly any more. Typically, three iterations are required to

obtain the shortest pulse.

5.2 Experimental Results

In this Section we present our experimental results obtained with two different micro-

structure fibers, where the core diameters are 2.6 urn and 1.7 urn, respectively. In both

cases, the propagation length was 5 mm.

5.2.1 Microstructure fiber with 2.6 urn core diameter

For the measurements presented in this Subsection we used a 2.6-um core di¬

ameter microstructure fiber from Crystal Fibre with a zero-dispersion wavelength of

940 nm, thus pumping in the normal dispersion region. With this fiber we were able to

generate very bright and broadband spectra with excellent spatial characteristics. A

typical spectrum obtained with a pulse energy of 2.7 nJ launched into the fiber, ranging

from 520 nm and 950 nm, is shown in Figure 5.2.
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Figure 5.2: Solid curve: experimentally measured output spectrum of the 2.6 um core di¬

ameter fiber. The dashed curve depicts the reconstructed spectral phase.

Due to the fact, that the spectrum is not octave-spanning, we did not have to

use a color glass filter to suppress the shorter wavelengths (see Section 5.1.3). With

these spectra, we experienced no difficulties concerning the SPIDER measurements: the

recorded interferogram showed a good fringe visibility as shown in Figure 5.3, so that a

reliable reconstruction of the spectral phase of the pulses was possible.

1.0-r

E
03
i_

O)
o

CD

I

a:
LU

Q

Q_

C/3

0.5-

0.CM

320

1 r

340 360 380

Wavelength (nm)

400 420

Figure 5.3: Recorded SPIDER-interferogram showing a good fringe visibility.
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With this fiber we were able to demonstrate successful compression to a full

width at half maximum (FWHM) pulse duration of 5.5 fs (see Figure 5.4). As can be

seen in Figure 5.2, the spectral phase is flat over the full spectrum, except for the outer

parts, where the spectral energy density is too low for reliable reconstruction of the

spectral phase. This explains why the pulses are slightly longer than the theoretical

transform-limited pulse duration of 4.8 fs for the full spectrum, or 5.3 fs for the spec¬

trum between 545 nm and 970 nm. This spectral range corresponds to the bandwidth

over which the reconstruction of the spectral phase was possible. To the best of our

knowledge, these are the shortest pulses ever generated using a microstructure fiber.
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Figure 5.4: Reconstructed temporal pulse profile showing a FWHM pulse duration of

5.5 fs.

5.2.2 Microstructure fiber with 1.7 urn core diameter

For the generation of octave-spanning supercontinua, we used a polarization-

maintaining microstructure fiber from Crystal Fibre with a core diameter of only 1.7 urn

and a zero-dispersion wavelength of 665 nm, thus pumping in the anomalous dispersion

region. With this fiber we were able to produce spectra spanning from 400 nm to more

than 1000 nm. On the long wavelength side the measurement was limited by the detec¬

tor sensitivity (Si). A typical spectrum measured without the color glass filter is shown

in Figure 5.5. The spectrum is strongly modulated and shows sharp spectral features in

the wavelength range of the input laser beam. We believe these features to result from
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interferences between the core and the cladding modes, although it is not clear why this

effect was observed only with the smaller core fiber.

--

1 1 1 1
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Wavelength (nm)

Figure 5.5: Experimentally measured supercontinuum from the 1.7 um core diameter fiber

exhibiting strong modulations and interferences in the spectral region of the laser beam

(700nmto900nm).

We encountered several problems related to the characterization of these

strongly structured broad supercontinua. As already mentioned for the 2.6 urn fiber, the

spectral energy density in the wings of the spectrum was too low for the detection of an

upconversion signal even with the crosscorrelation SPIDER setup. With the much

broader spectra from the 1.7 urn core fiber, this problem was even more severe. While

the latter problem could possibly be overcome by using pulses with higher energies, the

mentioned sharp features on the spectra represent a more fundamental problem: they

destroy the fringe visibility in the SPIDER interferogram (shown in Figure 5.6) and thus

inhibit the correct reconstruction of the spectral phase.
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Figure 5.6: Typical recorded SPIDER Interferogram obtained with the output of the 1.7 um

core diameter fiber.

5.3 Theoretical Considerations

In this Section, we investigate two important limiting factors for the dispersive com¬

pression of supercontinua: the limited spectral coherence, and the effect of the limited

compressor resolution.

The probably most fundamental limitation for supercontinuum compression is

the limited coherence. The broadest spectra are often achieved when the fiber dispersion

is anomalous in a large spectral range and the pulse intensity is high, as is possible with

small mode areas. However, the launched pulses then correspond to solitons with very

high soliton order, which subsequently break up into numerous weaker pulses. The lat¬

ter can partly propagate as solitons and partly as dispersive radiation. The highly

nonlinear nature of the involved processes can be extremely sensitive to the input pulse

parameters [68] [67] [119] [120]. As a result, the generated output can vary significantly

in spectral structure and spectral phase from pulse to pulse, even if the input pulses are

at the quantum noise limit. With the large low-frequency excess noise of typical mode-

locked lasers, the coherence of the generated supercontinuum can become so poor that

^^m^jm ^K/k^k_
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effective compression is not possible, because the spectral phase would have to be sepa¬

rately optimized for each single pulse.

However, the severity of the coherence issue strongly depends on a number of

parameters, such as the fiber dispersion, fiber length, and the initial pulse duration. In

particular, the normal dispersion regime tends to lead to better coherence, although the

achieved bandwidth is often smaller [118]. Also, the coherence is favored by the use of

short initial pulses [118] [121] [122]. As a tentative explanation, the coherence can be

poor for long pump pulses because then the Raman gain occurs outside the initial pulse

bandwidth and thus generates new spectral components by amplifying quantum noise.

In contrast, for pump pulses with durations well below 100 fs the Raman gain only acts

on already existing spectral components and therefore does not introduce that much

noise. Finally, it has been found [123] that often the coherence is good below a certain

threshold for the pulse energy, where already a broad spectral width is achieved, while

the coherence rapidly degrades for higher pulse energies. Of course, this threshold de¬

pends on the fiber length.

Our experimental result, obtained in the normal dispersion regime with short

initial pulses and a short fiber piece of only 5 mm length, shows that compression down

to 5.5 fs is possible. In the following, we quantitatively investigate the coherence and

other issues in the regime of our experiment. Note that calculations with the actual ex¬

perimental parameters are required for the optimization of the setup and the interpreta¬

tion of the obtained data. Conclusions from investigations in other parameter ranges can

usually not be used, since the behavior differs very much between different parameter

ranges.

5.3.1 Simulation basics

We numerically simulated the propagation of pulses in the microstructure fibers using a

generalized scalar propagation equation (including fiber losses) suitable for use in

studying broadband pulse evolution. This propagation equation (Equation 2.15) was de¬

rived in Chapter 2 and has also been used by other authors in the field [65, 118]. It

models the effects of the nonlinear propagation, taking into account the effects of dis¬

persion, self-phase modulation, self-steepening, four-wave mixing, and intra-pulse Ra¬

man scattering. The response function R(t) = (I -fp)S(t) + fphp(t) includes both the in-
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stantaneous and delayed nonlinear responses of the fiber, where fR = 0.18 is the frac¬

tional contribution of the Raman delayed response. For hR, we used the experimentally

determined Raman response of silica [33]. To solve the propagation equation, we used a

standard split-step Fourier algorithm treating dispersion in the frequency domain and

the nonlinearity in the time domain, apart from the temporal derivative for the self-

steepening effect, which was evaluated using Fourier transforms.

5.3.2 Calculation of coherence

Recently a modified Young two-source experiment was used to characterize the coher¬

ence of supercontinua generated in bulk [23]. Here, two spatially separated and inde¬

pendently generated supercontinua are superposed to yield a polychromatic far-field

interference pattern. The spectral resolution of this pattern reveals distinct fringes at

each wavelength in the spectrum, with the wavelength dependence of the fringe visibil¬

ity providing a rigorous measure of the local coherence properties. This is due to the

fact that it is directly related to the modulus of the complex degree of (mutual) coher¬

ence between the independent supercontinua. We use this measure of coherence to ex¬

amine numerically the coherence properties of the supercontinua generated in our fi¬

bers.

In particular, the simulations have been performed for e.g. 100 initial pulses

which differ in intensity due to some initial intensity noise with Gaussian probability

distribution and an rms value of a few percent of the average intensity. Note that due to

the relatively long measurement times (e.g. several seconds for a SPIDER trace) the

low-frequency classical noise is important, and this is far above the shot noise level.

As our simulation show (see later in this Section) the generated supercontinua

are affected by spectral and temporal jitter. This jitter is associated with coherence deg¬

radation caused by severe fluctuations in the spectral phase at each wavelength. To

study this coherence degradation numerically we quantified it by means of the modulus

of the complex degree of first-order coherence calculated over a finite bandwidth at

each wavelength in the supercontinuum:
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et&Kh-tA
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(5.1)

The angle brackets denote an ensemble average over independently generated

supercontinuum pairs [Ei(kj), E2(kj)], and t is the time measured at the resolution time

scale of the spectrometer that has been used to resolve the spectra. Because we are in¬

terested mainly in the wavelength dependence of the coherence, we calculate |gi2 | at

ti -t2 = 0, which, in practice, would correspond to measuring the fringe visibility at the

center of the fringe pattern in a Young two-source experiment [118].

5.3.3 Results for 2.6 urn core diameter fiber and comparison with ex¬

periment

Figure 5.7 shows a simulation with 100 runs for 15 fs input pulses, a center wavelength

of 790 nm, an average power of 50 mW coupled into the fiber at a repetition rate of

19 MHz, and power fluctuations of 5% rms. The spectral amplitudes for all single runs

as well as the average spectral amplitude is shown. Despite the power fluctuations on

the input pulses, the overall shape of the generated spectra is the same and only rela¬

tively small variations in the spectral amplitudes can be observed. In addition, the de¬

gree of coherence (see top of Figure 5.7), calculated as described above, is found to be

good in all spectral regions with significant spectral intensity. We like to note that the

simulations can give a useful estimate for the coherence even if the spectral details are

not all fully reproduced.
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Figure 5.7: Simulations for the 2.6 um core diameter fiber: Bottom: the light grey curves

show an ensemble of 100 individual spectra, the solid black curve depicts the averaged

spectrum. Top: Calculated degree of coherence for these spectra.

Using these data, we simulated the pulse compression, where the compressor

parameters were set according to the averaged spectral phase of the pulses, and the

spectral intensity for wavelengths >950 nm was suppressed as in the experiments. The

spectral phase was corrected only with a finite compressor resolution similar to the ex¬

periment. The simulation result demonstrated that the compression is not significantly

affected by the limited coherence and the compressor resolution: the obtained FWHM

pulse duration is on average 4.9 fs (see Figure 5.8), close to the transform limit of 4.8 fs

for the averaged spectrum. This agrees with the successful experimental compression

described in Section 5.2.1.
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Figure 5.8: Calculation of compressed pulses for the 2.6 um core diameter fiber: the light

grey curves show 100 individual pulses compressed with the averaged spectral phase, the

black solid curve is the average of these 100 compressed pulses.

Comparing the measured spectrum with the numerically simulated spectra (see

Figure 5.2 and Figure 5.7) shows that both spectra span a bandwidth of more than

400 nm and qualitatively agree concerning their shapes, although they are slightly fre¬

quency-shifted. The long wavelength tail from 950 nm up to 1400 nm in the simulated

spectra is suppressed in the measured one, because the spectral sensitivity of our CCD-

camera ranges from 180 nm to 1000 nm. Exact quantitative agreement cannot be ex¬

pected due to uncertainties in the dispersion data (including possible variations along

the fiber length) and the properties of the initial pulses, keeping in mind the sensitivity

of the results on such parameters.
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5.3.4 Results for 1.7 urn core diameter fiber and comparison with ex¬

periment

1.0 -r

400 800

Wavelength (nm)

1200

Figure 5.9: Simulations for the 1.7 um core diameter fiber: Bottom: the light grey curves

show an ensemble of 100 individual spectra, the solid black curve depicts the averaged

spectrum. Top: Calculated degree of coherence for these spectra.

We did similar simulations for the fiber with a smaller core diameter of 1.7 urn, where

the obtained spectra were significantly broader. Figure 5.9 shows an ensemble of 100

spectra and the average spectrum as solid curve obtained with the same input pulse pa¬

rameters as used for the 2.6 urn core diameter fiber. Compared to the simulation result
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for the 2.6 um core diameter fiber the spectral amplitudes show much stronger fluctua¬

tions for the same input power fluctuations, especially in the 800 nm to 900 nm region.

Here, the calculated coherence (top of Figure 5.9) is significantly worse, especially in

regions with a large amount of spectral energy.

The simulation of the compression (under the same conditions as above, except

that all wavelengths above 1000 nm were suppressed as in the experiment) showed that

although the average duration of the compressed pulses is still close to the transform

limit, the amount of power in the temporal side lobes has significantly increased com¬

pared to the theoretical result for the compressed average pulse (see Figure 5.10). Also

we found that the limited compressor resolution has some degrading effect in this case.

Despite these problems, the simulations suggest that in principle one may obtain com¬

pressed pulses with sub-2 fs average duration, although only with poor pulse quality.

Even this was not achieved in the experiment, probably due to the influence of cladding

modes as explained in Section 5.2.2.
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Figure 5.10: Calculation of compressed pulses from the 1.7 um core diameter fiber: the

light grey curves show 100 individual pulses compressed with the averaged spectral phase,

the black solid curve is the average of these 100 compressed pulses.

Compared to the measured supercontinua (see Figure 5.5) the bandwidth is

roughly the same except for the long wavelength region, which can not be detected by

our CCD anymore. Another difference is that the measured spectra have more spectral
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energy in the 700 nm to 800 nm region and that it is this wavelength region, where the

sharp spectral features occur. An explanation for this difference is the interference with

the cladding modes, which can not be eliminated over such a short fiber length.

5.4 Discussion

Following the presentation of the experimental and theoretical results, we dedicate this

Section to the discussion of the main limitations for the compression of a microstructure

fiber supercontinuum to single-cycle pulses.

5.4.1 Coherence degradation due to power fluctuations

It has been suggested that a limiting factor for successful compression of microstructure

fiber supercontinua could be the coherence degradation of the supercontinuum due to

quantum noise only. As numerical simulations by J. Dudley [118] show, this should not

be a problem for short input laser pulses. Therefore, we started our compression ex¬

periment by launching 15 fs short pulses into the microstructure fiber.
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Figure 5.11: Calculated coherence (for the 1.7 um fiber) for an ensemble of 100 pulses as¬

suming three different power fluctuations: solid curve: 1% rms, dotted curve: 5% rms, and

dashed curve: 10% rms.
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Our simulations show that for increasing power fluctuations the coherence is

gradually degrading. This is shown in Figure 5.11 for the 1.7 urn core diameter fiber,

where the coherence was calculated for three different power fluctuations on the input

pulse with the same parameters as used in Section 5.3.4. As can be seen the coherence

degradation due to power fluctuations is dramatic for this fiber. For comparison, we

also calculated the degree of coherence for the same power fluctuations for the 2.6 urn

core diameter fiber. Figure 5.12 shows the result for the same parameters as used in

Subsection 5.3.3. In contrast to the 1.7 urn core diameter fiber, the coherence degrada¬

tion in this fiber is not that severe.
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Figure 5.12: Calculated coherence (for the 2.6 um fiber) for an ensemble of 100 pulses as¬

suming three different power fluctuations: solid curve: 1% rms, dotted curve: 5% rms, and

dashed curve: 10% rms.

As we measured power fluctuations of 3% rms after the fiber due to beam

pointing instabilities of the oscillator (see Subsection 5.1.1), we included this in our

simulation and found that for the 2.6 urn fiber the coherence is still good enough to al¬

low for successful compression of the pulses. As described in Section 5.2.1 we proved

experimentally that compression to 5.5 fs using a 2.6 urn core diameter microstructure

fiber is possible. For the 1.7 urn core diameter fiber we find that for some wavelengths

the coherence is significantly degraded and that although pulse compression should in

principle still be possible, this coherence degradation is too big to allow for the com-
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pression of a clean ultrashort pulse. To resolve this problem one might think about try¬

ing to position stabilize the input laser beam.

5.4.2 Cladding modes due to short fibers

The problems we encountered with the 1.7 urn core diameter microstructure fiber,

namely the sharp spectral features in the spectrum as well as in the SPIDER-

interferogram due to interferences with the cladding modes could be resolved by using a

longer piece of fiber. The advantage of using longer fiber pieces would be the possibil¬

ity of reducing or even completely stripping off the cladding modes, so that smooth

spectra and interferograms could be recorded and thus the spectral phase could be un¬

ambiguously determined. But this would only be possible at the expense of more dis¬

persion introduced by propagating through a longer piece of fiber. As soon as the dis¬

persion exceeds a certain limit, the limited compressor resolution of the liquid crystal

SLM makes a successful compression impossible [77]. If we take into account that the

dispersion of the output coupling lens has to be compensated for as well and that the

compression has to be achieved by the SLM only, we find experimentally that the

maximum fiber length is about 5 mm.

To avoid the additional dispersion introduced by the output coupling lens, one

could replace this lens by a spherical mirror or a paraboloid. Since the divergence of the

output beam is enormous, spherical optics with short focal lengths are needed in order

to avoid using optics with large dimensions. However, spherical optics with short focal

lengths introduce strong astigmatism and aberrations. Even if one would use large-scale

optics with longer focal lengths, the collimated beam would have an enormous diame¬

ter. Thus, the use of a reflective beam expander (or "impander") would be necessary in

order to obtain a collimated beam with a reasonable diameter. This however is compli¬

cated, introduces wave front errors and reduces the overall transmission even further.

We like to note that although in principle one could remove the cladding

modes e.g. using a mode cleaner (with focusing optics and pinhole), such operations are

problematic when applied to these extremely broad spectra, which are very sensitive to

effects like chromatic aberrations and add additional dispersion. Additionally, the

enormous difference in spot sizes for blue and near-infrared light limits the applicability

of a mode cleaner for such huge bandwidths.
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5.4.3 SPIDER problem for structured spectra

As a result of the interferences between the core and the cladding modes in the 1.7 urn

core diameter microstructure fiber, we observed the same sharp spectral features in the

recorded SPIDER-interferogram. These sharp „spikes" destroy the fringe visibility and

thus inhibit the correct reconstruction of the spectral phase.

Even without interference from cladding modes, the spectra are strongly struc¬

tured when the supercontinuum generation is optimized for large bandwidth. Particu¬

larly the spectral regions with nearly vanishing spectral intensity cause problems for the

reconstruction of the phase in the SPIDER method. If the SPIDER interferogram is zero

for some wavelengths, the spectral phase of these wavelengths is not defined anymore

and thus the reconstruction fails.

Probably for these reasons, attempts to compress the broader spectra from the

fiber with the smaller core were not successful. This shows that the best fiber for pulse

compression is not necessarily the one generating the broadest spectra, and this holds

not only due to the issue of spectral coherence.

5.5 Conclusions

In conclusion, we have demonstrated pulse compression down to 5.5 fs from a super¬

continuum generated in a microstructure fiber. The compression was achieved with it¬

erative optimization of the setting of a liquid crystal spatial light modulator. The pulses

were characterized by performing a cross-correlation SPIDER measurement.

To our best knowledge, the obtained pulse duration is by far the shortest dem¬

onstrated with this method. Key points were to use a rather short piece of fiber (5 mm),

to start with short (15 fs) pump pulses, and to choose a fiber with normal dispersion,

where the spectral coherence is better.

We have discussed various limitations of the general method and of the par¬

ticular experimental results. For the obtained compression results, we could not use the

full generated spectrum because some parts had too low spectral intensity for SPIDER

characterization. For compression of broader spectra, more pulse energy would be
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needed. Even with higher pulse energies, the SPIDER characterization can be invali¬

dated by strongly modulated spectral structures, particularly if spectral regions with low

power density exist, or if cladding modes destroy the fringe visibility. Finally, the spec¬

tral coherence tends to get worse for broader spectra, although this strongly depends on

the chosen regime of fiber dispersion, initial pulse duration, etc. The coherence can

greatly suffer from classical excess noise in the initial pulses, including their beam

pointing instability which affects the launch efficiency. However, we have shown that

even with significant classical excess noise the limited spectral coherence is not neces¬

sarily the most important limiting factor for pulse compression.

An alternative method for supercontinuum generation is based on propagation

in hollow fibers [15]. Compared to microstructure fibers, much higher pulse energies in

the order of 1 mJ are required for strong spectral broadening in hollow fibers. This

makes it necessary to use amplified pulses from an amplifier, operating at a repetition

rate of e.g. 1 kHz. Of course, the resulting pulse energies are correspondingly higher,

making it easier to do a precise SPIDER characterization. The spectral phase of the out¬

put of a hollow fiber was investigated with a single-shot SPIDER technique and was

found to be very stable [113]. Dispersive compression of such pulses with the same

pulse shaper has allowed the generation of sub-4-fs pulses [108].

Compared to hollow fiber compression, the compression of microstructure fi¬

ber supercontinua has the advantage of being possible with much lower pulse energies

(well below 100 nJ) and therefore at the full laser repetition rate. Despite a number of

challenges, which included more than only the problem of limited spectral coherence,

we have demonstrated the generation of 5.5-fs pulses with this technique.
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Conclusion and Outlook

In this thesis, the generation and compression of supercontinua using two different

techniques has been studied experimentally. Numerical simulations have been per¬

formed for one of these techniques supporting our experimental observation, that com¬

pression is limited by a number of factors in this case. The enormous bandwidths span¬

ning up to 600 nm made it necessary to use compression and pulse characterization

schemes, that are capable of handling these bandwidths. Therefore, we employed an op¬

timized implementation of the pulse compressor setup consisting of a 640-pixel spatial

light modulator in the Fourier plane of a 4-f setup. We characterized the pulses with a

broadband, low-dispersion SPIDER-setup designed for sub-10 fs pulses [81]. This setup

was further improved by using custom designed ultrabroadband beamsplitters and

30 urn thick, type-II BBO crystal ensuring a broad enough conversion bandwidth for

SFG. Iterative compression of the pulses is achieved by using the measured spectral

phase as feedback for the SLM.

With the development of microstructure fibers, it became possible to generate

supercontinua spanning more than an optical octave even with nanojoule pulses from an

oscillator. We therefore investigated supercontinuum generation with two such fibers

exhibiting different dispersion properties. One fiber, having a core diameter of 2.6 urn,

was pumped in the normal dispersion regime, which allowed for the production of rela¬

tively stable supercontinua. With this fiber, we achieved pulse compression to 5.5 fs

pulses. These pulses are the shortest pulses ever obtained using a microstructure fiber.

The second fiber had a core diameter of 1.7 urn and was pumped in the anomalous dis¬

persion regime. Using this fiber, we were able to generate broad supercontinua spanning

-85-
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a bandwidth of more than 600 nm, but we have not been able to show successful com¬

pression in this case. It has been predicted that supercontinua generated in this regime

exhibit a coherence degradation which limits their compressibility [118]. We therefore

performed numerical simulations on the propagation through microstructure fibers in¬

cluding a calculation of the coherence and taking the limited compressor resolution of

the SLM into account. These simulations show that the coherence of the supercontinua

generated in the normal dispersion regime is still good enough to achieve a clean com¬

pression. This is in excellent agreement with our experimentally generated 5.5 fs pulses.

For the other fiber, however, the simulations show that the coherence degradation and

the limited compressor resolution would in principle still allow for a compression of

these huge supercontinua to sub-2-fs pulses, but only with a poor pulse quality. We ten¬

tatively attribute the fact that we did not even arrive at this poor compression to a limi¬

tation of the SPIDER technique. The supercontinua generated in the anomalous disper¬

sion regime showed strong spectral features, which were translated onto the SPIDER-

signal. This had a detrimental impact on the fringe visibility making a correct recon¬

struction of the spectral phase impossible.

Our simulations showed that power fluctuations of a few percent rms induced

by input laser beam pointing instabilities are responsible for the coherence degradation

of the generated supercontinua. To overcome this effect one could try to stabilize the

position of the input laser beam to the fiber entrance. Without this one would need a

pulse compressor allowing for the separate compression of each single pulse, which is

not possible with today's state-of-the-art pulse compressors. Even if the coherence of

the supercontinua could be improved by reducing the power fluctuations, the finite

compressor resolution will prevent clean compression of these spectra.

The very low pulse energies on the order of 0.2 nJ of the generated pulses will

limit their usefulness for future applications.

In a second approach we used amplified pulses with mJ pulse energies at a

repetition rate of 1 kHz to generate broad supercontinua using two cascaded hollow-

core fibers filled with Ar. Previous single-shot measurements on phase fluctuations in

hollow fibers showed that the spectral phase of these supercontinua is very stable and

constant for several hours [113]. With this technique we were able to demonstrate suc¬

cessful compression to 3.8 fs pulses with an energy of 15 uJ using only the SLM for

dispersion compensation. These pulses are among the shortest pulses ever generated in
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the visible and near-infrared spectral region [19, 31, 108]. Compared to these other

pulses with similar durations, our pulses have more than an order of magnitude higher

pulse energies.

Since we could not use the full bandwidth of our generated supercontinua for

pulse compression because the spectral energy in the wings was too low to obtain a de¬

tectable SPIDER-signal, we believe that by using a cross-correlation SPIDER setup

even broader spectra can be compressed using our approach, thus yielding even shorter

pulses.

Such high-peak-power light pulses in the single-cycle regime are especially in¬

teresting for application in higher-order harmonic generation (HHG). CEO-stabilizing

these pulses allows to make sure, that exactly one cycle of the electric field is above the

threshold for generating higher harmonics in the cut-off region. This is the precondition

for the generation of single attosecond pulses [26].

Another potential application of these pulses is the investigation of various

nonlinear processes, in which the absolute phase of a pulse plays a relevant role [25].
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